1
|
Šenk U, Čižman B, Writzl K, Tekavčič Pompe M. Genetic background of high myopia in children. PLoS One 2024; 19:e0313121. [PMID: 39495751 PMCID: PMC11534203 DOI: 10.1371/journal.pone.0313121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/19/2024] [Indexed: 11/06/2024] Open
Abstract
OBJECTIVE High myopia is a significant risk factor for irreversible vision loss and can occur in isolation or as a component of various syndromes. However, the genetic basis of early-onset high myopia remains poorly understood. We aimed to identify the causative genetic variants for high myopia in a cohort of Slovenian children. METHODS The study included children referred to a tertiary paediatric ophthalmology centre at the University Eye Clinic in Ljubljana between 2010 and 2022. The participants met the following inclusion criteria: age ≤ 15 years and high myopia ≤-5.0 D before the age of 10 years. Genetic analysis included exome sequencing and/or molecular karyotyping. Participants were categorized based on clinical presentation: high myopia with systemic involvement, high myopia with ocular involvement, and isolated high myopia. RESULTS Genetic analysis of 36 probands revealed a genetic cause of high myopia in 22 (61.1%) children. Among those with systemic involvement (50.0%), genetic causes were identified in 13 out of 18 children, with Stickler's and Pitt-Hopkins being the most common syndromes. Among cases of high myopia with ocular involvement (38.9%), a genetic cause was found in 8 out of 14 probands, including (likely) pathogenic variants in genes related to retinal dystrophies (CACNA1F, RPGR, RP2, NDP). The non-syndromic ARR3- associated high myopia was identified in the isolated high myopia group. CONCLUSIONS A genetic cause of high myopia was identified in 61.1% of children tested, demonstrating the value of genetic testing in this population for diagnosis and proactive counseling.
Collapse
Affiliation(s)
- Urh Šenk
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Bernard Čižman
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Karin Writzl
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Clinical Institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Manca Tekavčič Pompe
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Eye Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Saidin A, Papazovska Cherepnalkovski A, Shaukat Z, Arsov T, Hussain R, Roberts BJ, Bucat M, Cogelja K, Ricos MG, Dibbens LM. A Novel Pathogenic TUBA1A Variant in a Croatian Infant Is Linked to a Severe Tubulinopathy with Walker-Warburg-like Features. Genes (Basel) 2024; 15:1031. [PMID: 39202391 PMCID: PMC11353499 DOI: 10.3390/genes15081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Tubulinopathies are associated with malformations of cortical development but not Walker-Warburg Syndrome. Intensive monitoring of a Croatian infant presenting as Walker-Warburg Syndrome in utero began at 21 weeks due to increased growth of cerebral ventricles and foetal biparietal diameter. Monitoring continued until Caesarean delivery at 34 weeks where the infant was eutrophic. Clinical assessment of a progressive neurological disorder of unknown aetiology found a macrocephalic head and markedly hypoplastic genitalia with a micropenis. Neurological examination showed generalized hypotonia with very rare spontaneous movements, hypotonia-induced respiratory insufficiency and ventilator dependence, and generalized myoclonus intensifying during manipulation. With clinical features of hypotonia, lissencephaly, and brain malformations, Walker-Warburg Syndrome was suspected; however, eye anomalies were absent. Genetic trio analysis via whole-exome sequencing only identified a novel de novo mutation in the TUBA1A gene (NM_006009.4:c.848A>G; NP_006000.2:p.His283Arg) in the infant, who died at 2 months of age, as the likely cause. We report a previously unpublished, very rare heterozygous TUBA1A mutation with clinical features of macrocephaly and hypoplastic genitalia which have not previously been associated with the gene. The absence of eye phenotypes or mutations in Walker-Warburg-associated genes confirm this as not a new presentation of Walker-Warburg Syndrome but a novel TUBA1A tubulinopathy for neonatologists to be aware of.
Collapse
Affiliation(s)
- Akzam Saidin
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia; (A.S.); (Z.S.); (R.H.); (M.G.R.)
- Novocraft Technologies, Petaling Jaya 46300, Malaysia
| | - Anet Papazovska Cherepnalkovski
- Department of Neonatology, Clinic for Gynecology and Obstetrics, Clinical Hospital Center Split, 21000 Split, Croatia; (A.P.C.); (M.B.); (K.C.)
- Department of Health Studies, University of Split, 21000 Split, Croatia
| | - Zeeshan Shaukat
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia; (A.S.); (Z.S.); (R.H.); (M.G.R.)
| | - Todor Arsov
- Faculty of Medical Sciences, University Goce Delcev in Shtip, 2000 Shtip, North Macedonia;
| | - Rashid Hussain
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia; (A.S.); (Z.S.); (R.H.); (M.G.R.)
| | - Ben J. Roberts
- Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia;
| | - Marija Bucat
- Department of Neonatology, Clinic for Gynecology and Obstetrics, Clinical Hospital Center Split, 21000 Split, Croatia; (A.P.C.); (M.B.); (K.C.)
| | - Klara Cogelja
- Department of Neonatology, Clinic for Gynecology and Obstetrics, Clinical Hospital Center Split, 21000 Split, Croatia; (A.P.C.); (M.B.); (K.C.)
| | - Michael G. Ricos
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia; (A.S.); (Z.S.); (R.H.); (M.G.R.)
| | - Leanne M. Dibbens
- Epilepsy Research Group, Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia; (A.S.); (Z.S.); (R.H.); (M.G.R.)
| |
Collapse
|
3
|
Ren S, Kong Y, Liu R, Li Q, Shen X, Kong QX. Lissencephaly caused by a de novo mutation in tubulin TUBA1A: a case report and literature review. Front Pediatr 2024; 12:1367305. [PMID: 38813542 PMCID: PMC11135126 DOI: 10.3389/fped.2024.1367305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Tubulin plays an essential role in cortical development, and TUBA1A encodes a major neuronal α-tubulin. Neonatal mutations in TUBA1A are associated with severe brain malformations, and approximately 70% of patients with reported cases of TUBA1A mutations exhibit lissencephaly. We report the case of a 1-year-old boy with the TUBA1A nascent mutation c.1204C >T, p.Arg402Cys, resulting in lissencephaly, developmental delay, and seizures, with a brain MRI showing normal cortical formation in the bilateral frontal lobes, smooth temporo-parieto-occipital gyri and shallow sulcus. This case has not been described in any previous report; thus, the present case provides new insights into the broad disease phenotype and diagnosis associated with TUBA1A mutations. In addition, we have summarized the gene mutation sites, neuroradiological findings, and clinical details of cases previously described in the literature and discussed the differences that exist between individual cases of TUBA1A mutations through a longitudinal comparative analysis of similar cases. The complexity of the disease is revealed, and the importance of confirming the genetic diagnosis from the beginning of the disease is emphasized, which can effectively shorten the diagnostic delay and help clinicians provide genetic and therapeutic counseling.
Collapse
Affiliation(s)
- Sijing Ren
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Neurosciences, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Yu Kong
- Department of Imaging, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Ruihan Liu
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Qiubo Li
- Department of Imaging, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xuehua Shen
- Department of Imaging, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Qing-Xia Kong
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Neurosciences, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
4
|
Venkatesan C, Cortezzo D, Habli M, Agarwal S. Interdisciplinary fetal neurology care: Current practice, challenges, and future directions. Semin Fetal Neonatal Med 2024; 29:101523. [PMID: 38604916 DOI: 10.1016/j.siny.2024.101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
As the field of fetal-neonatal neurology has expanded over the past 2 decades with increasingly complex diagnoses, multidisciplinary collaboration with many subspecialties including genetics, neonatology, obstetrics, maternal fetal medicine, surgical sub-specialties, cardiology, radiology, palliative care, and ethics has needed to evolve to strive to offer optimal patient care. While comprehensive care delivery with an inter-disciplinary approach is preferred, there are often barriers based on numerous health disparities especially in resource limited settings. Even in the context of comprehensive care, diagnostic and prognostic uncertainty lead to challenges for providers during fetal neurology consultations. We present a case that highlights advantages of a comprehensive multi-disciplinary team in caring for the medical and social challenges of patients faced with a fetal neurologic diagnosis. Inter-disciplinary training focusing on maternal, fetal, neonatal, and childhood neurodevelopmental course and collaboration among the numerous stakeholders that contribute to fetal neurology practice is needed to provide optimal counseling and care for families faced with a fetal neurological diagnosis.
