1
|
Wang J, Yin J, Peng D, Zhang X, Shi Z, Li W, Shi Y, Sun M, Jiang N, Cheng B, Meng X, Liu R. 4-Nitrophenol at environmentally relevant concentrations mediates reproductive toxicity in Caenorhabditis elegans via metabolic disorders-induced estrogen signaling pathway. J Environ Sci (China) 2025; 147:244-258. [PMID: 39003044 DOI: 10.1016/j.jes.2023.09.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 07/15/2024]
Abstract
4-Nitrophenol (4-NP), as a toxic and refractory pollutant, has generated significant concern due to its adverse effects. However, the potential toxic effects and mechanism remained unclear. In this study, the reproduction, development, locomotion and reactive oxygen species (ROS) production of Caenorhabditis elegans were investigated to evaluate the 4-NP toxicity. We used metabolomics to assess the potential damage mechanisms. The role of metabolites in mediating the relationship between 4-NP and phenotypes was examined by correlation and mediation analysis. 4-NP (8 ng/L and 8 µg/L) caused significant reduction of brood size, ovulation rate, total germ cells numbers, head thrashes and body bends, and an increase in ROS. However, the oosperm numbers in uterus, body length and body width were decreased in 8 µg/L. Moreover, 36 differential metabolites were enriched in the significant metabolic pathways, including lysine biosynthesis, β-alanine metabolism, tryptophan metabolism, pentose phosphate pathway, pentose and glucuronate interconversions, amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism, galactose metabolism, propanoate metabolism, glycerolipid metabolism, and estrogen signaling pathway. The mechanism of 4-NP toxicity was that oxidative stress caused by the perturbation of amino acid, which had effects on energy metabolism through disturbing carbohydrate and lipid metabolism, and finally affected the estrogen signaling pathway to exert toxic effects. Moreover, correlation and mediation analysis showed glycerol-3P, glucosamine-6P, glucosamine-1P, UDP-galactose, L-aspartic acid, and uracil were potential markers for the reproduction and glucose-1,6P2 for developmental toxicity. The results provided insight into the pathways involved in the toxic effects caused by 4-NP and developed potential biomarkers to evaluate 4-NP toxicity.
Collapse
Affiliation(s)
- Jia Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiechen Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Danhong Peng
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiaoqian Zhang
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215002, China
| | - Zhouhong Shi
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215002, China
| | - Weixi Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yingchi Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Beijing Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xingchen Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
2
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Zelei T, Vokó Z, Németh B, Petykó Z, Banerjee G, Sikirica V. Survival of propionic acidemia patients with liver transplant. Mol Genet Metab Rep 2024; 40:101093. [PMID: 38846517 PMCID: PMC11154694 DOI: 10.1016/j.ymgmr.2024.101093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
Propionic acidemia (PA) is a rare metabolic disorder affecting amino acid metabolism. Liver transplantation improves some outcomes, but the impact on long-term survival remains unclear. A systematic literature review and survival analysis, identifying 94 PA patients who underwent transplantation, revealed a survival probability of 62% at age 33; while median survival was estimated at 40 years. These findings highlight a substantial survival deficit of PA patients compared to the general population despite liver transplantation.
Collapse
Affiliation(s)
- Tamás Zelei
- Syreon Research Institute, Budapest, Hungary
| | - Zoltán Vokó
- Syreon Research Institute, Budapest, Hungary
- Center for Health Technology Assessment, Semmelweis University, Budapest, Hungary
| | | | - Zsuzsanna Petykó
- Syreon Research Institute, Budapest, Hungary
- Center for Health Technology Assessment, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
4
|
Sikirica V, Schwartz EJ, Vockley J, Stagni K, Bellenger MA, Banerjee G, Durgam N, Moshkovich O. Development of a signs and symptoms outcome measure for caregivers of patients with methylmalonic acidemia and propionic acidemia (MMAPAQ). Mol Genet Metab 2024; 143:108577. [PMID: 39303317 DOI: 10.1016/j.ymgme.2024.108577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND AND OBJECTIVE Methylmalonic acidemia (MMA) and propionic acidemia (PA) are rare inborn errors of metabolism with shared signs and symptoms that are associated with significant morbidity and mortality. No disease-specific clinical outcomes assessment instruments for MMA and/or PA currently exist to capture the patient perspective in clinical trials. Because patients with these conditions are generally young and have cognitive impairments, an observer-reported outcome (ObsRO) instrument is crucial. We report results from qualitative research supporting development of the Methylmalonic Acidemia and Propionic Acidemia Questionnaire (MMAPAQ), a signs and symptoms ObsRO measure for caregivers of patients with MMA and/or PA. METHODS Concept elicitation (CE) interviews were conducted with 35 participants across 2 studies who were aged ≥18 years and caregivers of patients with a confirmed diagnosis of MMA or PA, and an additional 5 patients aged ≥6 years with MMA or PA in Study 1, to identify core signs/symptoms for inclusion in the MMAPAQ. All interviews were conducted in English. Study 2 included cognitive interviews (CI) with caregivers and clinical experts to further assess content validity. CE and a conceptual framework review were also conducted with clinical experts to further support findings. RESULTS A consistent set of signs/symptoms of MMA and PA were reported by eligible caregivers interviewed in study 1 (n = 21) and study 2 (n = 14), representing 11 patients with MMA and 20 with PA. Based on concepts reported in study 1, a draft instrument was constructed and compared with the Pediatric Quality of Life Inventory™ (PedsQL™) and Family Impact module, demonstrating face validity for measuring key signs/symptoms important to patients and caregivers. The PedsQL™ and Family Impact modules were preferred to assess patient and caregiver impacts. Two waves of CE and CIs were conducted in study 2, with wave 1 resulting in removal of 7 items and other revisions to improve clarity, and wave 2 resulting in modification of examples used for 2 items. The final instrument consisted of the following 7 items assessed over the past 7 days using a Likert-type response scale ranging from "never" to "very often": uncontrollable or involuntary movements, dehydration, rapid breathing at rest, appearing lethargic, appearing disinterested in eating, refusing to eat, and vomiting. CONCLUSIONS This study establishes the content validity of the MMAPAQ as the first ObsRO questionnaire for measuring core signs and symptoms of MMA and PA in clinical trials and community research. Scoring and psychometric measurement properties of the MMAPAQ will be established in future studies. The PedsQL™ was found to have face validity in measuring concepts that affect the MMA and PA patient populations and should also be considered for use in clinical trials in MMA and PA.
Collapse
Affiliation(s)
| | | | - Jerry Vockley
- University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.
| | - Kathy Stagni
- Organic Acidemia Association, Golden Valley, MN, USA
| | | | | | | | | |
Collapse
|
5
|
Silva MP, Raski CR, Charrow J, Baker JJ, Prada CE. Aminotransferase trends in propionic acidemia. Am J Med Genet A 2024; 194:e63659. [PMID: 38722054 DOI: 10.1002/ajmg.a.63659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 08/10/2024]
Abstract
Propionic acidemia is a metabolic condition with multiple serious acute and chronic presentations that require strict monitoring. Literature on liver function abnormalities in propionic acidemia is scarce, and the mechanism of liver impairment in this condition remains unclear. Currently, there is no indication for liver-function tests during follow-up and their clinical or prognostic utility is unknown. This study aimed to determine aminotransferase trends in individuals with propionic acidemia at a single institution. We retrospectively evaluated and classified the aminotransferases of 12 patients with propionic acidemia during hospital admissions and routine office visits. The present findings suggest that aminotransferase elevations are very common in this population and can persist beyond acute illness. During hospitalization events, aminotransferases were not a predictor of severity, duration of stay, and readmission within 1 month. Understanding aminotransferase trends in these patients will help clinicians make decisions in the acute setting and potentially in the follow-up of new therapies.
Collapse
Affiliation(s)
- Maria P Silva
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Carolyn R Raski
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joel Charrow
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joshua J Baker
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Carlos E Prada
- Division of Genetics, Genomics, and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
6
|
Minnee RC, Sakamoto S, Fukuda A, Uchida H, Hirukawa K, Honda M, Okumura S, Ito T, Yilmaz TU, Fang Y, Ikegami T, Lee KW, Kasahara M. Long-Term Outcomes of Living Donor Liver Transplantation for Methylmalonic Acidemia. Pediatr Transplant 2024; 28:e14834. [PMID: 39099301 DOI: 10.1111/petr.14834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/28/2024] [Accepted: 07/14/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Despite early diagnosis and medical interventions, patients with methylmalonic acidemia (MMA) suffer from multi-organ damage and recurrent metabolic decompensations. METHODS We conducted the largest retrospective multi-center cohort study so far, involving five transplant centers (NCCHD, KUH, KUHP, ATAK, and EMC), and identified all MMA patients (n = 38) undergoing LDLT in the past two decades. Our primary outcome was patient survival, and secondary outcomes included death-censored graft survival and posttransplant complications. RESULTS The overall 10-year patient survival and death-censored graft survival rates were 92% and 97%, respectively. Patients who underwent LDLT within 2 years of MMA onset showed significantly higher 10-year patient survival compared to those with an interval more than 2 years (100% vs. 81%, p = 0.038), although the death-censored graft survival were not statistically different (100% vs. 93%, p = 0.22). Over the long-term follow-up, 14 patients (37%) experienced intellectual disability, while two patients developed neurological complications, three patients experienced renal dysfunction, and one patient had biliary anastomotic stricture. The MMA level significantly decreased from 2218.5 mmol/L preoperative to 307.5 mmol/L postoperative (p = 0.038). CONCLUSIONS LDLT achieves favorable long-term patient and graft survival outcomes for MMA patients. While not resulting in complete cure, our findings support the consideration of early LDLT within 2 years of disease onset. This approach holds the potential to mitigate recurrent metabolic decompensations, and preserve the long-term renal function.
Collapse
Affiliation(s)
- Robert C Minnee
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus Medical Center, Erasmus MC Transplant Institute, Rotterdam, The Netherlands
| | - Seisuke Sakamoto
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Hajime Uchida
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kazuya Hirukawa
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Masaki Honda
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Shinya Okumura
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Ito
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tonguç U Yilmaz
- Department of Organ Transplantation, Atakent Hospital, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| | - Yitian Fang
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus Medical Center, Erasmus MC Transplant Institute, Rotterdam, The Netherlands
| | - Toru Ikegami
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Kwang W Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
7
|
Coughlan KA, Eybye M, Henderson N, DeAntonis CM, Frassetto A, Hanahoe E, Ketova T, Jacquinet E, Presnyak V, Jain R, Marshall J, Martini PGV. Improved therapeutic efficacy in two mouse models of methylmalonic acidemia (MMA) using a second-generation mRNA therapy. Mol Genet Metab 2024; 143:108560. [PMID: 39121792 DOI: 10.1016/j.ymgme.2024.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Isolated methylmalonic acidemia/aciduria (MMA) due to MMUT enzyme deficiency is an ultra-rare pediatric disease with high morbidity and mortality, with no approved disease-altering therapies. Previous publications showed that systemic treatment with a codon-optimized mRNA encoding wild-type human MMUT (MMUT) is a promising strategy for treatment of MMA. We developed a second-generation drug product, mRNA-3705, comprised of an mRNA encoding the MMUT enzyme formulated in a lipid nanoparticle (LNP) with incorporation of enhancements over the previous clinical candidate mRNA-3704. Both drug products produced functional MMUT in rat livers when dosed IV, and showed long-term safety and efficacy in two mouse models of MMA. mRNA-3705 produced 2.1-3.4-fold higher levels of hepatic MMUT protein expression than the first-generation drug product mRNA-3704 when given at an identical dose level, which resulted in greater and more sustained reductions in plasma methylmalonic acid. The data presented herein provide comprehensive preclinical pharmacology to support the clinical development of mRNA-3705.
Collapse
Affiliation(s)
| | | | | | | | | | - Erin Hanahoe
- Rare Diseases, Moderna, Inc., Cambridge, MA 02139, USA
| | | | | | | | - Ruchi Jain
- Rare Diseases, Moderna, Inc., Cambridge, MA 02139, USA
| | - John Marshall
- Rare Diseases, Moderna, Inc., Cambridge, MA 02139, USA
| | | |
Collapse
|
8
|
Zhuang W, Wang M, Lu M, Chen Z, Luo M, Lin W, Wang X. Dysregulation of cerebrospinal fluid metabolism profiles in spinal muscular atrophy patients: a case control study. Ital J Pediatr 2024; 50:154. [PMID: 39175089 PMCID: PMC11342544 DOI: 10.1186/s13052-024-01726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a neurodegenerative disorder. Although prior studies have investigated the metabolomes of SMA in various contexts, there is a gap in research on cerebrospinal fluid (CSF) metabolomics compared to healthy controls. CSF metabolomics can provide insights into central nervous system function and patient outcomes. This study aims to investigate CSF metabolite profiles in untreated SMA patients to enhance our understanding of SMA metabolic dysregulation. METHODS This case control study included 15 SMA patients and 14 control subjects. CSF samples were collected, and untargeted metabolomics was conducted to detect metabolites in SMA and control groups. RESULTS A total of 118 metabolites abundance were significantly changed between the SMA and control groups. Of those, 27 metabolites with variable importance for the projection (VIP) ≥ 1.5 were identified. The top 5 differential metabolites were N-acetylneuraminic acid (VIP = 2.38, Fold change = 0.43, P = 5.49 × 10-5), 2,3-dihydroxyindole (VIP = 2.33, Fold change = 0.39, P = 1.81 × 10-4), lumichrome (VIP = 2.30, Fold change = 0.48, P = 7.90 × 10-5), arachidic acid (VIP = 2.23, Fold change = 10.79, P = 6.50 × 10-6), and 10-hydroxydecanoic acid (VIP = 2.23, Fold change = 0.60, P = 1.44 × 10-4). Cluster analysis demonstrated that the differentially metabolites predominantly clustered within two main categories: protein and amino acid metabolism, and lipid metabolism. CONCLUSIONS The findings highlight the complexity of SMA, with widespread effects on multiple metabolic pathways, particularly in amino acid and lipid metabolism. N-acetylneuraminic acid may be a potential treatment for functional improvement in SMA. The exact mechanisms and potential therapeutic targets associated with metabolic dysregulation in SMA require further investigation.
