1
|
Zádor E. Molecular Targets of 20-Hydroxyecdysone in Mammals, Mechanism of Action: Is It a Calorie Restriction Mimetic and Anti-Aging Compound? Cells 2025; 14:431. [PMID: 40136680 PMCID: PMC11941724 DOI: 10.3390/cells14060431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
The 20-hydroxyecdysone (20E) has been used in traditional medicine for a long time and acquired attention in the last decade as a food supplement and stimulant in physical activities. This polyhydroxylated cholesterol is found in the highest concentration in plants, and it is one of the secondary plant products that has a real hormonal influence in arthropods. Various beneficial effects have been reported in vivo and in vitro for 20E and its related compounds in mammals. Trials for the safety of clinical application showed a remarkably high tolerance in humans. This review aims to assess the latest development in the involvement of various pathways in tissues and organs and look if it is plausible to find a single primary target of this compound. The similarities with agents mimicking calorie restriction and anti-aging effects are also elucidated and discussed.
Collapse
Affiliation(s)
- Ernő Zádor
- Institute of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
2
|
Kruit N, Sluiter TJ, de Vries MR. Role of Perivascular Adipose Tissue in Vein Remodeling. Arterioscler Thromb Vasc Biol 2025. [PMID: 40079141 DOI: 10.1161/atvbaha.124.321692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Perivascular adipose tissue (PVAT) plays a crucial, yet underexplored, role in vein remodeling, which occurs after bypass surgery using a venous graft or creation of arteriovenous fistulae for hemodialysis access. PVAT exhibits significant heterogeneity in phenotype and tissue composition depending on the vascular bed, as well as its anatomic location within the vasculature. Through the excretion of adipokines, cytokines, and chemokines, PVAT can shape the vascular response to local and systemic perturbations. Moreover, the active exchange of cells reinforces the bidirectional cross talk between the vessel wall and PVAT. In this review, we describe the role of PVAT in relation to postinterventional vein remodeling, specifically focusing on the effect of surgery on the PVAT phenotype. Moreover, we discuss the pathophysiological mechanisms that ultimately affect clinical outcomes and highlight the therapeutic potential of PVAT to improve vein remodeling.
Collapse
Affiliation(s)
- Nicky Kruit
- Department of Surgery, Leiden University Medical Center, the Netherlands. (N.K., T.J.S., M.R.d.V.)
- Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands. (N.K., T.J.S., M.R.d.V.)
| | - Thijs J Sluiter
- Department of Surgery, Leiden University Medical Center, the Netherlands. (N.K., T.J.S., M.R.d.V.)
- Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands. (N.K., T.J.S., M.R.d.V.)
| | - Margreet R de Vries
- Department of Surgery, Leiden University Medical Center, the Netherlands. (N.K., T.J.S., M.R.d.V.)
- Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands. (N.K., T.J.S., M.R.d.V.)
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (M.R.d.V.)
| |
Collapse
|
3
|
Zhang X, Guo Z, Li Y, Xu Y. Splicing to orchestrate cell fate. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102416. [PMID: 39811494 PMCID: PMC11729663 DOI: 10.1016/j.omtn.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Alternative splicing (AS) plays a critical role in gene expression by generating protein diversity from single genes. This review provides an overview of the role of AS in regulating cell fate, focusing on its involvement in processes such as cell proliferation, differentiation, apoptosis, and tumorigenesis. We explore how AS influences the cell cycle, particularly its impact on key stages like G1, S, and G2/M. The review also examines AS in cell differentiation, highlighting its effects on mesenchymal stem cells and neurogenesis, and how it regulates differentiation into adipocytes, osteoblasts, and chondrocytes. Additionally, we discuss the role of AS in programmed cell death, including apoptosis and pyroptosis, and its contribution to cancer progression. Importantly, targeting aberrant splicing mechanisms presents promising therapeutic opportunities for restoring normal cellular function. By synthesizing recent findings, this review provides insights into how AS governs cellular fate and offers directions for future research into splicing regulatory networks.
Collapse
Affiliation(s)
- Xurui Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Zhonghao Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yachen Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yungang Xu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| |
Collapse
|
4
|
Li W, Shi J, Wu X, Qiu H, Liu C. Regulatory effects of yam (Dioscorea opposita Thunb.) glycoprotein on energy metabolism in C2C12 and 3T3-L1 cells and on crosstalk between these two cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119013. [PMID: 39481620 DOI: 10.1016/j.jep.2024.119013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Controlling energy and regulating metabolism have been key strategies in the treatment of metabolic disorders such as obesity. Yam glycoprotein (Y-Gly) is a polysaccharide-protein complex extracted from Chinese yam that has beneficial effects on glucose and lipid metabolism. This study aimed to investigate the role of Y-Gly in regulating energy metabolism in C2C12 and 3T3-L1 cells. MATERIALS AND METHODS Y-Gly was subjected to extraction and chemo-profiling. Staining methods, assay kits, Western Blot and transcriptomics were mainly used to determine the role of Y-Gly. Additionally, the study sought to examine the impact of Y-Gly on white adipose browning in 3T3-L1 cells, employing a cell co-culture technique. RESULTS Y-Gly promoted myotube differentiation in C2C12 myoblasts, increased cellular glucose consumption, promoted ATP synthesis and mitochondrial biogenesis, and played an active role in energy expenditure and glycolipid metabolism related pathways such as AMPK and MAPK. The introduction of Y-Gly inhibited lipid accumulation after lipogenesis in 3T3-L1 cells, facilitated induction of white adipose browning related proteins such as PPARγ and UCP1 expression, and the effect was more significant after cell co-culture. CONCLUSIONS Y-Gly regulates glucose and lipid metabolism by activating the key proteins in the aforementioned pathways, and plays a role in energy metabolism regulation through crosstalk between muscle and adipose tissues. This suggests a possible role of Y-Gly in metabolism-related diseases.
Collapse
Affiliation(s)
- Weiye Li
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China
| | - Jian Shi
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China
| | - Xueping Wu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China
| | - Hongyong Qiu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Alpaslan Ağaçdiken A, Göktaş Z. Berberine-induced browning and energy metabolism: mechanisms and implications. PeerJ 2025; 13:e18924. [PMID: 39931072 PMCID: PMC11809318 DOI: 10.7717/peerj.18924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Obesity has become a global pandemic. The approaches researched to prevent it include decreasing energy intake and/or enhancing energy expenditure. Therefore, research on brown adipose tissue is of great importance. Brown adipose tissue is characterized by its high mitochondrial content. Mitochondrial uncoupling protein 1 (UCP1) releases energy as heat instead of chemical energy. Thermogenesis increases energy expenditure. Berberine, a phytochemical widely used in Asian countries, has positive effects on body weight control. While the precise mechanisms behind this effect remain unclear, the adenosine monophosphate-activated protein kinase (AMPK) pathway is known to play a crucial role. Berberine activates AMPK through phosphorylation, significantly impacting brown adipose tissue by enhancing lipolytic activity and increasing the expression of UCP1, peroxisome proliferator-activated receptor γ-co-activator-1α (PGC1α), and PR domain containing 16 (PRDM16). While investigating the mechanism of action of berberine, both the AMPK pathway is being examined in more detail and alternative pathways are being explored. One such pathway is growth differentiation factor 15 (GDF15), known for its appetite-suppressing effect. Berberine's low stability and bioavailability, which are the main obstacles to its clinical use, have been improved through the development of nanotechnological methods. This review examines the potential mechanisms of berberine on browning and summarizes the methods developed to enhance its effect.
Collapse
Affiliation(s)
| | - Zeynep Göktaş
- Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Oh JM, Kim G, Jeong J, Chun S. Compound K promotes thermogenic signature and mitochondrial biogenesis via the UCP1-SIRT3-PGC1α signaling pathway. Biomed Pharmacother 2025; 183:117838. [PMID: 39799670 DOI: 10.1016/j.biopha.2025.117838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/28/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025] Open
Abstract
Compound K (CK), an active ingredient in ginseng, has anti-cancer, anti-inflammatory, and antioxidant properties. However, its effects on thermogenesis and mitochondrial dynamics in white adipose tissue (WAT) adipocytes are not well understood. This study explores CK's impact on thermogenesis and mitochondrial metabolism in cold-exposed mice and mouse stromal vascular fraction (SVF) cells. CK increased the expression of UCP1 and other brown/beige adipocyte markers (Cd137, Cytb, Letm1, Pgc1α, Prdm16, Tbp1, Tbx1, Uqcrc1) and mitochondrial biogenesis/dynamics factors (Cidea, Cox8b, Cycs, Dio2, Drp1, Fis1, Fgf21, Nrf1, Sirt3, Tfam) in 3T3-L1/iWAT SVF cells. CK enhanced mitochondrial respiration, reduced mitochondrial ROS levels, and restored MMP in iWAT SVF cells, leading to the differentiation of WAT into beige adipocytes, and that was also observed in cold-exposed subcutaneous tissue. CK administration to cold-exposed mice reduced fat droplet size and increased the number of mitochondria. Additionally, CK stimulated non-shivering thermogenesis, indicated by the upregulation of thermogenic and mitochondrial division proteins. The browning effect of CK was nullified by SIRT3 knockdown, suggesting that CK induces beige remodeling of WAT by regulating mitochondrial dynamics and SIRT3 expression. These findings suggest CK's potential as a therapeutic agent for obesity and metabolic disorders that promotes the transformation of WAT into a metabolically active beige phenotype.
Collapse
Affiliation(s)
- Jung-Mi Oh
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do 54907, South Korea
| | - Geonhyeong Kim
- Department of Orthopaedic Surgery, Seogwipo Medical Center, Seogwipo-si, Jeju-do 63585, South Korea
| | - Jiho Jeong
- Department of Orthopaedic Surgery, Seogwipo Medical Center, Seogwipo-si, Jeju-do 63585, South Korea
| | - Sungkun Chun
- Department of Physiology, Institute for Medical Sciences, Jeonbuk National University Medical School, Jeonju, Jeollabuk-do 54907, South Korea.
| |
Collapse
|
7
|
Kršková K, Dobrócsyová V, Ferenczyová K, Hricovíniová J, Kaločayová B, Duľová U, Bozorgnia M, Barteková M, Zorad Š. Modification of adipogenesis and oxidative stress by quercetin: positive or negative impact on adipose tissue metabolism of obese diabetic Zucker rats? J Physiol Biochem 2025; 81:137-156. [PMID: 39576482 PMCID: PMC11958396 DOI: 10.1007/s13105-024-01060-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/06/2024] [Indexed: 04/02/2025]
Abstract
Reactive oxygen species (ROS) play a key role in the regulation of adipogenesis. The aim of our study was to investigate the effect of quercetin (QCT) supplement on obese adipose tissue metabolism of 30-week-old diabetic Zucker rats (ZDF), not well examined yet. QCT was administered orally at dose of 20 mg/kg body weight/day for 6 weeks. Adipocytes from subcutaneous adipose tissue (ScWAT) were isolated and their size was evaluated by light microscopy. Gene expression of adipogenic markers in subcutaneous and visceral adipose tissue was determined by real-time PCR and expression of proteins involved in lipid and glucose metabolism was determined in ScWAT by immunoblotting. Obese ZDF rats suffered from diabetes, hyperinsulinemia and had higher index HOMA-IR (Homeostatic Model Assessment for Insulin Resistance). Treatment with QCT had no significant impact on these metabolic disorders in genetic model of obesity and type 2 diabetes used in our study. Nevertheless, QCT reduced expression of inflammatory cytokine tumour necrosis factor alpha in ScWAT and also visceral adipose tissue and up-regulated expression of anti-inflammatory adiponectin in ScWAT. A shift in redox equilibrium was detected via inhibition of pro-oxidant genes by QCT. Furthermore, QCT reduced adipocyte size in ScWAT, down-regulated expression of fatty acid synthase and adipogenic markers, and moreover stimulated expression of proteolytic enzymes. These changes likely resulted in reduced fat deposition in ScWAT, which was reflected in the elevated circulated levels of free fatty acids in QCT-treated obese ZDF rats compared with obese untreated controls. This increase could, at least in part, explain why we did not observe an improvement in systemic metabolic health by QCT in our model. In conclusion, our study suggests that preventive treatment with QCT might be more effective than its administration in the stage of fully developed diabetes, and further research in this area is needed.
