1
|
Gao M, Yang Z, Zhang Z, Chen L, Xu B. Nervous system exposure of different classes of nanoparticles: A review on potential toxicity and mechanistic studies. ENVIRONMENTAL RESEARCH 2024; 259:119473. [PMID: 38908667 DOI: 10.1016/j.envres.2024.119473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Nanoparticles (NPs) are generally defined as very small particles in the size range of 1-100 nm. Due to the rapid development of modern society, many new materials have been developed. The widespread use of NPs in medical applications, the food industry and the textile industry has led to an increase in NPs in the environment and the possibility of human contact, which poses a serious threat to human health. The nervous system plays a leading role in maintaining the integrity and unity of the body and maintaining a harmonious balance with the external environment. Therefore, based on two categories of organic and inorganic NPs, this paper systematically summarizes the toxic effects and mechanisms of NPs released into the nervous system. The results showed that exposure to NPs may damage the nervous system, decrease learning and cognitive ability, and affect embryonic development. Finally, a remediation scheme for NPs entering the body via the environment is also introduced. This scheme aims to reduce the neurotoxicity caused by NPs by supplementing NPs with a combination of antioxidant and anti-inflammatory compounds. The results provide a valuable reference for future research in this field.
Collapse
Affiliation(s)
- Mingyang Gao
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Ziye Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhen Zhang
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Baoshan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
| |
Collapse
|
2
|
Zhan Y, Lou H, Shou R, Li A, Shang J, Jin Y, Li L, Zhu L, Lu X, Fan X. Maternal exposure to E 551 during pregnancy leads to genome-wide DNA methylation changes and metabolic disorders in the livers of pregnant mice and their fetuses. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133233. [PMID: 38118196 DOI: 10.1016/j.jhazmat.2023.133233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023]
Abstract
The widespread use of nanoparticles in the food industry has raised concerns regarding their potential adverse effects on human health, particularly in vulnerable populations, including pregnant mothers and fetuses. However, studies evaluating the reproductive and developmental toxicity of food-grade nanomaterials are limited. This study investigated the potential risks of prenatal dietary exposure to food-grade silica nanoparticles (E 551) on maternal health and fetal growth using conventional toxicological and epigenetic methods. The results showed that prenatal exposure to a high-dose of E 551 induces fetal resorption. Moreover, E 551 significantly accumulates in maternal and fetal livers, triggering a hepatic inflammatory response. At the epigenetic level, global DNA methylation is markedly altered in the maternal and fetal livers. Genome-wide DNA methylation sequencing revealed affected mCG, mCHG, and mCHH methylation landscapes. Subsequent bioinformatic analysis of the differentially methylated genes suggests that E 551 poses a risk of inducing metabolic disorders in maternal and fetal livers. This is further evidenced by impaired glucose tolerance in pregnant mice and altered expression of key metabolism-related genes and proteins in maternal and fetal livers. Collectively, the results of this study highlighted the importance of epigenetics in characterizing the potential toxicity of maternal exposure to food-grade nanomaterials during pregnancy.
Collapse
Affiliation(s)
- Yingqi Zhan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - He Lou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rongshang Shou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Anyao Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiaxin Shang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanyan Jin
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lu Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Lidan Zhu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321016, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321016, China.
| |
Collapse
|
3
|
Boulain M, Morin D, Juvin L. Multigenerational inheritance of breathing deficits following perinatal exposure to titanium dioxide nanoparticles in the offspring of mice. DISCOVER NANO 2024; 19:16. [PMID: 38261116 PMCID: PMC10805760 DOI: 10.1186/s11671-023-03927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/14/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND The utilization of titanium dioxide nanoparticles (TIO2NPs) has experienced a significant surge in recent decades, and these particles are now commonly found in various everyday consumer products. Due to their small size, TIO2NPs can penetrate biological barriers and elicit adverse interactions with biological tissues. Notably, exposure of pregnant females to TIO2NPs during the perinatal period has been shown to disrupt the growth of offspring. Furthermore, this exposure induces epigenetic modifications in the DNA of newborns, suggesting the possibility of multigenerational effects. Thus, perinatal exposure to TIO2NPs may induce immediate metabolic impairments in neonates, which could be transmitted to subsequent generations in the long term. RESULTS In this study, we utilized perinatal exposure of female mice to TIO2NPs through voluntary food intake and observed impaired metabolism in newborn male and female F1 offspring. The exposed newborn mice exhibited reduced body weight gain and a slower breathing rate compared to non-exposed animals. Additionally, a higher proportion of exposed F1 newborns experienced apneas. Similar observations were made when the exposure was limited to the postnatal period, highlighting lactation as a critical period for the adverse effects of TIO2NPs on postnatal metabolism. Importantly, the breathing deficits induced by TIO2NPs were transmitted from F1 females to the subsequent F2 generation. Moreover, re-exposure of adult F1 females to TIO2NPs exacerbated the breathing deficits in newborn F2 males. CONCLUSIONS Our findings demonstrate that perinatal exposure to TIO2NPs disrupts postnatal body weight gain and respiration in the offspring, and these deficits are transmissible to future generations.
Collapse
Affiliation(s)
- Marie Boulain
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, 33000, Bordeaux, France
| | - Didier Morin
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, 33000, Bordeaux, France
| | - Laurent Juvin
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, 33000, Bordeaux, France.
| |
Collapse
|
4
|
Kefayati F, Karimi Babaahmadi A, Mousavi T, Hodjat M, Abdollahi M. Epigenotoxicity: a danger to the future life. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:382-411. [PMID: 36942370 DOI: 10.1080/10934529.2023.2190713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Environmental toxicants can regulate gene expression in the absence of DNA mutations via epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs' (ncRNAs). Here, all three epigenetic modifications for seven important categories of diseases and the impact of eleven main environmental factors on epigenetic modifications were discussed. Epigenetic-related mechanisms are among the factors that could explain the root cause of a wide range of common diseases. Its overall impression on the development of diseases can help us diagnose and treat diseases, and besides, predict transgenerational and intergenerational effects. This comprehensive article attempted to address the relationship between environmental factors and epigenetic modifications that cause diseases in different categories. The studies main gap is that the precise role of environmentally-induced epigenetic alterations in the etiology of the disorders is unknown; thus, still more well-designed researches need to be accomplished to fill this gap. The present review aimed to first summarize the adverse effect of certain chemicals on the epigenome that may involve in the onset of particular disease based on in vitro and in vivo models. Subsequently, the possible adverse epigenetic changes that can lead to many human diseases were discussed.
Collapse
Affiliation(s)
- Farzaneh Kefayati
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atoosa Karimi Babaahmadi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Sun Q, Li T, Yu Y, Li Y, Sun Z, Duan J. The critical role of epigenetic mechanisms involved in nanotoxicology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1789. [PMID: 35289073 DOI: 10.1002/wnan.1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Over the past decades, nanomaterials (NMs) have been widely applied in the cosmetic, food, engineering, and medical fields. Along with the prevalence of NMs, the toxicological characteristics exhibited by these materials on health and the environment have gradually attracted attentions. A growing number of evidences have indicated that epigenetics holds an essential role in the onset and development of various diseases. NMs could cause epigenetic alterations such as DNA methylation, noncoding RNA (ncRNA) expression, and histone modifications. NMs might alternate either global DNA methylation or the methylation of specific genes to affect the biological function. Abnormal upregulation or downregulation of ncRNAs might also be a potential mechanism for the toxic effects caused by NMs. In parallel, the phosphorylation, acetylation, and methylation of histones also take an important part in the process of NMs-induced toxicity. As the adverse effects of NMs continue to be explored, mechanisms such as chromosomal remodeling, genomic imprinting, and m6 A modification are also gradually coming into the limelight. Since the epigenetic alterations often occur in the early development of diseases, thus the relevant studies not only provide insight into the pathogenesis of diseases, but also screen for the prospective biomarkers for early diagnosis and prevention. This review summarizes the epigenetic alterations elicited by NMs, hoping to provide a clue for nanotoxicity studies and security evaluation of NMs. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Nanosafety: An Evolving Concept to Bring the Safest Possible Nanomaterials to Society and Environment. NANOMATERIALS 2022; 12:nano12111810. [PMID: 35683670 PMCID: PMC9181910 DOI: 10.3390/nano12111810] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
Abstract
The use of nanomaterials has been increasing in recent times, and they are widely used in industries such as cosmetics, drugs, food, water treatment, and agriculture. The rapid development of new nanomaterials demands a set of approaches to evaluate the potential toxicity and risks related to them. In this regard, nanosafety has been using and adapting already existing methods (toxicological approach), but the unique characteristics of nanomaterials demand new approaches (nanotoxicology) to fully understand the potential toxicity, immunotoxicity, and (epi)genotoxicity. In addition, new technologies, such as organs-on-chips and sophisticated sensors, are under development and/or adaptation. All the information generated is used to develop new in silico approaches trying to predict the potential effects of newly developed materials. The overall evaluation of nanomaterials from their production to their final disposal chain is completed using the life cycle assessment (LCA), which is becoming an important element of nanosafety considering sustainability and environmental impact. In this review, we give an overview of all these elements of nanosafety.
