1
|
Shou X, Yao Z, Wang Y, Chai Y, Huang Y, Chen R, Gu W, Liu Q. Research on the causal relationship between fine particulate matter and type 2 diabetes mellitus: A two-sample multivariable mendelian randomization study. Nutr Metab Cardiovasc Dis 2024:S0939-4753(24)00332-6. [PMID: 39366807 DOI: 10.1016/j.numecd.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/06/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND AND AIMS Previous research has suggested a correlation between fine particulate matter (PM2.5) and type 2 diabetes mellitus (T2DM). However, the causality was vulnerable to confounding variables. METHODS AND RESULTS A two-sample multivariable mendelian randomization study was designed to examine the causal connection between PM2.5 and T2DM. PM2.5 trait was investigated as exposure while T2DM-related traits as outcomes. The summary data were obtained from the Finngen database and the open genome-wide association study database. The mendelian randomization estimates were obtained using the inverse-variance weighted approach, and multiple sensitivity analyses were conducted. There were potential causal relationships between PM2.5 and T2DM (OR = 2.418; P = 0.019), PM2.5 and glycated hemoglobin (HbA1c) (OR = 1.590; P = 0.041), and PM2.5 and insulin metabolism. PM2.5 was found to have no causal effect on fasting glucose and insulin, 2-h glucose, and insulin-like growth factor binding protein-1 (P > 0.05), while had a potential protective effect against some diabetes complications. CONCLUSIONS Our findings indicated potential causal relationships among PM2.5 and T2DM, especially the causal relationship between PM2.5 and long-term glucose levels.
Collapse
Affiliation(s)
- Xinyang Shou
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhenghong Yao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yimin Wang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanxi Chai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuxin Huang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Weijia Gu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qiang Liu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Yan R, Ji S, Ku T, Sang N. Cross-Omics Analyses Reveal the Effects of Ambient PM 2.5 Exposure on Hepatic Metabolism in Female Mice. TOXICS 2024; 12:587. [PMID: 39195689 PMCID: PMC11360593 DOI: 10.3390/toxics12080587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
Ambient particulate matter (PM2.5) is a potential risk factor for metabolic damage to the liver. Epidemiological studies suggest that elevated PM2.5 concentrations cause changes in hepatic metabolism, but there is a lack of laboratory evidence. Here, we aimed to evaluate the effects of PM2.5 exposure on liver metabolism in C57BL/6j female mice (10 months old) and to explore the mechanisms underlying metabolic alterations and differential gene expressions by combining metabolomics and transcriptomics analyses. The metabolomics results showed that PM2.5 exposure notably affected the metabolism of amino acids and organic acids and caused hepatic lipid and bile acid accumulation. The transcriptomic analyses revealed that PM2.5 exposure led to a series of metabolic pathway abnormalities, including steroid biosynthesis, steroid hormone biosynthesis, primary bile acid biosynthesis, etc. Among them, the changes in the bile acid pathway might be one of the causes of liver damage in mice. In conclusion, this study clarified the changes in liver metabolism in mice caused by PM2.5 exposure through combined transcriptomic and metabolomic analyses, revealed that abnormal bile acid metabolism is the key regulatory mechanism leading to metabolic-associated fatty liver disease (MAFLD) in mice, and provided laboratory evidence for further clarifying the effects of PM2.5 on body metabolism.
Collapse
Affiliation(s)
| | | | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China; (R.Y.); (S.J.); (N.S.)
| | | |
Collapse
|
3
|
Jia Y, He Z, Liu F, Li J, Liang F, Huang K, Chen J, Cao J, Li H, Shen C, Yu L, Liu X, Hu D, Huang J, Zhao Y, Liu Y, Lu X, Gu D, Chen S. Dietary intake changes the associations between long-term exposure to fine particulate matter and the surrogate indicators of insulin resistance. ENVIRONMENT INTERNATIONAL 2024; 186:108626. [PMID: 38626493 DOI: 10.1016/j.envint.2024.108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
The relationship of fine particulate matter (PM2.5) exposure and insulin resistance remains inclusive. Our study aimed to investigate this association in the project of Prediction for Atherosclerotic Cardiovascular Disease Risk in China (China-PAR). Specifically, we examined the associations between long-term PM2.5 exposure and three surrogate indicators of insulin resistance: the triglyceride-glucose index (TyG), TyG with waist circumference (TyG-WC) and metabolic score for insulin resistance (METS-IR). Additionally, we explored potential effect modification of dietary intake and components. Generalized estimating equations were used to evaluate the associations between PM2.5 and the indicators with an unbalanced repeated measurement design. Our analysis incorporated a total of 162,060 observations from 99,329 participants. Each 10 μg/m3 increment of PM2.5 was associated with an increase of 0.22 % [95 % confidence interval (CI): 0.20 %, 0.25 %], 1.60 % (95 % CI: 1.53 %, 1.67 %), and 2.05 % (95 % CI: 1.96 %, 2.14 %) in TyG, TyG-WC, and METS-IR, respectively. These associations were attenuated among participants with a healthy diet, particularly those with sufficient intake of fruit and vegetable, fish or tea (pinteraction < 0.0028). For instance, among participants with a healthy diet, TyG increased by 0.11 % (95 % CI: 0.08 %, 0.15 %) per 10 μg/m3 PM2.5 increment, significantly lower than the association observed in those with an unhealthy diet. The findings of this study emphasize the potential of a healthy diet to mitigate these associations, highlighting the urgency for improving air quality and implementing dietary interventions among susceptible populations in China.
Collapse
Affiliation(s)
- Yanhui Jia
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China; Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Zhi He
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Fangchao Liu
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Jianxin Li
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Keyong Huang
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Jichun Chen
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Jie Cao
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Hongfan Li
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Chong Shen
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ling Yu
- Department of Cardiology, Fujian Provincial Hospital, Fuzhou 350014, China
| | - Xiaoqing Liu
- Division of Epidemiology, Guangdong Provincial People's Hospital and Cardiovascular Institute, Guangzhou 510080, China
| | - Dongsheng Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University, Shenzhen 518060, China
| | - Jianfeng Huang
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Yingxin Zhao
- Cardio-Cerebrovascular Control and Research Center, Institute of Basic Medicine, Shandong First Medical University (Shandong Academy of Medicine Sciences), Jinan 271099, China
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Xiangfeng Lu
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Dongfeng Gu
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China; School of Public Health and Emergency Management, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shufeng Chen
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing 100037, China.
| |
Collapse
|
4
|
Shi W, Li Y, Zhao JV. Long-term exposure to ambient air pollution with sarcopenia among middle-aged and older adults in China. J Nutr Health Aging 2024; 28:100029. [PMID: 38388113 DOI: 10.1016/j.jnha.2023.100029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/19/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND Few studies have examined the role of outdoor air pollution exposure in sarcopenia in Asia. We aimed to investigate the association of outdoor air pollutants exposure with sarcopenia among Chinese adults. METHODS This nationally population-representative study used data from the China Health and Retirement Longitudinal Study (CHARLS) in 2015, 11,700 participants at least 45 years old from 125 Chinese cities were included. Sarcopenia status was identified according to the Asian Working Group for Sarcopenia 2019 (AWGS 2019) criteria. Ambient annual average air pollutants including fine particulate matter (PM2.5), inhalable particles (PM10), coarse particulate matter (PMcoarse), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO) were estimated by satellite models and ground-based measurements. Multinomial logistic regression models were performed to examine the associations of air pollutants exposure with different status of sarcopenia (including possible sarcopenia and sarcopenia). Stratified analyses were utilized to assess the effect modifiers. RESULTS Among the 11,700 participants (52.6% women), the average age was 61.0 years. Each 10 μg/m3 increment of annual PMcoarse was associated with a higher risk of possible sarcopenia (odds ratio (OR) = 1.08, 95% confidence interval (CI) 1.04-1.11). Stratified analyses showed a positive risk of possible sarcopenia in women after exposure to PM10, PMcoarse, and NO2. Ambient NO2 exposure was positively associated with sarcopenia (OR = 1.13, 95% CI 1.04-1.22) in those aged 65 years and older. However, we have not observed differences by sex, age, residence, smoking, and drinking. Robustness results were found for PMcoarse in the sensitivity analyses. CONCLUSION This nationwide study suggested that long-term exposure to outdoor air pollution, especially for PMcoarse, was associated with the risk of sarcopenia among Chinese adults. Our findings provide epidemiological implications for protecting healthy ageing by improving air quality.
Collapse
Affiliation(s)
- Wenming Shi
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong SAR, China
| | - Yongzhen Li
- Clinical Nutrition Department, Starkids Children's Hospital, Shanghai, New Hong Qiao Campus for Children's Hospital of Fudan University, Shanghai, 201106, China
| | - Jie V Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong SAR, China.
| |
Collapse
|
5
|
Marchini T. Redox and inflammatory mechanisms linking air pollution particulate matter with cardiometabolic derangements. Free Radic Biol Med 2023; 209:320-341. [PMID: 37852544 DOI: 10.1016/j.freeradbiomed.2023.10.396] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Air pollution is the largest environmental risk factor for disease and premature death. Among the different components that are present in polluted air, fine particulate matter below 2.5 μm in diameter (PM2.5) has been identified as the main hazardous constituent. PM2.5 mainly arises from fossil fuel combustion during power generation, industrial processes, and transportation. Exposure to PM2.5 correlates with enhanced mortality risk from cardiovascular diseases (CVD), such as myocardial infarction and stroke. Over the last decade, it has been increasingly suggested that PM2.5 affects CVD already at the stage of risk factor development. Among the multiple biological mechanisms that have been described, the interplay between oxidative stress and inflammation has been consistently highlighted as one of the main drivers of pulmonary, systemic, and cardiovascular effects of PM2.5 exposure. In this context, PM2.5 uptake by tissue-resident immune cells in the lung promotes oxidative and inflammatory mediators release that alter tissue homeostasis at remote locations. This pathway is central for PM2.5 pathogenesis and might account for the accelerated development of risk factors for CVD, including obesity and diabetes. However, transmission and end-organ mechanisms that explain PM2.5-induced impaired function in metabolic active organs are not completely understood. In this review, the main features of PM2.5 physicochemical characteristics related to PM2.5 ability to induce oxidative stress and inflammation will be presented. Hallmark and recent epidemiological and interventional studies will be summarized and discussed in the context of current air quality guidelines and legislation, knowledge gaps, and inequities. Lastly, mechanistic studies at the intersection between redox metabolism, inflammation, and function will be discussed, with focus on heart and adipose tissue alterations. By offering an integrated analysis of PM2.5-induced effects on cardiometabolic derangements, this review aims to contribute to a better understanding of the pathogenesis and potential interventions of air pollution-related CVD.