Collapse
Affiliation(s)
- Wei Zhuang
- Department of Pharmacy, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Minying Wang
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Mei Lu
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhehui Chen
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Meifen Luo
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Wanlong Lin
- Department of Pharmacy, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.
| | - Xudong Wang
- Department of Xiamen Newborn Screening Center, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
9
|
Hu Z, Hu L, Zhang C, Yin X, Zhang Y, Fang K, Wu B, Huang X. Simultaneous determination of total homocysteine, methionine, methylmalonic acid and 2-methylcitric acid in dried blood spots by ultra-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1244:124253. [PMID: 39089063 DOI: 10.1016/j.jchromb.2024.124253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/10/2024] [Accepted: 07/20/2024] [Indexed: 08/03/2024]
Abstract
Homocysteine, methionine, methylmalonic acid and 2-methylcitric acid are clinically relevant markers in the methionine, propionate, and cobalamin metabolism. This study aimed to develop and validate an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for simultaneously determining total homocysteine, methionine, methylmalonic acid and 2-methylcitric acid in dried blood spots. Three 3.2 mm discs were punched from each calibrator, quality control, and sample dried blood spot into a 96-well U-plate. Each sample was spiked with internal standards and extracted. Then the supernatant was transferred to another 96-well U-plate. After nitrogen drying, the dried residues were reconstituted, centrifuged, and the resulting supernatant was transferred to another 96-well plate for analysis. The method was performed using UPLC-MS/MS within 3 min, validated according to guidance documents, and applied to 72 samples from confirmed patients with methionine, propionate, and cobalamin metabolism disorders. The UPLC-MS/MS method provided satisfactory separation of the four analytes. The R2 values were ≥ 0.9937 for all analytes. The recoveries ranged from 94.17 to 114.29 %, and the coefficients of variation for intraday and interday precision were 0.19 % to 5.23 % and 1.02 % to 6.89 %, respectively. No significant carry-over was detected for the four analytes, and most of confirmed samples exhibited biomarker patterns characteristic of the relevant disorders. A simple and fast UPLC-MS/MS method was successfully developed, validated, and applied to clinical samples for the simultaneous determination of total homocysteine, methionine, methylmalonic acid, and 2-methylcitric acid in dried blood spots.
Collapse
Affiliation(s)
- Zhenzhen Hu
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lingwei Hu
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chao Zhang
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaoshan Yin
- School of Health in Social Science, The University of Edinburg, United Kingdom
| | - Yu Zhang
- Zhejiang BiosanBiochemical Technologies Co., Ltd., Hangzhou, China
| | - Kexin Fang
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Benqing Wu
- Department of Neonatology, Children's Medical Center, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
10
|
Beyoğlu D, Popov YV, Idle JR. The Metabolomic Footprint of Liver Fibrosis. Cells 2024; 13:1333. [PMID: 39195223 DOI: 10.3390/cells13161333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Both experimental and clinical liver fibrosis leave a metabolic footprint that can be uncovered and defined using metabolomic approaches. Metabolomics combines pattern recognition algorithms with analytical chemistry, in particular, 1H and 13C nuclear magnetic resonance spectroscopy (NMR), gas chromatography-mass spectrometry (GC-MS) and various liquid chromatography-mass spectrometry (LC-MS) platforms. The analysis of liver fibrosis by each of these methodologies is reviewed separately. Surprisingly, there was little general agreement between studies within each of these three groups and also between groups. The metabolomic footprint determined by NMR (two or more hits between studies) comprised elevated lactate, acetate, choline, 3-hydroxybutyrate, glucose, histidine, methionine, glutamine, phenylalanine, tyrosine and citrate. For GC-MS, succinate, fumarate, malate, ascorbate, glutamate, glycine, serine and, in agreement with NMR, glutamine, phenylalanine, tyrosine and citrate were delineated. For LC-MS, only β-muricholic acid, tryptophan, acylcarnitine, p-cresol, valine and, in agreement with NMR, phosphocholine were identified. The metabolomic footprint of liver fibrosis was upregulated as regards glutamine, phenylalanine, tyrosine, citrate and phosphocholine. Several investigators employed traditional Chinese medicine (TCM) treatments to reverse experimental liver fibrosis, and a commentary is given on the chemical constituents that may possess fibrolytic activity. It is proposed that molecular docking procedures using these TCM constituents may lead to novel therapies for liver fibrosis affecting at least one-in-twenty persons globally, for which there is currently no pharmaceutical cure. This in-depth review summarizes the relevant literature on metabolomics and its implications in addressing the clinical problem of liver fibrosis, cirrhosis and its sequelae.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| | - Yury V Popov
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jeffrey R Idle
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| |
Collapse
|
11
|
Jiang YZ, Zhou GP, Wei L, Qu W, Zeng ZG, Liu Y, Tan YL, Wang J, Zhu ZJ, Sun LY. Long-term clinical outcomes and health-related quality of life in patients with isolated methylmalonic acidemia after liver transplantation: experience from the largest cohort study in China. World J Pediatr 2024; 20:809-821. [PMID: 38190010 PMCID: PMC11402840 DOI: 10.1007/s12519-023-00780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Liver transplantation (LT) has been proposed as a viable treatment option for selected methylmalonic acidemia (MMA) patients. However, there are still controversies regarding the therapeutic value of LT for MMA. The systematic assessment of health-related quality of life (HRQoL)-targeted MMA children before and after LT is also undetermined. This study aimed to comprehensively assess the long-term impact of LT on MMA, including multiorgan sequelae and HRQoL in children and families. METHODS We retrospectively evaluated 15 isolated MMA patients undergoing LT at our institution between June 2013 and March 2022. Pre- and post-transplant data were compared, including metabolic profiles, neurologic consequences, growth parameters, and HRQoL. To further assess the characteristics of the HRQoL outcomes in MMA, we compared the results with those of children with biliary atresia (BA). RESULTS All patients had early onset MMA, and underwent LT at a mean age of 4.3 years. During 1.3-8.2 years of follow-up, the patient and graft survival rates were 100%. Metabolic stability was achieved in all patients with liberalized dietary protein intake. There was a significant overall improvement in height Z scores (P = 0.0047), and some preexisting neurological complications remained stable or even improved after LT. On the Pediatric Quality of Life Inventory (PedsQL™) generic core scales, the mean total, physical health, and psychosocial health scores improved significantly posttransplant (P < 0.05). In the family impact module, higher mean scores were noted for all subscales post-LT, especially family function and daily activities (P < 0.01). However, the total scores on the generic core scales and transplant module were significantly lower (Cohen's d = 0.57-1.17) when compared with BA recipients. In particular, social and school functioning (Cohen's d = 0.86-1.76), treatment anxiety, and communication (Cohen's d = 0.99-1.81) were far behind, with a large effect size. CONCLUSIONS This large single-center study of the mainland of China showed an overall favorable impact of LT on isolated MMA in terms of long-term survival, metabolic control, and HRQoL in children and families. The potential for persistent neurocognitive impairment and inherent metabolic fragility requires long-term special care. Video Abstract (MP4 153780 KB).
Collapse
Affiliation(s)
- Yi-Zhou Jiang
- Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 101 Lu Yuan Dong Road, Tong-Zhou District, Beijing, 110112, China
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pediatric Liver Transplantation, No. 101 Lu Yuan Dong Road, Tong-Zhou District, Capital Medical University, Beijing, 110112, China
| | - Guang-Peng Zhou
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pediatric Liver Transplantation, No. 101 Lu Yuan Dong Road, Tong-Zhou District, Capital Medical University, Beijing, 110112, China
| | - Lin Wei
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pediatric Liver Transplantation, No. 101 Lu Yuan Dong Road, Tong-Zhou District, Capital Medical University, Beijing, 110112, China
| | - Wei Qu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pediatric Liver Transplantation, No. 101 Lu Yuan Dong Road, Tong-Zhou District, Capital Medical University, Beijing, 110112, China
| | - Zhi-Gui Zeng
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pediatric Liver Transplantation, No. 101 Lu Yuan Dong Road, Tong-Zhou District, Capital Medical University, Beijing, 110112, China
| | - Ying Liu
- Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 101 Lu Yuan Dong Road, Tong-Zhou District, Beijing, 110112, China
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pediatric Liver Transplantation, No. 101 Lu Yuan Dong Road, Tong-Zhou District, Capital Medical University, Beijing, 110112, China
| | - Yu-Le Tan
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pediatric Liver Transplantation, No. 101 Lu Yuan Dong Road, Tong-Zhou District, Capital Medical University, Beijing, 110112, China
| | - Jun Wang
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Pediatric Liver Transplantation, No. 101 Lu Yuan Dong Road, Tong-Zhou District, Capital Medical University, Beijing, 110112, China
| | - Zhi-Jun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
- Clinical Center for Pediatric Liver Transplantation, No. 101 Lu Yuan Dong Road, Tong-Zhou District, Capital Medical University, Beijing, 110112, China.
| | - Li-Ying Sun
- Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 101 Lu Yuan Dong Road, Tong-Zhou District, Beijing, 110112, China.
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
- Clinical Center for Pediatric Liver Transplantation, No. 101 Lu Yuan Dong Road, Tong-Zhou District, Capital Medical University, Beijing, 110112, China.
| |
Collapse
|
12
|
Boland AC, Wind A, Alkhoujah M. Unusual Presentation of Propionic Acidemia Mimicking Botulism in an Infant: A Case Report and Literature Review. Cureus 2024; 16:e66870. [PMID: 39280525 PMCID: PMC11398609 DOI: 10.7759/cureus.66870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Propionic acidemia (PA) is a rare metabolic disorder stemming from genetic mutations, often causing hyperammonemia, acidosis, and basal ganglia issues. Its symptoms range from vomiting to neurological abnormalities, with severe cases presenting in neonates. Neurological complications including stroke-like episodes are common, requiring immediate attention. An eight-month-old boy with PA presented to the emergency department with respiratory distress, cough, and lethargy. Initial evaluation showed acidemia and elevated ammonia levels. He tested positive for rhinovirus and was diagnosed with acute viral bronchiolitis. While his respiratory symptoms improved, he developed neurological deficits, including hypotonia and weakness. Neurology consultations explored possible diagnoses such as botulism or acute inflammatory demyelinating polyneuropathy (AIDP). Imaging revealed basal ganglia abnormalities consistent with PA progression. Due to aspiration risk, he was transferred to the pediatric intensive care unit for supportive care. Despite unremarkable lumbar puncture and MRI results, new metabolic brain changes were noted, particularly in the basal ganglia. He was managed for weakness and feeding difficulties due to a metabolic stroke. After adjusting nutritional support and discussing long-term feeding options, he was discharged on day 29 with a nasogastric tube due to his inability to meet caloric goals orally. Neurological complications in PA, such as basal ganglia abnormalities and stroke-like episodes, are well-documented. Our case illustrates how an acute respiratory illness can obscure underlying neurological deficits, leading to delayed diagnosis. Symptoms resembling other conditions, such as descending hypotonia in our case, broaden the differential diagnosis to include botulism toxicity and AIDP. This report demonstrates the variety of clinical features patients with PA can present with and the importance of working up a metabolic crisis in addition to conditions with overlapping symptoms.
Collapse
Affiliation(s)
- Allison C Boland
- Orthopedic Surgery, Wayne State University School of Medicine, Detroit, USA
| | - Alexander Wind
- Pediatrics, Wayne State University School of Medicine, Detroit, USA
| | | |
Collapse
|
13
|
Ling S, Wu S, Shuai R, Yu Y, Qiu W, Wei H, Yang C, Xu P, Zou H, Feng J, Niu T, Hu H, Zhang H, Liang L, Wang Y, Chen T, Xu F, Gu X, Han L. Clinical outcomes of patients with mut-type methylmalonic acidemia identified through expanded newborn screening in China. Hum Genomics 2024; 18:84. [PMID: 39075538 PMCID: PMC11288086 DOI: 10.1186/s40246-024-00646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Isolated methylmalonic acidemia, an autosomal recessive disorder of propionate metabolism, is usually caused by mutations in the methylmalonyl-CoA mutase gene (mut-type). Because no universal consensus was made on whether mut-type methylmalonic acidemia should be included in newborn screening (NBS), we aimed to compare the outcome of this disorder detected by NBS with that detected clinically and investigate the influence of NBS on the disease course. DESIGN & METHODS In this study, 168 patients with mut-type methylmalonic acidemia diagnosed by NBS were compared to 210 patients diagnosed after disease onset while NBS was not performed. Clinical data of these patients from 7 metabolic centers in China were analyzed retrospectively, including initial manifestations, biochemical metabolites, the responsiveness of vitamin B12 therapy, and gene variation, to explore different factors on the long-term outcome. RESULTS By comparison of the clinically-diagnosed patients, NBS-detected patients showed younger age at diagnosis, less incidence of disease onset, better responsiveness of vitamin B12, younger age at start of treatment, lower levels of biochemical features before and after treatment, and better long-term prognosis (P < 0.01). Onset of disease, blood C3/C2 ratio and unresponsiveness of vitamin B12 were more positively associated with poor outcomes of patients whether identified by NBS. Moreover, the factors above as well as older age at start of treatment were positively associated with mortality. CONCLUSIONS This research highly demonstrated NBS could prevent major disease-related events and allow an earlier treatment initiation. As a key prognostic factor, NBS is beneficial for improving the overall survival of infants with mut-type methylmalonic acidemia.