Collapse
|
7
|
A New Look at the Effects of Engineered ZnO and TiO2 Nanoparticles: Evidence from Transcriptomics Studies. NANOMATERIALS 2022; 12:nano12081247. [PMID: 35457956 PMCID: PMC9031840 DOI: 10.3390/nano12081247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 01/16/2023]
Abstract
Titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) have attracted a great deal of attention due to their excellent electrical, optical, whitening, UV-adsorbing and bactericidal properties. The extensive production and utilization of these NPs increases their chances of being released into the environment and conferring unintended biological effects upon exposure. With the increasingly prevalent use of the omics technique, new data are burgeoning which provide a global view on the overall changes induced by exposures to NPs. In this review, we provide an account of the biological effects of ZnO and TiO2 NPs arising from transcriptomics in in vivo and in vitro studies. In addition to studies on humans and mice, we also describe findings on ecotoxicology-related species, such as Danio rerio (zebrafish), Caenorhabditis elegans (nematode) or Arabidopsis thaliana (thale cress). Based on evidence from transcriptomics studies, we discuss particle-induced biological effects, including cytotoxicity, developmental alterations and immune responses, that are dependent on both material-intrinsic and acquired/transformed properties. This review seeks to provide a holistic insight into the global changes induced by ZnO and TiO2 NPs pertinent to human and ecotoxicology.
Collapse
|
8
|
Mazzotta HC, Robbins WA, Tsai CSJ. An Analysis of Prenatal Exposure Factors and Offspring Health Outcomes in Rodents from Synthesized Nanoparticles. Reprod Toxicol 2022; 110:60-67. [DOI: 10.1016/j.reprotox.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
|
9
|
Development of coronary dysfunction in adult progeny after maternal engineered nanomaterial inhalation during gestation. Sci Rep 2021; 11:19374. [PMID: 34588535 PMCID: PMC8481306 DOI: 10.1038/s41598-021-98818-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/15/2021] [Indexed: 01/09/2023] Open
Abstract
Maternal exposure to environmental contaminants during pregnancy can profoundly influence the risk of developing cardiovascular disease in adult offspring. Our previous studies have demonstrated impaired cardiovascular health, microvascular reactivity, and cardiac function in fetal and young adult progeny after maternal inhalation of nano-sized titanium dioxide (nano-TiO2) aerosols during gestation. The present study was designed to evaluate the development of cardiovascular and metabolic diseases later in adulthood. Pregnant Sprague–Dawley rats were exposed to nano-TiO2 aerosols (~ 10 mg/m3, 134 nm median diameter) for 4 h per day, 5 days per week, beginning on gestational day (GD) 4 and ending on GD 19. Progeny were delivered in-house. Body weight was recorded weekly after birth. After 47 weeks, the body weight of exposed progeny was 9.4% greater compared with controls. Heart weight, mean arterial pressure, and plasma biomarkers of inflammation, dyslipidemia, and glycemic control were recorded at 3, 9 and 12 months of age, with no significant adaptations. While no clinical risk factors (i.e., hypertension, dyslipidemia, or systemic inflammation) emerged pertaining to the development of cardiovascular disease, we identified impaired endothelium-dependent and -independent arteriolar dysfunction and cardiac morphological alterations consistent with myocardial inflammation, degeneration, and necrosis in exposed progeny at 12 months. In conclusion, maternal inhalation of nano-TiO2 aerosols during gestation may promote the development of coronary disease in adult offspring.
Collapse
|
10
|
Kunovac A, Hathaway QA, Pinti MV, Durr AJ, Taylor AD, Goldsmith WT, Garner KL, Nurkiewicz TR, Hollander JM. Enhanced antioxidant capacity prevents epitranscriptomic and cardiac alterations in adult offspring gestationally-exposed to ENM. Nanotoxicology 2021; 15:812-831. [PMID: 33969789 PMCID: PMC8363568 DOI: 10.1080/17435390.2021.1921299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/01/2021] [Accepted: 04/18/2021] [Indexed: 12/16/2022]
Abstract
Maternal engineered nanomaterial (ENM) exposure during gestation has been associated with negative long-term effects on cardiovascular health in progeny. Here, we evaluate an epitranscriptomic mechanism that contributes to these chronic ramifications and whether overexpression of mitochondrial phospholipid hydroperoxide glutathione peroxidase (mPHGPx) can preserve cardiovascular function and bioenergetics in offspring following gestational nano-titanium dioxide (TiO2) inhalation exposure. Wild-type (WT) and mPHGPx (Tg) dams were exposed to nano-TiO2 aerosols with a mass concentration of 12.01 ± 0.50 mg/m3 starting from gestational day (GD) 5 for 360 mins/day for 6 nonconsecutive days over 8 days. Echocardiography was performed in pregnant dams, adult (11-week old) and fetal (GD 14) progeny. Mitochondrial function and global N6-methyladenosine (m6A) content were assessed in adult progeny. MPHGPx enzymatic function was further evaluated in adult progeny and m6A-RNA immunoprecipitation (RIP) was combined with RT-qPCR to evaluate m6A content in the 3'-UTR. Following gestational ENM exposure, global longitudinal strain (GLS) was 32% lower in WT adult offspring of WT dams, with preservation in WT offspring of Tg dams. MPHGPx activity was significantly reduced in WT offspring (29%) of WT ENM-exposed dams, but preserved in the progeny of Tg dams. M6A-RIP-qPCR for the SEC insertion sequence region of mPHGPx revealed hypermethylation in WT offspring from ENM-exposed WT dams, which was thwarted in the presence of the maternal transgene. Our findings implicate that m6A hypermethylation of mPHGPx may be culpable for diminished antioxidant capacity and resultant mitochondrial and cardiac deficits that persist into adulthood following gestational ENM inhalation exposure.
Collapse
Affiliation(s)
- Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Quincy A. Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Mark V. Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Andrya J. Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Andrew D. Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - William T. Goldsmith
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Krista L. Garner
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Timothy R. Nurkiewicz
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - John M. Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
11
|
Moreira L, Costa C, Pires J, Teixeira JP, Fraga S. How can exposure to engineered nanomaterials influence our epigenetic code? A review of the mechanisms and molecular targets. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108385. [PMID: 34893164 DOI: 10.1016/j.mrrev.2021.108385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 06/14/2023]
Abstract
Evidence suggests that engineered nanomaterials (ENM) can induce epigenetic modifications. In this review, we provide an overview of the epigenetic modulation of gene expression induced by ENM used in a variety of applications: titanium dioxide (TiO2), silver (Ag), gold (Au), silica (SiO2) nanoparticles and carbon-based nanomaterials (CNM). Exposure to these ENM can trigger alterations in cell patterns of DNA methylation, post-transcriptional histone modifications and expression of non-coding RNA. Such effects are dependent on ENM dose and physicochemical properties including size, shape and surface chemistry, as well as on the cell/organism sensitivity. The genes affected are mostly involved in the regulation of the epigenetic machinery itself, as well as in apoptosis, cell cycle, DNA repair and inflammation related pathways, whose long-term alterations might lead to the onset or progression of certain pathologies. In addition, some DNA methylation patterns may be retained as a form of epigenetic memory. Prenatal exposure to ENM may impair the normal development of the offspring by transplacental effects and/or putative transmission of epimutations in imprinting genes. Thus, understanding the impact of ENM on the epigenome is of paramount importance and epigenetic evaluation must be considered when assessing the risk of ENM to human health.
