1
|
Avagimyan A, Pogosova N, Fogacci F, Aghajanova E, Djndoyan Z, Patoulias D, Sasso LL, Bernardi M, Faggiano A, Mohammadifard N, Neglia D, Carugo S, Cicero A, Rizzo M, Biondi-Zoccai G, De Caterina R, Sarrafzadegan N. Triglyceride-glucose index (TyG) as a novel biomarker in the era of cardiometabolic medicine. Int J Cardiol 2025; 418:132663. [PMID: 39426418 DOI: 10.1016/j.ijcard.2024.132663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
In the period of increasing prevalence of metabolic disorders such as obesity and diabetes, healthcare professionals are facing significant challenges. Therefore, an accurate global assessment of insulin resistance is of utmost importance. Current medical research is focused on identifying an easily accessible and reproducible gold-standard surrogate marker for insulin resistance. Ideally, such a marker would enable healthcare providers to predict the risk of type 2 diabetes and cardiovascular diseases. The triglyceride-glucose index (TyG) is a promising marker for preventive cardiology and cardiometabolic medicine. This narrative review article aims to provide a comprehensive evaluation of the credibility of TyG as a surrogate marker of insulin resistance among patients at different stages across the cardiometabolic continuum. This assessment fully complies with evidence-based medicine and offers valuable insight into the clinical utility of TyG.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Nana Pogosova
- Deputy Director of Research and Preventive Cardiology, National Medical Research Centre of Cardiology named after E. Chazov, Moscow, Russia; Head of Evidence-Based Medicine Department, Institute of Medicine, Peoples' Friendship University of Russia (RUDN), Moscow, Russia
| | - Federica Fogacci
- Atherosclerosis and Metabolic Disorders Research Unit, University of Bologna, Bologna, Italy
| | - Elena Aghajanova
- Head of Endocrinology Department, Head of Endocrinology Unit of Muratsan University Clinic, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Zinaida Djndoyan
- Head of Internal Diseases Propaedeutics Department, Head of Internal Diseases Unit, Mikaelyan University Clinic, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Dimitrios Patoulias
- Outpatient Department of Cardiometabolic Medicine, Second Department of Cardiology, General Hospital "Hippokration", Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Marco Bernardi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Andrea Faggiano
- Department of Cardio-Thoracic-Vascular Area, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Noushin Mohammadifard
- Head of Nutrition Department, Cardiovascular Research Institute the WHO Collaborative Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Danilo Neglia
- Cardiovascular Department, CNR Research Area, Fondazione CNR/Regione Toscana Gabriele Monasterio, Pisa, Italy
| | - Stefano Carugo
- Department of Cardio-Thoracic-Vascular Area, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Arrigo Cicero
- Hypertension and Cardiovascular Risk Research Unit, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy; Cardiovascular Medicine Unit, IRCCS Policlinico S. Orsola-Malpighi di Bologna, Bologna, Italy
| | - Manfredi Rizzo
- Head of Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Italy; Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | | | - Nizal Sarrafzadegan
- Director of Cardiovascular Research Institute WHO Collaboration Centre, Isfahan University of Medical Sciences, Isfahan, Iran; School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Brun A, Denis P, Rambeau M, Rigaudière JP, Jouve C, Mazurak V, Capel F. Polyunsaturated fatty acids prevent myosteatosis and lipotoxicity. J Nutr Biochem 2024; 134:109722. [PMID: 39142445 DOI: 10.1016/j.jnutbio.2024.109722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Myosteatosis occurs in response to excess circulating fatty acids and is associated with muscle dysfunction. This study aimed to characterize the sequence of events of lipid-induced toxicity within muscle cells and the role of polyunsaturated fatty acids (PUFA) as potential preventive factors. Myosteatosis was induced in C2C12 myotubes exposed to palmitic acid (PAL 500µM). Furthermore, cells were co-incubated with PUFA (α-linolenic acid = ALA, Eicosapentaenoic acid = EPA, Docosahexaenoic acid = DHA; Arachidonic acid = ARA) over a period of 48 h. Cell viability, morphology, and measures of lipid and protein metabolism were assessed at 6, 12, 24, and 48 h. We observed that myotube integrity was rapidly and progressively disrupted by PAL treatment after 12 h, ultimately leading to cell death (41.7% cell survival at 48 h, p < .05). Cell death did not occur in cells exposed to PAL+ARA and PAL+DHA. After 6 h of PAL treatment, an accumulation of large lipid droplets was observed within the cell (6 folds, p < .05). This was associated with an increase in ceramides (CER x3 fold change) and diacylglycerol (DAG x150 fold change) contents (p < .05). At the same time, insulin was no longer able to stimulate protein synthesis (p < .05) nor leverage autophagic flux (p < .05). DHA and ARA were able to completely reverse the defect in protein synthesis and partially modulate the accumulation of CER and DAG. These findings present new and intriguing research avenues in the field of muscle metabolism and nutrition, particularly in the context of aging, chronic muscle disorders, and insulin resistance.
Collapse
Affiliation(s)
- Aurélien Brun
- UMR1019 Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, CRNH Auvergne, Clermont-Ferrand, France
| | - Philippe Denis
- UMR1019 Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, CRNH Auvergne, Clermont-Ferrand, France
| | - Mathieu Rambeau
- UMR1019 Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, CRNH Auvergne, Clermont-Ferrand, France
| | - Jean-Paul Rigaudière
- UMR1019 Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, CRNH Auvergne, Clermont-Ferrand, France
| | - Chrystèle Jouve
- UMR1019 Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, CRNH Auvergne, Clermont-Ferrand, France
| | - Vera Mazurak
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Frédéric Capel
- UMR1019 Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, CRNH Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
3
|
Su S, Quan C, Chen Q, Wang R, Du Q, Zhu S, Li M, Yang X, Rong P, Chen J, Bai Y, Zheng W, Feng W, Liu M, Xie B, Ouyang K, Shi YS, Lan F, Zhang X, Xiao R, Chen X, Wang HY, Chen S. AS160 is a lipid-responsive regulator of cardiac Ca 2+ homeostasis by controlling lysophosphatidylinositol metabolism and signaling. Nat Commun 2024; 15:9602. [PMID: 39505896 PMCID: PMC11542008 DOI: 10.1038/s41467-024-54031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
The obese heart undergoes metabolic remodeling and exhibits impaired calcium (Ca2+) homeostasis, which are two critical assaults leading to cardiac dysfunction. The molecular mechanisms underlying these alterations in obese heart are not well understood. Here, we show that the Rab-GTPase activating protein AS160 is a lipid-responsive regulator of Ca2+ homeostasis through governing lysophosphatidylinositol metabolism and signaling. Palmitic acid/high fat diet inhibits AS160 activity through phosphorylation by NEK6, which consequently activates its downstream target Rab8a. Inactivation of AS160 in cardiomyocytes elevates cytosolic Ca2+ that subsequently impairs cardiac contractility. Mechanistically, Rab8a downstream of AS160 interacts with DDHD1 to increase lysophosphatidylinositol metabolism and signaling that leads to Ca2+ release from sarcoplasmic reticulum. Inactivation of NEK6 prevents inhibition of AS160 by palmitic acid/high fat diet, and alleviates cardiac dysfunction in high fat diet-fed mice. Together, our findings reveal a regulatory mechanism governing metabolic remodeling and Ca2+ homeostasis in obese heart, and have therapeutic implications to combat obesity cardiomyopathy.
Collapse
Affiliation(s)
- Shu Su
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Chao Quan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Qiaoli Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Ruizhen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Qian Du
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Sangsang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Min Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Xinyu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Ping Rong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Jiang Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yingyu Bai
- Department of Biopharmaceuticals & Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wen Zheng
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Weikuan Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Minjun Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Bingxian Xie
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China
| | - Feng Lan
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiuqin Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Ruiping Xiao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Xiongwen Chen
- Department of Biopharmaceuticals & Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Hong-Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China.
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China.
| | - Shuai Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China.
- MOE Key Laboratory of Model Animal for Disease Study, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing, China.
- Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China.
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Nanjing, China.
| |
Collapse
|
4
|
Abudouwayiti A, Yisimayili S, Tuersun R, Aimaier S, Yisha D, Zhang XY, Zheng YY, Mahemuti A. HDL Levels as a Novel Predictor of Long-Term Adverse Outcomes in Patients with Heart Failure: A Retrospective Cohort Study. J Inflamm Res 2024; 17:6251-6264. [PMID: 39286819 PMCID: PMC11403014 DOI: 10.2147/jir.s481085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
Background The role of high-density lipoprotein cholesterol (HDL-C) in heart failure (HF) outcomes is contentious. We aimed to assess HDL-C's prognostic value in HF patients. Methods In this retrospective cohort study (2012-2022) at the First Affiliated Hospital of Xinjiang Medical University, we analyzed 4442 patients, categorized by HDL-C quartiles. We applied the Cox proportional hazards model to assess survival and report hazard ratios (HR) with 95% confidence intervals (CI). Results Over a decade, we recorded 1354 fatalities (42.3%) and 820 readmissions. The third HDL-C quartile (0.93-1.14 mmol/L) showed the lowest mortality rates, with reduced risks in the second and third quartiles compared to the first (Q2 HR=0.809, 95% CI 0.590-1.109; Q3 HR=0.794, 95% CI 0.564-1.118). The fourth quartile presented a lower mortality risk compared to the first (Q4 HR=0.887, 95% CI 0.693-1.134). A significant correlation existed between HDL-C levels and cardiovascular risk (HR=0.85, 95% CI 0.75-0.96, p<0.01). Conclusion HDL-C levels exhibit a complex association with mortality in HF, indicating the importance of HDL-C in HF prognosis and the need for tailored management strategies.
Collapse
Affiliation(s)
- Aihaidan Abudouwayiti
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Sureya Yisimayili
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Ruzeguli Tuersun
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Salamaiti Aimaier
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Didaer Yisha
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Xing Yan Zhang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Ying-Ying Zheng
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Ailiman Mahemuti
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| |
Collapse
|
5
|
Jiao T, Chen Y, Sun H, Yang L. Targeting ferroptosis as a potential prevention and treatment strategy for aging-related diseases. Pharmacol Res 2024; 208:107370. [PMID: 39181344 DOI: 10.1016/j.phrs.2024.107370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Ferroptosis, an emerging paradigm of programmed cellular necrosis posited in recent years, manifests across a spectrum of maladies with profound implications for human well-being. Numerous investigations substantiate that modulating ferroptosis, whether through inhibition or augmentation, plays a pivotal role in the etiology and control of numerous age-related afflictions, encompassing neurological, circulatory, respiratory, and other disorders. This paper not only summarizes the regulatory mechanisms of ferroptosis, but also discusses the impact of ferroptosis on the biological processes of aging and its role in age-related diseases. Furthermore, it scrutinizes recent therapeutic strides in addressing aging-related conditions through the modulation of ferroptosis. The paper consolidates the existing knowledge on potential applications of ferroptosis-related pharmacotherapies and envisages the translational prospects of ferroptosis-targeted interventions in clinical paradigms.
Collapse
Affiliation(s)
- Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Yiman Chen
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Haiyan Sun
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110001, PR China.
| | - Lina Yang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| |
Collapse
|
6
|
Lin SL, Yang SY, Tsai CH, Fong YC, Chen WL, Liu JF, Lin CY, Tang CH. Nerve growth factor promote VCAM-1-dependent monocyte adhesion and M2 polarization in osteosarcoma microenvironment: Implications for larotrectinib therapy. Int J Biol Sci 2024; 20:4114-4127. [PMID: 39247831 PMCID: PMC11379077 DOI: 10.7150/ijbs.95463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/09/2024] [Indexed: 09/10/2024] Open
Abstract
Osteosarcoma is the most prevalent form of primary malignant bone tumor, primarily affecting children and adolescents. The nerve growth factors (NGF) referred to as neurotrophins have been associated with cancer-induced bone pain; however, the role of NGF in osteosarcoma has yet to be elucidated. In osteosarcoma samples from the Genomic Data Commons data portal, we detected higher levels of NGF and M2 macrophage markers, but not M1 macrophage markers. In cellular experiments, NGF-stimulated osteosarcoma conditional medium was shown to facilitate macrophage polarization from the M0 to the M2 phenotype. NGF also enhanced VCAM-1-dependent monocyte adhesion within the osteosarcoma microenvironment by down-regulating miR-513c-5p levels through the FAK and c-Src cascades. In in vivo xenograft models, the overexpression of NGF was shown to enhance tumor growth, while the oral administration of the TrK inhibitor larotrectinib markedly antagonized NGF-promoted M2 macrophage expression and tumor progression. These results suggest that larotrectinib could potentially be used as a therapeutic agent aimed at mitigating NGF-mediated osteosarcoma progression.
Collapse
Affiliation(s)
- Syuan-Ling Lin
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Shang-Yu Yang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Wei-Li Chen
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Chih-Yang Lin
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chih-Hsin Tang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| |
Collapse
|
7
|
Wang A, Song Q, Li Y, Fang H, Ma X, Li Y, Wei B, Pan C. Effect of traditional Chinese medicine on metabolism disturbance in ischemic heart diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118143. [PMID: 38583735 DOI: 10.1016/j.jep.2024.118143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic heart diseases (IHD), characterized by metabolic dysregulation, contributes majorly to the global morbidity and mortality. Glucose, lipid and amino acid metabolism are critical energy production for cardiomyocytes, and disturbances of these metabolism lead to the cardiac injury. Traditional Chinese medicine (TCM), widely used for treating IHD, have been demonstrated to effectively and safely regulate the cardiac metabolism reprogramming. AIM OF THE REVIEW This study discussed and analyzed the disturbed cardiac metabolism induced by IHD and development of formulas, extracts, single herb, bioactive compounds of TCM ameliorating IHD injury via metabolism regulation, with the aim of providing a basis for the development of clinical application of therapeutic strategies for TCM in IHD. MATERIALS AND METHODS With "ischemic heart disease", "myocardial infarction", "myocardial ischemia", "metabolomics", "Chinese medicine", "herb", "extracts" "medicinal plants", "glucose", "lipid metabolism", "amino acid" as the main keywords, PubMed, Web of Science, and other online search engines were used for literature retrieval. RESULTS IHD exhibits a close association with metabolism disorders, including but not limited to glycolysis, the TCA cycle, oxidative phosphorylation, branched-chain amino acids, fatty acid β-oxidation, ketone body metabolism, sphingolipid and glycerol-phospholipid metabolism. The therapeutic potential of TCM lies in its ability to regulate these disturbed cardiac metabolisms. Additionally, the active ingredients of TCM have depicted wonderful effects in cardiac metabolism reprogramming in IHD. CONCLUSION Drawing from the principles of TCM, we have pinpointed specific herbal remedies for the treatment of IHD, and leveraged advanced metabolomics technologies to uncover the effect of these TCMs on metabolomics alteration. In the future, further clinical experimental studies should be included to explore whether more TCM medicines can play a therapeutic role in IHD by reversing cardiac metabolism disorders; multi-omics would be conducted to explore more pathways and genes targeting such metabolism reprogramming by TCMs, and to seek more TCM therapies for IHD.