Collapse
Affiliation(s)
- Charu Venkatesan
- Pediatrics and Neurology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, United States.
| | - DonnaMaria Cortezzo
- Pediatrics and Neonatology, Divisions of Neonatal Pulmonary Biology and Pain and Palliative Medicine, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, United States
| | - Mounira Habli
- Trihealth Fetal Care Center. Maternal Fetal Medicine Division, Co-Chair of Perinatal Research Committee at Good Samaritan Hospital, Principal Investigator of the NICHD MFMU Satellite Unit, Department of Pediatric Surgery, Fetal Care Center of Cincinnati, Cincinnati Children's Hospital Medical Center, University of Cincinnati, United States
| | - Sonika Agarwal
- Neurology and Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, United States.
| |
Collapse
|
5
|
McKenna ED, Sarbanes SL, Cummings SW, Roll-Mecak A. The Tubulin Code, from Molecules to Health and Disease. Annu Rev Cell Dev Biol 2023; 39:331-361. [PMID: 37843925 DOI: 10.1146/annurev-cellbio-030123-032748] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Microtubules are essential dynamic polymers composed of α/β-tubulin heterodimers. They support intracellular trafficking, cell division, cellular motility, and other essential cellular processes. In many species, both α-tubulin and β-tubulin are encoded by multiple genes with distinct expression profiles and functionality. Microtubules are further diversified through abundant posttranslational modifications, which are added and removed by a suite of enzymes to form complex, stereotyped cellular arrays. The genetic and chemical diversity of tubulin constitute a tubulin code that regulates intrinsic microtubule properties and is read by cellular effectors, such as molecular motors and microtubule-associated proteins, to provide spatial and temporal specificity to microtubules in cells. In this review, we synthesize the rapidly expanding tubulin code literature and highlight limitations and opportunities for the field. As complex microtubule arrays underlie essential physiological processes, a better understanding of how cells employ the tubulin code has important implications for human disease ranging from cancer to neurological disorders.
Collapse
Affiliation(s)
- Elizabeth D McKenna
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Stephanie L Sarbanes
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Steven W Cummings
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Pavone P, Striano P, Cacciaguerra G, Marino SD, Parano E, Pappalardo XG, Falsaperla R, Ruggieri M. Case report: Structural brain abnormalities in TUBA1A-tubulinopathies: a narrative review. Front Pediatr 2023; 11:1210272. [PMID: 37744437 PMCID: PMC10515619 DOI: 10.3389/fped.2023.1210272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Tubulin genes have been related to severe neurological complications and the term "tubulinopathy" now refers to a heterogeneous group of disorders involving an extensive family of tubulin genes with TUBA1A being the most common. A review was carried out on the complex and severe brain abnormalities associated with this genetic anomaly. Methods A literature review of the cases of TUBA1A-tubulopathy was performed to investigate the molecular findings linked with cerebral anomalies and to describe the clinical and neuroradiological features related to this genetic disorder. Results Clinical manifestations of TUBA1A-tubulinopathy patients are heterogeneous and severe ranging from craniofacial dysmorphism, notable developmental delay, and intellectual delay to early-onset seizures, neuroradiologically associated with complex abnormalities. TUBA1A-tubulinopathy may display various and complex cortical and subcortical malformations. Discussion A range of clinical manifestations related to different cerebral structures involved may be observed in patients with TUBA1A-tubulinopathy. Genotype-phenotype correlations are discussed here. Individuals with cortical and subcortical anomalies should be screened also for pathogenic variants in TUBA1A.
Collapse
Affiliation(s)
- Piero Pavone
- Section of Pediatrics and Child Neuropsychiatry, Department of Child and Experimental Medicine, University of Catania, Catania, Italy
- National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Unit of Catania, Catania, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto “G. Gaslini”, Genova, Italy
| | - Giovanni Cacciaguerra
- Section of Pediatrics and Child Neuropsychiatry, Department of Child and Experimental Medicine, University of Catania, Catania, Italy
| | - Simona Domenica Marino
- Pediatrics and Pediatric Emergency Department, University Hospital, A.U.O “Policlinico-Vittorio Emanuele”, Catania, Italy
| | - Enrico Parano
- National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Unit of Catania, Catania, Italy
| | - Xena Giada Pappalardo
- National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Unit of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Pediatrics and Pediatric Emergency Department, University Hospital, A.U.O “Policlinico-Vittorio Emanuele”, Catania, Italy
| | - Martino Ruggieri
- Section of Pediatrics and Child Neuropsychiatry, Department of Child and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
7
|
Zocchi R, Bellacchio E, Piccione M, Scardigli R, D’Oria V, Petrini S, Baranano K, Bertini E, Sferra A. Novel loss of function mutation in TUBA1A gene compromises tubulin stability and proteostasis causing spastic paraplegia and ataxia. Front Cell Neurosci 2023; 17:1162363. [PMID: 37435044 PMCID: PMC10332271 DOI: 10.3389/fncel.2023.1162363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
Microtubules are dynamic cytoskeletal structures involved in several cellular functions, such as intracellular trafficking, cell division and motility. More than other cell types, neurons rely on the proper functioning of microtubules to conduct their activities and achieve complex morphologies. Pathogenic variants in genes encoding for α and β-tubulins, the structural subunits of microtubules, give rise to a wide class of neurological disorders collectively known as "tubulinopathies" and mainly involving a wide and overlapping range of brain malformations resulting from defective neuronal proliferation, migration, differentiation and axon guidance. Although tubulin mutations have been classically linked to neurodevelopmental defects, growing evidence demonstrates that perturbations of tubulin functions and activities may also drive neurodegeneration. In this study, we causally link the previously unreported missense mutation p.I384N in TUBA1A, one of the neuron-specific α-tubulin isotype I, to a neurodegenerative disorder characterized by progressive spastic paraplegia and ataxia. We demonstrate that, in contrast to the p.R402H substitution, which is one of the most recurrent TUBA1A pathogenic variants associated to lissencephaly, the present mutation impairs TUBA1A stability, reducing the abundance of TUBA1A available in the cell and preventing its incorporation into microtubules. We also show that the isoleucine at position 384 is an amino acid residue, which is critical for α-tubulin stability, since the introduction of the p.I384N substitution in three different tubulin paralogs reduces their protein level and assembly into microtubules, increasing their propensity to aggregation. Moreover, we demonstrate that the inhibition of the proteasome degradative systems increases the protein levels of TUBA1A mutant, promoting the formation of tubulin aggregates that, as their size increases, coalesce into inclusions that precipitate within the insoluble cellular fraction. Overall, our data describe a novel pathogenic effect of p.I384N mutation that differs from the previously described substitutions in TUBA1A, and expand both phenotypic and mutational spectrum related to this gene.
Collapse
Affiliation(s)
- Riccardo Zocchi
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Emanuele Bellacchio
- Molecular Genetics and Functional Genomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Michela Piccione
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | - Raffaella Scardigli
- Consiglio Nazionale delle Ricerche (CNR), Institute of Translational Pharmacology (IFT), Rome, Italy
- European Brain Research Institute (EBRI) “Rita Levi-Montalcini,” Rome, Italy
| | - Valentina D’Oria
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | - Stefania Petrini
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | - Kristin Baranano
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Enrico Bertini
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonella Sferra
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
8
|
Vogel GF, Mozer-Glassberg Y, Landau YE, Schlieben LD, Prokisch H, Feichtinger RG, Mayr JA, Brennenstuhl H, Schröter J, Pechlaner A, Alkuraya FS, Baker JJ, Barcia G, Baric I, Braverman N, Burnyte B, Christodoulou J, Ciara E, Coman D, Das AM, Darin N, Della Marina A, Distelmaier F, Eklund EA, Ersoy M, Fang W, Gaignard P, Ganetzky RD, Gonzales E, Howard C, Hughes J, Konstantopoulou V, Kose M, Kerr M, Khan A, Lenz D, McFarland R, Margolis MG, Morrison K, Müller T, Murayama K, Nicastro E, Pennisi A, Peters H, Piekutowska-Abramczuk D, Rötig A, Santer R, Scaglia F, Schiff M, Shagrani M, Sharrard M, Soler-Alfonso C, Staufner C, Storey I, Stormon M, Taylor RW, Thorburn DR, Teles EL, Wang JS, Weghuber D, Wortmann S. Genotypic and phenotypic spectrum of infantile liver failure due to pathogenic TRMU variants. Genet Med 2023; 25:100314. [PMID: 36305855 DOI: 10.1016/j.gim.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE This study aimed to define the genotypic and phenotypic spectrum of reversible acute liver failure (ALF) of infancy resulting from biallelic pathogenic TRMU variants and determine the role of cysteine supplementation in its treatment. METHODS Individuals with biallelic (likely) pathogenic variants in TRMU were studied within an international retrospective collection of de-identified patient data. RESULTS In 62 individuals, including 30 previously unreported cases, we described 47 (likely) pathogenic TRMU variants, of which 17 were novel, and 1 intragenic deletion. Of these 62 individuals, 42 were alive at a median age of 6.8 (0.6-22) years after a median follow-up of 3.6 (0.1-22) years. The most frequent finding, occurring in all but 2 individuals, was liver involvement. ALF occurred only in the first year of life and was reported in 43 of 62 individuals; 11 of whom received liver transplantation. Loss-of-function TRMU variants were associated with poor survival. Supplementation with at least 1 cysteine source, typically N-acetylcysteine, improved survival significantly. Neurodevelopmental delay was observed in 11 individuals and persisted in 4 of the survivors, but we were unable to determine whether this was a primary or a secondary consequence of TRMU deficiency. CONCLUSION In most patients, TRMU-associated ALF was a transient, reversible disease and cysteine supplementation improved survival.