Collapse
Affiliation(s)
- Timoteo Marchini
- Vascular Immunology Laboratory, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL), Facultad de Farmacia y Bioquímica, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Hu R, Zhang L, Qin L, Ding H, Li R, Gu W, Chen R, Zhang Y, Rajagoplan S, Zhang K, Sun Q, Liu C. Airborne PM 2.5 pollution: A double-edged sword modulating hepatic lipid metabolism in middle-aged male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121347. [PMID: 36858098 DOI: 10.1016/j.envpol.2023.121347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Emerging evidence suggests that exposure to airborne fine particulate matter (PM2.5) is closely related to disturbances in hepatic lipid metabolism. However, no systematic study assessed the age vulnerability in effects of PM2.5 exposure on metabolism, and the potential mechanisms remain unknown. This study aimed to investigate the metabolic susceptibility of different life stages to PM2.5 exposure, and to evaluate the underlying molecular mechanisms. Male C57BL/6 mice at three life phases (young, adult, and middle-aged) were exposed simultaneously to concentrated ambient PM2.5 or filtered air (FA) for 8 weeks using a whole-body inhalational exposure system. The average daily PM2.5 concentrations to which mice were actually exposed were 90.71 ± 7.99 μg/m3. The body weight, total food utilization, body composition, glucose metabolic homeostasis of the mice were evaluated. At euthanasia, serum and liver samples were collected to measure lipid profiles and hepatic function. H&E and Oil Red O staining were used to assess the liver cellular structure and hepatic lipid deposition. Transcriptomics and lipidomics were performed to determine the differentially expressed genes and lipid metabolites in the liver. Quantitative RT-PCR and immunoblots were performed to verify the transcriptomics and explore the mechanism for metabolic susceptibility. PM2.5 exposure led to reductions in body weight gain, total food utilization, and fat mass in middle-aged mice but not in young or adults. Exposure to PM2.5 reduced hepatic lipid deposition by enhancing lipolysis and inhibiting the glycerol-3-phosphate (G3P) pathway of hepatic lipogenesis. Furthermore, PM2.5 exposure attenuated hepatic fatty acid metabolism and primary bile acid biosynthesis. Finally, PM2.5 exposure dysregulated hepatic phospholipid metabolism, as evidenced by increased glycerophospholipid synthesis and disturbed sphingolipid metabolism. Therefore, middle-aged male mice were more vulnerable to PM2.5 exposure with double-edged effects, improved metabolism and hepatic TG accumulation but inhibited hepatic fatty acid and bile acid metabolism and dysregulated phospholipid metabolism.
Collapse
Affiliation(s)
- Renjie Hu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China.
| | - Lu Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China.
| | - Li Qin
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China.
| | - Hao Ding
- Eco-Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China.
| | - Weijia Gu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China.
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China.
| | - Yunhui Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Sanjay Rajagoplan
- Harrington Heart and Vascular Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA.
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China.
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Rose M, Filiatreault A, Williams A, Guénette J, Thomson EM. Modulation of insulin signaling pathway genes by ozone inhalation and the role of glucocorticoids: A multi-tissue analysis. Toxicol Appl Pharmacol 2023; 469:116526. [PMID: 37088303 DOI: 10.1016/j.taap.2023.116526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Air pollution is associated with increased risk of metabolic diseases including type 2 diabetes, of which dysregulation of the insulin-signaling pathway is a feature. While studies suggest pollutant exposure alters insulin signaling in certain tissues, there is a lack of comparison across multiple tissues needed for a holistic assessment of metabolic effects, and underlying mechanisms remain unclear. Air pollution increases plasma levels of glucocorticoids, systemic regulators of metabolic function. The objectives of this study were to 1) determine effects of ozone on insulin-signaling genes in major metabolic tissues, and 2) elucidate the role of glucocorticoids. Male Fischer-344 rats were treated with metyrapone, a glucocorticoid synthesis inhibitor, and exposed to 0.8 ppm ozone or clean air for 4 h, with tissue collected immediately or 24 h post exposure. Ozone inhalation resulted in distinct mRNA profiles in the liver, brown adipose, white adipose and skeletal muscle tissues, including effects on insulin-signaling cascade genes (Pik3r1, Irs1, Irs2) and targets involved in glucose metabolism (Hk2, Pgk1, Slc2a1), cell survival (Bcl2l1), and genes associated with diabetes and obesity (Serpine1, Retn, Lep). lucocorticoid-dependent regulation was observed in the liver and brown and white adipose tissues, while effects in skeletal muscle were largely unaffected by metyrapone treatment. Gene expression changes were accompanied by altered phosphorylation states of insulin-signaling proteins (BAD, GSK, IR-β, IRS-1) in the liver. The results show that systemic effects of ozone inhalation include tissue-specific regulation of insulin-signaling pathway genes via both glucocorticoid-dependent and independent mechanisms, providing insight into mechanisms underlying adverse effects of pollutants.
Collapse
Affiliation(s)
- Mercedes Rose
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Alain Filiatreault
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Josée Guénette
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Errol M Thomson
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada.
| |
Collapse
|
8
|
Bosch AJT, Rohm TV, AlAsfoor S, Low AJY, Keller L, Baumann Z, Parayil N, Stawiski M, Rachid L, Dervos T, Mitrovic S, Meier DT, Cavelti-Weder C. Lung versus gut exposure to air pollution particles differentially affect metabolic health in mice. Part Fibre Toxicol 2023; 20:7. [PMID: 36895000 PMCID: PMC9996885 DOI: 10.1186/s12989-023-00518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Air pollution has emerged as an unexpected risk factor for diabetes. However, the mechanism behind remains ill-defined. So far, the lung has been considered as the main target organ of air pollution. In contrast, the gut has received little scientific attention. Since air pollution particles can reach the gut after mucociliary clearance from the lungs and through contaminated food, our aim was to assess whether exposure deposition of air pollution particles in the lung or the gut drive metabolic dysfunction in mice. METHODS To study the effects of gut versus lung exposure, we exposed mice on standard diet to diesel exhaust particles (DEP; NIST 1650b), particulate matter (PM; NIST 1649b) or phosphate-buffered saline by either intratracheal instillation (30 µg 2 days/week) or gavage (12 µg 5 days/week) over at least 3 months (total dose of 60 µg/week for both administration routes, equivalent to a daily inhalation exposure in humans of 160 µg/m3 PM2.5) and monitored metabolic parameters and tissue changes. Additionally, we tested the impact of the exposure route in a "prestressed" condition (high-fat diet (HFD) and streptozotocin (STZ)). RESULTS Mice on standard diet exposed to particulate air pollutants by intratracheal instillation developed lung inflammation. While both lung and gut exposure resulted in increased liver lipids, glucose intolerance and impaired insulin secretion was only observed in mice exposed to particles by gavage. Gavage with DEP created an inflammatory milieu in the gut as shown by up-regulated gene expression of pro-inflammatory cytokines and monocyte/macrophage markers. In contrast, liver and adipose inflammation markers were not increased. Beta-cell secretory capacity was impaired on a functional level, most likely induced by the inflammatory milieu in the gut, and not due to beta-cell loss. The differential metabolic effects of lung and gut exposures were confirmed in a "prestressed" HFD/STZ model. CONCLUSIONS We conclude that separate lung and gut exposures to air pollution particles lead to distinct metabolic outcomes in mice. Both exposure routes elevate liver lipids, while gut exposure to particulate air pollutants specifically impairs beta-cell secretory capacity, potentially instigated by an inflammatory milieu in the gut.
Collapse
Affiliation(s)
- Angela J T Bosch
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Theresa V Rohm
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Shefaa AlAsfoor
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Andy J Y Low
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Lena Keller
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Zora Baumann
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Neena Parayil
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Marc Stawiski
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Leila Rachid
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Thomas Dervos
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Sandra Mitrovic
- Department of Laboratory Medicine, University Hospital Basel, 4031, Basel, Switzerland
| | - Daniel T Meier
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Claudia Cavelti-Weder
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland. .,Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland. .,Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Rämistrasse 100, 8009, Zurich, Switzerland.
| |
Collapse
|
9
|
Gu W, Wang R, Cai Z, Lin X, Zhang L, Chen R, Li R, Zhang W, Ji X, Shui G, Sun Q, Liu C. Hawthorn total flavonoids ameliorate ambient fine particulate matter-induced insulin resistance and metabolic abnormalities of lipids in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114456. [PMID: 38321675 DOI: 10.1016/j.ecoenv.2022.114456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 02/08/2024]
Abstract
Recent studies have shown a strong correlation between ambient fine particulate matter (PM2.5) exposure and diabetes risk, including abnormal lipid accumulation and systemic insulin resistance (IR). Hawthorn total flavonoids (HF) are the main groups of active substances in Hawthorn, which showed anti-hyperlipidemic and anti-hyperglycemic effects. Therefore, we hypothesized that HF may attenuate PM2.5-induced IR and abnormal lipid accumulation. Female C57BL/6 N mice were randomly assigned to the filtered air exposure (FA) group, concentrated PM2.5 exposure (PM) group, PM2.5 exposure maintained on a low-dose HF diet (LHF) group, and PM2.5 exposure maintained on a high-dose HF diet (HHF) group for an 8-week PM2.5 exposure using a whole-body exposure device. Body glucose homeostasis, lipid profiles in the liver and serum, and enzymes responsible for hepatic lipid metabolism were measured. We found that exposure to PM2.5 impaired glucose tolerance and insulin sensitivity. In addition, triacylglycerol (TAG) in serum elevated, whereas hepatic TAG levels were decreased after PM2.5 exposure, accompanied by inhibited fatty acid uptake, lipogenesis, and lipolysis in the liver. HF administration, on the other hand, balanced the hepatic TAG levels by increasing fatty acid uptake and decreasing lipid export, leading to alleviated systemic IR and hyperlipidemia in PM2.5-exposed mice. Therefore, HF administration may be an effective strategy to protect against PM2.5-induced IR and metabolic abnormalities of lipids.