Collapse
Affiliation(s)
- Katarína Kršková
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava 4, 84505, Slovakia.
| | - Viktória Dobrócsyová
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava 4, 84505, Slovakia
| | - Kristína Ferenczyová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 84104, Slovakia
| | - Jana Hricovíniová
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, Odbojárov 10, Bratislava, 83232, Slovakia
| | - Barbora Kaločayová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 84104, Slovakia
| | - Ulrika Duľová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 84104, Slovakia
| | - Mahdi Bozorgnia
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava 4, 84505, Slovakia
| | - Monika Barteková
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 84104, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, Bratislava, 81372, Slovakia
| | - Štefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, Bratislava 4, 84505, Slovakia
| |
Collapse
|
8
|
Han YY, Jo HN, Kim BM, Lee JS, Kim JM, Ryu DH, Kim DH, Park CS, Kang BC, Lee YW. Effects of NET-2201 ( Capsicum chinense L. cv.) on brown adipose tissue activation and white adipose tissue browning in high-fat-diet-induced obese mice. Food Sci Biotechnol 2025; 34:769-780. [PMID: 39958175 PMCID: PMC11822149 DOI: 10.1007/s10068-024-01692-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 02/18/2025] Open
Abstract
The present study explored the anti-obesity effects of NET-2201 (Capsicum chinense L. cv.), a non-pungent cultivated variety of chili pepper, and its underlying molecular mechanism in high-fat-diet (HFD)-induced obese mice. Administration of 50 mg/kg NET-2201 significantly inhibited body weight (BW) gain and reduced adipose tissue weight in obese mice. NET-2201 caused improvement in the expression levels of genes associated with lipid metabolism in white adipose tissue (WAT) to near-normal levels. Furthermore, NET-2201 significantly increased peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and uncoupling protein 1 (UCP1) protein expressions in brown adipose tissue (BAT). Moreover, NET-2201 activated WAT browning by altering the expression levels of brown and beige adipocyte-selective genes, including UCP1, PGC-1α, and PR domain containing 16. Our results indicate that dietary NET-2201 mitigates BW gain by activating BAT and inducing WAT browning. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01692-z.
Collapse
Affiliation(s)
- Yoon-Young Han
- Herbal Hormone Research Institute, Naturalendo Tech Co., Ltd, Seongnam, 13486 Republic of Korea
| | - Ha-Neul Jo
- Herbal Hormone Research Institute, Naturalendo Tech Co., Ltd, Seongnam, 13486 Republic of Korea
| | - Bo-Mi Kim
- Herbal Hormone Research Institute, Naturalendo Tech Co., Ltd, Seongnam, 13486 Republic of Korea
| | - Jae-Sun Lee
- Herbal Hormone Research Institute, Naturalendo Tech Co., Ltd, Seongnam, 13486 Republic of Korea
| | - Ji-Min Kim
- Herbal Hormone Research Institute, Naturalendo Tech Co., Ltd, Seongnam, 13486 Republic of Korea
| | - Dae-Ho Ryu
- Herbal Hormone Research Institute, Naturalendo Tech Co., Ltd, Seongnam, 13486 Republic of Korea
| | - Dong-Hee Kim
- Herbal Hormone Research Institute, Naturalendo Tech Co., Ltd, Seongnam, 13486 Republic of Korea
| | - Chan-Sung Park
- Herbal Hormone Research Institute, Naturalendo Tech Co., Ltd, Seongnam, 13486 Republic of Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921 Republic of Korea
| | - Yong-Wook Lee
- Herbal Hormone Research Institute, Naturalendo Tech Co., Ltd, Seongnam, 13486 Republic of Korea
| |
Collapse
|
9
|
Tomasini S, Vigo P, Margiotta F, Scheele US, Panella R, Kauppinen S. The Role of microRNA-22 in Metabolism. Int J Mol Sci 2025; 26:782. [PMID: 39859495 PMCID: PMC11766054 DOI: 10.3390/ijms26020782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
microRNA-22 (miR-22) plays a pivotal role in the regulation of metabolic processes and has emerged as a therapeutic target in metabolic disorders, including obesity, type 2 diabetes, and metabolic-associated liver diseases. While miR-22 exhibits context-dependent effects, promoting or inhibiting metabolic pathways depending on tissue and condition, current research highlights its therapeutic potential, particularly through inhibition strategies using chemically modified antisense oligonucleotides. This review examines the dual regulatory functions of miR-22 across key metabolic pathways, offering perspectives on its integration into next-generation diagnostic and therapeutic approaches while acknowledging the complexities of its roles in metabolic homeostasis.
Collapse
Affiliation(s)
- Simone Tomasini
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
| | - Paolo Vigo
- Resalis Therapeutics Srl, Via E. De Sonnaz 19, 10121 Torino, Italy
| | - Francesco Margiotta
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy;
| | - Ulrik Søberg Scheele
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
| | - Riccardo Panella
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
- Resalis Therapeutics Srl, Via E. De Sonnaz 19, 10121 Torino, Italy
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy;
- European Biomedical Research Institute of Salerno (EBRIS), Via Salvatore de Renzi 50, 84125 Salerno, Italy
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
| |
Collapse
|
10
|
Chávez-Delgado EL, Gastélum-Estrada A, Pérez-Carrillo E, Ramos-Parra PA, Estarrón-Espinosa M, Reza-Zaldívar EE, Hernández-Brenes C, Mora-Godínez S, de Los Santos BE, Guerrero-Analco JA, Monribot-Villanueva JL, Orozco-Sánchez NE, Jacobo-Velázquez DA. Bioactive properties of spearmint, orange peel, and baby sage oleoresins obtained by supercritical CO 2 extraction and their integration into dark chocolate. Food Chem 2025; 463:141306. [PMID: 39303416 DOI: 10.1016/j.foodchem.2024.141306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
This study investigated the potential health benefits of spearmint, orange peel, and baby sage oleoresins extracted using supercritical CO2 and subsequently emulsified. The oleoresins were incorporated into dark chocolate, and their impact on physicochemical properties was evaluated. Characterization revealed rich sources of phenolic compounds, carotenoids, and volatile compounds in these oleoresins. In vitro studies demonstrated anti-obesogenic, antioxidant, anti-inflammatory, and neuroprotective properties of the emulsified oleoresins. However, only physicochemical properties were determined for the formulations of dark chocolate with these emulsified oleoresins. Chocolate formulations fortified with these emulsions displayed a softer texture, lower water activity, and solid-like behavior. The findings suggest that these oleoresins could serve as nutraceutical agents for mitigating metabolic syndrome and associated pathologies. Incorporating them into chocolate matrices offers a practical approach to formulating functional foods. Further research is warranted to explore the preventive and therapeutic efficacy in an in vivo model.
Collapse
Affiliation(s)
- Emily Lorena Chávez-Delgado
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Alejandro Gastélum-Estrada
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Esther Pérez-Carrillo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Perla Azucena Ramos-Parra
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Mirna Estarrón-Espinosa
- Food Techology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Unidad Zapopan, Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico
| | - Edwin Estefan Reza-Zaldívar
- Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Carmen Hernández-Brenes
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Shirley Mora-Godínez
- Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - Beatriz Estefanía de Los Santos
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico
| | - José Antonio Guerrero-Analco
- Red de estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico
| | - Juan Luis Monribot-Villanueva
- Red de estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico
| | | | - Daniel A Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico.
| |
Collapse
|
11
|
Nascimento Júnior JXD, Gomes JDC, Imbroisi Filho R, Valença HDM, Branco JR, Araújo AB, Moreira ADOE, Crepaldi LD, Paixão LP, Ochioni AC, Demaria TM, Leandro JGB, Casanova LM, Sola-Penna M, Zancan P. Dietary caloric input and tumor growth accelerate senescence and modulate liver and adipose tissue crosstalk. Commun Biol 2025; 8:18. [PMID: 39775048 PMCID: PMC11707351 DOI: 10.1038/s42003-025-07451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic alterations are related to tumorigenesis and other age-related diseases that are accelerated by "Westernized" diets. In fact, hypercaloric nutrition is associated with an increased incidence of cancers and faster aging. Conversely, lifespan-extending strategies, such as caloric restriction, impose beneficial effects on both processes. Here, we investigated the metabolic consequences of hypercaloric-induced aging on tumor growth in female mice. Our findings indicate that a high-fat high-sucrose diet increases tumor growth mainly due to the boosted oxidation of glucose and fatty acids. Consequently, through an increased expression of lactate, IGFBP3, and PTHLH, tumors modulate liver and white adipose tissue metabolism. In the liver, the induced tumor increases fibrosis and accelerates the senescence process, despite the lower systemic pro-inflammatory state. Importantly, the induced tumor induces the wasting and browning of white adipose tissue, thereby reversing diet-induced insulin resistance. Finally, we suggest that tumor growth alters liver-adipose tissue crosstalk that upregulates Fgf21, induces senescence, and negatively modulates lipids and carbohydrates metabolism even in caloric-restricted-fed mice.
Collapse
Affiliation(s)
- José Xavier do Nascimento Júnior
- The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Júlia da Conceição Gomes
- The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Imbroisi Filho
- The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helber de Maia Valença
- The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jéssica Ristow Branco
- The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amanda Bandeira Araújo
- The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amanda de Oliveira Esteves Moreira
- The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Letícia Diniz Crepaldi
- The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Pereira Paixão
- The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alan C Ochioni
- The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thainá M Demaria
- The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Gabriel Bernardo Leandro
- The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Livia Marques Casanova
- The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro Sola-Penna
- The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Zancan
- The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Grodecki K, Geers J, Kwiecinski J, Lin A, Slipczuk L, Slomka PJ, Dweck MR, Nerlekar N, Williams MC, Berman D, Marwick T, Newby DE, Dey D. Phenotyping atherosclerotic plaque and perivascular adipose tissue: signalling pathways and clinical biomarkers in atherosclerosis. Nat Rev Cardiol 2025:10.1038/s41569-024-01110-1. [PMID: 39743563 DOI: 10.1038/s41569-024-01110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/04/2025]
Abstract
Computed tomography coronary angiography provides a non-invasive evaluation of coronary artery disease that includes phenotyping of atherosclerotic plaques and the surrounding perivascular adipose tissue (PVAT). Image analysis techniques have been developed to quantify atherosclerotic plaque burden and morphology as well as the associated PVAT attenuation, and emerging radiomic approaches can add further contextual information. PVAT attenuation might provide a novel measure of vascular health that could be indicative of the pathogenetic processes implicated in atherosclerosis such as inflammation, fibrosis or increased vascularity. Bidirectional signalling between the coronary artery and adjacent PVAT has been hypothesized to contribute to coronary artery disease progression and provide a potential novel measure of the risk of future cardiovascular events. However, despite the development of more advanced radiomic and artificial intelligence-based algorithms, studies involving large datasets suggest that the measurement of PVAT attenuation contributes only modest additional predictive discrimination to standard cardiovascular risk scores. In this Review, we explore the pathobiology of coronary atherosclerotic plaques and PVAT, describe their phenotyping with computed tomography coronary angiography, and discuss potential future applications in clinical risk prediction and patient management.
Collapse
Affiliation(s)
- Kajetan Grodecki
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Jolien Geers
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- Department of Cardiology, Centrum Voor Hart- en Vaatziekten (CHVZ), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Andrew Lin
- Monash Victorian Heart Institute and Monash Health Heart, Monash University, Victorian Heart Hospital, Melbourne, Victoria, Australia
| | - Leandro Slipczuk
- Division of Cardiology, Montefiore Healthcare Network/Albert Einstein College of Medicine, New York, NY, USA
| | - Piotr J Slomka
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Marc R Dweck
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Nitesh Nerlekar
- Monash Victorian Heart Institute and Monash Health Heart, Monash University, Victorian Heart Hospital, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michelle C Williams
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Daniel Berman
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Thomas Marwick
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - David E Newby
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Damini Dey
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Uno K, Uchino T, Suzuki T, Sayama Y, Edo N, Uno-Eder K, Morita K, Ishikawa T, Koizumi M, Honda H, Katagiri H, Tsukamoto K. Rspo3-mediated metabolic liver zonation regulates systemic glucose metabolism and body mass in mice. PLoS Biol 2025; 23:e3002955. [PMID: 39854351 PMCID: PMC11759367 DOI: 10.1371/journal.pbio.3002955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/27/2024] [Indexed: 01/26/2025] Open
Abstract
The unique architecture of the liver consists of hepatic lobules, dividing the hepatic features of metabolism into 2 distinct zones, namely the pericentral and periportal zones, the spatial characteristics of which are broadly defined as metabolic zonation. R-spondin3 (Rspo3), a bioactive protein promoting the Wnt signaling pathway, regulates metabolic features especially around hepatic central veins. However, the functional impact of hepatic metabolic zonation, regulated by the Rspo3/Wnt signaling pathway, on whole-body metabolism homeostasis remains poorly understood. In this study, we analyze the local functions of Rspo3 in the liver and the remote actions of hepatic Rspo3 on other organs of the body by using murine models. Rspo3 expression analysis shows that Rspo3 expression patterns are spatiotemporally controlled in the murine liver such that it locates in the pericentral zones and converges after feeding, and the dynamics of these processes are disturbed in obesity. We find that viral-mediated induction of Rspo3 in hepatic tissue of obesity improves insulin resistance and prevents body weight gain by restoring attenuated organ insulin sensitivities, reducing adipose tissue enlargement and reversing overstimulated adaptive thermogenesis. Denervation of the hepatic vagus suppresses these remote effects, derived from hepatic Rspo3 induction, toward adipose tissues and skeletal muscle, suggesting that signals are transduced via the neuronal communication consisting of afferent vagal and efferent sympathetic nerves. Furthermore, the non-neuronal inter-organ communication up-regulating muscle lipid utilization is partially responsible for the ameliorations of both fatty liver development and reduced skeletal muscle quality in obesity. In contrast, hepatic Rspo3 suppression through Cre-LoxP-mediated recombination system exacerbates diabetes due to glucose intolerance and insulin resistance, promotes fatty liver development and decreases skeletal muscle quality, resulting in obesity. Taken together, our study results reveal that modulation of hepatic Rspo3 contributes to maintaining systemic glucose metabolism and body composition via a newly identified inter-organ communication mechanism.
