1
|
Guo C, Wright MD, Buckley A, Laycock A, Berthing T, Vogel U, Cosnier F, Gaté L, Leonard MO, Smith R. Pulmonary Toxicity of Long, Thick MWCNT and Very Long, Thin Carboxylated MWCNT Aerosols Following 28 Days Whole-Body Exposure. TOXICS 2025; 13:401. [PMID: 40423481 DOI: 10.3390/toxics13050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025]
Abstract
Pulmonary exposure to carbon nanotubes (CNTs) has been linked to a series of adverse respiratory effects in animal models, including inflammation, genotoxicity, fibrosis, and granuloma formation, the degree and characteristics of which are considered dependent upon the detailed physicochemical properties of the material as inhaled. To further explore the effect of variations in physicochemical properties on pulmonary effects, two different multi-walled CNTs (MWCNTs) were tested in vivo: a pristine MWCNT (pMWCNT) (NM-401) and a surface-modified MWCNT (MWCNT-COOH). Female Sprague-Dawley rats were whole-body exposed for 28 days to MWCNT aerosols (pMWCNT (0.5 and 1.5 mg/m3) and MWCNT-COOH (1.5 and 4.5 mg/m3)) and followed up to 1 year post-exposure. The inhalation exposures resulted in relatively low estimated lung deposition. Bronchoalveolar lavage fluid (BALF) analysis indicated inflammation levels broadly consistent with deposited dose levels. Lung histopathology indicated that both MWCNTs produced very limited toxicological effects; however, global mRNA expression levels in lung tissue and BALF cytokines indicated different characteristics for the two MWCNTs. For example, pMWCNT but not MWCNT-COOH exposure induced osteopontin production, suggestive of potential pre-fibrosis/fibrosis effects linked to the higher aspect ratio aerosol particles. This is of concern as brightfield and enhanced darkfield microscopy indicated the persistence of pMWCNT fibres in lung tissue.
Collapse
Affiliation(s)
- Chang Guo
- Toxicology Department, UK Health Security Agency, Harwell Campus, Didcot OX11 0RQ, UK
| | - Matthew D Wright
- Toxicology Department, UK Health Security Agency, Harwell Campus, Didcot OX11 0RQ, UK
| | - Alison Buckley
- Toxicology Department, UK Health Security Agency, Harwell Campus, Didcot OX11 0RQ, UK
| | - Adam Laycock
- Toxicology Department, UK Health Security Agency, Harwell Campus, Didcot OX11 0RQ, UK
| | - Trine Berthing
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
| | - Frédéric Cosnier
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 54519 Vandoeuvre les Nancy, France
| | - Laurent Gaté
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 54519 Vandoeuvre les Nancy, France
| | - Martin O Leonard
- Toxicology Department, UK Health Security Agency, Harwell Campus, Didcot OX11 0RQ, UK
| | - Rachel Smith
- Toxicology Department, UK Health Security Agency, Harwell Campus, Didcot OX11 0RQ, UK
| |
Collapse
|
2
|
Bartone RD, Tisch LJ, Dominguez J, Payne CK, Bonner JC. House Dust Mite Proteins Adsorb on Multiwalled Carbon Nanotubes Forming an Allergen Corona That Intensifies Allergic Lung Disease in Mice. ACS NANO 2024. [PMID: 39259863 PMCID: PMC11440643 DOI: 10.1021/acsnano.4c07893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The increasing use of multiwalled carbon nanotubes (MWCNTs) could increase the risk of allergic lung disease in occupational or consumer settings. We previously reported that MWCNTs exacerbated allergic lung disease in mice induced by extract from house dust mites (HDM), a common cause of asthma in humans. Because MWCNTs avidly bind biomolecules to form protein coronas that can modify immunotoxicity, we hypothesized that exacerbation of allergic lung disease in mice caused by coexposure to MWCNTs and HDM extract was due to the formation of an allergen corona. In a first set of experiments, male and female C57BL/6J mice were coexposed to MWCNTs and HDM extract over 3 weeks compared to MWCNTs or HDM extract alone. In a second set of experiments, mice were exposed to pristine MWCNTs or MWCNTs with an HDM allergen corona (HDM-MWCNTs). HDM-MWCNTs were formed by incubating MWCNTs with HDM extract, where ∼7% of proteins adsorbed to MWCNTs, including Der p 1 and Der p 2. At necropsy, bronchoalveolar lavage fluid was collected from lungs to assess lactate dehydrogenase, total protein and inflammatory cells, while lung tissue was used for histopathology, qPCR, and Western blotting. Compared to MWCNTs or HDM extract alone, coexposure to MWCNTs and HDM extract or exposure to HDM-MWCNTs increased pathological outcomes associated with allergic lung disease (eosinophilia, fibrosis, mucous cell metaplasia), increased mRNAs associated with fibrosis (Col1A1, Arg1) and enhanced STAT6 phosphorylation in lung tissue. These findings indicated that exacerbation of HDM-induced allergic lung disease by MWCNTs is due to an allergen corona.
Collapse
Affiliation(s)
- Ryan D Bartone
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Logan J Tisch
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Judith Dominguez
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Christine K Payne
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - James C Bonner
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
3
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
4
|
Dominguez J, Holmes SK, Bartone RD, Tisch LJ, Tighe RM, Bonner JC, Payne CK. House Dust Mite Extract Forms a Der p 2 Corona on Multi-Walled Carbon Nanotubes: Implications for Allergic Airway Disease. ENVIRONMENTAL SCIENCE. NANO 2024; 11:324-335. [PMID: 38577066 PMCID: PMC10990074 DOI: 10.1039/d3en00666b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Multi-walled carbons nanotubes (MWCNTs) are used in materials for the construction, automotive, and aerospace industries. Workers and consumers are exposed to these materials via inhalation. Existing recommended exposure limits are based on MWCNT exposures that do not take into account more realistic co-exposures. Our goal was to understand how a common allergen, house dust mites, interacts with pristine MWCNTs and lung fluid proteins. We used gel electrophoresis, western blotting, and proteomics to characterize the composition of the allergen corona formed from house dust mite extract on the surface of MWCNTs. We found that the corona is dominated by der p 2, a protein associated with human allergic responses to house dust mites. Der p 2 remains adsorbed on the surface of the MWCNTs following subsequent exposures to lung fluid proteins. The high concentration of der p 2, localized on surface of MWCNTs, has important implications for house dust mite-induced allergies and asthma. This research provides a detailed characterization of the complex house dust mite-lung fluid protein coronas for future cellular and in vivo studies. These studies will help to address the molecular and biochemical mechanisms underlying the exacerbation of allergic lung disease by nanomaterials.
Collapse
Affiliation(s)
- Judith Dominguez
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA 27708
| | - Samantha K. Holmes
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA 27708
| | - Ryan D. Bartone
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA 27695
| | - Logan J. Tisch
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA 27695
| | - Robert M. Tighe
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA 27710
| | - James C. Bonner
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA 27695
| | - Christine K. Payne
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA 27708
| |
Collapse
|
5
|
Lee HY, You DJ, Taylor-Just A, Tisch LJ, Bartone RD, Atkins HM, Ralph LM, Antoniak S, Bonner JC. Role of the protease-activated receptor-2 (PAR2) in the exacerbation of house dust mite-induced murine allergic lung disease by multi-walled carbon nanotubes. Part Fibre Toxicol 2023; 20:32. [PMID: 37580758 PMCID: PMC10424461 DOI: 10.1186/s12989-023-00538-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/28/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) has been reported to exert strong pro-inflammatory and pro-fibrotic adjuvant effects in mouse models of allergic lung disease. However, the molecular mechanisms through which MWCNTs exacerbate allergen-induced lung disease remain to be elucidated. We hypothesized that protease-activated receptor 2 (PAR2), a G-protein coupled receptor previously implicated in the pathogenesis of various diseases including pulmonary fibrosis and asthma, may play an important role in the exacerbation of house dust mite (HDM) allergen-induced lung disease by MWCNTs. METHODS Wildtype (WT) male C57BL6 mice and Par2 KO mice were exposed to vehicle, MWCNTs, HDM extract, or both via oropharyngeal aspiration 6 times over a period of 3 weeks and were sacrificed 3-days after the final exposure (day 22). Bronchoalveolar lavage fluid (BALF) was harvested to measure changes in inflammatory cells, total protein, and lactate dehydrogenase (LDH). Lung protein and RNA were assayed for pro-inflammatory or profibrotic mediators, and formalin-fixed lung sections were evaluated for histopathology. RESULTS In both WT and Par2 KO mice, co-exposure to MWCNTs synergistically increased lung inflammation assessed by histopathology, and increased BALF cellularity, primarily eosinophils, as well as BALF total protein and LDH in the presence of relatively low doses of HDM extract that alone produced little, if any, lung inflammation. In addition, both WT and par2 KO mice displayed a similar increase in lung Cc1-11 mRNA, which encodes the eosinophil chemokine CCL-11, after co-exposure to MWCNTs and HDM extract. However, Par2 KO mice displayed significantly less airway fibrosis as determined by quantitative morphometry compared to WT mice after co-exposure to MWCNTs and HDM extract. Accordingly, at both protein and mRNA levels, the pro-fibrotic mediator arginase 1 (ARG-1), was downregulated in Par2 KO mice exposed to MWCNTs and HDM. In contrast, phosphorylation of the pro-inflammatory transcription factor NF-κB and the pro-inflammatory cytokine CXCL-1 was increased in Par2 KO mice exposed to MWCNTs and HDM. CONCLUSIONS Our study indicates that PAR2 mediates airway fibrosis but not eosinophilic lung inflammation induced by co-exposure to MWCNTs and HDM allergens.
Collapse
Affiliation(s)
- Ho Young Lee
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Dorothy J You
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Alexia Taylor-Just
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Logan J Tisch
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Ryan D Bartone
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Hannah M Atkins
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Lauren M Ralph
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Silvio Antoniak
- UNC Blood Research Center, Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James C Bonner
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
6
|
Li Y, Han X, Lin Z, Wang C, Fu Z, Sun Q, Li C. G6PD activation in TNBC cells induces macrophage recruitment and M2 polarization to promote tumor progression. Cell Mol Life Sci 2023; 80:165. [PMID: 37237244 PMCID: PMC11073185 DOI: 10.1007/s00018-023-04810-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is involved in triple-negative breast cancer (TNBC) progression. Metabolic crosstalk between cancer cells and tumor-associated macrophages mediates tumor progression in TNBC. Molecular biological methods were applied to clarify the mechanism of the crosstalk between TNBC cells and M2 macrophages. In the present study, we verified that G6PD overexpression drives M2 macrophage polarization by directly combining with phospho-STAT1 and upregulating CCL2 and TGF-β1 secretion in TNBC cells. In turn, M2-like TAMs activated TNBC cells through IL-10 secretion, providing feedback to upregulate G6PD and promote TNBC cell migration and proliferation in vitro. Furthermore, we found that 6-AN (a specific inhibitor of G6PD) not only suppressed the cancer-driven polarization of macrophages toward the M2 phenotype but also inhibited the inherent M2 polarization of macrophages. Targeting the G6PD-regulated pentose phosphate pathway restrained TNBC progression and M2-type polarization of macrophages in vitro and in vivo.
