1
|
Madula R, Visser C, van Marle-Köster E. The impact of myostatin variants on growth traits in South African Bonsmara beef cattle. Trop Anim Health Prod 2024; 56:358. [PMID: 39448522 PMCID: PMC11502602 DOI: 10.1007/s11250-024-04208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Double muscling occurs when the myostatin (MSTN) gene is deactivated due to a series of mutations, leading to uncontrolled muscle growth and excessive muscle fiber accumulation, as the gene can no longer effectively regulate muscle development. This study aimed to assess the impact of MSTN variants and their combinations on growth traits, namely direct birth weight (BWDIR), direct weaning weight (WWDIR), average daily gain (ADG) and feed conversion ratio (FCR) in the South African (SA) Bonsmara. Genomically enhanced estimated breeding value (GEBVs) for traits of interest, and MTSN genotypes for SA Bonsmara animals were available for the study. Thirteen MSTN variants (Nt821, Q204X, F94L, E226X, E291X, C313Y, Nt419, S105C, D182N, Nt414, Nt324, Nt267, and Nt748) were routinely genotyped using the IDBv3 SNP array. Genotypic frequencies of MSTN variants ranged from 1.18% for Q204X to 35.02% for Nt748. No association was observed between the Nt267 variant and any growth traits, while both Nt748 and Nt414 variants affected WWDIR, ADG and FCR (p < 0.05). The results of the effect of multiple variants on growth traits indicated that there was an additive effect when more than one MSTN variant was present in an individual. This study is the first study to report the impact of MSTN variants on traits of economic importance in the SA Bonsmara breed.
Collapse
Affiliation(s)
- Rendani Madula
- Department of Animal Science, University of Pretoria, Pretoria, South Africa.
| | - Carina Visser
- Department of Animal Science, University of Pretoria, Pretoria, South Africa.
| | | |
Collapse
|
2
|
Hemat Jouy S, Mohan S, Scichilone G, Mostafa A, Mahmoud AM. Adipokines in the Crosstalk between Adipose Tissues and Other Organs: Implications in Cardiometabolic Diseases. Biomedicines 2024; 12:2129. [PMID: 39335642 PMCID: PMC11428859 DOI: 10.3390/biomedicines12092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Adipose tissue was previously regarded as a dormant organ for lipid storage until the identification of adiponectin and leptin in the early 1990s. This revelation unveiled the dynamic endocrine function of adipose tissue, which has expanded further. Adipose tissue has emerged in recent decades as a multifunctional organ that plays a significant role in energy metabolism and homeostasis. Currently, it is evident that adipose tissue primarily performs its function by secreting a diverse array of signaling molecules known as adipokines. Apart from their pivotal function in energy expenditure and metabolism regulation, these adipokines exert significant influence over a multitude of biological processes, including but not limited to inflammation, thermoregulation, immune response, vascular function, and insulin sensitivity. Adipokines are pivotal in regulating numerous biological processes within adipose tissue and facilitating communication between adipose tissue and various organs, including the brain, gut, pancreas, endothelial cells, liver, muscle, and more. Dysregulated adipokines have been implicated in several metabolic diseases, like obesity and diabetes, as well as cardiovascular diseases. In this article, we attempted to describe the significance of adipokines in developing metabolic and cardiovascular diseases and highlight their role in the crosstalk between adipose tissues and other tissues and organs.
Collapse
Affiliation(s)
- Shaghayegh Hemat Jouy
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Central Tehran Branch, Islamic Azad University, Tehran 14778-93855, Iran;
| | - Sukrutha Mohan
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Giorgia Scichilone
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
| | - Amro Mostafa
- Department of Pharmacology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Abeer M. Mahmoud
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.M.); (G.S.)
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Zhao K, Li X, Liu D, Wang L, Pei Q, Han B, Zhang Z, Tian D, Wang S, Zhao J, Huang B, Zhang F. Genetic Variations of MSTN and Callipyge in Tibetan Sheep: Implications for Early Growth Traits. Genes (Basel) 2024; 15:921. [PMID: 39062700 PMCID: PMC11276372 DOI: 10.3390/genes15070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Tibetan sheep are vital to the ecosystem and livelihood of the Tibetan Plateau; however, traditional breeding methods limit their production and growth. Modern molecular breeding techniques are required to improve these traits. This study identified a single nucleotide polymorphism (SNP) in myostatin (MSTN) and Callipyge in Tibetan sheep. The findings indicated notable associations between MSTN genotypes and growth traits including birth weight (BW), body length (BL), chest width (ChW), and chest circumference (ChC), as well as a particularly strong association with cannon circumference (CaC) at 2 months of age. Conversely, Callipyge polymorphisms did not have a significant impact on Tibetan sheep. Moreover, the analyses revealed a significant association between sex and BW or hip width (HW) at 2 months of age and ChW, ChC, and CaC at 4 months of age. Furthermore, the study's results suggested that the genotype of MSTN as a GA was associated with a notable sex effect on BW, while the genotype of Callipyge (CC) showed a significant impact of sex on CaC at 2 months of age. These results indicated that the SNP of MSTN could potentially serve as a molecular marker for early growth traits in Tibetan sheep.
Collapse
Affiliation(s)
- Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.L.); (D.L.); (B.H.); (D.T.); (S.W.)
| | - Xue Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.L.); (D.L.); (B.H.); (D.T.); (S.W.)
| | - Dehui Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.L.); (D.L.); (B.H.); (D.T.); (S.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, China; (L.W.); (Q.P.); (Z.Z.); (J.Z.); (B.H.); (F.Z.)
| | - Quanbang Pei
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, China; (L.W.); (Q.P.); (Z.Z.); (J.Z.); (B.H.); (F.Z.)
| | - Buying Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.L.); (D.L.); (B.H.); (D.T.); (S.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zian Zhang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, China; (L.W.); (Q.P.); (Z.Z.); (J.Z.); (B.H.); (F.Z.)
| | - Dehong Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.L.); (D.L.); (B.H.); (D.T.); (S.W.)
| | - Song Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.L.); (D.L.); (B.H.); (D.T.); (S.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jincai Zhao
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, China; (L.W.); (Q.P.); (Z.Z.); (J.Z.); (B.H.); (F.Z.)
| | - Bin Huang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, China; (L.W.); (Q.P.); (Z.Z.); (J.Z.); (B.H.); (F.Z.)
| | - Fuqiang Zhang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, China; (L.W.); (Q.P.); (Z.Z.); (J.Z.); (B.H.); (F.Z.)
| |
Collapse
|
4
|
Liu Q, Duan L, Li B, Zhang X, Liu F, Yu J, Shu Y, Hu F, Lin J, Xiong X, Liu S. The key role of myostatin b in somatic growth in fishes derived from distant hybridization. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1441-1454. [PMID: 38561484 DOI: 10.1007/s11427-023-2487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 04/04/2024]
Abstract
The basic mechanism of heterosis has not been systematically and completely characterized. In previous studies, we obtained three economically important fishes that exhibit rapid growth, WR (WCC ♀ × RCC ♂), WR-II (WR ♀ × WCC ♂), and WR-III (WR-II ♀ × 4nAU ♂), through distant hybridization. However, the mechanism underlying this rapid growth remains unclear. In this study, we found that WR, WR-II, and WR-III showed muscle hypertrophy and higher muscle protein and fat contents compared with their parent species (RCC and WCC). Candidate genes responsible for this rapid growth were then obtained through an analysis of 12 muscle transcriptomes. Notably, the mRNA level of mstnb (myostatin b), which is a negative regulator of myogenesis, was significantly reduced in WR, WR-II, and WR-III compared with the parent species. To verify the function of mstnb, a mstnb-deficient mutant RCC line was generated using the CRISPR-Cas9 technique. The average body weight of mstnb-deficient RCC at 12 months of age was significantly increased by 29.57% compared with that in wild-type siblings. Moreover, the area and number of muscle fibers were significantly increased in mstnb-deficient RCC, indicating hypertrophy and hyperplasia. Furthermore, the muscle protein and fat contents were significantly increased in mstnb-deficient RCC. The molecular regulatory mechanism of mstnb was then revealed by transcription profiling, which showed that genes related to myogenesis (myod, myog, and myf5), protein synthesis (PI3K-AKT-mTOR), and lipogenesis (pparγ and fabp3) were highly activated in hybrid fishes and mstnb-deficient RCC. This study revealed that low expression or deficiency of mstnb regulates somatic growth by promoting myogenesis, protein synthesis, and lipogenesis in hybrid fishes and mstnb-deficient RCC, which provides evidence for the molecular mechanism of heterosis via distant hybridization.
Collapse
Affiliation(s)
- Qingfeng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Lujiao Duan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Bei Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xuanyi Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Fanglei Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jianming Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yuqin Shu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jingjing Lin
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaoxia Xiong
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
5
|
Lee J, Kim DH, Lee K. Myostatin gene role in regulating traits of poultry species for potential industrial applications. J Anim Sci Biotechnol 2024; 15:82. [PMID: 38825693 PMCID: PMC11145818 DOI: 10.1186/s40104-024-01040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/22/2024] [Indexed: 06/04/2024] Open
Abstract
The myostatin (MSTN) gene is considered a potential genetic marker to improve economically important traits in livestock, since the discovery of its function using the MSTN knockout mice. The anti-myogenic function of the MSTN gene was further demonstrated in farm animal species with natural or induced mutations. In poultry species, myogenesis in cell culture was regulated by modulation of the MSTN gene. Also, different expression levels of the MSTN gene in poultry models with different muscle mass have been reported, indicating the conserved myogenic function of the MSTN gene between mammalian and avian species. Recent advances of CRISPR/Cas9-mediated genome editing techniques have led to development of genome-edited poultry species targeting the MSTN gene to clearly demonstrate its anti-myogenic function and further investigate other potential functions in poultry species. This review summarizes research conducted to understand the function of the MSTN gene in various poultry models from cells to whole organisms. Furthermore, the genome-edited poultry models targeting the MSTN gene are reviewed to integrate diverse effects of the MSTN gene on different traits of poultry species.
Collapse
Affiliation(s)
- Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Ali S, Ahmad K, Shaikh S, Chun HJ, Choi I, Lee EJ. Mss51 protein inhibition serves as a novel target for type 2 diabetes: a molecular docking and simulation study. J Biomol Struct Dyn 2024; 42:4862-4869. [PMID: 37338036 DOI: 10.1080/07391102.2023.2223652] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Myostatin is a widely recognized inhibitory factor of skeletal muscle growth and significantly influences muscle development and metabolism. In mice, myostatin inhibition improves insulin sensitivity, increases glucose uptake by skeletal muscle, and reduces body fat. Furthermore, Mss51 is downregulated in response to myostatin inhibition, and its deletion appears to improve the metabolic state of skeletal muscle and reduce adipose tissue, which makes Mss51 a potential target for the treatment of obesity and type 2 diabetes. Here, we report a computationally predicted and validated three-dimensional structure of Mss51. Computational screening was used to identify naturally occurring compounds from the Herbal and Specs chemical database that might inhibit Mss51, based on binding affinities and physiochemical and ADMET properties. ZINC00338371, ZINC95099599 and ZINC08214878 were found to bind to Mss51 with high binding affinity and specificity. In addition, 100 ns molecular dynamics simulations were conducted to assess the stabilities of the interactions between the three compounds and Mss51. MD simulation demonstrated that all three compounds bind to the active pocket site of Mss51 stably and cause conformation changes. ZINC00338371 was found to bind most stably with binding free energy -229.022 ± 13.776 kJ/mol to Mss51, suggesting that it has therapeutic potential as a treatment option for obesity and type 2 diabetes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
7
|
Bashir T, Achison M, Adamson S, Akpan A, Aspray T, Avenell A, Band MM, Burton LA, Cvoro V, Donnan PT, Duncan GW, George J, Gordon AL, Gregson CL, Hapca A, Hume C, Jackson TA, Kerr S, Kilgour A, Masud T, McKenzie A, McKenzie E, Patel H, Pilvinyte K, Roberts HC, Rossios C, Sayer AA, Smith KT, Soiza RL, Steves CJ, Struthers AD, Tiwari D, Whitney J, Witham MD, Kemp PR. Activin type I receptor polymorphisms and body composition in older individuals with sarcopenia-Analyses from the LACE randomised controlled trial. PLoS One 2023; 18:e0294330. [PMID: 37963137 PMCID: PMC10645316 DOI: 10.1371/journal.pone.0294330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Ageing is associated with changes in body composition including an overall reduction in muscle mass and a proportionate increase in fat mass. Sarcopenia is characterised by losses in both muscle mass and strength. Body composition and muscle strength are at least in part genetically determined, consequently polymorphisms in pathways important in muscle biology (e.g., the activin/myostatin signalling pathway) are hypothesised to contribute to the development of sarcopenia. METHODS We compared regional body composition measured by DXA with genotypes for two polymorphisms (rs10783486, minor allele frequency (MAF) = 0.26 and rs2854464, MAF = 0.26) in the activin 1B receptor (ACVR1B) determined by PCR in a cross-sectional analysis of DNA from 110 older individuals with sarcopenia from the LACE trial. RESULTS Neither muscle mass nor strength showed any significant associations with either genotype in this cohort. Initial analysis of rs10783486 showed that males with the AA/AG genotype were taller than GG males (174±7cm vs 170±5cm, p = 0.023) and had higher arm fat mass, (median higher by 15%, p = 0.008), and leg fat mass (median higher by 14%, p = 0.042). After correcting for height, arm fat mass remained significantly higher (median higher by 4% padj = 0.024). No associations (adjusted or unadjusted) were seen in females. Similar analysis of the rs2854464 allele showed a similar pattern with the presence of the minor allele (GG/AG) being associated with greater height (GG/AG = 174±7 cm vs AA = 170 ±5cm, p = 0.017) and greater arm fat mass (median higher by 16%, p = 0.023). Again, the difference in arm fat remained after correction for height. No similar associations were seen in females analysed alone. CONCLUSION These data suggest that polymorphic variation in the ACVR1B locus could be associated with body composition in older males. The activin/myostatin pathway might offer a novel potential target to prevent fat accumulation in older individuals.