Collapse
Affiliation(s)
- Kenji Uno
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Takuya Uchino
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Takashi Suzuki
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yohei Sayama
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Naoki Edo
- Teikyo Academic Research Center, Tokyo, Japan
| | | | - Koji Morita
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Toshio Ishikawa
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Miho Koizumi
- Field of Human Disease Models, Tokyo Women’s Medical University, Tokyo, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Tokyo Women’s Medical University, Tokyo, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhisa Tsukamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Rao Z, Geng X, Huang P, Wei Q, Liu S, Qu C, Zhao J. Housing temperature influences exercise-induced glucose regulation and expression of exerkines in mice. Exp Physiol 2024. [PMID: 39721028 DOI: 10.1113/ep092319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024]
Abstract
The impact of housing temperature on exercise-induced metabolic adaptations is not well understood, despite extensive research on the benefits of exercise for metabolic health. The aim of this study was to elucidate how housing temperatures influence the molecular responses and metabolic benefits of exercise in mice. Male C57BL/6N mice were housed at either room temperature (RT, 21°C) or in a thermoneutral environment (TN, 29°C) and subjected to either a 6-week or acute exercise regimen. The results demonstrated that chronic exercise in TN conditions significantly improved glucose tolerance, whereas no such improvement was observed in RT conditions. Exercise reduced adipocyte size in inguinal and epididymal white adipose tissue in RT conditions, but no significant exercise-induced browning of inguinal white adipose tissue was detected at either housing temperature. Additionally, housing temperature predominantly influenced key metabolic proteins in skeletal muscle, with exercise and temperature exhibiting interactive effects on glycogen synthase, Glut4 and Pgc-1α. Moreover, the regulation of exerkines, including Fgf21, fetuin-A, irisin, Gdf15, spexin and apelin, was temperature dependent after both long-term and acute exercise. Notably, expression of Metrnl was consistently upregulated in skeletal muscle after long-term exercise in both RT and TN environments, but was downregulated after acute exercise. These findings highlight that environmental temperature critically modulates the metabolic benefits of exercise and the expression of exerkines. The results of this study suggest that conventional RT conditions might obscure the full metabolic effects of exercise. We recommend the use of TN conditions in future research to reduce confounding factors and provide a more accurate assessment of the metabolic benefits of exercise.
Collapse
Affiliation(s)
- Zhijian Rao
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
- College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Xue Geng
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Peng Huang
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Qiangman Wei
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Shijie Liu
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Chaoyi Qu
- College of Physical Education, Hebei Normal University, Hebei, China
| | - Jiexiu Zhao
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
15
|
Md Fauzi F, Hamzah MF, Mahmud MZ, Amanah A, Mohd Noor MH, Zainuddin Z, Lau WK. Phytol and bilimbi phytocompounds induce thermogenic adipocyte differentiation: An in vitro study on potential anti-obesity effects. Heliyon 2024; 10:e40518. [PMID: 39698098 PMCID: PMC11652845 DOI: 10.1016/j.heliyon.2024.e40518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Obesity is a major health concern associated to diabetes, cardiovascular disease, and cancer. Brown adipocytes, which specialise in thermogenesis, offer a potential therapeutic target for obesity prevention and related conditions. This study builds on previous findings of the browning activity of Averrhoa bilimbi hexane fractions and aims to elucidate the underlying mechanisms in vitro. Squalene and phytol, key phytocompounds from bilimbi leaf extract and fractions, were assessed for their ability to induce thermogenic adipocyte using 3T3-L1 preadipocytes and C2C12 myoblasts in vitro models. The result shows that bilimbi fractions F7, F8, and F9, along with squalene and phytol, effectively induced thermogenic adipocyte differentiation. This was evidenced by the upregulation of key markers, including Ucp1, Prdm16, and Pgc1α, and increased expression of the brown adipocyte-specific protein CIDEA in treated 3T3-L1 preadipocytes. Notably, all treatments promoted thermogenic adipocytes differentiation in C2C12 myoblasts via the upregulation of Pgc1α, Ucp1 genes, and UCP1 protein. These findings suggest that bilimbi fractions and its phytocompounds may hold potential as nutraceutical interventions for obesity management.
Collapse
Affiliation(s)
- Farah Md Fauzi
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, National Institutes of Biotechnology Malaysia, Block 5A, Halaman Bukit Gambir, 11700, Gelugor, Penang, Malaysia
| | - Mohamad Faiz Hamzah
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, National Institutes of Biotechnology Malaysia, Block 5A, Halaman Bukit Gambir, 11700, Gelugor, Penang, Malaysia
| | - Muhd Zulkarnain Mahmud
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, National Institutes of Biotechnology Malaysia, Block 5A, Halaman Bukit Gambir, 11700, Gelugor, Penang, Malaysia
| | - Azimah Amanah
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, National Institutes of Biotechnology Malaysia, Block 5A, Halaman Bukit Gambir, 11700, Gelugor, Penang, Malaysia
| | - Mohd Hasnan Mohd Noor
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, National Institutes of Biotechnology Malaysia, Block 5A, Halaman Bukit Gambir, 11700, Gelugor, Penang, Malaysia
| | - Zafarina Zainuddin
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Wai Kwan Lau
- Malaysian Institute of Pharmaceuticals & Nutraceuticals, National Institutes of Biotechnology Malaysia, Block 5A, Halaman Bukit Gambir, 11700, Gelugor, Penang, Malaysia
| |
Collapse
|
16
|
Chen H, Liu P, Yu R, Mohammadtursun N, Aikemu A, Yang X. Swertiamarin ameliorates type 2 diabetes by activating ADRB3/UCP1 thermogenic signals in adipose tissue. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156190. [PMID: 39515102 DOI: 10.1016/j.phymed.2024.156190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/11/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND PURPOSE Swertiamarin (STM), a secoiridoid glycoside from Swertia chirayita (Roxb.) H. Karst, has been shown to decrease body weight, blood glucose, and blood lipids by inhibiting adipose tissue hypertrophy. However, the underlying mechanisms remain unclear. In particular, adipose thermogenesis is a novel avenue for exploring the pharmacological effects of STM. We aim to investigate the efficacy of STM on type 2 diabetes mellitus (T2DM), with a focus on underlying mechanisms, particularly the activation of ADRB3/UCP1 thermogenic signaling pathways. METHODS T2DM model was established by a high-fat diet (HFD) and streptozotocin (STZ) in C57BL/6 J male mice. Mice were given to either 100 or 200 mg kg-1/day of STM, or 200 mg kg-1/day of metformin (Glucophage) via intragastric administration for 7 weeks. In vitro, 3T3-L1 cells were differentiated into adipocytes. Molecular markers related to ADRB3-UCP1 signals, lipolysis, and mitochondrial function were detected. RESULTS STM-treated diabetic mice showed a reduction of body weight, fat mass, and blood glucose/lipids and an improvement in insulin sensitivity. Bioinformatics analysis indicated STM promoted lipid metabolism and mitochondrial function, features by closely associated with adipose thermogenesis. STM upregulated the lipolysis-related genes and p-HSL protein in inguinal subcutaneous white adipose tissue (igSWAT) and brown adipose tissue (BAT). STM-treated mice processed a more active energy metabolism. Additionally, the ADRB3-UCP1 signals, mitochondrial-related genes, and oxidative phosphorylation were improved in igSWAT and BAT. In vitro, we found STM interacted with ADRB3, increasing glucose uptake, glycerol release, ADRB3-UCP1 signals, p-HSL expression, mitochondrial content, oxidative phosphorylation complex expression with improved mitochondrial Δψm, as well as reduced lipid accumulation in adipocytes. All these effects were reversed upon ADRB3 inhibition. CONCLUSION This study identifies a previously unknown role of STM activating ADRB3/UCP1 signals in adipose tissue, suggesting a potential strategy for treating T2DM.
Collapse
MESH Headings
- Animals
- Male
- Thermogenesis/drug effects
- Mice, Inbred C57BL
- Mice
- Uncoupling Protein 1/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Receptors, Adrenergic, beta-3/metabolism
- Iridoid Glucosides/pharmacology
- Diet, High-Fat
- Pyrones/pharmacology
- 3T3-L1 Cells
- Signal Transduction/drug effects
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Blood Glucose/drug effects
- Lipolysis/drug effects
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
Collapse
Affiliation(s)
- Huijian Chen
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Pengxin Liu
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Ruitao Yu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, PR China
| | - Nabijan Mohammadtursun
- Xinjiang Key Laboratory of Hotan Characteristic Chinese Traditional Medicine Research, College of Xinjiang Uyghur Medicine, Hotan 848000, PR China
| | - Ainiwaer Aikemu
- Xinjiang Key Laboratory of Hotan Characteristic Chinese Traditional Medicine Research, College of Xinjiang Uyghur Medicine, Hotan 848000, PR China.
| | - Xinzhou Yang
- International Cooperation Base for Active Substances in Traditional Chinese Medicine in Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, PR China.
| |
Collapse
|
17
|
Schmid A, Liebisch G, Burkhardt R, Belikan H, Köhler S, Steger D, Schweitzer L, Pons-Kühnemann J, Karrasch T, Schäffler A. Dynamics of the human bile acid metabolome during weight loss. Sci Rep 2024; 14:25743. [PMID: 39468179 PMCID: PMC11519931 DOI: 10.1038/s41598-024-75831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Bile acids (BA) are supposed to cause metabolic alterations after bariatric surgery (BS). Here we report the longitudinal dynamics of the human BA metabolome by LC-MS/MS after BS versus low calory diet (LCD) in two obesity cohorts over 12 months. Rapid and persistent oscillations of 23 BA subspecies could be identified with highly specific patterns in BS vs. LCD. TCDCA, GLCA, and TLCA represent most promising candidates for drug development.
Collapse
Affiliation(s)
- Andreas Schmid
- Basic Research Laboratory of Molecular Endocrinology, Adipocyte Biology and Biochemistry, University of Giessen, Giessen, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Hannah Belikan
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Sebastian Köhler
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Daniel Steger
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Leonie Schweitzer
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Jörn Pons-Kühnemann
- Medical Statistics, Institute of Medical Informatics, University of Giessen, Giessen, Germany
| | - Thomas Karrasch
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany
| | - Andreas Schäffler
- Department of Internal Medicine - Endocrinology, Diabetology, Metabolism, University of Giessen, Giessen, Germany.
- Department of Internal Medicine, Giessen University Hospital, Klinikstrasse 33, 35392, Giessen, Germany.
| |
Collapse
|
18
|
Loukas N, Vrachnis D, Antonakopoulos N, Stavros S, Machairiotis N, Fotiou A, Christodoulaki C, Lolos M, Maroudias G, Potiris A, Drakakis P, Vrachnis N. Decoding Apelin: Its Role in Metabolic Programming, Fetal Growth, and Gestational Complications. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1270. [PMID: 39457235 PMCID: PMC11506081 DOI: 10.3390/children11101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024]
Abstract
Placental insufficiency and gestational diabetes, which are both serious pregnancy complications, are linked to altered fetal growth, whether restricted or excessive, and result in metabolic dysfunction, hypoxic/oxidative injury, and adverse perinatal outcomes. Although much research has been carried out in this field, the underlying pathogenetic mechanisms have not as yet been fully elucidated. Particularly because of the role it plays in cardiovascular performance, glucose metabolism, inflammation, and oxidative stress, the adipokine apelin was recently shown to be a potential regulator of fetal growth and metabolic programming. This review investigated the numerous biological actions of apelin in utero and aimed to shed more light on its role in fetal growth and metabolic programming. The expression of the apelinergic system in a number of tissues indicates its involvement in many physiological mechanisms, including angiogenesis, cell proliferation, energy metabolism, inflammation, and oxidative stress. Moreover, it appears that apelin has a major function in disorders such as diabetes mellitus, fetal growth abnormalities, fetal hypoxia, and preeclampsia. We herein describe in detail the regulatory effects exerted by the adipokine apelin on fetal growth and metabolic programming while stressing the necessity for additional research into the therapeutic potential of apelin and its mechanisms of action in pregnancy-related disorders.