Collapse
Affiliation(s)
- Shiying Ling
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengnan Wu
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Ruixue Shuai
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Yu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Wei
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Chiju Yang
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Peng Xu
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Hui Zou
- Center of Neonatal Disease Screening, Jinan Maternal and Child Health Care Hospital, Jinan, China
| | - Jizhen Feng
- Center of Neonatal Disease Screening, Shijiazhuang Maternal and Child Health Care Hospital, Shijiazhuang, China
| | - Tingting Niu
- Center of Neonatal Disease Screening, Shandong Maternal and Child Health Care Hospital, Jinan, China
| | - Haili Hu
- Center of Neonatal Disease Screening, Hefei Maternal and Child Health Care Hospital, Hefei, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Liang
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Wang
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Chen
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Xu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lianshu Han
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
14
|
Pintus G, Vitturi N, Carraro G, Lenzini L, Gugelmo G, Fasan I, Madinelli A, Burlina A, Avogaro A, Calò LA. Renal Replacement Therapy in Methylmalonic Aciduria-Related Metabolic Failure: Case Report and Literature Review. J Clin Med 2024; 13:4304. [PMID: 39124570 PMCID: PMC11313451 DOI: 10.3390/jcm13154304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Methylmalonic Aciduria (MA) without homocystinuria (or isolated MA) is a group of rare inherited metabolic disorders which leads to the accumulation of methylmalonic acid (MMA), a toxic molecule that accumulates in blood, urine, and cerebrospinal fluid, causing acute and chronic complications including metabolic crises, acute kidney injury (AKI), and chronic kidney disease (CKD). Detailed Case Description: Herein, we report a case of a 39-year-old male with MA and stage IV CKD who experienced acute metabolic decompensation secondary to gastrointestinal infection. The patient underwent a single hemodialysis (HD) session to correct severe metabolic acidosis unresponsive to medical therapy and to rapidly remove MMA. The HD session resulted in prompt clinical improvement and shortening of hospitalization. DISCUSSION MMA accumulation in MA patients causes acute and life-threatening complications, such as metabolic decompensations, and long-term complications such as CKD, eventually leading to renal replacement therapy (RRT). Data reported in the literature show that, overall, all dialytic treatments (intermittent HD, continuous HD, peritoneal dialysis) are effective in MMA removal. HD, in particular, can be useful in the emergency setting to control metabolic crises, even with GFR > 15 mL/min. Kidney and/or liver transplantations are often needed in MA patients. While a solitary transplanted kidney can be rapidly affected by MMA exposure, with a decline in renal function even in the first year of follow-up, the combined liver-kidney transplantation showed better long-term results due to a combination of reduced MMA production along with increased urinary excretion. CONCLUSIONS Early diagnosis, multidisciplinary management and preventive measures are pivotal in MA patients to avoid recurrent AKI episodes and, consequently, to slow down CKD progression.
Collapse
Affiliation(s)
- Giovanni Pintus
- Hypertension Unit, Department of Medicine—DIMED, Padova University Hospital, University of Padova, 35128 Padua, Italy; (G.P.); (L.L.)
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Nicola Vitturi
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, University of Padova, 35128 Padua, Italy; (N.V.); (G.G.); (A.M.); (A.A.)
| | - Gianni Carraro
- Nephrology, Dialysis and Transplant Unit, Department of Medicine, Padova University Hospital, University of Padova, 35128 Padua, Italy;
| | - Livia Lenzini
- Hypertension Unit, Department of Medicine—DIMED, Padova University Hospital, University of Padova, 35128 Padua, Italy; (G.P.); (L.L.)
| | - Giorgia Gugelmo
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, University of Padova, 35128 Padua, Italy; (N.V.); (G.G.); (A.M.); (A.A.)
| | - Ilaria Fasan
- Division of Clinical Nutrition, Department of Medicine—DIMED, Padova University Hospital, University of Padova, 35128 Padua, Italy;
| | - Alberto Madinelli
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, University of Padova, 35128 Padua, Italy; (N.V.); (G.G.); (A.M.); (A.A.)
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Department of Women’s and Children’s Health, Padova University Hospital, University of Padova, 35128 Padua, Italy;
| | - Angelo Avogaro
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, University of Padova, 35128 Padua, Italy; (N.V.); (G.G.); (A.M.); (A.A.)
| | - Lorenzo Arcangelo Calò
- Nephrology, Dialysis and Transplant Unit, Department of Medicine, Padova University Hospital, University of Padova, 35128 Padua, Italy;
| |
Collapse
|
15
|
Liu Y, Ma X, Kang L, Jin Y, Li M, Song J, Li H, Cao Y, Yang Y. The utility of methylmalonic acid, methylcitrate acid, and homocysteine in dried blood spots for therapeutic monitoring of three inherited metabolic diseases. Front Nutr 2024; 11:1414681. [PMID: 38966413 PMCID: PMC11222987 DOI: 10.3389/fnut.2024.1414681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024] Open
Abstract
Backgroud Routine metabolic assessments for methylmalonic acidemia (MMA), propionic acidemia (PA), and homocysteinemia involve detecting metabolites in dried blood spots (DBS) and analyzing specific biomarkers in serum and urine. This study aimed to establish a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous detection of three specific biomarkers (methylmalonic acid, methylcitric acid, and homocysteine) in DBS, as well as to appraise the applicability of these three DBS metabolites in monitoring patients with MMA, PA, and homocysteinemia during follow-up. Methods A total of 140 healthy controls and 228 participants were enrolled, including 205 patients with MMA, 17 patients with PA, and 6 patients with homocysteinemia. Clinical data and DBS samples were collected during follow-up visits. Results The reference ranges (25th-95th percentile) for DBS methylmalonic acid, methylcitric acid, and homocysteine were estimated as 0.04-1.02 μmol/L, 0.02-0.27 μmol/L and 1.05-8.22 μmol/L, respectively. Following treatment, some patients achieved normal metabolite concentrations, but the majority still exhibited characteristic biochemical patterns. The concentrations of methylmalonic acid, methylcitric acid, and homocysteine in DBS showed positive correlations with urine methylmalonic acid (r = 0.849, p < 0.001), urine methylcitric acid (r = 0.693, p < 0.001), and serum homocysteine (r = 0.721, p < 0.001) concentrations, respectively. Additionally, higher levels of DBS methylmalonic acid and methylcitric acid may be associated with increased cumulative complication scores. Conclusion The LC-MS/MS method established in this study reliably detects methylmalonic acid, methylcitric acid, and homocysteine in DBS. These three DBS metabolites can be valuable for monitoring patients with MMA, PA, and homocysteinemia during follow-up. Further investigation is required to determine the significance of these DBS biomarkers in assessing disease burden over time.
Collapse
Affiliation(s)
- Yi Liu
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Xue Ma
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Lulu Kang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Mengqiu Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jinqing Song
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Haixia Li
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Yongtong Cao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
16
|
McNamara JO, Giangrande PH. Toward the full potential of mRNA therapeutics. Mol Ther 2024; 32:1600-1601. [PMID: 38788709 PMCID: PMC11184373 DOI: 10.1016/j.ymthe.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
|
17
|
Bretos-Azcona PE, Wallace M, Jootun M, Jin G, Agirrezabal I, Szende A. An Early Cost-Utility Model of mRNA-Based Therapies for the Treatment of Methylmalonic and Propionic Acidemia in the United Kingdom. Clin Drug Investig 2024; 44:399-412. [PMID: 38796677 DOI: 10.1007/s40261-024-01363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND AND OBJECTIVE Novel messenger RNA (mRNA)-based therapies, currently in development, are emerging as a promising potential treatment modality for a broad range of life-threatening and life-limiting inherited liver diseases, including methylmalonic acidemia (MMA) and propionic acidemia (PA). However, owing in part to their complexity, they are likely to come at considerable financial cost to healthcare systems. The objective of this research was to synthesize available evidence on the costs and clinical consequences associated with MMA and PA for the purpose of exploratory economic evaluation of novel mRNA-based therapies using an early cost-utility model from the United Kingdom payer perspective. METHODS A Markov model was constructed to simulate the costs and outcomes associated with novel mRNA therapies, compared with a combination of dietary management and organ transplantation (standard of care) among hypothetical cohorts of new-born patients with MMA and PA. Key model drivers were identified, and a price threshold analysis was performed to estimate value-based price ranges for future mRNA therapies given willingness-to-pay thresholds for orphan diseases. RESULTS mRNA therapy was associated with an additional 5.7 and 1.3 quality-adjusted life-years (QALYs) gained per patient lifetime among patients with MMA and PA, respectively. Key drivers of cost-effectiveness were relative improvement in utility among patients who receive mRNA-based therapy and transplantation, and the cost of mRNA therapy. Assuming a willingness to pay range of £100,000-£300,000 per QALY gained, the model demonstrated mRNA therapy to be cost-effective in MMA and PA at an annual treatment cost of £70,452-£94,575 and £31,313-£36,695, respectively. CONCLUSIONS Despite the lack of a strong evidence base in MMA and PA, this model provides a useful tool to estimate the cost-effectiveness, and inform value-based pricing, of new mRNA-based therapies. Our analyses also identified areas for research that will have the greatest value in reducing uncertainty in future health economic evaluations of such treatments.
Collapse
Affiliation(s)
- Pablo E Bretos-Azcona
- Product Development and Market Access Consulting, Fortrea, 4 Maguire Street, London, SE1 2NQ, UK
| | - Matthew Wallace
- Product Development and Market Access Consulting, Fortrea, 4 Maguire Street, London, SE1 2NQ, UK
| | - Murvin Jootun
- Product Development and Market Access Consulting, Fortrea, 4 Maguire Street, London, SE1 2NQ, UK
| | - Guanyi Jin
- Product Development and Market Access Consulting, Fortrea, 4 Maguire Street, London, SE1 2NQ, UK
| | - Ion Agirrezabal
- Product Development and Market Access Consulting, Fortrea, 4 Maguire Street, London, SE1 2NQ, UK
| | - Agota Szende
- Product Development and Market Access Consulting, Fortrea, 4 Maguire Street, London, SE1 2NQ, UK.
| |
Collapse
|
18
|
He W, Marchuk H, Koeberl D, Kasumov T, Chen X, Zhang GF. Fasting alleviates metabolic alterations in mice with propionyl-CoA carboxylase deficiency due to Pcca mutation. Commun Biol 2024; 7:659. [PMID: 38811689 PMCID: PMC11137003 DOI: 10.1038/s42003-024-06362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
Propionic acidemia (PA), resulting from Pcca or Pccb gene mutations, impairs propionyl-CoA metabolism and induces metabolic alterations. While speculation exists that fasting might exacerbate metabolic crises in PA patients by accelerating the breakdown of odd-chain fatty acids and amino acids into propionyl-CoA, direct evidence is lacking. Our investigation into the metabolic effects of fasting in Pcca-/-(A138T) mice, a PA model, reveals surprising outcomes. Propionylcarnitine, a PA biomarker, decreases during fasting, along with the C3/C2 (propionylcarnitine/acetylcarnitine) ratio, ammonia, and methylcitrate. Although moderate amino acid catabolism to propionyl-CoA occurs with a 23-h fasting, a significant reduction in microbiome-produced propionate and increased fatty acid oxidation mitigate metabolic alterations by decreasing propionyl-CoA synthesis and enhancing acetyl-CoA synthesis. Fasting-induced gluconeogenesis further facilitates propionyl-CoA catabolism without changing propionyl-CoA carboxylase activity. These findings suggest that fasting may alleviate metabolic alterations in Pcca-/-(A138T) mice, prompting the need for clinical evaluation of its potential impact on PA patients.
Collapse
Affiliation(s)
- Wentao He
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Hannah Marchuk
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Dwight Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Takhar Kasumov
- Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Xiaoxin Chen
- Department of Surgery, Surgical Research Lab, Cooper University Hospital and Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
- Coriell Institute for Medical Research, Camden, NJ, 08103, USA
- MD Anderson Cancer Center at Cooper, Camden, NJ, 08103, USA
| | - Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA.
- Division of Endocrinology, Department of Medicine, Metabolism and Nutrition, Duke University Medical Center, Durham, NC, 27701, USA.
| |
Collapse
|
19
|
mRNA therapy is safe for treating the inherited metabolic condition propionic acidaemia. Nature 2024:10.1038/d41586-024-01364-2. [PMID: 38760494 DOI: 10.1038/d41586-024-01364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
|
20
|
Zhang X, Ji W, Wang Y, Zhou Z, Guo J, Tian G. Comparative analysis of inherited metabolic diseases in normal newborns and high-risk children: Insights from a 10-year study in Shanghai. Clin Chim Acta 2024; 558:117893. [PMID: 38582244 DOI: 10.1016/j.cca.2024.117893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Compare the differences between normal newborns and high-risk children with inherited metabolic diseases. The disease profile includes amino acidemias, fatty acid oxidation disorders, and organic acidemias. METHODS Data was collected on newborns and children from high-risk populations in Shanghai from December 2010 to December 2020. RESULTS 232,561 newborns were screened for disorders of organic, amino acid, and fatty acid metabolism. The initial positive rate was 0.66 % (1,526/232,561) and the positive recall rate was 77.85 %. The positive predictive value is 4.71 %. Among them, 56 cases were diagnosed as metabolic abnormalities. The total incidence rate is 1:4153. Hyperphenylalaninemia and short-chain acyl-CoA dehydrogenase are the most common diseases in newborns. In addition, in 56 children, 39 (69.42 %) were diagnosed by genetic sequencing. Some hotspot mutations in 14 IEMs have been observed, including PAH gene c.728G > A, c.611A > G, and ACADS gene c. 1031A > G, c.164C > T. A total of 49,860 symptomatic patients were screened, of which 185 were diagnosed with IEM, with a detection rate of 0.37 %. The most commonly diagnosed diseases in high-risk infants aremethylmalonic acidemia and hyperphenylalaninemia. CONCLUSION There are more clinical cases of congenital metabolic errors diagnosed by tandem mass spectrometry than newborn screening. The spectrum of diseases, prevalence, and genetic characteristics of normal newborns and high-risk children are quite different.
Collapse
Affiliation(s)
- Xiaofen Zhang
- Department of Newborn Screening Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Wei Ji
- Department of Newborn Screening Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Yanmin Wang
- Department of Newborn Screening Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Zhuo Zhou
- Department of Newborn Screening Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Jing Guo
- Department of Newborn Screening Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Guoli Tian
- Department of Newborn Screening Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China.
| |
Collapse
|
21
|
Baek R, Coughlan K, Jiang L, Liang M, Ci L, Singh H, Zhang H, Kaushal N, Rajlic IL, Van L, Dimen R, Cavedon A, Yin L, Rice L, Frassetto A, Guey L, Finn P, Martini PGV. Characterizing the mechanism of action for mRNA therapeutics for the treatment of propionic acidemia, methylmalonic acidemia, and phenylketonuria. Nat Commun 2024; 15:3804. [PMID: 38714648 PMCID: PMC11076592 DOI: 10.1038/s41467-024-47460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/28/2024] [Indexed: 05/10/2024] Open
Abstract
Messenger RNA (mRNA) therapeutics delivered via lipid nanoparticles hold the potential to treat metabolic diseases caused by protein deficiency, including propionic acidemia (PA), methylmalonic acidemia (MMA), and phenylketonuria (PKU). Herein we report results from multiple independent preclinical studies of mRNA-3927 (an investigational treatment for PA), mRNA-3705 (an investigational treatment for MMA), and mRNA-3210 (an investigational treatment for PKU) in murine models of each disease. All 3 mRNA therapeutics exhibited pharmacokinetic/pharmacodynamic (PK/PD) responses in their respective murine model by driving mRNA, protein, and/or protein activity responses, as well as by decreasing levels of the relevant biomarker(s) when compared to control-treated animals. These preclinical data were then used to develop translational PK/PD models, which were scaled allometrically to humans to predict starting doses for first-in-human clinical studies for each disease. The predicted first-in-human doses for mRNA-3927, mRNA-3705, and mRNA-3210 were determined to be 0.3, 0.1, and 0.4 mg/kg, respectively.