Collapse
Affiliation(s)
- Anpei Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Qiubin Song
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yi Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Hai Fang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Xiaoji Ma
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yunxia Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| | - Chengxue Pan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
8
|
Tseng C, Liu SC, He XY, Chen HT, Hsiao PH, Fong YC, Tang CH. High glucose enhances fibrosis in human annulus fibrosus cells by activating mTOR, PKCδ, and NF-κB signaling pathways. Aging (Albany NY) 2024; 16:9460-9469. [PMID: 38814172 PMCID: PMC11210265 DOI: 10.18632/aging.205876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/10/2024] [Indexed: 05/31/2024]
Abstract
Low back pain stands as a significant factor in disability, largely resulting from intervertebral disc degeneration (IVDD). High glucose (HG) levels have been implicated in the pathogenesis of IVDD. However, the detailed mechanism of HG in IVDD is largely unknown. Our clinical results revealed that fibrosis markers such as CTGF, Col1a1, ATF4, and EIF2 are highly expressed in advanced-stage IVDD patients. Stimulation of human annulus fibrosus cells (HAFCs) with HG, but not mannitol, promotes fibrosis protein production. Ingenuity Pathway Analysis in the GSE database found that the mTOR, PKCδ, and NF-κB pathways were significantly changed during IVDD. The mTOR, PKCδ, and NF-κB inhibitors or siRNAs all abolished HG-induced fibrosis protein production. In addition, treatment of HAFCs with HG enhances the activation of mTOR, PKCδ, and NF-κB pathways. Thus, HG facilitates fibrosis in IVDD through mTOR, PKCδ, and NF-κB pathways. These results underscore the critical role of HG as a fibrotic factor in the progression of IVDD.
Collapse
Affiliation(s)
- Chun Tseng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Spine Center, China Medical University Hospital, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Shan-Chi Liu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Xiu-Yuan He
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Hsien-Te Chen
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Spine Center, China Medical University Hospital, Taichung, Taiwan
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Pang-Hsuan Hsiao
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Spine Center, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| |
Collapse
|
9
|
Wang R, Luo X, Li S, Wen X, Zhang X, Zhou Y, Xie W. A bibliometric analysis of cardiomyocyte apoptosis from 2014 to 2023: A review. Medicine (Baltimore) 2023; 102:e35958. [PMID: 38013295 PMCID: PMC10681623 DOI: 10.1097/md.0000000000035958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/13/2023] [Indexed: 11/29/2023] Open
Abstract
Cardiomyocyte apoptosis is an important factor in cardiac function decline observed in various cardiovascular diseases. To understand the progress in the field of cardiomyocyte apoptosis research, this paper uses bibliometrics to statistically analyze publications in this field. A total of 5939 articles were retrieved from the core Web of Science database, and then VOSviewer and Citespace were used to conduct a scientometric analysis of the authors, countries, institutions, references and keywords included in the articles to determine the cooperative relationships between researchers that study cardiomyocyte apoptosis. At present, the research hotspots in this field mainly include experimental research, molecular mechanisms, pathophysiology and cardiac regeneration of cardiomyocyte apoptosis-related diseases. NOD-like receptor thermal protein domain associated protein 3 inflammasome, circular RNA, and sepsis are the research frontiers in this field and are emerging as new areas of research focus. This work provides insight into research directions and the clinical application value for the continued advancement of cardiomyocyte apoptosis research.
Collapse
Affiliation(s)
- Rui Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xu Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songyun Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Wen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxiang Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen Xie
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Areloegbe SE, Olaniyi KS. Acetate mitigates cardiac mitochondrial dysfunction in experimental model of polycystic ovarian syndrome by modulating GPCR41/43 and PROKR1. Biochem Biophys Res Commun 2023; 681:62-72. [PMID: 37757668 DOI: 10.1016/j.bbrc.2023.09.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/03/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
The role of short chain fatty acid, acetate in cardiac mitochondrial dysfunction especially in PCOS individuals is unknown. Therefore, the present study investigated the modulatory role of GPCRs (41 and 43) by acetate on cardiac mitochondrial status in PCOS rat model. Eight-week-old female Wistar rats were randomly allotted into four groups (n = 5). Polycystic ovarian syndrome was induced by administering letrozole (1 mg/kg p.o.) once daily for 21 days, thereafter the animals were treated with 200 mg/kg (oral gavage) of acetate for six weeks. Letrozole-induced PCOS rats showed elevated circulating testosterone and anti-mullerian hormone, with multiple ovarian cysts. In addition, these rats also manifested insulin resistance, hyperinsulinemia, and increased plasma triglyceride (TG), TG/HDLc and decreased HDLc, as well as elevated level of cardiac TG, glycogen, glycogen synthase, and plasma/cardiac NF-kB, TNF-α, and SDF-1. Cardiac MDA and caspase-6 increased, while plasma/cardiac NrF2 decreased in PCOS animals. A decrease in mitochondrial ATP synthase, ATP/AMP ratio, CPT2 and SDH, and increased HDAC2 were observed in PCOS rats with decreased level of GPCR 41 and 43 when compared with control. Immunohistochemical evaluation of cardiac tissue also showed decrease expression of PROKR1 in PCOS rats compared with control rats. However, treatment with acetate reversed these systemic, cardiac and mitochondrial anomalies. The present results suggest the therapeutic benefit of acetate, an HDAC2i against cardiac mitochondrial dysfunction in PCOS rat model, by attenuating cardiac inflammation, oxidative stress and apoptosis and these effects are accompanied by modulation of GPCR41 and 43 as well as increased expression of PROKR1.
Collapse
Affiliation(s)
- Stephanie E Areloegbe
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Kehinde S Olaniyi
- Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria.
| |
Collapse
|
11
|
Yin G, Hu ZQ, Li JY, Wen ZY, Du YQ, Zhou P, Wang L. Shengmai injection inhibits palmitic acid-induced myocardial cell inflammatory death via regulating NLRP3 inflammasome activation. Heliyon 2023; 9:e21522. [PMID: 38027923 PMCID: PMC10660519 DOI: 10.1016/j.heliyon.2023.e21522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Objective To determine the protective effect of Shengmai injection (SMI) on myocardial injury in diabetic rats and its mechanism based on NLRP3/Caspase1 signaling pathway. Materials and methods Rat H9c2 cardiomyocytes were cultured in vitro, and the cell survival rate of different concentrations of palmitate acid (PA) and different concentrations of SMI were detected by CCK-8. The myocardial injury cell model was induced with PA, treated with SMI, and combined with NLRP3 specific inhibitor (MCC950) to interfere with the high-fat-induced rat H9c2 myocardial cell injury model. The cell changes were observed by Hoechst/PI staining and the expression levels of MDA, SOD, and ROS in each group were detected. The protein and gene changes of the NLRP3/Caspase-1 signaling pathway were detected by Western blot and RT-qPCR, respectively. Results 200 μmol/L of PA were selected to induce the myocardial injury cell model and 25 μL/mL of SMI was selected for intervention concentration. SMI could significantly reduce MDA expression, increase SOD level, and decrease ROS production. SMI could decrease the gene expression levels of NLRP3, ASC, Caspase-1, and GSDMD, and the protein expressions of NLRP3, ASC, Cleaved Caspase-1, GSDMD, and GSDMD-N. Conclusion SMI can inhibit the high-fat-induced activation of the NLRP3/Caspase-1 signaling pathway, intervene in cardiomyocyte pyroptosis, and prevent diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Gang Yin
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Zi-qing Hu
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Jing-ya Li
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Zhong-yu Wen
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yong-qin Du
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Liang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| |
Collapse
|
12
|
Xing L, Liu Y, Wang J, Tian P, Liu P. High-Density Lipoprotein and Heart Failure. Rev Cardiovasc Med 2023; 24:321. [PMID: 39076447 PMCID: PMC11272862 DOI: 10.31083/j.rcm2411321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/31/2024] Open
Abstract
The protective effect of high-density lipoprotein (HDL) on atherosclerosis is well known, and its mechanisms of action has been extensively studied. However, the impact of HDL on heart failure and its mechanisms are still controversial or unknown. The cardioprotective role of HDL may be reflected in its antioxidant, anti-inflammatory, anti-apoptotic, and endothelial function protection. In epidemiological studies, high-density lipoprotein cholesterol (HDL-C) levels have been negatively associated with heart failure (HF). The major protein component of HDL-C is apolipoprotein (Apo) A-I, while paraoxonase-1 (PON-1) is an essential mediator for many protective functions of HDL, and HDL may act through components like (Apo) A-I or PON-1 to delay heart failure progress. HDL can slow heart failure disease progression through parts like (Apo) A-I or PON-1. The potential causality between HDL and heart failure, the role of HDL in the pathogenesis of HF, and its interaction with C-reactive protein (CRP), triglycerides (TG), and monocytes in the process of heart failure have been briefly summarized and discussed in this article. HDL plays an important role in the pathogenesis, progression and treatment of HF.
Collapse
Affiliation(s)
- Liyun Xing
- Department of Cardiology, the Second Hospital of Shandong University,
250033 Jinan, Shandong, China
| | - Yixuan Liu
- School of Clinical and Basic Medicine, Shandong First Medical University,
250117 Jinan, Shandong, China
| | - Jiayu Wang
- Department of Cardiology, the Second Hospital of Shandong University,
250033 Jinan, Shandong, China
| | - Peiqing Tian
- Department of Cardiology, the Second Hospital of Shandong University,
250033 Jinan, Shandong, China
| | - Ping Liu
- Department of Cardiology, the Second Hospital of Shandong University,
250033 Jinan, Shandong, China
| |
Collapse
|
13
|
Chang R, Jia H, Dong Z, Xu Q, Liu L, Majigsuren Z, Batbaatar T, Xu C, Yang Q, Sun X. Free Fatty Acids Induce Apoptosis of Mammary Epithelial Cells of Ketotic Dairy Cows via the Mito-ROS/NLRP3 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12645-12656. [PMID: 37585786 DOI: 10.1021/acs.jafc.3c02090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Early lactation increases metabolic stress in ketotic dairy cows, leading to mitochondrial damage, apoptosis, and inflammatory response in mammary epithelial cells. The pyrin domain 3 (NLRP3) pathway involving the mitochondrial reactive oxygen species (Mito-ROS)-induced nucleotide-binding oligomerization domain-like receptor has been recognized as a key mechanism in this inflammatory response and cell apoptosis. This study aimed to elucidate the underlying regulatory mechanism of Mito-ROS-NLRP3 pathway-mediated mammary epithelial cell apoptosis in dairy cows with ketosis. Mitochondrial damage and cellular apoptotic program and NLRP3 inflammasome activation were observed in the mammary gland of ketotic cows. Similar damage was detected in MAC-T cells treated with exogenous fatty acids (FFAs). However, NLRP3 inhibitor MCC950 pretreatment or Mito-ROS scavenging by MitoTEMPO attenuated apoptosis in FFA-induced MAC-T cells by inhibiting the NLRP3 inflammasome pathway. These findings reveal that the Mito-ROS-NLRP3 pathway activation is a potent mechanism underlying mammary epithelial cell apoptosis in response to metabolic stress in ketotic dairy cows, which further contributes to reduced milk yield.
Collapse
Affiliation(s)
- Renxu Chang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hongdou Jia
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhihao Dong
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qiushi Xu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Lei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zolzaya Majigsuren
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan, Ulaanbaatar 17024, Mongolia
| | - Tugsjargal Batbaatar
- State Central Veterinary Laboratory, P. O. Box 53/33, Zaisan, Ulaanbaatar 210153, Mongolia
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qing Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xudong Sun
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
14
|
Loh CH, Kuo WW, Lin SZ, Shih CY, Lin PY, Situmorang JH, Huang CY. PKC-δ-dependent mitochondrial ROS attenuation is involved as 9-OAHSA combats lipoapotosis in rat hepatocytes induced by palmitic acid and in Syrian hamsters induced by high-fat high-cholesterol high-fructose diet. Toxicol Appl Pharmacol 2023; 470:116557. [PMID: 37207915 DOI: 10.1016/j.taap.2023.116557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a global concern, often undetected until reaching an advanced stage. Palmitic acid (PA) is a type of fatty acid that increases and leads to liver apoptosis in MAFLD. However, there is currently no approved therapy or compound for MAFLD. Recently, branched fatty acid esters of hydroxy fatty acids (FAHFAs), a group of bioactive lipids, have emerged as promising agents to treat associated metabolic diseases. This study utilizes one type of FAHFA, oleic acid ester of 9-hydroxystearic acid (9-OAHSA), to treat PA-induced lipoapoptosis in an in vitro MAFLD model using rat hepatocytes and a high-fat high-cholesterol high-fructose (HFHCHFruc) diet in Syrian hamsters. The results indicate that 9-OAHSA rescues hepatocytes from PA-induced apoptosis and attenuates lipoapoptosis and dyslipidemia in Syrian hamsters. Additionally, 9-OAHSA decreases the generation of mitochondrial reactive oxygen species (mito-ROS) and stabilizes the mitochondrial membrane potential in hepatocytes. The study also demonstrates that the effect of 9-OAHSA on mito-ROS generation is at least partially mediated by PKC-δ signaling. These findings suggest that 9-OAHSA shows promise as a therapy for MAFLD.