Collapse
Affiliation(s)
- Luciana Moreira
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | - Carla Costa
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | - Joana Pires
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Porto, Portugal.
| | - João Paulo Teixeira
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| | - Sónia Fraga
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal.
| |
Collapse
|
12
|
Glaspell SJ, Knapek KJ, Washington IM, Fitzgerald SD, Fortin JS. Nephroblastoma in a Sprague Dawley rat unrelated to titanium dioxide nanoparticle exposure in utero. Vet Med Sci 2021; 7:944-949. [PMID: 33277974 PMCID: PMC8136948 DOI: 10.1002/vms3.405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/02/2020] [Accepted: 11/20/2020] [Indexed: 02/02/2023] Open
Abstract
Nephroblastoma is an embryonal tumour that has rarely been reported in laboratory rats. In this case report, a large nephroblastoma with peritoneal seeding was found during necropsy in an 11-month-old, female, Sprague Dawley rat. The rat had a history of indirect exposure to nano-TiO2 (titanium dioxide nanoparticles) during maternal gestation. A firm mass in the upper right abdominal quadrant was palpated. Four weeks later, the animal quickly declined. Nephroblastoma was confirmed by histopathology. Only one rat developed nephroblastoma among the ten littermates. Nephroblastomas in Sprague Dawley rats are typically spontaneous tumours with non-malignant mesenchymal elements. The capability to induce a nephroblastoma with nano-TiO2 is less likely in this case.
Collapse
Affiliation(s)
| | - Katie J. Knapek
- Office of Laboratory Animal ResourcesWest Virginia UniversityMorgantownWVUSA
| | - Ida M. Washington
- Office of Laboratory Animal ResourcesWest Virginia UniversityMorgantownWVUSA
| | - Scott D. Fitzgerald
- Department of Pathobiology and Diagnostic InvestigationCollege of Veterinary MedicineMichigan State UniversityEast LansingMIUSA
- Veterinary Diagnostic LaboratoryMichigan State UniversityLansingMIUSA
| | - Jessica S. Fortin
- Department of Pathobiology and Diagnostic InvestigationCollege of Veterinary MedicineMichigan State UniversityEast LansingMIUSA
| |
Collapse
|
13
|
Teng C, Jiang C, Gao S, Liu X, Zhai S. Fetotoxicity of Nanoparticles: Causes and Mechanisms. NANOMATERIALS 2021; 11:nano11030791. [PMID: 33808794 PMCID: PMC8003602 DOI: 10.3390/nano11030791] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
The application of nanoparticles in consumer products and nanomedicines has increased dramatically in the last decade. Concerns for the nano-safety of susceptible populations are growing. Due to the small size, nanoparticles have the potential to cross the placental barrier and cause toxicity in the fetus. This review aims to identify factors associated with nanoparticle-induced fetotoxicity and the mechanisms involved, providing a better understanding of nanotoxicity at the maternal–fetal interface. The contribution of the physicochemical properties of nanoparticles (NPs), maternal physiological, and pathological conditions to the fetotoxicity is highlighted. The underlying molecular mechanisms, including oxidative stress, DNA damage, apoptosis, and autophagy are summarized. Finally, perspectives and challenges related to nanoparticle-induced fetotoxicity are also discussed.
Collapse
Affiliation(s)
- Chuanfeng Teng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Cuijuan Jiang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China;
| | - Sulian Gao
- Jinan Eco-Environmental Monitoring Center of Shandong Province, Jinan 250101, China;
| | - Xiaojing Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
- Correspondence: ; Tel.: +86-531-8836-4464
| |
Collapse
|
14
|
Li K, Qian J, Wang P, Wang C, Lu B, Jin W, He X, Tang S, Zhang C, Gao P. Effects of aging and transformation of anatase and rutile TiO 2 nanoparticles on biological phosphorus removal in sequencing batch reactors and related toxic mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:123030. [PMID: 32492616 DOI: 10.1016/j.jhazmat.2020.123030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
The effect of nanomaterials aging, namely the transformation of comprehensive characteristics after experiencing real or complex environmental behaviors, on their ecotoxicology is still lacking. Moreover, the mechanisms by which NPs influence biological phosphorus (P) removal during sewage treatment require further elucidation. Therefore, we used both pristine and aged anatase (TiO2-A) and rutile (TiO2-R) NPs to investigate the mechanisms by which NPs affect P removal in a SBR. At 0.1 mg/L, the four types of NPs (pristine and aged) had no significant effect on sludge purification after acute (72-h) exposure under simulated sunlight. However, at 50 mg/L-regardless of the crystalline phase of the NPs-SOP and COD removal efficiency dropped steeply to approximately 42.2-82.4 % (p < 0.05) and 69.8-83.3 % (p < 0.05), respectively, especially in the pristine TiO2-NPs groups because of decrease of richness and diversity of genus level of PAOs and enzyme activity of both PPK and PPX, and the sluggish transformation of PHA and glycogen. Aging reduced the ability of NPs toxicity. The toxicity mechanisms of TiO2-NPs included lipid peroxidation and contact damage, or leakage from bacterial cytoplasmic membrane, which are closely related to photooxidation capacity and aqueous solution stability-i.e., nanoscale effects-and the impacts of aging or inclusion.
Collapse
Affiliation(s)
- Kun Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Wen Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Xixian He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Chao Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Pan Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
15
|
Zhang W, Liu S, Han D, He Z. Engineered nanoparticle-induced epigenetic changes: An important consideration in nanomedicine. Acta Biomater 2020; 117:93-107. [PMID: 32980543 DOI: 10.1016/j.actbio.2020.09.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
Engineered nanoparticles (ENPs) are now being applied across a range of disciplines, and as a result numerous studies have now assessed ENP-related bioeffects. Among them, ENP-induced epigenetic changes including DNA methylation, histone modifications, and miRNA-mediated regulation of gene expression have recently attracted attention. In this review, we describe the diversity of ENP-induced epigenetic changes, focusing on their interplay with related functional biological events, especially oxidative stress, MAPK pathway activation, and inflammation. In doing so, we highlight the underlying mechanisms and biological effects of ENP-induced epigenetic changes. We also summarize how high-throughput technologies have helped to uncover ENP-induced epigenetic changes. Finally, we discuss future perspectives and the challenges related to ENP-induced epigenetic changes that still need to be addressed.
