1
|
Zhang Y, Cao Y, Zhang X, Lin J, Jiang M, Zhang X, Dai X, Zhang X, Liu Y, Ge W, Qiang H, Li C, Sun D. Single-Cell RNA Sequencing Uncovers Pathological Processes and Crucial Targets for Vascular Endothelial Injury in Diabetic Hearts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405543. [PMID: 39475009 DOI: 10.1002/advs.202405543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/18/2024] [Indexed: 12/19/2024]
Abstract
Cardiovascular disease remains the leading cause of high mortality in individuals with diabetes mellitus. Endothelial injury is a major contributing factor for vascular dysfunction in diabetes. However, the precise mechanisms underlying endothelial cell injury and their heterogeneity in diabetes remains elusive. In this study, single-cell sequencing is performed in heart tissues from leptin receptor knock-out (db/db) diabetic mice at various pathological stages. Through cell cluster identification, differential gene analysis, intercellular communication analysis, pseudo time analysis, and transcription factor analysis, a novel mechanism of cardiac vascular endothelial damage in diabetes is identified. Specifically, a single-cell transcription map of cardiac vascular endothelial cells is presented in db/db mice. Diverse cellular clusters are found to play vital roles under diabetes-induced damage, highlighting crucial transcription factors involved in their regulation. In addition, the essential transcription factor Ets1 is found to protect against vascular endothelial injury in db/db mice. In summary, the work provides a comprehensive understanding of the development of diabetic cardiac vascular endothelial damage and the heterogeneity of the cells involved. These findings offer valuable insights into potential treatments and assessments of diabetic cardiovascular endothelial damage.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Cao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xuebin Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xinchun Dai
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaohua Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yue Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wen Ge
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Huanhuan Qiang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
2
|
Ávila-Gómez P, Shingai Y, Dash S, Liu C, Callegari K, Meyer H, Khodarkovskaya A, Aburakawa D, Uchida H, Faraco G, Garcia-Bonilla L, Anrather J, Lee FS, Iadecola C, Sanchez T. Molecular and Functional Alterations in the Cerebral Microvasculature in an Optimized Mouse Model of Sepsis-Associated Cognitive Dysfunction. eNeuro 2024; 11:ENEURO.0426-23.2024. [PMID: 39266325 PMCID: PMC11439565 DOI: 10.1523/eneuro.0426-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/20/2024] [Accepted: 07/02/2024] [Indexed: 09/14/2024] Open
Abstract
Systemic inflammation has been implicated in the development and progression of neurodegenerative conditions such as cognitive impairment and dementia. Recent clinical studies indicate an association between sepsis, endothelial dysfunction, and cognitive decline. However, the investigations of the role and therapeutic potential of the cerebral microvasculature in sepsis-induced cognitive dysfunction have been limited by the lack of standardized experimental models for evaluating the alterations in the cerebral microvasculature and cognition induced by the systemic inflammatory response. Herein, we validated a mouse model of endotoxemia that recapitulates key pathophysiology related to sepsis-induced cognitive dysfunction, including the induction of an acute systemic hyperinflammatory response, blood-brain barrier (BBB) leakage, neurovascular inflammation, and memory impairment after recovery from the systemic inflammation. In the acute phase, we identified novel molecular (e.g., upregulation of plasmalemma vesicle-associated protein, PLVAP, a driver of endothelial permeability, and the procoagulant plasminogen activator inhibitor-1, PAI-1) and functional perturbations (i.e., albumin and small-molecule BBB leakage) in the cerebral microvasculature along with neuroinflammation. Remarkably, small-molecule BBB permeability, elevated levels of PAI-1, intra-/perivascular fibrin/fibrinogen deposition, and microglial activation persisted 1 month after recovery from sepsis. We also highlight molecular neuronal alterations of potential clinical relevance following systemic inflammation including changes in neurofilament phosphorylation and decreases in postsynaptic density protein 95 and brain-derived neurotrophic factor, suggesting diffuse axonal injury, synapse degeneration, and impaired neurotrophism. Our study serves as a standardized mouse model to support future mechanistic studies of sepsis-associated cognitive dysfunction and to identify novel endothelial therapeutic targets for this devastating condition.
Collapse
Affiliation(s)
- Paulo Ávila-Gómez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Yuto Shingai
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Catherine Liu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Keri Callegari
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Heidi Meyer
- Department of Psychiatry, Weill Cornell Medicine, New York, New York 10065
| | - Anne Khodarkovskaya
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Daiki Aburakawa
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Hiroki Uchida
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
| | - Giuseppe Faraco
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Lidia Garcia-Bonilla
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Josef Anrather
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medicine, New York, New York 10065
| | - Costantino Iadecola
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Teresa Sanchez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York 10065
- Department of Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
3
|
Xu X, Xu K, Chen F, Yu D, Wang X. Mfsd2a regulates the blood-labyrinth-barrier formation and function through tight junctions and transcytosis. Hear Res 2024; 450:109048. [PMID: 38852535 DOI: 10.1016/j.heares.2024.109048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
The Blood-Labyrinth Barrier (BLB) is pivotal for the maintenance of lymphatic homeostasis within the inner ear, yet the intricacies of its development and function are inadequately understood. The present investigation delves into the contribution of the Mfsd2a molecule, integral to the structural and functional integrity of the Blood-Brain Barrier (BBB), to the ontogeny and sustenance of the BLB. Our empirical findings delineate that the maturation of the BLB in murine models is not realized until approximately two weeks post-birth, with preceding stages characterized by notable permeability. Transcriptomic analysis elucidates a marked augmentation in Mfsd2a expression within the lateral wall of the cochlea in specimens exhibiting an intact BLB. Moreover, both in vitro and in vivo assays substantiate that a diminution in Mfsd2a expression detrimentally impacts BLB permeability and structural integrity, principally via the attenuation of tight junction protein expression and the enhancement of endothelial cell transcytosis. These insights underscore the indispensable role of Mfsd2a in ensuring BLB integrity and propose it as a viable target for therapeutic interventions aimed at the amelioration of hearing loss.
Collapse
Affiliation(s)
- Xiaoju Xu
- Biobank of Clinical Research Center, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Ke Xu
- Biobank of Clinical Research Center, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Fengqiu Chen
- Biobank of Clinical Research Center, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Xueling Wang
- Biobank of Clinical Research Center, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China; Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
4
|
Wälchli T, Ghobrial M, Schwab M, Takada S, Zhong H, Suntharalingham S, Vetiska S, Gonzalez DR, Wu R, Rehrauer H, Dinesh A, Yu K, Chen ELY, Bisschop J, Farnhammer F, Mansur A, Kalucka J, Tirosh I, Regli L, Schaller K, Frei K, Ketela T, Bernstein M, Kongkham P, Carmeliet P, Valiante T, Dirks PB, Suva ML, Zadeh G, Tabar V, Schlapbach R, Jackson HW, De Bock K, Fish JE, Monnier PP, Bader GD, Radovanovic I. Single-cell atlas of the human brain vasculature across development, adulthood and disease. Nature 2024; 632:603-613. [PMID: 38987604 PMCID: PMC11324530 DOI: 10.1038/s41586-024-07493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/30/2024] [Indexed: 07/12/2024]
Abstract
A broad range of brain pathologies critically relies on the vasculature, and cerebrovascular disease is a leading cause of death worldwide. However, the cellular and molecular architecture of the human brain vasculature remains incompletely understood1. Here we performed single-cell RNA sequencing analysis of 606,380 freshly isolated endothelial cells, perivascular cells and other tissue-derived cells from 117 samples, from 68 human fetuses and adult patients to construct a molecular atlas of the developing fetal, adult control and diseased human brain vasculature. We identify extensive molecular heterogeneity of the vasculature of healthy fetal and adult human brains and across five vascular-dependent central nervous system (CNS) pathologies, including brain tumours and brain vascular malformations. We identify alteration of arteriovenous differentiation and reactivated fetal as well as conserved dysregulated genes and pathways in the diseased vasculature. Pathological endothelial cells display a loss of CNS-specific properties and reveal an upregulation of MHC class II molecules, indicating atypical features of CNS endothelial cells. Cell-cell interaction analyses predict substantial endothelial-to-perivascular cell ligand-receptor cross-talk, including immune-related and angiogenic pathways, thereby revealing a central role for the endothelium within brain neurovascular unit signalling networks. Our single-cell brain atlas provides insights into the molecular architecture and heterogeneity of the developing, adult/control and diseased human brain vasculature and serves as a powerful reference for future studies.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
| | - Moheb Ghobrial
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Marc Schwab
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Shigeki Takada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hang Zhong
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Samuel Suntharalingham
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Vetiska
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Ruilin Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Anuroopa Dinesh
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
| | - Kai Yu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Edward L Y Chen
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeroen Bisschop
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Fiona Farnhammer
- Group Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ann Mansur
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Luca Regli
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Karl Schaller
- Department of Neurosurgery, University of Geneva Medical Center & Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl Frei
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Troy Ketela
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mark Bernstein
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Paul Kongkham
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters-Hamilton Centre for Neuro-Oncology Research, University Health Network, Toronto, Ontario, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Taufik Valiante
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Division of Clinical and Computational Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering and Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter B Dirks
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Departments of Surgery and Molecular Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mario L Suva
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Hartland W Jackson
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Ontario Institute of Cancer Research, Toronto, Ontario, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Institute of Exercise and Health, Department of Health Sciences and Technology; Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Jason E Fish
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Vision Division, Krembil Discovery Tower, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Gary D Bader
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Ivan Radovanovic
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Sprott Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Biswas S, Shahriar S, Bachay G, Arvanitis P, Jamoul D, Brunken WJ, Agalliu D. Glutamatergic neuronal activity regulates angiogenesis and blood-retinal barrier maturation via Norrin/β-catenin signaling. Neuron 2024; 112:1978-1996.e6. [PMID: 38599212 PMCID: PMC11189759 DOI: 10.1016/j.neuron.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/15/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Interactions among neuronal, glial, and vascular components are crucial for retinal angiogenesis and blood-retinal barrier (BRB) maturation. Although synaptic dysfunction precedes vascular abnormalities in many retinal pathologies, how neuronal activity, specifically glutamatergic activity, regulates retinal angiogenesis and BRB maturation remains unclear. Using in vivo genetic studies in mice, single-cell RNA sequencing (scRNA-seq), and functional validation, we show that deep plexus angiogenesis and paracellular BRB maturation are delayed in Vglut1-/- retinas where neurons fail to release glutamate. By contrast, deep plexus angiogenesis and paracellular BRB maturation are accelerated in Gnat1-/- retinas, where constitutively depolarized rods release excessive glutamate. Norrin expression and endothelial Norrin/β-catenin signaling are downregulated in Vglut1-/- retinas and upregulated in Gnat1-/- retinas. Pharmacological activation of endothelial Norrin/β-catenin signaling in Vglut1-/- retinas rescues defects in deep plexus angiogenesis and paracellular BRB maturation. Our findings demonstrate that glutamatergic neuronal activity regulates retinal angiogenesis and BRB maturation by modulating endothelial Norrin/β-catenin signaling.
Collapse
Affiliation(s)
- Saptarshi Biswas
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Sanjid Shahriar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Galina Bachay
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Panos Arvanitis
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Danny Jamoul
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; John Jay College of Criminal Justice, City University of New York, New York, NY 10019, USA
| | - William J Brunken
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dritan Agalliu
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
6
|
Ávila-Gómez P, Shingai Y, Dash S, Liu C, Callegari K, Meyer H, Khodarkovskaya A, Aburakawa D, Uchida H, Faraco G, Garcia-Bonilla L, Anrather J, Lee FS, Iadecola C, Sanchez T. Molecular and functional alterations in the cerebral microvasculature in an optimized mouse model of sepsis-associated cognitive dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596050. [PMID: 38853992 PMCID: PMC11160628 DOI: 10.1101/2024.05.28.596050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Systemic inflammation has been implicated in the development and progression of neurodegenerative conditions such as cognitive impairment and dementia. Recent clinical studies indicate an association between sepsis, endothelial dysfunction, and cognitive decline. However, the investigations of the role and therapeutic potential of the cerebral microvasculature in systemic inflammation-induced cognitive dysfunction have been limited by the lack of standardized experimental models for evaluating the alterations in the cerebral microvasculature and cognition induced by the systemic inflammatory response. Herein, we validated a mouse model of endotoxemia that recapitulates key pathophysiology related to sepsis-induced cognitive dysfunction, including the induction of an acute systemic hyperinflammatory response, blood-brain barrier (BBB) leakage, neurovascular inflammation, and memory impairment after recovery from the systemic inflammatory response. In the acute phase, we identified novel molecular (e.g. upregulation of plasmalemma vesicle associated protein, a driver of endothelial permeability, and the pro-coagulant plasminogen activator inhibitor-1, PAI-1) and functional perturbations (i.e., albumin and small molecule BBB leakage) in the cerebral microvasculature along with neuroinflammation. Remarkably, small molecule BBB permeability, elevated levels of PAI-1, intra/perivascular fibrin/fibrinogen deposition and microglial activation persisted 1 month after recovery from sepsis. We also highlight molecular neuronal alterations of potential clinical relevance following systemic inflammation including changes in neurofilament phosphorylation and decreases in postsynaptic density protein 95 and brain-derived neurotrophic factor suggesting diffuse axonal injury, synapse degeneration and impaired neurotrophism. Our study serves as a standardized model to support future mechanistic studies of sepsis-associated cognitive dysfunction and to identify novel endothelial therapeutic targets for this devastating condition. SIGNIFICANCE The limited knowledge of how systemic inflammation contributes to cognitive decline is a major obstacle to the development of novel therapies for dementia and other neurodegenerative diseases. Clinical evidence supports a role for the cerebral microvasculature in sepsis-induced neurocognitive dysfunction, but the investigation of the underlying mechanisms has been limited by the lack of standardized experimental models. Herein, we optimized a mouse model that recapitulates important pathophysiological aspects of systemic inflammation-induced cognitive decline and identified key alterations in the cerebral microvasculature associated with cognitive dysfunction. Our study provides a reliable experimental model for mechanistic studies and therapeutic discovery of the impact of systemic inflammation on cerebral microvascular function and the development and progression of cognitive impairment.