Collapse
Affiliation(s)
- Rena Baek
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | | | - Lei Jiang
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Min Liang
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Lei Ci
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Harkewal Singh
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Hannah Zhang
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Neeraj Kaushal
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | | | - Linh Van
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Rain Dimen
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | | | - Ling Yin
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Lisa Rice
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | | | - Lin Guey
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA.
| | - Patrick Finn
- Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA.
| | | |
Collapse
|
22
|
Deleanu C, Nicolescu A. NMR Spectroscopy in Diagnosis and Monitoring of Methylmalonic and Propionic Acidemias. Biomolecules 2024; 14:528. [PMID: 38785935 PMCID: PMC11117674 DOI: 10.3390/biom14050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Although both localized nuclear magnetic resonance spectroscopy (MRS) and non-localized nuclear magnetic resonance spectroscopy (NMR) generate the same information, i.e., spectra generated by various groups from the structure of metabolites, they are rarely employed in the same study or by the same research group. As our review reveals, these techniques have never been applied in the same study of methylmalonic acidemia (MMA), propionic acidemia (PA) or vitamin B12 deficiency patients. On the other hand, MRS and NMR provide complementary information which is very valuable in the assessment of the severity of disease and efficiency of its treatment. Thus, MRS provides intracellular metabolic information from localized regions of the brain, while NMR provides extracellular metabolic information from biological fluids like urine, blood or cerebrospinal fluid. This paper presents an up-to-date review of the NMR and MRS studies reported to date for methylmalonic and propionic acidemias. Vitamin B12 deficiency, although in most of its cases not inherited, shares similarities in its metabolic effects with MMA and it is also covered in this review.
Collapse
Affiliation(s)
- Calin Deleanu
- “Costin D. Nenitescu” Institute of Organic and Supramolecular Chemistry, Spl. Independentei 202-B, RO-060023 Bucharest, Romania
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41-A, RO-700487 Iasi, Romania
| | - Alina Nicolescu
- “Costin D. Nenitescu” Institute of Organic and Supramolecular Chemistry, Spl. Independentei 202-B, RO-060023 Bucharest, Romania
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41-A, RO-700487 Iasi, Romania
| |
Collapse
|
23
|
Koeberl D, Schulze A, Sondheimer N, Lipshutz GS, Geberhiwot T, Li L, Saini R, Luo J, Sikirica V, Jin L, Liang M, Leuchars M, Grunewald S. Interim analyses of a first-in-human phase 1/2 mRNA trial for propionic acidaemia. Nature 2024; 628:872-877. [PMID: 38570682 PMCID: PMC11156579 DOI: 10.1038/s41586-024-07266-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
Propionic acidaemia is a rare disorder caused by defects in the propionyl-coenzyme A carboxylase α or β (PCCA or PCCB) subunits that leads to an accumulation of toxic metabolites and to recurrent, life-threatening metabolic decompensation events. Here we report interim analyses of a first-in-human, phase 1/2, open-label, dose-optimization study and an extension study evaluating the safety and efficacy of mRNA-3927, a dual mRNA therapy encoding PCCA and PCCB. As of 31 May 2023, 16 participants were enrolled across 5 dose cohorts. Twelve of the 16 participants completed the dose-optimization study and enrolled in the extension study. A total of 346 intravenous doses of mRNA-3927 were administered over a total of 15.69 person-years of treatment. No dose-limiting toxicities occurred. Treatment-emergent adverse events were reported in 15 out of the 16 (93.8%) participants. Preliminary analysis suggests an increase in the exposure to mRNA-3927 with dose escalation, and a 70% reduction in the risk of metabolic decompensation events among 8 participants who reported them in the 12-month pretreatment period.
Collapse
Affiliation(s)
| | - Andreas Schulze
- Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Neal Sondheimer
- Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Gerald S Lipshutz
- University of California at Los Angeles (UCLA), Los Angeles, CA, USA
| | | | | | | | | | | | - Ling Jin
- Moderna, Inc., Cambridge, MA, USA
| | | | | | - Stephanie Grunewald
- Great Ormond Street Hospital for Children and Institute for Child Health, NIHR Biomedical Research Centre, London, UK.
| |
Collapse
|
24
|
Zhang X, Xu X, Shu J, Zhi X, Wang H, Dong Y, Sheng W, Li D, Meng Y, Cai C. A novel MMUT splicing variant causing mild methylmalonic acidemia phenotype. Heliyon 2024; 10:e26912. [PMID: 38455531 PMCID: PMC10918191 DOI: 10.1016/j.heliyon.2024.e26912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Objectives Methylmalonic acidemia (MMA) is a rare inborn genetic disorder that is characterized by increased levels of methylmalonic acid in blood plasma and urine. Isolated methylmalonic acidemia is one of the most common types of MMA and is caused by mutations in the gene encoding methyl-malonyl coenzyme A mutase (MMUT). In this study, we investigated the possible mechanisms underlying the symptoms of isolated MMA in a patient by molecular analysis. Methods PCR amplification and Sanger sequencing analysis was performed to identify variants in the MMUT gene in the proband and his family. Furthermore, minigene constructs were generated to validate the splicing defects in the MMUT gene variant identified in the proband. Results The 3-year-old patient was admitted to the hospital with symptoms of MMA, including fever, convulsions, and vomiting. He showed metabolic acidosis, high levels of methylmalonic acid in blood and urine, and normal blood homocysteine levels. Genetic analysis demonstrated that the patient was a compound heterozygous carrier of two variants in the MMUT gene: a missense c.278G > A variant that has already been reported in a patient with the severe mut⁰ phenotype; and a novel splice site variant c.2125-2A > G. RT-PCR analysis showed that, while the novel variant clearly alters splicing, a minor amount of a full-length transcript is generated, suggesting that a wild-type protein may be produced although at a lower quantitative level. The patient's condition improved after treatment with vitamin B12. Serious complications were not reported during follow-up at age 5. Conclusions We identified a novel splice site variant that partially disrupts normal splicing of the MMUT pre-mRNA. Production of a reduced amount of full-length transcript is responsible for the mild clinical phenotype observed in this patient. Functional studies have proven useful in exploring the genotype-phenotype association and in providing guidance for the genetic diagnosis of MMA.
Collapse
Affiliation(s)
- Xinjie Zhang
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
- Tianjin Pediatric Research Institute, No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Xiaowei Xu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
- Tianjin Pediatric Research Institute, No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Jianbo Shu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
- Tianjin Pediatric Research Institute, No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Xiufang Zhi
- Graduate College of Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Hong Wang
- Department of Neurology, Tianjin Children's Hospital, No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Yan Dong
- Graduate College of Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Wenchao Sheng
- Graduate College of Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Dong Li
- Department of Neurology, Tianjin Children's Hospital, No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Yingtao Meng
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
- Tianjin Pediatric Research Institute, No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Chunquan Cai
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
- Tianjin Pediatric Research Institute, No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| |
Collapse
|
25
|
Yap S, Lamireau D, Feillet F, Ruiz Gomez A, Davison J, Tangeraas T, Giordano V. Real-World Experience of Carglumic Acid for Methylmalonic and Propionic Acidurias: An Interim Analysis of the Multicentre Observational PROTECT Study. Drugs R D 2024; 24:69-80. [PMID: 38198106 PMCID: PMC11035519 DOI: 10.1007/s40268-023-00449-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Methylmalonic aciduria (MMA) and propionic aciduria (PA) are organic acidurias characterised by the accumulation of toxic metabolites and hyperammonaemia related to secondary N-acetylglutamate deficiency. Carglumic acid, a synthetic analogue of N-acetylglutamate, decreases ammonia levels by restoring the functioning of the urea cycle. However, there are limited data available on the long-term safety and effectiveness of carglumic acid. Here, we present an interim analysis of the ongoing, long-term, prospective, observational PROTECT study (NCT04176523), which is investigating the long-term use of carglumic acid in children and adults with MMA and PA. METHODS Individuals with MMA or PA from France, Germany, Italy, Norway, Spain, Sweden and the UK who have received at least 1 year of carglumic acid treatment as part of their usual care are eligible for inclusion. The primary objective is the number and duration of acute metabolic decompensation events with hyperammonaemia (ammonia level >159 µmol/L during a patient's first month of life or >60 µmol/L thereafter, with an increased lactate level [> 1.8 mmol/L] and/or acidosis [pH < 7.35]) before and after treatment with carglumic acid. Peak plasma ammonia levels during the last decompensation event before and the first decompensation event after carglumic acid initiation, and the annualised rate of decompensation events before and after treatment initiation are also being assessed. Secondary objectives include the duration of hospital stay associated with decompensation events. Data are being collected at approximately 12 months' and 18 months' follow-up. RESULTS Of the patients currently enrolled in the PROTECT study, data from ten available patients with MMA (n = 4) and PA (n = 6) were analysed. The patients had received carglumic acid for 14-77 (mean 36) months. Carglumic acid reduced the median peak ammonia level of the total patient population from 250 µmol/L (range 97-2569) before treatment to 103 µmol/L (range 97-171) after treatment. The annualised rate of acute metabolic decompensations with hyperammonaemia was reduced by a median of - 41% (range - 100% to + 60%) after treatment with carglumic acid. Of the five patients who experienced a decompensation event before treatment and for whom a post-treatment rate could be calculated, the annualised decompensation event rate was lower after carglumic acid treatment in four patients. The mean duration of hospital inpatient stay during decompensation events was shorter after than before carglumic acid treatment initiation in four of five patients for whom length of stay could be calculated. CONCLUSIONS In this group of patients with MMA and PA, treatment with carglumic acid for at least 1 year reduced peak plasma ammonia levels in the total patient population and reduced the frequency of metabolic decompensation events, as well as the duration of inpatient stay due to metabolic decompensations in a subset of patients. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, NCT04176523. Registered 25 November, 2019, retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04176523 .
Collapse
Affiliation(s)
- Sufin Yap
- Department of Inherited Metabolic Diseases, Sheffield Children's Hospital, Western Bank, Sheffield, S10 2TH, UK.
| | - Delphine Lamireau
- Hopital Des Enfants, CHU de Bordeaux-GH Pellegrin, Bordeaux Cedex, France
| | - Francois Feillet
- CHU de Nancy, Hopitaux de Brabois, Vandoeuvre-les-Nancy Cedex, France
| | | | | | - Trine Tangeraas
- Department of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
26
|
Tejero J, Lazure F, Gomes AP. Methylmalonic acid in aging and disease. Trends Endocrinol Metab 2024; 35:188-200. [PMID: 38030482 PMCID: PMC10939937 DOI: 10.1016/j.tem.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
Metabolic byproducts have conventionally been disregarded as waste products without functions. In this opinion article, we bring to light the multifaceted role of methylmalonic acid (MMA), a byproduct of the propionate metabolism pathway mostly commonly known as a clinical biomarker of vitamin B12 deficiency. MMA is normally present at low levels in the body, but increased levels can come from different sources, such as vitamin B12 deficiency, genetic mutations in enzymes related to the propionate pathway, the gut microbiota, and aggressive cancers. Here, we describe the diverse metabolic and signaling functions of MMA and discuss the consequences of increased MMA levels, such as during the aging process, for several age-related human pathologies.
Collapse
Affiliation(s)
- Joanne Tejero
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Felicia Lazure
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
27
|
Ben Braiek M, Moreno-Romieux C, André C, Astruc JM, Bardou P, Bordes A, Debat F, Fidelle F, Granado-Tajada I, Hozé C, Plisson-Petit F, Rivemale F, Sarry J, Tadi N, Woloszyn F, Fabre S. Searching for homozygous haplotype deficiency in Manech Tête Rousse dairy sheep revealed a nonsense variant in the MMUT gene affecting newborn lamb viability. Genet Sel Evol 2024; 56:16. [PMID: 38424485 PMCID: PMC10905913 DOI: 10.1186/s12711-024-00886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Recessive deleterious variants are known to segregate in livestock populations, as in humans, and some may be lethal in the homozygous state. RESULTS We used phased 50 k single nucleotide polymorphism (SNP) genotypes and pedigree data to scan the genome of 6845 Manech Tête Rousse dairy sheep to search for deficiency in homozygous haplotypes (DHH). Five Manech Tête Rousse deficient homozygous haplotypes (MTRDHH1 to 5) were identified, with a homozygous deficiency ranging from 84 to 100%. These haplotypes are located on Ovis aries chromosome (OAR)1 (MTRDHH2 and 3), OAR10 (MTRDHH4), OAR13 (MTRDHH5), and OAR20 (MTRDHH1), and have carrier frequencies ranging from 7.8 to 16.6%. When comparing at-risk matings between DHH carriers to safe matings between non-carriers, two DHH (MTRDHH1 and 2) were linked with decreased insemination success and/or increased stillbirth incidence. We investigated the MTRDHH1 haplotype, which substantially increased stillbirth rate, and identified a single nucleotide variant (SNV) inducing a premature stop codon (p.Gln409*) in the methylmalonyl-CoA mutase (MMUT) gene by using a whole-genome sequencing approach. We generated homozygous lambs for the MMUT mutation by at-risk mating between heterozygous carriers, and most of them died within the first 24 h after birth without any obvious clinical symptoms. Reverse transcriptase-qPCR and western blotting on post-mortem liver and kidney biological samples showed a decreased expression of MMUT mRNA in the liver and absence of a full-length MMUT protein in the mutant homozygous lambs. CONCLUSIONS We identified five homozygous deficient haplotypes that are likely to harbor five independent deleterious recessive variants in sheep. One of these was detected in the MMUT gene, which is associated with lamb lethality in the homozygous state. A specific management of these haplotypes/variants in the MTR dairy sheep selection program would help enhance the overall fertility and lamb survival.