Collapse
Affiliation(s)
- Yin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Xiao Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Changjun Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Zhenkun Fu
- Department of Immunology, Wu Lien-Teh Institute, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University & Heilongjiang Academy of Medical Science, No.157 Baojian Street, Nangang District, Harbin, 150086, People's Republic of China.
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
7
|
Zhang J, Wang H, Chen H, Li H, Xu P, Liu B, Zhang Q, Lv C, Song X. ATF3 -activated accelerating effect of LINC00941/lncIAPF on fibroblast-to-myofibroblast differentiation by blocking autophagy depending on ELAVL1/HuR in pulmonary fibrosis. Autophagy 2022; 18:2636-2655. [PMID: 35427207 PMCID: PMC9629064 DOI: 10.1080/15548627.2022.2046448] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by lung scarring and has no effective treatment. Fibroblast-to-myofibroblast differentiation and myofibroblast proliferation and migration are major clinical manifestations of this disease; hence, blocking these processes is a practical treatment strategy. Here, highly upregulated LINC00941/lncIAPF was found to accelerate pulmonary fibrosis by promoting fibroblast-to-myofibroblast differentiation and myofibroblast proliferation and migration. Assay for transposase-accessible chromatin using sequencing and chromatin immunoprecipitation experiments elucidated that histone 3 lysine 27 acetylation (H3K27ac) activated the chromosome region opening in the LINC00941 promoter. As a consequence, the transcription factor ATF3 (activating transcription factor 3) bound to this region, and LINC00941 transcription was enhanced. RNA affinity isolation, RNA immunoprecipitation (RIP), RNase-RIP, half-life analysis, and ubiquitination experiments unveiled that LINC00941 formed a RNA-protein complex with ELAVL1/HuR (ELAV like RNA binding protein 1) to exert its pro-fibrotic function. Dual-fluorescence mRFP-GFP-MAP1LC3/LC3 (microtubule associated protein 1 light chain 3) adenovirus monitoring technology, human autophagy RT2 profiler PCR array, and autophagic flux revealed that the LINC00941-ELAVL1 axis inhibited autophagosome fusion with a lysosome. ELAVL1 RIP-seq, RIP-PCR, mRNA stability, and rescue experiments showed that the LINC00941-ELAVL1 complex inhibited autophagy by controlling the stability of the target genes EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit), STAT1 (signal transducer and activators of transcription 1) and FOXK1 (forkhead box K1). Finally, the therapeutic effect of LINC00941 was confirmed in a mouse model and patients with IPF. This work provides a therapeutic target and a new effective therapeutic strategy related to autophagy for IPF.Abbreviations: ACTA2/a-SMA: actin alpha 2, smooth muscle; ATF3: activating transcription factor 3; ATG: autophagy related; Baf-A1: bafilomycin A1; BLM: bleomycin; CDKN: cyclin dependent kinase inhibitor; CLN3: CLN3 lysosomal/endosomal transmembrane protein, battenin; COL1A: collagen type I alpha; COL3A: collagen type III alpha; CXCR4: C-X-C motif chemokine receptor 4; DRAM2: DNA damage regulated autophagy modulator 2; ELAVL1/HuR: ELAV like RNA binding protein 1; EZH2: enhancer of zeste 2 polycomb repressive complex 2 subunit; FADD: Fas associated via death domain; FAP/FAPα: fibroblast activation protein alpha; FOXK1: forkhead box K1; FVC: forced vital capacity; GABARAP: GABA type A receptor-associated protein; GABARAPL2: GABA type A receptor associated protein like 2; IGF1: insulin like growth factor 1; IPF: idiopathic pulmonary fibrosis; LAMP: lysosomal associated membrane protein; lncRNA: long noncoding RNA; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NPC1: NPC intracellular cholesterol transporter 1; RGS: regulator of G protein signaling; RPLP0: ribosomal protein lateral stalk subunit P0; ROC: receiver operating characteristic; S100A4: S100 calcium binding protein A4; SQSTM1/p62: sequestosome 1; STAT1: signal transducers and activators of transcription 1; TGFB1/TGF-β1: transforming growth factor beta 1; TNF: tumor necrosis factor; UIP: usual interstitial pneumonia; ULK1: unc-51 like autophagy activating kinase 1; VIM: vimentin.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong, China,Medical Research Center, Binzhou Medical University, Yantai, Shandong, China
| | - Haixia Wang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong, China,Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Province, China
| | - Hongbin Chen
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong, China
| | - Hongbo Li
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Province, China
| | - Pan Xu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Province, China
| | - Bo Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Province, China
| | - Qian Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Province, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Province, China,Changjun Lv Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong, China,Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Province, China,CONTACT Xiaodong Song Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai264003, Shandong, China
| |
Collapse
|
8
|
Murphy F, Jacobsen NR, Di Ianni E, Johnston H, Braakhuis H, Peijnenburg W, Oomen A, Fernandes T, Stone V. Grouping MWCNTs based on their similar potential to cause pulmonary hazard after inhalation: a case-study. Part Fibre Toxicol 2022; 19:50. [PMID: 35854357 PMCID: PMC9297605 DOI: 10.1186/s12989-022-00487-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The EU-project GRACIOUS developed an Integrated Approach to Testing and Assessment (IATA) to support grouping high aspect ratio nanomaterials (HARNs) presenting a similar inhalation hazard. Application of grouping reduces the need to assess toxicity on a case-by-case basis and supports read-across of hazard data from substances that have the data required for risk assessment (source) to those that lack such data (target). The HARN IATA, based on the fibre paradigm for pathogenic fibres, facilitates structured data gathering to propose groups of similar HARN and to support read-across by prompting users to address relevant questions regarding HARN morphology, biopersistence and inflammatory potential. The IATA is structured in tiers, allowing grouping decisions to be made using simple in vitro or in silico methods in Tier1 progressing to in vivo approaches at the highest Tier3. Here we present a case-study testing the applicability of GRACIOUS IATA to form an evidence-based group of multiwalled carbon nanotubes (MWCNT) posing a similar predicted fibre-hazard, to support read-across and reduce the burden of toxicity testing. RESULTS The case-study uses data on 15 different MWCNT, obtained from the published literature. By following the IATA, a group of 2 MWCNT was identified (NRCWE006 and NM-401) based on a high degree of similarity. A pairwise similarity assessment was subsequently conducted between the grouped MWCNT to evaluate the potential to conduct read-across and fill data gaps required for regulatory hazard assessment. The similarity assessment, based on expert judgement of Tier 1 assay results, predicts both MWCNT are likely to cause a similar acute in vivo hazard. This result supports the possibility for read-across of sub-chronic and chronic hazard endpoint data for lung fibrosis and carcinogenicity between the 2 grouped MWCNT. The implications of accepting the similarity assessment based on expert judgement of the MWCNT group are considered to stimulate future discussion on the level of similarity between group members considered sufficient to allow regulatory acceptance of a read-across argument. CONCLUSION This proof-of-concept case-study demonstrates how a grouping hypothesis and IATA may be used to support a nuanced and evidence-based grouping of 'similar' MWCNT and the subsequent interpolation of data between group members to streamline the hazard assessment process.
Collapse
Affiliation(s)
- Fiona Murphy
- NanoSafety Group, Heriot-Watt University, Edinburgh, UK.
| | | | - Emilio Di Ianni
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | | | - Hedwig Braakhuis
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Willie Peijnenburg
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Agnes Oomen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Vicki Stone
- NanoSafety Group, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
9
|
Fraser K, Hubbs A, Yanamala N, Mercer RR, Stueckle TA, Jensen J, Eye T, Battelli L, Clingerman S, Fluharty K, Dodd T, Casuccio G, Bunker K, Lersch TL, Kashon ML, Orandle M, Dahm M, Schubauer-Berigan MK, Kodali V, Erdely A. Histopathology of the broad class of carbon nanotubes and nanofibers used or produced in U.S. facilities in a murine model. Part Fibre Toxicol 2021; 18:47. [PMID: 34923995 PMCID: PMC8686255 DOI: 10.1186/s12989-021-00440-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/02/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Multi-walled carbon nanotubes and nanofibers (CNT/F) have been previously investigated for their potential toxicities; however, comparative studies of the broad material class are lacking, especially those with a larger diameter. Additionally, computational modeling correlating physicochemical characteristics and toxicity outcomes have been infrequently employed, and it is unclear if all CNT/F confer similar toxicity, including histopathology changes such as pulmonary fibrosis. Male C57BL/6 mice were exposed to 40 µg of one of nine CNT/F (MW #1-7 and CNF #1-2) commonly found in exposure assessment studies of U.S. facilities with diameters ranging from 6 to 150 nm. Human fibroblasts (0-20 µg/ml) were used to assess the predictive value of in vitro to in vivo modeling systems. RESULTS All materials induced histopathology changes, although the types and magnitude of the changes varied. In general, the larger diameter MWs (MW #5-7, including Mitsui-7) and CNF #1 induced greater histopathology changes compared to MW #1 and #3 while MW #4 and CNF #2 were intermediate in effect. Differences in individual alveolar or bronchiolar outcomes and severity correlated with physical dimensions and how the materials agglomerated. Human fibroblast monocultures were found to be insufficient to fully replicate in vivo fibrosis outcomes suggesting in vitro predictive potential depends upon more advanced cell culture in vitro models. Pleural penetrations were observed more consistently in CNT/F with larger lengths and diameters. CONCLUSION Physicochemical characteristics, notably nominal CNT/F dimension and agglomerate size, predicted histopathologic changes and enabled grouping of materials by their toxicity profiles. Particles of greater nominal tube length were generally associated with increased severity of histopathology outcomes. Larger particle lengths and agglomerates were associated with more severe bronchi/bronchiolar outcomes. Spherical agglomerated particles of smaller nominal tube dimension were linked to granulomatous inflammation while a mixture of smaller and larger dimensional CNT/F resulted in more severe alveolar injury.