Collapse
|
7
|
Zhang W, Kaser-Eichberger A, Fan W, Platzl C, Schrödl F, Heindl LM. The structure and function of the human choroid. Ann Anat 2024; 254:152239. [PMID: 38432349 DOI: 10.1016/j.aanat.2024.152239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
In this manuscript, the structure of the human choroid is reviewed with emphasis of the macro- and microscopic anatomy including Bruch's membrane, choriocapillaris, Sattler's and Haller's layer, and the suprachoroid. We here discuss the development of the choroid, as well as the question of choroidal lymphatics, and further the neuronal control of this tissue, as well as the pathologic angiogenesis. Wherever possible, functional aspects of the various structures are included and reviewed.
Collapse
Affiliation(s)
- Weina Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Wanlin Fan
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christian Platzl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Falk Schrödl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
8
|
Zapata-Acevedo JF, Mantilla-Galindo A, Vargas-Sánchez K, González-Reyes RE. Blood-brain barrier biomarkers. Adv Clin Chem 2024; 121:1-88. [PMID: 38797540 DOI: 10.1016/bs.acc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The blood-brain barrier (BBB) is a dynamic interface that regulates the exchange of molecules and cells between the brain parenchyma and the peripheral blood. The BBB is mainly composed of endothelial cells, astrocytes and pericytes. The integrity of this structure is essential for maintaining brain and spinal cord homeostasis and protection from injury or disease. However, in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, and multiple sclerosis, the BBB can become compromised thus allowing passage of molecules and cells in and out of the central nervous system parenchyma. These agents, however, can serve as biomarkers of BBB permeability and neuronal damage, and provide valuable information for diagnosis, prognosis and treatment. Herein, we provide an overview of the BBB and changes due to aging, and summarize current knowledge on biomarkers of BBB disruption and neurodegeneration, including permeability, cellular, molecular and imaging biomarkers. We also discuss the challenges and opportunities for developing a biomarker toolkit that can reliably assess the BBB in physiologic and pathophysiologic states.
Collapse
Affiliation(s)
- Juan F Zapata-Acevedo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Alejandra Mantilla-Galindo
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Karina Vargas-Sánchez
- Laboratorio de Neurofisiología Celular, Grupo de Neurociencia Traslacional, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
| | - Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias, Centro de Neurociencia Neurovitae-UR, Instituto de Medicina Traslacional, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
9
|
Bejarano L, Kauzlaric A, Lamprou E, Lourenco J, Fournier N, Ballabio M, Colotti R, Maas R, Galland S, Massara M, Soukup K, Lilja J, Brouland JP, Hottinger AF, Daniel RT, Hegi ME, Joyce JA. Interrogation of endothelial and mural cells in brain metastasis reveals key immune-regulatory mechanisms. Cancer Cell 2024; 42:378-395.e10. [PMID: 38242126 DOI: 10.1016/j.ccell.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/11/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Brain metastasis (BrM) is a common malignancy, predominantly originating from lung, melanoma, and breast cancers. The vasculature is a key component of the BrM tumor microenvironment with critical roles in regulating metastatic seeding and progression. However, the heterogeneity of the major BrM vascular components, namely endothelial and mural cells, is still poorly understood. We perform single-cell and bulk RNA-sequencing of sorted vascular cell types and detect multiple subtypes enriched specifically in BrM compared to non-tumor brain, including previously unrecognized immune regulatory subtypes. We integrate the human data with mouse models, creating a platform to interrogate vascular targets for the treatment of BrM. We find that the CD276 immune checkpoint molecule is significantly upregulated in the BrM vasculature, and anti-CD276 blocking antibodies prolonged survival in preclinical trials. This study provides important insights into the complex interactions between the vasculature, immune cells, and cancer cells, with translational relevance for designing therapeutic interventions.
Collapse
Affiliation(s)
- Leire Bejarano
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Annamaria Kauzlaric
- Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Eleni Lamprou
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Joao Lourenco
- Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nadine Fournier
- Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Michelle Ballabio
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland
| | - Roberto Colotti
- In Vivo Imaging Facility (IVIF), University of Lausanne, Lausanne, Switzerland
| | - Roeltje Maas
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sabine Galland
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Matteo Massara
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Klara Soukup
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland
| | - Johanna Lilja
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland
| | - Jean-Philippe Brouland
- Department of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Andreas F Hottinger
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roy T Daniel
- Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Monika E Hegi
- Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
10
|
Cehofski LJ, Kojima K, Kusada N, Hansen MS, Muttuvelu DV, Bakker N, Klaassen I, Grauslund J, Vorum H, Honoré B. Central subfield thickness of diabetic macular edema: Correlation with the aqueous humor proteome. Mol Vis 2024; 30:17-35. [PMID: 38586604 PMCID: PMC10994682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/07/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose Diabetic macular edema (DME) is a sight-threatening complication of diabetes. Consequently, studying the proteome of DME may provide novel insights into underlying molecular mechanisms. Methods In this study, aqueous humor samples from eyes with treatment-naïve clinically significant DME (n = 13) and age-matched controls (n = 11) were compared with label-free liquid chromatography-tandem mass spectrometry. Additional aqueous humor samples from eyes with treatment-naïve DME (n = 15) and controls (n = 8) were obtained for validation by enzyme-linked immunosorbent assay (ELISA). Best-corrected visual acuity (BCVA) was evaluated, and the severity of DME was measured as central subfield thickness (CST) employing optical coherence tomography. Control samples were obtained before cataract surgery. Significantly changed proteins were identified using a permutation-based calculation, with a false discovery rate of 0.05. A human donor eye with DME and a control eye were used for immunofluorescence. Results A total of 101 proteins were differentially expressed in the DME. Regulated proteins were involved in complement activation, glycolysis, extracellular matrix interaction, and cholesterol metabolism. The highest-fold change was observed for the fibrinogen alpha chain (fold change = 17.8). Complement components C2, C5, and C8, fibronectin, and hepatocyte growth factor-like protein were increased in DME and correlated with best-corrected visual acuity (BCVA). Ceruloplasmin and complement component C8 correlated with central subfield thickness (CST). Hemopexin, plasma kallikrein, monocyte differentiation antigen CD14 (CD14), and lipopolysaccharide-binding protein (LBP) were upregulated in the DME. LBP was correlated with vascular endothelial growth factor. The increased level of LBP in DME was confirmed using ELISA. The proteins involved in desmosomal integrity, including desmocollin-1 and desmoglein-1, were downregulated in DME and correlated negatively with CST. Immunofluorescence confirmed the extravasation of fibrinogen at the retinal level in the DME. Conclusion Elevated levels of pro-inflammatory proteins, including the complement components LBP and CD14, were observed in DME. DME was associated with the loss of basal membrane proteins, compromised desmosomal integrity, and perturbation of glycolysis.
Collapse
Affiliation(s)
- Lasse Jørgensen Cehofski
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kentaro Kojima
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Natsuki Kusada
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Danson Vasanthan Muttuvelu
- Department of Ophthalmology, Mitoje Aps, Skive, Denmark
- University of Copenhagen, Faculty of Health Sciences, Copenhagen, Denmark
| | - Noëlle Bakker
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Jakob Grauslund
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Bent Honoré
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Biswas S, Shahriar S, Bachay G, Arvanitis P, Jamoul D, Brunken WJ, Agalliu D. Glutamatergic neuronal activity regulates angiogenesis and blood-retinal barrier maturation via Norrin/β-catenin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.10.548410. [PMID: 37503079 PMCID: PMC10369888 DOI: 10.1101/2023.07.10.548410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Interactions among neuronal, glial and vascular components are crucial for retinal angiogenesis and blood-retinal barrier (BRB) maturation. Although synaptic dysfunction precedes vascular abnormalities in many retinal pathologies, how neuronal activity, specifically glutamatergic activity, regulates retinal angiogenesis and BRB maturation remains unclear. Using in vivo genetic studies in mice, single-cell RNA-sequencing and functional validation, we show that deep plexus angiogenesis and paracellular BRB maturation are delayed in Vglut1 -/- retinas where neurons fail to release glutamate. In contrast, deep plexus angiogenesis and paracellular BRB maturation are accelerated in Gnat1 -/- retinas where constitutively depolarized rods release excessive glutamate. Norrin expression and endothelial Norrin/β-catenin signaling are downregulated in Vglut1 -/- retinas, and upregulated in Gnat1 -/- retinas. Pharmacological activation of endothelial Norrin/β-catenin signaling in Vglut1 -/- retinas rescued defects in deep plexus angiogenesis and paracellular BRB maturation. Our findings demonstrate that glutamatergic neuronal activity regulates retinal angiogenesis and BRB maturation by modulating endothelial Norrin/β-catenin signaling.
Collapse
|
12
|
Rojas MG, Zigmond ZM, Pereira-Simon S, Santos Falcon N, Suresh Kumar M, Stoyell-Conti FF, Kosanovic C, Griswold AJ, Salama A, Yang X, Tabbara M, Vazquez-Padron RI, Martinez L. The intricate cellular ecosystem of human peripheral veins as revealed by single-cell transcriptomic analysis. PLoS One 2024; 19:e0296264. [PMID: 38206912 PMCID: PMC10783777 DOI: 10.1371/journal.pone.0296264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/09/2023] [Indexed: 01/13/2024] Open
Abstract
The venous system has been historically understudied despite its critical roles in blood distribution, heart function, and systemic immunity. This study dissects the microanatomy of upper arm veins at the single cell level, and how it relates to wall structure, remodeling processes, and inflammatory responses to injury. We applied single-cell RNA sequencing to 4 non-diseased human veins (3 basilic, 1 cephalic) obtained from organ donors, followed by bioinformatic and histological analyses. Unsupervised clustering of 20,006 cells revealed a complex ecosystem of endothelial cell (EC) types, smooth muscle cell (SMCs) and pericytes, various types of fibroblasts, and immune cell populations. The venous endothelium showed significant upregulation of cell adhesion genes, with arteriovenous zonation EC phenotypes highlighting the heterogeneity of vasa vasorum (VV) microvessels. Venous SMCs had atypical contractile phenotypes and showed widespread localization in the intima and media. MYH11+DESlo SMCs were transcriptionally associated with negative regulation of contraction and pro-inflammatory gene expression. MYH11+DEShi SMCs showed significant upregulation of extracellular matrix genes and pro-migratory mediators. Venous fibroblasts ranging from secretory to myofibroblastic phenotypes were 4X more abundant than SMCs and widely distributed throughout the wall. Fibroblast-derived angiopoietin-like factors were identified as versatile signaling hubs to regulate angiogenesis and SMC proliferation. An abundant monocyte/macrophage population was detected and confirmed by histology, including pro-inflammatory and homeostatic phenotypes, with cell counts positively correlated with age. Ligand-receptor interactome networks identified the venous endothelium in the main lumen and the VV as a niche for monocyte recruitment and infiltration. This study underscores the transcriptional uniqueness of venous cells and their relevance for vascular inflammation and remodeling processes. Findings from this study may be relevant for molecular investigations of upper arm veins used for vascular access creation, where single-cell analyses of cell composition and phenotypes are currently lacking.