Collapse
|
16
|
Fournier SB, D'Errico JN, Adler DS, Kollontzi S, Goedken MJ, Fabris L, Yurkow EJ, Stapleton PA. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part Fibre Toxicol 2020; 17:55. [PMID: 33099312 PMCID: PMC7585297 DOI: 10.1186/s12989-020-00385-9] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/15/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Plastic is everywhere. It is used in food packaging, storage containers, electronics, furniture, clothing, and common single-use disposable items. Microplastic and nanoplastic particulates are formed from bulk fragmentation and disintegration of plastic pollution. Plastic particulates have recently been detected in indoor air and remote atmospheric fallout. Due to their small size, microplastic and nanoplastic particulate in the atmosphere can be inhaled and may pose a risk for human health, specifically in susceptible populations. When inhaled, nanosized particles have been shown to translocate across pulmonary cell barriers to secondary organs, including the placenta. However, the potential for maternal-to-fetal translocation of nanosized-plastic particles and the impact of nanoplastic deposition or accumulation on fetal health remain unknown. In this study we investigated whether nanopolystyrene particles can cross the placental barrier and deposit in fetal tissues after maternal pulmonary exposure. RESULTS Pregnant Sprague Dawley rats were exposed to 20 nm rhodamine-labeled nanopolystyrene beads (2.64 × 1014 particles) via intratracheal instillation on gestational day (GD) 19. Twenty-four hours later on GD 20, maternal and fetal tissues were evaluated using fluorescent optical imaging. Fetal tissues were fixed for particle visualization with hyperspectral microscopy. Using isolated placental perfusion, a known concentration of nanopolystyrene was injected into the uterine artery. Maternal and fetal effluents were collected for 180 min and assessed for polystyrene particle concentration. Twenty-four hours after maternal exposure, fetal and placental weights were significantly lower (7 and 8%, respectively) compared with controls. Nanopolystyrene particles were detected in the maternal lung, heart, and spleen. Polystyrene nanoparticles were also observed in the placenta, fetal liver, lungs, heart, kidney, and brain suggesting maternal lung-to-fetal tissue nanoparticle translocation in late stage pregnancy. CONCLUSION These studies confirm that maternal pulmonary exposure to nanopolystyrene results in the translocation of plastic particles to placental and fetal tissues and renders the fetoplacental unit vulnerable to adverse effects. These data are vital to the understanding of plastic particulate toxicology and the developmental origins of health and disease.
Collapse
Affiliation(s)
- Sara B Fournier
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Jeanine N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Derek S Adler
- Molecular Imaging Center, Rutgers University, 41 Gordon Rd, Piscataway, NJ, 08854, USA
| | - Stamatina Kollontzi
- Department of Material Science and Engineering, School of Engineering, Rutgers University, 607 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Michael J Goedken
- Research Pathology Services, Rutgers University, Piscataway, NJ, 08854, USA
| | - Laura Fabris
- Department of Material Science and Engineering, School of Engineering, Rutgers University, 607 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Edward J Yurkow
- Molecular Imaging Center, Rutgers University, 41 Gordon Rd, Piscataway, NJ, 08854, USA
| | - Phoebe A Stapleton
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
17
|
Wu Y, Chen L, Chen F, Zou H, Wang Z. A key moment for TiO 2: Prenatal exposure to TiO 2 nanoparticles may inhibit the development of offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110911. [PMID: 32800246 DOI: 10.1016/j.ecoenv.2020.110911] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 05/12/2023]
Abstract
Applications of TiO2 nanoparticles (NPs) in food, personal care products and industries pose risks on human health, particularly on vulnerable populations including pregnant women and infants. Fetus, deficient in mature defense system, is more susceptible to NPs. Publications on the developmental toxicity of TiO2 NPs on the maternal-exposed progeny have emerged. This review presents the main exposure routes of TiO2 NPs during pregnancy, including skin penetration, ingestion and inhalation, followed by transport of TiO2 NPs to the placenta. Accumulation of TiO2 NPs in placenta may cause dysfunction in nutrient transfer. TiO2 NPs can be even transported to the fetus and generate toxicities, such as impairments of nervous and reproductive system, and failure in lung and cardiovascular development. The toxicities rely on the crystalline phase and concentrations, and the main mechanisms include the accumulation of excessive reactive oxygen species, DNA damage, and over-activation of signaling pathways such as MAPK which impairs neurotransmission. Finally, this review remarks on the significance for identifying TiO2 NPs dosage safe for both mother and fetus, and particular attention should be paid at TiO2 NPs concentrations safe for mother but toxic to fetus. Importantly, research on the epigenetic trans-generational inheritance of TiO2 NPs is urgently needed to provide insights for deciding the prospects of TiO2 NPs applications.
Collapse
Affiliation(s)
- Yi Wu
- Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Limei Chen
- Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
18
|
Han B, Pei Z, Shi L, Wang Q, Li C, Zhang B, Su X, Zhang N, Zhou L, Zhao B, Niu Y, Zhang R. TiO 2 Nanoparticles Caused DNA Damage in Lung and Extra-Pulmonary Organs Through ROS-Activated FOXO3a Signaling Pathway After Intratracheal Administration in Rats. Int J Nanomedicine 2020; 15:6279-6294. [PMID: 32904047 PMCID: PMC7449758 DOI: 10.2147/ijn.s254969] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/17/2020] [Indexed: 01/01/2023] Open
Abstract
Introduction Because of the increased production and application of manufactured Nano-TiO2 in the past several years, it is important to investigate its potential hazards. TiO2 is classified by IARC as a possible human carcinogen; however, the potential mechanism of carcinogenesis has not been studied clearly. The present study aimed to investigate the mechanism of DNA damage in rat lung and extra-pulmonary organs caused by TiO2nanoparticles. Methods In the present study, SD rats were exposed to Nano-TiO2 by intratracheal injection at a dose of 0, 0.2, or 1 g/kg body weight. The titanium levels in tissues were detected by ICP-MS. Western blot was used to detect the protein expression levels. The DNA damage and oxidative stress were detected by comet assay and ROS, MDA, SOD, and GSH-Px levels, respectively. Results The titanium levels of the 1 g/kg group on day-3 and day-7 were significantly increased in liver and kidney as well as significantly decreased in lung compared to day-1. ROS and MDA levels were statistically increased, whereas SOD and GSH-Px levels were statistically decreased in tissues of rats in dose-dependent manners after Nano-TiO2 treatment. PI3K, p-AKT/AKT, and p-FOXO3a/FOXO3a in lung, liver, and kidney activated in dose-dependent manners. The levels of DNA damage in liver, kidney, and lung in each Nano-TiO2 treatment group were significantly increased and could not recover within 7 days. GADD45α, ChK2, and XRCC1 in liver, kidney, and lung of rats exposed to Nano-TiO2 statistically increased, which triggered DNA repair. Conclusion This work demonstrated that Ti could deposit in lung and enter extra-pulmonary organs of rats and cause oxidative stress, then trigger DNA damage through activating the PI3K-AKT-FOXO3a pathway and then promoting GADD45α, ChK2, and XRCC1 to process the DNA repair.
Collapse
Affiliation(s)
- Bin Han
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Zijie Pei
- Department of Pathology, Medical School, China Three Gorge University, Yichang 443002, People's Republic of China
| | - Lei Shi
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Qian Wang
- Experimental Center, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Chen Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Boyuan Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Xuan Su
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Ning Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Lixiao Zhou
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Bo Zhao
- Department of Laboratory Diagnosis, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Yujie Niu
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China.,Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China.,Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, People's Republic of China
| |
Collapse
|
19
|
Kunovac A, Hathaway QA, Pinti MV, Taylor AD, Hollander JM. Cardiovascular adaptations to particle inhalation exposure: molecular mechanisms of the toxicology. Am J Physiol Heart Circ Physiol 2020; 319:H282-H305. [PMID: 32559138 PMCID: PMC7473925 DOI: 10.1152/ajpheart.00026.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Ambient air, occupational settings, and the use and distribution of consumer products all serve as conduits for toxicant exposure through inhalation. While the pulmonary system remains a primary target following inhalation exposure, cardiovascular implications are exceptionally culpable for increased morbidity and mortality. The epidemiological evidence for cardiovascular dysfunction resulting from acute or chronic inhalation exposure to particulate matter has been well documented, but the mechanisms driving the resulting disturbances remain elusive. In the current review, we aim to summarize the cellular and molecular mechanisms that are directly linked to cardiovascular health following exposure to a variety of inhaled toxicants. The purpose of this review is to provide a comprehensive overview of the biochemical changes in the cardiovascular system following particle inhalation exposure and to highlight potential biomarkers that exist across multiple exposure paradigms. We attempt to integrate these molecular signatures in an effort to provide direction for future investigations. This review also characterizes how molecular responses are modified in at-risk populations, specifically the impact of environmental exposure during critical windows of development. Maternal exposure to particulate matter during gestation can lead to fetal epigenetic reprogramming, resulting in long-term deficits to the cardiovascular system. In both direct and indirect (gestational) exposures, connecting the biochemical mechanisms with functional deficits outlines pathways that can be targeted for future therapeutic intervention. Ultimately, future investigations integrating "omics"-based approaches will better elucidate the mechanisms that are altered by xenobiotic inhalation exposure, identify biomarkers, and guide in clinical decision making.