Collapse
Affiliation(s)
- Georg F Vogel
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria; Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| | - Yael Mozer-Glassberg
- Institute for Gastroenterology, Nutrition and Liver diseases, Schneider Children's Medical Center of Israel, Petah Tiqwa, Israel
| | - Yuval E Landau
- Metabolism Service, Schneider Children's Medical Center of Israel, Petah Tiqwa, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lea D Schlieben
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - René G Feichtinger
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Johannes A Mayr
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Heiko Brennenstuhl
- Division of Neuropaediatrics and Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany; Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Julian Schröter
- Division of Paediatric Epileptology, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Agnes Pechlaner
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Joshua J Baker
- Division of Genetics, Birth Defects and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Giulia Barcia
- Department of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Hospital, Université Paris Cité, Paris, France; Institut Imagine, INSERM UMR 1163, Paris, France
| | - Ivo Baric
- Department of Pediatrics, School of Medicine, University Hospital Center Zagreb and University of Zagreb, Zagreb, Croatia
| | - Nancy Braverman
- Division of Medical Genetics, Department of Pediatrics and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Birute Burnyte
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Elzbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - David Coman
- Faculty of Medicine, Queensland Children's Hospital, University of Queensland, Herston, Brisbane, Queensland, Australia
| | - Anibh M Das
- Department of Paediatrics, Paediatric Metabolic Medicine, Hannover Medical School, Hannover, Germany
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Adela Della Marina
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- und Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University Dusseldorf, Dusseldorf, Germany
| | - Erik A Eklund
- Section for Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Melike Ersoy
- Department of Pediatrics, Division of Pediatric Metabolism, University of Health Sciences, Bakırkoy Dr. Sadi Konuk Training and Research, Istanbul, Turkey
| | - Weiyan Fang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Pauline Gaignard
- Department of Biochemistry, Reference Center for Mitochondrial Disease, FILNEMUS, Bicêtre University Hospital, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, Paris, France
| | - Rebecca D Ganetzky
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA; Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Emmanuel Gonzales
- Pediatric Hepatology and Pediatric Liver Transplantation Unit, Reference Center for Mitochondrial Disease, FILNEMUS, Bicêtre University Hospital, University of Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, Paris, France; Inserm U1193, Hepatinov, University Paris-Saclay, Orsay, Paris, France
| | - Caoimhe Howard
- Children's Health Ireland, Temple Street Hospital, Dublin, Ireland
| | - Joanne Hughes
- Children's Health Ireland, Temple Street Hospital, Dublin, Ireland
| | | | - Melis Kose
- Division of Inborn Errors of Metabolism, Department of Pediatrics, İzmir Katip Çelebi University, Izmir, Turkey; Division of Genetics, Department of Pediatrics, Ege University, Izmir, Turkey
| | - Marina Kerr
- Discovery DNA, Metabolics and Genetics in Canada (M.A.G.I.C.) Clinic Ltd, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aneal Khan
- Discovery DNA, Metabolics and Genetics in Canada (M.A.G.I.C.) Clinic Ltd, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dominic Lenz
- Division of Neuropaediatrics and Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Merav Gil Margolis
- Institute of Endocrinology and Diabetes, National Center of Childhood Diabetes Schneider Children's Medical Center of Israel, Petah Tiqwa, Israel
| | - Kevin Morrison
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Midori-ku, Chiba, Japan
| | - Emanuele Nicastro
- Pediatric Hepatology, Gastroenterology and Transplantation, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandra Pennisi
- Department of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Hospital, Université Paris Cité, Paris, France; Institut Imagine, INSERM UMR 1163, Paris, France
| | - Heidi Peters
- Department of Metabolic Medicine, Royal Children's Hospital, Melbourne, Victoria, Australia
| | | | - Agnès Rötig
- Institut Imagine, INSERM UMR 1163, Paris, France
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong SAR
| | - Manuel Schiff
- Department of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Necker Hospital, Université Paris Cité, Paris, France; Institut Imagine, INSERM UMR 1163, Paris, France; Reference Center of Inherited Metabolic Disorders, Necker Hospital, Université Paris Cité, Paris, France
| | - Mohmmad Shagrani
- Department of Liver & Small Bowel Health Centre King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mark Sharrard
- Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom
| | | | - Christian Staufner
- Division of Neuropaediatrics and Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Imogen Storey
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Michael Stormon
- Department of Gastroenterology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - David R Thorburn
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Elisa Leao Teles
- Inherited Metabolic Diseases Reference Centre, São João Hospital University Centre, EPE, Porto, Portugal
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Daniel Weghuber
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Saskia Wortmann
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria; Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Tantry MSA, Santhakumar K. Insights on the Role of α- and β-Tubulin Isotypes in Early Brain Development. Mol Neurobiol 2023; 60:3803-3823. [PMID: 36943622 DOI: 10.1007/s12035-023-03302-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/05/2023] [Indexed: 03/23/2023]
Abstract
Tubulins are the highly conserved subunit of microtubules which involve in various fundamental functions including brain development. Microtubules help in neuronal proliferation, migration, differentiation, cargo transport along the axons, synapse formation, and many more. Tubulin gene family consisting of multiple isotypes, their differential expression and varied post translational modifications create a whole new level of complexity and diversity in accomplishing manifold neuronal functions. The studies on the relation between tubulin genes and brain development opened a new avenue to understand the role of each tubulin isotype in neurodevelopment. Mutations in tubulin genes are reported to cause brain development defects especially cortical malformations, referred as tubulinopathies. There is an increased need to understand the molecular correlation between various tubulin mutations and the associated brain pathology. Recently, mutations in tubulin isotypes (TUBA1A, TUBB, TUBB1, TUBB2A, TUBB2B, TUBB3, and TUBG1) have been linked to cause various neurodevelopmental defects like lissencephaly, microcephaly, cortical dysplasia, polymicrogyria, schizencephaly, subcortical band heterotopia, periventricular heterotopia, corpus callosum agenesis, and cerebellar hypoplasia. This review summarizes on the microtubule dynamics, their role in neurodevelopment, tubulin isotypes, post translational modifications, and the role of tubulin mutations in causing specific neurodevelopmental defects. A comprehensive list containing all the reported tubulin pathogenic variants associated with brain developmental defects has been prepared to give a bird's eye view on the broad range of tubulin functions.
Collapse
Affiliation(s)
- M S Ananthakrishna Tantry
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Kirankumar Santhakumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
| |
Collapse
|
10
|
Janakiraman V, Sudhan M, Alzahrani KJ, Alshammeri S, Ahmed SSSJ, Patil S. Dynamics of TUBB protein with five majorly occurring natural variants: a risk of cortical dysplasia. J Mol Model 2023; 29:100. [PMID: 36928665 DOI: 10.1007/s00894-023-05506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Beta-tubulin (TUBB) protein is one of the components of the microtubule cytoskeleton that plays a critical role in the central nervous system. Genetic variants of TUBB cause cortical dysplasia, a developmental brain defect implicated in axonal guidance and the neuron migration. In this study, we assess pathogenic variants (Q15K, Y222F, M299V, V353I, and E401K) of TUBB protein and compared with non-pathogenic variant G235S to determine their impact on protein dynamic to cause cortical dysplasia. Among the analyzed variants, Q15K, Y222F, M299V, and E401K were noticed to have deleterious effect. Then, variant structures were modeled and their affinity with their known cofactor Guanosine-5'-triphosphate (GTP) was assessed which showed diverse binding energies ranged between (-7.436 to -6.950 kcal/mol) for the variants compared to wild-type (-7.428 kcal/mol). Finally, the molecular dynamics simulation of each variant was investigated which showed difference in trajectory between the pathogenic and non-pathogenic variant. Our analysis suggests change in amino acid residue of TUBB structure has notably affects the protein flexibility and their interactions with known cofactor. Overall, our findings provide insight on the relationship between TUBB variants and their structural dynamics that may cause diverse effects leading to cortical dysplasia.
Collapse
Affiliation(s)
- V Janakiraman
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - M Sudhan
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Saleh Alshammeri
- Department of Optometry, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Shiek S S J Ahmed
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, USA
| |
Collapse
|
11
|
Agarwal S, Tarui T, Patel V, Turner A, Nagaraj U, Venkatesan C. Prenatal Neurological Diagnosis: Challenges in Neuroimaging, Prognostic Counseling, and Prediction of Neurodevelopmental Outcomes. Pediatr Neurol 2023; 142:60-67. [PMID: 36934462 DOI: 10.1016/j.pediatrneurol.2023.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023]
Abstract
Prenatal diagnosis of fetal brain abnormalities is rapidly evolving with the advancement of neuroimaging techniques, thus adding value to prognostic counseling and perinatal management. However, challenges and uncertainties persist in prenatal counseling due to limitations of prenatal imaging, continued development and maturation of the brain structure, and the heterogeneity and paucity of outcome studies. This topical review of fetal neurological consultations highlights prenatally diagnosed brain abnormalities that challenged prognostic counseling and perinatal management. Representative cases across multiple centers that highlighted diagnostic challenges were selected. Charts were reviewed for neuroimaging, genetic evaluation, prenatal prognostic discussion, postnatal imaging and testing, and infant outcome. We present case studies with prenatal and postnatal information discussing prenatal testing, fetal MRI interpretation, and complexities in the prognostic counseling process. Advocating for large-scale multicenter studies and a national collaborative fetal neurological registry to help guide the ever-expanding world of prenatal diagnostics and prognostic counseling is critical to this field. Study of large-scale outcomes data from such a registry can better guide fetal neurological consultations and facilitate comprehensive multidisciplinary planning and program development for educational curriculum for fetal-neonatal neurology.