Collapse
Affiliation(s)
- Nikolaos Loukas
- Department of Obstetrics and Gynecology, Tzaneio General Hospital, 185 36 Piraeus, Greece
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Dionysios Vrachnis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | | | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Nikolaos Machairiotis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Alexandros Fotiou
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Chryssi Christodoulaki
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Markos Lolos
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Georgios Maroudias
- Department of Obstetrics and Gynecology, Santorini General Hospital, 847 00 Thira, Greece
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Petros Drakakis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | - Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 124 62 Athens, Greece
- Vascular Biology, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK
| |
Collapse
|
19
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
20
|
Tohidi S, Attarzadeh Hosseini SR, Mosaferi Ziaaldini M. The Effects of Obesity, Six Weeks of Aerobic Training, and Cold Water Exposure on the Expression of FNDC5 and UCP1 Genes in Male Wistar Rats. Int J Endocrinol Metab 2024; 22:e142746. [PMID: 40071055 PMCID: PMC11892517 DOI: 10.5812/ijem-142746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/17/2024] [Accepted: 10/18/2024] [Indexed: 03/14/2025] Open
Abstract
Background Obesity is a complex disease that has become increasingly prevalent. While obesity itself is not new, its widespread occurrence is a more recent concern. Stimulating brown adipose tissue (BAT) and promoting the browning of white adipose tissue (bWAT) have shown promise as therapeutic targets to increase energy expenditure and counteract weight gain. Objectives This study aimed to investigate two main aspects. First, we examined how obesity affects the expression of the fibronectin type-III domain containing 5 (FNDC5) and uncoupling protein 1 (UCP1) genes in male Wistar rats. Second, we assessed the effects of six weeks of aerobic exercise, exposure to cold water, and the combination of both on the expression of the FNDC5 and UCP1 genes in obese male Wistar rats. Methods In this experiment, 25 male Wistar rats were randomly assigned to five groups (5 rats per group) after inducing obesity. The groups included: A control group (C), an obesity group (O), an obesity group exposed to cold water (OC), an obesity group engaged in aerobic exercise (OE), and an obesity group exposed to both cold water and aerobic exercise (OCE). The aerobic exercise sessions lasted 30 - 60 minutes, with a speed of 15 - 25 meters per minute. The cold water exposure protocol involved shallow water (2 - 4 cm) with a temperature of 14 - 18°C. The OCE group performed both aerobic and cold water exercises in each session. The expression of the FNDC5 gene in the soleus muscle and the FNDC5 and UCP1 genes in subcutaneous fat was evaluated using Real-Time PCR. All statistical analyses were performed using SPSS software version 16, with a significance level set at P ≤ 0.05. Results Obesity significantly increased the expression of the FNDC5 gene (P = 0.008). After six weeks of aerobic exercise (P = 0.016) or cold water exposure (P = 0.016), there was a significant decrease in FNDC5 gene expression. Surprisingly, the combination of both interventions did not result in a significant effect (P = 0.75). On the other hand, none of the interventions-whether aerobic exercise, cold water exposure, or their combination-had a significant effect on the expression of the UCP1 gene (P > 0.05). Conclusions The increase in FNDC5 gene expression caused by obesity may serve as a compensatory mechanism to cope with the condition. However, both cold water exposure and aerobic exercise appear to mitigate this increase in FNDC5 gene expression through enhanced thermogenesis.
Collapse
|
21
|
Yonemoto E, Ihara R, Tanaka E, Mitani T. Cocoa extract induces browning of white adipocytes and improves glucose intolerance in mice fed a high-fat diet. Biosci Biotechnol Biochem 2024; 88:1188-1198. [PMID: 39025807 DOI: 10.1093/bbb/zbae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Cocoa extract (CE) offers several health benefits, such as antiobesity and improved glucose intolerance. However, the mechanisms remain unclear. Adipose tissue includes white adipose tissue (WAT) and brown adipose tissue. Brown adipose tissue leads to body fat reduction by metabolizing lipids to heat via uncoupling protein 1 (UCP1). The conversion of white adipocytes into brown-like adipocytes (beige adipocytes) is called browning, and it contributes to the anti-obesity effect and improved glucose tolerance. This study aimed to evaluate the effect of CE on glucose tolerance in terms of browning. We found that dietary supplementation with CE improved glucose intolerance in mice fed a high-fat diet, and it increased the expression levels of Ucp1 and browning-associated gene in inguinal WAT. Furthermore, in primary adipocytes of mice, CE induced Ucp1 expression through β3-adrenergic receptor stimulation. These results suggest that dietary CE improves glucose intolerance by inducing browning in WAT.
Collapse
MESH Headings
- Animals
- Diet, High-Fat/adverse effects
- Glucose Intolerance/drug therapy
- Glucose Intolerance/metabolism
- Cacao/chemistry
- Plant Extracts/pharmacology
- Mice
- Uncoupling Protein 1/metabolism
- Uncoupling Protein 1/genetics
- Male
- Adipocytes, White/drug effects
- Adipocytes, White/metabolism
- Mice, Inbred C57BL
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Receptors, Adrenergic, beta-3/metabolism
- Receptors, Adrenergic, beta-3/genetics
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipocytes, Brown/drug effects
- Adipocytes, Brown/metabolism
Collapse
Affiliation(s)
- Eito Yonemoto
- D ivision of Food Science and Biotechnology, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Risa Ihara
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Kamiina, Nagano, Japan
| | - Emi Tanaka
- D ivision of Food Science and Biotechnology, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Takakazu Mitani
- D ivision of Food Science and Biotechnology, Graduated School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Kamiina, Nagano, Japan
| |
Collapse
|
22
|
Boychenko S, Abdullina A, Laktyushkin VS, Brovin A, Egorov AD. Assessment of Adipocyte Transduction Using Different AAV Capsid Variants. Pharmaceuticals (Basel) 2024; 17:1227. [PMID: 39338389 PMCID: PMC11435061 DOI: 10.3390/ph17091227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Adeno-associated viruses (AAVs) are widely used as viral vectors for gene delivery in mammalian cells. We focused on the efficacy of the transduction of AAV2/5, 2/6, 2/8 and 2/9 expressing GFP in preadipocyte cells by live imaging microscopy using IncuCyte S3 and flow cytometry. METHODS Three transduction modes in 3T3-L1 preadipocyte cells assessed: AAV transduction in 3T3-L1 preadipocyte cells, transduction with further differentiation into mature adipocyte-like cells and the transduction of differentiated 3T3-L1 adipocytes. For the in vivo study, we injected AAV2/6, AAV2/8 and AAV2/9 in adipose tissue of C57BL6 mice, and the transduction capacity of AAV2/6, along with AAV2/8 and AAV2/9 was evaluated. RESULTS AAV2/6 demonstrated the highest transduction efficiency in 3T3-L1 preadipocytes, as it was 1.5-2-fold more effective than AAV2/5, and AAV2/8 in the range of viral concentrations from 2 × 104 to 1.6 × 105 VG/cell. AAV2/5 and AAV2/8 showed transduction efficiencies similar to each other. The expression of GFP under the CMV promoter remained stable for up to 20 days. The induction of 3T3-L1 differentiation in three days after AAV transduction did not alter the GFP expression level, and AAV2/6 showed the best transduction efficiency. AAV2/6 demonstrated the ability to transduce mature adipocytes. These results were confirmed by in vivo studies on C57BL6 mice. AAV2/6 had the highest transducing activity on both inguinal and interscapular adipose tissue. CONCLUSIONS Thus, AAV2/6 has demonstrated higher transduction efficacy compared to AAV2/5, AAV2/8 and AAV2/9 both in 3T3-L1 adipocytes and adipose tissue in vivo, which proves its usability along with AAV2/8 and AAV2/9 for gene delivery to adipocytes.
Collapse
Affiliation(s)
- Stanislav Boychenko
- Gene Therapy Department, Science Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (A.A.); (A.B.)
| | - Alina Abdullina
- Gene Therapy Department, Science Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (A.A.); (A.B.)
| | - Viktor S. Laktyushkin
- Resource Center for Cell Technologies, Laboratory Complex, Sirius University of Science and Technology, 354340 Sirius, Russia;
| | - Andrew Brovin
- Gene Therapy Department, Science Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (A.A.); (A.B.)
| | - Alexander D. Egorov
- Gene Therapy Department, Science Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (A.A.); (A.B.)
| |
Collapse
|
23
|
Díez-Sainz E, Milagro FI, Aranaz P, Riezu-Boj JI, Lorente-Cebrián S. Plant miR6262 Modulates the Expression of Metabolic and Thermogenic Genes in Human Hepatocytes and Adipocytes. Nutrients 2024; 16:3146. [PMID: 39339747 PMCID: PMC11435339 DOI: 10.3390/nu16183146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Edible plants have been linked to the mitigation of metabolic disturbances in liver and adipose tissue, including the decrease of lipogenesis and the enhancement of lipolysis and adipocyte browning. In this context, plant microRNAs could be key bioactive molecules underlying the cross-kingdom beneficial effects of plants. This study sought to explore the impact of plant-derived microRNAs on the modulation of adipocyte and hepatocyte genes involved in metabolism and thermogenesis. METHODS Plant miR6262 was selected as a candidate from miRBase for the predicted effect on the regulation of human metabolic genes. Functional validation was conducted after transfection with plant miRNA mimics in HepG2 hepatocytes exposed to free fatty acids to mimic liver steatosis and hMADs cells differentiated into brown-like adipocytes. RESULTS miR6262 decreases the expression of the predicted target RXRA in the fatty acids-treated hepatocytes and in brown-like adipocytes and affects the expression profile of critical genes involved in metabolism and thermogenesis, including PPARA, G6PC, SREBF1 (hepatocytes) and CIDEA, CPT1M and PLIN1 (adipocytes). Nevertheless, plant miR6262 mimic transfections did not decrease hepatocyte lipid accumulation or stimulate adipocyte browning. CONCLUSIONS these findings suggest that plant miR6262 could have a cross-kingdom regulation relevance through the modulation of human genes involved in lipid and glucose metabolism and thermogenesis in adipocytes and hepatocytes.
Collapse
Affiliation(s)
- Ester Díez-Sainz
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula Aranaz
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - José I. Riezu-Boj
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (E.D.-S.); (P.A.); (J.I.R.-B.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Silvia Lorente-Cebrián
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, 50009 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza- Centro de Investigación y Tecnología Agroalimentaria (CITA), 50013 Zaragoza, Spain
- Aragón Health Research Institute (IIS-Aragon), 50009 Zaragoza, Spain
| |
Collapse
|
24
|
Zhang D, Cheng H, Wu J, Zhou Y, Tang F, Liu J, Feng W, Peng C. The energy metabolism-promoting effect of aconite is associated with gut microbiota and bile acid receptor TGR5-UCP1 signaling. Front Pharmacol 2024; 15:1392385. [PMID: 39323631 PMCID: PMC11422068 DOI: 10.3389/fphar.2024.1392385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/18/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction As a widely used traditional Chinese medicine with hot property, aconite can significantly promote energy metabolism. However, it is unclear whether the gut microbiota and bile acids contribute to the energy metabolism-promoting properties of aconite. The aim of this experiment was to verify whether the energy metabolism-promoting effect of aconite aqueous extract (AA) is related to gut microbiota and bile acid (BA) metabolism. Methods The effect of AA on energy metabolism in rats was detected based on body weight, body temperature, and adipose tissue by HE staining and immunohistochemistry. In addition, 16S rRNA high-throughput sequencing and targeted metabolomics were used to detect changes in gut microbiota and BA concentrations, respectively. Antibiotic treatment and fecal microbiota transplantation (FMT) were also performed to demonstrate the importance of gut microbiota. Results Rats given AA experienced an increase in body temperature, a decrease in body weight, and an increase in BAT (brown adipose tissue) activity and browning of WAT (white adipose tissue). Sequencing analysis and targeted metabolomics indicated that AA modulated gut microbiota and BA metabolism. The energy metabolism promotion of AA was found to be mediated by gut microbiota, as demonstrated through antibiotic treatment and FMT. Moreover, the energy metabolism-promoting effect of aconite is associated with the bile acid receptor TGR5 (Takeda G-protein-coupled receptor 5)-UCP1 (uncoupling protein 1) signaling pathway. Conclusion The energy metabolism-promoting effect of aconite is associated with gut microbiota and bile acid receptor TGR5-UCP1 signaling.