Collapse
Affiliation(s)
- Tufail Bashir
- Cardiovascular and Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Marcus Achison
- Tayside Clinical Trials Unit (TCTU), Tayside Medical Science Centre (TASC), Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Simon Adamson
- Tayside Clinical Trials Unit (TCTU), Tayside Medical Science Centre (TASC), Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Asangaedem Akpan
- Liverpool University Hospitals NHS FT Trust, Clinical Research Network Northwest Coast, University of Liverpool, Liverpool, United Kingdom
| | - Terry Aspray
- AGE Research Group, NIHR Newcastle Biomedical Research Centre, Translational Clinical Research Institute, Cumbria Northumberland Tyne and Wear NHS Foundation Trust and Newcastle upon Tyne Hospitals NHS Trust, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alison Avenell
- Health Services Research Unit, University of Aberdeen, Aberdeen, United Kingdom
| | - Margaret M. Band
- Tayside Clinical Trials Unit (TCTU), Tayside Medical Science Centre (TASC), Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Louise A. Burton
- Medicine for the Elderly, NHS Tayside, Dundee, United Kingdom
- Ageing and Health, University of Dundee, Dundee, United Kingdom
| | - Vera Cvoro
- Victoria Hospital, Kirkcaldy, United Kingdom
- Centre for Clinical Brain Sciences University of Edinburgh, Edinburgh, United Kingdom
| | - Peter T. Donnan
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Gordon W. Duncan
- Centre for Clinical Brain Sciences University of Edinburgh, Edinburgh, United Kingdom
- Medicine for the Elderly, NHS Lothian, Edinburgh, United Kingdom
| | - Jacob George
- Division of Molecular & Clinical Medicine, Dept Clinical Pharmacology, Ninewells Hospital, University of Dundee Medical School, Dundee, United Kingdom
| | - Adam L. Gordon
- Unit of Injury, Inflammation and Recovery, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Department of Medicine for the Elderly, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, United Kingdom
| | - Celia L. Gregson
- Musculoskeletal Research Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Older Person’s Unit, Royal United Hospital NHS Foundation Trust Bath, Combe Park, Bath, United Kingdom
| | - Adrian Hapca
- Tayside Clinical Trials Unit (TCTU), Tayside Medical Science Centre (TASC), Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Cheryl Hume
- Tayside Clinical Trials Unit (TCTU), Tayside Medical Science Centre (TASC), Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Thomas A. Jackson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Simon Kerr
- Department of Older People’s Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Alixe Kilgour
- Medicine for the Elderly, NHS Lothian, Edinburgh, United Kingdom
- Ageing and Health Research Group, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Tahir Masud
- Clinical Gerontology Research Unit, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, United Kingdom
| | - Andrew McKenzie
- Tayside Clinical Trials Unit (TCTU), Tayside Medical Science Centre (TASC), Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Emma McKenzie
- Tayside Clinical Trials Unit (TCTU), Tayside Medical Science Centre (TASC), Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Harnish Patel
- NIHR Biomedical Research Centre, University of Southampton and University Hospital Southampton NHSFT, Southampton, United Kingdom
| | - Kristina Pilvinyte
- Tayside Clinical Trials Unit (TCTU), Tayside Medical Science Centre (TASC), Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Helen C. Roberts
- Academic Geriatric Medicine, Mailpoint 807 Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Christos Rossios
- Cardiovascular and Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Avan A. Sayer
- AGE Research Group, NIHR Newcastle Biomedical Research Centre, Translational Clinical Research Institute, Cumbria Northumberland Tyne and Wear NHS Foundation Trust and Newcastle upon Tyne Hospitals NHS Trust, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Karen T. Smith
- Tayside Clinical Trials Unit (TCTU), Tayside Medical Science Centre (TASC), Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Roy L. Soiza
- Ageing & Clinical Experimental Research (ACER) Group, University of Aberdeen, Aberdeen, United Kingdom
| | - Claire J. Steves
- Department of Twin Research and Genetic Epidemiology, King’s College London, Department of Clinical Gerontology, King’s College Hospital, London, United Kingdom
| | - Allan D. Struthers
- Division of Molecular & Clinical Medicine, Dept Clinical Pharmacology, Ninewells Hospital, University of Dundee Medical School, Dundee, United Kingdom
| | - Divya Tiwari
- Bournemouth University and Royal Bournemouth Hospital, Bournemouth, United Kingdom
| | - Julie Whitney
- School of Population Health & Environmental Sciences, King’s College London and King’s College Hospital, London, United Kingdom
| | - Miles D. Witham
- AGE Research Group, NIHR Newcastle Biomedical Research Centre, Translational Clinical Research Institute, Cumbria Northumberland Tyne and Wear NHS Foundation Trust and Newcastle upon Tyne Hospitals NHS Trust, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paul R. Kemp
- Cardiovascular and Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London, United Kingdom
| |
Collapse
|
8
|
Bunn RC, Adatorwovor R, Smith RR, Ray PD, Fields SE, Keeble AR, Fry CS, Uppuganti S, Nyman JS, Fowlkes JL, Kalaitzoglou E. Pharmacologic Inhibition of Myostatin With a Myostatin Antibody Improves the Skeletal Muscle and Bone Phenotype of Male Insulin-Deficient Diabetic Mice. JBMR Plus 2023; 7:e10833. [PMID: 38025035 PMCID: PMC10652179 DOI: 10.1002/jbm4.10833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/18/2023] [Accepted: 10/01/2023] [Indexed: 12/01/2023] Open
Abstract
Type 1 diabetes (T1D) is associated with low bone and muscle mass, increased fracture risk, and impaired skeletal muscle function. Myostatin, a myokine that is systemically elevated in humans with T1D, negatively regulates muscle mass and bone formation. We investigated whether pharmacologic myostatin inhibition in a mouse model of insulin-deficient, streptozotocin (STZ)-induced diabetes is protective for bone and skeletal muscle. DBA/2J male mice were injected with low-dose STZ (diabetic) or vehicle (non-diabetic). Subsequently, insulin or palmitate Linbits were implanted and myostatin (REGN647-MyoAb) or control (REGN1945-ConAb) antibody was administered for 8 weeks. Body composition and contractile muscle function were assessed in vivo. Systemic myostatin, P1NP, CTX-I, and glycated hemoglobin (HbA1c) were quantified, and gastrocnemii were weighed and analyzed for muscle fiber composition and gene expression of selected genes. Cortical and trabecular parameters were analyzed (micro-computed tomography evaluations of femur) and cortical bone strength was assessed (three-point bending test of femur diaphysis). In diabetic mice, the combination of insulin/MyoAb treatment resulted in significantly higher lean mass and gastrocnemius weight compared with MyoAb or insulin treatment alone. Similarly, higher raw torque was observed in skeletal muscle of insulin/MyoAb-treated diabetic mice compared with MyoAb or insulin treatment. Additionally, muscle fiber cross-sectional area (CSA) was lower with diabetes and the combination treatment with insulin/MyoAb significantly improved CSA in type II fibers. Insulin, MyoAb, or insulin/MyoAb treatment improved several parameters of trabecular architecture (eg, bone volume fraction [BV/TV], trabecular connectivity density [Conn.D]) and cortical structure (eg, cortical bone area [Ct. Ar.], minimum moment of inertia [Imin]) in diabetic mice. Lastly, cortical bone biomechanical properties (stiffness and yield force) were also improved with insulin or MyoAb treatment. In conclusion, pharmacologic myostatin inhibition is beneficial for muscle mass, muscle function, and bone properties in this mouse model of T1D and its effects are both independent and additive to the positive effects of insulin. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- R Clay Bunn
- Department of Pediatrics and Barnstable Brown Diabetes CenterUniversity of KentuckyLexingtonKYUSA
| | - Reuben Adatorwovor
- Department of Biostatistics, College of Public HealthUniversity of KentuckyLexingtonKYUSA
| | - Rebecca R Smith
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKYUSA
| | - Philip D Ray
- Department of PediatricsUniversity of KentuckyLexingtonKYUSA
| | - Sarah E Fields
- College of Agriculture, Food and EnvironmentUniversity of KentuckyLexingtonKYUSA
| | | | | | - Sasidhar Uppuganti
- Department of Orthopaedic SurgeryVanderbilt University Medical CenterNashvilleTNUSA
| | - Jeffry S Nyman
- Department of Orthopaedic SurgeryVanderbilt University Medical CenterNashvilleTNUSA
- Department of Veterans AffairsTennessee Valley Healthcare SystemNashvilleTNUSA
| | - John L Fowlkes
- Department of Pediatrics and Barnstable Brown Diabetes CenterUniversity of KentuckyLexingtonKYUSA
| | - Evangelia Kalaitzoglou
- Department of Pediatrics and Barnstable Brown Diabetes CenterUniversity of KentuckyLexingtonKYUSA
| |
Collapse
|
9
|
Bonanni R, Abbondante L, Cariati I, Gasbarra E, Tarantino U. Metallosis after Hip Arthroplasty Damages Skeletal Muscle: A Case Report. Geriatrics (Basel) 2023; 8:92. [PMID: 37736892 PMCID: PMC10514854 DOI: 10.3390/geriatrics8050092] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Good musculoskeletal quality dramatically influences the outcome of an arthroplasty operation in geriatric patients, as well as is a key element for optimal osseointegration. In this context, metallosis is a complication associated with the type of prosthesis used, as implants with a chromium-cobalt interface are known to alter the bone microarchitecture and reduce the ratio of muscle to fat, resulting in lipid accumulation. Therefore, the aim of our study was to investigate possible muscle changes by histological, morphometric, and immunohistochemical analyses in a patient undergoing hip replacement revision with elevated blood and urinary concentrations of chromium and cobalt. Interestingly, the muscle tissue showed significant structural changes and a massive infiltration of adipose tissue between muscle fibers in association with an altered expression pattern of important biomarkers of musculoskeletal health and oxidative stress, such as myostatin and NADPH Oxidase 4. Overall, our results confirm the very serious impact of metallosis on musculoskeletal health, suggesting the need for further studies to adopt a diagnostic approach to identify the cause of metallosis early and eliminate it as part of the prosthesis revision surgery.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Biomedicine and Prevention, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Lorenzo Abbondante
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (L.A.); (E.G.); (U.T.)
| | - Ida Cariati
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (L.A.); (E.G.); (U.T.)
| | - Umberto Tarantino
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (L.A.); (E.G.); (U.T.)
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
10
|
Kostusiak P, Slósarz J, Gołębiewski M, Grodkowski G, Puppel K. Polymorphism of Genes and Their Impact on Beef Quality. Curr Issues Mol Biol 2023; 45:4749-4762. [PMID: 37367051 DOI: 10.3390/cimb45060302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The single-nucleotide polymorphism (SNP) form of genes is a valuable source of information regarding their suitability for use as specific markers of desirable traits in beef cattle breeding. For several decades, breeding work focused on improving production efficiency through optimizing the feed conversion ratio and improving daily gains and meat quality. Many research teams previously undertook research work on single-nucleotide polymorphism in myostatin (MSTN), thyroglobulin (TG), calpain (CAPN), and calpastatin (CAST) proteins. The literature review focuses on the most frequently addressed issues concerning these genes in beef cattle production and points to a number of relevant studies on the genes' polymorphic forms. The four genes presented are worth considering during breeding work as a set of genes that can positively influence productivity and production quality.
Collapse
Affiliation(s)
- Piotr Kostusiak
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Jan Slósarz
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Marcin Gołębiewski
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Grzegorz Grodkowski
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Kamila Puppel
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| |
Collapse
|
11
|
Patalong-Wójcik M, Golara A, Zając K, Sokołowska A, Kozłowski M, Tołoczko-Grabarek A, Krzyścin M, Brodowska A, Janiec A, Myszka A, Cymbaluk-Płoska A, Sowińska-Przepiera E. Influence of Muscle Mass and Strength on Bone Mineralisation with Consideration of Sclerostin Concentration. Biomedicines 2023; 11:1574. [PMID: 37371669 DOI: 10.3390/biomedicines11061574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Osteoporosis is a disease characterised by a reduction in bone strength due to increased porosity and impaired mineralisation. In our study, we investigated whether muscle strength and mass exert a significant effect on bone mineral density in young adult women. We also tested whether sclerostin can be used as an indicator in the assessment of bone mineralisation. The study included 111 patients. All patients had their bone mineral density determined in the L1-L4 section of the lumbar spine and in the whole skeleton. The parameters of fat mass (FM), lean body mass (LBM) and visceral fat mass (VF) were also determined. Metabolic activity of osteocytes was assessed by measuring the serum sclerostin concentration. There was a statistically significant association of both hands' muscle strength with all parameters expressing bone mineralisation. A statistically significant relationship was also obtained between BMD L1-L4 and the body mass components (FM, LBM). Sclerostin levels in the study did not differ between groups with normal and reduced bone mineral density. Muscle strength assessment may be a potential exponent of reduced bone mineral density, also used clinically in young adult women. The utility of sclerostin in the clinical assessment of bone mineralisation has not been demonstrated.
Collapse
Affiliation(s)
- Martyna Patalong-Wójcik
- Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University in Szczecin, UniiLubelskiej 1, 71-252 Szczecin, Poland
| | - Anna Golara
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Katarzyna Zając
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Alicja Sokołowska
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Mateusz Kozłowski
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | | | - Mariola Krzyścin
- Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University in Szczecin, UniiLubelskiej 1, 71-252 Szczecin, Poland
| | - Agnieszka Brodowska
- Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University in Szczecin, UniiLubelskiej 1, 71-252 Szczecin, Poland
| | - Agnieszka Janiec
- Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University in Szczecin, UniiLubelskiej 1, 71-252 Szczecin, Poland
| | - Aleksandra Myszka
- Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University in Szczecin, UniiLubelskiej 1, 71-252 Szczecin, Poland
| | - Aneta Cymbaluk-Płoska
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Elżbieta Sowińska-Przepiera
- Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University in Szczecin, UniiLubelskiej 1, 71-252 Szczecin, Poland
- Pediatric, Adolescent Gynecology Clinic, Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University in Szczecin, UniiLubelskiej 1, 71-252 Szczecin, Poland
| |
Collapse
|
12
|
Pallaoro M, Modina SC, Fiorati A, Altomare L, Mirra G, Scocco P, Di Giancamillo A. Towards a More Realistic In Vitro Meat: The Cross Talk between Adipose and Muscle Cells. Int J Mol Sci 2023; 24:ijms24076630. [PMID: 37047600 PMCID: PMC10095036 DOI: 10.3390/ijms24076630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
According to statistics and future predictions, meat consumption will increase in the coming years. Considering both the environmental impact of intensive livestock farming and the importance of protecting animal welfare, the necessity of finding alternative strategies to satisfy the growing meat demand is compelling. Biotechnologies are responding to this demand by developing new strategies for producing meat in vitro. The manufacturing of cultured meat has faced criticism concerning, above all, the practical issues of culturing together different cell types typical of meat that are partly responsible for meat’s organoleptic characteristics. Indeed, the existence of a cross talk between adipose and muscle cells has critical effects on the outcome of the co-culture, leading to a general inhibition of myogenesis in favor of adipogenic differentiation. This review aims to clarify the main mechanisms and the key molecules involved in this cross talk and provide an overview of the most recent and successful meat culture 3D strategies for overcoming this challenge, focusing on the approaches based on farm-animal-derived cells.