Collapse
Affiliation(s)
- Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Mark V Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
20
|
Teng C, Jia J, Wang Z, Yan B. Oral Co-Exposures to zinc oxide nanoparticles and CdCl 2 induced maternal-fetal pollutant transfer and embryotoxicity by damaging placental barriers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109956. [PMID: 31761550 DOI: 10.1016/j.ecoenv.2019.109956] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Synergistic toxicity from multiple environmental pollutants poses greater threat to humans, especially to susceptible pregnant population. Here we evaluated combined toxicity from environment pollutants zinc oxide nanoparticles (ZnO NPs) and cadmium chloride (CdCl2) using two pregnant mice models established by oral administration during peri-implantation or organogenesis period. We found that exposures to combined pollutants only at organogenesis stage induced higher fetal deformity rate compared to co-exposures at peri-implantation stage. We further discovered that surface charge of ZnO NPs were modified after Cd2+ adsorption and the resulting nanoadducts caused more severe damages in placental barriers by causing shed endothelial cells and decreased expressions of tight junction proteins ZO1, occludin, claudin-4 and claudin-8. These cellular and molecular events enhanced maternal-fetal transfer of both pollutants and aggravated embryotoxicity. Our findings help elucidate synergistic embryotoxicity by nanoparticle/pollutant adducts and establish proper safety criteria for pregnant population in an era that nanotechnology-based products are widely used.
Collapse
Affiliation(s)
- Chuanfeng Teng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, PR China
| | - Zhiping Wang
- School of Public Health, Shandong University, Jinan, 250100, PR China.
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
21
|
Piedimonte G, Harford TJ. Effects of maternal-fetal transmission of viruses and other environmental agents on lung development. Pediatr Res 2020; 87:420-426. [PMID: 31698410 PMCID: PMC6962526 DOI: 10.1038/s41390-019-0657-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/26/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
New information is emerging concerning the influence of environmental factors (e.g., viruses, pollutants, nutrients) on fetal lung development and the prenatal modulation of cellular and molecular effectors essential to the control of airway function, which may shed new light into the pathogenesis of chronic obstructive pulmonary disease in childhood. In particular, recent studies have shown that nanosize biological and inorganic particles (e.g., respiratory viruses and pollutants) are able to spread hematogenously across the placenta from mother to offspring and interfere with lung development during critical "windows of opportunity". Furthermore, the nutritional balance of maternal diet during pregnancy can affect postnatal lung structure and function. Adverse prenatal environmental conditions can predispose to increased airway reactivity by inducing aberrant cholinergic innervation of the respiratory tract, enhanced contractility of the airway smooth muscle, and impaired innate immunity. Such changes can persist long after birth and might provide a plausible explanation to the development of chronic airway dysfunction in children, even in the absence of atopic predisposition. Insight into maternal-fetal interactions will contribute to a better understanding of the pathogenesis of highly prevalent diseases like bronchiolitis and asthma, and may lead to more precise preventative and therapeutic strategies, or new indications for existing ones.
Collapse
Affiliation(s)
| | - Terri J. Harford
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
22
|
Teng C, Jia J, Wang Z, Sharma VK, Yan B. Size-dependent maternal-fetal transfer and fetal developmental toxicity of ZnO nanoparticles after oral exposures in pregnant mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109439. [PMID: 31306920 DOI: 10.1016/j.ecoenv.2019.109439] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 05/22/2023]
Abstract
The widespread application of nanomaterial-based products has caused safety concerns worldwide, especially for susceptible pregnant population. Here, we revealed the effect of the size of ZnO nanoparticles (ZnO NPs) on placental and fetal developmental toxicities. We found that smaller ZnO NPs (13 nm) were able to cross both the intestinal barrier and the placental barrier to reach the fetus after oral exposure and caused fetal developmental toxicity. However, larger ZnO NPs (57 nm) and bulk ZnO particles were not able to cross these barriers and exert effects. We also discovered that the organogenesis period (GD7-GD16) was more vulnerable to such toxicity compared with the peri-implantation period (GD1-GD10) of pregnancy. This new understanding that smaller nanoparticles may pass through multiple biological barriers to induce toxicity in susceptible populations is crucial for the safeguarding of humans from the widespread application of nanoproducts. The discovery that the organogenesis stage in pregnancy is more vulnerable to nanotoxicity than the peri-implantation stage is provides valuable guidance for an improved protection strategy.
Collapse
Affiliation(s)
- Chuanfeng Teng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, PR China
| | - Zhiping Wang
- School of Public Health, Shandong University, Shandong University, Jinan, 250100, PR China
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
23
|
Dréno B, Alexis A, Chuberre B, Marinovich M. Safety of titanium dioxide nanoparticles in cosmetics. J Eur Acad Dermatol Venereol 2019; 33 Suppl 7:34-46. [DOI: 10.1111/jdv.15943] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Affiliation(s)
- B. Dréno
- Onco‐Dermatology Department CHU Nantes CRCINA University Nantes Nantes France
| | - A. Alexis
- Department of Dermatology Icahn School of Medicine at Mount Sinai New York NY USA
| | - B. Chuberre
- L'Oréal Cosmetique Active International Levallois‐Perret France
| | - M. Marinovich
- Department of Pharmacological and Biomolecular Sciences University of Milan Milan Italy
| |
Collapse
|
24
|
D'Errico JN, Doherty C, Fournier SB, Renkel N, Kallontzi S, Goedken M, Fabris L, Buckley B, Stapleton PA. Identification and quantification of gold engineered nanomaterials and impaired fluid transfer across the rat placenta via ex vivo perfusion. Biomed Pharmacother 2019; 117:109148. [PMID: 31347503 DOI: 10.1016/j.biopha.2019.109148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023] Open
Abstract
Development and implementation of products incorporating nanoparticles are occurring at a rapid pace. These particles are widely utilized in domestic, occupational, and biomedical applications. Currently, it is unclear if pregnant women will be able to take advantage of the potential biomedical nanoproducts out of concerns associated with placental transfer and fetal interactions. We recently developed an ex vivo rat placental perfusion technique to allow for the evaluation of xenobiotic transfer and placental physiological perturbations. In this study, a segment of the uterine horn and associated placenta was isolated from pregnant (gestational day 20) Sprague-Dawley rats and placed into a modified pressure myography vessel chamber. The proximal and distal ends of the maternal uterine artery and the vessels of the umbilical cord were cannulated, secured, and perfused with physiological salt solution (PSS). The proximal uterine artery and umbilical artery were pressurized at 80 mmHg and 50 mmHg, respectively, to allow countercurrent flow through the placenta. After equilibration, a single 900 μL bolus dose of 20 nm gold engineered nanoparticles (Au-ENM) was introduced into the proximal maternal artery. Distal uterine and umbilical vein effluents were collected every 10 min for 180 min to measure placental fluid dynamics. The quantification of Au-ENM transfer was conducted via inductively coupled plasma mass spectrometry (ICP-MS). Overall, we were able to measure Au-ENM within uterine and umbilical effluent with 20 min of material infusion. This novel methodology may be widely incorporated into studies of pharmacology, toxicology, and placental physiology.