Collapse
Affiliation(s)
- Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
25
|
Hu Y, Huang Y, Jiang Y, Weng L, Cai Z, He B. The Different Shades of Thermogenic Adipose Tissue. Curr Obes Rep 2024; 13:440-460. [PMID: 38607478 DOI: 10.1007/s13679-024-00559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE OF REVIEW By providing a concise overview of adipose tissue types, elucidating the regulation of adipose thermogenic capacity in both physiological contexts and chronic wasting diseases (a protracted hypermetabolic state that precipitates sustained catabolism and consequent progressive corporeal atrophy), and most importantly, delving into the ongoing discourse regarding the role of adipose tissue thermogenic activation in chronic wasting diseases, this review aims to provide researchers with a comprehensive understanding of the field. RECENT FINDINGS Adipose tissue, traditionally classified as white, brown, and beige (brite) based on its thermogenic activity and potential, is intricately regulated by complex mechanisms in response to exercise or cold exposure. This regulation is adipose depot-specific and dependent on the duration of exposure. Excessive thermogenic activation of adipose tissue has been observed in chronic wasting diseases and has been considered a pathological factor that accelerates disease progression. However, this conclusion may be confounded by the detrimental effects of excessive lipolysis. Recent research also suggests that such activation may play a beneficial role in the early stages of chronic wasting disease and provide potential therapeutic effects. A more comprehensive understanding of the changes in adipose tissue thermogenesis under physiological and pathological conditions, as well as the underlying regulatory mechanisms, is essential for the development of novel interventions to improve health and prevent disease.
Collapse
Affiliation(s)
- Yunwen Hu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yijie Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yangjing Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lvkan Weng
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
26
|
Dowker-Key PD, Jadi PK, Gill NB, Hubbard KN, Elshaarrawi A, Alfatlawy ND, Bettaieb A. A Closer Look into White Adipose Tissue Biology and the Molecular Regulation of Stem Cell Commitment and Differentiation. Genes (Basel) 2024; 15:1017. [PMID: 39202377 PMCID: PMC11353785 DOI: 10.3390/genes15081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
White adipose tissue (WAT) makes up about 20-25% of total body mass in healthy individuals and is crucial for regulating various metabolic processes, including energy metabolism, endocrine function, immunity, and reproduction. In adipose tissue research, "adipogenesis" is commonly used to refer to the process of adipocyte formation, spanning from stem cell commitment to the development of mature, functional adipocytes. Although, this term should encompass a wide range of processes beyond commitment and differentiation, to also include other stages of adipose tissue development such as hypertrophy, hyperplasia, angiogenesis, macrophage infiltration, polarization, etc.… collectively, referred to herein as the adipogenic cycle. The term "differentiation", conversely, should only be used to refer to the process by which committed stem cells progress through distinct phases of subsequent differentiation. Recognizing this distinction is essential for accurately interpreting research findings on the mechanisms and stages of adipose tissue development and function. In this review, we focus on the molecular regulation of white adipose tissue development, from commitment to terminal differentiation, and examine key functional aspects of WAT that are crucial for normal physiology and systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Praveen Kumar Jadi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Katelin N. Hubbard
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Elshaarrawi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Naba D. Alfatlawy
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| |
Collapse
|
27
|
Suryaningtyas IT, Lee DS, Je JY. Brown Algae Ecklonia cava Extract Modulates Adipogenesis and Browning in 3T3-L1 Preadipocytes through HO-1/Nrf2 Signaling. Mar Drugs 2024; 22:330. [PMID: 39195446 PMCID: PMC11355876 DOI: 10.3390/md22080330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
This study explores the anti-obesity effects of the ethyl acetate extract of Ecklonia cava (EC-ETAC) on 3T3-L1 preadipocytes, focusing on its impact on adipogenesis, lipolysis, and adipose browning via the HO-1/Nrf2 pathway. Western blot analysis revealed that EC-ETAC significantly inhibited adipogenic transcription factors (PPARγ, C/EBPα, SREBP-1) and lipogenesis-related proteins (FAS, LPL). Concurrently, EC-ETAC enhanced lipolytic markers (p-AMPK, p-HSL) and adipose browning-related proteins (UCP-1, PGC-1α), indicating its role in promoting lipolysis and adipose browning. The inhibition of HO-1 by zinc protoporphyrin (ZnPP) significantly reversed these effects, underscoring the critical role of HO-1 in mediating the anti-obesity properties of EC-ETAC. Additionally, fluorescence measurements and Oil Red O staining confirmed the reduction of lipid accumulation and oxidative stress upon EC-ETAC treatment. These findings suggest that EC-ETAC exerts its anti-obesity effects by modulating the HO-1/Nrf2 pathway, which is crucial for regulating adipogenesis, lipolysis, and adipose browning. This study highlights the potential of EC-ETAC as a natural therapeutic agent for obesity management and supports further research into its clinical applications. By targeting the HO-1/Nrf2 pathway, EC-ETAC could offer a novel approach to enhancing energy expenditure and reducing fat mass, thereby improving metabolic health.
Collapse
Affiliation(s)
- Indyaswan T. Suryaningtyas
- Department of Food and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
- Research Center for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta 55861, Indonesia
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea (MABIK), Seochun 33662, Republic of Korea;
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
28
|
Stojchevski R, Chandrasekaran P, Hadzi-Petrushev N, Mladenov M, Avtanski D. Adipose Tissue Dysfunction Related to Climate Change and Air Pollution: Understanding the Metabolic Consequences. Int J Mol Sci 2024; 25:7849. [PMID: 39063092 PMCID: PMC11277516 DOI: 10.3390/ijms25147849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity, a global pandemic, poses a major threat to healthcare systems worldwide. Adipose tissue, the energy-storing organ during excessive energy intake, functions as a thermoregulator, interacting with other tissues to regulate systemic metabolism. Specifically, brown adipose tissue (BAT) is positively associated with an increased resistance to obesity, due to its thermogenic function in the presence of uncoupled protein 1 (UCP1). Recently, studies on climate change and the influence of environmental pollutants on energy homeostasis and obesity have drawn increasing attention. The reciprocal relationship between increasing adiposity and increasing temperatures results in reduced adaptive thermogenesis, decreased physical activity, and increased carbon footprint production. In addition, the impact of climate change makes obese individuals more prone to developing type 2 diabetes mellitus (T2DM). An impaired response to heat stress, compromised vasodilation, and sweating increase the risk of diabetes-related comorbidities. This comprehensive review provides information about the effects of climate change on obesity and adipose tissue, the risk of T2DM development, and insights into the environmental pollutants causing adipose tissue dysfunction and obesity. The effects of altered dietary patterns on adiposity and adaptation strategies to mitigate the detrimental effects of climate change are also discussed.
Collapse
Affiliation(s)
- Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10003, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | | | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.); (M.M.)
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10003, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
29
|
García-García RM, Jaramillo-Flores ME. Effect of Arthrospira maxima Phycobiliproteins, Rosiglitazone, and 17β-Estradiol on Lipogenic and Inflammatory Gene Expression during 3T3-L1 Preadipocyte Cell Differentiation. Int J Mol Sci 2024; 25:7566. [PMID: 39062809 PMCID: PMC11277109 DOI: 10.3390/ijms25147566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The study evaluated the effects of Arthrospira maxima phycobiliproteins (PBPs), rosiglitazone (RSG), and 17β-estradiol (E) on the differentiation process of 3T3-L1 cells and on their regulation of lipogenic and inflammatory gene expression at different stages of the process. The results showed that phycobiliproteins promoted cell proliferation after 24 h of treatment. Furthermore, for all three treatments, the regulation of the highest number of markers occurred on days 6 and 12 of differentiation, regardless of when the treatment was applied. Phycobiliproteins reduced lipid droplet accumulation on days 3, 6, 10, and 13 of the adipogenic process, while rosiglitazone showed no differences compared to the control. On day 6, both phycobiliproteins and rosiglitazone positively regulated Acc1 mRNA. Meanwhile, all three treatments negatively regulated Pparγ and C/ebpα. Phycobiliproteins and estradiol also negatively regulated Ucp1 and Glut4 mRNAs. Rosiglitazone and estradiol, on the other hand, negatively regulated Ppara and Il-6 mRNAs. By day 12, phycobiliproteins and rosiglitazone upregulated Pparγ mRNA and negatively regulated Tnfα and Il-1β. Additionally, phycobiliproteins and estradiol positively regulated Il-6 and negatively regulated Ppara, Ucp2, Acc1, and Glut4. Rosiglitazone and estradiol upregulate C/ebpα and Ucp1 mRNAs. The regulation exerted by phycobiliproteins on the mRNA expression of the studied markers was dependent on the phase of cell differentiation. The results of this study highlight that phycobiliproteins have an anti-adipogenic and anti-inflammatory effect by reducing the expression of adipogenic, lipogenic, and inflammatory genes in 3T3-L1 cells at different stages of the differentiation process.
Collapse
Affiliation(s)
| | - María Eugenia Jaramillo-Flores
- Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City CP 07738, Mexico;
| |
Collapse
|
30
|
Jahromi AS, Erfanian S, Roustazadeh A. Association between OX40L polymorphism and type 2 diabetes mellitus in Iranians. BMC Med Genomics 2024; 17:184. [PMID: 38982447 PMCID: PMC11232195 DOI: 10.1186/s12920-024-01958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
INTRODUCTION Diabetes mellitus (DM) is one of the leading causes of morbidity and mortality worldwide. It is a multifactorial disease that genetic and environmental factors contribute to its development. The aim of the study was to investigate the association of OX40L promoter gene polymorphisms with type 2 diabetes mellitus (T2DM) in Iranians. MATERIALS AND METHODS Three hundred and sixty-eight subjects including 184 healthy subjects and 184 T2DM patients were enrolled in our study. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was applied to detect genotype and allele frequencies of rs3850641, rs1234313 and rs10912580. In addition, SNPStats web tool was applied to estimate haplotype frequency and linkage disequilibrium (LD). RESULTS The distribution of tested polymorphisms was statistically different between the T2DM patients and healthy subjects (P < 0.01). rs1234313 AG (OR = 0.375, 95% CI = 0.193-0.727, P = 0.004) and rs10912580 AG (OR = 0.351, 95% CI = 0.162-0.758, P = 0.008) genotypes were associated with the decreased risk of T2DM in Iranians. Moreover, our prediction revealed that AAG (OR = 0.46, 95% CI= (0.28-0.76), P = 0.0028) and GAG (OR = 0.24, 95% CI= (0.13-0.45), P < 0.0001) haplotypes were related to the reduced risk of the disease. However, the tested polymorphisms had no effect on biochemical parameters and body mass index (BMI) in the patient group (P > 0.05). CONCLUSION Our findings revealed that OX40L promoter gene polymorphisms are associated with T2DM. Moreover, genotype and allelic variations were related to the decreased risk of T2DM in Iranians. Further studies are recommended to show whether these polymorphic variations could affect OX40/OX40L interaction or OX40L phenotype.
Collapse
Affiliation(s)
- Abdolreza Sotoodeh Jahromi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
- Immunology Department, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Saiedeh Erfanian
- Department of Biochemistry, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Advanced Medical Sciences and Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Abazar Roustazadeh
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.
- Department of Biochemistry, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
- Department of Advanced Medical Sciences and Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
| |
Collapse
|
31
|
Chen J, Pan Y, Lu Y, Fang X, Ma T, Chen X, Wang Y, Fang X, Zhang C, Song C. The Function and Mechanism of Long Noncoding RNAs in Adipogenic Differentiation. Genes (Basel) 2024; 15:875. [PMID: 39062654 PMCID: PMC11275360 DOI: 10.3390/genes15070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Adipocytes are crucial for maintaining energy balance. Adipocyte differentiation involves distinct stages, including the orientation stage, clone amplification stage, clone amplification termination stage, and terminal differentiation stage. Understanding the regulatory mechanisms governing adipogenic differentiation is essential for comprehending the physiological processes and identifying potential biomarkers and therapeutic targets for metabolic diseases, ultimately improving glucose and fat metabolism. Adipogenic differentiation is influenced not only by key factors such as hormones, the peroxisome proliferator-activated receptor (PPAR) family, and the CCATT enhancer-binding protein (C/EBP) family but also by noncoding RNA, including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA). Among these, lncRNA has been identified as a significant regulator in adipogenic differentiation. Research has demonstrated various ways in which lncRNAs contribute to the molecular mechanisms of adipogenic differentiation. Throughout the adipogenesis process, lncRNAs modulate adipocyte differentiation and development by influencing relevant signaling pathways and transcription factors. This review provides a brief overview of the function and mechanism of lncRNAs in adipogenic differentiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (J.C.); (Y.P.); (Y.L.); (X.F.); (T.M.); (X.C.); (Y.W.); (X.F.)