Collapse
Affiliation(s)
- Kelly Fraser
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
- West Virginia University, Morgantown, WV USA
| | - Ann Hubbs
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Naveena Yanamala
- Division of Cardiovascular Disease and Hypertension, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ USA
| | - Robert R. Mercer
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Todd A. Stueckle
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
- West Virginia University, Morgantown, WV USA
| | - Jake Jensen
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Tracy Eye
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Lori Battelli
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Sidney Clingerman
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Kara Fluharty
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Tiana Dodd
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | | | | | | | - Michael L. Kashon
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Marlene Orandle
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Matthew Dahm
- Division of Field Studies Evaluation, National Institute for Occupational Safety and Health, Cincinnati, OH USA
| | - Mary K. Schubauer-Berigan
- Division of Field Studies Evaluation, National Institute for Occupational Safety and Health, Cincinnati, OH USA
- International Agency for Research On Cancer, Lyon, France
| | - Vamsi Kodali
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
- West Virginia University, Morgantown, WV USA
| | - Aaron Erdely
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, Pathology and Physiology Research Branch, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
- West Virginia University, Morgantown, WV USA
| |
Collapse
|
10
|
Lewis BW, Jackson D, Amici SA, Walum J, Guessas M, Guessas S, Coneglio E, Boda AV, Guerau-de-Arellano M, Grayson MH, Britt RD. Corticosteroid insensitivity persists in the absence of STAT1 signaling in severe allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1194-L1205. [PMID: 34755542 PMCID: PMC8715027 DOI: 10.1152/ajplung.00244.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Corticosteroid insensitivity in asthma limits the ability to effectively manage severe asthma, which is characterized by persistent airway inflammation, airway hyperresponsiveness (AHR), and airflow obstruction despite corticosteroid treatment. Recent reports indicate that corticosteroid insensitivity is associated with increased interferon-γ (IFN-γ) levels and T-helper (Th) 1 lymphocyte infiltration in severe asthma. Signal transducer and activator of transcription 1 (STAT1) activation by IFN-γ is a key signaling pathway in Th1 inflammation; however, its role in the context of severe allergic airway inflammation and corticosteroid sensitivity remains unclear. In this study, we challenged wild-type (WT) and Stat1-/- mice with mixed allergens (MA) augmented with c-di-GMP [bis-(3'-5')-cyclic dimeric guanosine monophosphate], an inducer of Th1 cell infiltration with increased eosinophils, neutrophils, Th1, Th2, and Th17 cells. Compared with WT mice, Stat1-/- had reduced neutrophils, Th1, and Th17 cell infiltration. To evaluate corticosteroid sensitivity, mice were treated with either vehicle, 1 or 3 mg/kg fluticasone propionate (FP). Corticosteroids significantly reduced eosinophil infiltration and cytokine levels in both c-di-GMP + MA-challenged WT and Stat1-/- mice. However, histological and functional analyses show that corticosteroids did not reduce airway inflammation, epithelial mucous cell abundance, airway smooth muscle mass, and AHR in c-di-GMP + MA-challenged WT or Stat1-/- mice. Collectively, our data suggest that increased Th1 inflammation is associated with a decrease in corticosteroid sensitivity. However, increased airway pathology and AHR persist in the absence of STAT1 indicate corticosteroid insensitivity in structural airway cells is a STAT1 independent process.
Collapse
Affiliation(s)
- Brandon W. Lewis
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Devine Jackson
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Stephanie A. Amici
- 5Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio
| | - Joshua Walum
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Manel Guessas
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Sonia Guessas
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Elise Coneglio
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Akhila V. Boda
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio
| | - Mireia Guerau-de-Arellano
- 5Division of Medical Laboratory Science, Wexner Medical Center, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio,6Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio,7Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio,8Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Mitchell H. Grayson
- 2Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,3Division of Allergy and Immunology, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,4Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Rodney D. Britt
- 1Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio,4Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
11
|
Keshavan S, Gupta G, Martin S, Fadeel B. Multi-walled carbon nanotubes trigger lysosome-dependent cell death (pyroptosis) in macrophages but not in neutrophils. Nanotoxicology 2021; 15:1125-1150. [PMID: 34657549 DOI: 10.1080/17435390.2021.1988171] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Carbon nanotubes (CNTs) have been extensively investigated, and several studies have shown that multi-walled CNTs can trigger inflammation and fibrosis in animal models. However, while neutrophils are involved in inflammation, most in vitro studies have addressed macrophages. Here we explored the impact of three MWCNTs with varying morphology (i.e. long and rigid versus short and/or tangled) on primary human macrophages and macrophage-differentiated THP-1 cells versus primary human neutrophils and neutrophil-differentiated HL-60 cells. We found that long and rigid MWCNTs triggered caspase-dependent cell death in macrophages, accompanied by NLRP3 inflammasome activation and gasdermin D (GSDMD)-mediated release of pro-inflammatory IL-1β. The release of IL-1β was suppressed by disulfiram, an FDA-approved drug known to act as an inhibitor of membrane pore formation by GSDMD. Evidence of autophagic cell death was noted in macrophages exposed to higher concentrations of the long and rigid MWCNTs. Furthermore, lysosomal damage with cytosolic release of cathepsin B was observed in macrophages exposed to the latter MWCNTs. On the other hand, there was little evidence of uptake of MWCNTs in neutrophils and the cells failed to undergo MWCNT-triggered cell death. Our studies have demonstrated that long and rigid MWCNTs trigger pyroptosis in human macrophages.
Collapse
Affiliation(s)
- Sandeep Keshavan
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Govind Gupta
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastin Martin
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Han B, Wang X, Wu P, Jiang H, Yang Q, Li S, Li J, Zhang Z. Pulmonary inflammatory and fibrogenic response induced by graphitized multi-walled carbon nanotube involved in cGAS-STING signaling pathway. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125984. [PMID: 34020360 DOI: 10.1016/j.jhazmat.2021.125984] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Graphitized multi-walled carbon nanotubes (GMWCNTs) are a new type of nanomaterial. Recently, their production and application in biological medicine have grown rapidly. However, GMWCNTs may cause adverse health effects, including the common occupational disease of pulmonary fibrosis. Pulmonary fibrosis is a serious progressive disease that often leads to lung failure, high mortality, and disability, and there is no effective therapy currently available. Therefore, identifying new biomarkers of the disease is important to better understand the disease mechanisms and explore new therapeutic strategies. In this study, 40 μg of GMWCNTs was used to treat mice in vivo by pharyngeal aspiration, and different genes were screened by transcriptome sequencing. Activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) signal pathway had an important effect on the development of pulmonary inflammation and fibrosis. GMWCNTs were then administered to the mice with a STING inhibitor (C-176). Inhibition of STING effectively decreased pulmonary inflammation and fibrosis in mice induced by GMWCNTs. Collectively, activation of the cGAS-STING signaling pathway is involved in GMWCNT-induced pulmonary inflammation and fibrosis in mice.
Collapse
Affiliation(s)
- Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China.
| |
Collapse
|
13
|
Sridharan S, Taylor-Just A, Bonner JC. Osteopontin mRNA expression by rat mesothelial cells exposed to multi-walled carbon nanotubes as a potential biomarker of chronic neoplastic transformation in vitro. Toxicol In Vitro 2021; 73:105126. [PMID: 33652123 PMCID: PMC8085121 DOI: 10.1016/j.tiv.2021.105126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/27/2021] [Accepted: 02/23/2021] [Indexed: 11/26/2022]
Abstract
Mesothelioma is a cancer of the lung pleura primarily associated with inhalation of asbestos fibers. Multi-walled carbon nanotubes (MWCNTs) are engineered nanomaterials that pose a potential risk for mesothelioma due to properties that are similar to asbestos. Inhaled MWCNTs migrate to the pleura in rodents and some types cause mesothelioma. Like asbestos, there is a diversity of MWCNT types. We investigated the neoplastic potential of tangled (tMWCNT) versus rigid (rMWCNT) after chronic exposure using serial passages of rat mesothelial cells in vitro. Normal rat mesothelial (NRM2) cells were exposed to tMWCNTs or rMWCNTs for 45 weeks over 85 passages to determine if exposure resulted in transformation to a neoplastic phenotype. Rat mesothelioma (ME1) cells were used as a positive control. Osteopontin (OPN) mRNA was assayed as a biomarker of transformation by real time quantitative polymerase chain reaction (qPCR) and transformation was determined by a cell invasion assay. Exposure to rMWCNTs, but not tMWCNTs, resulted in transformation of NRM2 cells into an invasive phenotype that was similar to ME1 cells. Moreover, exposure of NRM2 cells to rMWCNTs increased OPN mRNA that correlated with cellular transformation. These data suggest that OPN is a potential biomarker that should be further investigated to screen the carcinogenicity of MWCNTs in vitro.
Collapse
Affiliation(s)
- Sreepradha Sridharan
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Alexia Taylor-Just
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - James C Bonner
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
14
|
Ihrie MD, Duke KS, Shipkowski KA, You DJ, Lee HY, Taylor-Just AJ, Bonner JC. STAT6-Dependent Exacerbation of House Dust Mite-Induced Allergic Airway Disease in Mice by Multi-Walled Carbon Nanotubes. NANOIMPACT 2021; 22:S2452-0748(21)00018-5. [PMID: 33860111 PMCID: PMC8043620 DOI: 10.1016/j.impact.2021.100309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is increasing evidence that inhaled multi-walled carbon nanotubes (MWCNTs) can have harmful effects on the respiratory system. Rodent studies suggest that individuals with asthma may be susceptible to the adverse pulmonary effects of MWCNTs. Asthma is an allergic lung disease characterized by a TH2 immune response that results in chronic airway disease characterized by eosinophilic lung inflammation, airway mucous cell metaplasia, and airway fibrosis. Signal transducer and activator of transcription 6 (STAT6) is a transcription factor with multiple roles in TH2 type inflammation. Herein we sought to examine the role of STAT6 in the exacerbation of house dust mite (HDM) allergen-induced allergic airway disease by MWCNTs. Male wild type (WT) and STAT6 knockout (Stat6 KO) mice were dosed via intranasal aspiration on days 0, 2, 4, 14, 16 and 18 with either vehicle, HDM extract, MWCNTs, or a combination of HDM and MWCNTs. Necropsy was performed on day 21 to collect bronchoalveolar lavage fluid (BALF), serum and lung tissue. MWCNTs exacerbated HDM-induced allergic endpoints, including eosinophilic lung inflammation, mucous cell metaplasia, and serum IgE levels. HDM-induced eosinophilic lung inflammation, mucous cell metaplasia, and serum IgE and exacerbation of these endpoints by MWCNTs were ablated in Stat6 KO mice. In addition, airway fibrosis was significantly increased by the combination of HDM and MWCNTs in WT mice but not in Stat6 KO mice. These findings provide new mechanistic insight by demonstrating a requirement for STAT6 in MWCNT-induced exacerbation of allergic respiratory disease.