Collapse
Affiliation(s)
- Ching-Hui Loh
- Department of Family Medicine and Medical Research, Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Center for Aging and Health, Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | - Jiro Hasegawa Situmorang
- Cardiovascular and Mitochondrial Related Disease Research Center, Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Center for Biomedical Research, National Research and Innovation Agency (BRIN), Cibinong, Indonesia.
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.
| |
Collapse
|
15
|
Wu TY, Tien N, Lin CL, Cheah YC, Hsu CY, Tsai FJ, Fang YJ, Lim YP. Influence of antipsychotic medications on hyperlipidemia risk in patients with schizophrenia: evidence from a population-based cohort study and in vitro hepatic lipid homeostasis gene expression. Front Med (Lausanne) 2023; 10:1137977. [PMID: 37425327 PMCID: PMC10324036 DOI: 10.3389/fmed.2023.1137977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Schizophrenia increases the risk of mortality and cardiovascular disease (CVD) risk. However, the correlation between antipsychotics (APs) and CVD remains controversial. Hyperlipidemia is a significant risk factor for CVD. Methods We conducted a nationwide population-based retrospective cohort study to investigate the effects of APs on the risk of hyperlipidemia and lipid homeostasis gene expression. We used data from the Longitudinal Health Insurance Database of Taiwan on new-onset schizophrenia patients and a comparison cohort without schizophrenia. We used a Cox proportional hazards regression model to analyze the differences in hyperlipidemia development between the two cohorts. Furthermore, we examined the effects of APs on the hepatic expression of lipid homeostasis-related genes. Results After adjusting for potential interrelated confounding factors, the case group (N = 4,533) was found to have a higher hyperlipidemia risk than the control cohort (N = 4,533) [adjusted hazard ratio (aHR), 1.30, p < 0.001]. Patients with schizophrenia without APs had a significantly higher risk of hyperlipidemia (aHR, 2.16; p < 0.001). However, patients receiving APs had a significantly lower risk of hyperlipidemia than patients not receiving APs (all aHR ≤ 0.42, p < 0.001). First-generation antipsychotics (FGAs) induce the expression of hepatic lipid catabolism genes in an in vitro model. Discussion Patients with schizophrenia had a higher risk of hyperlipidemia than controls; however, compared with non-treated patients, AP users had a lower risk of hyperlipidemia. Early diagnosis and management of hyperlipidemia may help prevent CVD.
Collapse
Affiliation(s)
- Tien-Yuan Wu
- Graduate Institute of Clinical Pharmacy, College of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Pharmacy, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Cun Cheah
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chung Y. Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Yi-Jen Fang
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, Taiwan
- Department of Environmental Health, Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung-Hsing University, Taichung, Taiwan
- Digestive Disease Center, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
16
|
Rocca C, De Bartolo A, Guzzi R, Crocco MC, Rago V, Romeo N, Perrotta I, De Francesco EM, Muoio MG, Granieri MC, Pasqua T, Mazza R, Boukhzar L, Lefranc B, Leprince J, Gallo Cantafio ME, Soda T, Amodio N, Anouar Y, Angelone T. Palmitate-Induced Cardiac Lipotoxicity Is Relieved by the Redox-Active Motif of SELENOT through Improving Mitochondrial Function and Regulating Metabolic State. Cells 2023; 12:cells12071042. [PMID: 37048116 PMCID: PMC10093731 DOI: 10.3390/cells12071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Cardiac lipotoxicity is an important contributor to cardiovascular complications during obesity. Given the fundamental role of the endoplasmic reticulum (ER)-resident Selenoprotein T (SELENOT) for cardiomyocyte differentiation and protection and for the regulation of glucose metabolism, we took advantage of a small peptide (PSELT), derived from the SELENOT redox-active motif, to uncover the mechanisms through which PSELT could protect cardiomyocytes against lipotoxicity. To this aim, we modeled cardiac lipotoxicity by exposing H9c2 cardiomyocytes to palmitate (PA). The results showed that PSELT counteracted PA-induced cell death, lactate dehydrogenase release, and the accumulation of intracellular lipid droplets, while an inert form of the peptide (I-PSELT) lacking selenocysteine was not active against PA-induced cardiomyocyte death. Mechanistically, PSELT counteracted PA-induced cytosolic and mitochondrial oxidative stress and rescued SELENOT expression that was downregulated by PA through FAT/CD36 (cluster of differentiation 36/fatty acid translocase), the main transporter of fatty acids in the heart. Immunofluorescence analysis indicated that PSELT also relieved the PA-dependent increase in CD36 expression, while in SELENOT-deficient cardiomyocytes, PA exacerbated cell death, which was not mitigated by exogenous PSELT. On the other hand, PSELT improved mitochondrial respiration during PA treatment and regulated mitochondrial biogenesis and dynamics, preventing the PA-provoked decrease in PGC1-α and increase in DRP-1 and OPA-1. These findings were corroborated by transmission electron microscopy (TEM), revealing that PSELT improved the cardiomyocyte and mitochondrial ultrastructures and restored the ER network. Spectroscopic characterization indicated that PSELT significantly attenuated infrared spectral-related macromolecular changes (i.e., content of lipids, proteins, nucleic acids, and carbohydrates) and also prevented the decrease in membrane fluidity induced by PA. Our findings further delineate the biological significance of SELENOT in cardiomyocytes and indicate the potential of its mimetic PSELT as a protective agent for counteracting cardiac lipotoxicity.
Collapse
Affiliation(s)
- Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Anna De Bartolo
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France
| | - Rita Guzzi
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria, 87036 Rende, Italy
- CNR-NANOTEC, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Maria Caterina Crocco
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria, 87036 Rende, Italy
- STAR Research Infrastructure, University of Calabria, Via Tito Flavio, 87036 Rende, Italy
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Naomi Romeo
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Ida Perrotta
- Centre for Microscopy and Microanalysis (CM2), Department of Biology, Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95124 Catania, Italy
| | - Maria Grazia Muoio
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95124 Catania, Italy
| | - Maria Concetta Granieri
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Teresa Pasqua
- Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rosa Mazza
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Loubna Boukhzar
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France
| | - Benjamin Lefranc
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France
- UNIROUEN, UMS-UAR HERACLES, PRIMACEN, Cell Imaging Platform of Normandy, Institute for Research and Innovation in Biomedicine (IRIB), 76183 Rouen, France
| | - Jérôme Leprince
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France
- UNIROUEN, UMS-UAR HERACLES, PRIMACEN, Cell Imaging Platform of Normandy, Institute for Research and Innovation in Biomedicine (IRIB), 76183 Rouen, France
| | | | - Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Youssef Anouar
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France
- UNIROUEN, UMS-UAR HERACLES, PRIMACEN, Cell Imaging Platform of Normandy, Institute for Research and Innovation in Biomedicine (IRIB), 76183 Rouen, France
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy
- National Institute of Cardiovascular Research (INRC), 40126 Bologna, Italy
| |
Collapse
|
17
|
Lee TK, Ashok Kumar K, Huang CY, Liao PH, Ho TJ, Kuo WW, Liao SC, Hsieh DJY, Chiu PL, Chang YM, Ju DT. Garcinol protects SH-SY5Y cells against MPP+-induced cell death by activating DJ-1/SIRT1 and PGC-1α mediated antioxidant pathway in sequential stimulation of p-AMPK mediated autophagy. ENVIRONMENTAL TOXICOLOGY 2023; 38:857-866. [PMID: 36629037 DOI: 10.1002/tox.23737] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/14/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Parkinson's disease (PD), a chronic and progressive neurodegenerative disease, can reduce the population of dopaminergic neurons in the substantia nigra. The cause of this neuronal death remains unclear. 1-Methyl-4-phenylpyridinium ion (MPP+) is a potent neurotoxin that can destroy dopaminergic (DA) neurons and promote PD. Garcinol, a polyisoprenylated benzophenone derivative, was extracted from Garcinia indica and is an important active compound it has been used as an anticancer, antioxidant, and anti-inflammatory, agent and it can suppress reactive oxygen species (ROS) mediated cell death in a PD model. Human neuroblastoma (SH-SY5Y) cells (1 × 105 cells) were treated with MPP+ (1 mM) for 24 h to induce cellular ROS production. The formation of ROS was suppressed by pretreatment with different concentrations of garcinol (0.5 and 1.0 μM) for 3 h in SH-SY5Y cells. The present study found that MPP+ treatment increased the formation of reactive oxygen species (ROS), and the increased ROS began to promote cell death in SH-SY5Y cells. However, our natural compound garcinol effectively blocked MPP+-mediated ROS formation by activating the DJ-1/SIRT1 and PGC-1α mediated antioxidant pathway. Further findings indicate that the activated SIRT1 can also regulate p-AMPK-mediated autophagy to protect the neurons from the damage it concludes that garcinol sub-sequential regulates intracellular autophagy in this model, and the productive efficacy of garcinol was confirmed by western blot analysis and MitoSOX DCFDA and MTT assays. The results showed garcinol increased protection due to the prevention of MPP+-induced ROS and the promotion of cell survival.
Collapse
Affiliation(s)
- Tian-Kuo Lee
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - K Ashok Kumar
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Po-Hsiang Liao
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shih-Chieh Liao
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- Department of Medical Laboratory and Biotechnology|, Chung Shan Medical University, Taichung, Taiwan
| | | | - Yung-Ming Chang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Chinese Medicine Department, E-DA Hospital, Kaohsiung, Taiwan
- 1PT Biotechnology Co., Ltd., Taichung, Taiwan
| | - Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
18
|
Liu CT, Yen JHJ, Brown DA, Song YC, Chu MY, Hung YH, Tang YH, Wu PY, Yen HR. Targeting Nrf2 with 3 H-1,2-dithiole-3-thione to moderate OXPHOS-driven oxidative stress attenuates IL-17A-induced psoriasis. Biomed Pharmacother 2023; 159:114294. [PMID: 36706632 DOI: 10.1016/j.biopha.2023.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Psoriasis, a chronic autoimmune disease characterized by the hyperproliferation of keratinocytes in the epidermis and parakeratosis, significantly impacts quality of life. Interleukin (IL)- 17A dominates the pathogenesis of psoriasis and facilitates reactive oxygen species (ROS) accumulation, which exacerbates local psoriatic lesions. Biologic treatment provides remarkable clinical efficacy, but its high cost and unignorable side effects limit its applications. 3 H-1,2-Dithiole-3-thione (D3T) possesses compelling antioxidative capacities against several diseases through the nuclear factor erythroid 2-related factor 2 (Nrf2) cascade. Hence, we aimed to evaluate the effect and mechanism of D3T in psoriasis. We found that D3T attenuates skin thickening and scaling by inhibiting IL-17A-secreting γδT cells in imiquimod (IMQ)-induced psoriatic mice. Interleukin-17A markedly enhanced IL-6 and IL-8 expression, lipid peroxidation, the contents of nitric oxide and hydrogen peroxide, oxidative phosphorylation and the MAPK/NF-κB pathways in keratinocytes. IL-17A also inhibited the Nrf2-NQO1-HO-1 axis and the activities of superoxide dismutase and glutathione peroxidase. D3T significantly reversed these parameters in IL-17A-treated keratinocytes. ML-385, a Nrf2 neutralizer, failed to improve D3T-induced anti-inflammatory and antioxidative effects in IL-17A-treated keratinocytes. We conclude that targeting Nrf2 with D3T to diminish oxidative and inflammatory damage in keratinocytes may attenuate psoriasis.
Collapse
Affiliation(s)
- Chuan-Teng Liu
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Jui-Hung Jimmy Yen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, USA
| | - Dennis A Brown
- Manchester University College of Pharmacy, Natural and Health Sciences, Fort Wayne, IN, USA
| | - Ying-Chyi Song
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Mei-Yun Chu
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Yu-Hsiang Hung
- Department of Medical Education, China Medical University Hospital, Taichung, Taiwan
| | | | - Po-Yuan Wu
- Department of Dermatology, China Medical University Hospital, Taichung, Taiwan; School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
| | - Hung-Rong Yen
- Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan; Department of Medical Biotechnology and Laboratory Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
19
|
Granieri MC, Rocca C, De Bartolo A, Nettore IC, Rago V, Romeo N, Ceramella J, Mariconda A, Macchia PE, Ungaro P, Sinicropi MS, Angelone T. Quercetin and Its Derivative Counteract Palmitate-Dependent Lipotoxicity by Inhibiting Oxidative Stress and Inflammation in Cardiomyocytes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3492. [PMID: 36834186 PMCID: PMC9958705 DOI: 10.3390/ijerph20043492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Cardiac lipotoxicity plays an important role in the pathogenesis of obesity-related cardiovascular disease. The flavonoid quercetin (QUE), a nutraceutical compound that is abundant in the "Mediterranean diet", has been shown to be a potential therapeutic agent in cardiac and metabolic diseases. Here, we investigated the beneficial role of QUE and its derivative Q2, which demonstrates improved bioavailability and chemical stability, in cardiac lipotoxicity. To this end, H9c2 cardiomyocytes were pre-treated with QUE or Q2 and then exposed to palmitate (PA) to recapitulate the cardiac lipotoxicity occurring in obesity. Our results showed that both QUE and Q2 significantly attenuated PA-dependent cell death, although QUE was effective at a lower concentration (50 nM) when compared with Q2 (250 nM). QUE decreased the release of lactate dehydrogenase (LDH), an important indicator of cytotoxicity, and the accumulation of intracellular lipid droplets triggered by PA. On the other hand, QUE protected cardiomyocytes from PA-induced oxidative stress by counteracting the formation of malondialdehyde (MDA) and protein carbonyl groups (which are indicators of lipid peroxidation and protein oxidation, respectively) and intracellular ROS generation, and by improving the enzymatic activities of catalase and superoxide dismutase (SOD). Pre-treatment with QUE also significantly attenuated the inflammatory response induced by PA by reducing the release of key proinflammatory cytokines (IL-1β and TNF-α). Similar to QUE, Q2 (250 nM) also significantly counteracted the PA-provoked increase in intracellular lipid droplets, LDH, and MDA, improving SOD activity and decreasing the release of IL-1β and TNF-α. These results suggest that QUE and Q2 could be considered potential therapeutics for the treatment of the cardiac lipotoxicity that occurs in obesity and metabolic diseases.