Collapse
Affiliation(s)
- Margherita Pallaoro
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Silvia Clotilde Modina
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell’Università 6, 26900 Lodi, Italy
| | - Andrea Fiorati
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Polytechnic University of Milan, Via Luigi Mancinelli, 7, 20131 Milan, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Lina Altomare
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Polytechnic University of Milan, Via Luigi Mancinelli, 7, 20131 Milan, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Giorgio Mirra
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy
| |
Collapse
|
13
|
Martín-González C, Pérez-Hernández O, García-Rodríguez A, Abreu-González P, Ortega-Toledo P, Fernández-Rodríguez CM, Alvisa-Negrín JC, Martínez-Riera A, González-Reimers E. Serum Myostatin among Excessive Drinkers. Int J Mol Sci 2023; 24:ijms24032981. [PMID: 36769301 PMCID: PMC9917382 DOI: 10.3390/ijms24032981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Myostatin acts as a negative regulator of muscle growth. Its effect on fat mass is subject to debate. Among alcoholics, there is a high prevalence of muscle atrophy, and increased fat deposition has been also described in these patients. Myostatin could be involved in these alterations, but its relationships with body composition have been scarcely studied in alcoholic patients. To analyze the behavior of myostatin among alcoholics and its relationship with alcohol intake, liver function, and body composition. We investigated serum myostatin in 59 male patients and 18 controls. Patients were all heavy drinkers admitted with organic complications related to excessive ethanol ingestion. Densitometry analysis was used to assess body composition in 46 patients. Handgrip was assessed in 51 patients. Patients showed lower myostatin values than controls (Z = 3.80; p < 0.001). There was a significant relationship between myostatin and fat at the right leg (ρ = 0.32; p = 0.028), left leg (ρ = 0.32; p = 0.028), trunk (ρ = 0.31, p = 0.038), total fat proport ion (ρ = 0.33, p = 0.026), and gynecoid fat distribution (ρ = 0.40, p = 0.006) but not with lean mass (total lean ρ = 0.07; p = 0.63; trunk lean ρ = 0.03; p = 0.85; lower limbs ρ = 0.08; p = 0.58; upper limbs ρ = 0.04 p = 0.82; android ρ = 0.02; p = 0.88, or gynoid lean mass ρ = 0.20; p = 0.19). In total, 80.43% of patients showed at least one criterion of osteosarcopenic adiposity (OSA). Myostatin was related to OSA obesity. We also observed higher myostatin values among patients with body mass index > 30 kg/m2. Serum myostatin was lower among excessive drinkers, and it was related to increased fat deposition among these patients but not to lean mass, handgrip, or bone mineral density.
Collapse
Affiliation(s)
- Candelaria Martín-González
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Onán Pérez-Hernández
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Alen García-Rodríguez
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Pedro Abreu-González
- Departamento de Ciencias Médicas Básicas, Unidad de Fisiología, Universidad de la Laguna, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Paula Ortega-Toledo
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Camino María Fernández-Rodríguez
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Julio César Alvisa-Negrín
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Antonio Martínez-Riera
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
| | - Emilio González-Reimers
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, Tenerife, Canary Islands, 38320 La Laguna, Spain
- Correspondence:
| |
Collapse
|
14
|
Choe HM, Gao K, Paek HJ, Luo ZB, Han SZ, Li ZY, Xuan MF, Quan BH, Kang JD, Yin XJ. Effect of myostatin gene mutation on erythrocyte osmotic fragility, hematological parameters and fatty acid composition of serum and erythrocyte membranes in piglets. Res Vet Sci 2022; 152:663-669. [DOI: 10.1016/j.rvsc.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/30/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022]
|
15
|
Bruno S, Landi V, Senczuk G, Brooks SA, Almathen F, Faye B, Gaouar SSB, Piro M, Kim KS, David X, Eggen A, Burger P, Ciani E. Refining the Camelus dromedarius Myostatin Gene Polymorphism through Worldwide Whole-Genome Sequencing. Animals (Basel) 2022; 12:2068. [PMID: 36009658 PMCID: PMC9404819 DOI: 10.3390/ani12162068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Myostatin (MSTN) is a highly conserved negative regulator of skeletal muscle in mammals. Inactivating mutations results in a hyper-muscularity phenotype known as "double muscling" in several livestock and model species. In Camelus dromedarius, the gene structure organization and the sequence polymorphisms have been previously investigated, using Sanger and Next-Generation Sequencing technologies on a limited number of animals. Here, we carried out a follow-up study with the aim to further expand our knowledge about the sequence polymorphisms at the myostatin locus, through the whole-genome sequencing data of 183 samples representative of the geographical distribution range for this species. We focused our polymorphism analysis on the ±5 kb upstream and downstream region of the MSTN gene. A total of 99 variants (77 Single Nucleotide Polymorphisms and 22 indels) were observed. These were mainly located in intergenic and intronic regions, with only six synonymous Single Nucleotide Polymorphisms in exons. A sequence comparative analysis among the three species within the Camelus genus confirmed the expected higher genetic distance of C. dromedarius from the wild and domestic two-humped camels compared to the genetic distance between C. bactrianus and C. ferus. In silico functional prediction highlighted: (i) 213 differential putative transcription factor-binding sites, out of which 41 relative to transcription factors, with known literature evidence supporting their involvement in muscle metabolism and/or muscle development; and (ii) a number of variants potentially disrupting the canonical MSTN splicing elements, out of which two are discussed here for their potential ability to generate a prematurely truncated (inactive) form of the protein. The distribution of the considered variants in the studied cohort is discussed in light of the peculiar evolutionary history of this species and the hypothesis that extremely high muscularity, associated with a homozygous condition for mutated (inactivating) alleles at the myostatin locus, may represent, in arid desert conditions, a clear metabolic disadvantage, emphasizing the thermoregulatory and water availability challenges typical of these habitats.
Collapse
Affiliation(s)
- Silvia Bruno
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Vincenzo Landi
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Valenzano, 70010 Bari, Italy
| | - Gabriele Senczuk
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Samantha Ann Brooks
- Department of Animal Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Faisal Almathen
- Department of Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Camel Research Center, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | | | | | - Mohammed Piro
- Department of Medicine, Surgery and Reproduction, Institut Agronomique et Vétérinaire Hassan II, Rabat BP 6202, Morocco
| | - Kwan Suk Kim
- Department of Animal Sciences, Chungbuk National University, Chungbuk 28644, Korea
| | | | | | - Pamela Burger
- Research Institute of Wildlife Ecology, Vetmeduni, 1160 Vienna, Austria
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70126 Bari, Italy
| |
Collapse
|
16
|
Chen P, Li S, Zhou Z, Wang X, Shi D, Li Z, Li X, Xiao Y. Liver fat metabolism of broilers regulated by Bacillus amyloliquefaciens TL via stimulating IGF-1 secretion and regulating the IGF signaling pathway. Front Microbiol 2022; 13:958112. [PMID: 35966703 PMCID: PMC9363834 DOI: 10.3389/fmicb.2022.958112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Bacillus amyloliquefaciens TL (B.A-TL) is well-known for its capability of promoting protein synthesis and lipid metabolism, in particular, the abdominal fat deposition in broilers. However, the underlying molecular mechanism remains unclear. In our study, the regulations of lipid metabolism of broilers by B.A-TL were explored both in vivo and in vitro. The metabolites of B.A-TL were used to simulate in vitro the effect of B.A-TL on liver metabolism based on the chicken hepatocellular carcinoma cell line (i.e., LMH cells). The effects of B.A-TL on lipid metabolism by regulating insulin/IGF signaling pathways were investigated by applying the signal pathway inhibitors in vitro. The results showed that the B.A-TL metabolites enhanced hepatic lipid synthesis and stimulated the secretion of IGF-1. The liver transcriptome analysis revealed the significantly upregulated expressions of four genes (SI, AMY2A, PCK1, and FASN) in the B.A-TL treatment group, mainly involved in carbohydrate digestion and absorption as well as biomacromolecule metabolism, with a particularly prominent effect on fatty acid synthase (FASN). Results of cellular assays showed that B.A-TL metabolites were involved in the insulin/IGF signaling pathway, regulating the expressions of lipid metabolism genes (e.g., FASN, ACCα, LPIN, and ACOX) and the FASN protein, ultimately regulating the lipid metabolism via the IGF/PI3K/FASN pathway in broilers.
Collapse
|
17
|
Lombardo M, Feraco A, Bellia C, Prisco L, D’Ippolito I, Padua E, Storz MA, Lauro D, Caprio M, Bellia A. Influence of Nutritional Status and Physical Exercise on Immune Response in Metabolic Syndrome. Nutrients 2022; 14:nu14102054. [PMID: 35631195 PMCID: PMC9145042 DOI: 10.3390/nu14102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Metabolic Syndrome (MetS) is a cluster of metabolic alterations mostly related to visceral adiposity, which in turn promotes glucose intolerance and a chronic systemic inflammatory state, characterized by immune cell infiltration. Such immune system activation increases the risk of severe disease subsequent to viral infections. Strong correlations between elevated body mass index (BMI), type-2-diabetes and increased risk of hospitalization after pandemic influenza H1N1 infection have been described. Similarly, a correlation between elevated blood glucose level and SARS-CoV-2 infection severity and mortality has been described, indicating MetS as an important predictor of clinical outcomes in patients with COVID-19. Adipose secretome, including two of the most abundant and well-studied adipokines, leptin and interleukin-6, is involved in the regulation of energy metabolism and obesity-related low-grade inflammation. Similarly, skeletal muscle hormones—called myokines—released in response to physical exercise affect both metabolic homeostasis and immune system function. Of note, several circulating hormones originate from both adipose tissue and skeletal muscle and display different functions, depending on the metabolic context. This review aims to summarize recent data in the field of exercise immunology, investigating the acute and chronic effects of exercise on myokines release and immune system function.
Collapse
Affiliation(s)
- Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- Correspondence:
| | - Alessandra Feraco
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Chiara Bellia
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| | - Luigi Prisco
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
| | - Ilenia D’Ippolito
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.D.); (D.L.)
| | - Elvira Padua
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- School of Human Movement Science, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Maximilian Andreas Storz
- Department of Internal Medicine II, Center for Complementary Medicine, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Davide Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.D.); (D.L.)
| | - Massimiliano Caprio
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Alfonso Bellia
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (A.F.); (L.P.); (E.P.); (M.C.); (A.B.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.D.); (D.L.)
| |
Collapse
|
18
|
Pei Y, Song Y, Feng Z, Li H, Mu Y, Rehman SU, Liu Q, Li K. Myostatin Alteration in Pigs Enhances the Deposition of Long-Chain Unsaturated Fatty Acids in Subcutaneous Fat. Foods 2022; 11:foods11091286. [PMID: 35564009 PMCID: PMC9105368 DOI: 10.3390/foods11091286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
In animals, myostatin (MSTN) is a negative regulator that inhibits muscle growth and repair. The decreased level of functional MSTN gene expression can change the amount and proportions of fats in pigs. In this study we determined the lipidomics of subcutaneous fat in MSTN single copy mutant pigs and evaluated the variations in lipid contents of the subcutaneous fat from MSTN+/− and wild type Large White (LW) pigs via ultra-performance liquid chromatography–quadrupole/Orbitrap-mass spectrometry (MS). The results showed that the quantities of glycerolipids, sphingolipids, fatty acyls and glycerophospholipids were significantly changed, particularly, the molecular diacylglycerol in glycerolipids, long-chain unsaturated fatty acids, and ceramide non-hydroxy fatty acid-sphingosine in sphingolipids were remarkably increased in the MSTN+/− group. Due to their positive bioavailability demonstrated by previous researches, these three lipids might be beneficial for human health. Further, the results of our study confirm that MSTN participates in the regulation of fat metabolism, and reduced expression of MSTN can ultimately influence the accumulation of lipid contents in the subcutaneous fat of pigs.
Collapse
Affiliation(s)
- Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.P.); (Y.S.); (Z.F.); (H.L.); (S.u.R.); (Q.L.)
| | - Yuxin Song
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.P.); (Y.S.); (Z.F.); (H.L.); (S.u.R.); (Q.L.)
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.P.); (Y.S.); (Z.F.); (H.L.); (S.u.R.); (Q.L.)
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.P.); (Y.S.); (Z.F.); (H.L.); (S.u.R.); (Q.L.)
| | - Yulian Mu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Saif ur Rehman
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.P.); (Y.S.); (Z.F.); (H.L.); (S.u.R.); (Q.L.)
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.P.); (Y.S.); (Z.F.); (H.L.); (S.u.R.); (Q.L.)
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Correspondence:
| |
Collapse
|
19
|
Lee EJ, Shaikh S, Baig MH, Park SY, Lim JH, Ahmad SS, Ali S, Ahmad K, Choi I. MIF1 and MIF2 Myostatin Peptide Inhibitors as Potent Muscle Mass Regulators. Int J Mol Sci 2022; 23:ijms23084222. [PMID: 35457038 PMCID: PMC9031736 DOI: 10.3390/ijms23084222] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
The use of peptides as drugs has progressed over time and continues to evolve as treatment paradigms change and new drugs are developed. Myostatin (MSTN) inhibition therapy has shown great promise for the treatment of muscle wasting diseases. Here, we report the MSTN-derived novel peptides MIF1 (10-mer) and MIF2 (10-mer) not only enhance myogenesis by inhibiting MSTN and inducing myogenic-related markers but also reduce adipogenic proliferation and differentiation by suppressing the expression of adipogenic markers. MIF1 and MIF2 were designed based on in silico interaction studies between MSTN and its receptor, activin type IIB receptor (ACVRIIB), and fibromodulin (FMOD). Of the different modifications of MIF1 and MIF2 examined, Ac-MIF1 and Ac-MIF2-NH2 significantly enhanced cell proliferation and differentiation as compared with non-modified peptides. Mice pretreated with Ac-MIF1 or Ac-MIF2-NH2 prior to cardiotoxin-induced muscle injury showed more muscle regeneration than non-pretreated controls, which was attributed to the induction of myogenic genes and reduced MSTN expression. These findings imply that Ac-MIF1 and Ac-MIF2-NH2 might be valuable therapeutic agents for the treatment of muscle-related diseases.
Collapse
Affiliation(s)
- Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (E.J.L.); (S.S.); (J.H.L.); (S.S.A.); (S.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (E.J.L.); (S.S.); (J.H.L.); (S.S.A.); (S.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 42415, Korea;
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (E.J.L.); (S.S.); (J.H.L.); (S.S.A.); (S.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (E.J.L.); (S.S.); (J.H.L.); (S.S.A.); (S.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (E.J.L.); (S.S.); (J.H.L.); (S.S.A.); (S.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (E.J.L.); (S.S.); (J.H.L.); (S.S.A.); (S.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (K.A.); (I.C.)