Collapse
Affiliation(s)
- Weijia Gu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ruiqing Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ziwei Cai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiujuan Lin
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Wenhui Zhang
- Department of Environmental and Occupational health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xuming Ji
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China.
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China.
| |
Collapse
|
10
|
Hou Y, Wei W, Li G, Sang N. Prenatal PM 2.5 exposure contributes to neuronal tau lesion in male offspring mice through mitochondrial dysfunction-mediated insulin resistance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114151. [PMID: 36228359 DOI: 10.1016/j.ecoenv.2022.114151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The epidemiological evidence has linked prenatal exposure to fine particulate matter (PM2.5) pollution with neurological diseases in offspring. However, the biological process and toxicological mechanisms remain unclear. Tau protein is a neuronal microtubule-associated protein expressed in fetal brain and plays a critical role in mediating neuronal development. Aberrant expression of tau is associated with adverse neurodevelopmental outcomes. To study whether prenatal exposure to PM2.5 pollution induce tau lesion in mice offspring and elucidate the underlying pathogenic mechanism, we exposed pregnant mice to PM2.5 (3 mg/kg b.w.) by oropharyngeal aspiration every other day. The results indicate that prenatal PM2.5 exposure induced hyperphosphorylation of tau in the cortex of postnatal male offspring, which was accompanied by insulin resistance through the IRS-1/PI3K/AKT signaling pathway. Importantly, we further found that prenatal PM2.5 exposure induced mitochondrial dysfunction by disrupting mitochondrial ultrastructure and decreasing the expression of rate-limiting enzymes (CS, IDH2 and FH) in the Krebs cycle and the subunits of mitochondrial complex IV and V (CO1, CO4, ATP6, and ATP8) during postnatal neurodevelopment. The findings suggest that prenatal PM2.5 exposure could induce tauopathy-like changes in male offspring, in which mitochondrial dysfunction-induced insulin resistance might play an important role.
Collapse
Affiliation(s)
- Yanwen Hou
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Wei Wei
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
11
|
Zou L, Li B, Xiong L, Wang Y, Xie W, Huang X, Liang Y, Wei T, Liu N, Chang X, Bai C, Wu T, Xue Y, Zhang T, Tang M. Urban fine particulate matter causes cardiac hypertrophy through calcium-mediated mitochondrial bioenergetics dysfunction in mice hearts and human cardiomyocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119236. [PMID: 35367502 DOI: 10.1016/j.envpol.2022.119236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
In recent years, the cardiovascular toxicity of urban fine particulate matter (PM2.5) has sparked significant alarm. Mitochondria produce 90% of ATP and make up 30% of the volume of cardiomyocytes. Thus knowledge of myocardial mitochondrial dysfunction due to PM2.5 exposure is essential for further cardiotoxic effects. Here, the mechanism of PM2.5-induced cardiac hypertrophy through calcium overload and mitochondrial dysfunction was investigated in vivo and in vitro. Male and female BALB/c mice were given 1.28, 5.5, and 11 mg PM2.5/kg bodyweight weekly through oropharyngeal inhalation for four weeks and were assigned to low, medium, and high dose groups, respectively. PM2.5-induced myocardial edema and cardiac hypertrophy were detected in the high-dose group. Mitochondria were scattered and ruptured with abnormal ultrastructural morphology. In vitro experiments on human cardiomyocyte AC16 showed that exposure to PM2.5 for 24 h caused opened mitochondrial permeability transition pore --leading to excessive calcium production, decreased mitochondrial membrane potential, weakened mitochondrial respiratory metabolism capacity, and decreased ATP production. Nevertheless, the administration of calcium chelator ameliorated the mitochondrial damage in the PM2.5-treated group. Our in vivo and in vitro results confirmed that calcium overload under PM2.5 exposure triggered mTOR/AKT/GSK-3β activation, leading to mitochondrial bioenergetics dysfunction and cardiac hypertrophy.
Collapse
Affiliation(s)
- Lingyue Zou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Binjing Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lilin Xiong
- Department of Environmental Health, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, 210003, China
| | - Yan Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Wenjing Xie
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Na Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xiaoru Chang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Changcun Bai
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Marmett B, Dorneles GP, Nunes RB, Peres A, Romão PRT, Rhoden CR. Exposure to fine particulate matter partially counteract adaptations on glucose metabolism, oxidative stress, and inflammation of endurance exercise in rats. Inhal Toxicol 2022; 34:287-296. [PMID: 35820034 DOI: 10.1080/08958378.2022.2098425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Long-term exposure to air pollution triggers metabolic alterations along with oxidative stress and inflammation, while exercise interventions are widely used to improve those parameters. OBJECTIVE Our study aimed to determine the effects of subchronic exposure to particulate matter 2.5 (PM2.5) and endurance exercise training on glucose metabolism, oxidative stress, and inflammation of the heart and gastrocnemius muscle of rats. MATERIAL AND METHODS Thirty-two male Wistar rats were assigned to 4 experimental groups: Untrained; Endurance training (ET); Untrained + PM2.5; Endurance training + PM2.5. Rats exposed to air pollution received 50 µg of PM2.5 via intranasal instillation daily for 12 weeks. Exercised groups underwent endurance training, consisting in running on an electronic treadmill (70% of maximal capacity, 5 days/week, 5 times/week) for 12 weeks. Glucose metabolism markers, redox state, and inflammatory variables were evaluated in the heart and gastrocnemius muscle. RESULTS ET and ET + PM2.5 group had lower body mass gain and higher exercise capacity, and higher glycogen concentration in the heart and gastrocnemius muscle. In the heart, ET and ET + PM2.5 groups had higher levels of GSH, and lower TBARS and TNF-α concentrations. In the gastrocnemius muscle, the ET group showed higher leptin and lower TBARS and IL-1β concentrations, ET and ET + PM2.5 showed higher superoxide dismutase activity and ROS content. CONCLUSION PM2.5 exposure partially blunts metabolic and inflammatory adaptations in heart and gastrocnemius muscle tissues induced by exercise training.
Collapse
Affiliation(s)
- Bruna Marmett
- Atmospheric Pollution Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Gilson Pires Dorneles
- Cellular and Molecular Immunology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | | | - Alessandra Peres
- Cellular and Molecular Immunology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Pedro Roosevelt Torres Romão
- Cellular and Molecular Immunology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Cláudia Ramos Rhoden
- Cellular and Molecular Immunology Laboratory, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
13
|
Haberzettl P. Reply to Della Guardia and Shin. Am J Physiol Heart Circ Physiol 2022; 322:H973-H974. [PMID: 35481792 DOI: 10.1152/ajpheart.00186.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Petra Haberzettl
- Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky
| |
Collapse
|
14
|
Modification Effect of PARP4 and ERCC1 Gene Polymorphisms on the Relationship between Particulate Matter Exposure and Fasting Glucose Level. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106241. [PMID: 35627777 PMCID: PMC9140444 DOI: 10.3390/ijerph19106241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/27/2023]
Abstract
Particulate matter (PM) has been linked to adverse health outcomes, including insulin resistance (IR). To evaluate the relationships between exposures to PM10, PM2.5–10, and PM2.5; the serum level of fasting glucose, a key IR indicator; and effects of polymorphisms of two repair genes (PARP4 and ERCC1) on these relations, PMs exposure data and blood samples for glucose measurement and genotyping were collected from 527 Korean elders. Daily average levels of PMs during 8 days, from 7 days before examination to the health examination day (from lag day 7 to lag day 0), were used for association analyses, and mean concentrations of PM10, PM2.5–10, and PM2.5 during the study period were 43.4 µg/m3, 19.9 µg/m3, and 23.6 µg/m3, respectively. All three PMs on lag day 4 (mean, 44.5 µg/m3 for PM10, 19.9 µg/m3 for PM2.5–10, and 24.3 µg/m3 for PM2.5) were most strongly associated with an increase in glucose level (percent change by inter-quartile range-change of PM: (β) = 1.4 and p = 0.0023 for PM10; β = 3.0 and p = 0.0010 for PM2.5–10; and β = 2.0 and p = 0.0134 for PM2.5). In particular, elders with PARP4 G-C-G or ERCC1 T-C haplotype were susceptible to PMs exposure in relation to glucose levels (PARP4 G-C-G: β = 2.6 and p = 0.0006 for PM10, β = 3.5 and p = 0.0009 for PM2.5–10, and β = 1.6 and p = 0.0020 for PM2.5; ERCC1 T-C: β = 2.2 and p = 0.0016 for PM10, β = 3.5 and p = 0.0003 for PM2.5–10, and β = 1.2 and p = 0.0158 for PM2.5). Our results indicated that genetic polymorphisms of PARP4 and ERCC1 could modify the relationship between PMs exposure and fasting glucose level in the elderly.