Collapse
Affiliation(s)
- Miguel G. Rojas
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Zachary M. Zigmond
- Bruce W. Carter Veterans Affairs Medical Center, Miami, Florida, United States of America
| | - Simone Pereira-Simon
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Nieves Santos Falcon
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Maya Suresh Kumar
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Filipe F. Stoyell-Conti
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Christina Kosanovic
- John P. Hussman Institute for Human Genomics, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Anthony J. Griswold
- John P. Hussman Institute for Human Genomics, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Alghidak Salama
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Xiaofeng Yang
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Roberto I. Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Bruce W. Carter Veterans Affairs Medical Center, Miami, Florida, United States of America
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
13
|
Li Y, Girard R, Srinath A, Cruz DV, Ciszewski C, Chen C, Lightle R, Romanos S, Sone JY, Moore T, DeBiasse D, Stadnik A, Lee JJ, Shenkar R, Koskimäki J, Lopez-Ramirez MA, Marchuk DA, Ginsberg MH, Kahn ML, Shi C, Awad IA. Transcriptomic signatures of individual cell types in cerebral cavernous malformation. Cell Commun Signal 2024; 22:23. [PMID: 38195510 PMCID: PMC10775676 DOI: 10.1186/s12964-023-01301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/30/2023] [Indexed: 01/11/2024] Open
Abstract
Cerebral cavernous malformation (CCM) is a hemorrhagic neurovascular disease with no currently available therapeutics. Prior evidence suggests that different cell types may play a role in CCM pathogenesis. The contribution of each cell type to the dysfunctional cellular crosstalk remains unclear. Herein, RNA-seq was performed on fluorescence-activated cell sorted endothelial cells (ECs), pericytes, and neuroglia from CCM lesions and non-lesional brain tissue controls. Differentially Expressed Gene (DEG), pathway and Ligand-Receptor (LR) analyses were performed to characterize the dysfunctional genes of respective cell types within CCMs. Common DEGs among all three cell types were related to inflammation and endothelial-to-mesenchymal transition (EndMT). DEG and pathway analyses supported a role of lesional ECs in dysregulated angiogenesis and increased permeability. VEGFA was particularly upregulated in pericytes. Further pathway and LR analyses identified vascular endothelial growth factor A/ vascular endothelial growth factor receptor 2 signaling in lesional ECs and pericytes that would result in increased angiogenesis. Moreover, lesional pericytes and neuroglia predominantly showed DEGs and pathways mediating the immune response. Further analyses of cell specific gene alterations in CCM endorsed potential contribution to EndMT, coagulation, and a hypoxic microenvironment. Taken together, these findings motivate mechanistic hypotheses regarding non-endothelial contributions to lesion pathobiology and may lead to novel therapeutic targets. Video Abstract.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Romuald Girard
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Abhinav Srinath
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Diana Vera Cruz
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Cezary Ciszewski
- Human Disease and Immune Discovery Core, The University of Chicago, Chicago, IL, USA
| | - Chang Chen
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Rhonda Lightle
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Sharbel Romanos
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Je Yeong Sone
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Thomas Moore
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Dorothy DeBiasse
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Agnieszka Stadnik
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Justine J Lee
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Robert Shenkar
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Janne Koskimäki
- Department of Neurosurgery, Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
- Department of Neurosurgery, Oulu University Hospital, Neurocenter, Oulu, Finland
| | - Miguel A Lopez-Ramirez
- Department of Medicine, University of California, La Jolla, San Diego, CA, USA
- Department of Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California, La Jolla, San Diego, CA, USA
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Changbin Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Issam A Awad
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA.
- Department of Neurological Surgery, University of Chicago Medicine, 5841 S Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA.
| |
Collapse
|
14
|
Benedé-Ubieto R, Cubero FJ, Nevzorova YA. Breaking the barriers: the role of gut homeostasis in Metabolic-Associated Steatotic Liver Disease (MASLD). Gut Microbes 2024; 16:2331460. [PMID: 38512763 PMCID: PMC10962615 DOI: 10.1080/19490976.2024.2331460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Obesity, insulin resistance (IR), and the gut microbiome intricately interplay in Metabolic-associated Steatotic Liver Disease (MASLD), previously known as Non-Alcoholic Fatty Liver Disease (NAFLD), a growing health concern. The complex progression of MASLD extends beyond the liver, driven by "gut-liver axis," where diet, genetics, and gut-liver interactions influence disease development. The pathophysiology of MASLD involves excessive liver fat accumulation, hepatocyte dysfunction, inflammation, and fibrosis, with subsequent risk of hepatocellular carcinoma (HCC). The gut, a tripartite barrier, with mechanical, immune, and microbial components, engages in a constant communication with the liver. Recent evidence links dysbiosis and disrupted barriers to systemic inflammation and disease progression. Toll-like receptors (TLRs) mediate immunological crosstalk between the gut and liver, recognizing microbial structures and triggering immune responses. The "multiple hit model" of MASLD development involves factors like fat accumulation, insulin resistance, gut dysbiosis, and genetics/environmental elements disrupting the gut-liver axis, leading to impaired intestinal barrier function and increased gut permeability. Clinical management strategies encompass dietary interventions, physical exercise, pharmacotherapy targeting bile acid (BA) metabolism, and microbiome modulation approaches through prebiotics, probiotics, symbiotics, and fecal microbiota transplantation (FMT). This review underscores the complex interactions between diet, metabolism, microbiome, and their impact on MASLD pathophysiology and therapeutic prospects.
Collapse
Affiliation(s)
- Raquel Benedé-Ubieto
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Yulia A. Nevzorova
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
15
|
Bosma EK, Darwesh S, Habani YI, Cammeraat M, Serrano Martinez P, van Breest Smallenburg ME, Zheng JY, Vogels IMC, van Noorden CJF, Schlingemann RO, Klaassen I. Differential roles of eNOS in late effects of VEGF-A on hyperpermeability in different types of endothelial cells. Sci Rep 2023; 13:21436. [PMID: 38052807 PMCID: PMC10698188 DOI: 10.1038/s41598-023-46893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Vascular endothelial growth factor (VEGF)-A induces endothelial hyperpermeability, but the molecular pathways remain incompletely understood. Endothelial nitric oxide synthase (eNOS) regulates acute effects of VEGF-A on permeability of endothelial cells (ECs), but it remains unknown whether and how eNOS regulates late effects of VEGF-A-induced hyperpermeability. Here we show that VEGF-A induces hyperpermeability via eNOS-dependent and eNOS-independent mechanisms at 2 days after VEGF-A stimulation. Silencing of expression of the eNOS gene (NOS3) reduced VEGF-A-induced permeability for dextran (70 kDa) and 766 Da-tracer in human dermal microvascular ECs (HDMVECs), but not in human retinal microvascular ECs (HRECs) and human umbilical vein ECs (HUVECs). However, silencing of NOS3 expression in HRECs increased permeability to dextran, BSA and 766 Da-tracer in the absence of VEGF-A stimulation, suggesting a barrier-protective function of eNOS. We also investigated how silencing of NOS3 expression regulates the expression of permeability-related transcripts, and found that NOS3 silencing downregulates the expression of PLVAP, a molecule associated with trans-endothelial transport via caveolae, in HDMVECs and HUVECs, but not in HRECs. Our findings underscore the complexity of VEGF-A-induced permeability pathways in ECs and the role of eNOS therein, and demonstrate that different pathways are activated depending on the EC phenotype.
Collapse
Affiliation(s)
- Esmeralda K Bosma
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Shahan Darwesh
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Yasmin I Habani
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Maxime Cammeraat
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Paola Serrano Martinez
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Mathilda E van Breest Smallenburg
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Jia Y Zheng
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Ilse M C Vogels
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
- Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile Des Aveugles, Lausanne, Switzerland
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Wood EH, Moshfeghi DM, Capone A, Williams GA, Blumenkranz MS, Sieving PA, Harper CA, Hartnett ME, Drenser KA. A Literary Pediatric Retina Fellowship With Michael T. Trese, MD. Ophthalmic Surg Lasers Imaging Retina 2023; 54:701-712. [PMID: 38113364 DOI: 10.3928/23258160-20231020-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Michael T. Trese, MD (1946-2022), a vitreoretinal surgeon, made significant contributions to the field of retina. Although most known for his work in pediatric retina surgery, he was a pioneer in areas such as medical retina, translational research, and telemedicine. This article reviews his major contributions to spread his knowledge more widely to vitreoretinal trainees and specialists. We discuss six areas where Trese made a lasting impact: lens-sparing vitrectomy, familial exudative vitreoretinopathy, congenital X-linked retinoschisis, autologous plasmin enzyme, regenerative medicine, and telemedicine. [Ophthalmic Surg Lasers Imaging Retina 2023;54:701-712.].
Collapse
|
17
|
Sui Y, Kou S, Ge K, Cao J, Liu C, Zhang H. Expression analysis of plvap in mouse heart development, homeostasis and injury. Gene Expr Patterns 2023; 50:119343. [PMID: 37774966 DOI: 10.1016/j.gep.2023.119343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
Plasmalemma vesicle associated protein (PLVAP) is commonly considered to be specifically expressed in endothelial cells in which it localized to diaphragms of caveolae, fenestrae, and transendothelial channels. PLVAP is reported to be an important regulator of heart development and a novel target to promote cardiac repair in the ischemic heart. However, the dynamics of plvap expression in heart development, homeostasis and pathology have not been comprehensively described. In this study, we analyzed the temporal and spatial expression of plvap in mouse heart under different conditions. We found that, during embryonic and neonatal stages, PLVAP was detected in endocardial endothelial cells, epicardial mesothelial cells, and a small amount of coronary vascular endothelial cells. In adult heart, PLVAP was also identified in endocardial cells and a few coronary vascular endothelial cells. However, epicardial expression of PLVAP was lost during postnatal heart development and cannot be detected in mouse heart by immunostaining since 3-week-old. We also analyzed the expression of plvap in a model of cardiac hypertrophy and failure induced by transverse aortic constriction surgery, and identified expression of PLVAP in endocardial cells and coronary vascular endothelial cells in the injured heart. This study provides new evidence to better understand the role of plvap in mouse heart development and injury.
Collapse
Affiliation(s)
- Yu Sui
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shan Kou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kaixin Ge
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinjun Cao
- Department of Pediatric Critical Care Medicine, Xinhua Hospital, Affiliated to the Medical School of Shanghai Jiao Tong University, Shanghai, China.
| | - Chen Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hui Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
18
|
Rudraraju M, Shan S, Liu F, Tyler J, Caldwell RB, Somanath PR, Narayanan SP. Pharmacological Modulation of β-Catenin Preserves Endothelial Barrier Integrity and Mitigates Retinal Vascular Permeability and Inflammation. J Clin Med 2023; 12:7145. [PMID: 38002758 PMCID: PMC10672253 DOI: 10.3390/jcm12227145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Compromised blood-retinal barrier (BRB) integrity is a significant factor in ocular diseases like uveitis and retinopathies, leading to pathological vascular permeability and retinal edema. Adherens and tight junction (AJ and TJ) dysregulation due to retinal inflammation plays a pivotal role in BRB disruption. We investigated the potential of ICG001, which inhibits β-catenin-mediated transcription, in stabilizing cell junctions and preventing BRB leakage. In vitro studies using human retinal endothelial cells (HRECs) showed that ICG001 treatment improved β-Catenin distribution within AJs post lipopolysaccharide (LPS) treatment and enhanced monolayer barrier resistance. The in vivo experiments involved a mouse model of LPS-induced ocular inflammation. LPS treatment resulted in increased albumin leakage from retinal vessels, elevated vascular endothelial growth factor (VEGF) and Plasmalemmal Vesicle-Associated Protein (PLVAP) expression, as well as microglia and macroglia activation. ICG001 treatment (i.p.) effectively mitigated albumin leakage, reduced VEGF and PLVAP expression, and reduced the number of activated microglia/macrophages. Furthermore, ICG001 treatment suppressed the surge in inflammatory cytokine synthesis induced by LPS. These findings highlight the potential of interventions targeting β-Catenin to enhance cell junction stability and improve compromised barrier integrity in various ocular inflammatory diseases, offering hope for better management and treatment options.
Collapse
Affiliation(s)
- Madhuri Rudraraju
- Clinical and Experimental Therapeutics, Clinical and Administrative Pharmacy Department, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Shengshuai Shan
- Clinical and Experimental Therapeutics, Clinical and Administrative Pharmacy Department, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Fang Liu
- Clinical and Experimental Therapeutics, Clinical and Administrative Pharmacy Department, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Jennifer Tyler
- Clinical and Experimental Therapeutics, Clinical and Administrative Pharmacy Department, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Ruth B. Caldwell
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, Clinical and Administrative Pharmacy Department, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics, Clinical and Administrative Pharmacy Department, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
19
|
Wang W, He Z. Gasdermins in sepsis. Front Immunol 2023; 14:1203687. [PMID: 38022612 PMCID: PMC10655013 DOI: 10.3389/fimmu.2023.1203687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is a hyper-heterogeneous syndrome in which the systemic inflammatory response persists throughout the course of the disease and the inflammatory and immune responses are dynamically altered at different pathogenic stages. Gasdermins (GSDMs) proteins are pore-forming executors in the membrane, subsequently mediating the release of pro-inflammatory mediators and inflammatory cell death. With the increasing research on GSDMs proteins and sepsis, it is believed that GSDMs protein are one of the most promising therapeutic targets in sepsis in the future. A more comprehensive and in-depth understanding of the functions of GSDMs proteins in sepsis is important to alleviate the multi-organ dysfunction and reduce sepsis-induced mortality. In this review, we focus on the function of GSDMs proteins, the molecular mechanism of GSDMs involved in sepsis, and the regulatory mechanism of GSDMs-mediated signaling pathways, aiming to provide novel ideas and therapeutic strategies for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Wenhua Wang
- Department of Intensive Care Unit, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihui He
- Department of Intensive Care Unit, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Corano Scheri K, Lavine JA, Tedeschi T, Thomson BR, Fawzi AA. Single-cell transcriptomics analysis of proliferative diabetic retinopathy fibrovascular membranes reveals AEBP1 as fibrogenesis modulator. JCI Insight 2023; 8:e172062. [PMID: 37917183 PMCID: PMC10896003 DOI: 10.1172/jci.insight.172062] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023] Open
Abstract
The management of preretinal fibrovascular membranes, a devastating complication of advanced diabetic retinopathy (DR), remains challenging. We characterized the molecular profile of cell populations in these fibrovascular membranes to identify potentially new therapeutic targets. Preretinal fibrovascular membranes were surgically removed from patients and submitted for single-cell RNA-Seq (scRNA-Seq). Differential gene expression was implemented to define the transcriptomics profile of these cells and revealed the presence of endothelial, inflammatory, and stromal cells. Endothelial cell reclustering identified subclusters characterized by noncanonical transcriptomics profile and active angiogenesis. Deeper investigation of the inflammatory cells showed a subcluster of macrophages expressing proangiogenic cytokines, presumably contributing to angiogenesis. The stromal cell cluster included a pericyte-myofibroblast transdifferentiating subcluster, indicating the involvement of pericytes in fibrogenesis. Differentially expressed gene analysis showed that Adipocyte Enhancer-binding Protein 1, AEBP1, was significantly upregulated in myofibroblast clusters, suggesting that this molecule may have a role in transformation. Cell culture experiments with human retinal pericytes (HRP) in high-glucose condition confirmed the molecular transformation of pericytes toward myofibroblastic lineage. AEBP1 siRNA transfection in HRP reduced the expression of profibrotic markers in high glucose. In conclusion, AEBP1 signaling modulates pericyte-myofibroblast transformation, suggesting that targeting AEBP1 could prevent scar tissue formation in advanced DR.