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (E.J.L.); (S.S.); (J.H.L.); (S.S.A.); (S.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (K.A.); (I.C.)
| |
Collapse
|
20
|
Gender-Specific Behaviour in Obesity Stages I-II: Imbalance of Aminothiol Status and Adipomyokine Profile in Subjects with Different Insulin Resistance Severity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9713582. [PMID: 34868459 PMCID: PMC8635872 DOI: 10.1155/2021/9713582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/11/2021] [Accepted: 11/11/2021] [Indexed: 12/03/2022]
Abstract
The hyperproduction of oxidative stress and inflammatory biomarkers, which is paralleled by decreased levels of antioxidant and anti-inflammatory mediators, is part of cellular mechanisms that contribute to the disruption of metabolic homeostasis in obesity. Whether gender-specific alterations and gender-restricted associations in these biomarkers underlie the increased cardiometabolic risk in men compared to women is unclear. We enrolled 31 women and 29 men, aged ≥50 and ≤70 years and with body mass index ≥ 30 and <40 kg/m2. We assessed the concentrations of aminothiols (cysteine, homocysteine, and glutathione), expression of oxidant/antioxidant balance, adipomyokines (leptin, adiponectin, myostatin, and interleukin-6), markers of chronic inflammation, and vitamin D, an index of nutritional state, in plasma and serum samples by using HPLC, ELISA, and chemiluminescent immunoassay methods. We measured insulin resistance (IR) by the homeostasis model assessment (HOMA) index. Despite comparable levels of visceral adiposity, IR, and a similar dietary regimen, men showed, with respect to women, higher oxidant concentrations and lower antioxidant levels, which paralleled IR severity. Myostatin levels correlated with prooxidant aminothiols among men only. Gender-specific alterations in aminothiol status and adipomyokine profile and the gender-restricted association between these biomarkers and metabolic derangement are consistent with an increased cardiometabolic risk in men compared to age-matched women with stage I-II obesity. Strict control of redox and inflammatory status, even addressing gender-specific nutritional targets, may be useful to prevent obesity-related metabolic alterations and comorbidities.
Collapse
|
21
|
Pan S, Zhang L, Liu Z, Xing H. Myostatin suppresses adipogenic differentiation and lipid accumulation by activating crosstalk between ERK1/2 and PKA signaling pathways in porcine subcutaneous preadipocytes. J Anim Sci 2021; 99:6388060. [PMID: 34634123 DOI: 10.1093/jas/skab287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/09/2021] [Indexed: 11/14/2022] Open
Abstract
The current study was undertaken to determine the effect of myostatin (MSTN) on lipid accumulation in porcine subcutaneous preadipocytes (PSPAs) and to further explore the potential molecular mechanisms. PSPAs isolated from Meishan weaned piglets were added with various concentrations of MSTN recombinant protein during the entire period of adipogenic differentiation process. Results showed that MSTN treatment significantly reduced the lipid accumulation, intracellular triglyceride (TG) content, glucose consumption and glycerol phosphate dehydrogenase activity, while increased glycerol and free fatty acid release. Consistent with above results, the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway was obviously activated and thus key adipogenic transcription factors peroxisome proliferator-activated receptor-gamma (PPAR-γ), CCAAT/enhancer-binding protein-alpha (C/EBP-α) and their downstream engymes fatty acid synthase and acetyl-CoA carboxylase were all inhibited. However, chemical inhibition of ERK1/2 signaling pathway by PD98059 markedly reversed the decreased TG content by increasing PPAR-γ expression. In addition, MSTN activated the cyclic AMP/protein kinase A (cAMP/PKA) pathway and stimulated lipolysis by reducing the expression of antilipolytic gene perilipin, thus elevated key lipolytic enzymes adipose triglyceride lipase and hormone-sensitive lipase expression and enzyme activity. On the contrary, pretreatment with PKA inhibitor H89 significantly reversed TG accumulation by increasing PPAR-γ expression and thus inhibiting ERK1/2, perilipin and HSL phosphorylation, supporting the crosstalk between PKA and ERK1/2 pathways in both the anti-adipogenic and pro-lipolytic effects. In summary, our results suggested that MSTN suppressed adipogenesis and stimulated lipolysis, which was mainly mediated by activating crosstalk of ERK1/2 and PKA signaling pathways, and consequently decreased lipid accumulation in PSPAs, our findings may provide novel insights for further exploring MSTN as a potent inhibitor of porcine subcutaneous lipid accumulation.
Collapse
Affiliation(s)
- Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P. R. China.,Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Lin Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Zhuang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
22
|
Ryan AS, Li G. Skeletal muscle myostatin gene expression and sarcopenia in overweight and obese middle‐aged and older adults. JCSM CLINICAL REPORTS 2021; 6:137-142. [PMID: 35311023 PMCID: PMC8932637 DOI: 10.1002/crt2.43] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Myostatin (MSTN) is a key negative regulator of muscle mass in humans and animals, having direct and indirect influences on molecular regulators of atrophy and hypertrophy, thus potentially impacting fitness and physical function. We have shown that myostatin is elevated in conditions of chronic disability (e.g. paretic limb of stroke). Our hypothesis is that myostatin would be elevated in older adults with sarcopenia. The purpose of this study was to examine the role of skeletal muscle myostatin in sarcopenia. Methods Sixty-four overweight to obese aged 45–81 years underwent a maximal aerobic capacity (VO2max) test, dual-energy X-ray absorptiometry (DXA) scan to determine appendicular lean tissue (ALM), and vastus lateralis muscle biopsy to determine myostatin mRNA expression by quantitative real time PCR (Q-RT-PCR). Rates of sarcopenia were determined using (ALM/BMI), and sarcopenia was defined as <0.789 in men and <0.512 in women. Subjects had low fitness (VO2max: 22.7 ± 0.7 mL/kg/min) and on average 40.9 ± 1% body fat. Results The prevalence of sarcopenia in this cohort was 16%. BMI, % body fat, and fat mass were higher in adults with sarcopenia than those without sarcopenia (all P < 0.001). Myostatin mRNA expression was lower in those without sarcopenia than those with sarcopenia (P < 0.05) and higher in men than women (P < 0.001). Myostatin expression was associated with BMI (r = 0.36, P < 0.01) and mid-thigh intramuscular fat (r = 0.29, P < 0.05). Conclusion Given that myostatin is important in muscle atrophy, fat accumulation, and sarcopenia, further work could address its implication in other aging cohorts of disability and chronic disease.
Collapse
Affiliation(s)
- Alice S. Ryan
- Department of Veterans Affairs, Department of Medicine, Division of Gerontology and Palliative Medicine, and the Baltimore VA Medical Center Geriatrics, Research, Education Center (GRECC) VA Maryland Health Care System Baltimore MD 21201 USA
| | - Guoyan Li
- Department of Veterans Affairs, Department of Medicine, Division of Gerontology and Palliative Medicine, and the Baltimore VA Medical Center Geriatrics, Research, Education Center (GRECC) VA Maryland Health Care System Baltimore MD 21201 USA
| |
Collapse
|
23
|
Kang DH, Louis F, Liu H, Shimoda H, Nishiyama Y, Nozawa H, Kakitani M, Takagi D, Kasa D, Nagamori E, Irie S, Kitano S, Matsusaki M. Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nat Commun 2021; 12:5059. [PMID: 34429413 PMCID: PMC8385070 DOI: 10.1038/s41467-021-25236-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 07/28/2021] [Indexed: 12/21/2022] Open
Abstract
With the current interest in cultured meat, mammalian cell-based meat has mostly been unstructured. There is thus still a high demand for artificial steak-like meat. We demonstrate in vitro construction of engineered steak-like tissue assembled of three types of bovine cell fibers (muscle, fat, and vessel). Because actual meat is an aligned assembly of the fibers connected to the tendon for the actions of contraction and relaxation, tendon-gel integrated bioprinting was developed to construct tendon-like gels. In this study, a total of 72 fibers comprising 42 muscles, 28 adipose tissues, and 2 blood capillaries were constructed by tendon-gel integrated bioprinting and manually assembled to fabricate steak-like meat with a diameter of 5 mm and a length of 10 mm inspired by a meat cut. The developed tendon-gel integrated bioprinting here could be a promising technology for the fabrication of the desired types of steak-like cultured meats.
Collapse
Affiliation(s)
- Dong-Hee Kang
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN INC.) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Hao Liu
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Hiroshi Shimoda
- Department of Anatomical Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | - Hajime Nozawa
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., Fujisawa, Japan
| | - Makoto Kakitani
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., Fujisawa, Japan
| | - Daisuke Takagi
- Biomedical Business Center, Healthcare Business Group, Ricoh Company, Ltd., Kawasaki-shi, Japan
| | - Daijiro Kasa
- Solution Planning, Product Solution Technologies, Production Printing, Industrial Solutions, Ricoh Japan Corporation, Tokyo, Japan
| | - Eiji Nagamori
- Department of Biomedical Engineering, Faculty of Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Shinji Irie
- Joint Research Laboratory (TOPPAN INC.) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
- TOPPAN INC., Technical Research Institute, Saitama, Japan
| | - Shiro Kitano
- Joint Research Laboratory (TOPPAN INC.) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan
- TOPPAN INC., Technical Research Institute, Saitama, Japan
| | - Michiya Matsusaki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan.
- Joint Research Laboratory (TOPPAN INC.) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Osaka, Japan.
| |
Collapse
|
24
|
Chaiyasing R, Ishikawa T, Warita K, Hosaka YZ. Absence of estrogen receptors delays myoregeneration and leads to intermuscular adipogenesis in a low estrogen status: Morphological comparisons in estrogen receptor alpha and beta knock out mice. J Vet Med Sci 2021; 83:1022-1030. [PMID: 33967186 PMCID: PMC8349812 DOI: 10.1292/jvms.20-0696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study aimed to investigate the function of estrogen receptors (ERs) in myoregeneration and intermuscular adipogenesis. Ovariectomized (OVX) ERα knockout
(KO) mice and ERβ KO mice were used to assess the effect of estrogen on the myoregenerative process. Tibialis anterior muscle was collected on days 7, 10, and
14 after cardiotoxin injection to assess myotube morphology and adipogenesis area. Regenerated myotubes from OVX-ERβ KO mice were consistently smaller in
diameter than those from OVX-ERα KO and OVX-wild-type mice, whereas the adipogenesis area of OVX-ERβ KO mice was consistently greater than that of the other
types. Therefore, ERβ may be an influential factor in promoting myoregeneration and adipogenesis inhibition compared to ERα.
Collapse
Affiliation(s)
- Rattanatrai Chaiyasing
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan.,Faculty of Veterinary Sciences, Office of Academic Affairs, Maha Sarakham University, Maha Sarakham 44000, Thailand
| | - Takuro Ishikawa
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Katsuhiko Warita
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan.,Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Yoshinao Z Hosaka
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan.,Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
25
|
Osman NM, Shafey HI, Abdelhafez MA, Sallam AM, Mahrous KF. Genetic variations in the Myostatin gene affecting growth traits in sheep. Vet World 2021; 14:475-482. [PMID: 33776314 PMCID: PMC7994128 DOI: 10.14202/vetworld.2021.475-482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
Background and Aim Sheep productivity in developing countries is crucial, as this animal is an essential source of meat and wool. Myostatin (MSTN) plays an important role in the regulation of muscle mass through the regulation of muscle growth, differentiation, and regeneration. The present study sought to investigate genetic variation in the first intron of the MSTN gene and the association of variants with growth traits in major sheep breeds in Egypt (Barki, Ossimi, and Rahmani) and Saudi Arabia (Najdi) using polymerase chain reaction (PCR) and sequencing. Materials and Methods Blood samples were collected, and DNA was extracted from 75 animals. A 386 bp fragment in the first intron of the MSTN gene was amplified using PCR. Polymorphic sites were detected using direct sequencing and then correlated with growth traits using a general linear model. Results Sequence analysis of the first intron of MSTN gene identified six single-nucleotide polymorphisms (SNPs) in the studied breeds. Four mutual SNPs were determined: c.18 G>T, c.241 T>C, c.243 G>A, and c.259 G>T. In addition, two SNPs c.159 A>T and c.173 T>G were monomorphic (AA and TT, respectively) in the Ossimi, Rahmani, and Najdi breeds and polymorphic in the Barki breed. The association analysis revealed that the c.18 G>T and c.241 C>T significantly associated (p<0.05) with birth weight and average daily weight gain, respectively. Conclusion Our results strongly support MSTN as a candidate gene for marker-assisted selection in sheep breeding programs. Furthermore, the identified variants may be considered as putative markers to improve growth traits in sheep.
Collapse
Affiliation(s)
- Noha M Osman
- Department of Cell Biology, National Research Centre, El Buhouth Street, 12311, Dokki, Egypt
| | - Heba I Shafey
- Department of Cell Biology, National Research Centre, El Buhouth Street, 12311, Dokki, Egypt
| | - Mohamed A Abdelhafez
- Department of Cell Biology, National Research Centre, El Buhouth Street, 12311, Dokki, Egypt
| | - Ahmed M Sallam
- Animal and Poultry Production Division, Desert Research Center, 11753, Mataryia, Egypt
| | - Karima F Mahrous
- Department of Cell Biology, National Research Centre, El Buhouth Street, 12311, Dokki, Egypt
| |
Collapse
|
26
|
Jakaria J, Ladhunka Nur Aliyya W, Ismail R, Yuni Siswanti S, Fakhrul Ulum M, Priyanto R. Discovery of SNPs and indel 11-bp of the myostatin gene and its association with the double-muscled phenotype in Belgian blue crossbred cattle. Gene 2021; 784:145598. [PMID: 33766709 DOI: 10.1016/j.gene.2021.145598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
Determining double muscle based on the myostatin (MSTN) gene in Belgian blue (BB), Peranakan Ongole (PO) and BB × PO crossbred cattle is very important for crossbreeding programs. This study aimed to investigate single-nucleotide polymorphisms (SNPs) and 11-bp deletions in the coding region of the MSTN gene and their relationship with the double-muscled phenotype in BB × PO crossbred cattle. A total of 86 blood samples were collected from 28 individual BB, 43 individual PO, and 15 individual BB × PO crossbred cattle. SNPs and indel 11-bp variation in the coding region of the MSTN gene were found using the sequencing method, followed by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. The MSTN gene in the coding region was detected in four SNPs found in PO cattle and its crossbreed. However, the four SNPs could not differentiate normal and double-muscled phenotypes although they are polymorphic. Moreover, in this study, an 11-bp deletion in exon 3 of the MSTN gene in BB cattle was found. In this case, by applying the PCR-RFLP technique using the restriction enzyme NmuCI (Tsp45I) in indel 11-bp, the genotypes that were successfully observed were +/+, +/del.11, and del.11/del.11.