Collapse
Affiliation(s)
- J N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - C Doherty
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - S B Fournier
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - N Renkel
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - S Kallontzi
- Department of Material Science and Engineering, School of Engineering, Rutgers University, 607 Taylor Rd., Piscataway, NJ 08854, USA
| | - M Goedken
- Research Pathology Services, Rutgers University, Piscataway, NJ 08854, USA
| | - L Fabris
- Department of Material Science and Engineering, School of Engineering, Rutgers University, 607 Taylor Rd., Piscataway, NJ 08854, USA
| | - B Buckley
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - P A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd., Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA.
| |
Collapse
|
25
|
Kunovac A, Hathaway QA, Pinti MV, Goldsmith WT, Durr AJ, Fink GK, Nurkiewicz TR, Hollander JM. ROS promote epigenetic remodeling and cardiac dysfunction in offspring following maternal engineered nanomaterial (ENM) exposure. Part Fibre Toxicol 2019; 16:24. [PMID: 31215478 PMCID: PMC6582485 DOI: 10.1186/s12989-019-0310-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nano-titanium dioxide (nano-TiO2) is amongst the most widely utilized engineered nanomaterials (ENMs). However, little is known regarding the consequences maternal ENM inhalation exposure has on growing progeny during gestation. ENM inhalation exposure has been reported to decrease mitochondrial bioenergetics and cardiac function, though the mechanisms responsible are poorly understood. Reactive oxygen species (ROS) are increased as a result of ENM inhalation exposure, but it is unclear whether they impact fetal reprogramming. The purpose of this study was to determine whether maternal ENM inhalation exposure influences progeny cardiac development and epigenomic remodeling. RESULTS Pregnant FVB dams were exposed to nano-TiO2 aerosols with a mass concentration of 12.09 ± 0.26 mg/m3 starting at gestational day five (GD 5), for 6 h over 6 non-consecutive days. Aerosol size distribution measurements indicated an aerodynamic count median diameter (CMD) of 156 nm with a geometric standard deviation (GSD) of 1.70. Echocardiographic imaging was used to assess cardiac function in maternal, fetal (GD 15), and young adult (11 weeks) animals. Electron transport chain (ETC) complex activities, mitochondrial size, complexity, and respiration were evaluated, along with 5-methylcytosine, Dnmt1 protein expression, and Hif1α activity. Cardiac functional analyses revealed a 43% increase in left ventricular mass and 25% decrease in cardiac output (fetal), with an 18% decrease in fractional shortening (young adult). In fetal pups, hydrogen peroxide (H2O2) levels were significantly increased (~ 10 fold) with a subsequent decrease in expression of the antioxidant enzyme, phospholipid hydroperoxide glutathione peroxidase (GPx4). ETC complex activity IV was decreased by 68 and 46% in fetal and young adult cardiac mitochondria, respectively. DNA methylation was significantly increased in fetal pups following exposure, along with increased Hif1α activity and Dnmt1 protein expression. Mitochondrial ultrastructure, including increased size, was observed at both fetal and young adult stages following maternal exposure. CONCLUSIONS Maternal inhalation exposure to nano-TiO2 results in adverse effects on cardiac function that are associated with increased H2O2 levels and dysregulation of the Hif1α/Dnmt1 regulatory axis in fetal offspring. Our findings suggest a distinct interplay between ROS and epigenetic remodeling that leads to sustained cardiac contractile dysfunction in growing and young adult offspring following maternal ENM inhalation exposure.
Collapse
Affiliation(s)
- Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV 26506 USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV USA
| | - Quincy A. Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV 26506 USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV USA
| | - Mark V. Pinti
- West Virginia University School of Pharmacy, Morgantown, WV USA
| | - William T. Goldsmith
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV USA
- Department of Physiology, Pharmacology, Morgantown, WV USA
| | - Andrya J. Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV 26506 USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV USA
| | - Garrett K. Fink
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV 26506 USA
| | - Timothy R. Nurkiewicz
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV USA
- Department of Physiology, Pharmacology, Morgantown, WV USA
| | - John M. Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV 26506 USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV USA
| |
Collapse
|
26
|
Hathaway QA, Roth SM, Pinti MV, Sprando DC, Kunovac A, Durr AJ, Cook CC, Fink GK, Cheuvront TB, Grossman JH, Aljahli GA, Taylor AD, Giromini AP, Allen JL, Hollander JM. Machine-learning to stratify diabetic patients using novel cardiac biomarkers and integrative genomics. Cardiovasc Diabetol 2019; 18:78. [PMID: 31185988 PMCID: PMC6560734 DOI: 10.1186/s12933-019-0879-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Diabetes mellitus is a chronic disease that impacts an increasing percentage of people each year. Among its comorbidities, diabetics are two to four times more likely to develop cardiovascular diseases. While HbA1c remains the primary diagnostic for diabetics, its ability to predict long-term, health outcomes across diverse demographics, ethnic groups, and at a personalized level are limited. The purpose of this study was to provide a model for precision medicine through the implementation of machine-learning algorithms using multiple cardiac biomarkers as a means for predicting diabetes mellitus development. METHODS Right atrial appendages from 50 patients, 30 non-diabetic and 20 type 2 diabetic, were procured from the WVU Ruby Memorial Hospital. Machine-learning was applied to physiological, biochemical, and sequencing data for each patient. Supervised learning implementing SHapley Additive exPlanations (SHAP) allowed binary (no diabetes or type 2 diabetes) and multiple classification (no diabetes, prediabetes, and type 2 diabetes) of the patient cohort with and without the inclusion of HbA1c levels. Findings were validated through Logistic Regression (LR), Linear Discriminant Analysis (LDA), Gaussian Naïve Bayes (NB), Support Vector Machine (SVM), and Classification and Regression Tree (CART) models with tenfold cross validation. RESULTS Total nuclear methylation and hydroxymethylation were highly correlated to diabetic status, with nuclear methylation and mitochondrial electron transport chain (ETC) activities achieving superior testing accuracies in the predictive model (~ 84% testing, binary). Mitochondrial DNA SNPs found in the D-Loop region (SNP-73G, -16126C, and -16362C) were highly associated with diabetes mellitus. The CpG island of transcription factor A, mitochondrial (TFAM) revealed CpG24 (chr10:58385262, P = 0.003) and CpG29 (chr10:58385324, P = 0.001) as markers correlating with diabetic progression. When combining the most predictive factors from each set, total nuclear methylation and CpG24 methylation were the best diagnostic measures in both binary and multiple classification sets. CONCLUSIONS Using machine-learning, we were able to identify novel as well as the most relevant biomarkers associated with type 2 diabetes mellitus by integrating physiological, biochemical, and sequencing datasets. Ultimately, this approach may be used as a guideline for future investigations into disease pathogenesis and novel biomarker discovery.
Collapse
Affiliation(s)
- Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV, 26505, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, 26505, USA
| | - Skyler M Roth
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26505, USA
| | - Mark V Pinti
- West Virginia University School of Pharmacy, Morgantown, WV, 26505, USA
| | - Daniel C Sprando
- West Virginia University School of Medicine, Morgantown, WV, 26505, USA
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV, 26505, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, 26505, USA
| | - Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV, 26505, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, 26505, USA
| | - Chris C Cook
- Cardiovascular and Thoracic Surgery, West Virginia University School of Medicine, Morgantown, WV, 26505, USA
| | - Garrett K Fink
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Tristen B Cheuvront
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26505, USA
| | - Jasmine H Grossman
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26505, USA
| | - Ghadah A Aljahli
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26505, USA
| | - Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV, 26505, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, 26505, USA
| | - Andrew P Giromini
- West Virginia University School of Medicine, Morgantown, WV, 26505, USA
| | - Jessica L Allen
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, 26505, USA
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, PO Box 9227, 1 Medical Center Drive, Morgantown, WV, 26505, USA.