Collapse
Affiliation(s)
- Mark D. Ihrie
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695 U.S.A
| | - Katherine S. Duke
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695 U.S.A
| | - Kelly A. Shipkowski
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695 U.S.A
| | - Dorothy J. You
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695 U.S.A
| | - Ho Young Lee
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695 U.S.A
| | - Alexia J. Taylor-Just
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695 U.S.A
| | - James C. Bonner
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695 U.S.A
| |
Collapse
|
15
|
Murphy F, Dekkers S, Braakhuis H, Ma-Hock L, Johnston H, Janer G, di Cristo L, Sabella S, Jacobsen NR, Oomen AG, Haase A, Fernandes T, Stone V. An integrated approach to testing and assessment of high aspect ratio nanomaterials and its application for grouping based on a common mesothelioma hazard. NANOIMPACT 2021; 22:100314. [PMID: 35559971 DOI: 10.1016/j.impact.2021.100314] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/25/2021] [Accepted: 03/25/2021] [Indexed: 06/15/2023]
Abstract
Here we describe the development of an Integrated Approach to Testing and Assessment (IATA) to support the grouping of different types (nanoforms; NFs) of High Aspect Ratio Nanomaterials (HARNs), based on their potential to cause mesothelioma. Hazards posed by the inhalation of HARNs are of particular concern as they exhibit physical characteristics similar to pathogenic asbestos fibres. The approach for grouping HARNs presented here is part of a framework to provide guidance and tools to group similar NFs and aims to reduce the need to assess toxicity on a case-by-case basis. The approach to grouping is hypothesis-driven, in which the hypothesis is based on scientific evidence linking critical physicochemical descriptors for NFs to defined fate/toxicokinetic and hazard outcomes. The HARN IATA prompts users to address relevant questions (at decision nodes; DNs) regarding the morphology, biopersistence and inflammatory potential of the HARNs under investigation to provide the necessary evidence to accept or reject the grouping hypothesis. Each DN in the IATA is addressed in a tiered manner, using data from simple in vitro or in silico methods in the lowest tier or from in vivo approaches in the highest tier. For these proposed methods we provide justification for the critical descriptors and thresholds that allow grouping decisions to be made. Application of the IATA allows the user to selectively identify HARNs which may pose a mesothelioma hazard, as demonstrated through a literature-based case study. By promoting the use of alternative, non-rodent approaches such as in silico modelling, in vitro and cell-free tests in the initial tiers, the IATA testing strategy streamlines information gathering at all stages of innovation through to regulatory risk assessment while reducing the ethical, time and economic burden of testing.
Collapse
Affiliation(s)
- Fiona Murphy
- NanoSafety Group, Heriot-Watt University, Edinburgh, UK.
| | - Susan Dekkers
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hedwig Braakhuis
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Lan Ma-Hock
- BASF SE, Dept. Material Physics and Dept of Experimental Toxicology & Ecology, Ludwigshafen, Germany
| | | | - Gemma Janer
- LEITAT Technological Center, Barcelona, Spain
| | | | | | | | - Agnes G Oomen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | | | - Vicki Stone
- NanoSafety Group, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
16
|
Fraser K, Kodali V, Yanamala N, Birch ME, Cena L, Casuccio G, Bunker K, Lersch TL, Evans DE, Stefaniak A, Hammer MA, Kashon ML, Boots T, Eye T, Hubczak J, Friend SA, Dahm M, Schubauer-Berigan MK, Siegrist K, Lowry D, Bauer AK, Sargent LM, Erdely A. Physicochemical characterization and genotoxicity of the broad class of carbon nanotubes and nanofibers used or produced in U.S. facilities. Part Fibre Toxicol 2020; 17:62. [PMID: 33287860 PMCID: PMC7720492 DOI: 10.1186/s12989-020-00392-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/18/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Carbon nanotubes and nanofibers (CNT/F) have known toxicity but simultaneous comparative studies of the broad material class, especially those with a larger diameter, with computational analyses linking toxicity to their fundamental material characteristics was lacking. It was unclear if all CNT/F confer similar toxicity, in particular, genotoxicity. Nine CNT/F (MW #1-7 and CNF #1-2), commonly found in exposure assessment studies of U.S. facilities, were evaluated with reported diameters ranging from 6 to 150 nm. All materials were extensively characterized to include distributions of physical dimensions and prevalence of bundled agglomerates. Human bronchial epithelial cells were exposed to the nine CNT/F (0-24 μg/ml) to determine cell viability, inflammation, cellular oxidative stress, micronuclei formation, and DNA double-strand breakage. Computational modeling was used to understand various permutations of physicochemical characteristics and toxicity outcomes. RESULTS Analyses of the CNT/F physicochemical characteristics illustrate that using detailed distributions of physical dimensions provided a more consistent grouping of CNT/F compared to using particle dimension means alone. In fact, analysis of binning of nominal tube physical dimensions alone produced a similar grouping as all characterization parameters together. All materials induced epithelial cell toxicity and micronuclei formation within the dose range tested. Cellular oxidative stress, DNA double strand breaks, and micronuclei formation consistently clustered together and with larger physical CNT/F dimensions and agglomerate characteristics but were distinct from inflammatory protein changes. Larger nominal tube diameters, greater lengths, and bundled agglomerate characteristics were associated with greater severity of effect. The portion of tubes with greater nominal length and larger diameters within a sample was not the majority in number, meaning a smaller percentage of tubes with these characteristics was sufficient to increase toxicity. Many of the traditional physicochemical characteristics including surface area, density, impurities, and dustiness did not cluster with the toxicity outcomes. CONCLUSION Distributions of physical dimensions provided more consistent grouping of CNT/F with respect to toxicity outcomes compared to means only. All CNT/F induced some level of genotoxicity in human epithelial cells. The severity of toxicity was dependent on the sample containing a proportion of tubes with greater nominal lengths and diameters.
Collapse
Affiliation(s)
- Kelly Fraser
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
- West Virginia University, Morgantown, WV USA
| | - Vamsi Kodali
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
- West Virginia University, Morgantown, WV USA
| | - Naveena Yanamala
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
- West Virginia University, Morgantown, WV USA
| | - M. Eileen Birch
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Cincinnati, OH USA
| | | | | | | | | | - Douglas E. Evans
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Cincinnati, OH USA
| | - Aleksandr Stefaniak
- Repiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV USA
| | - Mary Ann Hammer
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Michael L. Kashon
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Theresa Boots
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Tracy Eye
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - John Hubczak
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
- West Virginia University, Morgantown, WV USA
| | - Sherri A. Friend
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Matthew Dahm
- Division of Field Studies Evaluation, National Institute for Occupational Safety and Health, Cincinnati, OH USA
| | - Mary K. Schubauer-Berigan
- Division of Field Studies Evaluation, National Institute for Occupational Safety and Health, Cincinnati, OH USA
- International Agency for Research on Cancer, Lyon, France
| | - Katelyn Siegrist
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - David Lowry
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Alison K. Bauer
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Linda M. Sargent
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
| | - Aaron Erdely
- Health Effect Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd, MS-2015, Morgantown, WV 26505-2888 USA
- West Virginia University, Morgantown, WV USA
| |
Collapse
|
17
|
Kinaret PAS, Del Giudice G, Greco D. Covid-19 acute responses and possible long term consequences: What nanotoxicology can teach us. NANO TODAY 2020; 35:100945. [PMID: 32834832 PMCID: PMC7416770 DOI: 10.1016/j.nantod.2020.100945] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 05/07/2023]
Abstract
Long-term effects of Covid-19 disease are still poorly understood. However, similarities between the responses to SARS-CoV-2 and certain nanomaterials suggest fibrotic pulmonary disease as a concern for public health in the next future. Cross-talk between nanotoxicology and other relevant disciplines can help us to deploy more effective Covid-19 therapies and management strategies.
Collapse
Affiliation(s)
- Pia A S Kinaret
- Institute of Biotechnology, University of Helsinki, Finland
- Faculty of Medicine and Health Technology, Tampere University, Finland
| | - Giusy Del Giudice
- Faculty of Medicine and Health Technology, Tampere University, Finland
| | - Dario Greco
- Institute of Biotechnology, University of Helsinki, Finland
- Faculty of Medicine and Health Technology, Tampere University, Finland
- BioMediTech Institute, Tampere University, Finland
| |
Collapse
|
18
|
Kinaret PAS, Del Giudice G, Greco D. Covid-19 acute responses and possible long term consequences: What nanotoxicology can teach us. NANO TODAY 2020. [PMID: 32834832 DOI: 10.1016/j.nantod.2020.100943] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Long-term effects of Covid-19 disease are still poorly understood. However, similarities between the responses to SARS-CoV-2 and certain nanomaterials suggest fibrotic pulmonary disease as a concern for public health in the next future. Cross-talk between nanotoxicology and other relevant disciplines can help us to deploy more effective Covid-19 therapies and management strategies.
Collapse
Affiliation(s)
- Pia A S Kinaret
- Institute of Biotechnology, University of Helsinki, Finland
- Faculty of Medicine and Health Technology, Tampere University, Finland
| | - Giusy Del Giudice
- Faculty of Medicine and Health Technology, Tampere University, Finland
| | - Dario Greco
- Institute of Biotechnology, University of Helsinki, Finland
- Faculty of Medicine and Health Technology, Tampere University, Finland
- BioMediTech Institute, Tampere University, Finland
| |
Collapse
|
19
|
Susceptibility Factors in Chronic Lung Inflammatory Responses to Engineered Nanomaterials. Int J Mol Sci 2020; 21:ijms21197310. [PMID: 33022979 PMCID: PMC7582686 DOI: 10.3390/ijms21197310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022] Open
Abstract
Engineered nanomaterials (ENMs) are products of the emerging nanotechnology industry and many different types of ENMs have been shown to cause chronic inflammation in the lungs of rodents after inhalation exposure, suggesting a risk to human health. Due to the increasing demand and use of ENMs in a variety of products, a careful evaluation of the risks to human health is urgently needed. An assessment of the immunotoxicity of ENMs should consider susceptibility factors including sex, pre-existing diseases, deficiency of specific genes encoding proteins involved in the innate or adaptive immune response, and co-exposures to other chemicals. This review will address evidence from experimental animal models that highlights some important issues of susceptibility to chronic lung inflammation and systemic immune dysfunction after pulmonary exposure to ENMs.