Collapse
Affiliation(s)
- Jakaria Jakaria
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Jl. Agatis Dramaga, Bogor, West Java 16680, Indonesia.
| | - Wenny Ladhunka Nur Aliyya
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Jl. Agatis Dramaga, Bogor, West Java 16680, Indonesia
| | - Riyadi Ismail
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Jl. Agatis Dramaga, Bogor, West Java 16680, Indonesia
| | - Sri Yuni Siswanti
- Livestock Embryos Centre (LEC) Cipelang, Bogor, West Java 16740, Indonesia
| | - Mokhamad Fakhrul Ulum
- Department of Reproductive Clinics and Pathology, Faculty of Veterinary Medicine, IPB University, Jl. Agatis Dramaga, Bogor 16680, West Java, Indonesia
| | - Rudy Priyanto
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Jl. Agatis Dramaga, Bogor, West Java 16680, Indonesia
| |
Collapse
|
27
|
Abstract
We aimed to assess the effects of spirulina supplementation during gradual weight loss on serum concentrations of follistatin (FST), myostatin (MST), insulin-like growth factor 1 (IGF-1), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and body composition in competitive wrestlers. Forty competitive wrestlers (age: 22 (sem 2) years) were randomly assigned to one of two groups: gradual weight loss + spirulina (SP; n 20) or gradual weight loss + placebo (PL; n 20). Subjects in both groups lost weight according to a designed diet over 12 d and were required to reduce baseline body mass (BM) by 4%. Subjects in the SP group received two tablets of spirulina, while subjects in the PL received two tablets of placebo before each meal. Concentrations of mentioned serum markers and body composition were measured before and after the interventions. BM (SP = -3·1 kg and PL = -2·9 kg), body fat percentage (BFP) (SP = -2·1 % and PL = -0·6 %), fat mass (FM) (SP = -2·2 kg and PL = -0·9 kg) and skeletal muscle mass (SP = -1·4 kg and PL = -1·5 kg) significantly decreased in both groups (P < 0·05). The changes in BFP and FM were significantly greater in SP compared with the PL group (P < 0·001). Additionally, MST (SP = -0·1 ng/ml), AST (SP = -2·1 u/l) and ALT (SP = -2·7 u/l) concentrations significantly diminished in SP group (P = 0·005), while FST (PL = -0·1 ng/ml) and IGF-1 (PL = -2·6 ng/ml) concentrations significantly decreased in PL group (P < 0·05). Spirulina supplementation during gradual weight loss is beneficial in reducing BFP, FM, MST and liver enzymes while maintaining IGF-1 and FST concentrations in competitive wrestlers.
Collapse
|
28
|
Pucci G, Ministrini S, Nulli Migliola E, Nunziangeli L, Battista F, D'Abbondanza M, Anastasio F, Crapa ME, Sanesi L, Carbone F, Lupattelli G, Vaudo G. Relationship between serum myostatin levels and carotid-femoral pulse wave velocity in healthy young male adolescents: the MACISTE study. J Appl Physiol (1985) 2021; 130:987-992. [PMID: 33630678 DOI: 10.1152/japplphysiol.00782.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Serum myostatin (sMSTN) is a proteic compound that regulates skeletal muscle growth, adipogenesis, and production of extracellular matrix. Its relationship with functional and structural properties of the arterial wall is still understudied. We aimed at evaluating the association between sMSTN and carotid-femoral pulse wave velocity (cf-PWV), a measure of aortic stiffness, in a cohort of healthy male adolescents. Fifteen healthy male adolescents were recruited among the participants of the Metabolic And Cardiovascular Investigation at School, TErni (MACISTE) study, a cross-sectional survey conducted at the "Renato Donatelli" High School in Terni, Italy. sMSTN was measured through enzyme-linked immunosorbent assay. cf-PWV was measured through high-fidelity applanation tonometry. Muscle strength and body composition were measured through handgrip and bioimpedentiometry, respectively. sMSTN levels showed a skewed distribution (median: 6.0 ng/mL, interquartile range: 2.2-69.2 ng/mL). Subjects with sMSTN above median value showed higher values of brachial diastolic blood pressure and increased cf-PWV (6.1 ± 1.1 m/s vs. 4.6 ± 0.7 m/s, P < 0.01) values, compared with their counterparts. Such difference remained significant after controlling for age, mean BP, heart rate, body mass index z-score, waist-to-height ratio, body mass/lean mass ratio, and amount of physical activity (P = 0.02). The association between log-transformed sMSTN and cf-PWV was direct and linear, and independent from the effect of confounders at the multivariate analysis (P = 0.02). In this preliminary report, sMSTN was independently associated with cf-PWV, a measure of aortic stiffness, in healthy male adolescents. Our results shed lights on the potential role of myokines in the pathogenesis of systemic hypertension and atherosclerosis.NEW & NOTEWORTHY Serum myostatin, a proteic compound known to regulate skeletal muscle growth and production of extracellular matrix, is independently associated with increased aortic stiffness in healthy male adolescents. This result sheds lights on the potential novel role of myokines in the early development of systemic hypertension and early vascular aging, as well as on their inhibition as a hypothetical therapeutic strategy to counteract vascular aging at an early stage of physical development.
Collapse
Affiliation(s)
- Giacomo Pucci
- Department of Medicine, University of Perugia, Perugia, Italy.,Unit of Internal Medicine, "Santa Maria" Terni University Hospital, Terni, Italy
| | - Stefano Ministrini
- Department of Medicine, University of Perugia, Perugia, Italy.,First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Elisa Nulli Migliola
- Department of Medicine, University of Perugia, Perugia, Italy.,Unit of Internal Medicine, "Santa Maria della Misericordia" Perugia University Hospital, Perugia, Italy
| | | | - Francesca Battista
- Sports and Exercise Medicine Division, Department of Medicine, University of Padua, Padua, Italy
| | - Marco D'Abbondanza
- Department of Medicine, University of Perugia, Perugia, Italy.,Unit of Internal Medicine, "Santa Maria della Misericordia" Perugia University Hospital, Perugia, Italy
| | - Fabio Anastasio
- Unit of Cardiology, ASST-VAL Hospital of Sondrio, Sondrio, Italy
| | - Mariano Edoardo Crapa
- Unit of Medicina Interna, ASL Taranto, Presidio Ospedaliero Occidentale, Castellaneta, Italy
| | - Leandro Sanesi
- Department of Medicine, University of Perugia, Perugia, Italy.,Unit of Internal Medicine, "Santa Maria" Terni University Hospital, Terni, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Graziana Lupattelli
- Department of Medicine, University of Perugia, Perugia, Italy.,Unit of Internal Medicine, "Santa Maria della Misericordia" Perugia University Hospital, Perugia, Italy
| | - Gaetano Vaudo
- Department of Medicine, University of Perugia, Perugia, Italy.,Unit of Internal Medicine, "Santa Maria" Terni University Hospital, Terni, Italy
| |
Collapse
|
29
|
Ángel García-Merino J, Moreno-Pérez D, de Lucas B, Montalvo-Lominchar MG, Muñoz E, Sánchez L, Naclerio F, Herrera-Rocha KM, Moreno-Jiménez MR, Rocha-Guzmán NE, Larrosa M. Chronic flavanol-rich cocoa powder supplementation reduces body fat mass in endurance athletes by modifying the follistatin/myostatin ratio and leptin levels. Food Funct 2021; 11:3441-3450. [PMID: 32236212 DOI: 10.1039/d0fo00246a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Flavanols-rich cocoa has positive effects on lipid metabolism and might enhance the performance of athletes through an improvement in their body composition. To test this hypothesis a placebo-controlled intervention study in training endurance athletes who received 5 g of cocoa daily (425 mg of flavanols) for 10 weeks was performed. Dietary intake, body composition, exercise performance and plasma levels of follistatin, myostatin and leptin were measured. Cocoa intake significantly reduced body fat percentage (p = 0.020), specifically in the trunk (p = 0.022), visceral area (p = 0.034) and lower limbs (p = 0.004). The reduction in body fat mass was accompanied by an increase in plasma follistatin and a decrease in leptin, while myostatin levels remained unchanged. The intake of cocoa reduced the percentage of body fat of athletes, without any impact on athletes' performance. The change in fat body composition did not improve athletes' performance.
Collapse
Affiliation(s)
- Jose Ángel García-Merino
- MAS microbiota group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Spain.
| | - Diego Moreno-Pérez
- Departamento de Educación, Métodos de Investigación y Evaluación, Universidad Pontificia de Comillas, ICAI-ICADE, Cantoblanco, Madrid 28015, Spain
| | - Beatriz de Lucas
- MAS microbiota group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Spain.
| | | | - Elsa Muñoz
- Medical Service, Universidad Europea de Madrid, Spain
| | - Lara Sánchez
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Spain
| | - Fernando Naclerio
- Department of Life and Sports Sciences, University of Greenwich, Eltham SE9 2TB, UK
| | - Karen Marlene Herrera-Rocha
- Grupo de Investigación en Alimentos Funcionales y Nutracéuticos. Unidad de Posgrado, Investigación y Desarrollo Tecnológico. TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Martha Rocío Moreno-Jiménez
- Grupo de Investigación en Alimentos Funcionales y Nutracéuticos. Unidad de Posgrado, Investigación y Desarrollo Tecnológico. TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Nuria Elisabeth Rocha-Guzmán
- Grupo de Investigación en Alimentos Funcionales y Nutracéuticos. Unidad de Posgrado, Investigación y Desarrollo Tecnológico. TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Mar Larrosa
- MAS microbiota group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Spain.
| |
Collapse
|
30
|
Vernerová L, Horváthová V, Kropáčková T, Vokurková M, Klein M, Tomčík M, Oreská S, Špiritović M, Štorkánová H, Heřmánková B, Kubínová K, Kryštůfková O, Mann H, Ukropec J, Ukropcová B, Vencovský J. Alterations in activin A-myostatin-follistatin system associate with disease activity in inflammatory myopathies. Rheumatology (Oxford) 2021; 59:2491-2501. [PMID: 31990347 DOI: 10.1093/rheumatology/kez651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/22/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the systemic and skeletal muscle levels of atrophy-associated myokines in patients with idiopathic inflammatory myopathies (IIM) and their association with clinical characteristics of myositis. METHODS A total of 94 IIM patients and 162 healthy controls were recruited. Of those, 20 IIM patients and 28 healthy controls underwent a muscle biopsy. Circulating concentrations of myostatin, follistatin, activin A and TGF-β1 were assessed by ELISA. The expression of myokines and associated genes involved in the myostatin signalling pathway in muscle tissue was determined by real-time PCR. RESULTS We report decreased levels of circulating myostatin (median 1817 vs 2659 pg/ml; P = 0.003) and increased follistatin (1319 vs 1055 pg/ml; P = 0.028) in IIM compared with healthy controls. Activin A levels were also higher in IIM (414 vs 309 pg/ml; P = 0.0005) compared with controls. Myostatin was negatively correlated to muscle disease activity assessed by physician on visual analogue scale (MDA) (r = -0.289, P = 0.015) and positively to manual muscle testing of eight muscles (r = 0.366, P = 0.002). On the other hand, follistatin correlated positively with MDA (r = 0.235, P = 0.047). Gene expression analysis showed higher follistatin (P = 0.003) and myostatin inhibitor follistatin-like 3 protein (FSTL3) (P = 0.008) and lower expression of activin receptor type 1B (ALK4) (P = 0.034), signal transducer SMAD3 (P = 0.023) and atrophy marker atrogin-1 (P = 0.0009) in IIM muscle tissue compared with controls. CONCLUSION This study shows lower myostatin and higher follistatin levels in circulation and attenuated expression of myostatin pathway signalling components in skeletal muscle of patients with myositis, a newly emerging pattern of the activin A-myostatin-follistatin system in muscle wasting diseases.
Collapse
Affiliation(s)
- Lucia Vernerová
- Division of Experimental Rheumatology, Institute of Rheumatology, Prague
| | - Veronika Horváthová
- Division of Experimental Rheumatology, Institute of Rheumatology, Prague.,Department of Rheumatology, First Faculty of Medicine
| | - Tereza Kropáčková
- Division of Experimental Rheumatology, Institute of Rheumatology, Prague.,Department of Rheumatology, First Faculty of Medicine
| | - Martina Vokurková
- Division of Experimental Rheumatology, Institute of Rheumatology, Prague
| | - Martin Klein
- Division of Experimental Rheumatology, Institute of Rheumatology, Prague.,Department of Rheumatology, First Faculty of Medicine
| | - Michal Tomčík
- Division of Experimental Rheumatology, Institute of Rheumatology, Prague.,Department of Rheumatology, First Faculty of Medicine
| | - Sabína Oreská
- Division of Experimental Rheumatology, Institute of Rheumatology, Prague.,Department of Rheumatology, First Faculty of Medicine
| | - Maja Špiritović
- Division of Experimental Rheumatology, Institute of Rheumatology, Prague.,Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Hana Štorkánová
- Division of Experimental Rheumatology, Institute of Rheumatology, Prague.,Department of Rheumatology, First Faculty of Medicine
| | - Barbora Heřmánková
- Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Kateřina Kubínová
- Division of Experimental Rheumatology, Institute of Rheumatology, Prague.,Department of Rheumatology, First Faculty of Medicine
| | - Olga Kryštůfková
- Division of Experimental Rheumatology, Institute of Rheumatology, Prague.,Department of Rheumatology, First Faculty of Medicine
| | - Heřman Mann
- Division of Experimental Rheumatology, Institute of Rheumatology, Prague.,Department of Rheumatology, First Faculty of Medicine
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava
| | - Barbara Ukropcová
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava.,Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jiří Vencovský
- Division of Experimental Rheumatology, Institute of Rheumatology, Prague.,Department of Rheumatology, First Faculty of Medicine
| |
Collapse
|
31
|
Saleh AA, Shukry M, Farrag F, Soliman MM, Abdel-Moneim AME. Effect of Feeding Wet Feed or Wet Feed Fermented by Bacillus licheniformis on Growth Performance, Histopathology and Growth and Lipid Metabolism Marker Genes in Broiler Chickens. Animals (Basel) 2021; 11:E83. [PMID: 33466334 PMCID: PMC7824773 DOI: 10.3390/ani11010083] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
The present study evaluated the effect of three feeding methods (dry feed, wet feed or wet feed fermented with Bacillus licheniformis) on the growth performance, intestinal histomorphometry and gene expression of the lipid metabolism- and growth-related genes of broiler chickens. A total of 360 one-day-old Cobb-500 broiler chicks were randomly allotted into three groups containing four replicates with 30 birds each. The first group (control) was fed a dry mash basal diet. The second and third groups were fed wet feed and fermented wet feed. The final body weight and weight gain were reduced (p < 0.01) in the wet feed group, while they did not differ between the fermented wet feed and dry feed groups. Feed intake was not altered, and feeding on wet feed significantly (p < 0.01) increased the feed-to-gain ratio compared to the remaining groups. No differences between the three feeding methods in carcass characteristics, blood biochemistry and nutrient digestibility were observed except for crude protein digestibility, which was increased (p < 0.01) in the fermented wet feed group. Duodenal and ileal villi heights were elevated in birds fed fermented wet feeds, while crypt depth was not altered. The expression fold of IGF-1, GH and m-TOR genes in the pectoral muscle of birds fed wet feed was decreased (p < 0.05), while myostatin gene expression was elevated. Feeding on wet feed reduced the hepatic gene expression of PPARγ and increased that of FAS. In conclusion, wet feed negatively affected the broiler chickens' efficiency under heat stress; however, fermenting the wet feed with Bacillus licheniformis improved feed utilization and birds' performance compared to the dry feed group.