Collapse
Affiliation(s)
| | | | | | - Benjamin R Thomson
- Department of Ophthalmology and
- Cardiovascular and Renal Research Institute, Center for Kidney Research and Therapeutics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
21
|
Bora K, Kushwah N, Maurya M, Pavlovich MC, Wang Z, Chen J. Assessment of Inner Blood-Retinal Barrier: Animal Models and Methods. Cells 2023; 12:2443. [PMID: 37887287 PMCID: PMC10605292 DOI: 10.3390/cells12202443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Proper functioning of the neural retina relies on the unique retinal environment regulated by the blood-retinal barrier (BRB), which restricts the passage of solutes, fluids, and toxic substances. BRB impairment occurs in many retinal vascular diseases and the breakdown of BRB significantly contributes to disease pathology. Understanding the different molecular constituents and signaling pathways involved in BRB development and maintenance is therefore crucial in developing treatment modalities. This review summarizes the major molecular signaling pathways involved in inner BRB (iBRB) formation and maintenance, and representative animal models of eye diseases with retinal vascular leakage. Studies on Wnt/β-catenin signaling are highlighted, which is critical for retinal and brain vascular angiogenesis and barriergenesis. Moreover, multiple in vivo and in vitro methods for the detection and analysis of vascular leakage are described, along with their advantages and limitations. These pre-clinical animal models and methods for assessing iBRB provide valuable experimental tools in delineating the molecular mechanisms of retinal vascular diseases and evaluating therapeutic drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
22
|
Stockwell AD, Chang MC, Mahajan A, Forrest W, Anegondi N, Pendergrass RK, Selvaraj S, Reeder J, Wei E, Iglesias VA, Creps NM, Macri L, Neeranjan AN, van der Brug MP, Scales SJ, McCarthy MI, Yaspan BL. Multi-ancestry GWAS analysis identifies two novel loci associated with diabetic eye disease and highlights APOL1 as a high risk locus in patients with diabetic macular edema. PLoS Genet 2023; 19:e1010609. [PMID: 37585454 PMCID: PMC10461827 DOI: 10.1371/journal.pgen.1010609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/28/2023] [Accepted: 06/11/2023] [Indexed: 08/18/2023] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes. Approximately 20% of DR patients have diabetic macular edema (DME) characterized by fluid leakage into the retina. There is a genetic component to DR and DME risk, but few replicable loci. Because not all DR cases have DME, we focused on DME to increase power, and conducted a multi-ancestry GWAS to assess DME risk in a total of 1,502 DME patients and 5,603 non-DME controls in discovery and replication datasets. Two loci reached GWAS significance (p<5x10-8). The strongest association was rs2239785, (K150E) in APOL1. The second finding was rs10402468, which co-localized to PLVAP and ANKLE1 in vascular / endothelium tissues. We conducted multiple sensitivity analyses to establish that the associations were specific to DME status and did not reflect diabetes status or other diabetic complications. Here we report two novel loci for risk of DME which replicated in multiple clinical trial and biobank derived datasets. One of these loci, containing the gene APOL1, is a risk factor in African American DME and DKD patients, indicating that this locus plays a broader role in diabetic complications for multiple ancestries. Trial Registration: NCT00473330, NCT00473382, NCT03622580, NCT03622593, NCT04108156.
Collapse
Affiliation(s)
| | | | - Anubha Mahajan
- Genentech, San Francisco, California, United States of America
| | - William Forrest
- Genentech, San Francisco, California, United States of America
| | - Neha Anegondi
- Genentech, San Francisco, California, United States of America
| | | | - Suresh Selvaraj
- Genentech, San Francisco, California, United States of America
| | - Jens Reeder
- Genentech, San Francisco, California, United States of America
| | - Eric Wei
- Genentech, San Francisco, California, United States of America
| | | | | | - Laura Macri
- Character Biosciences, San Francisco, California, United States of America
| | | | | | - Suzie J. Scales
- Genentech, San Francisco, California, United States of America
| | | | - Brian L. Yaspan
- Genentech, San Francisco, California, United States of America
| |
Collapse
|
23
|
Zeng Q, Mousa M, Nadukkandy AS, Franssens L, Alnaqbi H, Alshamsi FY, Safar HA, Carmeliet P. Understanding tumour endothelial cell heterogeneity and function from single-cell omics. Nat Rev Cancer 2023:10.1038/s41568-023-00591-5. [PMID: 37349410 DOI: 10.1038/s41568-023-00591-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
Anti-angiogenic therapies (AATs) are used to treat different types of cancers. However, their success is limited owing to insufficient efficacy and resistance. Recently, single-cell omics studies of tumour endothelial cells (TECs) have provided new mechanistic insight. Here, we overview the heterogeneity of human TECs of all tumour types studied to date, at the single-cell level. Notably, most human tumour types contain varying numbers but only a small population of angiogenic TECs, the presumed targets of AATs, possibly contributing to the limited efficacy of and resistance to AATs. In general, TECs are heterogeneous within and across all tumour types, but comparing TEC phenotypes across tumours is currently challenging, owing to the lack of a uniform nomenclature for endothelial cells and consistent single-cell analysis protocols, urgently raising the need for a more consistent approach. Nonetheless, across most tumour types, universal TEC markers (ACKR1, PLVAP and IGFBP3) can be identified. Besides angiogenesis, biological processes such as immunomodulation and extracellular matrix organization are among the most commonly predicted enriched signatures of TECs across different tumour types. Although angiogenesis and extracellular matrix targets have been considered for AAT (without the hoped success), the immunomodulatory properties of TECs have not been fully considered as a novel anticancer therapeutic approach. Therefore, we also discuss progress, limitations, solutions and novel targets for AAT development.
Collapse
Affiliation(s)
- Qun Zeng
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium
| | - Mira Mousa
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Aisha Shigna Nadukkandy
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lies Franssens
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium
| | - Halima Alnaqbi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Fatima Yousif Alshamsi
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Habiba Al Safar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE.
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB, Leuven, Belgium.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
24
|
Strasser MK, Gibbs DL, Gascard P, Bons J, Hickey JW, Schürch CM, Tan Y, Black S, Chu P, Ozkan A, Basisty N, Sangwan V, Rose J, Shah S, Camilleri-Broet S, Fiset PO, Bertos N, Berube J, Djambazian H, Li R, Oikonomopoulos S, Fels-Elliott DR, Vernovsky S, Shimshoni E, Collyar D, Russell A, Ragoussis I, Stachler M, Goldenring JR, McDonald S, Ingber DE, Schilling B, Nolan GP, Tlsty TD, Huang S, Ferri LE. Concerted epithelial and stromal changes during progression of Barrett's Esophagus to invasive adenocarcinoma exposed by multi-scale, multi-omics analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544265. [PMID: 37333362 PMCID: PMC10274886 DOI: 10.1101/2023.06.08.544265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Esophageal adenocarcinoma arises from Barrett's esophagus, a precancerous metaplastic replacement of squamous by columnar epithelium in response to chronic inflammation. Multi-omics profiling, integrating single-cell transcriptomics, extracellular matrix proteomics, tissue-mechanics and spatial proteomics of 64 samples from 12 patients' paths of progression from squamous epithelium through metaplasia, dysplasia to adenocarcinoma, revealed shared and patient-specific progression characteristics. The classic metaplastic replacement of epithelial cells was paralleled by metaplastic changes in stromal cells, ECM and tissue stiffness. Strikingly, this change in tissue state at metaplasia was already accompanied by appearance of fibroblasts with characteristics of carcinoma-associated fibroblasts and of an NK cell-associated immunosuppressive microenvironment. Thus, Barrett's esophagus progresses as a coordinated multi-component system, supporting treatment paradigms that go beyond targeting cancerous cells to incorporating stromal reprogramming.
Collapse
|
25
|
Xie Y, He L, Zhang Y, Huang H, Yang F, Chao M, Cao H, Wang J, Li Y, Zhang L, Xin L, Xiao B, Shi X, Zhang X, Tang J, Uhrbom L, Dimberg A, Wang L, Zhang L. Wnt signaling regulates MFSD2A-dependent drug delivery through endothelial transcytosis in glioma. Neuro Oncol 2023; 25:1073-1084. [PMID: 36591963 PMCID: PMC10237416 DOI: 10.1093/neuonc/noac288] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Systemic delivery of anti-tumor therapeutic agents to brain tumors is thwarted by the blood-brain barrier (BBB), an organotypic specialization of brain endothelial cells (ECs). A failure of pharmacological compounds to cross BBB is one culprit for the dismal prognosis of glioblastoma (GBM) patients. Identification of novel vascular targets to overcome the challenges posed by the BBB in tumors for GBM treatment is urgently needed. METHODS Temozolomide (TMZ) delivery was investigated in CT2A and PDGFB-driven RCAS/tv-a orthotopic glioma models. Transcriptome analysis was performed on ECs from murine gliomas. Mfsd2a deficient, Cav1 deficient, and Mfsd2a EC-specific inducible mice were developed to study the underlying molecular mechanisms. RESULTS We demonstrated that inhibiting Wnt signaling by LGK974 could increase TMZ delivery and sensitize glioma to chemotherapy in both murine glioma models. Transcriptome analysis of ECs from murine gliomas revealed that Wnt signaling inhibition enhanced vascular transcytosis as indicated by the upregulation of PLVAP and downregulation of MFSD2A. Mfsd2a deficiency in mice enhances TMZ delivery in tumors, whereas constitutive expression of Mfsd2a in ECs suppresses the enhanced TMZ delivery induced by Wnt pathway inhibition in murine glioma. In addition, Wnt signaling inhibition enhanced caveolin-1 (Cav1)-positive caveolae-mediated transcytosis in tumor ECs. Moreover, Wnt signaling inhibitor or Mfsd2a deficiency fails to enhance TMZ penetration in tumors from Cav1-deficient mice. CONCLUSIONS These results demonstrated that Wnt signaling regulates MFSD2A-dependent TMZ delivery through a caveolae-mediated EC transcytosis pathway. Our findings identify Wnt signaling as a promising therapeutic target to improve drug delivery for GBM treatment.