Collapse
Affiliation(s)
- Maxime Ben Braiek
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | | | | | - Jean-Michel Astruc
- Institut de l'Elevage, 24 Chemin de Borde-Rouge, 31321, Castanet-Tolosan, France
| | | | - Arnaud Bordes
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Frédéric Debat
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | | | - Itsasne Granado-Tajada
- Department of Animal Production, NEIKER-BRTA Basque Institute of Agricultural Research and Development, Agrifood Campus of Arkaute s/n, 01080, Arkaute, Spain
| | - Chris Hozé
- Eliance, 149 Rue de Bercy, 75595, Paris, France
- GABI, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | | | - François Rivemale
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Julien Sarry
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Némuel Tadi
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Florent Woloszyn
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Stéphane Fabre
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France.
| |
Collapse
|
28
|
Hakimzadeh Z, Gilani A, Yousefichaijan P, Sarmadian R. Acute fatal ventricular arrhythmia induced by severe hyperkalemia in a toddler with decompensated methylmalonic acidemia. J Med Case Rep 2024; 18:73. [PMID: 38395924 PMCID: PMC10893669 DOI: 10.1186/s13256-024-04406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Methylmalonic acidemia is a very rare genetic metabolic disease. Patients with isolated methylmalonic acidemia typically present with acute alterations of consciousness, failure to thrive, anorexia, vomiting, respiratory distress, and muscular hypotonia. Despite the evidence-based management, affected individuals experience significant morbidity and mortality. Hyperkalemia is one of the unusual complications of methylmalonic acidemia. CASE PRESENTATION In this paper, we describe a 4-year-old Persian boy with methylmalonic acidemia who developed life-threatening arrhythmia following severe hyperkalemia and metabolic acidosis. Emergent management of the condition was successfully carried out, and the rhythm changed to normal sinus rhythm by effectively reducing the serum potassium level. We discuss the possible etiology of this lethal condition and describe its management on the basis of the available evidence. CONCLUSION During metabolic decompensation in methylmalonic acidemia, frequent blood gas and electrolyte testing to prescribe and adjust therapy and annual echocardiogram and electrocardiogram screening are essential.
Collapse
Affiliation(s)
- Zahra Hakimzadeh
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Gilani
- Department of Pediatric Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Roham Sarmadian
- Infectious Disease Research Center, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
29
|
Moutapam-Ngamby-Adriaansen Y, Maillot F, Labarthe F, Lioger B. Blood cytopenias as manifestations of inherited metabolic diseases: a narrative review. Orphanet J Rare Dis 2024; 19:65. [PMID: 38355710 PMCID: PMC10865644 DOI: 10.1186/s13023-024-03074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
Inherited Metabolic Diseases (IMD) encompass a diverse group of rare genetic conditions that, despite their individual rarity, collectively affect a substantial proportion, estimated at as much as 1 in 784 live births. Among their wide-ranging clinical manifestations, cytopenia stands out as a prominent feature. Consequently, IMD should be considered a potential diagnosis when evaluating patients presenting with cytopenia. However, it is essential to note that the existing scientific literature pertaining to the link between IMD and cytopenia is limited, primarily comprising case reports and case series. This paucity of data may contribute to the inadequate recognition of the association between IMD and cytopenia, potentially leading to underdiagnosis. In this review, we synthesize our findings from a literature analysis along with our clinical expertise to offer a comprehensive insight into the clinical presentation of IMD cases associated with cytopenia. Furthermore, we introduce a structured diagnostic approach underpinned by decision-making algorithms, with the aim of enhancing the early identification and management of IMD-related cytopenia.
Collapse
Affiliation(s)
- Yannick Moutapam-Ngamby-Adriaansen
- Service de Médecine Interne, CHRU de Tours, Tours Cedex 1, France.
- Service de Médecine Interne Et Polyvalente, 2, Centre Hospitalier de Blois, Mail Pierre Charlot, 41000, Blois, France.
| | - François Maillot
- Service de Médecine Interne, CHRU de Tours, Tours Cedex 1, France
- Reference Center for Inborn Errors of Metabolism ToTeM, CHRU de Tours, Hôpital Clocheville, 49 Bd Béranger, 37000, Tours, France
- INSERM U1253, iBrain, Université François Rabelais de Tours, 10 Boulevard Tonnellé, 37000, Tours, France
- INSERM U1069, Nutrition, Croissance et Cancer, Faculté de Médecine, Université François Rabelais de Tours, 10 Boulevard Tonnellé, 37000, Tours, France
| | - François Labarthe
- Reference Center for Inborn Errors of Metabolism ToTeM, CHRU de Tours, Hôpital Clocheville, 49 Bd Béranger, 37000, Tours, France
- INSERM U1069, Nutrition, Croissance et Cancer, Faculté de Médecine, Université François Rabelais de Tours, 10 Boulevard Tonnellé, 37000, Tours, France
- Service de Pédiatrie, CHRU de Tours, Tours Cedex 1, France
| | - Bertrand Lioger
- Service de Médecine Interne Et Polyvalente, 2, Centre Hospitalier de Blois, Mail Pierre Charlot, 41000, Blois, France
| |
Collapse
|
30
|
Eldredge JA, Hardikar W. Current status and future directions of liver transplantation for metabolic liver disease in children. Pediatr Transplant 2024; 28:e14625. [PMID: 37859572 DOI: 10.1111/petr.14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
Orthotopic liver transplantation (OLT) in the care of children with inborn errors of metabolism (IEM) is well established and represent the second most common indication for pediatric liver transplantation in most centers worldwide, behind biliary atresia. OLT offers cure of disease when a metabolic defect is confined to the liver, but may still be transformative on a patient's quality of life reducing the chance of metabolic crises causing neurological damage in children be with extrahepatic involvement and no "functional cure." Outcomes post-OLT for inborn errors of metabolism are generally excellent. However, this benefit must be balanced with consideration of a composite risk of morbidity, and commitment to a lifetime of post-transplant chronic disease management. An increasing number of transplant referrals for children with IEM has contributed to strain on graft access in many parts of the world. Pragmatic evaluation of IEM referrals is essential, particularly pertinent in cases where progression of extra-hepatic disease is anticipated, with long-term outcome expected to be poor. Decision to proceed with liver transplantation is highly individualized based on the child's dynamic risk-benefit profile, their family unit, and their treating multidisciplinary team. Also to be considered is the chance of future treatments, such as gene therapies, emerging in the medium term.
Collapse
Affiliation(s)
- Jessica A Eldredge
- Department of Gastroenterology, Hepatology and Clinical Nutrition, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Winita Hardikar
- Department of Gastroenterology, Hepatology and Clinical Nutrition, Royal Children's Hospital University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
31
|
Ensert Cihan CK, Akar HT, Yıldız Y, Sogukpinar M, Utine GE, Çelik HT. Coexistence of Two Rare Conditions Complicating the Other's Management: Propionic Acidemia and Apert Syndrome. Mol Syndromol 2024; 15:83-88. [PMID: 38357253 PMCID: PMC10862317 DOI: 10.1159/000534380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/28/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction Propionic acidemia (PA) is an inborn error of organic acid metabolism inherited in an autosomal recessive manner. The neonatal-onset disease may present with feeding difficulties and vomiting; seizures, coma, and death may occur if untreated. In addition, catabolic processes such as infections and surgical procedures could cause metabolic decompensation, so patients with organic acidemia should be followed closely. Case Presentation Here, a patient diagnosed with PA and Apert syndrome in the neonatal period and the complications caused by the coexistence of the two entities are mentioned. The difficulties precipitated by the coexistence of Apert syndrome and PA make this case unique. She has had prolonged hospitalizations due to metabolic decompensations after cranioplasty and inguinal hernia repair, both triggered by nosocomial respiratory infections, complicating both the surgical treatment of Apert syndrome and the management of PA. Conclusion Coexistence of these two serious disorders mandates a more prudent clinical management as Apert syndrome patients undergo several surgical procedures, rendering them susceptible to catabolic decompensations.
Collapse
Affiliation(s)
| | - Halil Tuna Akar
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yılmaz Yıldız
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Merve Sogukpinar
- Department of Pediatric Genetics, Faculty of Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gulen Eda Utine
- Department of Pediatric Genetics, Faculty of Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Hasan Tolga Çelik
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
32
|
Hao Q, Jiang B, Zhao Y, Hu Z. Adult-onset combined methylmalonic acidemia and hyperhomocysteinemia, cblC type with aortic dissection and acute kidney injury: a case report. BMC Nephrol 2024; 25:13. [PMID: 38178022 PMCID: PMC10768229 DOI: 10.1186/s12882-023-03414-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Combined methylmalonic acidemia (MMA) and hyperhomocysteinemia, cobalamin C (cblC) type, also named cblC deficiency is a rare autosomal recessive genetic metabolic disease. It progressively causes neurological, hematologic, renal and other system dysfunction. The clinical manifestations are relatively different due to the onset time of disease. CASE PRESENTATION This report describes a rare case of a 26 year old man with cblC deficiency who developed life-threatening aortic dissection and acute kidney injury (AKI) and showed neuropsychiatric symptoms with elevated serum homocysteine and methylmalonic aciduria. After emergent operation and intramuscular cobalamin supplementation therapy, the male recovered from aortic dissection, neurological disorder and AKI. Finally, two previously published compound heterozygous variants, c.482G > A (p.R161Q) and c.658_660del (p.K220del) in the MMACHC gene were detected in this patient and he was confirmed to have cblC deficiency. CONCLUSIONS Poor cognizance of presenting symptoms and biochemical features of adult onset cblC disease may cause delayed diagnosis and management. This case is the first to depict a case of adult-onset cblC deficiency with aortic dissection. This clinical finding may contribute to the diagnosis of cblC deficiency.
Collapse
Affiliation(s)
- Qiufa Hao
- Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Bei Jiang
- Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong Province, 250012, China.
| | - Zhao Hu
- Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong Province, 250012, China
| |
Collapse
|
33
|
Jelassi A, Nasrallah F, Talbi E, Hammami MB, Ghodbane R, Sanhaji H, Feki M, Kaabachi N, Hadj-Taieb S. Spectrum of Organic Aciduria Diseases in Tunisia: A 35-year Retrospective Study. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2024; 12:27-34. [PMID: 38362096 PMCID: PMC10866378 DOI: 10.4103/sjmms.sjmms_437_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/10/2023] [Accepted: 12/24/2023] [Indexed: 02/17/2024]
Abstract
Background Organic aciduria diseases (OADs) occur worldwide, with differences in prevalence and patterns between populations. Objectives To describe the spectrum of OADs identified in Tunisia over a 35-years period. Materials and Methods This retrospective study included patients who were diagnosed with OADs between 1987 and 2022 in the Laboratory of Biochemistry, Rabta Hospital, Tunisia. Organic acids were analyzed using gas chromatography-mass spectrometry. Results A total of 30,670 urine samples were analyzed for OADs, of which 471 were positive for OADs. The estimated incidence of OADs in Tunisia was 6.78 per 100,000 live births. Methylmalonic (n = 146) and propionic (n = 90) acidurias were the most common OADs (estimated incidence: 2.10 and 1.30 per 100,000 live births, respectively). There were 54 cases of L-2-hydroxyglutatric acidurias and 30 cases of pyroglutamic acidurias, which makes it one of the highest in the world. The main clinical features were hypotonia (65%) and feeding difficulties (41%). Age at diagnosis was highly variable, ranging from 1 day to 49 years. Only 27% of the patients were diagnosed within the first month of life. The prevalence of OADs was highest in the Center-East and Southeast regions. Conclusions In Tunisia, OADs are relatively frequent, but there are shortcomings regarding the diagnosis of these disorders. The frequency and health/social impact of these disorders warrant the need for implementing newborn screening programs and suitable patient management.
Collapse
Affiliation(s)
- Awatef Jelassi
- Department of Clinical Chemistry, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia
- Department of Clinical Chemistry, Laboratory of Biochemistry LR99ES11, Rabta Hospital, Tunis, Tunisia
- Department of Biology, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Fahmi Nasrallah
- Department of Clinical Chemistry, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia
- Department of Clinical Chemistry, Laboratory of Biochemistry LR99ES11, Rabta Hospital, Tunis, Tunisia
| | - Emna Talbi
- Department of Clinical Chemistry, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia
- Department of Clinical Chemistry, Laboratory of Biochemistry LR99ES11, Rabta Hospital, Tunis, Tunisia
| | - Mohamed Bassem Hammami
- Department of Clinical Chemistry, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia
- Department of Clinical Chemistry, Laboratory of Biochemistry LR99ES11, Rabta Hospital, Tunis, Tunisia
| | - Rihab Ghodbane
- Department of Clinical Chemistry, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia
- Department of Clinical Chemistry, Laboratory of Biochemistry LR99ES11, Rabta Hospital, Tunis, Tunisia
| | - Haifa Sanhaji
- Department of Clinical Chemistry, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia
- Department of Clinical Chemistry, Laboratory of Biochemistry LR99ES11, Rabta Hospital, Tunis, Tunisia
| | - Moncef Feki
- Department of Clinical Chemistry, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia
- Department of Clinical Chemistry, Laboratory of Biochemistry LR99ES11, Rabta Hospital, Tunis, Tunisia
| | - Naziha Kaabachi
- Department of Clinical Chemistry, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia
- Department of Clinical Chemistry, Laboratory of Biochemistry LR99ES11, Rabta Hospital, Tunis, Tunisia
| | - Sameh Hadj-Taieb
- Department of Clinical Chemistry, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia
- Department of Clinical Chemistry, Laboratory of Biochemistry LR99ES11, Rabta Hospital, Tunis, Tunisia
| |
Collapse
|
34
|
González-Lamuño D, Arrieta-Blanco FJ, Fuentes ED, Forga-Visa MT, Morales-Conejo M, Peña-Quintana L, Vitoria-Miñana I. Hyperhomocysteinemia in Adult Patients: A Treatable Metabolic Condition. Nutrients 2023; 16:135. [PMID: 38201964 PMCID: PMC10780827 DOI: 10.3390/nu16010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Hyperhomocysteinemia (HHcy) is recognized as an independent risk factor for various significant medical conditions, yet controversy persists around its assessment and management. The diagnosis of disorders afffecting homocysteine (Hcy) metabolism faces delays due to insufficient awareness of its clinical presentation and unique biochemical characteristics. In cases of arterial or venous thrombotic vascular events, particularly with other comorbidities, it is crucial to consider moderate to severe HHcy. A nutritional approach to HHcy management involves implementing dietary strategies and targeted supplementation, emphasizing key nutrients like vitamin B6, B12, and folate that are crucial for Hcy conversion. Adequate intake of these vitamins, along with betaine supplementation, supports Hcy remethylation. Lifestyle modifications, such as smoking cessation and regular physical activity, complement the nutritional approach to enhance Hcy metabolism. For individuals with HHcy, maintaining a plasma Hcy concentration below 50 μmol/L consistently is vital to lowering the risk of vascular events. Collaboration with healthcare professionals and dietitians is essential for developing personalized dietary plans addressing the specific needs and underlying health conditions. This integrated approach aims to optimize metabolic processes and reduce the associated health risks.