Collapse
Affiliation(s)
- Maria Concetta Granieri
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Immacolata Cristina Nettore
- Dipartimento di Medicina Clinica e Chirurgia, Scuola di Medicina, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Naomi Romeo
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Paolo Emidio Macchia
- Dipartimento di Medicina Clinica e Chirurgia, Scuola di Medicina, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Paola Ungaro
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “Gaetano Salvatore”, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, 87036 Rende, Italy
- National Institute of Cardiovascular Research (INRC), 40126 Bologna, Italy
| |
Collapse
|
20
|
Wen SY, Ali A, Huang IC, Liu JS, Chen PY, Padma Viswanadha V, Huang CY, Kuo WW. Doxorubicin induced ROS-dependent HIF1α activation mediates blockage of IGF1R survival signaling by IGFBP3 promotes cardiac apoptosis. Aging (Albany NY) 2023; 15:164-178. [PMID: 36602546 PMCID: PMC9876638 DOI: 10.18632/aging.204466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023]
Abstract
Doxorubicin (Dox) causes the generation of intracellular reactive oxygen species (ROS) and inactivates insulin-like growth factor 1 (IGF1) signaling, leading to cardiomyocyte apoptosis. IGF-binding protein 3 (IGFBP3) is the most abundant circulating IGF1 carrier protein with high affinity, which has been reported to mediate ROS-induced apoptosis. Hypoxia-inducible factor 1α (HIF1A), an upstream protein of IGFBP3 is regulated by prolyl hydroxylase domain (PHD) through hydroxylation. In this study, we investigated the role of IGFBP3, HIF1A, and PHD in Dox-induced cardiac apoptosis.Cells challenged with 1 μM Dox for 24 h increased ROS generation, augmented intracellular and secreted IGFBP3 levels, and reduced IGF1 signaling. Further, we showed that Dox enhanced the extracellular association of IGF1 with IGFBP3. Moreover, echocardiography parameters, especially ejection fraction (EF) and fractional shortening (FS) were significantly reduced in ventricle tissue of Dox challenged rats. Notably, siRNA approach against IGFBP3 or an anti-IGFBP3 antibody rescued Dox-induced cardiac apoptosis, mitochondrial ROS, and the decrease in the IGF1 signaling activity. Furthermore, silencing HIF1A either using siRNA or inhibitor downregulated intracellular IGFBP3, rescued apoptosis, mitochondrial generation, and reduction in IGF1 signaling. Finally, western blot data revealed that ROS scavenger reversed Dox-induced cardiac apoptosis, increased levels of HIF1A and secreted IGFBP3, and decreased IGF1 survival signaling and PHD expression.These findings suggest that Dox-induced ROS generation suppressed PHD, which might stabilize nuclear HIF1A protein, leading to increased IGFBP3 expression and secretion. This in turn results in enhanced extracellular association of the latter with IGF1 and blocks IGF1 pro-survival signaling and may result in inducing cardiac apoptosis.
Collapse
Affiliation(s)
- Su-Ying Wen
- Department of Dermatology, Taipei City Hospital, Renai Branch, Taipei 11260, Taiwan
- Department of Cosmetic Applications and Management, Mackay Junior College of Medicine, Nursing and Management, Taipei 112, Taiwan
- Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Ayaz Ali
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | - I-Chieh Huang
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | - Jian-Sheng Liu
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
- China Medical University Beigang Hospital Thoracic Department, Yunlin 651, Taiwan
| | - Po-Yuan Chen
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | | | - Chih-Yang Huang
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung 406, Taiwan
| |
Collapse
|
21
|
Tang YH, Wang YH, Chen CC, Chan CJ, Tsai FJ, Chen SY. Genetic and Functional Effects of Adiponectin in Type 2 Diabetes Mellitus Development. Int J Mol Sci 2022; 23:ijms232113544. [PMID: 36362336 PMCID: PMC9658884 DOI: 10.3390/ijms232113544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Diabetes mellitus (DM) is a common chronic metabolic disease, and the C57BLKsJ-db/db mice are good animal models for type 2 diabetes mellitus (T2DM). In this study, Western blotting and immunohistochemistry (IHC) were employed to examine the protein expression of adiponectin in the liver tissues of T2DM mice with different disease courses (4, 16, and 32 weeks). Adiponectin expression reduced in the liver tissues of T2DM mice in different disease courses. The genotypic and allelic frequencies of the adiponectin gene rs1063538 and rs2241766 single nucleotide polymorphisms (SNPs) in a Taiwanese population (570 T2DM patients and 1700 controls) were investigated. Based on the genetic distribution of the rs2241766 locus, the distribution frequency of the T allele in the T2DM group (72.8%) was higher than in the control group (68.8%). Individuals carrying the G allele had a 0.82-fold greater risk of developing T2DM than individuals carrying the T allele. Differences were evident in the genotypic and allelic distributions (p < 0.05). Enzyme-linked immunosorbent assay (ELISA) was used to measure changes in serum adiponectin protein concentrations in the healthy population and in patients with T2DM. Serum adiponectin concentration in patients with T2DM was lower than in the control group. In summary, adiponectin was determined to be a T2DM susceptibility gene and may be involved in T2DM progression.
Collapse
Affiliation(s)
- Yu-Hui Tang
- Department of Medical Genetics, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yeh-Han Wang
- Department of Anatomical Pathology, Taipei Institute of Pathology, School of Medicine, National Yang-Ming University, Taipei 112304, Taiwan
| | - Chin-Chang Chen
- Department of Anatomy, School of Medicine, China Medical University, Taichung 40447, Taiwan
| | - Chia-Jung Chan
- Genetics Center, Department of Medical Research, China Medical University Hospital, China Medical University, No. 2, Yuh-Der Road, Taichung 40447, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Genetics, China Medical University Hospital, Taichung 40447, Taiwan
- Genetics Center, Department of Medical Research, China Medical University Hospital, China Medical University, No. 2, Yuh-Der Road, Taichung 40447, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
- Correspondence: (F.-J.T.); (S.-Y.C.)
| | - Shih-Yin Chen
- Genetics Center, Department of Medical Research, China Medical University Hospital, China Medical University, No. 2, Yuh-Der Road, Taichung 40447, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
- Correspondence: (F.-J.T.); (S.-Y.C.)
| |
Collapse
|
22
|
Feng Q, Li G, Xia W, Dai G, Zhou J, Xu Y, Liu D, Zhang G. The anti-aging effects of Renshen Guben on thyrotoxicosis mice: Improving immunosenescence, hypoproteinemia, lipotoxicity, and intestinal flora. Front Immunol 2022; 13:983501. [PMID: 36389720 PMCID: PMC9640368 DOI: 10.3389/fimmu.2022.983501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/10/2022] [Indexed: 09/27/2023] Open
Abstract
With the rapid aging of the population, the control of age-related disease susceptibility and prognosis faces greater challenges. There is an urgent need for a strategy to maintain the vitality of elderly people. In this study, the effect of Renshen Guben (RSGB) oral liquid was investigated on an accelerated aging mice model of thyrotoxicosis by conventional detection methods combined with multiomics technology. The results showed that RSGB increased the number of neutrophils and lymphocytes, enhanced the function of lymphocytes, and increased the levels of complement and antimicrobial peptides, which indicated that RSGB improved the immunity of thyrotoxicosis mice at the cellular and molecular levels. RSGB corrected malnutrition in thyrotoxicosis mice by improving anemia, hypoalbuminemia, ion transporters, and vitamin-binding proteins. RSGB significantly reduced the lipotoxicity by reducing the level of fatty acids, triglyceride, sphingolipids, and glucocorticoids, thus increasing the level of docosapentaenoic acid (DPA) and bile acids, which contributed to improve immunosenescence. The intestinal defense ability of thyrotoxicosis mice was enhanced with the increase of bile acids and lactic acid bacteria by the RSGB treatment. The plant metabolomics analysis showed that there were various active components in RSGB oral liquid and medicated serum, including terpenoids, phenolic acids, flavonoids, tannin, alkaloids, organic acids, phenolamines, amino acids, and others. They have antioxidant, immune regulation, and anti-aging effects, which was the material basis of RSGB. Totally, RSGB protected the thyrotoxicosis mice against aging by improving immunosenescence, hypoproteinemia, lipotoxicity, and the intestinal flora. It will be beneficial for improving the disease susceptibility and prognosis of the elderly.
Collapse
Affiliation(s)
- Qin Feng
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Guangyan Li
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Wenkai Xia
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Guoxin Dai
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Jidong Zhou
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Yan Xu
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Guimin Zhang
- Center for Pharmacological Research, State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| |
Collapse
|
23
|
Apelin Promotes Prostate Cancer Metastasis by Downregulating TIMP2 via Increases in miR-106a-5p Expression. Cells 2022; 11:cells11203285. [PMID: 36291151 PMCID: PMC9600532 DOI: 10.3390/cells11203285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer commonly affects the urinary tract of men and metastatic prostate cancer has a very low survival rate. Apelin belongs to the family of adipokines and is associated with cancer development and metastasis. However, the effects of apelin in prostate cancer metastasis is undetermined. Analysis of the database revealed a positive correlation between apelin level with the progression and metastasis of prostate cancer patients. Apelin treatment facilitates cell migration and invasion through inhibiting tissue inhibitor of metalloproteinase 2 (TIMP2) expression. The increasing miR-106a-5p synthesis via c-Src/PI3K/Akt signaling pathway is controlled in apelin-regulated TIMP2 production and cell motility. Importantly, apelin blockade inhibits prostate cancer metastasis in the orthotopic mouse model. Thus, apelin is a promising therapeutic target for curing metastatic prostate cancer.
Collapse
|
24
|
Liu SC, Hsieh HL, Tsai CH, Fong YC, Ko CY, Wu HC, Chang SLY, Hsu CJ, Tang CH. CCN2 Facilitates IL-17 Production and Osteoclastogenesis in Human Osteoarthritis Synovial Fibroblasts by Inhibiting miR-655 Expression. J Bone Miner Res 2022; 37:1944-1955. [PMID: 35876037 DOI: 10.1002/jbmr.4661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is associated with extensive upregulation of osteoclastogenesis and subsequent bone breakdown. The CCN family protein connective tissue growth factor (CCN2, also called CCN2) enhances inflammatory cytokine production in OA disease. The cytokine interleukin (IL)-17 is known to induce osteoclastogenesis and bone erosion in arthritic disease. Our retrieval of data from the Gene Expression Omnibus (GEO) data set and clinical tissues exhibited higher CCN2 and IL-17 expression in OA synovial sample than in normal healthy samples. We observed the same phenomenon in synovial tissue from rats with anterior cruciate ligament transaction (ACLT)-elicited OA compared with synovial tissue from control healthy rats. We also found that CCN2 facilitated increases in IL-17 synthesis in human OA synovial fibroblasts (OASFs) and promoted osteoclast formation. CCN2 affected IL-17 production by reducing miR-655 expression through the ILK and Syk signaling cascades. Our findings improve our understanding about the effect of CCN2 in OA pathogenesis and, in particular, IL-17 production and osteoclastogenesis, which may help with the design of more effective OA treatments. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Hung-Lun Hsieh
- Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yuan Ko
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Hsi-Chin Wu
- Department of Urology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan.,Department of Urology, China Medical University Beigang Hospital, Beigang, Taiwan
| | - Sunny Li-Yun Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
25
|
Thiele A, Luettges K, Ritter D, Beyhoff N, Smeir E, Grune J, Steinhoff JS, Schupp M, Klopfleisch R, Rothe M, Wilck N, Bartolomaeus H, Migglautsch AK, Breinbauer R, Kershaw EE, Grabner GF, Zechner R, Kintscher U, Foryst-Ludwig A. Pharmacological inhibition of adipose tissue adipose triglyceride lipase by Atglistatin prevents catecholamine-induced myocardial damage. Cardiovasc Res 2022; 118:2488-2505. [PMID: 34061169 PMCID: PMC9890462 DOI: 10.1093/cvr/cvab182] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 02/05/2023] Open
Abstract
AIMS Heart failure (HF) is characterized by an overactivation of β-adrenergic signalling that directly contributes to impairment of myocardial function. Moreover, β-adrenergic overactivation induces adipose tissue lipolysis, which may further worsen the development of HF. Recently, we demonstrated that adipose tissue-specific deletion of adipose triglyceride lipase (ATGL) prevents pressure-mediated HF in mice. In this study, we investigated the cardioprotective effects of a new pharmacological inhibitor of ATGL, Atglistatin, predominantly targeting ATGL in adipose tissue, on catecholamine-induced cardiac damage. METHODS AND RESULTS Male 129/Sv mice received repeated injections of isoproterenol (ISO, 25 mg/kg BW) to induce cardiac damage. Five days prior to ISO application, oral Atglistatin (2 mmol/kg diet) or control treatment was started. Two and twelve days after the last ISO injection cardiac function was analysed by echocardiography. The myocardial deformation was evaluated using speckle-tracking-technique. Twelve days after the last ISO injection, echocardiographic analysis revealed a markedly impaired global longitudinal strain, which was significantly improved by the application of Atglistatin. No changes in ejection fraction were observed. Further studies included histological-, WB-, and RT-qPCR-based analysis of cardiac tissue, followed by cell culture experiments and mass spectrometry-based lipidome analysis. ISO application induced subendocardial fibrosis and a profound pro-apoptotic cardiac response, as demonstrated using an apoptosis-specific gene expression-array. Atglistatin treatment led to a dramatic reduction of these pro-fibrotic and pro-apoptotic processes. We then identified a specific set of fatty acids (FAs) liberated from adipocytes under ISO stimulation (palmitic acid, palmitoleic acid, and oleic acid), which induced pro-apoptotic effects in cardiomyocytes. Atglistatin significantly blocked this adipocytic FA secretion. CONCLUSION This study demonstrates cardioprotective effects of Atglistatin in a mouse model of catecholamine-induced cardiac damage/dysfunction, involving anti-apoptotic and anti-fibrotic actions. Notably, beneficial cardioprotective effects of Atglistatin are likely mediated by non-cardiac actions, supporting the concept that pharmacological targeting of adipose tissue may provide an effective way to treat cardiac dysfunction.