Collapse
Affiliation(s)
- Sonika Agarwal
- Division of Neurology & Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Division of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Tomo Tarui
- Division of Pediatric Neurology, Department of Pediatrics, Tufts Medical Center, Boston, Massachusetts; Department of Pediatrics, Tufts University School of Medicine, Boston, Massachusetts
| | - Virali Patel
- Division of Neurology & Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Abigail Turner
- Department of Neurology, Children's National Medical Center, Washington, District of Columbia
| | - Usha Nagaraj
- Department of Radiology and Medical Imaging, Cincinnati Children's Hospital, Cincinnati, Ohio; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Charu Venkatesan
- Division of Neurology, Cincinnati Children's Hospital, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
12
|
Zocchi R, Compagnucci C, Bertini E, Sferra A. Deciphering the Tubulin Language: Molecular Determinants and Readout Mechanisms of the Tubulin Code in Neurons. Int J Mol Sci 2023; 24:ijms24032781. [PMID: 36769099 PMCID: PMC9917122 DOI: 10.3390/ijms24032781] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Microtubules (MTs) are dynamic components of the cell cytoskeleton involved in several cellular functions, such as structural support, migration and intracellular trafficking. Despite their high similarity, MTs have functional heterogeneity that is generated by the incorporation into the MT lattice of different tubulin gene products and by their post-translational modifications (PTMs). Such regulations, besides modulating the tubulin composition of MTs, create on their surface a "biochemical code" that is translated, through the action of protein effectors, into specific MT-based functions. This code, known as "tubulin code", plays an important role in neuronal cells, whose highly specialized morphologies and activities depend on the correct functioning of the MT cytoskeleton and on its interplay with a myriad of MT-interacting proteins. In recent years, a growing number of mutations in genes encoding for tubulins, MT-interacting proteins and enzymes that post-translationally modify MTs, which are the main players of the tubulin code, have been linked to neurodegenerative processes or abnormalities in neural migration, differentiation and connectivity. Nevertheless, the exact molecular mechanisms through which the cell writes and, downstream, MT-interacting proteins decipher the tubulin code are still largely uncharted. The purpose of this review is to describe the molecular determinants and the readout mechanisms of the tubulin code, and briefly elucidate how they coordinate MT behavior during critical neuronal events, such as neuron migration, maturation and axonal transport.
Collapse
Affiliation(s)
- Riccardo Zocchi
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Research Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| | - Antonella Sferra
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| |
Collapse
|
13
|
Brock S, Laquerriere A, Marguet F, Myers SJ, Hongjie Y, Baralle D, Vanderhasselt T, Stouffs K, Keymolen K, Kim S, Allen J, Shaulsky G, Chelly J, Marcorelle P, Aziza J, Villard L, Sacaze E, de Wit MCY, Wilke M, Mancini GMS, Hehr U, Lim D, Mansour S, Traynelis SF, Beneteau C, Denis-Musquer M, Jansen AC, Fry AE, Bahi-Buisson N. Overlapping cortical malformations in patients with pathogenic variants in GRIN1 and GRIN2B. J Med Genet 2023; 60:183-192. [PMID: 35393335 PMCID: PMC10642159 DOI: 10.1136/jmedgenet-2021-107971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 03/16/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Malformations of cortical development (MCDs) have been reported in a subset of patients with pathogenic heterozygous variants in GRIN1 or GRIN2B, genes which encode for subunits of the N-methyl-D-aspartate receptor (NMDAR). The aim of this study was to further define the phenotypic spectrum of NMDAR-related MCDs. METHODS We report the clinical, radiological and molecular features of 7 new patients and review data on 18 previously reported individuals with NMDAR-related MCDs. Neuropathological findings for two individuals with heterozygous variants in GRIN1 are presented. We report the clinical and neuropathological features of one additional individual with homozygous pathogenic variants in GRIN1. RESULTS Heterozygous variants in GRIN1 and GRIN2B were associated with overlapping severe clinical and imaging features, including global developmental delay, epilepsy, diffuse dysgyria, dysmorphic basal ganglia and hippocampi. Neuropathological examination in two fetuses with heterozygous GRIN1 variants suggests that proliferation as well as radial and tangential neuronal migration are impaired. In addition, we show that neuronal migration is also impaired by homozygous GRIN1 variants in an individual with microcephaly with simplified gyral pattern. CONCLUSION These findings expand our understanding of the clinical and imaging features of the 'NMDARopathy' spectrum and contribute to our understanding of the likely underlying pathogenic mechanisms leading to MCD in these patients.
Collapse
Affiliation(s)
- Stefanie Brock
- Department of Pathology, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
| | - Annie Laquerriere
- Normandy Centre for Genomic and Personalized Medicine, INSERM U1245, Rouen, France
- Department of Pathology, Rouen University Hospital, Rouen, France
| | - Florent Marguet
- Normandy Centre for Genomic and Personalized Medicine, INSERM U1245, Rouen, France
- Department of Pathology, Rouen University Hospital, Rouen, France
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
| | - Yuan Hongjie
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
| | - Diana Baralle
- Human Development and Health, University of Southampton, Southampton, UK
| | - Tim Vanderhasselt
- Department of Radiology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Katrien Stouffs
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Reproduction and Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Kathelijn Keymolen
- Center for Reproduction and Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Sukhan Kim
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
| | - James Allen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
| | - Gil Shaulsky
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
| | - Jamel Chelly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U1258, Université de Strasbourg, Strasbourg, France
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaire de Strasbourg, Strasbourg, France
| | - Pascale Marcorelle
- Service d'Anatomie Pathologique, Centre Hospitalier Universitaire de Brest; Laboratoire Neurosciences de Brest, Université de Brest, Brest, France
| | - Jacqueline Aziza
- Department of Pathology, University Institute for Cancer, Toulouse, France
| | - Laurent Villard
- Inserm, Marseille Medical Genetics Center, Aix-Marseille University, Marseille, France
- Department of Medical Genetics, La Timone Children's Hospital, Marseille, France
| | - Elise Sacaze
- Department of Pediatrics, Centre Hospitalier Universitaire de Brest, Brest, France
| | - Marie C Y de Wit
- Department of Pediatric Neurology, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Ute Hehr
- Center for Human Genetics, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Derek Lim
- West Midlands Regional Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospitals NHS Foundation Trust, University of Southampton, Southampton, UK
| | - Sahar Mansour
- SW Thames Regional Genetics Service, University of London St George's Molecular and Clinical Sciences Research Institute, London, UK
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine Atlanta, Atlanta, Georgia, USA
| | - Claire Beneteau
- Département de Génétique, Hôpital Universitaire de Nantes, Nantes, France
- UF de Fœtopathologie et Génétique, CHU Nantes, Nantes, France
| | - Marie Denis-Musquer
- UF de Fœtopathologie et Génétique, CHU Nantes, Nantes, France
- Department of Pathology, CHU Nantes, Nantes, France
| | - Anna C Jansen
- Pediatric Neurology Unit, Universitair Ziekenhuis Antwerpen, Antwerp, Belgium
| | - Andrew E Fry
- Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Nadia Bahi-Buisson
- Pediatric Neurology, Necker Enfants Malades Hospital, Université de Paris, Paris, France
- Embryology and Genetics of Congenital Malformations, Institut Imagine (INSERM UMR-1163), Paris, France
| |
Collapse
|
14
|
Exploring the Genetic Causality of Discordant Phenotypes in Familial Apparently Balanced Translocation Cases Using Whole Exome Sequencing. Genes (Basel) 2022; 14:genes14010082. [PMID: 36672823 PMCID: PMC9859009 DOI: 10.3390/genes14010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Familial apparently balanced translocations (ABTs) are usually not associated with a phenotype; however, rarely, ABTs segregate with discordant phenotypes in family members carrying identical rearrangements. The current study was a follow-up investigation of four familial ABTs, where whole exome sequencing (WES) was implemented as a diagnostic tool to identify the underlying genetic aetiology of the patients' phenotypes. Data were analysed using an in-house bioinformatics pipeline alongside VarSome Clinical. WES findings were validated with Sanger sequencing, while the impact of splicing and missense variants was assessed by reverse-transcription PCR and in silico tools, respectively. Novel candidate variants were identified in three families. In family 1, it was shown that the de novo pathogenic STXBP1 variant (NM_003165.6:c.1110+2T>G) affected splicing and segregated with the patient's phenotype. In family 2, a likely pathogenic TUBA1A variant (NM_006009.4:c.875C>T, NP_006000.2:p.(Thr292Ile)) could explain the patient's symptoms. In family 3, an SCN1A variant of uncertain significance (NM_006920.6:c.5060A>G, NP_008851.3:p.(Glu1687Gly)) required additional evidence to sufficiently support causality. This first report of WES application in familial ABT carriers with discordant phenotypes supported our previous findings describing such rearrangements as coincidental. Thus, WES can be recommended as a complementary test to find the monogenic cause of aberrant phenotypes in familial ABT carriers.