Collapse
|
15
|
Huo W, Hou J, Nie L, Mao Z, Liu X, Chen G, Xiang H, Li S, Guo Y, Wang C. Combined effects of air pollution in adulthood and famine exposure in early life on type 2 diabetes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37700-37711. [PMID: 35066828 DOI: 10.1007/s11356-021-18193-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Famine exposure or air pollution is linked to type 2 diabetes mellitus (T2DM). However, their combined effects on T2DM remain largely unknown. A total of 11,640 individuals were obtained from the Henan Rural Cohort Study. According to their birthdate, participants were divided into three famine exposure subgroups: fetal exposed, childhood exposed, and unexposed groups. The air pollutants (particles with aerodynamics diameters ≤ 1.0 µm (PM1), ≤ 2.5 µm, and ≤ 10 µm, and nitrogen dioxide) concentrations of each individual were estimated by a spatiotemporal model. Participants were divided into low or high air pollution exposure groups taking the 1st quartile value of air pollutants as the cut-off point. Logistic regression model was used to analyze independent and joint associations between air pollution exposure, famine exposure, and T2DM. Positive associations of air pollution and famine exposure with T2DM were found. Participants who experienced fetal or childhood famine and also were exposed to high concentrations of any kind of the air pollutants had a much higher risk for T2DM than those with no famine and low air pollutants exposure (taking PM1.0 for example, the odds ratio [OR]: 1.76, 95% confidence interval [CI]: 1.25, 2.47 for fetal famine, and OR: 1.64, 95%CI: 1.13, 2.40 for childhood famine). After stratified analysis, similar results were observed in women. The results indicated that both famine exposure in early life and air pollution exposure in adulthood are related to increased risk for prevalent T2DM, and they have combined effects on T2DM.
Collapse
Affiliation(s)
- Wenqian Huo
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue Henan, Zhengzhou, 450001, PR China
| | - Luting Nie
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue Henan, Zhengzhou, 450001, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue Henan, Zhengzhou, 450001, PR China
| | - Gongbo Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, PR China
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, PR China
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yuming Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue Henan, Zhengzhou, 450001, PR China.
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue Henan, Zhengzhou, 450001, PR China.
| |
Collapse
|
16
|
Della Guardia L, Shin AC. White and brown adipose tissue functionality is impaired by fine particulate matter (PM2.5) exposure. J Mol Med (Berl) 2022; 100:665-676. [PMID: 35286401 PMCID: PMC9110515 DOI: 10.1007/s00109-022-02183-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 01/09/2022] [Accepted: 02/16/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, via Fratelli Cervi 93, 20090, Segrate, Milano, Italy.
| | - Andrew C Shin
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
17
|
Jiang J, Zhang G, Yu M, Gu J, Zheng Y, Sun J, Ding S. Quercetin improves the adipose inflammatory response and insulin signaling to reduce "real-world" particulate matter-induced insulin resistance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2146-2157. [PMID: 34365603 DOI: 10.1007/s11356-021-15829-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Numerous epidemiological data and experimental studies support a strong link between fine particulate matter (less than 2.5 mm in aerodynamic diameter, PM2.5) exposure and the development of insulin resistance/type 2 diabetes mellitus (T2DM). Quercetin (Que), a flavonoid compound with anti-inflammatory effects, has been confirmed to improve glucose metabolic disorders in rodents and humans. In this study, we investigated the underlying mechanisms of particulate matter (PM)-induced glucose metabolic disorder and subsequently examined the protective effect and mechanism of quercetin supplementation. Male C57BL/6 mice in the control group and PM group were exposed to ambient filtered air (FA) or PM (6 h/day, 7 days/week) for 18 weeks. Mice in the Que group were exposed to PM for 18 weeks and administered Que (50 or 100 mg/kg bw). Glucose tolerance, insulin sensitivity, and systemic and visceral white adipose tissue (vWAT) inflammatory responses were measured. The expression of proteins involved in insulin signal transduction in vWAT was assessed. Chronic PM exposure caused systemic and vWAT inflammation characterized by an increase in serum IL-6 and TNF-α levels and increased vWAT macrophage filtration, triggering NLRP3 inflammasome activation, impairing the classic glucose metabolism signal in vWAT, and inducing whole-body insulin resistance. Moreover, Que administration significantly alleviated systemic and vWAT inflammation, abolished NLRP3 inflammasome activation, and improved signaling abnormalities characteristic of insulin resistance in vWAT and adipocytes. Based on these findings, chronic PM exposure activated the NLRP3 inflammasome and subsequently caused systemic and WAT inflammation and impaired insulin signaling in vWAT and adipocytes. Most importantly, Que administration inhibited NLRP3 inflammasome-mediated inflammation and insulin signaling in vWAT to improve these adverse effects.
Collapse
Affiliation(s)
- Jinjin Jiang
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, People's Republic of China
| | - Guofu Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Min Yu
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, People's Republic of China
| | - Juan Gu
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, People's Republic of China
| | - Yang Zheng
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, People's Republic of China
| | - Jinxia Sun
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, People's Republic of China
| | - Shibin Ding
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, People's Republic of China.
| |
Collapse
|
18
|
Abstract
Inhalation of fine particulate matter (PM2.5), produced by the combustion of fossil fuels, is an important risk factor for cardiovascular disease. Exposure to PM2.5 has been linked to increases in blood pressure, thrombosis, and insulin resistance. It also induces vascular injury and accelerates atherogenesis. Results from animal models corroborate epidemiological evidence and suggest that the cardiovascular effects of PM2.5 may be attributable, in part, to oxidative stress, inflammation, and the activation of the autonomic nervous system. Although the underlying mechanisms remain unclear, there is robust evidence that long-term exposure to PM2.5 is associated with premature mortality due to heart failure, stoke, and ischemic heart disease. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Aruni Bhatnagar
- Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA;
| |
Collapse
|
19
|
Hu R, Zhang W, Li R, Qin L, Chen R, Zhang L, Gu W, Sun Q, Liu C. Ambient fine particulate matter exposure disrupts circadian rhythm and oscillation of the HPA axis in a mouse model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112524. [PMID: 34274836 DOI: 10.1016/j.ecoenv.2021.112524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Emerging evidence supports that exposure to ambient fine particulate matter (PM2.5) is associated with the metabolic syndrome. As the main neuroendocrine axis in mammals, the hypothalamic-pituitary-adrenal (HPA) axis's circadian rhythm (CR) plays an essential role in regulating metabolic homeostasis. Our previous studies found that ambient PM2.5 exposure caused CR disorder of the critical enzymes involved in lipid metabolism in mouse liver and adipose tissues. However, the impact of ambient PM2.5 exposure on the HPA axis is not fully illustrated yet. Male C57BL/6 mice were randomly exposed to ambient PM2.5 or filtered air for ten weeks via a whole-body exposure system. Rhythmic oscillations of clock genes in the hypothalamus and adrenal gland were characterized. The effects of ambient PM2.5 exposure on clock gene expression and rhythmic expression of molecules related to glucocorticoid synthesis were also examined. Firstly, a more robust CR of clock genes was demonstrated in the adrenal gland than that in the hypothalamus. Secondly, PM2.5 exposure significantly inhibited the expression of Clock at ZT8 in the hypothalamus. However, both circadian oscillation and expression levels of Bmal1, Cry1, Cry2, and Rorα were increased significantly by ambient PM2.5 exposure in the adrenal gland. Moreover, abnormal rhythmic oscillation patterns of corticotropin-releasing hormone and adrenocorticotropic hormone were observed after ambient PM2.5 exposure, with no change at the expression levels. Finally, the expression of Cyp11b1 was markedly decreased at ZT0 in the adrenal gland of PM2.5 exposed mice. Our findings provide new insights into the ambient PM2.5 exposure-induced metabolic syndrome from the perspective of CR disturbances.
Collapse
Affiliation(s)
- Renjie Hu
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Wenhui Zhang
- Department of Environmental and Occupational health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China.
| | - Ran Li
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Li Qin
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Rucheng Chen
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Lu Zhang
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Weijia Gu
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qinghua Sun
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Cuiqing Liu
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
20
|
Zhang B, Yin R, Lang J, Yang L, Zhao D, Ma Y. PM 2.5 promotes β cell damage by increasing inflammatory factors in mice with streptozotocin. Exp Ther Med 2021; 22:832. [PMID: 34149878 PMCID: PMC8200811 DOI: 10.3892/etm.2021.10264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence indicates that exposure to fine particulate matter contributes to the onset of diabetes. The present study aimed to investigate the mechanism of particulate matters (PM)2.5 affecting glucose homeostasis in mice with type 1 diabetes mellitus. Male C57BL/6 mice were housed under filtered air (FA) or PM2.5 for 12 weeks and then received intraperitoneal injection of streptozotocin (STZ; 40 mg/kg) or acetic buffer daily for 5 days. At 4 weeks after the last injection, fasting glucose was tested. In the plasma and liver, cholesterol levels were determined by cholesterol oxidase-peroxidase and triglyceride levels were determined by triglycerophosphate oxidase-peroxidase. Homeostasis model assessment of β cell function (Homa-β) was computed based on fasting insulin and glucose levels. Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNFα) levels in plasma, visceral adipose tissues, RAW264.7 macrophages and MIN6 pancreatic β cells treated with PM2.5 (0-50 µg/ml) were quantified via ELISA. Before STZ injection, fasting blood glucose (FBG) levels were similar between FA and PM2.5 groups. After STZ injection, FBG levels were higher in mice pre-exposed to PM2.5 compared with those pre-exposed to FA. When taking FBG levels ≥7 mmol/l as the criteria for impaired glucose level, its incidence was 53.3% and 77.8% in FA and PM2.5 groups, respectively. Independent of STZ injection, IL-1β levels in the adipose tissue were upregulated in mice pre-exposed to PM2.5 compared with FA. The addition of PM2.5 stimulated IL-1β and TNFα production in macrophages and pancreatic β cells, and inhibited the secretion of insulin from MIN6 cells in a dose-dependent manner. In conclusion, pre-exposure of PM2.5 impaired pancreatic β cells in mice upon STZ injection, partially via enhanced inflammation, and suppressed the secretion of insulin.