Collapse
Affiliation(s)
- Arne Thiele
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Katja Luettges
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Daniel Ritter
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Niklas Beyhoff
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Elia Smeir
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Jana Grune
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Physiology, 10115 Berlin, Germany
| | - Julia S Steinhoff
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
| | - Michael Schupp
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie
Universität, 14163 Berlin, Germany
| | | | - Nicola Wilck
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation of
Max-Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin
Berlin, 13125 Berlin, Germany
- Division of Nephrology and Internal Intensive Care Medicine, Charité -
Universitätsmedizin Berlin, 10117 Berlin,
Germany
| | - Hendrik Bartolomaeus
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation of
Max-Delbrück Center for Molecular Medicine, Charité - Universitätsmedizin
Berlin, 13125 Berlin, Germany
| | - Anna K Migglautsch
- Institute of Organic Chemistry, Graz University of
Technology, 8010 Graz, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of
Technology, 8010 Graz, Austria
| | - Erin E Kershaw
- Division of Endocrinology and Metabolism, University of
Pittsburgh, PA, USA
| | - Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz,
8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz,
8010 Graz, Austria
| | - Ulrich Kintscher
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| | - Anna Foryst-Ludwig
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of
Pharmacology, Center for Cardiovascular Research, Hessische
Str. 3-4, 10115 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research),
partner site Berlin, Germany
| |
Collapse
|
26
|
Ju DT, Van Thao D, Lu CY, Ali A, Shibu MA, Chen RJ, Day CH, Shih TC, Tsai CY, Kuo CH, Huang CY. Protective effects of CHIP overexpression and Wharton's jelly mesenchymal-derived stem cell treatment against streptozotocin-induced neurotoxicity in rats. ENVIRONMENTAL TOXICOLOGY 2022; 37:1979-1987. [PMID: 35442559 DOI: 10.1002/tox.23544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/08/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Diabetic neuropathy is a common complication of diabetes mellitus, posing a challenge in treatment. Previous studies have indicated the protective role of mesenchymal stem cells against several disorders. Although they can repair nerve injury, their key limitation is that they reduce viability under stress conditions. We recently observed that overactivation of the carboxyl terminus of heat shock protein 70 (Hsp70) interacting protein (CHIP) considerably rescued cell viability under hyperglycemic stress and played an essential role in promoting the beneficial effects of Wharton's jelly-derived mesenchymal stem cells (WJMSCs). Thus, the present study was designed to unveil the protective effects of CHIP-overexpressing WJMSCs against neurodegeneration using in vivo animal model based study. In this study, western blotting observed that CHIP-overexpressing WJMSCs could rescue nerve damage observed in streptozotocin-induced diabetic rats by activating the AMPKα/AKT and PGC1α/SIRT1 signaling pathway. In contrast, these signaling pathways were downregulated upon silencing CHIP. Furthermore, CHIP-overexpressing WJMSCs inhibited inflammation induced in the brains of diabetic rats by suppressing the NF-κB, its downstream iNOS and cytokines signaling nexus and enhancing the antioxidant enzyme system. Moreover, TUNEL assay demonstrated that CHIP carrying WJMSCs suppressed the apoptotic cell death induced in STZ-induced diabetic group. Collectively, our findings suggests that CHIP-overexpressing WJMSCs might exerts beneficial effects, which may be considered as a therapeutic strategy against diabetic neuropathy complications.
Collapse
Affiliation(s)
- Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Dao Van Thao
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Cheng-You Lu
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ayaz Ali
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Tzu-Ching Shih
- Department of Biomedical Imaging and Radiological Science College of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Yen Tsai
- Department of Pediatrics, China Medical University Beigang Hospital, Yunlin, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biological Science & Technology College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Chih-Yang Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
27
|
Yao X, Yuan Y, Jing T, Ye S, Wang S, Xia D. Ganoderma lucidum polysaccharide ameliorated diabetes mellitus-induced erectile dysfunction in rats by regulating fibrosis and the NOS/ERK/JNK pathway. Transl Androl Urol 2022; 11:982-995. [PMID: 35958898 PMCID: PMC9360518 DOI: 10.21037/tau-22-428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/12/2022] [Indexed: 12/03/2022] Open
Abstract
Background Diabetes mellitus-induced erectile dysfunction (DMED) is a frequent complication of diabetes mellitus (DM), with limited therapy at present. This study aimed to explore the role and mechanism of Ganoderma lucidum polysaccharide (GLP) on DMED. Methods DMED was induced in the experimental rats [male 12-week-old Sprague-Dawley (SD) rats] by treatment with streptozotocin (60 mg/kg) and apomorphine (APO). Next, rats in the GLP low dose (GLP-L)/GLP high dose (GLP-H) groups were treated with GLP (100 or 400 mg/kg/d, respectively) for 8 weeks. Subsequently, erectile function was assessed by APO and electrostimulation of the cavernous nerve (CN). Serum or penile testosterone (T), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and cyclic guanosine monophosphate (cGMP) contents were evaluated by enzyme-linked immunosorbent assay (ELISA). The levels of oxidative stress indicators in the corpus cavernosum (CC) were measured by corresponding kits, and histological changes in the CC were observed by hematoxylin-eosin (HE) and Masson staining. Additionally, the apoptosis index, caspase-3, caspase-9, and eNOS expression, and mitochondrial membrane potential (MMP) were also detected. Furthermore, quantitative polymerase chain reaction (qPCR) and western blot assays were conducted to determine the NOS, TGF-β1 mRNA expression, ERK1/2, eNOS, JNK phosphorylation, and arginase II protein expression. Results The erectile function test revealed that erectile dysfunction (ED) was alleviated in the DMED rats following treatment with GLP. Moreover, GLP upregulated the T and cGMP content, improved the oxidative stress and histological injuries of CC, and also inhibited the apoptosis and MMP loss of penile tissues in DMED rats. Furthermore, GLP treatment enhanced the mRNA expression of NOS and TGF-β1 and suppressed the phosphorylation of ERK1/2, eNOS, and JNK, as well as the protein expression of arginase II in DMED rats. Conclusions GLP ameliorated DMED by repairing the CC pathological damage and upregulating NOS expression and ERK/JNK phosphorylation, indicating that GLP may be a candidate drug for DMED therapy.
Collapse
Affiliation(s)
- Xiaolin Yao
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yufang Yuan
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Taile Jing
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sunyi Ye
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuo Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Xia
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
28
|
Huang CY, Su YC, Lu CY, Chiu PL, Chang YM, Ju DT, Chen RJ, Yang LY, Ho TJ, Kao HC. Edible folic acid and medicinal folinic acid produce cardioprotective effects in late-stage triple-transgenic Alzheimer's disease model mice by suppressing cardiac hypertrophy and fibrosis. ENVIRONMENTAL TOXICOLOGY 2022; 37:1740-1749. [PMID: 35286012 DOI: 10.1002/tox.23521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/15/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Some clinical studies have indicated the patients with Alzheimer's disease (AD) display an increased risk of cardiovascular disease (CVD). Here, to examine the relationship between AD and CVDs, we investigated the changes in heart function in triple-transgenic late-stage AD model mice (3× Tg-AD; APPSwe, PS1M146V, and tauP301L). We fed the AD mice folic acid (FA) or folinic acid (FN) and analyzed the protective effects of the compounds on the heart; specifically, 20-month-old triple-transgenic AD mice, weighing 34-55 g, were randomly allocated into three groups-the AD, AD + FA, and AD + FN groups-and subject to gastric feeding with FA or FN once daily at 12 mg/kg body weight (BW) for 3 months. Mouse BWs were assessed throughout the trial, at the end of which the animals were sacrificed using carbon dioxide suffocation. We found that BW, whole-heart weight, and left-ventricle weight were reduced in the AD + FA and AD + FN groups as compared with the measurements in the AD group. Furthermore, western blotting of excised heart tissue revealed that the levels of the hypertrophy-related protein markers phospho(p)-p38 and p-c-Jun were markedly decreased in the AD + FA group, whereas p-GATA4, and ANP were strongly reduced in the AD + FN group. Moreover, the fibrosis-related proteins uPA, MMP-2, MEK1/2 and SP-1 were decreased in the heart in both AD + FN group. In summary, our results indicate that FA and FN can exert anti-cardiac hypertrophy and fibrosis effects to protect the heart in aged triple-transgenic AD model mice, particular in FN.
Collapse
Affiliation(s)
- Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Yi-Chen Su
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Cheng-You Lu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | | | - Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, HualienTzu Chi Hospital, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
- School of Post-Baccalaure-ate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hui-Chuan Kao
- Department of Public Health, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
29
|
IL-17 Facilitates VCAM-1 Production and Monocyte Adhesion in Osteoarthritis Synovial Fibroblasts by Suppressing miR-5701 Synthesis. Int J Mol Sci 2022; 23:ijms23126804. [PMID: 35743247 PMCID: PMC9224118 DOI: 10.3390/ijms23126804] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is characterized by the infiltration and adhesion of monocytes into the inflamed joint synovium. Interleukin (IL)-17 is a critical inflammatory mediator that participates in the progression of OA, although the mechanisms linking IL-17 and monocyte infiltration are not well understood. Our analysis of synovial tissue samples retrieved from the Gene Expression Omnibus (GEO) dataset exhibited higher monocyte marker (CD11b) and vascular cell adhesion molecule 1 (VCAM-1) levels in OA samples than in normal, healthy samples. The stimulation of human OA synovial fibroblasts (OASFs) with IL-17 increased VCAM-1 production and subsequently enhanced monocyte adhesion. IL-17 affected VCAM-1-dependent monocyte adhesion by reducing miR-5701 expression through the protein kinase C (PKC)-α and c-Jun N-terminal kinase (JNK) signaling cascades. Our findings improve our understanding about the effect of IL-17 on OA progression and, in particular, VCAM-1 production and monocyte adhesion, which may help with the design of more effective OA treatments.
Collapse
|
30
|
Kuo WW, Baskaran R, Lin JY, Day CH, Lin YM, Ho TJ, Chen RJ, Lin MY, Padma VV, Huang CY. Low-dose rapamycin prevents Ang-II-induced toxicity in Leydig cells and testicular dysfunction in hypertensive SHR model. J Biochem Mol Toxicol 2022; 36:e23128. [PMID: 35698875 DOI: 10.1002/jbt.23128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/16/2022] [Accepted: 05/29/2022] [Indexed: 11/10/2022]
Abstract
Hypertension is a common chronic cardiovascular disease reported among both men and women. Hypertension in males affects the testis and reproduction function; however, the pathogenesis is poorly understood. Rapamycin has been reported to have a variety of beneficial pharmacological effects; however, high-doses rapamycin does have side effects such as immunosuppression. The present study investigates whether low-dose rapamycin can reduce the damage caused by hypertension to the testis of spontaneously hypertensive rats (SHRs) and further examines molecular mechanism of low-dose rapamycin in preventing testicular toxicity induced by angiotensin II (Ang II). Low rapamycin dose restores the testicle size, histological alterations, 3β-hydroxysteroid dehydrogenase (3β-HSD) expression, and prevents apoptosis in SHR rats. Ang II downregulates angiotensin-converting enzyme-2 (ACE2) expression through AT1R, p-ERK, and MAS receptor in LC-540 Leydig cells in a dose-dependent manner. Low doses of rapamycin effectively upregulate steroidogenic enzymes, steroidogenic acute regulatory protein and 3β-HSD expression in Leydig cells. Rapamycin upregulates ACE2 expression through p-PKAc and p-PI3k in Ang II-treated cells. Further, rapamycin curbs mitochondrial superoxide generation and depleted mitochondrial membrane potential induced by Ang II through activation of Nrf2-mediated Gpx4 and superoxide dismutase 2 expression. Our results revealed the involvement of ACE2, AT1R, AT2R, PKAc, and oxidative stress in Ang-II-induced testicular toxicity, suggesting low-dose rapamycin could be a potential therapeutic candidate to attenuate testicular toxicity.
Collapse
Affiliation(s)
- Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Jing-Ying Lin
- Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | | | - Yueh-Min Lin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, Taipei Medical University, Taipei, Taiwan
| | - Mei-Yi Lin
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | | | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan.,Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
31
|
Tai H, Tong YJ, Yu R, Yu Y, Yao SC, Li LB, Liu Y, Cui XZ, Kuang JS, Meng XS, Jiang XL. A possible new activator of PI3K-Huayu Qutan Recipe alleviates mitochondrial apoptosis in obesity rats with acute myocardial infarction. J Cell Mol Med 2022; 26:3423-3445. [PMID: 35567290 PMCID: PMC9189350 DOI: 10.1111/jcmm.17353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 01/20/2023] Open
Abstract
Obesity, which has unknown pathogenesis, can increase the frequency and seriousness of acute myocardial infarction (AMI). This study evaluated effect of Huayu Qutan Recipe (HQR) pretreatment on myocardial apoptosis induced by AMI by regulating mitochondrial function via PI3K/Akt/Bad pathway in rats with obesity. For in vivo experiments, 60 male rats were randomly divided into 6 groups: sham group, AMI group, AMI (obese) group, 4.5, 9.0 and 18.0 g/kg/d HQR groups. The models fed on HQR with different concentrations for 2 weeks before AMI. For in vitro experiments, the cardiomyocytes line (H9c2) was used. Cells were pretreated with palmitic acid (PA) for 24 h, then to build hypoxia model followed by HQR‐containing serum for 24 h. Related indicators were also detected. In vivo, HQR can lessen pathohistological damage and apoptosis after AMI. In addition, HQR improves blood fat levels, cardiac function, inflammatory factor, the balance of oxidation and antioxidation, as well as lessen infarction in rats with obesity after AMI. Meanwhile, HQR can diminish myocardial cell death by improving mitochondrial function via PI3K/Akt/Bad pathway activation. In vitro, HQR inhibited H9c2 cells apoptosis, improved mitochondrial function and activated the PI3K/Akt/Bad pathway, but effects can be peripeteiad by LY294002. Myocardial mitochondrial dysfunction occurs following AMI and can lead to myocardial apoptosis, which can be aggravated by obesity. HQR can relieve myocardial apoptosis by improving mitochondrial function via the PI3K/Akt/Bad pathway in rats with obesity.