Collapse
|
20
|
You DJ, Lee HY, Taylor-Just AJ, Linder KE, Bonner JC. Sex differences in the acute and subchronic lung inflammatory responses of mice to nickel nanoparticles. Nanotoxicology 2020; 14:1058-1081. [PMID: 32813574 DOI: 10.1080/17435390.2020.1808105] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nickel nanoparticles (NiNPs) are increasingly used in nanotechnology applications, yet information on sex differences in NiNP-induced lung disease is lacking. The goal of this study was to explore mechanisms of susceptibility between male and female mice after acute or subchronic pulmonary exposure to NiNPs. For acute exposure, male and female mice received a single dose of NiNPs with or without LPS by oropharyngeal aspiration and were necropsied 24 h later. For subchronic exposure, mice received NiNPs with or without LPS six times over 3 weeks prior to necropsy. After acute exposure to NiNPs and LPS, male mice had elevated cytokines (CXCL1 and IL-6) and more neutrophils in bronchoalveolar lavage fluid (BALF), along with greater STAT3 phosphorylation in lung tissue. After subchronic exposure to NiNPs and LPS, male mice exhibited increased monocytes in BALF. Moreover, subchronic exposure of male mice to NiNP only induced higher CXCL1 and CCL2 in BALF along with increased alveolar infiltrates and CCL2 in lung tissue. STAT1 in lung tissue was induced by subchronic exposure to NiNPs in females but not males. Males had a greater induction of IL-6 mRNA in liver after acute exposure to NiNPs and LPS, and greater CCL2 mRNA in liver after subchronic NiNP exposure. These data indicate that susceptibility of males to acute lung inflammation involves enhanced neutrophilia with increased CXCL1 and IL-6/STAT3 signaling, whereas susceptibility to subchronic lung inflammation involves enhanced monocytic infiltration with increased CXCL1 and CCL2. STAT transcription factors appear to play a role in these sex differences. This study demonstrates sex differences in the lung inflammatory response of mice to NiNPs that has implications for human disease.
Collapse
Affiliation(s)
- Dorothy J You
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Ho Young Lee
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Alexia J Taylor-Just
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Keith E Linder
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - James C Bonner
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
21
|
Carbon Nanotubes under Scrutiny: Their Toxicity and Utility in Mesothelioma Research. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10134513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Research on the toxicity of engineered carbon nanotubes (CNT) was initiated by Belgian academic chemists and toxicologists more than 15 years ago. It is now undisputed that some of these attractive nanomaterials induce serious illness such as fibrosis and cancer. The physico-chemical determinants of CNT-induced adverse effects are now elucidated and include shape, nanoscale diameter, and structural defects. Generated in vitro and in vivo data on their inflammogenic and fibrogenic activities were combined and translated in AOP (adverse outcome pathways) available for risk assessment and regulatory policies. The asbestos-like carcinogenic effect of CNT, notably their capacity to induce malignant mesothelioma (MM), remain, however, a cause of concern for public health and strongly curb the craze for CNT in industries. MM still represents a real challenge for clinicians and a highly refractory cancer to existing therapeutic strategies. By comparing mesotheliomagenic CNT (needle-like CNT-N) to non mesotheliomagenic CNT (tangled-like CNT-T), our group generated a relevant animal model that highlights immune pathways specifically associated to the carcinogenic process. Evidence indicates that only CNT-N possess the intrinsic capacity to induce a preferential, rapid, and sustained accumulation of host immunosuppressive cells that subvert immune surveillance and suppress anti-mesothelioma immunity. This new concept offers novel horizons for the clinical management of mesothelioma and represents an additional tool for predicting the mesotheliomagenic activity of newly elaborated CNT or nanoparticles.
Collapse
|
22
|
Ma Q. Polarization of Immune Cells in the Pathologic Response to Inhaled Particulates. Front Immunol 2020; 11:1060. [PMID: 32625201 PMCID: PMC7311785 DOI: 10.3389/fimmu.2020.01060] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/01/2020] [Indexed: 12/30/2022] Open
Abstract
Polarization of immune cells is commonly observed in host responses associated with microbial immunity, inflammation, tumorigenesis, and tissue repair and fibrosis. In this process, immune cells adopt distinct programs and perform specialized functions in response to specific signals. Accumulating evidence indicates that inhalation of micro- and nano-sized particulates activates barrier immune programs in the lung in a time- and context-dependent manner, including type 1 and type 2 inflammation, and T helper (Th) 17 cell, regulatory T cell (Treg), innate lymphoid cell (ILC), and myeloid-derived suppressor cell (MDSC) responses, which highlight the polarization of several major immune cell types. These responses facilitate the pulmonary clearance and repair under physiological conditions. When exposure persists and overwhelms the clearance capacity, they foster the chronic progression of inflammation and development of progressive disease conditions, such as fibrosis and cancer. The pulmonary response to insoluble particulates thus represents a distinctive disease process wherein non-infectious, persistent exposures stimulate the polarization of immune cells to orchestrate dynamic inflammatory and immune reactions, leading to pulmonary and pleural chronic inflammation, fibrosis, and malignancy. Despite large variations in particles and their associated disease outcomes, the early response to inhaled particles often follows a common path. The initial reactions entail a barrier immune response dominated by type 1 inflammation that features active phagocytosis by M1 macrophages and recruitment of neutrophils, both of which are fueled by Th1 and proinflammatory cytokines. Acute inflammation is immediately followed by resolution and tissue repair mediated through specialized pro-resolving mediators (SPMs) and type 2 cytokines and cells including M2 macrophages and Th2 lymphocytes. As many particles and fibers cannot be digested by phagocytes, resolution is often extended and incomplete, and type 2 inflammation becomes heightened, which promotes interstitial fibrosis, granuloma formation, and tumorigenesis. Recent studies also reveal the involvement of Th17-, Treg-, ILC-, and MDSC-mediated responses in the pathogenesis caused by inhaled particulates. This review synopsizes the progress in understanding the interplay between inhaled particles and the pulmonary immune functions in disease pathogenesis, with focus on particle-induced polarization of immune cells and its role in the development of chronic inflammation, fibrosis, and cancer in the lung.
Collapse
Affiliation(s)
- Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| |
Collapse
|
23
|
Koltermann-Jülly J, Ma-Hock L, Gröters S, Landsiedel R. Appearance of Alveolar Macrophage Subpopulations in Correlation With Histopathological Effects in Short-Term Inhalation Studies With Biopersistent (Nano)Materials. Toxicol Pathol 2020; 48:446-464. [PMID: 32162596 DOI: 10.1177/0192623319896347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Following inhalation and deposition in the alveolar region at sufficient dose, biopersistent (nano)materials generally provoke pulmonary inflammation. Alveolar macrophages (AMs) are mediators of pulmonary immune responses and were broadly categorized in pro-inflammatory M1 and anti-inflammatory M2 macrophages. This study aimed at identifying AM phenotype as M1 or M2 upon short-term inhalation exposure to different (nano)materials followed by a postexposure period. Phenotyping of AM was retrospectively performed using immunohistochemistry. M1 (CD68+iNOS+) and M2 (CD68+CD206+ and CD68+ArgI+) AMs were characterized in formalin-fixed, paraffin-embedded lung tissue of rats exposed for 6 hours/day for 5 days to air, 100 mg/m3 nano-TiO2, 25 mg/m3 nano-CeO2, 32 mg/m3 multiwalled carbon nanotubes, or 100 mg/m3 micron-sized quartz. During acute inflammation, relative numbers of M1 AMs were markedly increased, whereas relative numbers of M2 were generally decreased compared to control. Following an exposure-free period, changes in iNOS or CD206 expression correlated with persistence, regression, or progression of inflammation, suggesting a role of M1/M2 AMs in the pathogenesis of pulmonary inflammation. However, no clear correlation of AM subpopulations with qualitatively distinct histopathological findings caused by different (nano)materials was found. A more detailed understanding of the processes underlaying these morphological changes is needed to identify biomarkers for different histopathological outcomes.
Collapse
Affiliation(s)
- Johanna Koltermann-Jülly
- Experimental Toxicology and Ecology, BASF, Ludwigshafen, Germany.,Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Lan Ma-Hock
- Experimental Toxicology and Ecology, BASF, Ludwigshafen, Germany
| | - Sibylle Gröters
- Experimental Toxicology and Ecology, BASF, Ludwigshafen, Germany
| | | |
Collapse
|
24
|
Lee DK, Jeon S, Jeong J, Yu IJ, Song KS, Kang A, Yun WS, Kim JS, Cho WS. Potential Role of Soluble Metal Impurities in the Acute Lung Inflammogenicity of Multi-Walled Carbon Nanotubes. NANOMATERIALS 2020; 10:nano10020379. [PMID: 32098206 PMCID: PMC7075329 DOI: 10.3390/nano10020379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
Abstract
Multi-walled carbon nanotubes (MWCNTs) have variable metal impurities, but little is known about the impact of soluble metal impurities on the toxicity of MWCNTs. Here, we evaluated the role of soluble metal impurities to the acute inflammogenic potential of MWCNTs, using five types of high purity MWCNTs (>95%). MWCNTs and their soluble fractions collected at 24 h after incubation in phosphate-buffered saline showed diverse metal impurities with variable concentrations. The fiber-free soluble fractions produced variable levels of reactive oxygen species (ROS), and the iron level was the key determinant for ROS production. The acute inflammation at 24 h after intratracheal instillation of MWCNTs to rats at 0.19, 0.63, and 1.91 mg MWCNT/kg body weight (bw) or fiber-free supernatants from MWCNT suspensions at 1.91 and 7.64 mg MWCNT/kg bw showed that the number of granulocytes, a marker for acute inflammation, was significantly increased with a good dose-dependency. The correlation study showed that neither the levels of iron nor the ROS generation potential of the soluble fractions showed any correlations with the inflammogenic potential. However, the total concentration of transition metals in the soluble fractions showed a good correlation with the acute lung inflammogenic potential. These results implied that metal impurities, especially transitional metals, can contribute to the acute inflammogenic potential of MWCNTs, although the major parameter for the toxicity of MWCNTs is size and shape.