Collapse
Affiliation(s)
- Yuan Xie
- China-Sweden International Joint Research Center for Brain Diseases, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119, China
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
| | - Yanyu Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
| | - Hua Huang
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
| | - Fan Yang
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neuro-injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Min Chao
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, 569 Xinsi Road, Xi’an, 710038, China
| | - Haiyan Cao
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, 569 Xinsi Road, Xi’an, 710038, China
| | - Jianhao Wang
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neuro-injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Yaling Li
- Department of Obstetrics and Gynaecology, Xi’an People’s Hospital (Xi’an Fourth Hospital), Xi’an, 710005, China
| | - Lingxue Zhang
- China-Sweden International Joint Research Center for Brain Diseases, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119, China
| | - Lele Xin
- China-Sweden International Joint Research Center for Brain Diseases, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119, China
| | - Bing Xiao
- China-Sweden International Joint Research Center for Brain Diseases, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119, China
| | - Xinxin Shi
- China-Sweden International Joint Research Center for Brain Diseases, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119, China
| | - Xue Zhang
- China-Sweden International Joint Research Center for Brain Diseases, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119, China
| | - Jiefu Tang
- Trauma Center, First Affiliated Hospital of Hunan University of Medicine, Huaihua, 418000, China
| | - Lene Uhrbom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, 569 Xinsi Road, Xi’an, 710038, China
| | - Lei Zhang
- China-Sweden International Joint Research Center for Brain Diseases, Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, 710119, China
| |
Collapse
|
26
|
Ding J, Lee SJ, Vlahos L, Yuki K, Rada CC, van Unen V, Vuppalapaty M, Chen H, Sura A, McCormick AK, Tomaske M, Alwahabi S, Nguyen H, Nowatzke W, Kim L, Kelly L, Vollrath D, Califano A, Yeh WC, Li Y, Kuo CJ. Therapeutic blood-brain barrier modulation and stroke treatment by a bioengineered FZD 4-selective WNT surrogate in mice. Nat Commun 2023; 14:2947. [PMID: 37268690 PMCID: PMC10238527 DOI: 10.1038/s41467-023-37689-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/27/2023] [Indexed: 06/04/2023] Open
Abstract
Derangements of the blood-brain barrier (BBB) or blood-retinal barrier (BRB) occur in disorders ranging from stroke, cancer, diabetic retinopathy, and Alzheimer's disease. The Norrin/FZD4/TSPAN12 pathway activates WNT/β-catenin signaling, which is essential for BBB and BRB function. However, systemic pharmacologic FZD4 stimulation is hindered by obligate palmitoylation and insolubility of native WNTs and suboptimal properties of the FZD4-selective ligand Norrin. Here, we develop L6-F4-2, a non-lipidated, FZD4-specific surrogate which significantly improves subpicomolar affinity versus native Norrin. In Norrin knockout (NdpKO) mice, L6-F4-2 not only potently reverses neonatal retinal angiogenesis deficits, but also restores BRB and BBB function. In adult C57Bl/6J mice, post-stroke systemic delivery of L6-F4-2 strongly reduces BBB permeability, infarction, and edema, while improving neurologic score and capillary pericyte coverage. Our findings reveal systemic efficacy of a bioengineered FZD4-selective WNT surrogate during ischemic BBB dysfunction, with potential applicability to adult CNS disorders characterized by an aberrant blood-brain barrier.
Collapse
Affiliation(s)
- Jie Ding
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sung-Jin Lee
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Lukas Vlahos
- Department of Systems Biology, Columbia University, Columbia, NY, 10032, USA
| | - Kanako Yuki
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Cara C Rada
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Vincent van Unen
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Hui Chen
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Asmiti Sura
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Aaron K McCormick
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Madeline Tomaske
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Samira Alwahabi
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Huy Nguyen
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - William Nowatzke
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Lily Kim
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lisa Kelly
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Douglas Vollrath
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, Columbia, NY, 10032, USA
| | - Wen-Chen Yeh
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Yang Li
- Surrozen, Inc. South San Francisco, South San Francisco, CA, 94080, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
27
|
Jezierski A, Huang J, Haqqani AS, Haukenfrers J, Liu Z, Baumann E, Sodja C, Charlebois C, Delaney CE, Star AT, Liu Q, Stanimirovic DB. Mouse embryonic stem cell-derived blood-brain barrier model: applicability to studying antibody triggered receptor mediated transcytosis. Fluids Barriers CNS 2023; 20:36. [PMID: 37237379 DOI: 10.1186/s12987-023-00437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Blood brain barrier (BBB) models in vitro are an important tool to aid in the pre-clinical evaluation and selection of BBB-crossing therapeutics. Stem cell derived BBB models have recently demonstrated a substantial advantage over primary and immortalized brain endothelial cells (BECs) for BBB modeling. Coupled with recent discoveries highlighting significant species differences in the expression and function of key BBB transporters, the field is in need of robust, species-specific BBB models for improved translational predictability. We have developed a mouse BBB model, composed of mouse embryonic stem cell (mESC-D3)-derived brain endothelial-like cells (mBECs), employing a directed monolayer differentiation strategy. Although the mBECs showed a mixed endothelial-epithelial phenotype, they exhibited high transendothelial electrical resistance, inducible by retinoic acid treatment up to 400 Ω cm2. This tight cell barrier resulted in restricted sodium fluorescein permeability (1.7 × 10-5 cm/min), significantly lower than that of bEnd.3 cells (1.02 × 10-3 cm/min) and comparable to human induced pluripotent stem cell (iPSC)-derived BECs (2.0 × 10-5 cm/min). The mBECs expressed tight junction proteins, polarized and functional P-gp efflux transporter and receptor mediated transcytosis (RMT) receptors; collectively important criteria for studying barrier regulation and drug delivery applications in the CNS. In this study, we compared transport of a panel of antibodies binding species selective or cross-reactive epitopes on BBB RMT receptors in both the mBEC and human iPSC-derived BEC model, to demonstrate discrimination of species-specific BBB transport mechanisms.
Collapse
Affiliation(s)
- Anna Jezierski
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Jez Huang
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Julie Haukenfrers
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Ziying Liu
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Ewa Baumann
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Caroline Sodja
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Claudie Charlebois
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Christie E Delaney
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Alexandra T Star
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Qing Liu
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| | - Danica B Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council of Canada, ON, Ottawa, Canada
| |
Collapse
|
28
|
Andrés-Blasco I, Gallego-Martínez A, Machado X, Cruz-Espinosa J, Di Lauro S, Casaroli-Marano R, Alegre-Ituarte V, Arévalo JF, Pinazo-Durán MD. Oxidative Stress, Inflammatory, Angiogenic, and Apoptotic molecules in Proliferative Diabetic Retinopathy and Diabetic Macular Edema Patients. Int J Mol Sci 2023; 24:ijms24098227. [PMID: 37175931 PMCID: PMC10179600 DOI: 10.3390/ijms24098227] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of this study is to evaluate molecules involved in oxidative stress (OS), inflammation, angiogenesis, and apoptosis, and discern which of these are more likely to be implicated in proliferative diabetic retinopathy (PDR) and diabetic macular edema (DME) by investigating the correlation between them in the plasma (PLS) and vitreous body (VIT), as well as examining data obtained from ophthalmological examinations. Type 2 diabetic (T2DM) patients with PDR/DME (PDRG/DMEG; n = 112) and non-DM subjects as the surrogate controls (SCG n = 48) were selected according to the inclusion/exclusion criteria and programming for vitrectomy, either due to having PDR/DME or macular hole (MH)/epiretinal membrane (ERM)/rhegmatogenous retinal detachment. Blood samples were collected and processed to determine the glycemic profile, total cholesterol, and C reactive protein, as well as the malondialdehyde (MDA), 4-hydroxynonenal (4HNE), superoxide dismutase (SOD), and catalase (CAT) levels and total antioxidant capacity (TAC). In addition, interleukin 6 (IL6), vascular endothelial growth factor (VEGF), and caspase 3 (CAS3) were assayed. The VITs were collected and processed to measure the expression levels of all the abovementioned molecules. Statistical analyses were conducted using the R Core Team (2022) program, including group comparisons and correlation analyses. Compared with the SCG, our findings support the presence of molecules involved in OS, inflammation, angiogenesis, and apoptosis in the PLS and VIT samples from T2DM. In PLS from PDRG, there was a decrease in the antioxidant load (p < 0.001) and an increase in pro-angiogenic molecules (p < 0.001), but an increase in pro-oxidants (p < 0.001) and a decline in antioxidants (p < 0.001) intravitreally. In PLS from DMEG, pro-oxidants and pro-inflammatory molecules were augmented (p < 0.001) and the antioxidant capacity diminished (p < 0.001), but the pro-oxidants increased (p < 0.001) and antioxidants decreased (p < 0.001) intravitreally. Furthermore, we found a positive correlation between the PLS-CAT and the VIT-SOD levels (rho = 0.5; p < 0.01) in PDRG, and a negative correlation between the PSD-4HNE and the VIT-TAC levels (rho = 0.5; p < 0.01) in DMEG. Integrative data of retinal imaging variables showed a positive correlation between the central subfield foveal thickness (CSFT) and the VIT-SOD levels (rho = 0.5; p < 0.01), and a negative correlation between the CSFT and the VIT-4HNE levels (rho = 0.4; p < 0.01) in PDRG. In DMEG, the CSFT displayed a negative correlation with the VIT-CAT (rho = 0.5; p < 0.01). Exploring the relationship of the abovementioned potential biomarkers between PLS and VIT may help detecting early molecular changes in PDR/DME, which can be used to identify patients at high risk of progression, as well as to monitor therapeutic outcomes in the diabetic retina.
Collapse
Affiliation(s)
- Irene Andrés-Blasco
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, 46017 Valencia, Spain
- Spanish Net of Inflammatory Diseases and Immunopathology of Organs and Systems (REI/RICORS), Institute of Health Carlos III, Ministry of Science and Innovation, 28029 Madrid, Spain
| | - Alex Gallego-Martínez
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, 46017 Valencia, Spain
| | - Ximena Machado
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, 46017 Valencia, Spain
| | | | - Salvatore Di Lauro
- Department of Ophthalmology, University Clinic Hospital, 47003 Valladolid, Spain
| | - Ricardo Casaroli-Marano
- Spanish Net of Inflammatory Diseases and Immunopathology of Organs and Systems (REI/RICORS), Institute of Health Carlos III, Ministry of Science and Innovation, 28029 Madrid, Spain
- Spanish Net of Ophthalmic Pathology Research OFTARED, Institute of Health Carlos III, Ministry of Science and Innovation, 28029 Madrid, Spain
- Department of Ophthalmology, Clinic Hospital, 08036 Barcelona, Spain
| | - Víctor Alegre-Ituarte
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, 46017 Valencia, Spain
- Department of Ophthalmology, University Hospital Dr. Peset, 46017 Valencia, Spain
| | - José Fernando Arévalo
- Spanish Net of Inflammatory Diseases and Immunopathology of Organs and Systems (REI/RICORS), Institute of Health Carlos III, Ministry of Science and Innovation, 28029 Madrid, Spain
- Wilmer at Johns Hopkins Bayview Medical Center, Baltimore, MA 21224, USA
| | - María Dolores Pinazo-Durán
- Cellular and Molecular Ophthalmo-Biology Group, Department of Surgery, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Ophthalmic Research Unit "Santiago Grisolía"/FISABIO, 46017 Valencia, Spain
- Spanish Net of Inflammatory Diseases and Immunopathology of Organs and Systems (REI/RICORS), Institute of Health Carlos III, Ministry of Science and Innovation, 28029 Madrid, Spain
- Spanish Net of Ophthalmic Pathology Research OFTARED, Institute of Health Carlos III, Ministry of Science and Innovation, 28029 Madrid, Spain
| |
Collapse
|
29
|
Denzer L, Muranyi W, Schroten H, Schwerk C. The role of PLVAP in endothelial cells. Cell Tissue Res 2023; 392:393-412. [PMID: 36781482 PMCID: PMC10172233 DOI: 10.1007/s00441-023-03741-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023]
Abstract
Endothelial cells play a major part in the regulation of vascular permeability and angiogenesis. According to their duty to fit the needs of the underlying tissue, endothelial cells developed different subtypes with specific endothelial microdomains as caveolae, fenestrae and transendothelial channels which regulate nutrient exchange, leukocyte migration, and permeability. These microdomains can exhibit diaphragms that are formed by the endothelial cell-specific protein plasmalemma vesicle-associated protein (PLVAP), the only known protein component of these diaphragms. Several studies displayed an involvement of PLVAP in diseases as cancer, traumatic spinal cord injury, acute ischemic brain disease, transplant glomerulopathy, Norrie disease and diabetic retinopathy. Besides an upregulation of PLVAP expression within these diseases, pro-angiogenic or pro-inflammatory responses were observed. On the other hand, loss of PLVAP in knockout mice leads to premature mortality due to disrupted homeostasis. Generally, PLVAP is considered as a major factor influencing the permeability of endothelial cells and, finally, to be involved in the regulation of vascular permeability. Following these observations, PLVAP is debated as a novel therapeutic target with respect to the different vascular beds and tissues. In this review, we highlight the structure and functions of PLVAP in different endothelial types in health and disease.
Collapse
Affiliation(s)
- Lea Denzer
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Walter Muranyi
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
30
|
Chang TH, Hsieh FL, Gu X, Smallwood PM, Kavran JM, Gabelli SB, Nathans J. Structural insights into plasmalemma vesicle-associated protein (PLVAP): Implications for vascular endothelial diaphragms and fenestrae. Proc Natl Acad Sci U S A 2023; 120:e2221103120. [PMID: 36996108 PMCID: PMC10083539 DOI: 10.1073/pnas.2221103120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/20/2023] [Indexed: 03/31/2023] Open
Abstract
In many organs, small openings across capillary endothelial cells (ECs) allow the diffusion of low-molecular weight compounds and small proteins between the blood and tissue spaces. These openings contain a diaphragm composed of radially arranged fibers, and current evidence suggests that a single-span type II transmembrane protein, plasmalemma vesicle-associated protein-1 (PLVAP), constitutes these fibers. Here, we present the three-dimensional crystal structure of an 89-amino acid segment of the PLVAP extracellular domain (ECD) and show that it adopts a parallel dimeric alpha-helical coiled-coil configuration with five interchain disulfide bonds. The structure was solved using single-wavelength anomalous diffraction from sulfur-containing residues (sulfur SAD) to generate phase information. Biochemical and circular dichroism (CD) experiments show that a second PLVAP ECD segment also has a parallel dimeric alpha-helical configuration-presumably a coiled coil-held together with interchain disulfide bonds. Overall, ~2/3 of the ~390 amino acids within the PLVAP ECD adopt a helical configuration, as determined by CD. We also determined the sequence and epitope of MECA-32, an anti-PLVAP antibody. Taken together, these data lend strong support to the model of capillary diaphragms formulated by Tse and Stan in which approximately ten PLVAP dimers are arranged within each 60- to 80-nm-diameter opening like the spokes of a bicycle wheel. Passage of molecules through the wedge-shaped pores is presumably determined both by the length of PLVAP-i.e., the long dimension of the pore-and by the chemical properties of amino acid side chains and N-linked glycans on the solvent-accessible faces of PLVAP.