Collapse
Affiliation(s)
- Ahmed A. Saleh
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Foad Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mohamed M. Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Benha 13737, Egypt
| | | |
Collapse
|
32
|
Identification of two genes potentially related to myogenesis and muscle growth in Fenneropenaeus chinensis: Activin receptor II and Follistatin-like protein. Gene 2020; 770:145346. [PMID: 33333225 DOI: 10.1016/j.gene.2020.145346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Activin receptor (ActR) and follistatin-like (FSTL) genes, which are involved in the Myostatin (Mstn) related TGF-β/Smad signaling pathway, play important roles in regulating the muscle generation, development and growth of muscle in vertebrate. Our previous studies have confirmed that Mstn negatively regulates muscle development and growth in Fenneropenaeus chinensis as that in vertebrate. However, the roles of ActR and FSTL in muscle development and growth in invertebrate remains unclear. In the present study, type II ActR(FcActRII) and FSTL (FcFSTL) genes from F. chinensis were cloned and characterized, and their functions on muscle development and growth were investigated. The full-length cDNAs of FcActRII and FcFSTL were 2366 bp that encoded 572 amino acids and 2474 bp that encoded 717 amino acids, respectively. Sequence analysis revealed that the overall protein sequences of the two genes shared 97% and 96% identities with Penaeus vannamei and 50%-59% and 35%-36% identities with vertebrates, respectively. In the early development stages, muscles firstly appeared in nauplius stage and developed gradually until post larval, and the mRNA expressions of FcActRII increased from gastrula to zoea stage and then decreased from zoea stage to post larval stage while that of FcFSTL was lowest in gastrula stage and increased rapidly in nauplius stage and then expressed stably from nauplius stage to post-larval stage. In the adult shrimp, the two genes were widely distributed in the examined tissues. The FcActRII expression in muscle of L group was significantly lower than that of S group, but the FcFSTL expression showed an opposite result. After down-regulating the expression of FcMstn by RNAi, FcActRII expression was significantly down-regulated while that of FcFSTL was up-regulated. The present study suggested that FcActRII and FcFSTL, regulated by FcMstn, might be involved in myogenesis and muscle growth.
Collapse
|
33
|
Ren H, Xiao W, Qin X, Cai G, Chen H, Hua Z, Cheng C, Li X, Hua W, Xiao H, Zhang L, Dai J, Zheng X, Zhu Z, Qian C, Yao J, Bi Y. Myostatin regulates fatty acid desaturation and fat deposition through MEF2C/miR222/SCD5 cascade in pigs. Commun Biol 2020; 3:612. [PMID: 33097765 PMCID: PMC7584575 DOI: 10.1038/s42003-020-01348-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Myostatin (MSTN), associated with the “double muscling” phenotype, affects muscle growth and fat deposition in animals, whereas how MSTN affects adipogenesis remains to be discovered. Here we show that MSTN can act through the MEF2C/miR222/SCD5 cascade to regulate fatty acid metabolism. We generated MSTN-knockout (KO) cloned Meishan pigs, which exhibits typical double muscling trait. We then sequenced transcriptome of subcutaneous fat tissues of wild-type (WT) and MSTN-KO pigs, and intersected the differentially expressed mRNAs and miRNAs to predict that stearoyl-CoA desaturase 5 (SCD5) is targeted by miR222. Transcription factor binding prediction showed that myogenic transcription factor 2C (MEF2C) potentially binds to the miR222 promoter. We hypothesized that MSTN-KO upregulates MEF2C and consequently increases the miR222 expression, which in turn targets SCD5 to suppress its translation. Biochemical, molecular and cellular experiments verified the existence of the cascade. This novel molecular pathway sheds light on new targets for genetic improvements in pigs. Ren, Xiao et al. identify a mechanism by which myostatin regulates adipogenesis, using myostatin-knockout pigs. Myostatin deficiency upregulates MEF2C that binds to the promoter of miR222. miR222 in turn downregulates stearoyl-CoA desaturase 5. This study provides potential targets that can be engineered to generate a new pig variety that has high leanness while maintaining its high intramuscular fat content.
Collapse
Affiliation(s)
- Hongyan Ren
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Wei Xiao
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Xingliang Qin
- Wuhan Biojie Biomedical and Technology Co., Ltd., 430000, Wuhan, China
| | - Gangzhi Cai
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Hao Chen
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Zaidong Hua
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Cheng Cheng
- Wuhan Biojie Biomedical and Technology Co., Ltd., 430000, Wuhan, China
| | - Xinglei Li
- Wuhan Bioacme Biotechnology Co., Ltd., 430000, Wuhan, China
| | - Wenjun Hua
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Hongwei Xiao
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Liping Zhang
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Jiali Dai
- Wuhan Biojie Biomedical and Technology Co., Ltd., 430000, Wuhan, China
| | - Xinmin Zheng
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Zhe Zhu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China
| | - Chong Qian
- Beijing Center for Physical and Chemical Analysis, 100094, Beijing, China
| | - Jie Yao
- Wuhan Biojie Biomedical and Technology Co., Ltd., 430000, Wuhan, China.
| | - Yanzhen Bi
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, 430064, Wuhan, China.
| |
Collapse
|
34
|
Curiel-Cervantes V, Solís-Sáinz JC, Costa-Urrutia P, Aguilar-Galarza A, Flores-Viveros KL, García-Gasca TDJ, Anaya-Loyola MA. The myostatin rs1805086 variant is associated with obesity in Mexican adults, independently of metabolic risk factors. Biomarkers 2020; 25:566-572. [PMID: 32838566 DOI: 10.1080/1354750x.2020.1814413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM To determine whether rs1805086 is associated with obesity and metabolic disturbances in a Mexican adult population. SUBJECTS AND METHODS We genotyped rs1805086 in 1024 men and women aged 18-58 years. Anthropometric and body fat data were used to estimate obesity. Biochemical parameters were measured and DNA was used to determine the rs1805086 genotype. RESULTS rs1805086 heterozygous AG frequency was 5.4%, and the homozygous for the risk allele GG was absent. Heterozygous had higher levels of body mass index (BMI) and waist/height ratio (WHtR). Heterozygous subjects showed a greater total and central obesity compared to the homozygous for ancestral allele AA (OR BMI > 30 kg/m2 = 2.35, 95% CI 1.29-4.29; OR WHtR > 0.5 = 2.03, 95% CI 1.19-3.45; OR elevated fat mass (EFM) %= 1.72, 95% CI 1.01-2.92; OR fat mass index (FMI)>p85 = 1.96, 95% CI 1.05-3.68). rs1805086 was not associated with metabolic alterations. CONCLUSION Heterozygosity for rs1805086 showed a predisposition to having elevated overall and central obesity parameters. This association with adiposity seems to be independent of metabolic risk.
Collapse
Affiliation(s)
- Vianney Curiel-Cervantes
- Department of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Queretaro, Mexico
| | - Juan C Solís-Sáinz
- Department of Biomedical Research, School of Medicine, Autonomous University of Queretaro, Campus La Capilla, Queretaro, Mexico
| | - Paula Costa-Urrutia
- ISSSTE, Laboratory of Genomic Medicine, Regional Hospital Lic. Adolfo López Mateos, Mexico City, Mexico
| | - Adriana Aguilar-Galarza
- Department of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Queretaro, Mexico
| | - Karla L Flores-Viveros
- Department of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Queretaro, Mexico
| | - Teresa de Jesús García-Gasca
- Human Nutrition Laboratory, Department of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Queretaro, Mexico
| | - Miriam A Anaya-Loyola
- Human Nutrition Laboratory, Department of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Queretaro, Mexico
| |
Collapse
|
35
|
Fernández-Barroso MÁ, Caraballo C, Silió L, Rodríguez C, Nuñez Y, Sánchez-Esquiliche F, Matos G, García-Casco JM, Muñoz M. Differences in the Loin Tenderness of Iberian Pigs Explained through Dissimilarities in Their Transcriptome Expression Profile. Animals (Basel) 2020; 10:ani10091715. [PMID: 32971875 PMCID: PMC7552750 DOI: 10.3390/ani10091715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The Iberian pig is the most representative autochthonous breed of the Mediterranean region with unique genetic and phenotypic characteristics. The breed has been successfully preserved by its high-quality meat and high-priced products. Tenderness is one of the most relevant meat quality traits, and meat tenderization is influenced by genetic and environmental effects such as pre-slaughter handling and post-mortem conditions. Tenderness could be included in Iberian pig breeding programs, mainly focused on the improvement of premium-cuts percentage, in order to avoid the meat quality decline. A better biological understanding of this trait is needed. In the current study, we analyze the transcriptome of pigs divergent for Warner–Bratzler shear force through RNA-seq technique for the identification, characterization and quantification of candidate genes involved in biological pathways, networks and functions affecting meat tenderness. Abstract Tenderness is one of the most important meat quality traits and it can be measured through shear force with the Warner–Bratzler test. In the current study, we use the RNA-seq technique to analyze the transcriptome of Longissimus dorsi (LD) muscle in two groups of Iberian pigs (Tough and Tender) divergent for shear force breeding values. We identified 200 annotated differentially expressed genes (DEGs) and 245 newly predicted isoforms. The RNAseq expression results of 10 genes were validated with quantitative PCR (qPCR). Functional analyses showed an enrichment of DE genes in biological processes related to proteolysis (CTSC, RHOD, MYH8, ACTC1, GADD45B, CASQ2, CHRNA9 and ANKRD1), skeletal muscle tissue development (ANKRD1, DMD, FOS and MSTN), lipid metabolism (FABP3 and PPARGC1A) and collagen metabolism (COL14A1). The upstream analysis revealed a total of 11 transcription regulatory factors that could regulate the expression of some DEGs. Among them, IGF1, VGLL3 and PPARG can be highlighted since they regulate the expression of genes involved in biological pathways that could affect tenderness. The experiment revealed a set of candidate genes and regulatory factors suggestive to search polymorphisms that could be incorporated in a breeding program for improving meat tenderness.
Collapse
Affiliation(s)
- Miguel Ángel Fernández-Barroso
- Centro Nacional de I+D del Cerdo Ibérico (CENIDCI), INIA, 06300 Zafra, Spain; (C.C.); (J.M.G.-C.)
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
- Correspondence:
| | - Carmen Caraballo
- Centro Nacional de I+D del Cerdo Ibérico (CENIDCI), INIA, 06300 Zafra, Spain; (C.C.); (J.M.G.-C.)
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
| | - Luis Silió
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
| | - Carmen Rodríguez
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
| | - Yolanda Nuñez
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
| | | | - Gema Matos
- Sánchez Romero Carvajal—Jabugo, SRC, 21290 Huelva, Spain; (F.S.-E.); (G.M.)
| | - Juan María García-Casco
- Centro Nacional de I+D del Cerdo Ibérico (CENIDCI), INIA, 06300 Zafra, Spain; (C.C.); (J.M.G.-C.)
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
| | - María Muñoz
- Centro Nacional de I+D del Cerdo Ibérico (CENIDCI), INIA, 06300 Zafra, Spain; (C.C.); (J.M.G.-C.)
| |
Collapse
|
36
|
Wirtz TH, Loosen SH, Buendgens L, Kurt B, Abu Jhaisha S, Hohlstein P, Brozat JF, Weiskirchen R, Luedde T, Tacke F, Trautwein C, Roderburg C, Koch A. Low Myostatin Serum Levels Are Associated with Poor Outcome in Critically Ill Patients. Diagnostics (Basel) 2020; 10:diagnostics10080574. [PMID: 32784522 PMCID: PMC7459686 DOI: 10.3390/diagnostics10080574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 01/04/2023] Open
Abstract
Background: Growth differentiation factor 8, GDF-8 (Myostatin), is a protein released by myocytes inhibiting muscle growth and differentiation. Serum concentrations of Myostatin can predict poor survival in different chronic diseases, but its role in critical illness and sepsis is obscure. Our aim was to investigate Myostatin levels as a potential prognostic biomarker in critically ill patients with sepsis. Methods: We therefore measured Myostatin serum concentrations in 165 critically ill patients (106 with sepsis, 59 without sepsis) upon admission to the medical intensive care unit (ICU), in comparison to 14 healthy controls. Results: Myostatin levels were significantly decreased in ICU patients compared to controls but did not differ in patients with or without sepsis. However, Myostatin concentrations were significantly lower in patients requiring mechanical ventilation and indicated a trend towards dependency of intravenous vasopressors. Interestingly, we observed a negative correlation between Myostatin levels and markers of systemic inflammation. Strikingly, overall survival (OS) was significantly impaired in patients with low Myostatin levels in all critically ill patients. Low Myostatin levels at baseline turned out as an independent prognostic marker for OS in multivariate Cox-regression analysis (HR: 0.433, 95% CI: 0.211-0.889, p = 0.023). Conclusions: In summary, serum Myostatin concentrations are significantly decreased in critically ill patients and associated with disease severity. Low Myostatin levels also identify a subgroup of ICU patients that are more likely to face an unfavorable clinical outcome in terms of OS.
Collapse
Affiliation(s)
- Theresa H. Wirtz
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (S.H.L.); (L.B.); (B.K.); (S.A.J.); (P.H.); (J.F.B.); (C.T.)
| | - Sven H. Loosen
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (S.H.L.); (L.B.); (B.K.); (S.A.J.); (P.H.); (J.F.B.); (C.T.)
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany;
| | - Lukas Buendgens
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (S.H.L.); (L.B.); (B.K.); (S.A.J.); (P.H.); (J.F.B.); (C.T.)
| | - Berkan Kurt
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (S.H.L.); (L.B.); (B.K.); (S.A.J.); (P.H.); (J.F.B.); (C.T.)
| | - Samira Abu Jhaisha
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (S.H.L.); (L.B.); (B.K.); (S.A.J.); (P.H.); (J.F.B.); (C.T.)
| | - Philipp Hohlstein
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (S.H.L.); (L.B.); (B.K.); (S.A.J.); (P.H.); (J.F.B.); (C.T.)
| | - Jonathan F. Brozat
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (S.H.L.); (L.B.); (B.K.); (S.A.J.); (P.H.); (J.F.B.); (C.T.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany;
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (F.T.); (C.R.)
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (S.H.L.); (L.B.); (B.K.); (S.A.J.); (P.H.); (J.F.B.); (C.T.)
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (F.T.); (C.R.)
| | - Alexander Koch
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (T.H.W.); (S.H.L.); (L.B.); (B.K.); (S.A.J.); (P.H.); (J.F.B.); (C.T.)
- Correspondence: ; Tel.: +49-241-80-80860; Fax: +49-241-80-82455
| |
Collapse
|
37
|
Metabolic adaptations after bariatric surgery: adipokines, myokines and hepatokines. Curr Opin Pharmacol 2020; 52:67-74. [PMID: 32688292 DOI: 10.1016/j.coph.2020.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/23/2022]
Abstract
This review addresses the impact of bariatric surgery on the endocrine aspects of white adipose tissue, muscle and the liver. We describe literature supporting the notion that adipokines, myokines and hepatokines likely act in concert and drive many of the long-term metabolic improvements following surgery. Circulating adiponectin is increased while secretion of pro-inflammatory interleukins (1, 6 and 8) decreases, alongside leptin secretion. The metabolic improvements observed in the muscle might relate to reduction of myokines contributing to insulin resistance (including myostatin, brain-derived neurotrophic factor and fibroblast growth factor-21). Subject to exception, hepatokine secretion is generally increased (such as insulin-like growth factor-binding protein 2, adropin and sex hormone-binding globulin). In conclusion, bariatric surgery restores metabolic functions by enhancing the time-dependent secretion of anti-inflammatory, insulin-sensitizing and antilipemic factors. Further research is needed to understand the molecular mechanisms by which these factors may trigger the remission of obesity-related comorbidities following bariatric surgery.