Collapse
Affiliation(s)
- Dong-Keun Lee
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (D.-K.L.); (S.J.); (J.J.)
| | - Soyeon Jeon
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (D.-K.L.); (S.J.); (J.J.)
| | - Jiyoung Jeong
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (D.-K.L.); (S.J.); (J.J.)
| | - Il Je Yu
- HCTm Co., LTD., 74, Seoicheon-ro 578 beon-gil Majang-myeon, Icheon-si, Gyeonggi-do 17383, Korea;
| | - Kyung Seuk Song
- Korea Conformity Laboratories, 8, Gaetbeol-ro 145 beon-gil, Yeonsu-gu, Incheon 21999, Korea;
| | - Aeyeon Kang
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (A.K.); (W.S.Y.)
| | - Wan Soo Yun
- Department of Chemistry, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (A.K.); (W.S.Y.)
| | - Jong Sung Kim
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, NS B3H4R2, Canada;
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan 49315, Korea; (D.-K.L.); (S.J.); (J.J.)
- Correspondence: ; Tel.:+82-51-200-7563
| |
Collapse
|
25
|
Kim JK, Jo MS, Kim Y, Kim TG, Shin JH, Kim BW, Kim HP, Lee HK, Kim HS, Ahn K, Oh SM, Cho WS, Yu IJ. 28-Day inhalation toxicity study with evaluation of lung deposition and retention of tangled multi-walled carbon nanotubes. Nanotoxicology 2019; 14:250-262. [PMID: 31855090 DOI: 10.1080/17435390.2019.1700568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lung deposition and retention measurements are now required by the newly revised OECD inhalation toxicity testing guidelines 412 and 413 when evaluating the clearance and biopersistence of poorly soluble nanomaterials, such as multi-walled carbon nanotubes (MWCNTs). However, evaluating the lung deposition concentration is challenging with certain nanomaterials, such as carbon-based and iron-based nanomaterials, as it is difficult to differentiate them from endogenous elements. Therefore, the current 28-day inhalation toxicity study investigated the lung retention kinetics of tangled MWCNTs. Male Sprague Dawley rats were exposed to MWCNTs at 0, 0.257, 1.439, and 4.253 mg/m3 for 28 days (6 h/day, 5 days/week, 4 weeks). Thereafter, the rats were sacrificed at day 1, 7, and 28 post-exposure and the pulmonary inflammatory response evaluated by analyzing the bronchoalveolar lavage fluid. Plus, the blood biochemistry, hematology, and histopathology of the lungs were also examined. The lung deposition and retention of MWCNTs were determined based on the elemental carbon content in the lungs after tissue digestion. The number of polymorphonuclear cells and LDH concentration were both found to be significantly higher with the medium and high concentrations (1.439 and 4.253 mg/m3) and dose dependent. The estimated retention half-life for the high concentration (4.253 mg/m3) was about 35 days. The results of this study indicate that tangled MWCNTs seem to have a relatively shorter retention half-life when compared to previous reports on rigid MWCNTs, and the no-observed adverse effect level (NOAEL) for the tested tangled MWCNTs was 0.257 mg/m3 in a previous rat 28-day subacute inhalation toxicity study.
Collapse
Affiliation(s)
- Jin Kwon Kim
- Department of Nanofusion Technology, Hoseo University, Asan, Korea
| | | | | | | | - Jae Hoon Shin
- Occupational Lung Diseases Research Institute, KCOMWEL, Incheon, Korea
| | - Boo Wook Kim
- Occupational Lung Diseases Research Institute, KCOMWEL, Incheon, Korea
| | - Hoi Pin Kim
- Department of Nanofusion Technology, Hoseo University, Asan, Korea
| | | | - Hee Sang Kim
- HCTm CO.,LTD, Icheon, Korea.,Department of Mechanical Engineering, Hanyang University, Ansan, Korea
| | - Kangho Ahn
- Department of Mechanical Engineering, Hanyang University, Ansan, Korea
| | - Seung Min Oh
- Department of Nanofusion Technology, Hoseo University, Asan, Korea
| | - Wan-Seob Cho
- Laboratory of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Korea
| | | |
Collapse
|
26
|
Ihrie MD, Taylor-Just AJ, Walker NJ, Stout MD, Gupta A, Richey JS, Hayden BK, Baker GL, Sparrow BR, Duke KS, Bonner JC. Inhalation exposure to multi-walled carbon nanotubes alters the pulmonary allergic response of mice to house dust mite allergen. Inhal Toxicol 2019; 31:192-202. [PMID: 31345048 DOI: 10.1080/08958378.2019.1643955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Increasing evidence from rodent studies indicates that inhaled multi-walled carbon nanotubes (MWCNTs) have harmful effects on the lungs. In this study, we examined the effects of inhalation exposure to MWCNTs on allergen-induced airway inflammation and fibrosis. We hypothesized that inhalation pre-exposure to MWCNTs would render mice susceptible to developing allergic lung disease induced by house dust mite (HDM) allergen. Methods: Male B6C3F1/N mice were exposed by whole-body inhalation for 6 h a day, 5 d a week, for 30 d to air control or 0.06, 0.2, and 0.6 mg/m3 of MWCNTs. The exposure atmospheres were agglomerates (1.4-1.8 µm) composed of MWCNTs (average diameter 16 nm; average length 2.4 µm; 0.52% Ni). Mice then received 25 µg of HDM extract by intranasal instillation 6 times over 3 weeks. Necropsy was performed at 3 and 30 d after the final HDM dose to collect serum, bronchoalveolar lavage fluid (BALF), and lung tissue for histopathology. Results: MWCNT exposure at the highest dose inhibited HDM-induced serum IgE levels, IL-13 protein levels in BALF, and airway mucus production. However, perivascular and peribronchiolar inflammatory lesions were observed in the lungs of mice at 3 d with MWCNT and HDM, but not MWCNT or HDM alone. Moreover, combined HDM and MWCNT exposure increased airway fibrosis in the lungs of mice. Conclusions: Inhalation pre-exposure to MWCNTs inhibited HDM-induced TH2 immune responses, yet this combined exposure resulted in vascular inflammation and airway fibrosis, indicating that MWCNT pre-exposure alters the immune response to allergens.
Collapse
Affiliation(s)
- Mark D Ihrie
- a Department of Biological Sciences, North Carolina State University , Raleigh , NC , USA
| | - Alexia J Taylor-Just
- a Department of Biological Sciences, North Carolina State University , Raleigh , NC , USA
| | - Nigel J Walker
- b National Institute of Environmental Health Sciences , Durham , NC , USA
| | - Matthew D Stout
- b National Institute of Environmental Health Sciences , Durham , NC , USA
| | - Amit Gupta
- c Battelle Biomedical Research Centre , Columbus , OH , USA
| | - Jamie S Richey
- c Battelle Biomedical Research Centre , Columbus , OH , USA
| | - Barry K Hayden
- c Battelle Biomedical Research Centre , Columbus , OH , USA
| | | | | | - Katherine S Duke
- a Department of Biological Sciences, North Carolina State University , Raleigh , NC , USA
| | - James C Bonner
- a Department of Biological Sciences, North Carolina State University , Raleigh , NC , USA
| |
Collapse
|
27
|
Kabadi PK, Rodd AL, Simmons AE, Messier NJ, Hurt RH, Kane AB. A novel human 3D lung microtissue model for nanoparticle-induced cell-matrix alterations. Part Fibre Toxicol 2019; 16:15. [PMID: 30943996 PMCID: PMC6448215 DOI: 10.1186/s12989-019-0298-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/15/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Multi-walled carbon nanotubes (MWCNT) have been shown to elicit the release of inflammatory and pro-fibrotic mediators, as well as histopathological changes in lungs of exposed animals. Current standards for testing MWCNTs and other nanoparticles (NPs) rely on low-throughput in vivo studies to assess acute and chronic toxicity and potential hazard to humans. Several alternative testing approaches utilizing two-dimensional (2D) in vitro assays to screen engineered NPs have reported conflicting results between in vitro and in vivo assays. Compared to conventional 2D in vitro or in vivo animal model systems, three-dimensional (3D) in vitro platforms have been shown to more closely recapitulate human physiology, providing a relevant, more efficient strategy for evaluating acute toxicity and chronic outcomes in a tiered nanomaterial toxicity testing paradigm. RESULTS As inhalation is an important route of nanomaterial exposure, human lung fibroblasts and epithelial cells were co-cultured with macrophages to form scaffold-free 3D lung microtissues. Microtissues were exposed to multi-walled carbon nanotubes, M120 carbon black nanoparticles or crocidolite asbestos fibers for 4 or 7 days, then collected for characterization of microtissue viability, tissue morphology, and expression of genes and selected proteins associated with inflammation and extracellular matrix remodeling. Our data demonstrate the utility of 3D microtissues in predicting chronic pulmonary endpoints following exposure to MWCNTs or asbestos fibers. These test nanomaterials were incorporated into 3D human lung microtissues as visualized using light microscopy. Differential expression of genes involved in acute inflammation and extracellular matrix remodeling was detected using PCR arrays and confirmed using qRT-PCR analysis and Luminex assays of selected genes and proteins. CONCLUSION 3D lung microtissues provide an alternative testing platform for assessing nanomaterial-induced cell-matrix alterations and delineation of toxicity pathways, moving towards a more predictive and physiologically relevant approach for in vitro NP toxicity testing.
Collapse
Affiliation(s)
- Pranita K Kabadi
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA.,AstraZeneca, Gaithersburg, MD, 20878, USA
| | - April L Rodd
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA.
| | - Alysha E Simmons
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Norma J Messier
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Robert H Hurt
- School of Engineering, Brown University, Providence, Rhode Island, 02912, USA
| | - Agnes B Kane
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA.
| |
Collapse
|
28
|
To KT, Truong L, Edwards S, Tanguay RL, Reif DM. Multivariate modeling of engineered nanomaterial features associated with developmental toxicity. NANOIMPACT 2019; 16:10.1016/j.impact.2019.100185. [PMID: 32133425 PMCID: PMC7055685 DOI: 10.1016/j.impact.2019.100185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the increasing prevalence of engineered nanomaterials (ENMs) in consumer products, their toxicity profiles remain to be elucidated. ENM physicochemical characteristics (PCC) are known to influence ENM behavior, however the mechanisms of these effects have not been quantified. Further confounding the question of how the PCC influence behavior is the inclusion of structural and molecular descriptors in modeling schema that minimize the effects of PCC on the toxicological endpoints. In this work, we analyze ENM physico-chemical measurements that have not previously been studied within a developmental toxicity framework using an embryonic zebrafish model. In testing a panel of diverse ENMs to build a consensus model, we found nonlinear relationships between any singular PCC and bioactivity. By using a machine learning (ML) method to characterize the information content of combinatorial PCC sets, we found that concentration, surface area, shape, and polydispersity can accurately capture the developmental toxicity profile of ENMs with consideration to whole-organism effects.