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, 26505, USA.
| |
Collapse
|
27
|
Abukabda AB, Bowdridge EC, McBride CR, Batchelor TP, Goldsmith WT, Garner KL, Friend S, Nurkiewicz TR. Maternal titanium dioxide nanomaterial inhalation exposure compromises placental hemodynamics. Toxicol Appl Pharmacol 2019; 367:51-61. [PMID: 30711534 DOI: 10.1016/j.taap.2019.01.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/12/2023]
Abstract
The fetal consequences of gestational engineered nanomaterial (ENM) exposure are unclear. The placenta is a barrier protecting the fetus and allowing transfer of substances from the maternal circulation. The purpose of this study was to determine the effects of maternal pulmonary titanium dioxide nanoparticle (nano-TiO2) exposure on the placenta and umbilical vascular reactivity. We hypothesized that pulmonary nano-TiO2 inhalation exposure increases placental vascular resistance and impairs umbilical vascular responsiveness. Pregnant Sprague-Dawley rats were exposed via whole-body inhalation to nano-TiO2 with an aerodynamic diameter of 188 ± 0.36 nm. On gestational day (GD) 11, rats began inhalation exposures (6 h/exposure). Daily lung deposition was 87.5 ± 2.7 μg. Animals were exposed for 6 days for a cumulative lung burden of 525 ± 16 μg. On GD 20, placentas, umbilical artery and vein were isolated, cannulated, and treated with acetylcholine (ACh), angiotensin II (ANGII), S-nitroso-N-acetyl-DL-penicillamine (SNAP), or calcium-free superfusate (Ca2+-free). Mean outflow pressure was measured in placental units. ACh increased outflow pressure to 53 ± 5 mmHg in sham-controls but only to 35 ± 4 mmHg in exposed subjects. ANGII decreased outflow pressure in placentas from exposed animals (17 ± 7 mmHg) compared to sham-controls (31 ± 6 mmHg). Ca2+-free superfusate yielded maximal outflow pressures in sham-control (63 ± 5 mmHg) and exposed (30 ± 10 mmHg) rats. Umbilical artery endothelium-dependent dilation was decreased in nano-TiO2 exposed fetuses (30 ± 9%) compared to sham-controls (58 ± 6%), but ANGII sensitivity was increased (-79 ± 20% vs -36 ± 10%). These results indicate that maternal gestational pulmonary nano-TiO2 exposure increases placental vascular resistance and impairs umbilical vascular reactivity.
Collapse
Affiliation(s)
- Alaeddin B Abukabda
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA; Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Elizabeth C Bowdridge
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA; Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Carroll R McBride
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA; Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Thomas P Batchelor
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA; Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - William T Goldsmith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA; Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Krista L Garner
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA; Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Sherri Friend
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA; Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA; National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| |
Collapse
|
28
|
Hathaway QA, Durr AJ, Shepherd DL, Pinti MV, Brandebura AN, Nichols CE, Kunovac A, Goldsmith WT, Friend SA, Abukabda AB, Fink GK, Nurkiewicz TR, Hollander JM. miRNA-378a as a key regulator of cardiovascular health following engineered nanomaterial inhalation exposure. Nanotoxicology 2019; 13:644-663. [PMID: 30704319 DOI: 10.1080/17435390.2019.1570372] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nano-titanium dioxide (nano-TiO2), though one of the most utilized and produced engineered nanomaterials (ENMs), diminishes cardiovascular function through dysregulation of metabolism and mitochondrial bioenergetics following inhalation exposure. The molecular mechanisms governing this cardiac dysfunction remain largely unknown. The purpose of this study was to elucidate molecular mediators that connect nano-TiO2 exposure with impaired cardiac function. Specifically, we were interested in the role of microRNA (miRNA) expression in the resulting dysfunction. Not only are miRNA global regulators of gene expression, but also miRNA-based therapeutics provide a realistic treatment modality. Wild type and MiRNA-378a knockout mice were exposed to nano-TiO2 with an aerodynamic diameter of 182 ± 1.70 nm and a mass concentration of 11.09 mg/m3 for 4 h. Cardiac function, utilizing the Vevo 2100 Imaging System, electron transport chain complex activities, and mitochondrial respiration assessed cardiac and mitochondrial function. Immunoblotting and qPCR examined molecular targets of miRNA-378a. MiRNA-378a-3p expression was increased 48 h post inhalation exposure to nano-TiO2. Knockout of miRNA-378a preserved cardiac function following exposure as revealed by preserved E/A ratio and E/SR ratio. In knockout animals, complex I, III, and IV activities (∼2- to 6-fold) and fatty acid respiration (∼5-fold) were significantly increased. MiRNA-378a regulated proteins involved in mitochondrial fusion, transcription, and fatty acid metabolism. MiRNA-378a-3p acts as a negative regulator of mitochondrial metabolic and biogenesis pathways. MiRNA-378a knockout animals provide a protective effect against nano-TiO2 inhalation exposure by altering mitochondrial structure and function. This is the first study to manipulate a miRNA to attenuate the effects of ENM exposure.
Collapse
Affiliation(s)
- Quincy A Hathaway
- a Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA.,b Mitochondria, Metabolism & Bioenergetics Working Group , West Virginia University School of Medicine , Morgantown , WV , USA.,c Toxicology Working Group , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Andrya J Durr
- a Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA.,b Mitochondria, Metabolism & Bioenergetics Working Group , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Danielle L Shepherd
- a Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA.,b Mitochondria, Metabolism & Bioenergetics Working Group , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Mark V Pinti
- a Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA.,b Mitochondria, Metabolism & Bioenergetics Working Group , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Ashley N Brandebura
- d Rockefeller Neuroscience Institute , West Virginia University School of Medicine , Morgantown , WV , USA.,e Department of Biochemistry , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Cody E Nichols
- f Immunity, Inflammation, and Disease Laboratory , National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - Amina Kunovac
- a Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA.,b Mitochondria, Metabolism & Bioenergetics Working Group , West Virginia University School of Medicine , Morgantown , WV , USA
| | - William T Goldsmith
- c Toxicology Working Group , West Virginia University School of Medicine , Morgantown , WV , USA.,g Department of Physiology, Pharmacology & Neuroscience , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Sherri A Friend
- h CDC , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - Alaeddin B Abukabda
- c Toxicology Working Group , West Virginia University School of Medicine , Morgantown , WV , USA.,g Department of Physiology, Pharmacology & Neuroscience , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Garrett K Fink
- a Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Timothy R Nurkiewicz
- c Toxicology Working Group , West Virginia University School of Medicine , Morgantown , WV , USA.,g Department of Physiology, Pharmacology & Neuroscience , West Virginia University School of Medicine , Morgantown , WV , USA
| | - John M Hollander
- a Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA.,b Mitochondria, Metabolism & Bioenergetics Working Group , West Virginia University School of Medicine , Morgantown , WV , USA
| |
Collapse
|
29
|
D'Errico JN, Stapleton PA. Developmental onset of cardiovascular disease-Could the proof be in the placenta? Microcirculation 2019; 26:e12526. [PMID: 30597690 PMCID: PMC6599488 DOI: 10.1111/micc.12526] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/03/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
The Barker Hypothesis states change to the maternal environment may have significant impacts on fetal development, setting the stage for adult disease to occur. The development of the maternofetal vasculature during implantation and maintenance during pregnancy is extremely precise, yet dynamic. Delays or dysfunction in the orchestration of anatomical remodeling, maintenance of blood pressure, or responsiveness to metabolic demand may have severe consequences to the developing fetus. While these intermissions may not be fatal to the developing fetus, an interruption, reduction, or an inability to meet fetal demand of blood flow during crucial stages of development may predispose young to disease later in life. Maternal inability to meet fetal demand can be attributed to improper placental development and vascular support through morphological change or physiological function will significantly limit nutrient delivery and waste exchange to the developing fetus. Therefore, we present an overview of the uteroplacental vascular network, maternal cardiovascular adaptations that occur during pregnancy, placental blood flow, and common maternal comorbidities and/or exposures that may perturb maternal homeostasis and affect fetal development. Overall, we examine uterine microvasculature pathophysiology contributing to a hostile gestational environment and fetal predisposition to disease as it relates to the Barker Hypothesis.