Collapse
|
15
|
Khalaf-Nazzal R, Fasham J, Inskeep KA, Blizzard LE, Leslie JS, Wakeling MN, Ubeyratna N, Mitani T, Griffith JL, Baker W, Al-Hijawi F, Keough KC, Gezdirici A, Pena L, Spaeth CG, Turnpenny PD, Walsh JR, Ray R, Neilson A, Kouranova E, Cui X, Curiel DT, Pehlivan D, Akdemir ZC, Posey JE, Lupski JR, Dobyns WB, Stottmann RW, Crosby AH, Baple EL. Bi-allelic CAMSAP1 variants cause a clinically recognizable neuronal migration disorder. Am J Hum Genet 2022; 109:2068-2079. [PMID: 36283405 PMCID: PMC9674946 DOI: 10.1016/j.ajhg.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/27/2022] [Indexed: 01/26/2023] Open
Abstract
Non-centrosomal microtubules are essential cytoskeletal filaments that are important for neurite formation, axonal transport, and neuronal migration. They require stabilization by microtubule minus-end-targeting proteins including the CAMSAP family of molecules. Using exome sequencing on samples from five unrelated families, we show that bi-allelic CAMSAP1 loss-of-function variants cause a clinically recognizable, syndromic neuronal migration disorder. The cardinal clinical features of the syndrome include a characteristic craniofacial appearance, primary microcephaly, severe neurodevelopmental delay, cortical visual impairment, and seizures. The neuroradiological phenotype comprises a highly recognizable combination of classic lissencephaly with a posterior more severe than anterior gradient similar to PAFAH1B1(LIS1)-related lissencephaly and severe hypoplasia or absence of the corpus callosum; dysplasia of the basal ganglia, hippocampus, and midbrain; and cerebellar hypodysplasia, similar to the tubulinopathies, a group of monogenic tubulin-associated disorders of cortical dysgenesis. Neural cell rosette lineages derived from affected individuals displayed findings consistent with these phenotypes, including abnormal morphology, decreased cell proliferation, and neuronal differentiation. Camsap1-null mice displayed increased perinatal mortality, and RNAScope studies identified high expression levels in the brain throughout neurogenesis and in facial structures, consistent with the mouse and human neurodevelopmental and craniofacial phenotypes. Together our findings confirm a fundamental role of CAMSAP1 in neuronal migration and brain development and define bi-allelic variants as a cause of a clinically distinct neurodevelopmental disorder in humans and mice.
Collapse
Affiliation(s)
- Reham Khalaf-Nazzal
- Biomedical Sciences Department, Faculty of Medicine, Arab American University of Palestine, Jenin P227, Palestine
| | - James Fasham
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust (Heavitree Hospital), Gladstone Road, Exeter EX1 2ED, UK
| | - Katherine A Inskeep
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Institute for Genomic Medicine at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Lauren E Blizzard
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA
| | - Joseph S Leslie
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK
| | - Matthew N Wakeling
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK
| | - Nishanka Ubeyratna
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer L Griffith
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wisam Baker
- Paediatrics Department, Dr. Khalil Suleiman Government Hospital, Jenin, Palestine
| | - Fida' Al-Hijawi
- Paediatrics Community Outpatient Clinics, Palestinian Ministry of Health, Jenin, Palestine
| | - Karen C Keough
- Department of Pediatrics, Dell Medical School, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA; Child Neurology Consultants of Austin, 7940 Shoal Creek Boulevard, Suite 100, Austin, TX 78757, USA
| | - Alper Gezdirici
- Department of Medical Genetics, Başakşehir Çam and Sakura City Hospital, 34480 Istanbul, Turkey
| | - Loren Pena
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Christine G Spaeth
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Peter D Turnpenny
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust (Heavitree Hospital), Gladstone Road, Exeter EX1 2ED, UK
| | - Joseph R Walsh
- Department of Neurological Surgery, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Randall Ray
- Departments of Pediatrics and Medical Genetics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amber Neilson
- Genome Engineering & Stem Cell Center, Department of Genetics, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Evguenia Kouranova
- Genome Engineering & Stem Cell Center, Department of Genetics, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Xiaoxia Cui
- Genome Engineering & Stem Cell Center, Department of Genetics, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - David T Curiel
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA; Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - William B Dobyns
- Departments of Pediatrics and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Rolf W Stottmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Institute for Genomic Medicine at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Andrew H Crosby
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK
| | - Emma L Baple
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust (Heavitree Hospital), Gladstone Road, Exeter EX1 2ED, UK.
| |
Collapse
|
16
|
Hoff KJ, Neumann AJ, Moore JK. The molecular biology of tubulinopathies: Understanding the impact of variants on tubulin structure and microtubule regulation. Front Cell Neurosci 2022; 16:1023267. [PMID: 36406756 PMCID: PMC9666403 DOI: 10.3389/fncel.2022.1023267] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022] Open
Abstract
Heterozygous, missense mutations in both α- and β-tubulin genes have been linked to an array of neurodevelopment disorders, commonly referred to as "tubulinopathies." To date, tubulinopathy mutations have been identified in three β-tubulin isotypes and one α-tubulin isotype. These mutations occur throughout the different genetic domains and protein structures of these tubulin isotypes, and the field is working to address how this molecular-level diversity results in different cellular and tissue-level pathologies. Studies from many groups have focused on elucidating the consequences of individual mutations; however, the field lacks comprehensive models for the molecular etiology of different types of tubulinopathies, presenting a major gap in diagnosis and treatment. This review highlights recent advances in understanding tubulin structural dynamics, the roles microtubule-associated proteins (MAPs) play in microtubule regulation, and how these are inextricably linked. We emphasize the value of investigating interactions between tubulin structures, microtubules, and MAPs to understand and predict the impact of tubulinopathy mutations at the cell and tissue levels. Microtubule regulation is multifaceted and provides a complex set of controls for generating a functional cytoskeleton at the right place and right time during neurodevelopment. Understanding how tubulinopathy mutations disrupt distinct subsets of those controls, and how that ultimately disrupts neurodevelopment, will be important for establishing mechanistic themes among tubulinopathies that may lead to insights in other neurodevelopment disorders and normal neurodevelopment.
Collapse
Affiliation(s)
| | | | - Jeffrey K. Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
17
|
Attard TJ, Welburn JPI, Marsh JA. Understanding molecular mechanisms and predicting phenotypic effects of pathogenic tubulin mutations. PLoS Comput Biol 2022; 18:e1010611. [PMID: 36206299 PMCID: PMC9581425 DOI: 10.1371/journal.pcbi.1010611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/19/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
Cells rely heavily on microtubules for several processes, including cell division and molecular trafficking. Mutations in the different tubulin-α and -β proteins that comprise microtubules have been associated with various diseases and are often dominant, sporadic and congenital. While the earliest reported tubulin mutations affect neurodevelopment, mutations are also associated with other disorders such as bleeding disorders and infertility. We performed a systematic survey of tubulin mutations across all isotypes in order to improve our understanding of how they cause disease, and increase our ability to predict their phenotypic effects. Both protein structural analyses and computational variant effect predictors were very limited in their utility for differentiating between pathogenic and benign mutations. This was even worse for those genes associated with non-neurodevelopmental disorders. We selected tubulin-α and -β disease mutations that were most poorly predicted for experimental characterisation. These mutants co-localise to the mitotic spindle in HeLa cells, suggesting they may exert dominant-negative effects by altering microtubule properties. Our results show that tubulin mutations represent a blind spot for current computational approaches, being much more poorly predicted than mutations in most human disease genes. We suggest that this is likely due to their strong association with dominant-negative and gain-of-function mechanisms.
Collapse
Affiliation(s)
- Thomas J. Attard
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Julie P. I. Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Joseph A. Marsh
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Pânzaru MC, Popa S, Lupu A, Gavrilovici C, Lupu VV, Gorduza EV. Genetic heterogeneity in corpus callosum agenesis. Front Genet 2022; 13:958570. [PMID: 36246626 PMCID: PMC9562966 DOI: 10.3389/fgene.2022.958570] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
The corpus callosum is the largest white matter structure connecting the two cerebral hemispheres. Agenesis of the corpus callosum (ACC), complete or partial, is one of the most common cerebral malformations in humans with a reported incidence ranging between 1.8 per 10,000 livebirths to 230–600 per 10,000 in children and its presence is associated with neurodevelopmental disability. ACC may occur as an isolated anomaly or as a component of a complex disorder, caused by genetic changes, teratogenic exposures or vascular factors. Genetic causes are complex and include complete or partial chromosomal anomalies, autosomal dominant, autosomal recessive or X-linked monogenic disorders, which can be either de novo or inherited. The extreme genetic heterogeneity, illustrated by the large number of syndromes associated with ACC, highlight the underlying complexity of corpus callosum development. ACC is associated with a wide spectrum of clinical manifestations ranging from asymptomatic to neonatal death. The most common features are epilepsy, motor impairment and intellectual disability. The understanding of the genetic heterogeneity of ACC may be essential for the diagnosis, developing early intervention strategies, and informed family planning. This review summarizes our current understanding of the genetic heterogeneity in ACC and discusses latest discoveries.