Collapse
Affiliation(s)
- Kimberly T To
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC, USA
| | - Lisa Truong
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Sabrina Edwards
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, USA
| | - Robert L Tanguay
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - David M Reif
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The explosive growth of the nanotechnology industry has necessitated the examination of engineered nanomaterials (ENMs) for their toxicity. The unique properties that make ENMs useful also make them a health risk, and individuals with pre-existing diseases such as asthma are likely more susceptible. This review summarizes the current literature on the ability of ENMs to both exacerbate and directly cause asthma. RECENT FINDINGS Recent studies highlight the ability of metal nanoparticles (NPs) and carbon nanotubes (CNTs) to not only exacerbate pre-existing asthma in animal models but also initiate allergic airway disease directly. CNTs alone are shown to cause airway mucus production, elevated serum IgE levels, and increased TH2 cytokine levels, all key indicators of asthma. The ability of ENMs to modulate the immune response in asthma varies depending on their physicochemical properties and exposure timing. CNTs consistently exacerbate asthma, as do Ni and TiO2 NPs, whereas some NPs like Au attenuate asthma. Evidence is strong that ENMs can contribute to allergic airway disease; however, more work is required to determine their mechanisms, and more epidemiological studies are needed to validate results from animal models.
Collapse
|
30
|
Smith LC, Moreno S, Robinson S, Orandle M, Porter DW, Das D, Saleh NB, Sabo-Attwood T. Multi-walled carbon nanotubes inhibit estrogen receptor expression in vivo and in vitro through transforming growth factor beta1. NANOIMPACT 2019; 14:100152. [PMID: 32313843 PMCID: PMC7169977 DOI: 10.1016/j.impact.2019.100152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exposure to multi-walled carbon nanotubes (MWCNTs) is suspected to contribute to pulmonary fibrosis through modulation of transforming growth factor beta1 (TGF-β1). There is growing evidence that estrogen signaling is important in pulmonary function and modulates pro-fibrogenic signaling in multiple models of pulmonary fibrosis, however an interaction between MWCNT exposure and estrogen signaling in the lung is not known. The purpose of this work was to determine whether estrogen signaling in the lung is a target for MWCNTs and to identify potential signaling mechanisms mediating MWCNT-induced responses using a whole-body inhalation mouse model and an in vitro human lung cell model. Mice exposed to MWCNTs had reduced mRNA expression of estrogen receptor alpha and beta (Esr1 and Esr2, respectively) in lung tissue at multiple time-points post-exposure, whereas expression of g-protein coupled estrogen receptor1 (Gper1) was more variable. We localized ESR1 protein expression as primarily associated with bronchioles and within inflammatory macrophages. The reduction in estrogen receptor expression was concomitant to an increase in TGF-β1 levels in the bronchoalveolar lavage fluid (BALF) of MWCNT-exposed animals. We confirmed a role for TGF-β1 in mediating MWCNT-induced repression of ESR1 mRNA expression using a TGF-β type-I receptor inhibitor in bronchial epithelial cells in vitro. Overall these results highlight a novel mechanism of MWCNT-induced signaling where MWCNT-induced regulation of TGF-β1 represses estrogen receptor expression. Dysregulated estrogen signaling through altered receptor expression may have potential consequences on lung function.
Collapse
Affiliation(s)
- L. Cody Smith
- Department of Physiological Sciences, University of Florida, Gainesville, FL
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL
| | - Santiago Moreno
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL
| | - Sarah Robinson
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL
- Department of Environmental and Global Health, University of Florida, Gainesville, FL
| | - Marlene Orandle
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV 26505 USA
| | - Dale W. Porter
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Morgantown, WV 26505 USA
| | - Dipesh Das
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas
| | - Navid B. Saleh
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas
| | - Tara Sabo-Attwood
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL
- Department of Environmental and Global Health, University of Florida, Gainesville, FL
| |
Collapse
|
31
|
Nahle S, Safar R, Grandemange S, Foliguet B, Lovera-Leroux M, Doumandji Z, Le Faou A, Joubert O, Rihn B, Ferrari L. Single wall and multiwall carbon nanotubes induce different toxicological responses in rat alveolar macrophages. J Appl Toxicol 2019; 39:764-772. [PMID: 30605223 PMCID: PMC6590492 DOI: 10.1002/jat.3765] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023]
Abstract
Human exposure to airborne carbon nanotubes (CNT) is increasing because of their applications in different sectors; therefore, they constitute a biological hazard. Consequently, developing studies on CNT toxicity become a necessity. CNTs can have different properties in term of length, size and charge. Here, we compared the cellular effect of multiwall (MWCNTs) and single wall CNTs (SWCNTs). MWCNTs consist of multiple layers of graphene, while SWCNTs are monolayers. The effects of MWCNTs and SWCNTs were evaluated by the water-soluble tetrazolium salt cell proliferation assay on NR8383 cells, rat alveolar macrophage cell line (NR8383). After 24 hours of exposure, MWCNTs showed higher toxicity (50% inhibitory concentration [IC50 ] = 3.2 cm2 /cm2 ) than SWCNTs (IC50 = 44 cm2 /cm2 ). Only SWCNTs have induced NR8383 cells apoptosis as assayed by flow cytometry using the annexin V/IP staining test. The expression of genes involved in oxidative burst (Ncf1), inflammation (Nfκb, Tnf-α, Il-6 and Il-1β), mitochondrial damage (Opa) and apoptotic balance (Pdcd4, Bcl-2 and Casp-8) was determined. We found that MWCNT exposure predominantly induce inflammation, while SWCNTs induce apoptosis and impaired mitochondrial function. Our results clearly suggest that MWCNTs are ideal candidates for acute inflammation induction. In vivo studies are required to confirm this hypothesis. However, we conclude that toxicity of CNTs is dependent on their physical and chemical characteristics.
Collapse
Affiliation(s)
- Sara Nahle
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Ramia Safar
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Stéphanie Grandemange
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Bernard Foliguet
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Mélanie Lovera-Leroux
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Zahra Doumandji
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Alain Le Faou
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Olivier Joubert
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Bertrand Rihn
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Luc Ferrari
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| |
Collapse
|
32
|
Lee DK, Jeon S, Han Y, Kim SH, Lee S, Yu IJ, Song KS, Kang A, Yun WS, Kang SM, Huh YS, Cho WS. Threshold Rigidity Values for the Asbestos-like Pathogenicity of High-Aspect-Ratio Carbon Nanotubes in a Mouse Pleural Inflammation Model. ACS NANO 2018; 12:10867-10879. [PMID: 30380828 DOI: 10.1021/acsnano.8b03604] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The qualitative and quantitative evaluation of the physicochemical parameters associated with the pathogenicity of high-aspect-ratio nanomaterials is important for comprehensive regulation efforts and safety-by-design approaches. Here, we report quantitative data on the correlations between the rigidity of these nanomaterials and toxicity endpoints in vitro and in vivo. As measured by new ISO standards published in 2017, rigidity shows a strong positive correlation with inflammogenic potential, as indicated by inflammatory cell counts and IL-1β (a biomarker for frustrated phagocytosis) levels in both the acute and chronic phases. In vitro experiments using differentiated THP-1 cells find that only highly rigid multiwalled carbon nanotubes (MWCNTs) and asbestos fibers lead to piercing and frustrated phagocytosis. Thus, this study suggests a bending ratio of 0.97 and a static bending persistence length of 1.08 as threshold rigidity values for asbestos-like pathogenicity. However, additional research using MWCNTs with rigidity values that lie between those of non-inflammogenic ( Db = 0.66 and SBPL = 0.87) and inflammogenic fibers ( Db = 0.97 and SBPL = 1.09) is required to identify more accurate threshold values, which would be useful for comprehensive regulation and safety-by-design approaches based on MWCNTs.
Collapse
Affiliation(s)
- Dong-Keun Lee
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences , Dong-A University , 37, Nakdong-daero 550 beon-gil , Busan 49315 , Republic of Korea
| | - Soyeon Jeon
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences , Dong-A University , 37, Nakdong-daero 550 beon-gil , Busan 49315 , Republic of Korea
| | - Youngju Han
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences , Dong-A University , 37, Nakdong-daero 550 beon-gil , Busan 49315 , Republic of Korea
| | - Sung-Hyun Kim
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences , Dong-A University , 37, Nakdong-daero 550 beon-gil , Busan 49315 , Republic of Korea
| | - Seonghan Lee
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences , Dong-A University , 37, Nakdong-daero 550 beon-gil , Busan 49315 , Republic of Korea
| | - Il Je Yu
- HCTm Co., LTD , 74, Seoicheon-ro 578 beon-gil, Majang-myeon , Icheon-si , Gyeonggi-do 17383 , Republic of Korea
| | - Kyung Seuk Song
- Korea Environment and Merchandise Testing Institute , 8, Gaetbeol-ro 145 beon-gil , Yeonsu-gu, Incheon 21999 , Republic of Korea
| | - Aeyeon Kang
- Department of Chemistry , Sungkyunkwan University , 2066, Seobu-ro , Jangan-gu, Suwon-si , Gyeonggi-do 16419 , Republic of Korea
| | - Wan Soo Yun
- Department of Chemistry , Sungkyunkwan University , 2066, Seobu-ro , Jangan-gu, Suwon-si , Gyeonggi-do 16419 , Republic of Korea
| | - Sung-Min Kang
- Department of Biological Engineering , Inha University , 100, Inharo , Nam-gu, Incheon 22212 , Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering , Inha University , 100, Inharo , Nam-gu, Incheon 22212 , Republic of Korea
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences , Dong-A University , 37, Nakdong-daero 550 beon-gil , Busan 49315 , Republic of Korea
| |
Collapse
|
33
|
Duke KS, Thompson EA, Ihrie MD, Taylor-Just AJ, Ash EA, Shipkowski KA, Hall JR, Tokarz DA, Cesta MF, Hubbs AF, Porter DW, Sargent LM, Bonner JC. Role of p53 in the chronic pulmonary immune response to tangled or rod-like multi-walled carbon nanotubes. Nanotoxicology 2018; 12:975-991. [PMID: 30317900 DOI: 10.1080/17435390.2018.1502830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The fiber-like shape of multi-walled carbon nanotubes (MWCNTs) is reminiscent of asbestos, suggesting they pose similar health hazards when inhaled, including pulmonary fibrosis and mesothelioma. Mice deficient in the tumor suppressor p53 are susceptible to carcinogenesis. However, the chronic pathologic effect of MWCNTs delivered to the lungs of p53 heterozygous (p53+/-) mice has not been investigated. We hypothesized that p53+/- mice would be susceptible to lung tumor development after exposure to either tangled (t-) or rod-like (r-) MWCNTs. Wild-type (p53+/+) or p53+/- mice were exposed to MWCNTs (1 mg/kg) via oropharyngeal aspiration weekly over four consecutive weeks and evaluated for cellular and pathologic outcomes 11-months post-initial exposure. No lung or pleural tumors were observed in p53+/+ or p53+/- mice exposed to either t- or rMWCNTs. In comparison to tMWCNTs, the rMWCNTs induced the formation of larger granulomas, a greater number of lymphoid aggregates and greater epithelial cell hyperplasia in terminal bronchioles in both p53+/- and p53+/+ mice. A constitutively larger area of CD45R+/CD3+ lymphoid tissue was observed in p53+/- mice compared to p53+/+ mice. Importantly, p53+/- mice had larger granulomas induced by rMWCNTs as compared to p53+/+ mice. These findings indicate that a combination of p53 deficiency and physicochemical characteristics including nanotube geometry are factors in susceptibility to MWCNT-induced lymphoid infiltration and granuloma formation.