Collapse
Affiliation(s)
- Baoyu Zhang
- Beijing Key Laboratory of Diabetes Prevention and Research, Centre for Endocrine Metabolic and Immune Disease, Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Ruili Yin
- Beijing Key Laboratory of Diabetes Prevention and Research, Centre for Endocrine Metabolic and Immune Disease, Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Jianan Lang
- Beijing Key Laboratory of Diabetes Prevention and Research, Centre for Endocrine Metabolic and Immune Disease, Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Longyan Yang
- Beijing Key Laboratory of Diabetes Prevention and Research, Centre for Endocrine Metabolic and Immune Disease, Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Dong Zhao
- Beijing Key Laboratory of Diabetes Prevention and Research, Centre for Endocrine Metabolic and Immune Disease, Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Yan Ma
- Beijing Key Laboratory of Diabetes Prevention and Research, Centre for Endocrine Metabolic and Immune Disease, Luhe Hospital, Capital Medical University, Beijing 101149, P.R. China
| |
Collapse
|
21
|
Zhang G, Li R, Li W, Yang S, Sun Q, Yin H, Wang C, Hou B, Wang H, Yu L, Chen R, Shi L, Zhang K, Liew CW, Qiang G, Sun Q, Liu C. Toll-like receptor 3 ablation prevented high-fat diet-induced obesity and metabolic disorder. J Nutr Biochem 2021; 95:108761. [PMID: 33965533 DOI: 10.1016/j.jnutbio.2021.108761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/26/2020] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Inflammation in insulin-sensitive tissues (e.g., liver, visceral adipose tissue [VAT]) plays a major role in obesity and insulin resistance. Recruitment of innate immune cells drives the dysregulation of glucose and lipid metabolism. We aimed to seek the role of Toll like receptor 3 (TLR3), a pattern recognition receptor involved in innate immunity, obesity and the metabolic disorder. TLR3 expression in liver and VAT from diet induced obese mice and in VAT from overweight women was examined. Body weight, glucose homeostasis and insulin sensitivity were evaluated in TLR3 wild-type and knockout (KO) mice on a chow diet (CD) or high-fat diet for 15 weeks. At euthanasia, blood was collected, and plasma biochemical parameters and adipokines were determined with commercial kits. Flow cytometry was used to measure macrophage infiltration and activation in VAT. Standard western blot, immunohistochemistry and quantative PCR were used to assess molecules in pathways about lipid and glucose metabolism, insulin and inflammation in tissues of liver and VAT. Utilizing human and animal samples, we found that expression of TLR3 was upregulated in the liver and VAT in obese mice as well as VAT in overweight women. TLR3-deficiency protected against high-fat diet induced obesity, glucose intolerance, insulin resistance and lipid accumulation. Lipolysis was enhanced in VAT and hepatic lipogenesis was inhibited in TLR3 KO animals. Macrophages infiltration into adipose tissue was attenuated in TLR3 KO mice, accompanied with inhibition of NF-κB-dependent AMPK/Akt signaling pathway. These findings demonstrated that TLR3 ablation prevented obesity and metabolic disorders, thereby providing new mechanistic links between inflammation and obesity and associated metabolic abnormalities in lipid/glucose metabolism.
Collapse
Affiliation(s)
- Guoqing Zhang
- School of Public Health and Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China; College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Ran Li
- School of Public Health and Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wu Li
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Sijia Yang
- School of Public Health and Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Sun
- School of Public Health and Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongping Yin
- College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Cui Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Biyu Hou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanhuan Wang
- College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Liping Yu
- College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Rucheng Chen
- School of Public Health and Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liyun Shi
- College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chong Wee Liew
- Department of Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Qinghua Sun
- College of Public Health, The Ohio State University, Columbus, Ohio, USA.
| | - Cuiqing Liu
- School of Public Health and Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
22
|
Wang Y, Li R, Chen R, Gu W, Zhang L, Gu J, Wang Z, Liu Y, Sun Q, Zhang K, Liu C. Ambient fine particulate matter exposure perturbed circadian rhythm and oscillations of lipid metabolism in adipose tissues. CHEMOSPHERE 2020; 251:126392. [PMID: 32146191 DOI: 10.1016/j.chemosphere.2020.126392] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Emerging evidence indicated that disruption of circadian rhythm (CR) induced metabolic disorders, including dysregulation of energy homeostasis and lipid dysfunction, which was associated with ambient fine particulate matter (PM2.5) as well. However, the role and mechanism of CR in PM2.5-mediated metabolic disorder remain unknown. In the present study, we investigated circadian rhythmic characteristics and explored the effect of PM2.5 on oscillating clock of lipid function and metabolism in white adipose tissue (WAT) and brown adipose tissue (BAT). C57BL/6 mice were exposed to PM2.5 in a whole-body inhalational exposure system. After 10 weeks, the expression of clock-related genes exhibits more robust CR in BAT than WAT, with the acrophase of PER2 in both types of adipose tissue being significantly decreased at ZT12 and Bmal1 increased at ZT0/24 in WAT in response to PM2.5 exposure. In addition, both CR pattern and expression levels of Sirt1 got significantly inhibited by PM2.5 exposure in WAT, accompanied with adipose dysfunction evidenced by inhibited pattern and expression levels of adipokines at the same ZT time points. Finally, a similar phase right shift from ZT4 to ZT12 in both Sirt3 and Ucp1 in BAT was induced by PM2.5 exposure. These findings indicate that disruption of the CR in adipose tissues could be an important way by which PM2.5 exposure induces metabolic disorder and provide potential targets for further investigation.
Collapse
Affiliation(s)
- Yixuan Wang
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ran Li
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Rucheng Chen
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Weijia Gu
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lu Zhang
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinge Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ziyao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Qinghua Sun
- College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Cuiqing Liu
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
23
|
Short-term exposure to air pollution (PM 2.5) induces hypothalamic inflammation, and long-term leads to leptin resistance and obesity via Tlr4/Ikbke in mice. Sci Rep 2020; 10:10160. [PMID: 32576879 PMCID: PMC7311527 DOI: 10.1038/s41598-020-67040-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/18/2020] [Indexed: 12/21/2022] Open
Abstract
A previous study demonstrated that a high-fat diet (HFD), administered for one-three-days, induces hypothalamic inflammation before obesity’s established, and the long term affects leptin signaling/action due to inflammation. We investigate whether exposure to particulate matter of a diameter of ≤2.5 μm (PM2.5) in mice fed with a chow diet leads to similar metabolic effects caused by high-fat feeding. Compared to the filtered air group (FA), one-day-exposure-PM2.5 did not affect adiposity. However, five-days-exposure-PM2.5 increased hypothalamic microglia density, toll-like-receptor-4 (Tlr4), and the inhibitor-NF-kappa-B-kinase-epsilon (Ikbke) expression. Concurrently, fat mass, food intake (FI), and ucp1 expression in brown adipose tissue were also increased. Besides, decreased hypothalamic STAT3-phosphorylation and Pomc expression were found after twelve-weeks-exposure-PM2.5. These were accompanied by increased FI and lower energy expenditure (EE), leading to obesity, along with increased leptin and insulin levels and HOMA. Mechanistically, the deletion of Tlr4 or knockdown of the Ikbke gene in the hypothalamus was sufficient to reverse the metabolic outcomes of twelve-weeks-exposure-PM2.5. These data demonstrated that short-term exposure-PM2.5 increases hypothalamic inflammation, similar to a HFD. Long-term exposure-PM2.5 is even worse, leading to leptin resistance, hyperphagia, and decreased EE. These effects are most likely due to chronic hypothalamic inflammation, which is regulated by Tlr4 and Ikbke signaling.
Collapse
|
24
|
Li R, Sun Q, Lam SM, Chen R, Zhu J, Gu W, Zhang L, Tian H, Zhang K, Chen LC, Sun Q, Shui G, Liu C. Sex-dependent effects of ambient PM 2.5 pollution on insulin sensitivity and hepatic lipid metabolism in mice. Part Fibre Toxicol 2020; 17:14. [PMID: 32321544 PMCID: PMC7178763 DOI: 10.1186/s12989-020-00343-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
Background & aims Emerging evidence supports ambient fine particulate matter (PM2.5) exposure is associated with insulin resistance (IR) and hepatic lipid accumulation. In this study, we aimed to evaluate the sex-dependent vulnerability in response to PM2.5 exposure and investigate the underlying mechanism by which PM2.5 modulates hepatic lipid metabolism. Methods Both male and female C57BL/6 mice were randomly assigned to ambient PM2.5 or filtered air for 24 weeks via a whole body exposure system. High-coverage quantitative lipidomics approaches and liquid chromatography-mass spectrometry techniques were performed to measure hepatic metabolites and hormones in plasma. Metabolic studies, histological analyses, as well as gene expression levels and molecular signal transduction analysis were applied to examine the effects and mechanisms by which PM2.5 exposure-induced metabolic disorder. Results Female mice were more susceptible than their male counterparts to ambient PM2.5 exposure-induced IR and hepatic lipid accumulation. The hepatic lipid profile was changed in response to ambient PM2.5 exposure. Levels of hepatic triacylglycerols (TAGs), free fatty acids (FFAs) and cholesterol were only increased in female mice from PM group compared to control group. Plasmalogens were dysregulated in the liver from PM2.5-exposed mice as well. In addition, exposure to PM2.5 led to enhanced hepatic ApoB and microsomal triglyceride transport protein expression in female mice. Finally, PM2.5 exposure inhibited hypothalamus-pituitary-adrenal (HPA) axis and decreased glucocorticoids levels, which may contribute to the vulnerability in PM2.5-induced metabolic dysfunction. Conclusions Ambient PM2.5 exposure inhibited HPA axis and demonstrated sex-associated differences in its effects on IR and disorder of hepatic lipid metabolism. These findings provide new mechanistic evidence of hormone regulation in air pollution-mediated metabolic abnormalities of lipids and more personalized care should be considered in terms of sex-specific risk factors.