Collapse
Affiliation(s)
- Jeanine N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey.,Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey
| |
Collapse
|
30
|
Stapleton P. Should Perturbation of the Preconceptive Environment be Considered a Risk Factor for the Development of Cardiovascular Disease Later in Life? J Am Heart Assoc 2018; 7:e011249. [PMID: 30561259 PMCID: PMC6405617 DOI: 10.1161/jaha.118.011249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
See Article by Tanwar et al
Collapse
Affiliation(s)
- Phoebe Stapleton
- 1 Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy Rutgers University Piscataway NJ.,2 Environmental and Occupational Health Sciences Institute Piscataway NJ
| |
Collapse
|
31
|
Abukabda AB, McBride CR, Batchelor TP, Goldsmith WT, Bowdridge EC, Garner KL, Friend S, Nurkiewicz TR. Group II innate lymphoid cells and microvascular dysfunction from pulmonary titanium dioxide nanoparticle exposure. Part Fibre Toxicol 2018; 15:43. [PMID: 30413212 PMCID: PMC6230229 DOI: 10.1186/s12989-018-0280-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/24/2018] [Indexed: 01/16/2023] Open
Abstract
Background The cardiovascular effects of pulmonary exposure to engineered nanomaterials (ENM) are poorly understood, and the reproductive consequences are even less understood. Inflammation remains the most frequently explored mechanism of ENM toxicity. However, the key mediators and steps between lung exposure and uterine health remain to be fully defined. The purpose of this study was to determine the uterine inflammatory and vascular effects of pulmonary exposure to titanium dioxide nanoparticles (nano-TiO2). We hypothesized that pulmonary nano-TiO2 exposure initiates a Th2 inflammatory response mediated by Group II innate lymphoid cells (ILC2), which may be associated with an impairment in uterine microvascular reactivity. Methods Female, virgin, Sprague-Dawley rats (8–12 weeks) were exposed to 100 μg of nano-TiO2 via intratracheal instillation 24 h prior to microvascular assessments. Serial blood samples were obtained at 0, 1, 2 and 4 h post-exposure for multiplex cytokine analysis. ILC2 numbers in the lungs were determined. ILC2s were isolated and phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) levels were measured. Pressure myography was used to assess vascular reactivity of isolated radial arterioles. Results Pulmonary nano-TiO2 exposure was associated with an increase in IL-1ß, 4, 5 and 13 and TNF- α 4 h post-exposure, indicative of an innate Th2 inflammatory response. ILC2 numbers were significantly increased in lungs from exposed animals (1.66 ± 0.19%) compared to controls (0.19 ± 0.22%). Phosphorylation of the transactivation domain (Ser-468) of NF-κB in isolated ILC2 and IL-33 in lung epithelial cells were significantly increased (126.8 ± 4.3% and 137 ± 11% of controls respectively) by nano-TiO2 exposure. Lastly, radial endothelium-dependent arteriolar reactivity was significantly impaired (27 ± 12%), while endothelium-independent dilation (7 ± 14%) and α-adrenergic sensitivity (8 ± 2%) were not altered compared to control levels. Treatment with an anti- IL-33 antibody (1 mg/kg) 30 min prior to nano-TiO2 exposure resulted in a significant improvement in endothelium-dependent dilation and a decreased level of IL-33 in both plasma and bronchoalveolar lavage fluid. Conclusions These results provide evidence that the uterine microvascular dysfunction that follows pulmonary ENM exposure may be initiated via activation of lung-resident ILC2 and subsequent systemic Th2-dependent inflammation. Electronic supplementary material The online version of this article (10.1186/s12989-018-0280-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alaeddin Bashir Abukabda
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center - West Virginia University, Morgantown, WV, 26505-9229, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Carroll Rolland McBride
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center - West Virginia University, Morgantown, WV, 26505-9229, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Thomas Paul Batchelor
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center - West Virginia University, Morgantown, WV, 26505-9229, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - William Travis Goldsmith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center - West Virginia University, Morgantown, WV, 26505-9229, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Elizabeth Compton Bowdridge
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center - West Virginia University, Morgantown, WV, 26505-9229, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Krista Lee Garner
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center - West Virginia University, Morgantown, WV, 26505-9229, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Sherri Friend
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Timothy Robert Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center - West Virginia University, Morgantown, WV, 26505-9229, USA. .,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA. .,National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| |
Collapse
|
32
|
Fournier SB, D'Errico JN, Stapleton PA. Engineered nanomaterial applications in perinatal therapeutics. Pharmacol Res 2018; 130:36-43. [PMID: 29477479 PMCID: PMC5965276 DOI: 10.1016/j.phrs.2018.02.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 02/07/2023]
Abstract
Engineered nanomaterials (ENM) are widely used in commercial, domestic, and more recently biomedical applications. While the majority of exposures to ENM are unintentional, biomedical platforms are being evaluated for use in individualized and/or tissue-targeted therapies. Treatments are often avoided during prenatal periods to reduce adverse effects on the developing fetus. The placenta is central to maternal-fetal medicine. Perturbation of placental functions can limit transfer of necessary nutrients, alter production of hormones needed during pregnancy, or allow undesired passage of xenobiotics to the developing fetus. The development of therapeutics to target specific maternal, placental, or fetal tissues would be especially important to reduce or circumvent toxicities. Therefore, this review will discuss the potential use of ENM in perinatal medicine, the applicable physiochemical properties of ENM in therapeutic use, and current methodologies of ENM testing in perinatal medicine, and identify maternal, fetal, and offspring concerns associated with ENM exposure during gestation. As potential nanoparticle-based therapies continue to develop, so does the need for thorough consideration and evaluation for use in perinatal medicine.
Collapse
Affiliation(s)
- S B Fournier
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - J N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - P A Stapleton
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA; Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd., Piscataway, NJ 08854, USA.
| |
Collapse
|
33
|
Stapleton PA, McBride CR, Yi J, Abukabda AB, Nurkiewicz TR. Estrous cycle-dependent modulation of in vivo microvascular dysfunction after nanomaterial inhalation. Reprod Toxicol 2018; 78:20-28. [PMID: 29545171 PMCID: PMC6034709 DOI: 10.1016/j.reprotox.2018.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/08/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022]
Abstract
Preconceptive health encompasses male and female reproductive capability. In females, this takes into account each of the stages of the estrous cycle. Microvascular reactivity varies throughout the estrous cycle in response to hormonal changes and in preparation for pregnancy. Microvascular alterations in response to engineered nanomaterial (ENM) exposure have been described within 24-h of inhalation; however, the impact upon the uterine vasculature at differing estrous stages and at late-stage pregnancy is unclear. Female Sprague Dawley (SD) rats (virgin and late stage pregnancy [GD 19]) were exposed to nano-TiO aerosols (173.2 ± 6.4 nm, 10.2 ± 0.46 mg/m3, 5 h) 24-h prior to experimentation leading to a single calculated deposition of 42.2 ± 1.9 µg nano- TiO2 (exposed) or 0µg (control). Animals were anesthetized, estrous status verified, and prepared for in situ assessment of leukocyte trafficking and vascular function by means of intravital microscopy, Uterine basal arteriolar reactivity was stimulated using iontophoretically applied chemicals: acetylcholine (ACh, 0.025 M; 20, 40, 100, 200 nA), sodium nitroprusside (SNP, 0.05 M; 20, 40, 100 nA), phenylephrine (PE, 0.05 M; 20, 40, 100 nA). Finally, adenosine (ADO, 10−4 M) was superfused over the tissue to identify maximum diameter. In situ vessel reactivity after exposure was significantly blunted based on estrous stage, but not at late-stage pregnancy. Local uterine venular leukocyte trafficking and systemic inflammatory markers were also significantly affected during preparatory (proestrus), fertile (estrus), and infertile (diestrus) periods after ENM inhalation. Overall, these deficits in reactivity and increased inflammatory activity may impair female fertility after ENM exposure.
Collapse
Affiliation(s)
- P A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA.
| | - C R McBride
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University, Morgantown, WV, USA; Toxicology Working Group, West Virginia University, Morgantown, WV, USA
| | - J Yi
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University, Morgantown, WV, USA
| | - A B Abukabda
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University, Morgantown, WV, USA; Toxicology Working Group, West Virginia University, Morgantown, WV, USA
| | - T R Nurkiewicz
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University, Morgantown, WV, USA; Toxicology Working Group, West Virginia University, Morgantown, WV, USA
| |
Collapse
|