Collapse
Affiliation(s)
| | | | - Elena Dios Fuentes
- Endocrinology and Nutrition Department, Virgen del Rocío University Hospital, 41013 Sevilla, Spain;
| | | | - Monstserrat Morales-Conejo
- Unit for Congenital Metabolic Diseases and Other Rare Diseases, Internal Medicine Department, 12 de Octubre University Hospital, 28041 Madrid, Spain;
| | - Luis Peña-Quintana
- Pediatric Gastroenterology and Nutrition Unit, Insular Materno-Infantil University Hospital Complex, Asociación Canaria de Investigación Pediátrica, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain;
| | - Isidro Vitoria-Miñana
- Nutrition and Metabolic Diseases Unit, La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
35
|
Liang L, Ling S, Yu Y, Shuai R, Qiu W, Zhang H, Shen L, Wu S, Wei H, Chen Y, Yang C, Xu P, Chen X, Zou H, Feng J, Niu T, Hu H, Gong Z, Chen T, Zhan X, Gu X, Han L. Evaluation of the clinical, biochemical, genotype and prognosis of mut-type methylmalonic acidemia in 365 Chinese cases. J Med Genet 2023; 61:8-17. [PMID: 37316190 DOI: 10.1136/jmg-2022-108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/28/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Methylmalonic acidemia (MMA), which results from defects in methylmalonyl-CoA mutase (mut type) or its cofactor, is the most common inherited organic acid metabolic disease in China. This study aimed to investigate the phenotype and genotype of mut-type MMA in Chinese patients. METHODS We recruited 365 patients with mut-type MMA; investigated their disease onset, newborn screening (NBS) status, biochemical metabolite levels, gene variations and prognosis; and explored the relationship between phenotype and genotype. RESULTS There were 152 patients diagnosed by tandem mass spectrometry (MS/MS) expanded NBS, 209 patients diagnosed because of disease onset without NBS and 4 cases diagnosed because of sibling diagnosis. The median age of onset was 15 days old, with a variety of symptoms without specificity. Urinary levels of methylmalonic acid and methylcitric acid (MCA) decreased after treatment. Regarding the prognosis, among the 152 patients with NBS, 50.6% were healthy, 30.3% had neurocognitive impairment and/or movement disorders and 13.8% died. Among the 209 patients without NBS, 15.3% were healthy, 45.9% had neurocognitive impairment and/or movement disorders and 33.0% died. In total, 179 variants were detected in the MMUT gene, including 52 novel variations. c.729_730insTT, c.1106G>A, c.323G>A, c.914T>C and c.1663G>A were the five most frequent variations. The c.1663G>A variation led to a milder phenotype and better prognosis. CONCLUSION There is a wide spectrum of variations in the MMUT gene with several common variations. Although the overall prognosis of mut-type MMA was poor, participation in MS/MS expanded NBS, vitamin B12 responsive and late onset are favourable factors for the prognosis.
Collapse
Affiliation(s)
- Lili Liang
- Department Of Pediatric Endocrinology/Genetics, Shanghai Institute For Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Shiying Ling
- Department Of Pediatric Endocrinology/Genetics, Shanghai Institute For Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yue Yu
- Department Of Pediatric Endocrinology/Genetics, Shanghai Institute For Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Ruixue Shuai
- Department of Pediatrics, Shanghai Changzheng Hospital, Shanghai, China
| | - Wenjuan Qiu
- Department Of Pediatric Endocrinology/Genetics, Shanghai Institute For Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Huiwen Zhang
- Department Of Pediatric Endocrinology/Genetics, Shanghai Institute For Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Linghua Shen
- Center of Neonatal Disease Screening, Henan Children's Hospital, Zhengzhou, Henan, China
| | - Shengnan Wu
- Center of Neonatal Disease Screening, Henan Children's Hospital, Zhengzhou, Henan, China
| | - Haiyan Wei
- Center of Neonatal Disease Screening, Henan Children's Hospital, Zhengzhou, Henan, China
| | - Yongxing Chen
- Center of Neonatal Disease Screening, Henan Children's Hospital, Zhengzhou, Henan, China
| | - Chiju Yang
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Peng Xu
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Xigui Chen
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Hui Zou
- Center of Neonatal Disease Screening, Jinan Maternal and Child Health Care Hospital, Jinan, China
| | - Jizhen Feng
- Center of Neonatal Disease Screening, Shijiazhuang Maternal and Child Health Care Hospital, Shijiazhuang, China
| | - Tingting Niu
- Center of Neonatal Disease Screening, Shandong Maternal and Child Health Care Hospital, Jinan, China
| | - Haili Hu
- Center of Neonatal Disease Screening, Hefei Maternal and Child Health Care Hospital, Hefei, China
| | - Zhuwen Gong
- Department Of Pediatric Endocrinology/Genetics, Shanghai Institute For Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Ting Chen
- Department Of Pediatric Endocrinology/Genetics, Shanghai Institute For Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Xia Zhan
- Department Of Pediatric Endocrinology/Genetics, Shanghai Institute For Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Xuefan Gu
- Department Of Pediatric Endocrinology/Genetics, Shanghai Institute For Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Lianshu Han
- Department Of Pediatric Endocrinology/Genetics, Shanghai Institute For Pediatric Research, Xinhua Hospital Affiliated To Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| |
Collapse
|
36
|
Gao RQ, Mo ZC, Zhou HK, Yu PF, Wang WD, Dong DH, Yang XS, Li XH, Ji G. A prospective, single-centre, randomized, double-blind controlled study protocol to study whether long-term oral metronidazole can effectively reduce the incidence of postoperative liver metastasis in patients with colorectal cancer. Trials 2023; 24:786. [PMID: 38049888 PMCID: PMC10696766 DOI: 10.1186/s13063-023-07628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/06/2023] [Indexed: 12/06/2023] Open
Abstract
INTRODUCTION Fifteen to 25% of patients with colorectal cancer have combined liver metastases at the time of diagnosis, whereas an additional 15 to 25% will develop liver metastases after curative resection of primary colorectal cancer, with the vast majority (80-90%) of liver metastases unresponsive to curative resection at first. Colorectal cancer liver metastasis is also the leading cause of death in patients with colorectal cancer. In recent years, several studies have demonstrated that intestinal flora, especially Fusobacterium nucleatum, plays a crucial role in the development of colorectal cancer liver metastasis, so we hypothesized that long-term metronidazole use could effectively reduce the incidence of postoperative liver metastasis in colorectal cancer patients. METHODS/DESIGN This study is a prospective, single-centre, randomized, double-blind controlled study in which 300 patients will be randomly assigned to the test group or the control group in a 1:1 allocation ratio. The aim of this trial is to demonstrate that long-term oral antibiotics can effectively reduce the incidence of postoperative liver metastasis in patients with colorectal cancer. ETHICS AND DISSEMINATION Ethics approval was obtained from the Ethics Committee at the Chinese Ethics Committee of Registering Clinical Trials (ChiECRCT20210229). The results of this study will be disseminated at several research conferences and as published articles in peer-reviewed journals. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2100046201. Registered on July 05, 2021.
Collapse
Affiliation(s)
- Rui Qi Gao
- Department of Digestive Surgery, Xi Jing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhen Chang Mo
- Department of Digestive Surgery, Xi Jing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hai Kun Zhou
- Department of Digestive Surgery, Xi Jing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Peng Fei Yu
- Department of Digestive Surgery, Xi Jing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Dong Wang
- Department of Digestive Surgery, Xi Jing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dan Hong Dong
- Department of Digestive Surgery, Xi Jing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xi Sheng Yang
- Department of Digestive Surgery, Xi Jing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiao Hua Li
- Department of Digestive Surgery, Xi Jing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Gang Ji
- Department of Digestive Surgery, Xi Jing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
37
|
Park KC, Crump NT, Louwman N, Krywawych S, Cheong YJ, Vendrell I, Gill EK, Gunadasa-Rohling M, Ford KL, Hauton D, Fournier M, Pires E, Watson L, Roseman G, Holder J, Koschinski A, Carnicer R, Curtis MK, Zaccolo M, Hulikova A, Fischer R, Kramer HB, McCullagh JSO, Trefely S, Milne TA, Swietach P. Disrupted propionate metabolism evokes transcriptional changes in the heart by increasing histone acetylation and propionylation. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1221-1245. [PMID: 38500966 PMCID: PMC7615744 DOI: 10.1038/s44161-023-00365-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/15/2023] [Indexed: 03/20/2024]
Abstract
Propiogenic substrates and gut bacteria produce propionate, a post-translational protein modifier. In this study, we used a mouse model of propionic acidaemia (PA) to study how disturbances to propionate metabolism result in histone modifications and changes to gene expression that affect cardiac function. Plasma propionate surrogates were raised in PA mice, but female hearts manifested more profound changes in acyl-CoAs, histone propionylation and acetylation, and transcription. These resulted in moderate diastolic dysfunction with raised diastolic Ca2+, expanded end-systolic ventricular volume and reduced stroke volume. Propionate was traced to histone H3 propionylation and caused increased acetylation genome-wide, including at promoters of Pde9a and Mme, genes related to contractile dysfunction through downscaled cGMP signaling. The less severe phenotype in male hearts correlated with β-alanine buildup. Raising β-alanine in cultured myocytes treated with propionate reduced propionyl-CoA levels, indicating a mechanistic relationship. Thus, we linked perturbed propionate metabolism to epigenetic changes that impact cardiac function.
Collapse
Affiliation(s)
- Kyung Chan Park
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Nicholas T. Crump
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Present Address: Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Niamh Louwman
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Steve Krywawych
- Department of Chemical Pathology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Yuen Jian Cheong
- Epigenetics & Signalling Programmes, Babraham Institute, Cambridge, UK
| | - Iolanda Vendrell
- Nuffield Department of Medicine, Target Discovery Institute, Oxford, UK
- Nuffield Department of Medicine, Chinese Academy for Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Eleanor K. Gill
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | | | - Kerrie L. Ford
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - David Hauton
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | | | - Lydia Watson
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Gerald Roseman
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - James Holder
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Andreas Koschinski
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Ricardo Carnicer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - M. Kate Curtis
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Manuela Zaccolo
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Alzbeta Hulikova
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Roman Fischer
- Nuffield Department of Medicine, Target Discovery Institute, Oxford, UK
- Nuffield Department of Medicine, Chinese Academy for Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Holger B. Kramer
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Sophie Trefely
- Epigenetics & Signalling Programmes, Babraham Institute, Cambridge, UK
| | - Thomas A. Milne
- MRC Molecular Haematology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
George RP, Winterberg PD, Garro R. Multidisciplinary and multidimensional approaches to transplantation in children with rare genetic kidney diseases. Pediatr Transplant 2023; 27:e14567. [PMID: 37522570 DOI: 10.1111/petr.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 08/01/2023]
Abstract
In this review, we describe the multidisciplinary, multidimensional care required to optimize outcomes for pediatric transplant recipients with rare genetic kidney diseases. Transplant success, recipient survival, and improvement in quality of life depend on collaboration between patients, families, and a team of specialists with medical, as well as nonmedical expertise. A multidisciplinary transplant team composed of experts from medicine, surgery, nursing, nutrition, social services, transplant coordination, psychology, and pharmacology, is now standard in most transplant centers and is critical to the success of a transplant. In addition to these professionals, other specialists, such as cardiologists, urologists, geneticists, metabolic disease specialists, occupational therapists, case management, child life, chaplain, and palliative care services, have a crucial role to play in the preparation, surgery, and follow-up care, especially when a pediatric patient has a rare genetic disorder leading to renal involvement, and the need for transplantation. In order to describe this multidisciplinary care, we divide the genetic renal diseases into five subgroups-metabolic and tubular disorders, glomerular diseases, congenital anomalies of the kidney and urinary tract, ciliopathies including cystic diseases, and miscellaneous renal conditions; and describe for each, the need for care beyond that provided by the standard transplant team members.
Collapse
Affiliation(s)
- Roshan P George
- Division of Pediatric Nephrology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Pamela D Winterberg
- Division of Pediatric Nephrology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Rouba Garro
- Division of Pediatric Nephrology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
39
|
Tummolo A, Carella R, De Giovanni D, Paterno G, Simonetti S, Tolomeo M, Leone P, Barile M. Micronutrient Deficiency in Inherited Metabolic Disorders Requiring Diet Regimen: A Brief Critical Review. Int J Mol Sci 2023; 24:17024. [PMID: 38069347 PMCID: PMC10707160 DOI: 10.3390/ijms242317024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Many inherited metabolic disorders (IMDs), including disorders of amino acid, fatty acid, and carbohydrate metabolism, are treated with a dietary reduction or exclusion of certain macronutrients, putting one at risk of a reduced intake of micronutrients. In this review, we aim to provide available evidence on the most common micronutrient deficits related to specific dietary approaches and on the management of their deficiency, in the meanwhile discussing the main critical points of each nutritional supplementation. The emerging concepts are that a great heterogeneity in clinical practice exists, as well as no univocal evidence on the most common micronutrient abnormalities. In phenylketonuria, for example, micronutrients are recommended to be supplemented through protein substitutes; however, not all formulas are equally supplemented and some of them are not added with micronutrients. Data on pyridoxine and riboflavin status in these patients are particularly scarce. In long-chain fatty acid oxidation disorders, no specific recommendations on micronutrient supplementation are available. Regarding carbohydrate metabolism disorders, the difficult-to-ascertain sugar content in supplementation formulas is still a matter of concern. A ketogenic diet may predispose one to both oligoelement deficits and their overload, and therefore deserves specific formulations. In conclusion, our overview points out the lack of unanimous approaches to micronutrient deficiencies, the need for specific formulations for IMDs, and the necessity of high-quality studies, particularly for some under-investigated deficits.