Collapse
Affiliation(s)
- Monica-Cristina Pânzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Setalia Popa
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- *Correspondence: Setalia Popa, ; Vasile Valeriu Lupu,
| | - Ancuta Lupu
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Cristina Gavrilovici
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Vasile Valeriu Lupu
- Department of Pediatrics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- *Correspondence: Setalia Popa, ; Vasile Valeriu Lupu,
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
19
|
Maillard C, Roux CJ, Charbit-Henrion F, Steffann J, Laquerriere A, Quazza F, Buisson NB. Tubulin mutations in human neurodevelopmental disorders. Semin Cell Dev Biol 2022; 137:87-95. [PMID: 35915025 DOI: 10.1016/j.semcdb.2022.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
Abstract
Mutations causing dysfunction of tubulins and microtubule-associated proteins, also known as tubulinopathies, are a group of recently described entities that lead to complex brain malformations. Anatomical and functional consequences of the disruption of tubulins include microcephaly, combined with abnormal corticogenesis due to impaired migration or lamination and abnormal growth cone dynamics of projecting and callosal axons. Key imaging features of tubulinopathies are characterized by three major patterns of malformations of cortical development (MCD): lissencephaly, microlissencephaly, and dysgyria. Additional distinctive MRI features include dysmorphism of the basal ganglia, midline commissural structure hypoplasia or agenesis, and cerebellar and brainstem hypoplasia. Tubulinopathies can be diagnosed as early as 21-24 gestational weeks using imaging and neuropathology, with possible extreme microlissencephaly with an extremely thin cortex, lissencephaly with either thick or thin/intermediate cortex, and dysgyria combined with cerebellar hypoplasia, pons hypoplasia and corpus callosum dysgenesis. More than 100 MCD-associated mutations have been reported in TUBA1A, TUBB2B, or TUBB3 genes, whereas fewer than ten are known in other genes such TUBB2A, TUBB or TUBG1. Although these mutations are scattered along the α- and β-tubulin sequences, recurrent mutations are consistently associated with almost identical cortical dysgenesis. Much of the evidence supports that these mutations alter the dynamic properties and functions of microtubules in several fashions. These include diminishing the abundance of functional tubulin heterodimers, altering GTP binding, altering longitudinal and lateral protofilament interactions, and impairing microtubule interactions with kinesin and/or dynein motors or with MAPs. In this review we discuss the recent advances in our understanding of the effects of mutations of tubulins and microtubule-associated proteins on human brain development and the pathogenesis of malformations of cortical development.
Collapse
Affiliation(s)
- Camille Maillard
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
| | - Charles Joris Roux
- Pediatric Radiology, Necker Enfants Malades University Hospital, Université de Paris, Paris, France
| | - Fabienne Charbit-Henrion
- Université de Paris, Sorbonne Paris Cité, Imagine INSERM UMR1163, Service de Génétique Moléculaire, Groupe hospitalier Necker-Enfants Malades, AP-HP, France
| | - Julie Steffann
- Université de Paris, Sorbonne Paris Cité, Imagine INSERM UMR1163, Service de Génétique Moléculaire, Groupe hospitalier Necker-Enfants Malades, AP-HP, France
| | - Annie Laquerriere
- Pathology Laboratory, Rouen University Hospital, Rouen, France; NeoVasc Region-Inserm Team ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, University of Rouen, Rouen, France
| | - Floriane Quazza
- Pediatric Neurology, Necker Enfants Malades University Hospital, Université de Paris, Paris, France
| | - Nadia Bahi Buisson
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France; Pediatric Neurology, Necker Enfants Malades University Hospital, Université de Paris, Paris, France.
| |
Collapse
|
20
|
Weber M, Jaber D, Encha-Razavi F, Julien E, Grevoul-Fesquet J, Steffann J, Melki J, Martinovic J. Broadening the phenotypic spectrum of TUBA1A tubulinopathy to syndromic arthrogryposis multiplex congenita. Am J Med Genet A 2022; 188:2331-2338. [PMID: 35686685 DOI: 10.1002/ajmg.a.62866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/01/2022] [Accepted: 04/28/2022] [Indexed: 11/06/2022]
Abstract
The recent finding that some patients with fetal akinesia deformation sequence (FADS) carry variants in the TUBB2B gene has prompted us to add to the existing literature a first description of two fetal FADS cases carrying TUBA1A variants. Hitherto, only isolated cortical malformations have been described with TUBA1A mutation, including microlissencephaly, lissencephaly, central pachygyria and polymicrogyria-like cortical dysplasia, generalized polymicrogyria cortical dysplasia, and/or the "simplified" gyral pattern. The neuropathology of our fetal cases shows several common features of tubulinopathies, in particular, the dysmorphism of the basal ganglia, as the most pathognomonic sign. The cortical ribbon anomalies were extremely severe and concordant with the complex cortical malformation. In conclusion, we broaden the phenotypic spectrum of TUBA1A variants, to include FADS.
Collapse
Affiliation(s)
- Mathilde Weber
- Unit of Embryo-Fetal Pathology, AP-HP, Antoine Béclère Hospital, Clamart, France.,Department of Obstetrics and Gynecology, AP-HP, Antoine Béclère Hospital, Clamart, France
| | - Dana Jaber
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin Bicêtre, France
| | | | - Emmanuel Julien
- Department of Obstetrics and Gynecology, CH du Mans, Le Mans, France
| | - Julie Grevoul-Fesquet
- Department of Obstetrics and Gynecology, CH Sud Francilien, Corbeil-Essonnes, France
| | - Julie Steffann
- Department of Molecular Genetics, AP-HP, Necker-Enfants Malades Hospital, Paris University, Paris, France
| | - Judith Melki
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Jelena Martinovic
- Unit of Embryo-Fetal Pathology, AP-HP, Antoine Béclère Hospital, Clamart, France.,Institut National de la Santé et de la Recherche Médicale (Inserm), UMR-1195, Université Paris Saclay, Le Kremlin Bicêtre, France
| |
Collapse
|
21
|
Delprato A, Xiao E, Manoj D. Connecting DCX, COMT and FMR1 in social behavior and cognitive impairment. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2022; 18:7. [PMID: 35590332 PMCID: PMC9121553 DOI: 10.1186/s12993-022-00191-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Genetic variants of DCX, COMT and FMR1 have been linked to neurodevelopmental disorders related to intellectual disability and social behavior. In this systematic review we examine the roles of the DCX, COMT and FMR1 genes in the context of hippocampal neurogenesis with respect to these disorders with the aim of identifying important hubs and signaling pathways that may bridge these conditions. Taken together our findings indicate that factors connecting DCX, COMT, and FMR1 in intellectual disability and social behavior may converge at Wnt signaling, neuron migration, and axon and dendrite morphogenesis. Data derived from genomic research has identified a multitude of genes that are linked to brain disorders and developmental differences. Information about where and how these genes function and cooperate is lagging behind. The approach used here may help to shed light on the biological underpinnings in which key genes interface and may prove useful for the testing of specific hypotheses.
Collapse
Affiliation(s)
- Anna Delprato
- Department of Research and Education, BioScience Project, Wakefield, MA, 01880, USA.