Collapse
Affiliation(s)
- Tao-Hsin Chang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD21205
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Fu-Lien Hsieh
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD21205
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Xiaowu Gu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD21205
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Philip M. Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD21205
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Jennifer M. Kavran
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD21205
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
31
|
Patel C, Pande S, Sagathia V, Ranch K, Beladiya J, Boddu SHS, Jacob S, Al-Tabakha MM, Hassan N, Shahwan M. Nanocarriers for the Delivery of Neuroprotective Agents in the Treatment of Ocular Neurodegenerative Diseases. Pharmaceutics 2023; 15:837. [PMID: 36986699 PMCID: PMC10052766 DOI: 10.3390/pharmaceutics15030837] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Retinal neurodegeneration is considered an early event in the pathogenesis of several ocular diseases, such as diabetic retinopathy, age-related macular degeneration, and glaucoma. At present, there is no definitive treatment to prevent the progression or reversal of vision loss caused by photoreceptor degeneration and the death of retinal ganglion cells. Neuroprotective approaches are being developed to increase the life expectancy of neurons by maintaining their shape/function and thus prevent the loss of vision and blindness. A successful neuroprotective approach could prolong patients' vision functioning and quality of life. Conventional pharmaceutical technologies have been investigated for delivering ocular medications; however, the distinctive structural characteristics of the eye and the physiological ocular barriers restrict the efficient delivery of drugs. Recent developments in bio-adhesive in situ gelling systems and nanotechnology-based targeted/sustained drug delivery systems are receiving a lot of attention. This review summarizes the putative mechanism, pharmacokinetics, and mode of administration of neuroprotective drugs used to treat ocular disorders. Additionally, this review focuses on cutting-edge nanocarriers that demonstrated promising results in treating ocular neurodegenerative diseases.
Collapse
Affiliation(s)
- Chirag Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Sonal Pande
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Vrunda Sagathia
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Ketan Ranch
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Jayesh Beladiya
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates
| | - Moawia M. Al-Tabakha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Nageeb Hassan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Moyad Shahwan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| |
Collapse
|
32
|
Malong L, Napoli I, Casal G, White IJ, Stierli S, Vaughan A, Cattin AL, Burden JJ, Hng KI, Bossio A, Flanagan A, Zhao HT, Lloyd AC. Characterization of the structure and control of the blood-nerve barrier identifies avenues for therapeutic delivery. Dev Cell 2023; 58:174-191.e8. [PMID: 36706755 DOI: 10.1016/j.devcel.2023.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/26/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023]
Abstract
The blood barriers of the nervous system protect neural environments but can hinder therapeutic accessibility. The blood-brain barrier (BBB) is well characterized, consisting of endothelial cells with specialized tight junctions and low levels of transcytosis, properties conferred by contacting pericytes and astrocytes. In contrast, the blood-nerve barrier (BNB) of the peripheral nervous system is poorly defined. Here, we characterize the structure of the mammalian BNB, identify the processes that confer barrier function, and demonstrate how the barrier can be opened in response to injury. The homeostatic BNB is leakier than the BBB, which we show is due to higher levels of transcytosis. However, the barrier is reinforced by macrophages that specifically engulf leaked materials, identifying a role for resident macrophages as an important component of the BNB. Finally, we demonstrate the exploitation of these processes to effectively deliver RNA-targeting therapeutics to peripheral nerves, indicating new treatment approaches for nervous system pathologies.
Collapse
Affiliation(s)
- Liza Malong
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ilaria Napoli
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Giulia Casal
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ian J White
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Salome Stierli
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Andrew Vaughan
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Anne-Laure Cattin
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jemima J Burden
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Keng I Hng
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alessandro Bossio
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adrienne Flanagan
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Hien T Zhao
- IONIS, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Alison C Lloyd
- UCL Laboratory for Molecular Cell Biology and UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
33
|
Fetsko AR, Sebo DJ, Taylor MR. Brain endothelial cells acquire blood-brain barrier properties in the absence of Vegf-dependent CNS angiogenesis. Dev Biol 2023; 494:46-59. [PMID: 36502932 PMCID: PMC9870987 DOI: 10.1016/j.ydbio.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
During neurovascular development, brain endothelial cells (BECs) respond to secreted signals from the neuroectoderm that regulate CNS angiogenesis, the formation of new blood vessels in the brain, and barriergenesis, the acquisition of blood-brain barrier (BBB) properties. Wnt/β-catenin signaling and Vegf signaling are both required for CNS angiogenesis; however, the relationship between these pathways is not understood. Furthermore, while Wnt/β-catenin signaling is essential for barriergenesis, the role of Vegf signaling in this vital process remains unknown. Here, we provide the first direct evidence, to our knowledge, that Vegf signaling is not required for barriergenesis and that activation of Wnt/β-catenin in BECs is independent of Vegf signaling during neurovascular development. Using double transgenic glut1b:mCherry and plvap:EGFP zebrafish (Danio rerio) to visualize the developing brain vasculature, we performed a forward genetic screen and identified a new mutant allele of kdrl, an ortholog of mammalian Vegfr2. The kdrl mutant lacks CNS angiogenesis but, unlike the Wnt/β-catenin pathway mutant gpr124, acquires BBB properties in BECs. To examine Wnt/β-catenin pathway activation in BECs, we chemically inhibited Vegf signaling and found robust expression of the Wnt/β-catenin transcriptional reporter line 7xtcf-Xla.Siam:EGFP. Taken together, our results establish that Vegf signaling is essential for CNS angiogenesis but is not required for Wnt/β-catenin-dependent barriergenesis. Given the clinical significance of either inhibiting pathological angiogenesis or stimulating neovascularization, our study provides valuable new insights that are critical for the development of effective therapies that target the vasculature in neurological disorders.
Collapse
Affiliation(s)
- Audrey R Fetsko
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Dylan J Sebo
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael R Taylor
- School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
34
|
Di Tommaso N, Santopaolo F, Gasbarrini A, Ponziani FR. The Gut-Vascular Barrier as a New Protagonist in Intestinal and Extraintestinal Diseases. Int J Mol Sci 2023; 24:ijms24021470. [PMID: 36674986 PMCID: PMC9864173 DOI: 10.3390/ijms24021470] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The intestinal barrier, with its multiple layers, is the first line of defense between the outside world and the intestine. Its disruption, resulting in increased intestinal permeability, is a recognized pathogenic factor of intestinal and extra-intestinal diseases. The identification of a gut-vascular barrier (GVB), consisting of a structured endothelium below the epithelial layer, has led to new evidence on the etiology and management of diseases of the gut-liver axis and the gut-brain axis, with recent implications in oncology as well. The gut-brain axis is involved in several neuroinflammatory processes. In particular, the recent description of a choroid plexus vascular barrier regulating brain permeability under conditions of gut inflammation identifies the endothelium as a key regulator in maintaining tissue homeostasis and health.
Collapse
Affiliation(s)
- Natalia Di Tommaso
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
35
|
Gorick CM, Breza VR, Nowak KM, Cheng VWT, Fisher DG, Debski AC, Hoch MR, Demir ZEF, Tran NM, Schwartz MR, Sheybani ND, Price RJ. Applications of focused ultrasound-mediated blood-brain barrier opening. Adv Drug Deliv Rev 2022; 191:114583. [PMID: 36272635 PMCID: PMC9712235 DOI: 10.1016/j.addr.2022.114583] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/01/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023]
Abstract
The blood brain barrier (BBB) plays a critically important role in the regulation of central nervous system (CNS) homeostasis, but also represents a major limitation to treatments of brain pathologies. In recent years, focused ultrasound (FUS) in conjunction with gas-filled microbubble contrast agents has emerged as a powerful tool for transiently and non-invasively disrupting the BBB in a targeted and image-guided manner, allowing for localized delivery of drugs, genes, or other therapeutic agents. Beyond the delivery of known therapeutics, FUS-mediated BBB opening also demonstrates the potential for use in neuromodulation and the stimulation of a range of cell- and tissue-level physiological responses that may prove beneficial in disease contexts. Clinical trials investigating the safety and efficacy of FUS-mediated BBB opening are well underway, and offer promising non-surgical approaches to treatment of devastating pathologies. This article reviews a range of pre-clinical and clinical studies demonstrating the tremendous potential of FUS to fundamentally change the paradigm of treatment for CNS diseases.
Collapse
Affiliation(s)
- Catherine M Gorick
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Victoria R Breza
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Katherine M Nowak
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Vinton W T Cheng
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Delaney G Fisher
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Anna C Debski
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Matthew R Hoch
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Zehra E F Demir
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Nghi M Tran
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Mark R Schwartz
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Natasha D Sheybani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
36
|
Brinks J, van Dijk EHC, Meijer OC, Schlingemann RO, Boon CJF. Choroidal arteriovenous anastomoses: a hypothesis for the pathogenesis of central serous chorioretinopathy and other pachychoroid disease spectrum abnormalities. Acta Ophthalmol 2022; 100:946-959. [PMID: 35179828 PMCID: PMC9790326 DOI: 10.1111/aos.15112] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/30/2022]
Abstract
The pachychoroid disease spectrum (PDS) includes several chorioretinal diseases that share specific choroidal abnormalities. Although their pathophysiological basis is poorly understood, diseases that are part of the PDS have been hypothesized to be the result of venous congestion. Within the PDS, central serous chorioretinopathy is the most common condition associated with vision loss, due to an accumulation of subretinal fluid in the macula. Central serous chorioretinopathy is characterized by distinct risk factors, most notably a high prevalence in males and exposure to corticosteroids. Interestingly, sex differences and corticosteroids are also strongly associated with specific types of arteriovenous anastomoses in the human body, including dural arteriovenous fistula and surgically created arteriovenous shunts. In this manuscript, we assess the potential of such arteriovenous anastomoses in the choroid as a causal mechanism of the PDS. We propose how this may provide a novel unifying concept on the pathophysiological basis of the PDS, and present cases in which this mechanism may play a role.
Collapse
Affiliation(s)
- Joost Brinks
- Department of OphthalmologyLeiden University Medical CentreLeidenThe Netherlands
| | - Elon H. C. van Dijk
- Department of OphthalmologyLeiden University Medical CentreLeidenThe Netherlands
| | - Onno C. Meijer
- Department of Medicine, Division of Endocrinology and MetabolismLeiden University Medical CentreLeidenThe Netherlands
| | - Reinier O. Schlingemann
- Department of Ophthalmology, Amsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
- Department of OphthalmologyUniversity of Lausanne, Jules‐Gonin Eye Hospital, Fondation Asile des AveuglesLausanneSwitzerland
| | - Camiel J. F. Boon
- Department of OphthalmologyLeiden University Medical CentreLeidenThe Netherlands
- Department of Ophthalmology, Amsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
37
|
Matsuno H, Tsuchimine S, O'Hashi K, Sakai K, Hattori K, Hidese S, Nakajima S, Chiba S, Yoshimura A, Fukuzato N, Kando M, Tatsumi M, Ogawa S, Ichinohe N, Kunugi H, Sohya K. Association between vascular endothelial growth factor-mediated blood-brain barrier dysfunction and stress-induced depression. Mol Psychiatry 2022; 27:3822-3832. [PMID: 35618888 DOI: 10.1038/s41380-022-01618-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023]
Abstract
Several lines of evidence suggest that stress induces the neurovascular dysfunction associated with increased blood-brain barrier (BBB) permeability, which could be an important pathology linking stress and psychiatric disorders, including major depressive disorder (MDD). However, the detailed mechanism resulting in BBB dysfunction associated in the pathophysiology of MDD still remains unclear. Herein, we demonstrate the role of vascular endothelial growth factor (VEGF), a key mediator of vascular angiogenesis and BBB permeability, in stress-induced BBB dysfunction and depressive-like behavior development. We implemented an animal model of depression, chronic restraint stress (RS) in BALB/c mice, and found that the BBB permeability was significantly increased in chronically stressed mice. Immunohistochemical and electron microscopic observations revealed that increased BBB permeability was associated with both paracellular and transcellular barrier alterations in the brain endothelial cells. Pharmacological inhibition of VEGF receptor 2 (VEGFR2) using a specific monoclonal antibody (DC101) prevented chronic RS-induced BBB permeability and anhedonic behavior. Considered together, these results indicate that VEGF/VEGFR2 plays a crucial role in the pathogenesis of depression by increasing the BBB permeability, and suggest that VEGFR2 inhibition could be a potential therapeutic strategy for the MDD subtype associated with BBB dysfunction.