Collapse
Affiliation(s)
- Albina Tummolo
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy; (R.C.); (D.D.G.); (G.P.)
| | - Rosa Carella
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy; (R.C.); (D.D.G.); (G.P.)
| | - Donatella De Giovanni
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy; (R.C.); (D.D.G.); (G.P.)
| | - Giulia Paterno
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy; (R.C.); (D.D.G.); (G.P.)
| | - Simonetta Simonetti
- Regional Centre for Neonatal Screening, Department of Clinical Pathology and Neonatal Screening, Children’s Hospital “Giovanni XXIII”, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy;
| | - Maria Tolomeo
- Department of Biosciences, Biotechnology and Environment, University of Bari “A. Moro”, via Orabona 4, 70125 Bari, Italy; (M.T.); (P.L.)
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, via P. Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Piero Leone
- Department of Biosciences, Biotechnology and Environment, University of Bari “A. Moro”, via Orabona 4, 70125 Bari, Italy; (M.T.); (P.L.)
| | - Maria Barile
- Department of Biosciences, Biotechnology and Environment, University of Bari “A. Moro”, via Orabona 4, 70125 Bari, Italy; (M.T.); (P.L.)
| |
Collapse
|
40
|
Vos EN, Demirbas D, Mangel M, Gozalbo MER, Levy HL, Berry GT. The treatment of biochemical genetic diseases: From substrate reduction to nucleic acid therapies. Mol Genet Metab 2023; 140:107693. [PMID: 37716025 DOI: 10.1016/j.ymgme.2023.107693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/18/2023]
Abstract
Newborn screening (NBS) began a revolution in the management of biochemical genetic diseases, greatly increasing the number of patients for whom dietary therapy would be beneficial in preventing complications in phenylketonuria as well as in a few similar disorders. The advent of next generation sequencing and expansion of NBS have markedly increased the number of biochemical genetic diseases as well as the number of patients identified each year. With the avalanche of new and proposed therapies, a second wave of options for the treatment of biochemical genetic disorders has emerged. These therapies range from simple substrate reduction to enzyme replacement, and now ex vivo gene therapy with autologous cell transplantation. In some instances, it may be optimal to introduce nucleic acid therapy during the prenatal period to avoid fetopathy. However, as with any new therapy, complications may occur. It is important for physicians and other caregivers, along with ethicists, to determine what new therapies might be beneficial to the patient, and which therapies have to be avoided for those individuals who have less severe problems and for which standard treatments are available. The purpose of this review is to discuss the "Standard" treatment plans that have been in place for many years and to identify the newest and upcoming therapies, to assist the physician and other healthcare workers in making the right decisions regarding the initiation of both the "Standard" and new therapies. We have utilized several diseases to illustrate the applications of these different modalities and discussed for which disorders they may be suitable. The future is bright, but optimal care of the patient, including and especially the newborn infant, requires a deep knowledge of the disease process and careful consideration of the necessary treatment plan, not just based on the different genetic defects but also with regards to different variants within a gene itself.
Collapse
Affiliation(s)
- E Naomi Vos
- Division of Genetics & Genomics, Boston Children's Hospital; and Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States of America; Manton Center for Orphan Disease Research, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Didem Demirbas
- Division of Genetics & Genomics, Boston Children's Hospital; and Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States of America; Manton Center for Orphan Disease Research, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Matthew Mangel
- Division of Genetics & Genomics, Boston Children's Hospital; and Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States of America.
| | - M Estela Rubio Gozalbo
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Centre+, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands; GROW, Maastricht University, Minderbroedersberg 4-6, 6211 LK Maastricht, the Netherlands; MetabERN: European Reference Network for Hereditary Metabolic Disorders, Udine, Italy; UMD: United for Metabolic Diseases Member, Amsterdam, the Netherlands.
| | - Harvey L Levy
- Division of Genetics & Genomics, Boston Children's Hospital; and Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Gerard T Berry
- Division of Genetics & Genomics, Boston Children's Hospital; and Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States of America; Manton Center for Orphan Disease Research, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States of America.
| |
Collapse
|
41
|
Köpfer F, Garbade SF, Klingbeil K, Schmidt-Mader B, Westhoff JH, Okun JG, Zorn M, Hoffmann GF, Peters V, Morath M. Kidney urinary biomarkers in patients with branched-chain amino acid and cobalamin metabolism defects. J Inherit Metab Dis 2023; 46:1078-1088. [PMID: 37603032 DOI: 10.1002/jimd.12672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
There is a clinical need for early detection of chronic kidney disease (CKD) in patients with organic acidurias. We measured kidney markers in a longitudinal study over 5 years in 40 patients with methylmalonic aciduria (Mut0 ), propionic aciduria (PA), cobalamin A (CblA), and cobalamin C (CblC) deficiencies. Neutrophil gelatinase-associated lipocalin (NGAL), calprotectin (CLP), kidney injury molecule-1 (KIM-1), dickkopf-3 (DKK-3), albumin and beta-2-microglobulin (B2MG) in urine, as well as cystatin C (CysC) in serum were quantified. In Mut0 patients, mean concentrations of B2MG, KIM-1, and DKK-3 were elevated compared with healthy controls, all markers indicative of proximal tubule damage. In PA patients, mean B2MG, albumin, and CLP were elevated, indicating signs of proximal tubule and glomerulus damage and inflammation. In CblC patients, mean B2MG, NGAL, and CLP were increased, and considered as markers for proximal and distal tubule damage and inflammation. B2MG, was elevated in all three diseases, and correlated with DKK-3 in Mut0 /CblA and with eGFR(CysC) and KIM-1 in PA patients, respectively. None of the markers were elevated in CblA patients. Significant deterioration of kidney function, as determined by steady increase in CysC concentrations was noted in seven patients within the observation period. None of the investigated biomarker profiles showed a clear increase or added value for early detection. In conclusion, we identified disease-specific biomarker profiles for inflammation, tubular, and proximal damage in the urine of Mut0 , PA, and CblC patients. Whether these biomarkers can be used for early detection of CKD requires further investigation, as significant kidney function deterioration was observed in only a few patients.
Collapse
Affiliation(s)
- Felix Köpfer
- Dietmar-Hopp-Metabolic Center, Centre for Pediatric and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Sven F Garbade
- Dietmar-Hopp-Metabolic Center, Centre for Pediatric and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Kristina Klingbeil
- Dietmar-Hopp-Metabolic Center, Centre for Pediatric and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Brigitte Schmidt-Mader
- Dietmar-Hopp-Metabolic Center, Centre for Pediatric and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Jens H Westhoff
- Dietmar-Hopp-Metabolic Center, Centre for Pediatric and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Jürgen G Okun
- Dietmar-Hopp-Metabolic Center, Centre for Pediatric and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Markus Zorn
- Department of Internal Medicine I (Endocrinology) and Clinical Chemistry, University Hospital, Heidelberg, Germany
| | - Georg F Hoffmann
- Dietmar-Hopp-Metabolic Center, Centre for Pediatric and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Verena Peters
- Dietmar-Hopp-Metabolic Center, Centre for Pediatric and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Marina Morath
- Dietmar-Hopp-Metabolic Center, Centre for Pediatric and Adolescent Medicine, University Hospital, Heidelberg, Germany
| |
Collapse
|
42
|
Barman H, Sikirica V, Carlson K, Silvert E, Carlson KB, Boyer S, Glaser R, Morava E, Wagner T, Lanpher B. Retrospective study of propionic acidemia using natural language processing in Mayo Clinic electronic health record data. Mol Genet Metab 2023; 140:107695. [PMID: 37708666 DOI: 10.1016/j.ymgme.2023.107695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Propionic acidemia (PA) is a rare autosomal recessive organic acidemia that classically presents within the first days of life with a metabolic crisis or via newborn screening and is confirmed with laboratory tests. Limited data exist on the natural history of patients with PA describing presentation, treatments, and clinical outcomes. OBJECTIVE To retrospectively describe the natural history of patients with PA in a clinical setting from a real-world database using both structured and unstructured electronic health record (EHR) data using novel data extraction techniques in a unique care setting. DESIGN/METHODS This retrospective study used EHR data to identify patients with PA seen at the Mayo Clinic. Unstructured clinical text (medical notes, pathology reports) were analyzed using augmented curation natural language processing models to enhance analysis of data extracted by structured data fields (International Classification of Diseases 9th or 10th revision [ICD-9/-10] codes, Current Procedural Terminology [CPT] codes, and medication orders). De-identified health records were also manually reviewed by clinical scientists to ensure data accuracy and completeness. The index date was defined as the patient's date of PA diagnosis at the Mayo Clinic. Results were reported as aggregate descriptive statistics relative to patients' index dates. Complications, therapeutic interventions, laboratory tests, procedures, and hospitalization encounters related to PA were described at and within 6 months of the patient's index date, and from medical history available before the index date. RESULTS In total, 13 patients with PA were identified, with visits occurring from 1998 to 2022. Age at diagnosis ranged from birth to 3 years; age at initial evaluation at the Mayo Clinic ranged from 3 days to 28 years. The mean number of Mayo Clinic outpatient visits was 31 (median duration of care, 2 years). PA-related complications were documented in 85% of patients and included nutritional difficulties (46%), metabolic decompensation events (MDEs; 38%), neurologic abnormalities (38%), and cardiomyopathy (7%). One pair of affected siblings had mild symptoms and no complications or MDEs. All 5 patients with a history of MDEs presented with developmental delays. Among patients with MDEs, the mean frequency of outpatient clinical care visits was 10 per year, and 3 patients required inpatient hospitalization (mean duration, 16 days). The incidence of severe complications was higher among patients with MDEs than those without MDEs. Of the patients with MDEs, 2 experienced crises while receiving treatment at the Mayo Clinic, with 9 total MDEs occurring between the 2 patients. Symptoms at presentation included hyperammonemia (78%), fever and/or decreased nutritional intake (67%), hyperglycemia/hypoglycemia (56%), intercurrent upper respiratory infection and/or lethargy (44%), constipation (33%), altered mental status (33%), and cough (33%). CONCLUSIONS This study highlights the range and frequency of clinical outcomes experienced by patients with PA and demonstrates the clinical burden of MDEs.
Collapse
Affiliation(s)
- Hannah Barman
- nference, One Main Street, Suite 400, East Arcade, 4th Floor, Cambridge, MA 02142, USA
| | - Vanja Sikirica
- Moderna, Inc., 200 Technology Sq, Cambridge, MA 02139, USA
| | - Katherine Carlson
- nference, One Main Street, Suite 400, East Arcade, 4th Floor, Cambridge, MA 02142, USA
| | - Eli Silvert
- nference, One Main Street, Suite 400, East Arcade, 4th Floor, Cambridge, MA 02142, USA
| | | | - Suzanne Boyer
- Division of Clinical Genomics, Mayo Clinic, 19th Floor, 200 First St. SW, Rochester, MN 55905, USA
| | - Ruchira Glaser
- Moderna, Inc., 200 Technology Sq, Cambridge, MA 02139, USA
| | - Eva Morava
- Division of Clinical Genomics, Mayo Clinic, 19th Floor, 200 First St. SW, Rochester, MN 55905, USA
| | - Tyler Wagner
- nference, One Main Street, Suite 400, East Arcade, 4th Floor, Cambridge, MA 02142, USA.
| | - Brendan Lanpher
- Division of Clinical Genomics, Mayo Clinic, 19th Floor, 200 First St. SW, Rochester, MN 55905, USA
| |
Collapse
|
43
|
Rossi A, Basilicata S, Borrelli M, Ferreira CR, Blau N, Santamaria F. Clinical and biochemical footprints of inherited metabolic diseases. XIII. Respiratory manifestations. Mol Genet Metab 2023; 140:107655. [PMID: 37517329 DOI: 10.1016/j.ymgme.2023.107655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
At any age, respiratory manifestations are a major cause of increased morbidity and mortality of inherited metabolic diseases (IMDs). Type and severity are extremely variable, this depending on the type of the underlying disorder. Symptoms and signs originating from upper or lower airways and/or thoracic wall and/or respiratory muscles involvement can occur either at presentation or in the late clinical course. Acute respiratory symptoms can trigger metabolic decompensation which, in turn, makes airway symptoms worse, creating a vicious circle. We have identified 181 IMDs associated with various types of respiratory symptoms which were classified into seven groups according to the type of clinical manifestations affecting the respiratory system: (i) respiratory failure, (ii) restrictive lung disease, (iii) interstitial lung disease, (iv) lower airway disease, (v) upper airway obstruction, (vi) apnea, and (vii) other. We also provided a list of investigations to be performed based on the respiratory phenotypes and indicated the therapeutic strategies currently available for IMD-associated airway disease. This represents the thirteenth issue in a series of educational summaries providing a comprehensive and updated list of metabolic differential diagnoses according to system involvement.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Simona Basilicata
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Melissa Borrelli
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland.
| | - Francesca Santamaria
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
44
|
Baker PR. Recognizing and Managing a Metabolic Crisis. Pediatr Clin North Am 2023; 70:979-993. [PMID: 37704355 DOI: 10.1016/j.pcl.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
In some relatively common inborn errors of metabolism there can be the accumulation of toxic compounds including ammonia and organic acids such as lactate and ketoacids, as well as energy deficits at the cellular level. The clinical presentation is often referred to as a metabolic emergency or crisis. Fasting and illness can result in encephalopathy within hours, and without appropriate recognition and intervention, the outcome may be permanent disability or death. This review outlines easy and readily available means of recognizing and diagnosing a metabolic emergency as well as general guidelines for management. Disease-specific interventions focus on parenteral nutrition to reverse catabolism, toxin removal strategies, and vitamin/nutrition supplementation.