Collapse
|
38
|
Picard B, Gagaoua M. Muscle Fiber Properties in Cattle and Their Relationships with Meat Qualities: An Overview. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6021-6039. [PMID: 32374594 DOI: 10.1021/acs.jafc.0c02086] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The control of meat quality traits constitutes an important target for any farm animal production, including cattle. Therefore, better understanding of the biochemical properties that drive muscle development and final outcomes constitutes one of the main challenging topics of animal production and meat science. Accordingly, this review has focused on skeletal muscle fibers in cattle and their relationships with beef qualities. It aimed to describe the chemical and structural properties of muscle fibers as well as a comprehensive review of their contractile and metabolic characteristics during the life of the animal. The existing methods for the classification of muscle fibers were reviewed, compared, and discussed. Then, the different stages of myogenesis in cattle were defined. The main factors regulating fetal and postnatal growth and the plasticity of muscle fibers were evidenced, especially the role of myostatin growth factor and the impact of nutritional factors. This review highlights that the knowledge about muscle fibers is paramount for a better understanding of how to control the muscle properties throughout the life of the animal for better management of the final eating qualities of beef. Accordingly, the associations between bovine muscle fibers and different meat eating qualities such as tenderness, pH decline, and color traits were further presented.
Collapse
Affiliation(s)
- Brigitte Picard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - Mohammed Gagaoua
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
39
|
Pydi SP, Jain S, Barella LF, Zhu L, Sakamoto W, Meister J, Wang L, Lu H, Cui Y, Gavrilova O, Wess J. β-arrestin-1 suppresses myogenic reprogramming of brown fat to maintain euglycemia. SCIENCE ADVANCES 2020; 6:eaba1733. [PMID: 32548266 PMCID: PMC7274797 DOI: 10.1126/sciadv.aba1733] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/16/2020] [Indexed: 05/05/2023]
Abstract
A better understanding of the signaling pathways regulating adipocyte function is required for the development of new classes of antidiabetic/obesity drugs. We here report that mice lacking β-arrestin-1 (barr1), a cytoplasmic and nuclear signaling protein, selectively in adipocytes showed greatly impaired glucose tolerance and insulin sensitivity when consuming an obesogenic diet. In contrast, transgenic mice overexpressing barr1 in adipocytes were protected against the metabolic deficits caused by a high-calorie diet. Barr1 deficiency led to a myogenic reprogramming of brown adipose tissue (BAT), causing elevated plasma myostatin (Mstn) levels, which in turn led to impaired insulin signaling in multiple peripheral tissues. Additional in vivo studies indicated that barr1-mediated suppression of Mstn expression by BAT is required for maintaining euglycemia. These findings convincingly identify barr1 as a critical regulator of BAT function. Strategies aimed at enhancing barr1 activity in BAT may prove beneficial for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Sai P. Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
- Corresponding author. (J.W.); (S.P.P.)
| | - Shanu Jain
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Luiz F. Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Lu Zhu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Wataru Sakamoto
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Lei Wang
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Huiyan Lu
- Mouse Transgenic Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Yinghong Cui
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
- Corresponding author. (J.W.); (S.P.P.)
| |
Collapse
|
40
|
Xin XB, Yang SP, Li X, Liu XF, Zhang LL, Ding XB, Zhang S, Li GP, Guo H. Proteomics insights into the effects of MSTN on muscle glucose and lipid metabolism in genetically edited cattle. Gen Comp Endocrinol 2020; 291:113237. [PMID: 31374285 DOI: 10.1016/j.ygcen.2019.113237] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
The molecular mechanism underlying myostatin (MSTN)-regulated metabolic cross-talk remains poorly understood. In this study, we performed comparative proteomic and phosphoproteomic analyses of gluteus muscle tissues from MSTN-/- transgenic cattle using a shotgun-based tandem mass tag (TMT) 6-plex labeling method to explore the signaling pathway of MSTN in metabolic cross-talk and cellular metabolism during muscle development. A total of 72 differentially expressed proteins (DEPs) and 36 differentially expressed phosphoproteins (DEPPs) were identified in MSTN-/- cattle compared to wild-type cattle. Bioinformatics analyses showed that MSTN knockout increased the activity of many key enzymes involved in fatty acid β-oxidation and glycolysis processes in cattle. Furthermore, comprehensive pathway analyses and hypothesis-driven AMP-activated protein kinase (AMPK) activity assays suggested that MSTN knockout triggers the activation of AMPK signaling pathways to regulate glucose and lipid metabolism by increasing the AMP/ATP ratio. Our results shed new light on the potential regulatory mechanism of MSTN associated with metabolic cross-talk in muscle development, which can be used in animal breeding to improve meat production in livestock animals, and can also provide valuable insight into treatments for obesity and diabetes mellitus in humans.
Collapse
Affiliation(s)
- Xiang-Bo Xin
- College of Animal Science and Veterinary Medicine, Tianjin Agriculture University, 22 Jinjing Road, Tianjin 300384, China
| | - Shu-Ping Yang
- College of Animal Science and Veterinary Medicine, Tianjin Agriculture University, 22 Jinjing Road, Tianjin 300384, China
| | - Xin Li
- College of Animal Science and Veterinary Medicine, Tianjin Agriculture University, 22 Jinjing Road, Tianjin 300384, China
| | - Xin-Feng Liu
- College of Animal Science and Veterinary Medicine, Tianjin Agriculture University, 22 Jinjing Road, Tianjin 300384, China
| | - Lin-Lin Zhang
- College of Animal Science and Veterinary Medicine, Tianjin Agriculture University, 22 Jinjing Road, Tianjin 300384, China
| | - Xiang-Bin Ding
- College of Animal Science and Veterinary Medicine, Tianjin Agriculture University, 22 Jinjing Road, Tianjin 300384, China
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY, USA.
| | - Guang-Peng Li
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, 24 Zhaojun Road, Hohhot 010070, China.
| | - Hong Guo
- College of Animal Science and Veterinary Medicine, Tianjin Agriculture University, 22 Jinjing Road, Tianjin 300384, China.
| |
Collapse
|
41
|
Yamakage H, Tanaka M, Inoue T, Odori S, Kusakabe T, Satoh‐Asahara N. Effects of dapagliflozin on the serum levels of fibroblast growth factor 21 and myokines and muscle mass in Japanese patients with type 2 diabetes: A randomized, controlled trial. J Diabetes Investig 2020; 11:653-661. [PMID: 31721467 PMCID: PMC7232283 DOI: 10.1111/jdi.13179] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/25/2022] Open
Abstract
AIMS/INTRODUCTION Our aims were to examine the add-on effects of a sodium-glucose cotransporter 2 inhibitor, dapagliflozin, compared with existing antidiabetes treatments, on anthropometric/metabolic parameters, the levels of an endocrine regulator, fibroblast growth factor 21 (FGF21); a skeletal muscle mass (SMM) negative regulator, myostatin; and a metabolic regulator, irisin, in patients with type 2 diabetes. MATERIALS AND METHODS A total of 54 patients with type 2 diabetes were randomly divided into dapagliflozin and control groups. The dapagliflozin group received dapagliflozin 5 mg/day in addition to conventional therapy for 24 weeks. The primary outcome was the change in the level of serum FGF21 from baseline. The secondary outcomes included changes from baseline in anthropometric/metabolic parameters and serum levels of myostatin and irisin. RESULTS Bodyweight decreased in the dapagliflozin group compared with the control group (P < 0.001), but the changes in SMM were not significant between the groups (P = 0.611), thereby elevating the ratio of SMM-to-bodyweight in the dapagliflozin group (P = 0.028). Myostatin levels were significantly decreased (P = 0.010), and irisin levels showed a nearly significant reduction (P = 0.052) in the dapagliflozin group compared with the control group, whereas FGF21 levels did not change significantly from baseline to the end of the intervention in both the dapagliflozin (P = 0.673) and the control (P = 0.823) groups. CONCLUSIONS Dapagliflozin add-on therapy in patients with type 2 diabetes reduced myostatin levels significantly and maintained SMM, without significant changes in FGF21 levels.
Collapse
Affiliation(s)
- Hajime Yamakage
- Department of Endocrinology, Metabolism and Hypertension ResearchClinical Research InstituteNational Hospital Organization Kyoto Medical CenterKyotoJapan
| | - Masashi Tanaka
- Department of Endocrinology, Metabolism and Hypertension ResearchClinical Research InstituteNational Hospital Organization Kyoto Medical CenterKyotoJapan
- Department of Physical TherapyHealth Science UniversityYamanashiJapan
| | - Takayuki Inoue
- Department of Endocrinology, Metabolism and Hypertension ResearchClinical Research InstituteNational Hospital Organization Kyoto Medical CenterKyotoJapan
| | - Shinji Odori
- Department of Endocrinology, Metabolism and Hypertension ResearchClinical Research InstituteNational Hospital Organization Kyoto Medical CenterKyotoJapan
| | - Toru Kusakabe
- Department of Endocrinology, Metabolism and Hypertension ResearchClinical Research InstituteNational Hospital Organization Kyoto Medical CenterKyotoJapan
| | - Noriko Satoh‐Asahara
- Department of Endocrinology, Metabolism and Hypertension ResearchClinical Research InstituteNational Hospital Organization Kyoto Medical CenterKyotoJapan
| |
Collapse
|
42
|
Felicioni F, Pereira AD, Caldeira-Brant AL, Santos TG, Paula TMD, Magnabosco D, Bortolozzo FP, Tsoi S, Dyck MK, Dixon W, Martinelli PM, Jorge EC, Chiarini-Garcia H, Almeida FRCL. Postnatal development of skeletal muscle in pigs with intrauterine growth restriction: morphofunctional phenotype and molecular mechanisms. J Anat 2020; 236:840-853. [PMID: 31997379 DOI: 10.1111/joa.13152] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a serious condition which impairs the achievement of the fetus' full growth potential and occurs in a natural and severe manner in pigs as a result of placental insufficiency. Reduced skeletal muscle mass in the fetus with IUGR persists into adulthood and may contribute to increased metabolic disease risk. To investigate skeletal muscle postnatal development, histomorphometrical patterns of the semitendinosus muscle, myosin heavy chain (MyHC; embryonic I, IIA, IIB and IIX isoforms) fiber composition and the relative expression of genes related to myogenesis, adipogenesis and growth during three specific periods: postnatal myogenesis (newborn to 100 days old), hypertrophy (100-150 days old), and postnatal development (newborn to 150 days old) were evaluated in female pigs with IUGR and normal birth weight (NW) female littermates. NW females presented higher body weights compared to their IUGR counterparts at all ages evaluated (P < 0.05). Moreover, growth restriction in utero affected the semitendinosus muscle weight, muscle fiber diameter, and muscle cross-sectional area, which were smaller in IUGR pigs at birth (P < 0.05). Notwithstanding the effects on muscle morphology, IUGR also affected muscle fiber composition, as the percentage of MyHC-I myofibers was higher at birth (P < 0.05), and, in 150-day-old gilts, a lower percentage of MyHC-IIX isoform (P < 0.05) and the presence of embryonic MyHC isoform were also observed. Regarding the pattern of gene expression in both the postnatal myogenesis and postnatal development periods, IUGR led to the downregulation of myogenic factors, which delayed skeletal muscle myogenesis (PAX7, MYOD, MYOG, MYF5 and DES). Altogether, growth restriction in utero affects muscle fiber number and size at birth and muscle fiber composition through the downregulation of myogenic factors, which determines the individual´s postnatal growth rate. This fact, associated with delayed myofiber development in growth-restricted animals, may affect meat quality characteristics in animal production. Hence, knowledge of the morphofunctional phenotype of the skeletal muscle throughout postnatal development in individuals with IUGR, and the mechanism that governs it, may provide a better understanding of the mechanisms that limit postnatal muscle growth, and help the establishment of potential strategies to improve muscle development and prevent the onset of later-life metabolic diseases.
Collapse
Affiliation(s)
- Fernando Felicioni
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andreia D Pereira
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andre L Caldeira-Brant
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thais G Santos
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thais M D Paula
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Diogo Magnabosco
- Faculty of Veterinary, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando P Bortolozzo
- Faculty of Veterinary, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Stephen Tsoi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Michael K Dyck
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Walter Dixon
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Patricia M Martinelli
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Erika C Jorge
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Helio Chiarini-Garcia
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda R C L Almeida
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
43
|
Molecular characterization, expression analysis of myostatin gene and its negative regulation by miR-29b-3p in Chinese concave-eared frogs (Odorrana tormota). Comp Biochem Physiol B Biochem Mol Biol 2019; 240:110369. [PMID: 31676334 DOI: 10.1016/j.cbpb.2019.110369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/08/2019] [Accepted: 09/26/2019] [Indexed: 01/09/2023]
Abstract
The molecular characteristics, expression patterns and functions of the amphibian myostatin (MSTN) gene are unknown. Here, we isolated a full-length Odorrana tormota MSTN cDNA sequence of 1701 bp (Ot-MSTN), containing a putative N-terminal signal peptide, a TGF-β propeptide domain and an active peptide. Ot-MSTN was expressed in 9 selected tissues examined, and the highest level of expression was in thigh muscle, followed by brain and female gonadal tissue. The expression of Ot-MSTN in multiple O. tormota tissues supported that the activities of MSTN may be not limited to skeletal muscle. Ot-MSTN expression was decreased from stage 31 to stage 40, while the growth rate was increased. The expression of Ot-MSTN in adult male frogs increased with age, indicating that adult male frogs may inhibit the continued hypertrophy of thigh muscle fibers and decrease the growth rate of thigh muscle to ensure muscles do not grow too large. Luciferase reporter assays showed that miR-29b-3p directly targeted the 3'-UTR of Ot-MSTN. miR-29b-3p expression in the thigh muscle of 2 yrs. females who grew faster was significantly lower than that of the slow-growing 2 yrs. male individuals, which showed an opposite trend with Ot-MSTN expression. In addition,miR-29b-3p expression reversed trends of Ot-MSTN expression at different developmental stages in thigh muscle. Therefore, these data indicate that miR-29-3p may negatively regulate the expression of MSTN and regulate thigh muscle growth and development in O. tormota.