Collapse
Affiliation(s)
- Hitomi Matsuno
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Shoko Tsuchimine
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Kazunori O'Hashi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kazuhisa Sakai
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Shinsuke Hidese
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Psychiatry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shingo Nakajima
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal Diabetes Research Center, Montreal, QC, H2X 0A9, Canada
| | - Shuichi Chiba
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Faculty of Veterinary Medical Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama-shi, Okayama, 700-0005, Japan
| | - Aya Yoshimura
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Education and Research Center of Animal Models for Human Diseases, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Noriko Fukuzato
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Mayumi Kando
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Megumi Tatsumi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Shintaro Ogawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Psychiatry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kazuhiro Sohya
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan. .,Division of Physiology, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| |
Collapse
|
38
|
Wang JH, Wong RCB, Liu GS. Retinal Transcriptome and Cellular Landscape in Relation to the Progression of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2022; 63:26. [PMID: 36006018 PMCID: PMC9424969 DOI: 10.1167/iovs.63.9.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose Previous studies that identify putative genes associated with diabetic retinopathy are only focusing on specific clinical stages, thus resulting genes are not necessarily reflective of disease progression. This study identified genes associated with the severity level of diabetic retinopathy using the likelihood-ratio test (LRT) and ordinal logistic regression (OLR) model, as well as to profile immune and retinal cell landscape in progressive diabetic retinopathy using a machine learning deconvolution approach. Methods This study used a published transcriptomic dataset (GSE160306) from macular regions of donors with different degrees of diabetic retinopathy (10 healthy controls, 10 cases of diabetes, 9 cases of nonproliferative diabetic retinopathy, and 10 cases of proliferative diabetic retinopathy or combined with diabetic macular edema). LRT and OLR models were applied to identify severity-associated genes. In addition, CIBERSORTx was used to estimate proportional changes of immune and retinal cells in progressive diabetic retinopathy. Results By controlling for gender and age using LRT and OLR, 50 genes were identified to be significantly increased in expression with the severity of diabetic retinopathy. Functional enrichment analyses suggested these severity-associated genes are related to inflammation and immune responses. CCND1 and FCGR2B are further identified as key regulators to interact with many other severity-associated genes and are crucial to inflammation. Deconvolution analyses demonstrated that the proportions of memory B cells, M2 macrophages, and Müller glia were significantly increased with the progression of diabetic retinopathy. Conclusions These findings demonstrate that deep analyses of transcriptomic data can advance our understanding of progressive ocular diseases, such as diabetic retinopathy, by applying LRT and OLR models as well as bulk gene expression deconvolution.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Raymond C. B. Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Aier Eye Institute, Changsha, Hunan, China
| |
Collapse
|
39
|
Ma K, Chen X, Zhao X, Chen S, Yang J. PLVAP is associated with glioma-associated malignant processes and immunosuppressive cell infiltration as a promising marker for prognosis. Heliyon 2022; 8:e10298. [PMID: 36033326 PMCID: PMC9404362 DOI: 10.1016/j.heliyon.2022.e10298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/25/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Previous reports have confirmed the significance of plasmalemma vesicle-associated protein (PLVAP) in the progression of multiple tumors; however, there are few studies examining its immune properties in the context of gliomas. Here, we methodically investigated the pathophysiological characteristics and clinical manifestations of gliomas. A total of 699 patients diagnosed with gliomas in the cancer genome atlas along with 325 glioma patients in the Chinese glioma genome atlas were collected for the training and validation sets. We analyzed and visualized the total statistics using RStudio. PLVAP was markedly upregulated among high grade gliomas, O6-methylguanine-DNA methyltransferase promoter unmethylated subforms, isocitrate dehydrogenase wild forms, 1p19q non-codeletion subforms, and mesenchyme type gliomas. The receiver operating characteristics analysis illustrated the favorable applicability of PLVAP in regard to estimating mesenchyme subform gliomas. Subsequent Kaplan–Meier curves together with multivariable Cox analyses upon survival identified high-expression PLVAP as a distinct prognostic variable for patients with gliomas. Gene ontology analysis of PLVAP among gliomas has documented the predominant role of this protein in glioma-associated immunobiological processes and also in inflammatory responses. We consequently examined the associations of PLVAP with immune-related meta-genes, and PLVAP was positively correlated with hematopoietic cell kinase, lymphocyte-specific protein tyrosine kinase, major histocompatibility complex (MHC) I, MHC II, signal transducer and activator of transcription 1, and interferon and was negatively correlated with immunoglobulin G. Moreover, association analyses between PLVAP and glioma-infiltrating immunocytes indicated that the infiltrating degrees of most immune cells exhibited positive correlations with PLVAP expression, particularly immunosuppressive subsets such as tumor-related macrophages, myeloid-derived suppressor cells, and regulatory T lymphocytes. In summary, we originally demonstrated that PLVAP is markedly associated with immunosuppressive immune cell infiltration degrees, unfavorable survival, and adverse pathology types among gliomas, thus identifying PLVAP as a practicable marker and a promising target for glioma-based precise diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Kaiming Ma
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Xin Chen
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Xiaofang Zhao
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Suhua Chen
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| |
Collapse
|
40
|
Bosma EK, Darwesh S, Zheng JY, van Noorden CJF, Schlingemann RO, Klaassen I. Quantitative Assessment of the Apical and Basolateral Membrane Expression of VEGFR2 and NRP2 in VEGF-A-stimulated Cultured Human Umbilical Vein Endothelial Cells. J Histochem Cytochem 2022; 70:557-569. [PMID: 35876388 PMCID: PMC9393510 DOI: 10.1369/00221554221115767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial cells (ECs) form a precisely regulated polarized monolayer in capillary walls. Vascular endothelial growth factor-A (VEGF-A) induces endothelial hyperpermeability, and VEGF-A applied to the basolateral side, but not the apical side, has been shown to be a strong barrier disruptor in blood-retinal barrier ECs. We show here that VEGF-A presented to the basolateral side of human umbilical vein ECs (HUVECs) induces higher permeability than apical stimulation, which is similar to results obtained with bovine retinal ECs. We investigated with immunocytochemistry and confocal imaging the distribution of VEGF receptor-2 (VEGFR2) and neuropilin-2 (NRP2) in perinuclear apical and basolateral membrane domains. Orthogonal z-sections of cultured HUVECs were obtained, and the fluorescence intensity at the apical and basolateral membrane compartments was measured. We found that VEGFR2 and NRP2 are evenly distributed throughout perinuclear apical and basolateral membrane compartments in unstimulated HUVECs grown on Transwell inserts, whereas basolateral VEGF-A stimulation induces a shift toward basolateral VEGFR2 and NRP2 localization. When HUVECs were grown on coverslips, the distribution of VEGFR2 and NRP2 across the perinuclear apical and basolateral membrane domains was different. Our findings demonstrate that HUVECs dynamically regulate VEGFR2 and NRP2 localization on membrane microdomains, depending on growth conditions and the polarity of VEGF-A stimulation.
Collapse
Affiliation(s)
- Esmeralda K Bosma
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Shahan Darwesh
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Jia Y Zheng
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands.,Department of Ophthalmology, Fondation Asile des Aveugles, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Matsuoka RL, Buck LD, Vajrala KP, Quick RE, Card OA. Historical and current perspectives on blood endothelial cell heterogeneity in the brain. Cell Mol Life Sci 2022; 79:372. [PMID: 35726097 PMCID: PMC9209386 DOI: 10.1007/s00018-022-04403-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Abstract
Dynamic brain activity requires timely communications between the brain parenchyma and circulating blood. Brain-blood communication is facilitated by intricate networks of brain vasculature, which display striking heterogeneity in structure and function. This vascular cell heterogeneity in the brain is fundamental to mediating diverse brain functions and has long been recognized. However, the molecular basis of this biological phenomenon has only recently begun to be elucidated. Over the past century, various animal species and in vitro systems have contributed to the accumulation of our fundamental and phylogenetic knowledge about brain vasculature, collectively advancing this research field. Historically, dye tracer and microscopic observations have provided valuable insights into the anatomical and functional properties of vasculature across the brain, and these techniques remain an important approach. Additionally, recent advances in molecular genetics and omics technologies have revealed significant molecular heterogeneity within brain endothelial and perivascular cell types. The combination of these conventional and modern approaches has enabled us to identify phenotypic differences between healthy and abnormal conditions at the single-cell level. Accordingly, our understanding of brain vascular cell states during physiological, pathological, and aging processes has rapidly expanded. In this review, we summarize major historical advances and current knowledge on blood endothelial cell heterogeneity in the brain, and discuss important unsolved questions in the field.
Collapse
Affiliation(s)
- Ryota L Matsuoka
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.
| | - Luke D Buck
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Keerti P Vajrala
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.,Kansas City University College of Osteopathic Medicine, Kansas City, MO 64106, USA
| | - Rachael E Quick
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Olivia A Card
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| |
Collapse
|
42
|
Impairment of the Retinal Endothelial Cell Barrier Induced by Long-Term Treatment with VEGF-A 165 No Longer Depends on the Growth Factor's Presence. Biomolecules 2022; 12:biom12050734. [PMID: 35625661 PMCID: PMC9138398 DOI: 10.3390/biom12050734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 12/18/2022] Open
Abstract
As responses of immortalized endothelial cells of the bovine retina (iBREC) to VEGF-A165 depend on exposure time to the growth factor, we investigated changes evident after long-term treatment for nine days. The cell index of iBREC cultivated on gold electrodes—determined as a measure of permeability—was persistently reduced by exposure to the growth factor. Late after addition of VEGF-A165 protein levels of claudin-1 and CD49e were significantly lower, those of CD29 significantly higher, and the plasmalemma vesicle associated protein was no longer detected. Nuclear levels of β-catenin were only elevated on day two. Extracellular levels of VEGF-A—measured by ELISA—were very low. Similar to the binding of the growth factor by brolucizumab, inhibition of VEGFR2 by tyrosine kinase inhibitors tivozanib or nintedanib led to complete, although transient, recovery of the low cell index when added early, though was inefficient when added three or six days later. Additional inhibition of other receptor tyrosine kinases by nintedanib was similarly unsuccessful, but additional blocking of c-kit by tivozanib led to sustained recovery of the low cell index, an effect observed only when the inhibitor was added early. From these data, we conclude that several days after the addition of VEGF-A165 to iBREC, barrier dysfunction is mainly sustained by increased paracellular flow and impaired adhesion. Even more important, these changes are most likely no longer VEGF-A-controlled.
Collapse
|
43
|
Muranyi W, Schwerk C, Herold R, Stump-Guthier C, Lampe M, Fallier-Becker P, Weiß C, Sticht C, Ishikawa H, Schroten H. Immortalized human choroid plexus endothelial cells enable an advanced endothelial-epithelial two-cell type in vitro model of the choroid plexus. iScience 2022; 25:104383. [PMID: 35633941 PMCID: PMC9133638 DOI: 10.1016/j.isci.2022.104383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/31/2021] [Accepted: 05/05/2022] [Indexed: 12/01/2022] Open
Abstract
The choroid plexus (CP) is a highly vascularized structure containing endothelial and epithelial cells located in the ventricular system of the central nervous system (CNS). The role of the fenestrated CP endothelium is under-researched and requires the generation of an immortalized CP endothelial cell line with preserved features. Transduction of primary human CP endothelial cells (HCPEnC) with the human telomerase reverse transcriptase (hTERT) resulted in immortalized HCPEnC (iHCPEnC), which grew as monolayer with contact inhibition, formed capillary-like tubes in Matrigel, and showed no colony growth in soft agar. iHCPEnC expressed pan-endothelial markers and presented characteristic plasmalemma vesicle-associated protein-containing structures. Cultivation of iHCPEnC and human epithelial CP papilloma (HIBCPP) cells on opposite sides of cell culture filter inserts generated an in vitro model with a consistently enhanced barrier function specifically by iHCPEnC. Overall, iHCPEnC present a tool that will contribute to the understanding of CP organ functions, especially endothelial-epithelial interplay. Generation of an immortalized human choroid plexus endothelial cell line (iHCPEnC) iHCPEnC immortalized by telomerase maintain essential endothelial properties The mRNA expression profile distinguishes iHCPEnC from other endothelial cell types iHCPEnC enhance the barrier function of a choroid plexus epithelium in coculture
Collapse
Affiliation(s)
- Walter Muranyi
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Corresponding author
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rosanna Herold
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marko Lampe
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Petra Fallier-Becker
- Institute of Pathology and Neuropathology, University of Tübingen, Tübingen, Germany
| | - Christel Weiß
- Department of Medical Statistics and Biomathematics, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany
| | - Carsten Sticht
- Core Facility Next Generation Sequencing, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
44
|
Wang J, Xu J, Zang G, Zhang T, Wu Q, Zhang H, Chen Y, Wang Y, Qin W, Zhao S, Qin E, Qiu J, Zhang X, Wen L, Wang Y, Wang G. trans-2-Enoyl-CoA Reductase Tecr-Driven Lipid Metabolism in Endothelial Cells Protects against Transcytosis to Maintain Blood-Brain Barrier Homeostasis. RESEARCH 2022; 2022:9839368. [PMID: 35465346 PMCID: PMC9006154 DOI: 10.34133/2022/9839368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/02/2022] [Indexed: 12/29/2022]
Abstract
The transport and metabolism of lipids in cerebrovascular endothelial cells (ECs) have been hypothesized to regulate blood-brain barrier (BBB) maturation and homeostasis. Long-chain polyunsaturated fatty acids (LCPUFAs) as the important lipids components of cell membranes are essential for the development and function of BBB, but the direct links of lipid metabolism and ECs barrier function remain to be established. Here, we comprehensively characterize the transcriptomic phenotype of developmental cerebrovascular ECs in single-cell resolution and firstly find that trans-2-enoyl-CoA reductase (Tecr), a very-long-chain fatty acid synthesis, is highly expressed during barriergenesis and decreased after BBB maturation. EC-specific knockout of Tecr compromises angiogenesis due to delayed vascular sprouting. Importantly, EC-specific deletion of Tecr loss restrictive quality of vascular permeability from neonatal stages to adulthood, with high levels of transcytosis, but maintains the vascular tight junctions. Moreover, lipidomic analysis shows that the expression of Tecr in ECs is associated with the containing of omega-3 fatty acids, which directly suppresses caveolae vesicles formation. These results reveal a protective role for Tecr in BBB integrity and suggest that Tecr as a novel therapeutic target in the central nervous system (CNS) diseases associated with BBB dysfunction.