Collapse
Affiliation(s)
- He Tai
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China.,Department of Internal Medicine, Liaoning Provincial Corps Hospital of Chinese People's Armed Police Forces, Shenyang, China
| | - Yu-Jing Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Yu
- Science and Technology Branch, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - You Yu
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Si-Cheng Yao
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Ling-Bing Li
- Department of Graduate School, China PLA General Hospital, Beijing, China
| | - Ye Liu
- Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Zheng Cui
- Cardiovascular Surgery, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jin-Song Kuang
- Department of Endocrinology and Metabolism, The Fourth People's Hospital of Shenyang, Shenyang, China
| | - Xian-Sheng Meng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xiao-Lin Jiang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China.,Nephrology Laboratory, The fourth of Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
32
|
Tsai CH, Huang PJ, Lee IT, Chen CM, Wu MH. Endothelin-1-mediated miR-let-7g-5p triggers interlukin-6 and TNF-α to cause myopathy and chronic adipose inflammation in elderly patients with diabetes mellitus. Aging (Albany NY) 2022; 14:3633-3651. [PMID: 35468098 PMCID: PMC9085227 DOI: 10.18632/aging.204034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
Background: Diabetes and sarcopenia are verified as mutual relationships, which seriously affect the quality of life of the elderly. Endothelin-1 is well investigated, is elevated in patients with diabetes, and is related to muscle cellular senescence and fibrosis. However, the mechanism of ET-1 between diabetes and myopathy is still unclear. The aim of this study was to evaluate the prevalence of sarcopenia in the elderly with diabetes and to clarify its relationship with ET-1 molecular biological mechanism, progress as well as changes in muscle and fat. Methods: We recruited 157 type 2 diabetes patients over 55 years old and investigated the prevalence of sarcopenia in diabetes patients and examined the association of ET-1 alterations with HbA1c, creatinine, or AMS/ht2. Next, sought to determine how ET-1 regulates inflammation in muscle cells by western blot and qPCR assay. Using XF Seahorse Technology, we directly quantified mitochondrial bioenergetics in 3T3-L1 cells. Results: ET-1 was positively correlated with HbA1c, creatinine levels, and duration of disease, and negatively correlated with AMS/ht2. We found that ET-1 dose-dependently induces tumor necrosis factor-α (TNF-α) and interleukin (IL)-6β expression through the PI3K/AKT, and NF-κB signaling pathways in C2C12 cells. Also identified that TNF-α, IL-6β, and visfatin releases were found in co-cultured with conditioned medium of ET-1/C2C12 in 3T3-L1 cells. ET-1 also reduces the energy metabolism of fat and induces micro-environment inflammation which causes myopathy. ET-1 also suppresses miR-let-7g-5p expression in myocytes and adipocytes. Conclusion: We describe a new mechanism of ET-1 triggering chronic inflammation in patients with hyperglycemia.
Collapse
Affiliation(s)
- Chung-Huang Tsai
- Department of Family Medicine, Chung-Kang Branch, Cheng Ching Hospital, Taichung, Taiwan.,Center for General Education, Tunghai University, Taiwan.,Bachelor of Science in Senior Wellness and Sport Science, Tunghai University, Taiwan
| | - Pei-Ju Huang
- Department of Family Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - I T Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Min Chen
- Division of Traditional Chinese Medical, Sinying Hospital, Tainan, Taiwan
| | - Min Huan Wu
- Bachelor of Science in Senior Wellness and Sport Science, Tunghai University, Taiwan.,Senior Life and Innovation Technology Center, Tunghai University, Taiwan.,Life Science Research Center, Tunghai University, Taiwan
| |
Collapse
|
33
|
Chiu YJ, Yang JS, Tsai FJ, Chiu HY, Juan YN, Lo YH, Chiang JH. Curcumin suppresses cell proliferation and triggers apoptosis in vemurafenib-resistant melanoma cells by downregulating the EGFR signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:868-879. [PMID: 34994998 DOI: 10.1002/tox.23450] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Melanoma is a malignant tumor with aggressive behavior. Vemurafenib, a BRAF inhibitor, is clinically used in melanoma, but resistance to melanoma cytotoxic therapies is associated with BRAF mutations. Curcumin can effectively inhibit numerous types of cancers. However, there are no reports regarding the correlation between curcumin and vemurafenib-resistant melanoma cells. In this study, vemurafenib-resistant A375.S2 (A375.S2/VR) cells were established, and the functional mechanism of the epidermal growth factor receptor (EGFR), serine-threonine kinase (AKT), and the extracellular signal-regulated kinase (ERK) signaling induced by curcumin was investigated in A375.S2/VR cells in vitro. Our results indicated that A375.S2/VR cells had a higher IC50 concentration of vemurafenib than the parental A375.S2 cells. Moreover, curcumin reduced the viability and confluence of A375.S2/VR cells. Curcumin triggered apoptosis via reactive oxygen species (ROS) production, disruption of mitochondrial membrane potential (ΔΨm), and intrinsic signaling (caspase-9/-3-dependent) pathways in A375.S2/VR cells. Curcumin-induced apoptosis was also mediated by the EGFR signaling pathway. Combination treatment with curcumin and gefitinib (an EGFR inhibitor) synergistically potentiated the inhibitory effect of cell viability in A375.S2/VR cells. The present study provides new insights into the therapy of vemurafenib-resistant melanoma and suggests that curcumin might be an encouraging therapeutic candidate for its drug-resistant treatment.
Collapse
Affiliation(s)
- Yu-Jen Chiu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hong-Yi Chiu
- Department of Pharmacy, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Clinical Pharmacy, College of Medicine, Tzu Chi University, Hualien, Taiwan
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Hsiang Lo
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jo-Hua Chiang
- Department of Nursing, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chiayi, Taiwan
| |
Collapse
|
34
|
Lu CY, Day CH, Kuo CH, Wang TF, Ho TJ, Lai PF, Chen RJ, Yao CH, Viswanadha VP, Kuo WW, Huang CY. Calycosin alleviates H 2 O 2 -induced astrocyte injury by restricting oxidative stress through the Akt/Nrf2/HO-1 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:858-867. [PMID: 34990515 DOI: 10.1002/tox.23449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/12/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Oxidative stress-induced brain cell damage is a crucial factor in the pathogenesis of reactive oxygen species (ROS)-associated neurological diseases. Further, studies show that astrocytes are an important immunocompetent cell in the brain and play a potentially significant role in various neurological diseases. Therefore, elimination of ROS overproduction might be a potential strategy for preventing and treating neurological diseases. Accumulating evidence indicates that calycosin, a main active ingredient in the Chinese herbal medicine Huangqi (Radix Astragali Mongolici), is a potential therapeutic candidate with anti-inflammation and/or anticancer effects. Here, we investigated the protective effect of calycosin in brain astrocytes by mimicking in vitro oxidative stress using H2 O2 . The results revealed that H2 O2 significantly induced ROS and inflammatory factor (tumor necrosis factor [TNF]-α and interleukin [IL]-1β) production, whereas post-treatment with calycosin dramatically and concentration-dependently suppressed H2 O2 -induced damage by enhancing cell viability, repressing ROS and inflammatory factor production, and increasing superoxide dismutase (SOD) expression. Additionally, we found that calycosin facilitated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and promoted its nuclear translocation, thereby inducing the expression of antioxidant molecules (heme oxygenase [HO]-1 and SOD) following H2 O2 treatment. Moreover, calycosin did not attenuated H2 O2 -induced astrocyte damage and ROS production in the presence of the ML385 (a Nrf2-specific inhibitor) and following Nrf2 silencing. Furthermore, calycosin failed to increase Akt phosphorylation and mitigate H2 O2 -induced astrocyte damage in the presence of the LY294002 (a selective phosphatidylinositol 3-kinase inhibitor), indicating that calycosin-mediated regulation of oxidative-stress homeostasis involved Akt/Nrf2/HO-1 signaling. These findings demonstrated that calycosin protects against oxidative injury in brain astrocytes by regulating oxidative stress through the AKT/Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Cheng-You Lu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, HualienTzu Chi Hospital, Hualien, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
- School of Post Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Pei-Fang Lai
- Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
- Department of Emergency Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hsu Yao
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biomedical Informatics, Asia University, Taichung, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Biological Science and Technology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
35
|
Ho TJ, Chi-Kang Tsai B, Kuo CH, Luk HN, Day CH, Jine-Yuan Hsieh D, Chen RJ, Kuo WW, Kumar VB, Yao CH, Huang CY. Arecoline induces cardiotoxicity by upregulating and activating cardiac hypertrophy-related pathways in Sprague-Dawley rats. Chem Biol Interact 2022; 354:109810. [PMID: 34999050 DOI: 10.1016/j.cbi.2022.109810] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/13/2021] [Accepted: 01/05/2022] [Indexed: 12/19/2022]
Abstract
Habitual chewing of the areca nut increases the risk of mortality owing to cardiovascular disease, but few reports have revealed the cardiotoxicity mechanism of the areca nut. Arecoline has been reported to be the primary toxic constituent in the areca nut. In order to study the acute cardiotoxicity of the areca nut in the development of pathologic heart hypertrophy, we induced heart injury in rats using arecoline. Arecoline at a low dosage (5 mg/kg/day) or a high dosage (50 mg/kg/day) was intraperitoneally injected to Sprague-Dawley rats for 21 days. The change of heart function and biochemical pathways were investigated with echocardiography and Western blot. The results were presented that heart functions were weakened by arecoline stimulation, and western blotting analysis revealed an elevation in BNP levels in the heart after arecoline exposure. Arecoline induced IL-6-mediated activation of the MEK5/ERK5 and JAK2/STAT3 pathways, as well as mitogen-activated protein kinase signaling cascades. Further, arecoline increased the calcineurin and NFATc3 levels in the heart. In summary, our results suggest that arecoline causes significantly cardiotoxicity and heart damage by inducing several hypertrophy-related signaling pathways, including IL-6-induced MEK5/ERK5, JAK2/STAT3, mitogen-activated protein kinases, and calcineurin signaling pathways. The study elucidated, for the first time, the possible cardiac hypertrophy mechanisms underlying the cardiotoxicity of the areca nut.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, HualienTzu Chi Hospital, Hualien, Taiwan; Department of Chinese Medicine,Hualien Tzu Chi Hospital, Hualien, Taiwan; School of Post-Baccalaure-ate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan; Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
| | - Hsiang-Ning Luk
- Department of Anesthesia, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Dennis Jine-Yuan Hsieh
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan; Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - V Bharath Kumar
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chun-Hsu Yao
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
36
|
Lee KT, Su CH, Liu SC, Chen BC, Chang JW, Tsai CH, Huang WC, Hsu CJ, Chen WC, Wu YC, Tang CH. Cordycerebroside A inhibits ICAM-1-dependent M1 monocyte adhesion to osteoarthritis synovial fibroblasts. J Food Biochem 2022; 46:e14108. [PMID: 35165902 DOI: 10.1111/jfbc.14108] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is represented by the accumulation and adhesion of M1 macrophages into synovium tissues in the joint microenvironment and subsequent inflammatory response. Cordycerebroside A, a cerebroside compound isolated from Cordyceps militaris, exhibits anti-inflammatory activity, but has not yet been examined in M1 macrophages during OA disease. Our results indicate higher expression of M1 macrophage markers in synovium tissue from OA patients compared with normal healthy controls. Records from the Gene Expression Omnibus (GEO) data set and our clinic samples revealed higher levels of ICAM-1 (a critical adhesion molecule during OA disease) and CD86 (a M1 macrophage marker) in OA synovial tissue than in healthy tissue. The same effects were found in rats with OA induced by anterior cruciate ligament transaction (ACLT). We also found that cordycerebroside A inhibited ICAM-1 synthesis and antagonized M1 macrophage adhesion to OA synovial fibroblasts by inhibiting the ERK/AP-1 pathway. Thus, cordycerebroside A displayed novel anti-arthritic effects. PRACTICAL APPLICATIONS: Here we report a higher level of M1 macrophage markers and ICAM-1 in synovium tissue from OA patients compared with normal healthy controls by using GEO data set and our clinic samples. The same effects were revealed in rats with OA induced by ACLT. Cordycerebroside A significantly suppressed ICAM-1 production and diminished M1 macrophage adhesion to OA synovial fibroblasts. Therefore, cordycerebroside A exhibited novel anti-OA functions.