Collapse
Affiliation(s)
- Katherine S Duke
- a Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| | - Elizabeth A Thompson
- a Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| | - Mark D Ihrie
- a Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| | - Alexia J Taylor-Just
- a Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| | - Elizabeth A Ash
- b College of Veterinary Medicine , North Carolina State University , Raleigh , NC , USA
| | - Kelly A Shipkowski
- a Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| | - Jonathan R Hall
- a Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| | - Debra A Tokarz
- b College of Veterinary Medicine , North Carolina State University , Raleigh , NC , USA
| | - Mark F Cesta
- c National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - Ann F Hubbs
- d National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Dale W Porter
- d National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Linda M Sargent
- d National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - James C Bonner
- a Department of Biological Sciences , North Carolina State University , Raleigh , NC , USA
| |
Collapse
|
34
|
Hindman B, Ma Q. Carbon nanotubes and crystalline silica induce matrix remodeling and contraction by stimulating myofibroblast transformation in a three-dimensional culture of human pulmonary fibroblasts: role of dimension and rigidity. Arch Toxicol 2018; 92:3291-3305. [PMID: 30229330 DOI: 10.1007/s00204-018-2306-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/13/2018] [Indexed: 12/24/2022]
Abstract
Pulmonary fibrosis is a poorly understood pathologic condition. Carbon nanotubes (CNTs) are nanomaterials with potentials for broad applications. CNTs can induce pulmonary fibrosis in animals, a cause for concern for exposed workers and consumers. Given the large number of CNTs available on the market and the seemingly infinite number of ways these particles can be modified in ways that may affect toxicity, in vitro models that can be used to quickly and effectively investigate the relative fibrogenicity of CNTs are much needed. Here we analyzed the fibrogenic potentials of six CNTs of varying physical properties and crystalline silica using two- and three-dimensional (2D and 3D, respectively) in vitro models. WI38-VA13 human pulmonary fibroblasts were treated with CNTs or silica, with TGF-β1, a known inducer of fibroblast differentiation, as positive control. The cells were examined for fibrotic matrix alterations, including myofibroblast transformation, matrix remodeling, and matrix contraction. While all tested CNTs induced myofibroblast differentiation in 2D and 3D cultures, the 3D culture allowed the examination of myofibroblast clustering, collagen deposition and rearrangement, cell division, and matrix contraction in response to fibrogenic exposures, processes critical for fibrosis in vivo. At 1 µg/ml, MWCNTs elicit higher induction of myofibroblast differentiation and matrix remodeling than SWCNTs. Among MWCNTs, those with the highest and lowest aspect ratios produced the largest effects, which were comparable to those by TGF-β1 and higher than those by silica. Thus, the 3D collagen-based model enables the study of matrix fibrotic processes induced by CNTs and silica particles directly and effectively.
Collapse
Affiliation(s)
- Bridget Hindman
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA.
| |
Collapse
|
35
|
Dong J, Ma Q. Type 2 Immune Mechanisms in Carbon Nanotube-Induced Lung Fibrosis. Front Immunol 2018; 9:1120. [PMID: 29872441 PMCID: PMC5972321 DOI: 10.3389/fimmu.2018.01120] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/03/2018] [Indexed: 01/29/2023] Open
Abstract
T helper (Th) 2-dependent type 2 immune pathways have been recognized as an important driver for the development of fibrosis. Upon stimulation, activated Th2 immune cells and type 2 cytokines interact with inflammatory and tissue repair functions to stimulate an overzealous reparative response to tissue damage, leading to organ fibrosis and destruction. In this connection, type 2 pathways are activated by a variety of insults and pathological conditions to modulate the response. Carbon nanotubes (CNTs) are nanomaterials with a wide range of applications. However, pulmonary exposure to CNTs causes a number of pathologic outcomes in animal lungs, dominated by inflammation and fibrosis. These findings, alongside the rapidly expanding production and commercialization of CNTs and CNT-containing materials in recent years, have raised concerns on the health risk of CNT exposure in humans. The CNT-induced pulmonary fibrotic lesions resemble those of human fibrotic lung diseases, such as idiopathic pulmonary fibrosis and pneumoconiosis, to a certain extent with regard to disease development and pathological features. In fibrotic scenarios, immune cells are activated including varying immune pathways, ranging from innate immune cell activation to autoimmune disease. These events often precede and/or accompany the occurrence of fibrosis. Upon CNT exposure, significant induction and activation of Th2 cells and type 2 cytokines in the lungs are observed. Moreover, type 2 pathways are shown to play important roles in promoting CNT-induced lung fibrosis by producing type 2 pro-fibrotic factors and inducing the reparative phenotypes of macrophages in response to CNTs. In light of the vastly increased demand for nanosafety and the apparent induction and multiple roles of type 2 immune pathways in lung fibrosis, we review the current literature on CNT-induced lung fibrosis, with a focus on the induction and activation of type 2 responses by CNTs and the stimulating function of type 2 signaling on pulmonary fibrosis development. These analyses provide new insights into the mechanistic understanding of CNT-induced lung fibrosis, as well as the potential of using type 2 responses as a monitoring target and therapeutic strategy for human fibrotic lung disease.
Collapse
Affiliation(s)
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| |
Collapse
|
36
|
Signal Transducer and Activator of Transcription 1 Regulates Multiwalled Carbon Nanotube–induced Pulmonary Fibrosis in Mice via Suppression of Transforming Growth Factor-β1 Production and Signaling. Ann Am Thorac Soc 2018. [DOI: 10.1513/annalsats.201707-588mg] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Dong J, Ma Q. Macrophage polarization and activation at the interface of multi-walled carbon nanotube-induced pulmonary inflammation and fibrosis. Nanotoxicology 2018; 12:153-168. [PMID: 29338488 DOI: 10.1080/17435390.2018.1425501] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pulmonary exposure to carbon nanotubes (CNTs) induces fibrosing lesions in the lungs that manifest rapid-onset inflammatory and fibrotic responses, leading to chronic fibrosis in animals and health concerns in exposed humans. The mechanisms underlying CNT-induced fibrogenic effects remain undefined. Macrophages are known to play important roles in immune regulation and fibrosis development through their distinct subsets. Here we investigated macrophage polarization and activation in mouse lungs exposed to multi-walled CNTs (MWCNTs). Male C57BL/6J mice were treated with MWCNTs (XNRI MWNT-7) at 40 μg per mouse (∼1.86 mg/kg body weight) by oropharyngeal aspiration. The treatment stimulated prominent acute inflammatory and fibrotic responses. Moreover, it induced pronounced enrichment and polarization of macrophages with significantly increased M1 and M2 populations in a time-dependent manner. Induction of M1 polarization was apparent on day 1 with a peak on day 3, but declined rapidly thereafter. On the other hand, the M2 polarization was induced on day 1 modestly, but was remarkably elevated on day 3 and maintained at a high level through day 7. M1 and M2 macrophages were functionally activated by MWCNTs as indicated by the expression of their distinctive functional markers, such as iNOS and ARG1, with time courses parallel to M1 and M2 polarization, respectively. Molecular analysis revealed MWCNTs boosted specific STAT and IRF signaling pathways to regulate M1 and M2 polarization in the lungs. These findings suggest a new mechanistic connection between inflammation and fibrosis induced by MWCNTs through the polarization and activation of macrophages during MWCNT-induced lung pathologic response.
Collapse
Affiliation(s)
- Jie Dong
- a Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown , WV , USA
| | - Qiang Ma
- a Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown , WV , USA
| |
Collapse
|
38
|
Duke KS, Bonner JC. Mechanisms of carbon nanotube-induced pulmonary fibrosis: a physicochemical characteristic perspective. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10:e1498. [PMID: 28984415 DOI: 10.1002/wnan.1498] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/03/2017] [Accepted: 09/05/2017] [Indexed: 01/01/2023]
Abstract
Carbon nanotubes (CNTs) are engineered nanomaterials (ENMs) with numerous beneficial applications. However, they could pose a risk to human health from occupational or consumer exposures. Rodent models demonstrate that exposure to CNTs via inhalation, instillation, or aspiration results in pulmonary fibrosis. The severity of the fibrogenic response is determined by various physicochemical properties of the nanomaterial such as residual metal catalyst content, rigidity, length, aggregation status, or surface charge. CNTs are also increasingly functionalized post-synthesis with organic or inorganic agents to modify or enhance surface properties. The mechanisms of CNT-induced fibrosis involve oxidative stress, innate immune responses of macrophages, cytokine and growth factor production, epithelial cell injury and death, expansion of the pulmonary myofibroblast population, and consequent extracellular matrix accumulation. A comprehensive understanding of how physicochemical properties affect the fibrogenic potential of various types of CNTs should be considered in combination with genetic variability and gain or loss of function of specific genes encoding secreted cytokines, enzymes, or intracellular cell signaling molecules. Here, we cover the current state of the literature on mechanisms of CNT-exposed pulmonary fibrosis in rodent models with a focus on physicochemical characteristics as principal drivers of the mechanisms leading to pulmonary fibrosis. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Katherine S Duke
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - James C Bonner
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|