| | - Emily Xiao
- Department of Research and Education, BioScience Project, Wakefield, MA, 01880, USA.,Alexander Mackenzie High School, Richmond Hill, ON, 14519, Canada
| | - Devika Manoj
- Department of Research and Education, BioScience Project, Wakefield, MA, 01880, USA.,Lambert High School, Suwanee, GA, 30024, USA
| |
Collapse
|
22
|
Hoff KJ, Aiken JE, Gutierrez MA, Franco SJ, Moore JK. Tubulinopathy mutations in TUBA1A that disrupt neuronal morphogenesis and migration override XMAP215/Stu2 regulation of microtubule dynamics. eLife 2022; 11:76189. [PMID: 35511030 PMCID: PMC9236607 DOI: 10.7554/elife.76189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Heterozygous, missense mutations in α- or β-tubulin genes are associated with a wide range of human brain malformations, known as tubulinopathies. We seek to understand whether a mutation’s impact at the molecular and cellular levels scale with the severity of brain malformation. Here, we focus on two mutations at the valine 409 residue of TUBA1A, V409I, and V409A, identified in patients with pachygyria or lissencephaly, respectively. We find that ectopic expression of TUBA1A-V409I/A mutants disrupt neuronal migration in mice and promote excessive neurite branching and a decrease in the number of neurite retraction events in primary rat neuronal cultures. These neuronal phenotypes are accompanied by increased microtubule acetylation and polymerization rates. To determine the molecular mechanisms, we modeled the V409I/A mutants in budding yeast and found that they promote intrinsically faster microtubule polymerization rates in cells and in reconstitution experiments with purified tubulin. In addition, V409I/A mutants decrease the recruitment of XMAP215/Stu2 to plus ends in budding yeast and ablate tubulin binding to TOG (tumor overexpressed gene) domains. In each assay tested, the TUBA1A-V409I mutant exhibits an intermediate phenotype between wild type and the more severe TUBA1A-V409A, reflecting the severity observed in brain malformations. Together, our data support a model in which the V409I/A mutations disrupt microtubule regulation typically conferred by XMAP215 proteins during neuronal morphogenesis and migration, and this impact on tubulin activity at the molecular level scales with the impact at the cellular and tissue levels. Proteins are molecules made up of long chains of building blocks called amino acids. When a mutation changes one of these amino acids, it can lead to the protein malfunctioning, which can have many effects at the cell and tissue level. Given that human proteins are made up of 20 different amino acids, each building block in a protein could mutate to any of the other 19 amino acids, and each mutations could have different effects. Tubulins are proteins that form microtubules, thin tubes that help give cells their shape and allow them to migrate. These proteins are added or removed to microtubules depending on the cell’s needs, meaning that microtubules can grow or shrink depending on the situation. Mutations in the tubulin proteins have been linked to malformations of varying severities involving the formation of ridges and folds on the surface of the brain, including lissencephaly, pachygyria or polymicrogyria. Hoff et al. wanted to establish links between tubulin mutations and the effects observed at both cell and tissue level in the brain. They focused on two mutations in the tubulin protein TUBA1A that affect the amino acid in position 409 in the protein, which is normally a valine. One of the mutations turns this valine into an amino acid called isoleucine. This mutation is associated with pachygyria, which leads to the brain developing few ridges that are broad and flat. The second mutation turns the valine into an alanine, and is linked to lissencephaly, a more severe condition in which the brain develops no ridges, appearing smooth. Hoff et al. found that both mutations interfere with the development of the brain by stopping neurons from migrating properly, which prevents them from forming the folds in the brain correctly. At the cellular level, the mutations lead to tubulins becoming harder to remove from microtubules, making microtubules more stable than usual. This results in longer microtubules that are harder for the cell to shorten or destroy as needed. Additionally, Hoff et al. showed that the mutant versions of TUBA1A have weaker interactions with a protein called XMAP215, which controls the addition of tubulin to microtubules. This causes the microtubules to grow uncontrollably. Hoff et al. also established that the magnitude of the effects of each mutation on microtubule growth scale with the severity of the disorder they cause. Specifically, cells in which TUBA1A is not mutated have microtubules that grow at a normal rate, and lead to typical brain development. Meanwhile, cells carrying the mutation that turns a valine into an alanine, which is linked to the more severe condition lissencephaly, have microtubules that grow very fast. Finally, cells in which the valine is mutated to an isoleucine – the mutation associated with the less severe malformation pachygyria – have microtubules that grow at an intermediate rate. These findings provide a link between mutations in tubulin proteins and larger effects on cell movement that lead to brain malformations. Additionally, they also link the severity of the malformation to the severity of the microtubule defect caused by each mutation. Further work could examine whether microtubule stabilization is also seen in other similar diseases, which, in the long term, could reveal ways to detect and treat these illnesses.
Collapse
Affiliation(s)
- Katelyn J Hoff
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Jayne E Aiken
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Mark A Gutierrez
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Santos J Franco
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Jeffrey K Moore
- University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
23
|
Complementing the phenotypical spectrum of TUBA1A tubulinopathy and its role in early-onset epilepsies. Eur J Hum Genet 2022; 30:298-306. [PMID: 35017693 PMCID: PMC8904761 DOI: 10.1038/s41431-021-01027-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022] Open
Abstract
TUBA1A tubulinopathy is a rare neurodevelopmental disorder associated with brain malformations as well as early-onset and intractable epilepsy. As pathomechanisms and genotype-phenotype correlations are not completely understood, we aimed to provide further insights into the phenotypic and genetic spectrum. We here present a multicenter case series of ten unrelated individuals from four European countries using systematic MRI re-evaluation, protein structure analysis, and prediction score modeling. In two cases, pregnancy was terminated due to brain malformations. Amongst the eight living individuals, the phenotypic range showed various severity. Global developmental delay and severe motor impairment with tetraparesis was present in 63% and 50% of the subjects, respectively. Epilepsy was observed in 75% of the cases, which showed infantile onset in 83% and a refractory course in 50%. One individual presented a novel TUBA1A-associated electroclinical phenotype with evolvement from early myoclonic encephalopathy to continuous spike-and-wave during sleep. Neuroradiological features comprised a heterogeneous spectrum of cortical and extracortical malformations including rare findings such as cobblestone lissencephaly and subcortical band heterotopia. Two individuals developed hydrocephalus with subsequent posterior infarction. We report four novel and five previously published TUBA1A missense variants whose resulting amino acid substitutions likely affect longitudinal, lateral, and motor protein interactions as well as GTP binding. Assessment of pathogenic and benign variant distributions in synopsis with prediction scores revealed sections of variant enrichment and intolerance to missense variation. We here extend the clinical, neuroradiological, and genetic spectrum of TUBA1A tubulinopathy and provide insights into residue-specific pathomechanisms and genotype-phenotype correlations.
Collapse
|
24
|
Widodo N, Puspitarini S, Widyananda MH, Alamsyah A, Wicaksono ST, Masruri M, Jatmiko YD. Anticancer activity of Caesalpinia sappan by downregulating mitochondrial genes in A549 lung cancer cell line. F1000Res 2022; 11:169. [PMID: 36128561 PMCID: PMC9468624 DOI: 10.12688/f1000research.76187.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 09/05/2024] Open
Abstract
Background: The standardization and mechanism of action of Caesalpinia sappan as an anticancer agent are still lacking. This study aimed to understand the mechanism of action of C,sappan extract as an anticancer agent. Methods: This study was conducted using the A549 lung cancer cell line to understand the mechanism of action of C. sappan extract as an anticancer agent. The cytotoxicity activity, cell cycle progression, apoptosis, protein-related apoptosis (i.e., BCL-2and BAX protein) assays, and RNA sequencing were performed level were measured. Moreover, the antioxidant activity, total flavonoids, and phenolics of C.sappan were also assessed. Results: C.sappan has strong antioxidant activity (22.14 ± 0.93 ppm) total flavonoid content of (529.3 ± 4.56 mgQE/g), and phenolics content of (923.37 ± 5 mgGAE/g). The C.sappan ethanol extract inhibited cancer cell growth and arrested at G0/G1 phase of cell cycle, inducing apoptosis by increasing BAX/BCL-2 protein ratio in A549 lung cancer cell line. Furthermore, results from RNA sequencing analysis showed that C.sappan ethanol extract caused downregulation of genes acting on mitochondrial function including adenosine triphosphate (ATP) production and respiration. Conclusions: This study demonstrated that C.sappan has the ability to inhibit cancer cell growth by inducing apoptosis and mitochondrial dysfunction in A549 cells.
Collapse
Affiliation(s)
- Nashi Widodo
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Sapti Puspitarini
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | | | - Adzral Alamsyah
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Septian Tri Wicaksono
- Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Masruri Masruri
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Yoga Dwi Jatmiko
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| |
Collapse
|
25
|
Widodo N, Puspitarini S, Widyananda MH, Alamsyah A, Wicaksono ST, Masruri M, Jatmiko YD. Anticancer activity of Caesalpinia sappan by downregulating mitochondrial genes in A549 lung cancer cell line. F1000Res 2022; 11:169. [PMID: 36128561 PMCID: PMC9468624 DOI: 10.12688/f1000research.76187.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
Background: The standardization and mechanism of action of Caesalpinia sappan as an anticancer agent are still lacking. This study aimed to understand the mechanism of action of C,sappan extract as an anticancer agent. Methods: This study was conducted using the A549 lung cancer cell line to understand the mechanism of action of C. sappan extract as an anticancer agent. The cytotoxicity activity, cell cycle progression, apoptosis, protein-related apoptosis (i.e., BCL-2and BAX protein) assays, and RNA sequencing were performed level were measured. Moreover, the antioxidant activity, total flavonoids, and phenolics of C.sappan were also assessed. Results: C.sappan has strong antioxidant activity (22.14 ± 0.93 ppm) total flavonoid content of (529.3 ± 4.56 mgQE/g), and phenolics content of (923.37 ± 5 mgGAE/g). The C.sappan ethanol extract inhibited cancer cell growth and arrested at G0/G1 phase of cell cycle, inducing apoptosis by increasing BAX/BCL-2 protein ratio in A549 lung cancer cell line. Furthermore, results from RNA sequencing analysis showed that C.sappan ethanol extract caused downregulation of genes acting on mitochondrial function including adenosine triphosphate (ATP) production and respiration. Conclusions: This study demonstrated that C.sappan has the ability to inhibit cancer cell growth by inducing apoptosis and mitochondrial dysfunction in A549 cells.