Collapse
Affiliation(s)
- Ran Li
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, 548 Binwen Rd, Building 15#, Room 215, Hangzhou, 310053, China.,Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Sun
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, 548 Binwen Rd, Building 15#, Room 215, Hangzhou, 310053, China.,Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Rd, Building 2, Room 306, Beijing, 100101, China
| | - Rucheng Chen
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, 548 Binwen Rd, Building 15#, Room 215, Hangzhou, 310053, China.,Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junyao Zhu
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, 548 Binwen Rd, Building 15#, Room 215, Hangzhou, 310053, China
| | - Weijia Gu
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, 548 Binwen Rd, Building 15#, Room 215, Hangzhou, 310053, China.,Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, 548 Binwen Rd, Building 15#, Room 215, Hangzhou, 310053, China.,Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Rd, Building 2, Room 306, Beijing, 100101, China
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University of School of Medicine, New York, USA
| | - Qinghua Sun
- College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1 West Beichen Rd, Building 2, Room 306, Beijing, 100101, China.
| | - Cuiqing Liu
- School of Basic Medical Sciences and Public Health, Zhejiang Chinese Medical University, 548 Binwen Rd, Building 15#, Room 215, Hangzhou, 310053, China. .,Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
25
|
Abstract
The respiratory effects of O3 are well established. High ambient O3 concentrations are associated with respiratory symptoms, declines in pulmonary function, asthma exacerbations, and even mortality. The metabolic effects of O3 are less well appreciated. Here we review data indicating that O3 exposure leads to glucose intolerance and hyperlipidemia, characteristics of the metabolic syndrome. We also review the role of stress hormones in these events. We describe how the metabolic effects of O3, including effects within the lungs, are exacerbated in the setting of the metabolic derangements of obesity and we discuss epidemiological data indicating an association between ambient O3 exposure and diabetes. We conclude by describing the role of the gut microbiome in the regulation of metabolism and by discussing data indicating a link between the gut microbiome and pulmonary responses to O3.
Collapse
Affiliation(s)
- Stephanie A. Shore
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
26
|
Reyes-Caballero H, Rao X, Sun Q, Warmoes MO, Lin P, Sussan TE, Park B, Fan TWM, Maiseyeu A, Rajagopalan S, Girnun GD, Biswal S. Air pollution-derived particulate matter dysregulates hepatic Krebs cycle, glucose and lipid metabolism in mice. Sci Rep 2019; 9:17423. [PMID: 31757983 PMCID: PMC6874681 DOI: 10.1038/s41598-019-53716-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Exposure to ambient air particulate matter (PM2.5) is well established as a risk factor for cardiovascular and pulmonary disease. Both epidemiologic and controlled exposure studies in humans and animals have demonstrated an association between air pollution exposure and metabolic disorders such as diabetes. Given the central role of the liver in peripheral glucose homeostasis, we exposed mice to filtered air or PM2.5 for 16 weeks and examined its effect on hepatic metabolic pathways using stable isotope resolved metabolomics (SIRM) following a bolus of 13C6-glucose. Livers were analyzed for the incorporation of 13C into different metabolic pools by IC-FTMS or GC-MS. The relative abundance of 13C-glycolytic intermediates was reduced, suggesting attenuated glycolysis, a feature found in diabetes. Decreased 13C-Krebs cycle intermediates suggested that PM2.5 exposure led to a reduction in the Krebs cycle capacity. In contrast to decreased glycolysis, we observed an increase in the oxidative branch of the pentose phosphate pathway and 13C incorporations suggestive of enhanced capacity for the de novo synthesis of fatty acids. To our knowledge, this is one of the first studies to examine 13C6-glucose utilization in the liver following PM2.5 exposure, prior to the onset of insulin resistance (IR).
Collapse
Affiliation(s)
- Hermes Reyes-Caballero
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, Baltimore, MD, 21205, USA.
| | - Xiaoquan Rao
- Cardiovascular Research Institute, Case Western Reserve School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Qiushi Sun
- Department of Toxicology and Cancer Biology, Markey Cancer Center, Center for Environmental and Systems Biochemistry, University of Kentucky, 1095V.A. Drive, Lexington, KY, 40536, USA
| | - Marc O Warmoes
- Department of Toxicology and Cancer Biology, Markey Cancer Center, Center for Environmental and Systems Biochemistry, University of Kentucky, 1095V.A. Drive, Lexington, KY, 40536, USA
| | - Penghui Lin
- Department of Toxicology and Cancer Biology, Markey Cancer Center, Center for Environmental and Systems Biochemistry, University of Kentucky, 1095V.A. Drive, Lexington, KY, 40536, USA
| | - Tom E Sussan
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, Baltimore, MD, 21205, USA.,Public Health Center, Toxicology Directorate, Aberdeen Proving Ground, Aberdeen, MD, USA
| | - Bongsoo Park
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Teresa W-M Fan
- Department of Toxicology and Cancer Biology, Markey Cancer Center, Center for Environmental and Systems Biochemistry, University of Kentucky, 1095V.A. Drive, Lexington, KY, 40536, USA
| | - Andrei Maiseyeu
- Cardiovascular Research Institute, Case Western Reserve School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, Case Western Reserve School of Medicine, 11100 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Geoffrey D Girnun
- Department of Pharmacological Sciences, Stony Brook University, BST 8-140, Stony Brook, NY, 11794, USA.,Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY, 11794, USA
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, 615N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
27
|
Ye G, Ding D, Gao H, Chi Y, Chen J, Wu Z, Lin Y, Dong S. Comprehensive metabolic responses of HepG2 cells to fine particulate matter exposure: Insights from an untargeted metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:874-884. [PMID: 31326811 DOI: 10.1016/j.scitotenv.2019.07.192] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Exposure to fine particulate matter (PM2.5) increases the risk of metabolic diseases, such as cancer and cardiovascular disease. Disturbed hepatocyte metabolism accelerates the incidence and progression of metabolic diseases. However, toxic effects of PM2.5 on hepatocyte metabolism remain unclear. Accordingly, an untargeted metabolomics approach based on liquid chromatography-mass spectrometry was used to characterize comprehensive metabolic responses of HepG2 cells to PM2.5 exposure and to discover potential therapeutic targets for PM2.5-induced metabolic dysregulation in metabolic diseases. Metabolomics revealed that exposure to liposoluble extracts of PM2.5 samples (LE) triggered substantial changes in 46 metabolic pathways, mainly involved in lipid, amino acid, nucleotide and carbohydrate metabolism, in HepG2 cells. Notably, LE exposure induced accumulation of FFAs and medium-chained acylcarnitines (6-12 carbons), but decreased levels of short-chained acylcarnitines (<5 carbons) in HepG2 cells. Meanwhile, levels of citrate/isocitrate and aconitate were decreased, while 2-hydroxyglutate and succinate accumulated in HepG2 cells treated with LE. Additionally, levels of adenosine triphosphate, guanosine triphosphate, uridine triphosphate and cytidine triphosphate were decreased; however, contents of adenosine monophosphate, guanosine monophosphate, purines and pyrimidines were increased in HepG2 cells treated with LE. Moreover, levels of glutathione, Glu-Cys, Cys-Gly, lipoic acid, methionine sulfoxide, methionine and S-adenosyl-L-methionine were increased, while those of most amino acids were decreased in HepG2 cells treated with LE. These data demonstrated that LE exposure triggered accumulation of FAAs and oncometabolites (2-hydroxyglutate and succinate), mitochondrial dysfunctions characterized by incomplete FFA oxidation and reduced energy supply from TCA cycle and oxidative phosphorylation, disturbances in methylation and redox homeostasis, and the inhibition of most amino acid metabolism in HepG2 cells. Above metabolic disorders indicates potential therapeutic targets for treating PM2.5-induced injury and diseases. To the best of our knowledge, this study provides the first evidence that LE exposure triggered accumulation of medium-chain acylcarnitines, oncometabolites, purines and pyrimidines in HepG2 cells.
Collapse
Affiliation(s)
- Guozhu Ye
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Dongxiao Ding
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Han Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yulang Chi
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Zeming Wu
- iPhenome Biotechnology (Dalian) Inc., 300-8 Jinlongsi Road, Dalian 116063, China
| | - Yi Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Sijun Dong
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
28
|
Jin X, Su H, Ding G, Sun Z, Li Z. Exposure to ambient fine particles causes abnormal energy metabolism and ATP decrease in lung tissues. CHEMOSPHERE 2019; 224:29-38. [PMID: 30807911 DOI: 10.1016/j.chemosphere.2019.02.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/15/2019] [Accepted: 02/17/2019] [Indexed: 05/05/2023]
Abstract
Airborne fine particles, generating from human activities, have drawn increasing attention due to their potential lung health hazards. The currently available toxicological data on fine particles is still not sufficient to explain their cause-and-effect. Based on well reported critical role of ATP on maintaining lung structure and function, the alterations of ATP production and energy metabolism in lungs of rats exposed to different dosages of seasonal PM2.5 were investigated. Haze dosage PM2.5 exposure was demonstrated to reduce the ATP production. Activity of critical enzymes in TCA cycle, such as malate dehydrogenase (MDH) and citrate synthase (CS), and expression of mitochondrial respiration chain genes were attenuated in groups exposed to haze dosage PM2.5. In contrast, there was prominent augment of glycolytic markers at haze dosage PM2.5, including metabolite contents (pyruvate and lactic acid), enzyme activities (hexokinase (HK) and pyruvate kinase (PKM)), along with mRNA levels of PKM and LDH. Consequently, sub-chronic exposure to seasonal haze PM2.5 caused reduction in ATP generation and metabolic rewiring from TCA cycle to glycolysis. Our findings can help better understand the toxicological mechanism of lung disease caused by particulate air pollution.