Collapse
Affiliation(s)
- Kun-Tsan Lee
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan.,Department of Orthopedics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chin-Horng Su
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedics, Yuan-Lin Christian Hospital, Changhua, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Bo-Cheng Chen
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Jun-Way Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Drug Development Center, China Medical University, Taichung, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Cheng Chen
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Division of Sports Medicine & Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yang-Chang Wu
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,Chinese Medicine Research and Development Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
37
|
Lin HC, Paul CR, Kuo C, Chang Y, Chen WS, Ho T, Day C, Velmurugan BK, Tsai Y, Huang C. Glycyrrhiza uralensis
root extract ameliorates high glucose‐induced renal proximal tubular fibrosis by attenuating tubular epithelial‐myofibroblast transdifferentiation by targeting TGF‐β1/Smad/Stat3 pathway. J Food Biochem 2022; 46:e14041. [PMID: 35064587 DOI: 10.1111/jfbc.14041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 02/06/2023]
Affiliation(s)
| | - Catherine Reena Paul
- Cardiovascular and Mitochondrial Related Disease Research Center Hualien Tzu Chi Hospital Hualien Taiwan
| | - Chia‐Hua Kuo
- Laboratory of Exercise Biochemistry University of Taipei Taipei Taiwan
| | - Yung‐Hsien Chang
- Department of Chinese Medicine China Medical University Hospital China Medical University Taichung Taiwan
| | - William Shao‐Tsu Chen
- Department of Psychiatry Tzu Chi General Hospital Hualien Taiwan
- School of Medicine Tzu Chi University Hualien Taiwan
| | - Tsung‐Jung Ho
- Department of Chinese Medicine Hualien Tzu Chi Hospital Tzu Chi University Hualien Taiwan
- Integration Center of Traditional Chinese and Modern Medicine HualienTzu Chi Hospital Hualien Taiwan
- School of Post‑Baccalaure‑ate Chinese Medicine College of Medicine Tzu Chi University Hualien Taiwan
| | | | | | - Yuhsin Tsai
- Graduate Institute of Chinese Medicine China Medical University Taichung Taiwan
| | - Chih‐Yang Huang
- Graduate Institute of Chinese Medicine China Medical University Taichung Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center Hualien Tzu Chi Hospital Hualien Taiwan
- Department of Biotechnology Asia University Taichung Taiwan
- Graduate Institute of Biomedical Sciences China Medical University Taichung Taiwan
- Center of General Education Tzu Chi University of Science and Technology Hualien Taiwan
| |
Collapse
|
38
|
Yang XD, Yang YY. Ferroptosis as a Novel Therapeutic Target for Diabetes and Its Complications. Front Endocrinol (Lausanne) 2022; 13:853822. [PMID: 35422764 PMCID: PMC9001950 DOI: 10.3389/fendo.2022.853822] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/02/2022] [Indexed: 12/19/2022] Open
Abstract
The global diabetes epidemic and its complications are increasing, thereby posing a major threat to public health. A comprehensive understanding of diabetes mellitus (DM) and its complications is necessary for the development of effective treatments. Ferroptosis is a newly identified form of programmed cell death caused by the production of reactive oxygen species and an imbalance in iron homeostasis. Increasing evidence suggests that ferroptosis plays a pivotal role in the pathogenesis of diabetes and diabetes-related complications. In this review, we summarize the potential impact and regulatory mechanisms of ferroptosis on diabetes and its complications, as well as inhibitors of ferroptosis in diabetes and diabetic complications. Therefore, understanding the regulatory mechanisms of ferroptosis and developing drugs or agents that target ferroptosis may provide new treatment strategies for patients with diabetes.
Collapse
Affiliation(s)
- Xi-Ding Yang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Phase I Clinical Trial Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong-Yu Yang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Provincial Engineering Research Central of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Yong-Yu Yang,
| |
Collapse
|
39
|
Zhang X, Mao M, Zuo Z. Palmitate Induces Mitochondrial Energy Metabolism Disorder and Cellular Damage via the PPAR Signaling Pathway in Diabetic Cardiomyopathy. Diabetes Metab Syndr Obes 2022; 15:2287-2299. [PMID: 35936050 PMCID: PMC9355343 DOI: 10.2147/dmso.s360931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/28/2022] [Indexed: 01/13/2023] Open
Abstract
PURPOSE To establish an in vitro lipotoxicity model with mouse cardiomyocytes (MCMs) and investigate the molecular mechanism of the peroxisome proliferator-activated receptors (PPAR) signaling on mitochondrial energy metabolism disorder and cellular injury in diabetic cardiomyopathy (DCM). METHODS Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed on the differentially expressed genes (DEGs) of DCM. CCK-8 method was used to detect the proliferation inhibition effect of palmitate (PA) on MCMs. Oil red O staining and mRNA levels of CD36 were used to verify intracellular lipid accumulation. DCFH-DA method was used to determine the content of intracellular reactive oxygen species (ROS), and ATP levels were detected by the ATP Detection Kit. Transmission electron microscope (TEM) was used to observe the mitochondrial structure. Western blot was used to detect the expression levels of PPARα, PPARγ, P-mTOR, mTOR, PGC-1α, UCP2, and BNP. In addition, the expression of PPARγ was also detected by cellular immunofluorescence staining. BNP levels were detected by qRT-PCR and the ELISA Kit. RESULTS KEGG pathway analysis combined with GO analysis has shown that PPAR signaling played a significant regulatory role in mitochondrial biogenesis and fatty acid metabolism in DCM. Then, MCMs stimulated with PA for 24 h were selected as an in vitro lipotoxicity model. PA decreased cell viability, cell membrane shrinkage, and lipid accumulation. Meanwhile, PA-induced increase in cellular ROS led to ATP generation reduction and mitochondrial damage. Furthermore, the expression levels of p-mTOR- PPARα/γ were decreased, and the expressions of PGC-1α and UCP2 were increased. The levels of BNP were elevated, demonstrating PA impaired cardiomyocytes. CONCLUSION Mitochondrial energy metabolism obstacle and cell injury appeared in cardiac lipotoxicity of DCM, associated with lipid accumulation and increased ROS, indicating a crosstalk with the PPAR pathway mediated mechanism.
Collapse
Affiliation(s)
- Xianyu Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Min Mao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zhong Zuo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Correspondence: Zhong Zuo, Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Medical College Road, Yuzhong District, Chongqing, 400016, People’s Republic of China, Email
| |
Collapse
|
40
|
Tien N, Wu TY, Lai JN, Lin CL, Hsiao YC, Khaw JY, Lim YP. Influences of antidepressant medications on the risk of developing hyperlipidemia in patients with depression by a population-based cohort study and on in vitro hepatic lipogenic-related gene expression. J Affect Disord 2021; 295:271-283. [PMID: 34482059 DOI: 10.1016/j.jad.2021.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Depression increases the risk of cardiovascular disease (CVD). The association between antidepressant medications (ADMs) and CVD remains controversial. Hyperlipidemia is a risk factor for CVD. We conducted a nationwide population-based retrospective cohort study to examine depression and ADM use on the risk of developing hyperlipidemia. The effects of ADMs on the expression of lipogenesis-related hepatic genes were also evaluated. METHODS We obtained data from the Longitudinal Health Insurance Database of Taiwan on patients with new-onset depression and a comparison cohort without depression. A Cox proportional hazards regression model was used to analyze the differences in the risk of developing hyperlipidemia between these two cohorts. We also examined the influence of ADMs on the expression of lipogenesis-related hepatic genes. RESULTS After adjustment for comorbidities and confounding factors, the case group (N = 38,322) had a higher risk for hyperlipidemia than that of the control cohort (N = 38,322) [adjusted hazards ratio (aHR) =1.16]. Patients with depression who did not receive ADM therapy exhibited a significantly higher risk of hyperlipidemia (aHR = 1.61). However, in patients with depression treated with ADMs, the risk of developing hyperlipidemia was significantly lowered compared to the patients without ADMs (all aHR < 0.81). Gene expression analysis indicated that ADMs downregulated the expression of lipogenesis-related hepatic genes. LIMITATIONS Unmeasured confounding risk factors for hyperlipidemia might not have been included in the study. CONCLUSIONS ADMs reduced hyperlipidemia risk in patients with depression, partly by downregulating the expression of lipogenesis-related genes and improving the patients' lipid profiles. Early diagnosis and management of hyperlipidemia would further facilitate the prevention of CVD.
Collapse
Affiliation(s)
- Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Tien-Yuan Wu
- Department of Pharmacy, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jung-Nien Lai
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chi Hsiao
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Jie-Yee Khaw
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan; Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
41
|
Lee HP, Liu SC, Wang YH, Chen BC, Chen HT, Li TM, Huang WC, Hsu CJ, Wu YC, Tang CH. Cordycerebroside A suppresses VCAM-dependent monocyte adhesion in osteoarthritis synovial fibroblasts by inhibiting MEK/ERK/AP-1 signaling. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104712] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
42
|
Effect of Quercetin on Injury to Indomethacin-Treated Human Embryonic Kidney 293 Cells. Life (Basel) 2021; 11:life11111134. [PMID: 34833010 PMCID: PMC8623736 DOI: 10.3390/life11111134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are used to treat inflammation and pain and even to prevent the progression of cardiovascular disease. They have become widely used because of their effectiveness, especially among athletes performing high-intensity training. Indomethacin is used for pain management in sports medicine and is highly effective and versatile. However, several clinical studies have reported that indomethacin induces acute renal damage. In the present study, we determined that indomethacin reduced human embryonic kidney 293 (HEK293) cell viability in a concentration-dependent manner by triggering apoptosis. In addition, we demonstrated the effect of quercetin on indomethacin-treated HEK293 cells by inactivating the caspase-3 and caspase-9 signals. Furthermore, quercetin reduced ROS production and increased mitochondrial membrane potential (ΔΨm) in indomethacin-treated HEK293 cells. Our results indicate that quercetin can interrupt the activated caspase and mitochondrial pathway induced by indomethacin in HEK293 cells and affect apoptotic mRNA expression. Quercetin can protect against indomethacin-induced HEK293 cell apoptosis by regulating abnormal ΔΨm and apoptotic mRNA expression.
Collapse
|
43
|
Lin KH, Wei YM, Liu CH, Liu JS, Huang IC, Viswanadha VP, Huang CY, Kuo WW. Diallyl Trisulfide Suppresses High-Glucose-Induced Cardiomyocyte Apoptosis by Targeting Reactive Oxygen Species-Mediated Hypoxia-Inducible Factor-1α/Insulin-like Growth Factor Binding Protein 3 Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11696-11708. [PMID: 34558885 DOI: 10.1021/acs.jafc.1c02384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It has been reported that 80% of diabetic patients die due to cardiovascular diseases. We previously demonstrated that activated hypoxia-inducible factor-1α (HIF-1 α)/insulin-like growth factor binding protein-3 (IGFBP-3) signaling by reactive oxygen species (ROS)-regulated prolyl hydroxylase domain-containing protein (PHD) is involved in high-glucose (HG)-induced cardiac apoptosis. Diallyl trisulfide (DATS), a garlic component, shows the strongest inhibitory effect on diabetic cardiomyopathy. In this study, we investigated whether HIF-1α/IGFBP-3 signaling governs the antiapoptotic effect by DATS on HG-exposed cardiomyocytes. It was observed that significantly increased levels of cell apoptosis and decreased Akt phosphorylation were reversed by DATS in HG-exposed cardiac cells. H2O2 and PHD small interfering RNA treatments increased HIF-1α and IGFBP-3 protein levels, which were decreased by DATS treatment. Overexpression of HIF-1α and IGFBP-3 increased HG-induced cell apoptosis, which was suppressed by DATS. The coimmunoprecipitation assay results showed that DATS not only increased the IGF-1 level and reduced IGFBP-3 level but also suppressed their extracellular association for cardiac cells exposed to HG. Experiments using neonatal cardiomyocytes and hearts showed similar results. These findings indicate that the effect of ROS-regulated PHD on the activation of HIF-1α/IGFBP-3 signaling governs the antiapoptotic effect by DATS on HG-exposed cardiomyocytes.
Collapse
Affiliation(s)
- Kuan-Ho Lin
- College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Emergency Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Yu-Min Wei
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, 100, Sec. 1, Jingmao Road, Beitun District, Taichung 404, Taiwan
| | - Chung-Hung Liu
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, 100, Sec. 1, Jingmao Road, Beitun District, Taichung 404, Taiwan
| | - Jian-Sheng Liu
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, 100, Sec. 1, Jingmao Road, Beitun District, Taichung 404, Taiwan
- China Medical University, Thoracic Department, Beigang Hospital, Yunlin 651, Taiwan
| | - I-Chieh Huang
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, 100, Sec. 1, Jingmao Road, Beitun District, Taichung 404, Taiwan
| | | | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, 100, Sec. 1, Jingmao Road, Beitun District, Taichung 404, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung 406, Taiwan
| |
Collapse
|
44
|
Pandey S, Kuo CH, Chen WST, Yeh YL, Kuo WW, Chen RJ, Day CH, Pai PY, Ho TJ, Huang CY. Perturbed ER homeostasis by IGF-IIRα promotes cardiac damage under stresses. Mol Cell Biochem 2021; 477:143-152. [PMID: 34586566 DOI: 10.1007/s11010-021-04261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/08/2021] [Indexed: 11/26/2022]
Abstract
The heart is a very dynamic pumping organ working perpetually to maintain a constant blood supply to the whole body to transport oxygen and nutrients. Unfortunately, it is also subjected to various stresses based on physiological or pathological conditions, particularly more vulnerable to damages caused by oxidative stress. In this study, we investigate the molecular mechanism and contribution of IGF-IIRα in endoplasmic reticulum stress induction in the heart under doxorubicin-induced cardiotoxicity. Using in vitro H9c2 cells, in vivo transgenic rat cardiac tissues, siRNAs against CHOP, chemical ER chaperone PBA, and western blot experiments, we found that IGF-IIRα overexpression enhanced ER stress markers ATF4, ATF6, IRE1α, and PERK which were further aggravated by DOX treatment. This was accompanied by a significant perturbation in stress-associated MAPKs such as p38 and JNK. Interestingly, PARKIN, a stress responsive cellular protective mediator was significantly downregulated by IGF-IIRα concomitant with decreased expression of ER chaperone GRP78. Furthermore, ER stress-associated pro-apoptotic factor CHOP was increased considerably in a dose-dependent manner followed by elevated c-caspase-12 and c-caspase-3 activities. Conversely, treatment of H9c2 cells with chemical ER chaperone PBA or siRNA against CHOP abolished the IGF-IIRα-induced ER stress responses. Altogether, these findings suggested that IGF-IIRα contributes to ER stress induction and inhibits cellular stress coping proteins while increasing pro-apoptotic factors feeding into a cardio myocyte damage program that eventually paves the way to heart failure.
Collapse
Affiliation(s)
- Sudhir Pandey
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Sports Nutrition, University of Taipei, Taipei, Taiwan
| | | | - Yu-Lan Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cecilia Hsuan Day
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung, Taiwan
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, 970, Taiwan.
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan.
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung, Taiwan.