Collapse
Affiliation(s)
- Jinxuan Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Jianxiong Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guangchao Zang
- Institute of Life Science, Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Tao Zhang
- Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Qi Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Hongping Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yidan Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Weixi Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Shuang Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Erdai Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xiaojuan Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lin Wen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
45
|
Erickson MA, Banks WA. Transcellular routes of blood-brain barrier disruption. Exp Biol Med (Maywood) 2022; 247:788-796. [PMID: 35243912 DOI: 10.1177/15353702221080745] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Disruption of the blood-brain barrier (BBB) can occur through different mechanisms and pathways. As these pathways result in increased permeability to different classes of substances, it is likely that the neurological insults that occur will also differ for these pathways. The major categories of BBB disruption are paracellular (between cells) and transcellular (across cells) with a subcategory of transcellular leakage involving vesicles (transcytotic). Older literature, as well as more recent studies, highlights the importance of the transcellular pathways in BBB disruption. Of the various transcytotic mechanisms that are thought to be active at the BBB, some are linked to receptor-mediated transcytosis, whereas others are likely involved in BBB disruption. For most capillary beds, transcytotic mechanisms are less clearly linked to permeability than are membrane spanning canaliculi and fenestrations. Disruption pathways share cellular mechanisms to some degree as exemplified by transcytotic caveolar and transcellular canaliculi formations. The discovery of some of the cellular components involved in transcellular mechanisms of BBB disruption and the ability to measure them are adding greatly to our classic knowledge, which is largely based on ultrastructural studies. Future work will likely address the conditions and diseases under which the various pathways of disruption are active, the different impacts that they have, and the cellular biology that underlies the different pathways to disruption.
Collapse
Affiliation(s)
- Michelle A Erickson
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| |
Collapse
|
46
|
Dhawan P, Vasishta S, Balakrishnan A, Joshi MB. Mechanistic insights into glucose induced vascular epigenetic reprogramming in type 2 diabetes. Life Sci 2022; 298:120490. [DOI: 10.1016/j.lfs.2022.120490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/22/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
|
47
|
Zouache MA. Variability in Retinal Neuron Populations and Associated Variations in Mass Transport Systems of the Retina in Health and Aging. Front Aging Neurosci 2022; 14:778404. [PMID: 35283756 PMCID: PMC8914054 DOI: 10.3389/fnagi.2022.778404] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is associated with a broad range of visual impairments that can have dramatic consequences on the quality of life of those impacted. These changes are driven by a complex series of alterations affecting interactions between multiple cellular and extracellular elements. The resilience of many of these interactions may be key to minimal loss of visual function in aging; yet many of them remain poorly understood. In this review, we focus on the relation between retinal neurons and their respective mass transport systems. These metabolite delivery systems include the retinal vasculature, which lies within the inner portion of the retina, and the choroidal vasculature located externally to the retinal tissue. A framework for investigation is proposed and applied to identify the structures and processes determining retinal mass transport at the cellular and tissue levels. Spatial variability in the structure of the retina and changes observed in aging are then harnessed to explore the relation between variations in neuron populations and those seen among retinal metabolite delivery systems. Existing data demonstrate that the relation between inner retinal neurons and their mass transport systems is different in nature from that observed between the outer retina and choroid. The most prominent structural changes observed across the eye and in aging are seen in Bruch's membrane, which forms a selective barrier to mass transfers at the interface between the choroidal vasculature and the outer retina.
Collapse
Affiliation(s)
- Moussa A. Zouache
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
48
|
Deissler HL, Rehak M, Busch C, Wolf A. Blocking of VEGF-A is not sufficient to completely revert its long-term effects on the barrier formed by retinal endothelial cells. Exp Eye Res 2022; 216:108945. [PMID: 35038456 DOI: 10.1016/j.exer.2022.108945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 12/27/2022]
Abstract
The VEGF-A-induced functional impairment of the barrier formed by retinal endothelial cells (REC) can be prevented and even - at least temporarily - reverted by trapping the growth factor in a complex with a VEGF-binding protein or by inhibiting the activity of the VEGF receptor 2 (VEGFR2). In an approach to emulate the clinically relevant situation of constant exposure to effectors, we investigated (1) whether prolonged exposure to VEGF-A165 for up to six days results in a different type of disturbance of the barrier formed by immortalized bovine REC (iBREC) and (2) whether alterations of the barrier induced by VEGF-A165 can indeed be sustainably reverted by subsequent treatment with the VEGF-A-binding proteins ranibizumab or brolucizumab. As a measure of barrier integrity, the cell index (CI) of iBREC cultivated on gold electrodes was monitored continuously. CI values declined shortly after addition of the growth factor and then remained low for more than six days over which considerable amounts of both extra- and intracellular VEGF-A were measured. Interestingly, the specific VEGFR2 inhibitor nintedanib normalized the lowered CI when added to iBREC pre-treated with VEGF-A165 for one day, but failed to do so when cells had been exposed to the growth factor for six days. Expression of the tight junction (TJ) protein claudin-5 was unchanged early after addition of VEGF-A165 but higher after prolonged treatment, whereas decreased amounts of the TJ-protein claudin-1 remained low, and increased expression of the plasmalemma vesicle-associated protein (PLVAP) remained high during further exposure. After two days, the characteristic even plasma membrane stainings of claudin-1 or claudin-5 appeared weaker or disordered, respectively. After six days the subcellular localization of claudin-5 was similar to that of control cells again, but claudin-1 remained relocated from the plasma membrane. To counteract these effects of VEGF-A165, brolucizumab or ranibizumab was added after one day, resulting in recovery of the then lowered CI to normal values within a few hours. However, despite the VEGF antagonist being present, the CI declined again two days later to values that were just slightly higher than without VEGF inhibition during further assessment for several days. At this stage, neither the supernatants nor whole cell extracts from iBREC treated with VEGF-A165 and its antagonists contained significant amounts of free VEGF-A. Treatment of VEGF-A165-challenged iBREC with ranibizumab or brolucizumab normalized expression of claudin-1 and claudin-5, but not completely that of PLVAP. Interestingly, the characteristic VEGF-A165-induced relocalization of claudin-1 from the plasma membrane was reverted within one day by any of the VEGF antagonists, but reappeared despite their presence after further exposure for several days. Taken together, barrier dysfunction induced by VEGF-A165 results from deregulated para- and transcellular flow but the precise nature or magnitude of underlying changes on a molecular level clearly depend on the time of exposure, evolving into a stage of VEGF-A165-independent barrier impairment. These findings also provide a plausible explanation for resistance to treatment with VEGF-A antagonists frequently observed in clinical practice.
Collapse
Affiliation(s)
- Heidrun L Deissler
- Department of Ophthalmology, Ulm University Medical Center, Ulm, Germany.
| | - Matus Rehak
- Department of Ophthalmology, University Hospital Leipzig, Leipzig, Germany; Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Catharina Busch
- Department of Ophthalmology, University Hospital Leipzig, Leipzig, Germany
| | - Armin Wolf
- Department of Ophthalmology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
49
|
Graßhoff H, Müller-Fielitz H, Dogbevia GK, Körbelin J, Bannach J, Vahldieck CM, Kusche-Vihrog K, Jöhren O, Müller OJ, Nogueiras R, Prevot V, Schwaninger M. Short regulatory DNA sequences to target brain endothelial cells for gene therapy. J Cereb Blood Flow Metab 2022; 42:104-120. [PMID: 34427142 PMCID: PMC8721777 DOI: 10.1177/0271678x211039617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gene vectors targeting CNS endothelial cells allow to manipulate the blood-brain barrier and to correct genetic defects in the CNS. Because vectors based on the adeno-associated virus (AAV) have a limited capacity, it is essential that the DNA sequence controlling gene expression is short. In addition, it must be specific for endothelial cells to avoid off-target effects. To develop improved regulatory sequences with selectivity for brain endothelial cells, we tested the transcriptional activity of truncated promoters of eleven (brain) endothelial-specific genes in combination with short regulatory elements, i.e., the woodchuck post-transcriptional regulatory element (W), the CMV enhancer element (C), and a fragment of the first intron of the Tie2 gene (S), by transfecting brain endothelial cells of three species. Four combinations of regulatory elements and short promoters (Cdh5, Ocln, Slc2a1, and Slco1c1) progressed through this in-vitro pipeline displaying suitable activity. When tested in mice, the regulatory sequences C-Ocln-W and C-Slc2a1-S-W enabled a stronger and more specific gene expression in brain endothelial cells than the frequently used CAG promoter. In summary, the new regulatory elements efficiently control gene expression in brain endothelial cells and may help to specifically target the blood-brain barrier with gene therapy vectors.
Collapse
Affiliation(s)
- Hanna Graßhoff
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Helge Müller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Godwin K Dogbevia
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Jakob Körbelin
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.,Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jacqueline Bannach
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | | | | | - Olaf Jöhren
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Oliver J Müller
- Department of Internal Medicine III (Cardiology, Angiology and Internal Intensive Care Medicine), University Hospital Schleswig-Holstein, University of Kiel, Kiel, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Vincent Prevot
- Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, DISTALZ, European Genomic Institute for Diabetes, University of Lille, Lille, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| |
Collapse
|
50
|
Little K, Llorián-Salvador M, Scullion S, Hernández C, Simó-Servat O, Del Marco A, Bosma E, Vargas-Soria M, Carranza-Naval MJ, Van Bergen T, Galbiati S, Viganò I, Musi CA, Schlingemann R, Feyen J, Borsello T, Zerbini G, Klaassen I, Garcia-Alloza M, Simó R, Stitt AW. Common pathways in dementia and diabetic retinopathy: understanding the mechanisms of diabetes-related cognitive decline. Trends Endocrinol Metab 2022; 33:50-71. [PMID: 34794851 DOI: 10.1016/j.tem.2021.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes (T2D) is associated with multiple comorbidities, including diabetic retinopathy (DR) and cognitive decline, and T2D patients have a significantly higher risk of developing Alzheimer's disease (AD). Both DR and AD are characterized by a number of pathological mechanisms that coalesce around the neurovascular unit, including neuroinflammation and degeneration, vascular degeneration, and glial activation. Chronic hyperglycemia and insulin resistance also play a significant role, leading to activation of pathological mechanisms such as increased oxidative stress and the accumulation of advanced glycation end-products (AGEs). Understanding these common pathways and the degree to which they occur simultaneously in the brain and retina during diabetes will provide avenues to identify T2D patients at risk of cognitive decline.
Collapse
Affiliation(s)
- Karis Little
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - María Llorián-Salvador
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Sarah Scullion
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Cristina Hernández
- Vall d'Hebron Research Institute and CIBERDEM (ISCIII), Barcelona, Spain
| | - Olga Simó-Servat
- Vall d'Hebron Research Institute and CIBERDEM (ISCIII), Barcelona, Spain
| | - Angel Del Marco
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | - Esmeralda Bosma
- Ocular Angiogenesis Group, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria Vargas-Soria
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | - Maria Jose Carranza-Naval
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | | | - Silvia Galbiati
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ilaria Viganò
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Clara Alice Musi
- Università Degli Studi di Milano and Istituto di Ricerche Farmacologiche Mario Negri- IRCCS, Milano, Italy
| | - Reiner Schlingemann
- Ocular Angiogenesis Group, University of Amsterdam, Amsterdam, The Netherlands; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Lausanne, Switzerland
| | | | - Tiziana Borsello
- Università Degli Studi di Milano and Istituto di Ricerche Farmacologiche Mario Negri- IRCCS, Milano, Italy
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, University of Amsterdam, Amsterdam, The Netherlands
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | - Rafael Simó
- Vall d'Hebron Research Institute and CIBERDEM (ISCIII), Barcelona, Spain.
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK.
| | | |
Collapse
|