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (J.C.); (Y.P.); (Y.L.); (X.F.); (T.M.); (X.C.); (Y.W.); (X.F.)
| |
Collapse
|
32
|
Wang Z, Chen D, Peng L, Wang X, Ding Q, Li L, Xu T. Serum γ-glutamyltransferase levels and obesity status changes the risk of prehypertension in Chinese adults. Prev Med Rep 2024; 43:102792. [PMID: 38975280 PMCID: PMC11225693 DOI: 10.1016/j.pmedr.2024.102792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Objective It's well known that γ-Glutamyltransferase (γ-GGT) and obesity plays an important role in the development of preHT. However, the effect of γ-GGT on preHT in populations with different obesity status remains unclear. Methods From February 2014 to January 2018, a total of 20,368 participants were enrolled in this study after excluding those with hypertension and liver diseases. Fasting blood samples were collected to measure γ-GGT and blood lipid levels and glucose indices. Demographic and clinical parameters such as sex, age, height, weight, neck circumference (NC), waist circumference (WC), hip circumference (HC), and body fat ratio (BFR); and information on smoking and alcohol consumption were collected by trained medical professionals. Results Participants were divided into three groups based on obesity status. The prevalence of preHT was 83.5 % in the obesity group was higher than that in the overweight group (58.9 %) and the normal group (47.1 %). γ-GGT in different categories of obesity indices were significantly different, and higher obesity indices were found with higher γ-GGT levels. The interaction of γ-GGT and obesity indices such as NC, WC, HC, and BFR on the prevalence of preHT was significant (P = 0.028, 0.002, 0.007, and 0.034, respectively). Serum γ-GGT was found to be positively associated with preHT in participants with normal and overweight body mass indices. Conclusion Our results indicate that γ-GGT is a risk factor for preHT in participants who are nonobese, and that the obesity indices NC, WC, HC, BFR, and γ-GGT were contributing factors in increasing the risk of preHT.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Endocrinology, The Second People’s Hospital of Lianyungang, Jiangsu, China
| | - Dongjun Chen
- Department of Cardiac Function Examine, The Second People’s Hospital of Lianyungang, Jiangsu, China
| | - Lingling Peng
- Department of Endocrinology, The Second People’s Hospital of Lianyungang, Jiangsu, China
| | - Xian Wang
- Department of Ultrasonography, The Second People’s Hospital of Lianyungang, Jiangsu, China
| | - Qun Ding
- Department of Endocrinology, The Second People’s Hospital of Lianyungang, Jiangsu, China
| | - Liang Li
- Department of Ultrasonography, The Second People’s Hospital of Lianyungang, Jiangsu, China
| | - Tongdao Xu
- Department of Endocrinology, The Second People’s Hospital of Lianyungang, Jiangsu, China
| |
Collapse
|
33
|
Nikolic M, Jeremic N, Lazarevic N, Stojanovic A, Milojevic Samanovic A, Novakovic J, Zivkovic V, Nikolic M, Nedeljkovic N, Mitrovic S, Jakovljevic V. Sacubitril/valsartan promotes white adipose tissue browning in rats with metabolic syndrome through activation of mTORC1. Biofactors 2024; 50:772-793. [PMID: 38284316 DOI: 10.1002/biof.2040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/06/2024] [Indexed: 01/30/2024]
Abstract
In addition to their usual use in the treatment of cardiovascular disease, weak evidence is available for the potential of combined use of neprilysin inhibitor (sacubitril) and AT1 receptor antagonist (valsartan) to promote browning of white adipose tissue (WAT) in rats with metabolic syndrome (MetS). This study involved 32 male Wistar albino rats divided into four groups: CTRL-healthy control rats; ENT-healthy rats treated with sacubitril/valsartan; MS-rats with MetS; MS + ENT-rats with MetS treated with sacubitril/valsartan. After finishing the experimental protocol, different WAT depots were isolated for further analysis of molecular pathways. Molecular docking and molecular dynamics studies were used for in silico assessment of the binding affinity of sacubitril and valsartan towards subunits of mechanistic target of rapamycin complex 1 (mTORC1). Sacubitril/valsartan treatment markedly diminished morphological changes in adipose tissue, resulting in smaller lipid size and multilocular lipid droplet structure in WAT. We showed significantly higher protein expression of uncoupling protein-1 (UCP-1) and mTORC1 in WAT of MS + ENT rats, correlating with increased relative gene expression of browning-related markers in tissue of rats treated with sacubitril/valsartan compared with MS group of rats. In silico analysis showed that sacubitrilat and valsartan exhibited the highest binding affinity against mTOR and mLST8, forming stable complexes with these mTORC1 subunits. The observed results confirmed strong potential of combined sacubitril/valsartan treatment to increase browning markers expression in different WAT depots in MetS condition and to form permanent complexes with mTOR and mLST8 subunits over the time.
Collapse
Affiliation(s)
- Marina Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
| | - Nevena Jeremic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Nevena Lazarevic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Human Pathology, 1st Moscow State Medical, University IM Sechenov, Moscow, Russia
| | - Aleksandra Stojanovic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Andjela Milojevic Samanovic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jovana Novakovic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Milos Nikolic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nikola Nedeljkovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
- Department of Human Pathology, 1st Moscow State Medical, University IM Sechenov, Moscow, Russia
| |
Collapse
|
34
|
Yang S, Liu Y, Wu X, Zhu R, Sun Y, Zou S, Zhang D, Yang X. Molecular Regulation of Thermogenic Mechanisms in Beige Adipocytes. Int J Mol Sci 2024; 25:6303. [PMID: 38928011 PMCID: PMC11203837 DOI: 10.3390/ijms25126303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Adipose tissue is conventionally recognized as a metabolic organ responsible for storing energy. However, a proportion of adipose tissue also functions as a thermogenic organ, contributing to the inhibition of weight gain and prevention of metabolic diseases. In recent years, there has been significant progress in the study of thermogenic fats, particularly brown adipose tissue (BAT). Despite this progress, the mechanism underlying thermogenesis in beige adipose tissue remains highly controversial. It is widely acknowledged that beige adipose tissue has three additional thermogenic mechanisms in addition to the conventional UCP1-dependent thermogenesis: Ca2+ cycling thermogenesis, creatine substrate cycling thermogenesis, and triacylglycerol/fatty acid cycling thermogenesis. This paper delves into these three mechanisms and reviews the latest advancements in the molecular regulation of thermogenesis from the molecular genetic perspective. The objective of this review is to provide readers with a foundation of knowledge regarding the beige fats and a foundation for future research into the mechanisms of this process, which may lead to the development of new strategies for maintaining human health.
Collapse
Affiliation(s)
- Siqi Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Yingke Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Xiaoxu Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Rongru Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Yuanlu Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Shuoya Zou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (S.Y.); (Y.L.); (X.W.); (R.Z.); (Y.S.); (S.Z.)
| |
Collapse
|
35
|
Lobato S, Castillo-Granada AL, Bucio-Pacheco M, Salomón-Soto VM, Álvarez-Valenzuela R, Meza-Inostroza PM, Villegas-Vizcaíno R. PM 2.5, component cause of severe metabolically abnormal obesity: An in silico, observational and analytical study. Heliyon 2024; 10:e28936. [PMID: 38601536 PMCID: PMC11004224 DOI: 10.1016/j.heliyon.2024.e28936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Obesity is currently one of the most alarming pathological conditions due to the progressive increase in its prevalence. In the last decade, it has been associated with fine particulate matter suspended in the air (PM2.5). The purpose of this study was to explore the mechanistic interaction of PM2.5 with a high-fat diet (HFD) through the differential regulation of transcriptional signatures, aiming to identify the association of these particles with metabolically abnormal obesity. The research design was observational, using bioinformatic methods and an explanatory approach based on Rothman's causal model. We propose three new transcriptional signatures in murine adipose tissue. The sum of transcriptional differences between the group exposed to an HFD and PM2.5, compared to the control group, were 0.851, 0.265, and -0.047 (p > 0.05). The HFD group increased body mass by 20% with two positive biomarkers of metabolic impact. The group exposed to PM2.5 maintained a similar weight to the control group but exhibited three positive biomarkers. Enriched biological pathways (p < 0.05) included PPAR signaling, small molecule transport, adipogenesis genes, cytokine-cytokine receptor interaction, and HIF-1 signaling. Transcriptional regulation predictions revealed CpG islands and common transcription factors. We propose three new transcriptional signatures: FAT-PM2.5-CEJUS, FAT-PM2.5-UP, and FAT-PM2.5-DN, whose transcriptional regulation profile in adipocytes was statistically similar by dietary intake and HFD and exposure to PM2.5 in mice; suggesting a mechanistic interaction between both factors. However, HFD-exposed murines developed moderate metabolically abnormal obesity, and PM2.5-exposed murines developed severe abnormal metabolism without obesity. Therefore, in Rothman's terms, it is concluded that HFD is a sufficient cause of the development of obesity, and PM2.5 is a component cause of severe abnormal metabolism of obesity. These signatures would be integrated into a systemic biological process that would induce transcriptional regulation in trans, activating obesogenic biological pathways, restricting lipid mobilization pathways, decreasing adaptive thermogenesis and angiogenesis, and altering vascular tone thus inducing a severe metabolically abnormal obesity.
Collapse
Affiliation(s)
- Sagrario Lobato
- Departamento de Investigación en Salud, Servicios de Salud del Estado de Puebla, 15 South Street 302, Puebla, Mexico
- Promoción y Educación para la Salud, Universidad Abierta y a Distancia de México. Universidad Avenue 1200, 1st Floor, quadrant 1-2, Xoco, Benito Juarez, 03330, Mexico City, Mexico
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato, Mexico
| | - A. Lourdes Castillo-Granada
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato, Mexico
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Guelatao Avenue 66, Ejército de Oriente Indeco II ISSSTE, Iztapalapa, 09230, Mexico City, Mexico
| | - Marcos Bucio-Pacheco
- Educación Superior, Centro de Estudios, “Justo Sierra”, Surutato, Badiraguato, Mexico
- Facultad de Biología, Universidad Autónoma de Sinaloa, Americas Avenue, Universitarios Blvd., University City, 80040, Culiacán Rosales, Mexico
| | | | | | | | | |
Collapse
|
36
|
Ali NH, Alhamdan NA, Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Batiha GES. Irisin/PGC-1α/FNDC5 pathway in Parkinson's disease: truth under the throes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1985-1995. [PMID: 37819389 DOI: 10.1007/s00210-023-02726-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Parkinson's disease (PD) is considered one of the most common neurodegenerative brain diseases which involves the deposition of α-synuclein. Irisin hormone, a newly discovered adipokine, has a valuable role in diverse neurodegenerative diseases. Therefore, this review aims to elucidate the possible role of the irisin hormone in PD neuropathology. Irisin hormone has a neuroprotective effect against the development and progression of various neurodegenerative disorders by increasing the expression of brain-derived neurotrophic factor (BDNF). Irisin hormone has anti-inflammatory, anti-apoptotic, and anti-oxidative impacts, thereby reducing the expression of the pro-inflammatory cytokines and the progression of neuroinflammation. Irisin-induced PGC-1α could potentially prevent α-synuclein-induced dopaminergic injury, neuroinflammation, and neurotoxicity in PD. Inhibition of NF-κB by irisin improves PGC-1α and FNDC5 signaling pathway with subsequent attenuation of PD neuropathology. Therefore, the irisin/PGC-1α/FNDC5 pathway could prevent dopaminergic neuronal injury. In conclusion, the irisin hormone has a neuroprotective effect through its anti-inflammatory and antioxidant impacts with the amelioration of brain BDNF levels. Further preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Kingdom of Saudi Arabia
| | - Nourah Ahmad Alhamdan
- Department of Medicine, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
37
|
Zhang J, Kibret BG, Vatner DE, Vatner SF. The role of brown adipose tissue in mediating healthful longevity. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:17. [PMID: 39119146 PMCID: PMC11309368 DOI: 10.20517/jca.2024.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
There are two major subtypes of adipose tissue, i.e., white adipose tissue (WAT) and brown adipose tissue (BAT). It has been known for a long time that WAT mediates obesity and impairs healthful longevity. More recently, interest has focused on BAT, which, unlike WAT, actually augments healthful aging. The goal of this review is to examine the role of BAT in mediating healthful longevity. A major role for BAT and its related beige adipose tissue is thermogenesis, as a mechanism to maintain body temperature by producing heat through uncoupling protein 1 (UCP1) or through UCP1-independent thermogenic pathways. Our hypothesis is that healthful longevity is, in part, mediated by BAT. BAT protects against the major causes of impaired healthful longevity, i.e., obesity, diabetes, cardiovascular disorders, cancer, Alzheimer's disease, reduced exercise tolerance, and impaired blood flow. Several genetically engineered mouse models have shown that BAT enhances healthful aging and that their BAT is more potent than wild-type (WT) BAT. For example, when BAT, which increases longevity and exercise performance in mice with disruption of the regulator of G protein signaling 14 (RGS14), is transplanted to WT mice, their exercise capacity is enhanced at 3 days after BAT transplantation, whereas BAT transplantation from WT to WT mice also resulted in increased exercise performance, but only at 8 weeks after transplantation. In view of the ability of BAT to mediate healthful longevity, it is likely that a pharmaceutical analog of BAT will become a novel therapeutic modality.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Berhanu Geresu Kibret
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Dorothy E. Vatner
- Department of Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Stephen F. Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
38
|
Cremonini E, Da Silva LME, Lanzi CR, Marino M, Iglesias DE, Oteiza PI. Anthocyanins and their metabolites promote white adipose tissue beiging by regulating mitochondria thermogenesis and dynamics. Biochem Pharmacol 2024; 222:116069. [PMID: 38387526 DOI: 10.1016/j.bcp.2024.116069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
High-fat diet (HFD) consumption and excess nutrient availability can cause alterations in mitochondrial function and dynamics. We previously showed that anthocyanins (AC) decreased HFD-induced body weight gain and fat deposition. This study investigated: i) the capacity of AC to mitigate HFD-induced alterations in mitochondrial dynamics, biogenesis, and thermogenesis in mouse subcutaneous white adipose tissue (sWAT), and ii) the underlying mechanisms of action of cyanidin-3-O-glucoside (C3G), delphinidin-3-O-glucoside (D3G), and their gut metabolites on mitochondria function/dynamics in 3T3-L1 adipocytes treated with palmitate. Mice were fed control or HFD diets, added or not with 40 mg AC/kg body weight (BW). Compared to control and AC-supplemented mice, HFD-fed mice had fewer sWAT mitochondria that presented alterations of their architecture. AC supplementation prevented HFD-induced decrease of proteins involved in mitochondria biogenesis (PPARγ, PRDM16 and PGC-1α), and thermogenesis (UCP-1), and decreased AMPK phosphorylation. AC supplementation also restored the alterations in sWAT mitochondrial dynamics (Drp-1, OPA1, MNF-2, and Fis-1) and mitophagy (BNIP3L/NIX) caused by HFD consumption. In mature 3T3-L1, C3G, D3G, and their metabolites protocatechuic acid (PCA), 4-hydroxybenzaldehyde (HB), and gallic acid (GA) differentially affected palmitate-mediated decreased cAMP, PKA, AMPK, and SIRT-1 signaling pathways. C3G, D3G, and metabolites also prevented palmitate-mediated decreased expression of PPARγ, PRDM16, PGC-1α, and UCP1. Results suggest that consumption of select AC, i.e. cyanidin and delphinidin, could promote sWAT mitochondriogenesis and improve mitochondria dynamics in the context of HFD/obesity-induced dysmetabolism in part by regulating PKA, AMPK, and SIRT-1 signaling pathways.