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan.
| |
Collapse
|
45
|
Lin KH, Ng SC, Paul CR, Chen HC, Zeng RY, Liu JS, Padma VV, Huang CY, Kuo WW. MicroRNA-210 repression facilitates advanced glycation end-product (AGE)-induced cardiac mitochondrial dysfunction and apoptosis via JNK activation. J Cell Biochem 2021; 122:1873-1885. [PMID: 34545968 DOI: 10.1002/jcb.30146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022]
Abstract
Hyperglycemia results in the formation of reactive oxygen species which in turn causes advanced glycation end products (AGEs) formation, leading to diabetic cardiomyopathy. Our previous study showed that AGE-induced reactive oxygen species-dependent apoptosis is mediated via protein kinase C delta (PKCδ)-enhanced mitochondrial damage in cardiomyocytes. By using microRNA (miRNA) database, miRNA-210 was predicted to target c-Jun N-terminal kinase (JNK), which were previously identified as downstream of PKCδ in regulating mitochondrial function. Therefore, we hypothesized that miR-210 mediates PKCδ-dependent upregulation of JNK to cause cardiac mitochondrial damage and apoptosis following AGE exposure. AGE-exposed cells showed activated cardiac JNK, PKCδ, and apoptosis, which were reversed by treatment with a JNK inhibitor and PKCδ-KD (deficient kinase). Cardiac miR-210 and mitochondrial function were downregulated following AGE exposure. Furthermore, JNK was upregulated and involved in AGE-induced mitochondrial damage. Interestingly, luciferase activity of the miR-210 mimic plus JNK WT-3'-untranslated region overexpressed group was significantly lower than that of miR-210 mimic plus JNK MT-3'UTR group, indicating that JNK is a target of miR-210. Moreover, JNK activation induced by AGEs was reduced by treatment with the miR-210 mimic and reversed by treatment with the miR-210 inhibitor, indicating the regulatory function of miR-210 in JNK activation following AGE exposure. Additionally, JNK-dependent mitochondrial dysfunction and apoptosis were reversed following treatment with the miR-210 mimic, while the miR-210 inhibitor showed no effect on JNK-induced mitochondrial dysfunction and apoptosis in AGE-exposed cardiac cells. Taken together, our study showed that PKCδ-enhanced JNK-dependent mitochondrial damage is mediated through the reduction of miR-210 in cardiomyocytes following AGE exposure.
Collapse
Affiliation(s)
- Kuan-Ho Lin
- College of Medicine, China Medical University, Taichung, Taiwan, ROC.,Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Shang-Chuan Ng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC.,PhD Program for Biotechnology Industry, China Medical University, Taichung, Taiwan, ROC
| | - Catherine R Paul
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan, ROC
| | - Hong-Chen Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, ROC.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ren-You Zeng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC.,PhD Program for Biotechnology Industry, China Medical University, Taichung, Taiwan, ROC
| | - Jian-Sheng Liu
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC.,Department of Thoracic, China Medical University Beigang Hospital, Yunlin, Taiwan, ROC
| | - Viswanadha V Padma
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC
| | - Chih-Yang Huang
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan, ROC.,Department of Biotechnology, Translational Research Laboratory, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, Tamil Nadu, India.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, ROC.,Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan, ROC.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, ROC.,PhD Program for Biotechnology Industry, China Medical University, Taichung, Taiwan, ROC
| |
Collapse
|
46
|
Ali A, Kuo W, Kuo C, Lo J, Chen MYC, Daddam JR, Ho T, Viswanadha VP, Shibu MA, Huang C. E3 ligase activity of Carboxyl terminus of Hsc70 interacting protein (CHIP) in Wharton's jelly derived mesenchymal stem cells improves their persistence under hyperglycemic stress and promotes the prophylactic effects against diabetic cardiac damages. Bioeng Transl Med 2021; 6:e10234. [PMID: 34589606 PMCID: PMC8459600 DOI: 10.1002/btm2.10234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 01/28/2023] Open
Abstract
Recent studies indicate that umbilical cord stem cells are cytoprotective against several disorders. One critical limitation in using stem cells is reduction in their viability under stressful conditions, such as diabetes. However, the molecular intricacies responsible for diabetic conditions are not fully elucidated. In this study, we found that high glucose (HG) conditions induced loss of chaperone homeostasis, stabilized PTEN, triggered the downstream signaling cascade, and induced apoptosis and oxidative stress in Wharton's jelly derived mesenchymal stem cells (WJMSCs). Increased Carboxyl terminus of Hsc70 interacting protein (CHIP) expression promoted phosphatase and tensin homolog (PTEN) degradation via the ubiquitin-proteasome system and shortened its half-life during HG stress. Docking studies confirmed the interaction of CHIP with PTEN and FOXO3a with the Bim promoter region. Further, it was found that the chaperone system is involved in CHIP-mediated PTEN proteasomal degradation. CHIP depletion stabilizes PTEN whereas PTEN inhibition showed an inverse effect. CHIP overactivation suppressed the binding of FOXO3a with bim. Coculturing CHIP overexpressed WJMSCs suppressed HG-induced apoptosis and oxidative stress in embryo derived cardiac cell lines. CHIP overexpressing and PTEN silenced WJMSCs ameliorated diabetic effects in streptozotocin (STZ) induced diabetic rats and further improved their body weight and heart weight, and rescued from hyperglycemia-induced cardiac injury. Considering these, the current study suggests that CHIP confers resistance to apoptosis and acts as a potentiation factor in WJMSCs to provide protection from degenerative effects of diabetes.
Collapse
Affiliation(s)
- Ayaz Ali
- Department of Biological Science and TechnologyChina Medical UniversityTaichungTaiwan
| | - Wei‐Wen Kuo
- Department of Biological Science and TechnologyChina Medical UniversityTaichungTaiwan
- Ph.D. Program for Biotechnology Industry, China Medical UniversityTaichungTaiwan
| | - Chia‐Hua Kuo
- Laboratory of Exercise BiochemistryUniversity of TaipeiTaipeiTaiwan
| | - Jeng‐Fan Lo
- Institute of Oral Biology, National Yang‐Ming UniversityTaipeiTaiwan
| | | | - Jayasimha R. Daddam
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
| | - Tsung‐Jung Ho
- Department of Chinese MedicineHualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi UniversityHualienTaiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
| | | | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
| | - Chih‐Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichungTaiwan
- Department of Medical ResearchChina Medical University Hospital, China Medical UniversityTaichungTaiwan
- Department of BiotechnologyAsia UniversityTaichungTaiwan
- Center of General Education, Buddhist Tzu Chi Medical FoundationTzu Chi University of Science and TechnologyHualienTaiwan
| |
Collapse
|
47
|
Tsai YF, Yang JS, Tsai FJ, Lu CC, Chiu YJ, Tsai SC. In Vitro Toxicological Assessment of Gadodiamide in Normal Brain SVG P12 Cells. In Vivo 2021; 35:2621-2630. [PMID: 34410949 DOI: 10.21873/invivo.12544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Magnetic resonance imaging (MRI) is a technique for evaluating patients with primary and metastatic tumors. The contrast agents improve the diagnostic accuracy of MRI. Large quantities of a contrast agent must be administrated into the patient to obtain useful images, which leads to cell injury. Gadolinium has been reported to cause central lobular necrosis of the liver and nephrogenic systemic fibrosis. However, the toxicity caused on brain tissue is uncertain. MATERIALS AND METHODS This study mainly aimed on the in vitro study of high concentration (2 and 5-fold of normal concentration) gadolinium-based contrast agents (GBCAs), gadodiamide (Omniscan®), on normal brain glial SVG P12 cells. MTT assay, DAPI staining, immunofluorescent staining, LysoTracker Red staining, and western blotting analysis were applied on the cells. RESULTS The viability of gadodiamide (1.3, 2.6, 5.2, 13 and 26 mM)-treated SVG P12 cells was significantly reduced after 24 h of incubation. Gadodiamide caused significant autophagic flux at 2.6, 5.2 and 13.0 mM as seen by acridine orange (AO) staining, LC-3-GFP and LysoTracker Red staining. The expression levels of autophagy-related proteins such as beclin-1, ATG-5, ATG-14 and LC-3 II were up-regulated after 24 h of gadodiamide incubation. Autophagy inhibitors including 3-methyladenine (3-MA), chloroquine (CQ) and bafilomycin A1 (Baf) significantly alleviated the autophagic cell death effect of gadodiamide on normal brain glial SVG P12 cells. Gadodiamide induced significant apoptotic effects at 5.2 mM and 13.0 mM as seen by DAPI staining and the pan-caspase inhibitor significantly alleviated the apoptotic effect. Gadodiamide at 5.2 mM and 13.0 mM inhibited antiapoptotic protein expression levels of Bcl-2 and Bcl-XL, while promoted pro-apoptotic protein expression levels of Bax, BAD, cytochrome c, Apaf-1, cleaved-caspase-9 and cleaved-caspase-3. CONCLUSION Normal brain glial SVG P12 cells treated with high concentrations of gadodiamide can undergo autophagy and apoptosis.
Collapse
Affiliation(s)
- Yuh-Feng Tsai
- Department of Diagnostic Radiology, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C.,School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan, R.O.C.,China Medical University Children's Hospital, China Medical University, Taichung, Taiwan, R.O.C
| | - Chi-Cheng Lu
- Department of Sport Performance, National Taiwan University of Sport, Taichung, Taiwan, R.O.C
| | - Yu-Jen Chiu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C.; .,Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
| | - Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C.
| |
Collapse
|
48
|
Exercise renovates H 2S and Nrf2-related antioxidant pathways to suppress apoptosis in the natural ageing process of male rat cortex. Biogerontology 2021; 22:495-506. [PMID: 34251569 DOI: 10.1007/s10522-021-09929-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/30/2021] [Indexed: 01/17/2023]
Abstract
Ageing is a complex biological process that increases the probability of disease and death, which affects the organs of all species. The accumulation of oxidative damage in the brain contributes to a progressive loss of cognitive functions or even declined the energy metabolism. In this study, we tested the effects of exercise training on the apoptosis, survival, and antioxidant signaling pathways in the cerebral cortex of three age groups of male rats; 3, 12, and 18 months. We observed that H2S and the expression of Nrf2-related antioxidant pathways declined with age and increased after exercise training. IGF1R survival pathway was less increased in middle-aged rats; however, significantly increased after exercise training. The expression of mitochondrial-dependent apoptotic pathway components, such as Bak, cytochrome C, and caspase 3 in the ageing control group, were much higher than those of the exercise training groups. This study demonstrated that exercise training could reduce the apoptosis and oxidative stress that accrues throughout ageing, which causes brain damage.
Collapse
|
49
|
Chiu YJ, Tsai FJ, Bau DT, Chang LC, Hsieh MT, Lu CC, Kuo SC, Yang JS. Next‑generation sequencing analysis reveals that MTH‑3, a novel curcuminoid derivative, suppresses the invasion of MDA‑MB‑231 triple‑negative breast adenocarcinoma cells. Oncol Rep 2021; 46:133. [PMID: 34013378 PMCID: PMC8144931 DOI: 10.3892/or.2021.8084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Triple‑negative breast cancer (TNBC) behaves aggressively in the invasive and metastatic states. Our research group recently developed a novel curcumin derivative, (1E,3Z,6E)-3-hydroxy-5-oxohepta-1,3,6-triene-1,7-diyl)bis(2‑methoxy-4,1‑phenylene)bis(3-hydroxy2-hydroxymethyl)-2‑methyl propanoate (MTH‑3), and previous studies showed that MTH‑3 inhibits TNBC proliferation and induces apoptosis in vitro and in vivo with a superior bioavailability and absorption than curcumin. In the present study, the effects of MTH‑3 on TNBC cell invasion were examined using various assays and gelatin zymography, and western blot analysis. Treatment with MTH‑3 inhibited MDA‑MB‑231 cell invasion and migration, as shown by Transwell assay, 3D spheroid invasion assay, and wound healing assay. The results of the gelatin zymography experiments revealed that MTH‑3 decreased matrix metalloproteinase‑9 activity. The potential signaling pathways were revealed by next‑generation sequencing analysis, antibody microarray analysis and western blot analysis. In conclusion, the results of the present study show that, MTH‑3 inhibited tumor cell invasion through the MAPK/ERK/AKT signaling pathway and cell cycle regulatory cascade, providing significant information about the potential molecular mechanisms of the effects of MTH‑3 on TNBC.
Collapse
Affiliation(s)
- Yu-Jen Chiu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan, R.O.C
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan, R.O.C
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetic Center, China Medical University, Taichung 40402, Taiwan, R.O.C
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Da-Tian Bau
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, R.O.C
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan, R.O.C
| | - Ling-Chu Chang
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40402, Taiwan, R.O.C
| | - Min-Tsang Hsieh
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40402, Taiwan, R.O.C
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Chi-Cheng Lu
- Department of Sport Performance, National Taiwan University of Sport, Taichung 40402, Taiwan, R.O.C
| | - Sheng-Chu Kuo
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40402, Taiwan, R.O.C
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, R.O.C
| |
Collapse
|
50
|
Tsai CL, Tsai CW, Chang WS, Lin JC, Hsia TC, Bau DAT. Protective Effects of Baicalin on Arsenic Trioxide-induced Oxidative Damage and Apoptosis in Human Umbilical Vein Endothelial Cells. In Vivo 2021; 35:155-162. [PMID: 33402461 DOI: 10.21873/invivo.12243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIM Arsenic trioxide (As2O3) is an environmental pollutant. However, the detailed mechanisms about As2O3-induced loss of endothelial integrity are unknown. This study aimed at investigating how As2O3 causes endothelial dysfunction and whether baicalin can reverse such dysfunction. MATERIALS AND METHODS Human umbilical vein endothelial cells (HUVECs) were used to examine As2O3-induced oxidative stress, and apoptosis. The influence of baicalin on As2O3-induced endothelial dysfunction were investigated. RESULTS The viability of HUVECs was inhibited by As2O3 and cells underwent apoptosis. As2O3 treatment increased NADPH oxidase activity, and elevated the level of reactive oxygen species (ROS). Formamidopyrimidine DNA-glycosylase- and endonuclease III-digestible adducts were accumulated. Baicalin reversed As2O3-induced apoptosis and As2O3-suppressed cell viability. Baicalin caused a decrease in NADPH oxidase activity, and re-balanced the ROS level. As2O3-induced formamidopyrimidine DNA-glycosylase- and endonuclease III-digestible adducts were down-regulated. CONCLUSION Baicalin was found to have the potential capacity to protect endothelial cells from As2O3-induced cytotoxicity.
Collapse
Affiliation(s)
- Chung-Lin Tsai
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, R.O.C.,Division of Cardiac and Vascular Surgery, Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Jiunn-Cherng Lin
- Division of Cardiology, Department of Internal Medicine, Taichung Veterans General Hospital Chiayi Branch, Chiayi, Taiwan, R.O.C
| | - Te-Chun Hsia
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, R.O.C.; .,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|