Collapse
Affiliation(s)
- Peter R Baker
- University of Colorado, Children's Hospital Colorado, 13123 East 16th Avenue, Box 300, Aurora, CO 80045, USA.
| |
Collapse
|
45
|
Ding S, Ling S, Liang L, Qiu W, Zhang H, Chen T, Zhan X, Xu F, Gu X, Han L. Late-onset cblC defect: clinical, biochemical and molecular analysis. Orphanet J Rare Dis 2023; 18:306. [PMID: 37770946 PMCID: PMC10536707 DOI: 10.1186/s13023-023-02890-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND cblC defect is the most common type of methylmalonic acidemia in China. Patients with late-onset form (>1 year) are often misdiagnosed due to heterogeneous symptoms. This study aimed to describe clinical characteristics and evaluate long-term outcomes of Chinese patients with late-onset cblC defect. METHODS A total of 85 patients with late-onset cblC defect were enrolled. Clinical data, including manifestations, metabolites, molecular diagnosis, treatment and outcome, were summarized and analyzed. RESULTS The age of onset ranged from 2 to 32.8 years old (median age 8.6 years, mean age 9.4 years). The time between first symptoms and diagnosis ranged from a few days to 20 years (median time 2 months, mean time 20.7 months). Neuropsychiatric symptoms were presented as first symptoms in 68.2% of cases, which were observed frequently in schoolchildren or adolescents. Renal involvement and cardiovascular disease were observed in 20% and 8.2% of cases, respectively, which occurred with the highest prevalence in preschool children. Besides the initial symptoms, the disease progressed in most patients and cognitive decline became the most frequent symptom overall. The levels of propionylcarnitine, propionylcarnitine / acetylcarnitine ratio, methylmalonic acid, methylcitric acid and homocysteine, were decreased remarkably after treatment (P<0.001). Twenty-four different mutations of MMACHC were identified in 78 patients, two of which were novel. The c.482G>A variant was the most frequent mutated allele in this cohort (25%). Except for 16 patients who recovered completely, the remaining patients were still left with varying degrees of sequelae in a long-term follow-up. The available data from 76 cases were analyzed by univariate analysis and multivariate logistic regression analysis, and the results showed that the time from onset to diagnosis (OR = 1.025, P = 0. 024) was independent risk factors for poor outcomes. CONCLUSIONS The diagnosis of late-onset cblC defect is often delayed due to poor awareness of its various and nonspecific symptoms, thus having an adverse effect on the prognosis. It should be considered in patients with unexplained neuropsychiatric and other conditions such as renal involvement, cardiovascular diseases or even multiple organ damage. The c.482G>A variant shows the highest frequency in these patients. Prompt treatment appears to be beneficial.
Collapse
Affiliation(s)
- Si Ding
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Shiying Ling
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Ting Chen
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Xia Zhan
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Feng Xu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China.
| |
Collapse
|
46
|
Zhang Y, Peng C, Wang L, Chen S, Wang J, Tian Z, Wang C, Chen X, Zhu S, Zhang GF, Wang Y. Prevalence of propionic acidemia in China. Orphanet J Rare Dis 2023; 18:281. [PMID: 37689673 PMCID: PMC10493020 DOI: 10.1186/s13023-023-02898-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/31/2023] [Indexed: 09/11/2023] Open
Abstract
Propionic acidemia (PA) is a rare autosomal recessive congenital disease caused by mutations in the PCCA or PCCB genes. Elevated propionylcarnitine, 2-methylcitric acid (2MCA), propionylglycine, glycine and 3-hydroxypropionate can be used to diagnose PA. Early-onset PA can lead to acute deterioration, metabolic acidosis, and hyperammonemia shortly after birth, which can result in high mortality and disability. Late-onset cases of PA have a more heterogeneous clinical spectra, including growth retardation, intellectual disability, seizures, basal ganglia lesions, pancreatitis, cardiomyopathy, arrhythmias, adaptive immune defects, rhabdomyolysis, optic atrophy, hearing loss, premature ovarian failure, and chronic kidney disease. Timely and accurate diagnosis and appropriate treatment are crucial to saving patients' lives and improving their prognosis. Recently, the number of reported PA cases in China has increased due to advanced diagnostic techniques and increased research attention. However, an overview of PA prevalence in China is lacking. Therefore, this review provides an overview of recent advances in the pathogenesis, diagnostic strategies, and treatment of PA, including epidemiological data on PA in China. The most frequent variants among Chinese PA patients are c.2002G > A in PCCA and c.1301C > T in PCCB, which are often associated with severe clinical symptoms. At present, liver transplantation from a living (heterozygous parental) donor is a better option for treating PA in China, especially for those exhibiting a severe metabolic phenotype and/or end-organ dysfunction. However, a comprehensive risk-benefit analysis should be conducted as an integral part of the decision-making process. This review will provide valuable information for the medical care of Chinese patients with PA.
Collapse
Affiliation(s)
- Yixing Zhang
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Chuwen Peng
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Lifang Wang
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Sitong Chen
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Junwei Wang
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Ziheng Tian
- School of Clinical Medicine, Jining Medical University, Shandong, 272067, China
| | - Chuangong Wang
- School of Basic Medicine, Jining Medical University, 133 Hehua Road, Shandong, 272067, China
- Jining Key Laboratory of Pharmacology, Jining Medical University, Shandong, 272067, China
| | - Xiaoxin Chen
- Surgical Research Lab, Department of Surgery, Cooper University Hospital, Camden, NJ, 08103, USA
- Coriell Institute for Medical Research, Camden, NJ, 08103, USA
- MD Anderson Cancer Center at Cooper, Camden, NJ, 08103, USA
- Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| | - Suhong Zhu
- School of Basic Medicine, Jining Medical University, 133 Hehua Road, Shandong, 272067, China.
- Jining Key Laboratory of Pharmacology, Jining Medical University, Shandong, 272067, China.
| | - Guo-Fang Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Carmichael Building 48-203, 300 North Duke Street, Durham, NC, 27701, USA.
- Department of Medicine, Division of Endocrinology, Metabolism Nutrition, Duke University Medical Center, Durham, NC, 27701, USA.
| | - You Wang
- School of Basic Medicine, Jining Medical University, 133 Hehua Road, Shandong, 272067, China.
- Jining Key Laboratory of Pharmacology, Jining Medical University, Shandong, 272067, China.
| |
Collapse
|
47
|
Pang Y, Meng F, Guo Y, Zhou F. Anesthetic management of a pediatric patient with methylmalonic acidemia combined with hyperhomocysteinemia: A case report. Clin Case Rep 2023; 11:e7924. [PMID: 37744624 PMCID: PMC10514376 DOI: 10.1002/ccr3.7924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023] Open
Abstract
Methylmalonic acidemia (MMA) combined with hyperhomocysteinemia is an autosomal recessive genetic disease which can lead to metabolic acidosis, elevated lactate, and high blood ammonia level. This anesthetic management was mainly how to maintain the stable state of perioperative physiological metabolism of such patients.
Collapse
Affiliation(s)
- Yunting Pang
- Department of AnesthesiologyJinan Maternal and Child Health Care HospitalJinanChina
| | - Fanqing Meng
- Department of AnesthesiologyJinan Maternal and Child Health Care HospitalJinanChina
| | - Yaqiu Guo
- Department of AnesthesiologyJinan Maternal and Child Health Care HospitalJinanChina
| | - Feng Zhou
- Department of AnesthesiologyJinan Maternal and Child Health Care HospitalJinanChina
| |
Collapse
|
48
|
Houten SM, Dodatko T, Dwyer W, Violante S, Chen H, Stauffer B, DeVita RJ, Vaz FM, Cross JR, Yu C, Leandro J. Acyl-CoA dehydrogenase substrate promiscuity: Challenges and opportunities for development of substrate reduction therapy in disorders of valine and isoleucine metabolism. J Inherit Metab Dis 2023; 46:931-942. [PMID: 37309295 PMCID: PMC10526699 DOI: 10.1002/jimd.12642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/04/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Toxicity of accumulating substrates is a significant problem in several disorders of valine and isoleucine degradation notably short-chain enoyl-CoA hydratase (ECHS1 or crotonase) deficiency, 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) deficiency, propionic acidemia (PA), and methylmalonic aciduria (MMA). Isobutyryl-CoA dehydrogenase (ACAD8) and short/branched-chain acyl-CoA dehydrogenase (SBCAD, ACADSB) function in the valine and isoleucine degradation pathways, respectively. Deficiencies of these acyl-CoA dehydrogenase (ACAD) enzymes are considered biochemical abnormalities with limited or no clinical consequences. We investigated whether substrate reduction therapy through inhibition of ACAD8 and SBCAD can limit the accumulation of toxic metabolic intermediates in disorders of valine and isoleucine metabolism. Using analysis of acylcarnitine isomers, we show that 2-methylenecyclopropaneacetic acid (MCPA) inhibited SBCAD, isovaleryl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase and medium-chain acyl-CoA dehydrogenase, but not ACAD8. MCPA treatment of wild-type and PA HEK-293 cells caused a pronounced decrease in C3-carnitine. Furthermore, deletion of ACADSB in HEK-293 cells led to an equally strong decrease in C3-carnitine when compared to wild-type cells. Deletion of ECHS1 in HEK-293 cells caused a defect in lipoylation of the E2 component of the pyruvate dehydrogenase complex, which was not rescued by ACAD8 deletion. MCPA was able to rescue lipoylation in ECHS1 KO cells, but only in cells with prior ACAD8 deletion. SBCAD was not the sole ACAD responsible for this compensation, which indicates substantial promiscuity of ACADs in HEK-293 cells for the isobutyryl-CoA substrate. Substrate promiscuity appeared less prominent for 2-methylbutyryl-CoA at least in HEK-293 cells. We suggest that pharmacological inhibition of SBCAD to treat PA should be investigated further.
Collapse
Affiliation(s)
- Sander M. Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William Dwyer
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara Violante
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Hongjie Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brandon Stauffer
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert J. DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Frédéric M. Vaz
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children’s Hospital, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Justin R. Cross
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
49
|
Marchuk H, Wang Y, Ladd ZA, Chen X, Zhang GF. Pathophysiological mechanisms of complications associated with propionic acidemia. Pharmacol Ther 2023; 249:108501. [PMID: 37482098 PMCID: PMC10529999 DOI: 10.1016/j.pharmthera.2023.108501] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Propionic acidemia (PA) is a genetic metabolic disorder caused by mutations in the mitochondrial enzyme, propionyl-CoA carboxylase (PCC), which is responsible for converting propionyl-CoA to methylmalonyl-CoA for further metabolism in the tricarboxylic acid cycle. When this process is disrupted, propionyl-CoA and its metabolites accumulate, leading to a variety of complications including life-threatening cardiac diseases and other metabolic strokes. While the clinical symptoms and diagnosis of PA are well established, the underlying pathophysiological mechanisms of PA-induced diseases are not fully understood. As a result, there are currently few effective therapies for PA beyond dietary restriction. This review focuses on the pathophysiological mechanisms of the various complications associated with PA, drawing on extensive research and clinical reports. Most research suggests that propionyl-CoA and its metabolites can impair mitochondrial energy metabolism and cause cellular damage by inducing oxidative stress. However, direct evidence from in vivo studies is still lacking. Additionally, elevated levels of ammonia can be toxic, although not all PA patients develop hyperammonemia. The discovery of pathophysiological mechanisms underlying various complications associated with PA can aid in the development of more effective therapeutic treatments. The consequences of elevated odd-chain fatty acids in lipid metabolism and potential gene expression changes mediated by histone propionylation also warrant further investigation.
Collapse
Affiliation(s)
- Hannah Marchuk
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - You Wang
- Jining Key Laboratory of Pharmacology, Jining Medical University, Shandong 272067, China.; School of Basic Medicine, Jining Medical University, Shandong 272067, China
| | - Zachary Alec Ladd
- Surgical Research Lab, Department of Surgery, Cooper University Healthcare and Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Xiaoxin Chen
- Surgical Research Lab, Department of Surgery, Cooper University Healthcare and Cooper Medical School of Rowan University, Camden, NJ 08103, USA; Coriell Institute for Medical Research, Camden, NJ 08103, USA; MD Anderson Cancer Center at Cooper, Camden, NJ 08103, USA.
| | - Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, and Metabolism Nutrition, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
50
|
Lucienne M, Gerlini R, Rathkolb B, Calzada-Wack J, Forny P, Wueest S, Kaech A, Traversi F, Forny M, Bürer C, Aguilar-Pimentel A, Irmler M, Beckers J, Sauer S, Kölker S, Dewulf JP, Bommer GT, Hoces D, Gailus-Durner V, Fuchs H, Rozman J, Froese DS, Baumgartner MR, de Angelis MH. Insights into energy balance dysregulation from a mouse model of methylmalonic aciduria. Hum Mol Genet 2023; 32:2717-2734. [PMID: 37369025 PMCID: PMC10460489 DOI: 10.1093/hmg/ddad100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Inherited disorders of mitochondrial metabolism, including isolated methylmalonic aciduria, present unique challenges to energetic homeostasis by disrupting energy-producing pathways. To better understand global responses to energy shortage, we investigated a hemizygous mouse model of methylmalonyl-CoA mutase (Mmut)-type methylmalonic aciduria. We found Mmut mutant mice to have reduced appetite, energy expenditure and body mass compared with littermate controls, along with a relative reduction in lean mass but increase in fat mass. Brown adipose tissue showed a process of whitening, in line with lower body surface temperature and lesser ability to cope with cold challenge. Mutant mice had dysregulated plasma glucose, delayed glucose clearance and a lesser ability to regulate energy sources when switching from the fed to fasted state, while liver investigations indicated metabolite accumulation and altered expression of peroxisome proliferator-activated receptor and Fgf21-controlled pathways. Together, these shed light on the mechanisms and adaptations behind energy imbalance in methylmalonic aciduria and provide insight into metabolic responses to chronic energy shortage, which may have important implications for disease understanding and patient management.
Collapse
Affiliation(s)
- Marie Lucienne
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- radiz – Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Raffaele Gerlini
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Patrick Forny
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology and Children’s Research Center, University Children's Hospital, University of Zurich, 8032 Zurich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Florian Traversi
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Merima Forny
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Céline Bürer
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
| | - Antonio Aguilar-Pimentel
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sven Sauer
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Joseph P Dewulf
- Department of Biochemistry, de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium
- Department of Laboratory Medicine, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Guido T Bommer
- Department of Biochemistry, de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium
| | - Daniel Hoces
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Rozman
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - D Sean Froese
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- radiz – Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 8032 Zurich, Switzerland
- radiz – Rare Disease Initiative Zurich, Clinical Research Priority Program for Rare Diseases, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|