Collapse
Affiliation(s)
- Eleonora Cremonini
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Leane M E Da Silva
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | | | - Mirko Marino
- Department of Nutrition, University of California, Davis, CA, USA; Department of Food, Environmental and Nutritional Sciences, University of Milan, Italy
| | - Dario E Iglesias
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA.
| |
Collapse
|
39
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
40
|
CHEN JK, WU Y, LI WZ, HUANG MF, HUANG B, XIE CC, LI JQ, LU Y, CHEN Y. The regulatory effects of electroacupuncture on type 2 innate lymphoid cell (ILC2) function and browning of white adipose tissue in obese rats. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2024; 34:138-146. [DOI: 10.1016/j.wjam.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
41
|
Sinha RA, Yen PM. Metabolic Messengers: Thyroid Hormones. Nat Metab 2024; 6:639-650. [PMID: 38671149 PMCID: PMC7615975 DOI: 10.1038/s42255-024-00986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/15/2024] [Indexed: 04/28/2024]
Abstract
Thyroid hormones (THs) are key hormones that regulate development and metabolism in mammals. In man, the major target tissues for TH action are the brain, liver, muscle, heart, and adipose tissue. Defects in TH synthesis, transport, metabolism, and nuclear action have been associated with genetic and endocrine diseases in man. Over the past few years, there has been renewed interest in TH action and the therapeutic potential of THs and thyromimetics to treat several metabolic disorders such as hypercholesterolemia, dyslipidaemia, non-alcoholic fatty liver disease (NAFLD), and TH transporter defects. Recent advances in the development of tissue and TH receptor isoform-targeted thyromimetics have kindled new hope for translating our fundamental understanding of TH action into an effective therapy. This review provides a concise overview of the historical development of our understanding of TH action, its physiological and pathophysiological effects on metabolism, and future therapeutic applications to treat metabolic dysfunction.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
- Div. Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
42
|
Bellitto V, Gabrielli MG, Martinelli I, Roy P, Nittari G, Cocci P, Palermo FA, Amenta F, Micioni Di Bonaventura MV, Cifani C, Tomassoni D, Tayebati SK. Dysfunction of the Brown Adipose Organ in HFD-Obese Rats and Effect of Tart Cherry Supplementation. Antioxidants (Basel) 2024; 13:388. [PMID: 38671836 PMCID: PMC11047636 DOI: 10.3390/antiox13040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity has a great impact on adipose tissue biology, based on its function as a master regulator of energy balance. Brown adipose tissue (BAT) undergoes remodeling, and its activity declines in obese subjects due to a whitening process. The anti-obesity properties of fruit extracts have been reported. The effects of tart cherry against oxidative stress, inflammation, and the whitening process in the BAT of obese rats were investigated. Intrascapular BAT (iBAT) alterations and effects of Prunus cerasus L. were debated in rats fed for 17 weeks with a high-fat diet (DIO), in DIO supplemented with seed powder (DS), and with seed powder plus the juice (DJS) of tart cherry compared to CHOW rats fed with a normo-caloric diet. iBAT histologic observations revealed a whitening process in DIO rats that was reduced in the DS and DJS groups. A modulation of uncoupling protein-1 (UCP-1) protein and gene expression specifically were detected in the obese phenotype. An upregulation of UCP-1 and related thermogenic genes after tart cherry intake was detected compared to the DIO group. Metabolic adjustment, endoplasmic reticulum stress, protein carbonylation, and the inflammatory microenvironment in the iBAT were reported in DIO rats. The analysis demonstrated an iBAT modulation that tart cherry promoted. In addition to our previous results, these data confirm the protective impact of tart cherry consumption on obesity.
Collapse
Affiliation(s)
- Vincenzo Bellitto
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| | - Maria Gabriella Gabrielli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (M.G.G.); (P.C.); (F.A.P.); (D.T.)
| | - Ilenia Martinelli
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| | - Proshanta Roy
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| | - Giulio Nittari
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| | - Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (M.G.G.); (P.C.); (F.A.P.); (D.T.)
| | - Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (M.G.G.); (P.C.); (F.A.P.); (D.T.)
| | - Francesco Amenta
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| | - Maria Vittoria Micioni Di Bonaventura
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| | - Carlo Cifani
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (M.G.G.); (P.C.); (F.A.P.); (D.T.)
| | - Seyed Khosrow Tayebati
- School of Medicinal Sciences and Health Products, University of Camerino, 62032 Camerino, Italy; (V.B.); (I.M.); (P.R.); (G.N.); (F.A.); (M.V.M.D.B.); (C.C.)
| |
Collapse
|
43
|
Šojat D, Volarić M, Keškić T, Volarić N, Cerovečki V, Trtica Majnarić L. Putting Functional Gastrointestinal Disorders within the Spectrum of Inflammatory Disorders Can Improve Classification and Diagnostics of These Disorders. Biomedicines 2024; 12:702. [PMID: 38540315 PMCID: PMC10967747 DOI: 10.3390/biomedicines12030702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 01/03/2025] Open
Abstract
The spectrum, intensity, and overlap of symptoms between functional gastrointestinal disorders (FGIDs) and other gastrointestinal disorders characterize patients with FGIDs, who are incredibly different in their backgrounds. An additional challenge with regard to the diagnosis of FGID and the applicability of a given treatment is the ongoing expansion of the risk factors believed to be connected to these disorders. Many cytokines and inflammatory cells have been found to cause the continuous existence of a low level of inflammation, which is thought to be a basic pathophysiological process. The idea of the gut-brain axis has been created to offer a basic framework for the complex interactions that occur between the nervous system and the intestinal functions, including the involvement of gut bacteria. In this review paper, we intend to promote the hypothesis that FGIDs should be seen through the perspective of the network of the neuroendocrine, immunological, metabolic, and microbiome pathways. This hypothesis arises from an increased understanding of chronic inflammation as a systemic disorder, that is omnipresent in chronic health conditions. A better understanding of inflammation's role in the pathogenesis of FGIDs can be achieved by clustering markers of inflammation with data indicating symptoms, comorbidities, and psycho-social factors. Finding subclasses among related entities of FGIDs may reduce patient heterogeneity and help clarify the pathophysiology of this disease to allow for better treatment.
Collapse
Affiliation(s)
- Dunja Šojat
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (D.Š.); (M.V.)
| | - Mile Volarić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (D.Š.); (M.V.)
- Department of Gastroenterology and Hepatology, University Clinical Hospital Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina
| | - Tanja Keškić
- Department Biomedicine, Technology and Food Safety, Laboratory of Chemistry and Microbiology, Institute for Animal Husbandry, Autoput Belgrade-Zagreb 16, 11080 Belgrade, Serbia;
| | - Nikola Volarić
- Department of Physiology and Immunology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena ulica 21, 31000 Osijek, Croatia;
| | - Venija Cerovečki
- Department of Family Medicine, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia;
| | - Ljiljana Trtica Majnarić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (D.Š.); (M.V.)
| |
Collapse
|
44
|
Kumari N, Kumari R, Dua A, Singh M, Kumar R, Singh P, Duyar-Ayerdi S, Pradeep S, Ojesina AI, Kumar R. From Gut to Hormones: Unraveling the Role of Gut Microbiota in (Phyto)Estrogen Modulation in Health and Disease. Mol Nutr Food Res 2024; 68:e2300688. [PMID: 38342595 DOI: 10.1002/mnfr.202300688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/28/2023] [Indexed: 02/13/2024]
Abstract
The human gut microbiota regulates estrogen metabolism through the "estrobolome," the collection of bacterial genes that encode enzymes like β-glucuronidases and β-glucosidases. These enzymes deconjugate and reactivate estrogen, influencing circulating levels. The estrobolome mediates the enterohepatic circulation and bioavailability of estrogen. Alterations in gut microbiota composition and estrobolome function have been associated with estrogen-related diseases like breast cancer, enometrial cancer, and polycystic ovarian syndrome (PCOS). This is likely due to dysregulated estrogen signaling partly contributed by the microbial impacts on estrogen metabolism. Dietary phytoestrogens also undergo bacterial metabolism into active metabolites like equol, which binds estrogen receptors and exhibits higher estrogenic potency than its precursor daidzein. However, the ability to produce equol varies across populations, depending on the presence of specific gut microbes. Characterizing the estrobolome and equol-producing genes across populations can provide microbiome-based biomarkers. Further research is needed to investigate specific components of the estrobolome, phytoestrogen-microbiota interactions, and mechanisms linking dysbiosis to estrogen-related pathology. However, current evidence suggests that the gut microbiota is an integral regulator of estrogen status with clinical relevance to women's health and hormonal disorders.
Collapse
Affiliation(s)
- Nikki Kumari
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
| | - Rashmi Kumari
- Department of Zoology, College of Commerce, Arts & Science, Patliputra University, Patna, Bihar, 800020, India
| | - Ankita Dua
- Department of Zoology, Shivaji College, University of Delhi, New Delhi, 110027, India
| | - Mona Singh
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Roushan Kumar
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
| | - Poonam Singh
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
| | - Susan Duyar-Ayerdi
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Sunila Pradeep
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Akinyemi I Ojesina
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Roshan Kumar
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar, 824234, India
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
45
|
Martins FF, Martins BC, Teixeira AVS, Ajackson M, Souza-Mello V, Daleprane JB. Brown Adipose Tissue, Batokines, and Bioactive Compounds in Foods: An Update. Mol Nutr Food Res 2024; 68:e2300634. [PMID: 38402434 DOI: 10.1002/mnfr.202300634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/20/2023] [Indexed: 02/26/2024]
Abstract
The discovery of metabolically active brown adipose tissue (BAT) in human adults and the worldwide increase in obesity and obesity-related chronic noncommunicable diseases (NCDs) has made BAT a therapeutic target in the last two decades. The potential of BAT to oxidize fatty acids rapidly and increase energy expenditure inversely correlates with adiposity, insulin and glucose resistance, and cardiovascular and metabolic diseases. Currently, BAT is recognized by a new molecular signature; several BAT-derived molecules that act positively on target tissues have been identified and collectively called batokines. Bioactive compounds present in foods are endowed with thermogenic properties that increase BAT activation signaling. Understanding the mechanisms that lead to BAT activation and the batokines secreted by it within the thermogenic state is fundamental for its recruitment and management of obesity and NCDs. This review contributes to recent updates on the morphophysiology of BAT, its endocrine role in obesity, and the main bioactive compounds present in foods involved in classical and nonclassical thermogenic pathways activation.