Collapse
Affiliation(s)
- Xiaoting Jin
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Huilan Su
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Guobin Ding
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhuoyu Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
29
|
Snow SJ, Henriquez AR, Costa DL, Kodavanti UP. Neuroendocrine Regulation of Air Pollution Health Effects: Emerging Insights. Toxicol Sci 2019; 164:9-20. [PMID: 29846720 DOI: 10.1093/toxsci/kfy129] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Air pollutant exposures are linked to cardiopulmonary diseases, diabetes, metabolic syndrome, neurobehavioral conditions, and reproductive abnormalities. Significant effort is invested in understanding how pollutants encountered by the lung might induce effects in distant organs. The role of circulating mediators has been predicted; however, their origin and identity have not been confirmed. New evidence has emerged which implicates the role of neuroendocrine sympathetic-adrenal-medullary (SAM) and hypothalamic-pituitary-adrenal (HPA) stress axes in mediating a wide array of systemic and pulmonary effects. Our recent studies using ozone exposure as a prototypical air pollutant demonstrate that increases in circulating adrenal-derived stress hormones (epinephrine and cortisol/corticosterone) contribute to lung injury/inflammation and metabolic effects in the liver, pancreas, adipose, and muscle tissues. When stress hormones are depleted by adrenalectomy in rats, most ozone effects including lung injury/inflammation are diminished. Animals treated with antagonists for adrenergic and glucocorticoid receptors show inhibition of the pulmonary and systemic effects of ozone, whereas treatment with agonists restore and exacerbate the ozone-induced injury/inflammation phenotype, implying the role of neuroendocrine activation. The neuroendocrine system is critical for normal homeostasis and allostatic activation; however, chronic exposure to stressors may lead to increases in allostatic load. The emerging mechanisms by which circulating mediators are released and are responsible for producing multiorgan effects of air pollutants insists upon a paradigm shift in the field of air pollution and health. Moreover, since these neuroendocrine responses are linked to both chemical and nonchemical stressors, the interactive influence of air pollutants, lifestyle, and environmental factors requires further study.
Collapse
Affiliation(s)
- Samantha J Snow
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education, Research Triangle Park, North Carolina, 27711
| | - Daniel L Costa
- Emeritus, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| |
Collapse
|
30
|
Chen S, Chen M, Wei W, Qiu L, Zhang L, Cao Q, Ying Z. Glucose Homeostasis following Diesel Exhaust Particulate Matter Exposure in a Lung Epithelial Cell-Specific IKK2-Deficient Mouse Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:57009. [PMID: 31095431 PMCID: PMC6791567 DOI: 10.1289/ehp4591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Pulmonary inflammation is believed to be central to the pathogenesis due to exposure to fine particulate matter with aerodynamic diameter [Formula: see text] ([Formula: see text]). This central role, however, has not yet been systemically examined. OBJECTIVE In the present study, we exploited a lung epithelial cell-specific inhibitor [Formula: see text] kinase 2 (IKK2) knockout mouse model to determine the role of pulmonary inflammation in the pathophysiology due to exposure to diesel exhaust particulate matter (DEP). METHODS [Formula: see text] (lung epithelial cell-specific IKK2 knockout, KO) and [Formula: see text] (wild-type, tgWT) mice were intratracheally instilled with either vehicle or DEP for 4 months, and their inflammatory response and glucose homeostasis were then assessed. RESULTS In comparison with tgWT mice, lung epithelial cell-specific IKK2-deficient mice had fewer DEP exposure-induced bronchoalveolar lavage fluid immune cells and proinflammatory cytokines as well as fewer DEP exposure-induced circulating proinflammatory cytokines. Glucose and insulin tolerance tests revealed that lung epithelial cell-specific IKK2 deficiency resulted in markedly less DEP exposure-induced insulin resistance and greater glucose tolerance. Akt phosphorylation analyses of insulin-responsive tissues showed that DEP exposure primarily targeted hepatic insulin sensitivity. Lung epithelial cell-specific IKK2-deficient mice had significantly lower hepatic insulin resistance than tgWT mice had. Furthermore, this difference in insulin resistance was accompanied by consistent differences in hepatic insulin receptor substrate 1 serine phosphorylation and inflammatory marker expression. DISCUSSION Our findings suggest that in a tissue-specific knockout mouse model, an IKK2-dependent pulmonary inflammatory response was essential for the development of abnormal glucose homeostasis due to exposure to DEP. https://doi.org/10.1289/EHP4591.
Collapse
Affiliation(s)
- Sufang Chen
- Department of Geriatric Endocrinology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Minjie Chen
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wei Wei
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Bile Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianglin Qiu
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Occupational and Environmental Health, School of Public Health, Nantong University, Nantong, China
| | - Li Zhang
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Mutlu EA, Comba IY, Cho T, Engen PA, Yazıcı C, Soberanes S, Hamanaka RB, Niğdelioğlu R, Meliton AY, Ghio AJ, Budinger GRS, Mutlu GM. Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:817-830. [PMID: 29783199 PMCID: PMC6400491 DOI: 10.1016/j.envpol.2018.04.130] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/11/2018] [Accepted: 04/27/2018] [Indexed: 05/19/2023]
Abstract
Recent studies suggest an association between particulate matter (PM) air pollution and gastrointestinal (GI) disease. In addition to direct deposition, PM can be indirectly deposited in oropharynx via mucociliary clearance and upon swallowing of saliva and mucus. Within the GI tract, PM may alter the GI epithelium and gut microbiome. Our goal was to determine the effect of PM on gut microbiota in a murine model of PM exposure via inhalation. C57BL/6 mice were exposed via inhalation to either concentrated ambient particles or filtered air for 8-h per day, 5-days a week, for a total of 3-weeks. At exposure's end, GI tract tissues and feces were harvested, and gut microbiota was analyzed. Alpha-diversity was modestly altered with increased richness in PM-exposed mice compared to air-exposed mice in some parts of the GI tract. Most importantly, PM-induced alterations in the microbiota were very apparent in beta-diversity comparisons throughout the GI tract and appeared to increase from the proximal to distal parts. Changes in some genera suggest that distinct bacteria may have the capacity to bloom with PM exposure. Exposure to PM alters the microbiota throughout the GI tract which maybe a potential mechanism that explains PM induced inflammation in the GI tract.
Collapse
Affiliation(s)
- Ece A Mutlu
- Division of Digestive Diseases, Hepatology and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Işın Y Comba
- Division of Digestive Diseases, Hepatology and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Takugo Cho
- Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| | - Phillip A Engen
- Division of Digestive Diseases, Hepatology and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Cemal Yazıcı
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Saul Soberanes
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Robert B Hamanaka
- Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| | - Recep Niğdelioğlu
- Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| | - Angelo Y Meliton
- Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| | - Andrew J Ghio
- United States Environmental Protection Agency, Chapel Hill, NC, 27599, USA.
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Gökhan M Mutlu
- Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
32
|
Sun Q, Zhang G, Chen R, Li R, Wang H, Jiang A, Li Z, Kong L, Fonken LK, Rajagopalan S, Sun Q, Liu C. Central IKK2 Inhibition Ameliorates Air Pollution-Mediated Hepatic Glucose and Lipid Metabolism Dysfunction in Mice With Type II Diabetes. Toxicol Sci 2018; 164:240-249. [PMID: 29635361 PMCID: PMC6016715 DOI: 10.1093/toxsci/kfy079] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous studies supported a role of hypothalamic inflammation in fine ambient particulate matter (PM2.5) exposure-mediated diabetes development. We therefore investigated the effects of PM2.5 exposure on insulin resistance and the disorders of hepatic glucose and lipid metabolism via hypothalamic inflammation. KKAy mice, a genetically susceptible model of type II diabetes mellitus, were administered intra-cerebroventricularly with IKK2 inhibitor (IMD-0354) and were exposed to either concentrated PM2.5 or filtered air (FA) for 4 weeks simultaneously via a versatile aerosol concentration exposure system. At the end of the exposure, fasting blood glucose and serum insulin were evaluated before epididymal adipose tissue and liver were collected, flow cytometry, quantitative PCR and Western blot were performed at euthanasia. We observed that intracerebroventricular administration of IMD-0354 attenuated insulin resistance, inhibited macrophage polarization to M1 phenotype in epididymal adipose tissue in response to PM2.5 exposure. Although the treatment did not affect hepatic inflammation or endoplasmic reticulum stress, it inhibited the expression of the enzymes for gluconeogenesis and lipogenesis in the liver. Therefore, our current finding indicates an important role of hypothalamic inflammation in PM2.5 exposure-mediated hepatic glucose and lipid metabolism disorder.