Collapse
|
44
|
Kovanecz I, Gelfand R, Lin G, Sharifzad S, Ohanian A, Ricks R, Lue T, Gonzalez-Cadavid NF. Stem Cells from a Female Rat Model of Type 2 Diabetes/Obesity and Stress Urinary Incontinence Are Damaged by In Vitro Exposure to its Dyslipidemic Serum, Predicting Inadequate Repair Capacity In Vivo. Int J Mol Sci 2019; 20:ijms20164044. [PMID: 31430893 PMCID: PMC6720976 DOI: 10.3390/ijms20164044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023] Open
Abstract
Female stress urinary incontinence (FSUI) is prevalent in women with type 2 diabetes/obesity (T2D/O), and treatment is not optimal. Autograph stem cell therapy surprisingly has poor efficacy. In the male rat model of T2D/O, it was demonstrated that epigenetic changes, triggered by long-term exposure to the dyslipidemic milieu, led to abnormal global transcriptional signatures (GTS) of genes and microRNAs (miR), and impaired the repair capacity of muscle-derived stem cells (MDSC). This was mimicked in vitro by treatment of MDSC with dyslipidemic serum or lipid factors. The current study aimed to predict whether these changes also occur in stem cells from female 12 weeks old T2D/O rats, a model of FSUI. MDSCs from T2D/O (ZF4-SC) and normal female rats (ZL4-SC) were treated in vitro with either dyslipidemic serum (ZFS) from late T2D/O 24 weeks old female Zucker fatty (ZF) rats, or normal serum (ZLS) from 24 weeks old female Zucker lean (ZL) rats, for 4 days and subjected to assays for fat deposition, apoptosis, scratch closing, myostatin, interleukin-6, and miR-GTS. The dyslipidemic ZFS affected both female stem cells more severely than in the male MDSC, with some gender-specific differences in miR-GTS. The changes in miR-GTS and myostatin/interleukin-6 balance may predict in vivo noxious effects of the T2D/O milieu that might impair autograft stem cell (SC) therapy for FSUI, but this requires future studies.
Collapse
Affiliation(s)
- Istvan Kovanecz
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, 90502 CA, USA
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, 90095-1768 CA, USA
| | - Robert Gelfand
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, 90502 CA, USA
- Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, 90059 CA, USA
| | - Guiting Lin
- Department of Urology, UCSF School of Medicine, San Francisco, 94143 CA, USA
| | - Sheila Sharifzad
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, 90502 CA, USA
| | - Alec Ohanian
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, 90502 CA, USA
| | - Randy Ricks
- Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, 90059 CA, USA
| | - Tom Lue
- Department of Urology, UCSF School of Medicine, San Francisco, 94143 CA, USA
| | - Nestor F Gonzalez-Cadavid
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, 90502 CA, USA.
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, 90095-1768 CA, USA.
- Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, 90059 CA, USA.
| |
Collapse
|
45
|
Liu X, Pan JP, Bauman WA, Cardozo CP. AdipoRon prevents myostatin-induced upregulation of fatty acid synthesis and downregulation of insulin activity in a mouse hepatocyte line. Physiol Rep 2019; 7:e14152. [PMID: 31250564 PMCID: PMC6597868 DOI: 10.14814/phy2.14152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
Liver diseases such as non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are characterized by excess hepatic accumulation of lipid droplets and triglycerides which are associated with defective insulin action. Myostatin (Mstn) and adiponectin, secreted by muscle cells and adipocytes, respectively, play important roles in regulating insulin signaling and energy metabolism. The mechanisms underlying the actions of Mstn and adiponectin remain largely unknown. Moreover, the interactions between Mstn and adiponectin in regulating gene expression critical for fatty acid metabolism and insulin action in hepatocytes have not been investigated. The effects of Mstn and AdipoRon, a synthetic adiponectin receptor agonist that is orally active, alone or in combination, on hepatic gene expression and function was investigated. While Mstn increased fatty acid (FA) accumulation and desensitized cellular responses to insulin, AdipoRon protected against Mstn-induced defects in hepatic gene expression and function. In addition, these effects of Mstn were associated with reduced AMPK and PPARα activities which were reversed by AdipoRon. Finally, AdipoRon was able to prevent Mstn-induced activation of the Smad2/3 pathway. These data suggest crosstalk between Mstn-induced Smad2/3 and adiponectin-induced AMPK/PPARα pathways, which may play important roles in the regulation of hepatic gene expression critical for FA metabolism and insulin signaling. In addition, the data suggest that AdipoRon, as an adiponectin receptor agonist, may serve a therapeutic role to reduce the hepatic contribution to the disorders of fat metabolism and insulin action.
Collapse
Affiliation(s)
- Xin‐Hua Liu
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peter VA Medical CenterBronxNew York
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Jiang Ping Pan
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peter VA Medical CenterBronxNew York
| | - William A. Bauman
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peter VA Medical CenterBronxNew York
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Rehabilitation MedicineIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Christopher P. Cardozo
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peter VA Medical CenterBronxNew York
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Rehabilitation MedicineIcahn School of Medicine at Mount SinaiNew YorkNew York
| |
Collapse
|
46
|
Effects of upper-body, lower-body, or combined resistance training on the ratio of follistatin and myostatin in middle-aged men. Eur J Appl Physiol 2019; 119:1921-1931. [DOI: 10.1007/s00421-019-04180-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/19/2019] [Indexed: 01/30/2023]
|
47
|
Kim JH, Kim JH, Sutikno LA, Lee SB, Jin DH, Hong YK, Kim YS, Jin HJ. Identification of the minimum region of flatfish myostatin propeptide (Pep45-65) for myostatin inhibition and its potential to enhance muscle growth and performance in animals. PLoS One 2019; 14:e0215298. [PMID: 30998775 PMCID: PMC6472743 DOI: 10.1371/journal.pone.0215298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/30/2019] [Indexed: 12/31/2022] Open
Abstract
Myostatin (MSTN) negatively regulates skeletal muscle growth, and its activity is inhibited by the binding of MSTN propeptide (MSTNpro), the N-terminal domain of proMSTN that is proteolytically cleaved from the proMSTN. Partial sequences from the N-terminal side of MSTNpro have shown to be sufficient to inhibit MSTN activity. In this study, to determine the minimum size of flatfish MSTNpro for MSTN inhibition, various truncated forms of flatfish MSTNpro with N-terminal maltose binding protein (MBP) fusion were expressed in E. coli and purified. MSTNpro regions consisting of residues 45–68, -69, and -70 with MBP fusion suppressed MSTN activity with a potency comparable to that of full-sequence flatfish MSTNpro in a pGL3-(CAGA)12-luciferase reporter assay. Even though the MSTN-inhibitory potency was about 1,000-fold lower, the flatfish MSTNpro region containing residues 45–65 (MBP-Pro45-65) showed MSTN-inhibitory capacity but not the MBP-Pro45-64, indicating that the region 45–65 is the minimum domain required for MSTN binding and suppression of its activity. To examine the in vivo effect of MBP-fused, truncated flatfish MSTNpro, MBP-Pro45-70-His6 (20 mg/kg body wt) was subcutaneously injected 5 times for 14 days in mice. Body wt gain and bone mass were not affected by the administration. Grip strength and swimming time were significantly enhanced at 7 d after the administration. At 14 d, the effect on grip strength disappeared, and the extent of the effect on swimming time significantly diminished. The presence of antibody against MBP-Pro45-70-His6 was observed at both 7 and 14 d after the administration with the titer value at 14 d being much greater than that at 7 d, suggesting that antibodies against MBP-Pro45-70-His6 neutralized the MSTN-inhibitory effect of MBP-Pro45-70-His6. We, thus, examined the MSTN-inhibitory capacity and in vivo effect of flatfish MSTNpro region 45–65 peptide (Pep45-65-NH2), which was predicted to have no immunogenicity in silico analysis. Pep45-65-NH2 suppressed MSTN activity with a potency similar to that of MBP-Pro45-65 but did not suppress GDF11, or activin A. Pep45-65-NH2 blocked MSTN-induced Smad2 phosphorylation in HepG2 cells. The administration of Pep45-65 (20 mg/kg body wt, 5 times for 2 weeks) increased the body wt gain with a greater gain at 14 d than at 7 d and muscle wt. Grip strength and swimming time were also significantly enhanced by the administration. Antibody titer against Pep45-65 was not detected. In conclusion, current results indicate that MSTN-inhibitory proteins with heterologous fusion partner may not be effective in suppressing MSTN activity in vivo due to an immune response against the proteins. Current results also show that the region of flatfish MSTNpro consisting of 45–65 (Pep45-65) can suppress mouse MSTN activity and increase muscle mass and function without invoking an immune response, implying that Pep45-65 would be a potential agent to enhance skeletal muscle growth and function in animals or to treat muscle atrophy caused by various clinical conditions.
Collapse
Affiliation(s)
- Jeong Hwan Kim
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, Korea
| | - Jeong Han Kim
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, Korea
| | | | - Sang Beum Lee
- Department of Human Nurtrition, Food and Animal Sciences, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Deuk-Hee Jin
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, Korea
| | - Yong-Ki Hong
- Department of Biotechnology, Pukyong National University, Namgu, Busan, Korea
| | - Yong Soo Kim
- Department of Human Nurtrition, Food and Animal Sciences, University of Hawaii, Honolulu, Hawaii, United States of America
- * E-mail: (YK); (HJ)
| | - Hyung-Joo Jin
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, Korea
- * E-mail: (YK); (HJ)
| |
Collapse
|
48
|
Masouminia M, Gelfand R, Kovanecz I, Vernet D, Tsao J, Salas R, Castro K, Loni L, Rajfer J, Gonzalez-Cadavid NF. Dyslipidemia Is a Major Factor in Stem Cell Damage Induced by Uncontrolled Long-Term Type 2 Diabetes and Obesity in the Rat, as Suggested by the Effects on Stem Cell Culture. J Sex Med 2018; 15:1678-1697. [PMID: 30527052 PMCID: PMC6645779 DOI: 10.1016/j.jsxm.2018.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/04/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Previous work showed that muscle-derived stem cells (MDSCs) exposed long-term to the milieu of uncontrolled type 2 diabetes (UC-T2D) in male obese Zucker (OZ) rats, were unable to correct the associated erectile dysfunction and the underlying histopathology when implanted into the corpora cavernosa, and were also imprinted with a noxious gene global transcriptional signature (gene-GTS), suggesting that this may interfere with their use as autografts in stem cell therapy. AIM To ascertain the respective contributions of dyslipidemia and hyperglycemia to this MDSC damage, clarify its mechanism, and design a bioassay to identify the damaged stem cells. METHODS Early diabetes MDSCs and late diabetes MDSCs were respectively isolated from nearly normal young OZ rats and moderately hyperglycemic and severely dyslipidemic/obese aged rats with erectile dysfunction. Monolayer cultures of early diabetic MDSCs were incubated 4 days in DMEM/10% fetal calf serum + or - aged OZ or lean Zucker serum from non-diabetic lean Zucker rats (0.5-5%) or with soluble palmitic acid (PA) (0.5-2 mM), cholesterol (CHOL) (50-400 mg/dL), or glucose (10-25 mM). MAIN OUTCOME MEASURE Fat infiltration was estimated by Oil red O, apoptosis by TUNEL, protein expression by Western blots, and gene-GTS and microRNA (miR)-GTS were determined in these stem cells' RNA. RESULTS Aged OZ serum caused fat infiltration, apoptosis, myostatin overexpression, and impaired differentiation. Some of these changes, and also a proliferation decrease occurred with PA and CHOL. The gene-GTS changes by OZ serum did not resemble the in vivo changes, but some occurred with PA and CHOL. The miR-GTS changes by OZ serum, PA, and CHOL resembled most of the in vivo changes. Hyperglycemia did not replicate most alterations. CLINICAL IMPLICATIONS MDSCs may be damaged in long-term UC-T2D/obese patients and be ineffective in autologous human stem cell therapy, which may be prevented by excluding the damaged MDSCs. STRENGTH & LIMITATIONS The in vitro test of MDSCs is innovative and fast to define dyslipidemic factors inducing stem cell damage, its mechanism, prevention, and counteraction. Confirmation is required in other T2D/obesity rat models and stem cells (including human), as well as miR-GTS biomarker validation as a stem cell damage biomarker. CONCLUSION Serum from long-term UC-T2D/obese rats or dyslipidemic factors induces a noxious phenotype and miR-GTS on normal MDSCs, which may lead in vivo to the repair inefficacy of late diabetic MDSCs. This suggests that autograft therapy with MDSCs in long-term UT-T2D obese patients may be ineffective, albeit this may be predictable by prior stem cell miR-GTS tests. Masouminia M, Gelfand R, Kovanecz I, et al. Dyslipidemia Is a Major Factor in Stem Cell Damage Induced by Uncontrolled Long-Term Type 2 Diabetes and Obesity in the Rat, as Suggested by the Effects on Stem Cell Culture. J Sex Med 2018;15:1678-1697.
Collapse
Affiliation(s)
- Maryam Masouminia
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Robert Gelfand
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Istvan Kovanecz
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA; Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Dolores Vernet
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - James Tsao
- Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Ruben Salas
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Kenny Castro
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Leila Loni
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Jacob Rajfer
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Nestor F Gonzalez-Cadavid
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA; Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA.
| |
Collapse
|
49
|
Fernández-Nocelo S, Gallego R, Costoya JA, Arce VM. Expression of myostatin in human hematopoietic cells unveils novel autocrine/paracrine actions for the hormone. J Cell Physiol 2018; 234:7236-7246. [PMID: 30370618 DOI: 10.1002/jcp.27494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022]
Abstract
Myostatin is a member of the transforming growth factor β (TGFβ) superfamily that has a well-established role as a mediator of muscle growth and development. However, myostatin is now emerging as a pleiotropic hormone with multiple actions in the regulation of the metabolism as well as several aspects of both cardiac and smooth muscle cells physiology. In addition, myostatin is also expressed in several nonmuscular cells where its physiological role remains to be elucidated in most cases. In this report, we have shown that both myostatin and its receptor system are expressed in blood cells and in hematopoietic cell lines. Furthermore, myostatin treatment promotes differentiation of both HL60 and K562 cells through a mechanism that involves activation of extracellular signal-regulated kinases 1/2 and p38-mitogen-activated protein kinase, thus leading to the possibility that myostatin may be a paracrine/autocrine factor involved in the control of haematopoiesis. In addition, the presence of myostatin expression in immune cells could envisage a novel role for the hormone in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Susana Fernández-Nocelo
- Departamento de Fisioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Rosalía Gallego
- Departamento de Ciencias Morfolóxicas, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José A Costoya
- Departamento de Fisioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,CIMUS, Universidade de Santiago de Compostela and Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Víctor M Arce
- Departamento de Fisioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,CIMUS, Universidade de Santiago de Compostela and Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
50
|
Aiello D, Patel K, Lasagna E. Themyostatingene: an overview of mechanisms of action and its relevance to livestock animals. Anim Genet 2018; 49:505-519. [DOI: 10.1111/age.12696] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2018] [Indexed: 12/27/2022]
Affiliation(s)
- D. Aiello
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali; Università degli Studi di Perugia; Borgo XX Giugno 74 06121 Perugia Italy
| | - K. Patel
- School of Biological Sciences; University of Reading; Berkshire RG6 6UB UK
| | - E. Lasagna
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali; Università degli Studi di Perugia; Borgo XX Giugno 74 06121 Perugia Italy
| |
Collapse
|