Collapse
Affiliation(s)
- Fabiane Ferreira Martins
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, São Francisco Xavier 524, Rio de Janeiro, 20550900, Brazil
- Department of Morphology, Federal University of Rio Grande do Norte, Rio Grande do Norte, 59078-970, Brazil
| | - Bruna Cadete Martins
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, São Francisco Xavier 524, Rio de Janeiro, 20550900, Brazil
| | - Ananda Vitoria Silva Teixeira
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, São Francisco Xavier 524, Rio de Janeiro, 20550900, Brazil
| | - Matheus Ajackson
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, São Francisco Xavier 524, Rio de Janeiro, 20550900, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, 205521031, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, São Francisco Xavier 524, Rio de Janeiro, 20550900, Brazil
| |
Collapse
|
46
|
Kunte P, Barberio M, Tiwari P, Sukla K, Harmon B, Epstein S, Bhat D, Authelet K, Goldberg M, Rao S, Damle H, Freishtat RJ, Yajnik C. Neonatal adiposity is associated with microRNAs in adipocyte-derived extracellular vesicles in maternal and cord blood, a discovery analysis. Int J Obes (Lond) 2024; 48:403-413. [PMID: 38092957 DOI: 10.1038/s41366-023-01432-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Maternal body size, nutrition, and hyperglycemia contribute to neonatal body size and composition. There is little information on maternal-fetal transmission of messages which influence fetal growth. We analyzed adipocyte-derived small extracellular vesicular (ADsEV) microRNAs in maternal and cord blood to explore their adipogenic potential. METHODS There were 279 mother-neonate pairs with all phenotypic data (normal glucose tolerant NGT = 148, gestational diabetes mellitus GDM = 131). Neonates with adiposity were those in the highest tertile (T3) of sex-specific sum of skinfolds and those without adiposity (lean) in the lowest tertile T1 of NGT pregnancies. We studied ADsEV miRNAs in 76 and 51 neonates with and without adiposity respectively and their mothers based on power calculations (68 NGT and 59 GDM pregnancies). ADsEV miRNAs from maternal and cord blood plasma samples were profiled on Agilent 8*60 K microarray. Differential expression (DE) of ADsEV miRNAs in adipose vs. lean groups was studied before and after adjustment for maternal GDM, adiposity, and vitamin B12-folate status. RESULTS Multiple miRNAs were common in maternal and cord blood and positively correlated. We identified 24 maternal and 5 cord blood miRNAs differentially expressed (discovery p ≤ 0.1) in the adipose group in unadjusted, and 19 and 26, respectively, in the adjusted analyses. Even though DE miRNAs were different in maternal and cord blood, they targeted similar adipogenic pathways (e.g., the forkhead box O (FOXO) family of transcription factors, mitogen‑activated protein kinase (MAPK) pathway, transforming growth factor beta (TGF-β) pathway). Maternal GDM and adiposity were associated with many DE ADsEV miRNAs. CONCLUSION Our results suggest that the ADsEV miRNAs in mothers are potential regulators of fetal adiposity. The expression and functionality of miRNAs appear to be influenced by maternal adiposity, hyperglycemia, and micronutrient status during pregnancy.
Collapse
Affiliation(s)
- Pooja Kunte
- Diabetes Unit, KEM Hospital Research Centre, Pune, India
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Matthew Barberio
- Department of Exercise and Nutrition Sciences, The Milken Institute School of Public Health, George Washington University, Washington, D.C, USA
| | - Pradeep Tiwari
- Diabetes Unit, KEM Hospital Research Centre, Pune, India
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Krishna Sukla
- Diabetes Unit, KEM Hospital Research Centre, Pune, India
- Tata Consultancy Services, Life Sciences Research, Tata Research Development and Design Centre, Pune, India
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children's National Hospital, Washington, D.C., USA
| | - Samuel Epstein
- Center for Genetic Medicine Research, Children's National Hospital, Washington, D.C., USA
| | - Dattatray Bhat
- Diabetes Unit, KEM Hospital Research Centre, Pune, India
| | - Kayla Authelet
- Center for Genetic Medicine Research, Children's National Hospital, Washington, D.C., USA
| | - Madeleine Goldberg
- Center for Genetic Medicine Research, Children's National Hospital, Washington, D.C., USA
| | - Sudha Rao
- Genotypic Technology Pvt. Ltd., Bangalore, India
| | | | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Hospital, Washington, D.C., USA.
- Uncommon cures, 5550 Friendship Blvd., Suite 580, Chevy Chase, MD, 2081, USA.
| | | |
Collapse
|
47
|
Netzer NC, Strohl KP, Pramsohler S. Influence of nutrition and food on sleep-is there evidence? Sleep Breath 2024; 28:61-68. [PMID: 37740061 PMCID: PMC10954981 DOI: 10.1007/s11325-023-02921-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND The influence of sleep disorders on metabolism, especially concerning obesity and diabetes, as well as obesity and obstructive sleep apnea, has been widely investigated. However, the effect of nutrition and the intake of certain foods on sleep has only recently gained attention. In recent years, there have been publications on intake of certain foods and certain diets regarding their influence on sleep, as well as activity of adipocytes and their effect on production of sleep hormones. METHODS Following PRISMA guidelines, we performed a PubMed search using the key words "sleep," "sleep disorders," "nutrition," "food," and "food intake" published from 2012 to 2022. We excluded by consensus all articles with diets and exercise programs or bariatric surgery for weight loss to treat sleep apnea, all articles on connections between sleep disorders and metabolic disorders, and articles concerning the influence of drugs on neuroactive substances. RESULTS Of the 4155 publications revealed, 988 had nutrition, metabolism, and sleep as the primary topic of research. Of these 988 publications, only 26 fulfilled the content requirements concerning the influence of certain food and diets on sleep or sleep disorders, including the influence of the gastrointestinal system and adipocytes on sleep hormones. None of the investigations revealed clear evidence of an effect of a certain diet or food on sleep. Epidemiologic surveys suggest that shortened or fragmented sleep and chronotype in adults influence nutrition and fat metabolism. Additionally, there is evidence that adipocyte signaling influences neuronal mediators and hormones of the sleep-wake cycle. CONCLUSION There is no evidence of a direct influence of certain nutrition or food intake on sleep. Obesity via adipocyte signaling may influence the sleep-wake cycle, though the molecular research on this topic is based on animal studies.
Collapse
Affiliation(s)
- Nikolaus C Netzer
- Hermann Buhl Institute for Hypoxia and Sleep Medicine Research, University Innsbruck, Innsbruck, Austria.
- Institute for Mountain Emergency Medicine, Terra X Cube, EURAC Research, Via Hypathia 2, 39100, Bozen, Italy.
- Div. of Sport Medicine, Dept. of Medicine, University Hospitals Ulm, Ulm, Germany.
| | - Kingman P Strohl
- Div. Pulmonary Medicine, Dept. Internal Medicine, University Hospitals, Case Western Reserve University, Cleveland, OH, USA
| | - Stephan Pramsohler
- Hermann Buhl Institute for Hypoxia and Sleep Medicine Research, University Innsbruck, Innsbruck, Austria
- Div. of Sport Medicine, Dept. of Medicine, University Hospitals Ulm, Ulm, Germany
| |
Collapse
|
48
|
Volarić M, Šojat D, Majnarić LT, Vučić D. The Association between Functional Dyspepsia and Metabolic Syndrome-The State of the Art. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:237. [PMID: 38397726 PMCID: PMC10888556 DOI: 10.3390/ijerph21020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
Functional dyspepsia is a common functional disorder of the gastrointestinal tract that is responsible for many primary care visits. No organic changes have been found to explain its symptoms. We hypothesize that modern lifestyles and environmental factors, especially psychological stress, play a crucial role in the high prevalence of functional dyspepsia and metabolic syndrome. While gastrointestinal tract diseases are rarely linked to metabolic disorders, chronic stress, obesity-related metabolic syndrome, chronic inflammation, intestinal dysbiosis, and functional dyspepsia have significant pathophysiological associations. Functional dyspepsia, often associated with anxiety and chronic psychological stress, can activate the neuroendocrine stress axis and immune system, leading to unhealthy habits that contribute to obesity. Additionally, intestinal dysbiosis, which is commonly present in functional dyspepsia, can exacerbate systemic inflammation and obesity, further promoting metabolic syndrome-related disorders. It is worth noting that the reverse is also true: obesity-related metabolic syndrome can worsen functional dyspepsia and its associated symptoms by triggering systemic inflammation and intestinal dysbiosis, as well as negative emotions (depression) through the brain-gut axis. To understand the pathophysiology and deliver an effective treatment strategy for these two difficult-to-cure disorders, which are challenging for both caregivers and patients, a psychosocial paradigm is essential.
Collapse
Affiliation(s)
- Mile Volarić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (M.V.); (L.T.M.)
- Department of Gastroenterology and Hepatology, School of Medicine, University of Mostar Clinical Hospital, University of Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina
| | - Dunja Šojat
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (M.V.); (L.T.M.)
| | - Ljiljana Trtica Majnarić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (M.V.); (L.T.M.)
| | - Domagoj Vučić
- Department of Cardiology, General Hospital “Dr. Josip Benčević”, A. Štampara, 35105 Slavonski Brod, Croatia;
| |
Collapse
|
49
|
Osakabe N, Shimizu T, Fujii Y, Fushimi T, Calabrese V. Sensory Nutrition and Bitterness and Astringency of Polyphenols. Biomolecules 2024; 14:234. [PMID: 38397471 PMCID: PMC10887135 DOI: 10.3390/biom14020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Recent studies have demonstrated that the interaction of dietary constituents with taste and olfactory receptors and nociceptors expressed in the oral cavity, nasal cavity and gastrointestinal tract regulate homeostasis through activation of the neuroendocrine system. Polyphenols, of which 8000 have been identified to date, represent the greatest diversity of secondary metabolites in plants, most of which are bitter and some of them astringent. Epidemiological studies have shown that polyphenol intake contributes to maintaining and improving cardiovascular, cognitive and sensory health. However, because polyphenols have very low bioavailability, the mechanisms of their beneficial effects are unknown. In this review, we focused on the taste of polyphenols from the perspective of sensory nutrition, summarized the results of previous studies on their relationship with bioregulation and discussed their future potential.
Collapse
Affiliation(s)
- Naomi Osakabe
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan;
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Takafumi Shimizu
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Yasuyuki Fujii
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Taiki Fushimi
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy;
| |
Collapse
|
50
|
Chandrasekaran P, Weiskirchen R. The Role of Obesity in Type 2 Diabetes Mellitus-An Overview. Int J Mol Sci 2024; 25:1882. [PMID: 38339160 PMCID: PMC10855901 DOI: 10.3390/ijms25031882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Obesity or excessive weight gain is identified as the most important and significant risk factor in the development and progression of type 2 diabetes mellitus (DM) in all age groups. It has reached pandemic dimensions, making the treatment of obesity crucial in the prevention and management of type 2 DM worldwide. Multiple clinical studies have demonstrated that moderate and sustained weight loss can improve blood glucose levels, insulin action and reduce the need for diabetic medications. A combined approach of diet, exercise and lifestyle modifications can successfully reduce obesity and subsequently ameliorate the ill effects and deadly complications of DM. This approach also helps largely in the prevention, control and remission of DM. Obesity and DM are chronic diseases that are increasing globally, requiring new approaches to manage and prevent diabetes in obese individuals. Therefore, it is essential to understand the mechanistic link between the two and design a comprehensive approach to increase life expectancy and improve the quality of life in patients with type 2 DM and obesity. This literature review provides explicit information on the clinical definitions of obesity and type 2 DM, the incidence and prevalence of type 2 DM in obese individuals, the indispensable role of obesity in the pathophysiology of type 2 DM and their mechanistic link. It also discusses clinical studies and outlines the recent management approaches for the treatment of these associated conditions. Additionally, in vivo studies on obesity and type 2 DM are discussed here as they pave the way for more rigorous development of therapeutic approaches.
Collapse
Affiliation(s)
- Preethi Chandrasekaran
- UT Southwestern Medical Center Dallas, 5323 Harry Hines Blvd. ND10.504, Dallas, TX 75390-9014, USA
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH), University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|