Collapse
Affiliation(s)
- Qing Sun
- College of Public Health, Dalian Medical University, Dalian 116044, China
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guoqing Zhang
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Peoples’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Rucheng Chen
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ran Li
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huanhuan Wang
- Department of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Apei Jiang
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhenwei Li
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liya Kong
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Laura K Fonken
- Psychology and Neuroscience, Unviersity of Colorado Boulder, Boulder, Colorado 80309
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio 44106
| | - Qinghua Sun
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Division of Environmental Health Sciences, The Ohio State University, Columbus, Ohio 43210
| | - Cuiqing Liu
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai 200135, China
| |
Collapse
|
33
|
Wang W, Zhou J, Chen M, Huang X, Xie X, Li W, Cao Q, Kan H, Xu Y, Ying Z. Exposure to concentrated ambient PM 2.5 alters the composition of gut microbiota in a murine model. Part Fibre Toxicol 2018; 15:17. [PMID: 29665823 PMCID: PMC5905147 DOI: 10.1186/s12989-018-0252-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/29/2018] [Indexed: 02/08/2023] Open
Abstract
Background Exposure to ambient fine particulate matter (PM2.5) correlates with abnormal glucose homeostasis, but the underlying biological mechanism has not been fully understood. The gut microbiota is an emerging crucial player in the homeostatic regulation of glucose metabolism. Few studies have investigated its role in the PM2.5 exposure-induced abnormalities in glucose homeostasis. Methods C57Bl/6J mice were exposed to filtered air (FA) or concentrated ambient PM2.5 (CAP) for 12 months using a versatile aerosol concentration enrichment system (VACES) that was modified for long-term whole-body exposures. Their glucose homeostasis and gut microbiota were examined and analysed by correlation and mediation analysis. Results Intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (ITT) showed that CAP exposure markedly impaired their glucose and insulin tolerance. Faecal microbiota analysis demonstrated that the impairment in glucose homeostasis was coincided with decreased faecal bacterial ACE and Chao-1 estimators (the indexes of community richness), while there was no significant change in all faecal fungal alpha diversity estimators. The Pearson’s correlation analyses showed that the bacterial richness estimators were correlated with glucose and insulin tolerance, and the mediation analyses displayed a significant mediation of CAP exposure-induced glucose intolerance by the alteration in the bacterial Chao-1 estimator. LEfSe analyses revealed 24 bacterial and 21 fungal taxa differential between CAP- and FA-exposed animals. Of these, 14 and 20 bacterial taxa were correlated with IPGTT AUC and ITT AUC, respectively, and 5 fungal taxa were correlated with abnormalities in glucose metabolism. Conclusions Chronic exposure to PM2.5 causes gut dysbiosis and may subsequently contribute to the development of abnormalities in glucose metabolism.
Collapse
Affiliation(s)
- Wanjun Wang
- Department of Environmental Health, School of Public Health, Fudan University, 130 Dong'an Rd, Shanghai, 200032, China
| | - Ji Zhou
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China
| | - Minjie Chen
- Department of Medicine Cardiology Division, School of Medicine, University of Maryland, 20 Penn St. HSFII S022, Baltimore, MD, 21201, USA
| | - Xingke Huang
- Department of Environmental Health, School of Public Health, Fudan University, 130 Dong'an Rd, Shanghai, 200032, China
| | - Xiaoyun Xie
- Department of Interventional & Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weihua Li
- Reproductive and Developmental Research Institute of Fudan University, Shanghai, China
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, 130 Dong'an Rd, Shanghai, 200032, China.,Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, 130 Dong'an Rd, Shanghai, 200032, China. .,Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China.
| | - Zhekang Ying
- Department of Environmental Health, School of Public Health, Fudan University, 130 Dong'an Rd, Shanghai, 200032, China. .,Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China. .,Department of Medicine Cardiology Division, School of Medicine, University of Maryland, 20 Penn St. HSFII S022, Baltimore, MD, 21201, USA.
| |
Collapse
|
34
|
Ozone modifies the metabolic and endocrine response to glucose: Reproduction of effects with the stress hormone corticosterone. Toxicol Appl Pharmacol 2018; 342:31-38. [DOI: 10.1016/j.taap.2018.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/16/2018] [Accepted: 01/28/2018] [Indexed: 12/23/2022]
|
35
|
Guan L, Geng X, Shen J, Yip J, Li F, Du H, Ji Z, Ding Y. PM2.5 inhalation induces intracranial atherosclerosis which may be ameliorated by omega 3 fatty acids. Oncotarget 2018; 9:3765-3778. [PMID: 29423081 PMCID: PMC5790498 DOI: 10.18632/oncotarget.23347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/26/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Intracranial atherosclerosis (ICA) a major health problem. This study investigated whether inhalation of fine airborne particulate matters (PM2.5) causes ICA and whether omega-3 fatty acids (O3FA) attenuated the development of ICA. RESULTS Twelve but not 6 week exposure significantly increased triglycerides (TG) in normal chow diet (NCD), while PM2.5 enhanced all lipid profiles (TG, low density lipoprotein (LDL) and cholesterol (CHO)) after both 6 and 12-week exposure with high-cholesterol diet (HCD). PM2.5 exposure for 12 but not 6 weeks significantly induced middle cerebral artery (MCA) narrowing and thickening, in association with the enhanced expression of inflammatory cytokines, (interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interferon gamma (IFN-γ)), vascular cell adhesion molecule 1 (VCAM-1) and inducible nitric oxide synthase (iNOS). O3FA significantly attenuated vascular alterations, even without favorable changes in lipid profiles, in association with reduced expression of IL-6, TNF-α, MCP-1, IFN-γ, VCAM-1 and iNOS in brain vessels. CONCLUSIONS PM2.5 exposure for 12 weeks aggravates ICA in a dietary model (HCD + short-term L-NAME), which may be mediated by vascular inflammation. O3FA dietary supplementation prevents ICA development and inflammatory reaction in cerebral vessels. METHODS Adult Sprague-Dawly rats were under filtered air (FA) or PM2.5 exposure with NCD or HCD for 6 or 12 weeks. Half of the HCD rats were treated with O3FA (5 mg/kg/day) by gavage. A total of 600 mg NG-nitro-L-arginine methyl ester (L-NAME, 3 mg/mL) per rat was administered over two weeks as supplementation in the HCD group. Blood lipids, including LDL, CHO, TG and high density lipoprotein (HDL), were measured at 6 and 12 weeks. ICA was determined by lumen diameter and thickness of the MCA. Inflammatory markers, IL-6, TNF-α, MCP-1, IFN-γ, VCAM-1 and iNOS were assessed by real-time PCR for mRNA and Western blot for protein expression.
Collapse
Affiliation(s)
- Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Tongzhou Qu, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Tongzhou Qu, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Tongzhou Qu, China
| | - Jiamei Shen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Tongzhou Qu, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - James Yip
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Tongzhou Qu, China
| | - Huishan Du
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Tongzhou Qu, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Tongzhou Qu, China
| | - Zhili Ji
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Tongzhou Qu, China
| | - Yuchuan Ding
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Tongzhou Qu, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
36
|
Li X, Tang K, Jin XR, Xiang Y, Xu J, Yang LL, Wang N, Li YF, Ji AL, Zhou LX, Cai TJ. Short-term air pollution exposure is associated with hospital length of stay and hospitalization costs among inpatients with type 2 diabetes: a hospital-based study. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:819-829. [PMID: 30015599 DOI: 10.1080/15287394.2018.1491912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Air pollution is a risk factor for type 2 diabetes (T2D), exerting heavy economic burden on both individuals and societies. However, there is no apparent report regarding the influence of air pollutants such as particulate matter (PM2.5 and PM10), sulfur dioxide (SO2), carbon monoxide (CO), nitrogen dioxide (NO2), and ozone (O3) on financial burden to individuals and societies suffering from T2D. This study aimed to determine whether short-term (no more than 16 d) air pollution exposure was associated with T2D-related length of stay (LOS) and hospitalization expenses incurred by patients. This investigation examined 2840 T2D patients hospitalized from December 17, 2013 to May 31, 2016 in China. Multiple linear regression analysis was applied to determine the association between short-term (no more than 16 d) ambient air pollution, LOS, and hospitalization expenses, controlling for age, gender, ethnicity, marital status, and weather conditions. Sulfur dioxide (SO2) and carbon monoxide (CO) were significantly positively while nitrogen dioxide (NO2) was negatively associated with presence of T2D, LOS, and expenses. A 10-μg/m3 rise in 16-d (lag 0-15) average concentrations of SO2 and CO prior to hospitalization was correlated with a significant elevation in LOS and elevation in expenses in T2D patients. However, a 10-μg/m3 rise in 16-d average NO2 was associated with marked negative alterations in LOS and hospital costs in T2D patients. Taken together, data demonstrate that exposure to air pollutants impacts differently on LOS and hospitalization costs for T2D patients. This is the first apparent report regarding the correlation between air pollution exposure and clinical costs of T2D in China. It is of interest that air pollutants affected T2D patients differently as evidenced by LOS and clinical expenses where SO2 and CO exhibited a positive adverse relationship in contrast to NO2.
Collapse
Affiliation(s)
- Xiang Li
- a Department of Epidemiology, College of Preventive Medicine , Third Military Medical University (Army Medical University) , Chongqing , China
- b Fourth Battalion of Student Brigade , Third Military Medical University (Army Medical University) , Chongqing , China
| | - Kai Tang
- c Third Battalion of Student Brigade , Third Military Medical University (Army Medical University) , Chongqing , China
| | - Xu-Rui Jin
- b Fourth Battalion of Student Brigade , Third Military Medical University (Army Medical University) , Chongqing , China
| | - Ying Xiang
- a Department of Epidemiology, College of Preventive Medicine , Third Military Medical University (Army Medical University) , Chongqing , China
| | - Jing Xu
- d Department of Endocrinology , Xinqiao Hospital, Third Military Medical University (Army Medical University) , Chongqing , China
| | - Li-Li Yang
- e Department of Information , Xinqiao Hospital, Third Military Medical University (Army Medical University) , Chongqing , China
| | - Nan Wang
- f Medical department , Xinqiao Hospital, Third Military Medical University (Army Medical University) , Chongqing , China
| | - Ya-Fei Li
- a Department of Epidemiology, College of Preventive Medicine , Third Military Medical University (Army Medical University) , Chongqing , China
| | - Ai-Ling Ji
- g Department of Preventive Medicine & Chongqing Engineering Research Center of Pharmaceutical Sciences , Chongqing Medical and Pharmaceutical College , Chongqing , China
| | - Lai-Xin Zhou
- f Medical department , Xinqiao Hospital, Third Military Medical University (Army Medical University) , Chongqing , China
| | - Tong-Jian Cai
- a Department of Epidemiology, College of Preventive Medicine , Third Military Medical University (Army Medical University) , Chongqing , China
| |
Collapse
|