Collapse
Affiliation(s)
- Nashi Widodo
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Sapti Puspitarini
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | | | - Adzral Alamsyah
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Septian Tri Wicaksono
- Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Masruri Masruri
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Yoga Dwi Jatmiko
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| |
Collapse
|
26
|
Heng JIT, Viti L, Pugh K, Marshall OJ, Agostino M. Understanding the impact of ZBTB18 missense variation on transcription factor function in neurodevelopment and disease. J Neurochem 2022; 161:219-235. [PMID: 35083747 PMCID: PMC9302683 DOI: 10.1111/jnc.15572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 01/07/2022] [Indexed: 12/01/2022]
Abstract
Mutations to genes that encode DNA‐binding transcription factors (TFs) underlie a broad spectrum of human neurodevelopmental disorders. Here, we highlight the pathological mechanisms arising from mutations to TF genes that influence the development of mammalian cerebral cortex neurons. Drawing on recent findings for TF genes including ZBTB18, we discuss how functional missense mutations to such genes confer non‐native gene regulatory actions in developing neurons, leading to cell‐morphological defects, neuroanatomical abnormalities during foetal brain development and functional impairment. Further, we discuss how missense variation to human TF genes documented in the general population endow quantifiable changes to transcriptional regulation, with potential cell biological effects on the temporal progression of cerebral cortex neuron development and homeostasis. We offer a systematic approach to investigate the functional impact of missense variation in brain TFs and define their direct molecular and cellular actions in foetal neurodevelopment, tissue homeostasis and disease states.![]()
Collapse
Affiliation(s)
- Julian I-T Heng
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Neuroscience Laboratories, Sarich Neuroscience Institute, Crawley, WA, Australia.,Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Leon Viti
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Kye Pugh
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Owen J Marshall
- Menzies Institute for Medical Research, The University of Tasmania, Hobart, Australia
| | - Mark Agostino
- Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Curtin Institute for Computation, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
27
|
Neuser S, Krey I, Schwan A, Abou Jamra R, Bartolomaeus T, Döring J, Syrbe S, Plassmann M, Rohde S, Roth C, Rehder H, Radtke M, Le Duc D, Schubert S, Bermúdez-Guzmán L, Leal A, Schoner K, Popp B. Prenatal phenotype of PNKP-related primary microcephaly associated with variants affecting both the FHA and phosphatase domain. Eur J Hum Genet 2022; 30:101-110. [PMID: 34697416 PMCID: PMC8738728 DOI: 10.1038/s41431-021-00982-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/05/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
Biallelic PNKP variants cause heterogeneous disorders ranging from neurodevelopmental disorder with microcephaly/seizures to adult-onset Charcot-Marie-Tooth disease. To date, only postnatal descriptions exist. We present the first prenatal diagnosis of PNKP-related primary microcephaly. Pathological examination of a male fetus in the 18th gestational week revealed micrencephaly with extracerebral malformations and thus presumed syndromic microcephaly. A recessive disorder was suspected because of previous pregnancy termination for similar abnormalities. Prenatal trio-exome sequencing identified compound heterozygosity for the PNKP variants c.498G>A, p.[(=),0?] and c.302C>T, p.(Pro101Leu). Segregation confirmed both variants in the sister fetus. Through RNA analyses, we characterized exon 4 skipping affecting the PNKP forkhead-associated (FHA) and phosphatase domains (p.Leu67_Lys166del) as the predominant effect of the paternal c.498G>A variant. We retrospectively investigated two unrelated individuals diagnosed with biallelic PNKP-variants to compare prenatal/postnatal phenotypes. Both carry the splice donor variant c.1029+2T>C in trans with a variant in the FHA domain (c.311T>C, p.(Leu104Pro); c.151G>C, p.(Val51Leu)). RNA-seq showed complex splicing for c.1029+2T>C and c.151G>C. Structural modeling revealed significant clustering of missense variants in the FHA domain with variants generating structural damage. Our clinical description extends the PNKP-continuum to the prenatal stage. Investigating possible PNKP-variant effects using RNA and structural modeling, we highlight the mutational complexity and exemplify a PNKP-variant characterization framework.
Collapse
Affiliation(s)
- Sonja Neuser
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Tobias Bartolomaeus
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jan Döring
- Department of Pediatrics, Hospital for Children and Adolescents, Heidelberg University Hospital, Heidelberg, Germany
| | - Steffen Syrbe
- Department of Pediatrics, Hospital for Children and Adolescents, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Stefan Rohde
- Department of Radiology and Neuroradiology, Klinikum Dortmund, Dortmund, Germany
| | - Christian Roth
- Department for Pediatric Radiology, University of Leipzig Medical Center, Leipzig, Germany
| | - Helga Rehder
- Institute of Medical Genetics, Medical University Vienna, Vienna, Austria
- Institute of Pathology, Department of Fetal Pathology, Philipps University Marburg, Marburg, Germany
| | - Maximilian Radtke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Susanna Schubert
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Luis Bermúdez-Guzmán
- Section of Genetics and Biotechnology, School of Biology, University de Costa Rica, San José, Costa Rica
| | - Alejandro Leal
- Section of Genetics and Biotechnology, School of Biology, University de Costa Rica, San José, Costa Rica
| | - Katharina Schoner
- Institute of Pathology, Department of Fetal Pathology, Philipps University Marburg, Marburg, Germany
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
28
|
Liu X, Bennison SA, Robinson L, Toyo-oka K. Responsible Genes for Neuronal Migration in the Chromosome 17p13.3: Beyond Pafah1b1(Lis1), Crk and Ywhae(14-3-3ε). Brain Sci 2021; 12:brainsci12010056. [PMID: 35053800 PMCID: PMC8774252 DOI: 10.3390/brainsci12010056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 01/07/2023] Open
Abstract
The 17p13.3 chromosome region is often deleted or duplicated in humans, resulting in severe neurodevelopmental disorders such as Miller–Dieker syndrome (MDS) and 17p13.3 duplication syndrome. Lissencephaly can also be caused by gene mutations or deletions of a small piece of the 17p13.3 region, including a single gene or a few genes. PAFAH1B1 gene, coding for LIS1 protein, is a responsible gene for lissencephaly and MDS and regulates neuronal migration by controlling microtubules (MTs) and cargo transport along MTs via dynein. CRK is a downstream regulator of the reelin signaling pathways and regulates neuronal migration. YWHAE, coding for 14-3-3ε, is also responsible for MDS and regulates neuronal migration by binding to LIS1-interacting protein, NDEL1. Although these three proteins are known to be responsible for neuronal migration defects in MDS, there are 23 other genes in the MDS critical region on chromosome 17p13.3, and little is known about their functions in neurodevelopment, especially in neuronal migration. This review will summarize the recent progress on the functions of LIS1, CRK, and 14-3-3ε and describe the recent findings of other molecules in the MDS critical regions in neuronal migration.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19129, USA;
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
| | - Sarah A. Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
| | - Lozen Robinson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
| | - Kazuhito Toyo-oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (S.A.B.); (L.R.)
- Correspondence: ; Tel.: +1-(215)-991-8288
| |
Collapse
|
29
|
Duerinckx S, Désir J, Perazzolo C, Badoer C, Jacquemin V, Soblet J, Maystadt I, Tunca Y, Blaumeiser B, Ceulemans B, Courtens W, Debray F, Destree A, Devriendt K, Jansen A, Keymolen K, Lederer D, Loeys B, Meuwissen M, Moortgat S, Mortier G, Nassogne M, Sekhara T, Van Coster R, Van Den Ende J, Van der Aa N, Van Esch H, Vanakker O, Verhelst H, Vilain C, Weckhuysen S, Passemard S, Verloes A, Aeby A, Deconinck N, Van Bogaert P, Pirson I, Abramowicz M. Phenotypes and genotypes in non-consanguineous and consanguineous primary microcephaly: High incidence of epilepsy. Mol Genet Genomic Med 2021; 9:e1768. [PMID: 34402213 PMCID: PMC8457702 DOI: 10.1002/mgg3.1768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/06/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Primary microcephaly (PM) is defined as a significant reduction in occipitofrontal circumference (OFC) of prenatal onset. Clinical and genetic heterogeneity of PM represents a diagnostic challenge. METHODS We performed detailed phenotypic and genomic analyses in a large cohort (n = 169) of patients referred for PM and could establish a molecular diagnosis in 38 patients. RESULTS Pathogenic variants in ASPM and WDR62 were the most frequent causes in non-consanguineous patients in our cohort. In consanguineous patients, microarray and targeted gene panel analyses reached a diagnostic yield of 67%, which contrasts with a much lower rate in non-consanguineous patients (9%). Our series includes 11 novel pathogenic variants and we identify novel candidate genes including IGF2BP3 and DNAH2. We confirm the progression of microcephaly over time in affected children. Epilepsy was an important associated feature in our PM cohort, affecting 34% of patients with a molecular confirmation of the PM diagnosis, with various degrees of severity and seizure types. CONCLUSION Our findings will help to prioritize genomic investigations, accelerate molecular diagnoses, and improve the management of PM patients.
Collapse
Affiliation(s)
- Sarah Duerinckx
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaireUniversité Libre de BruxellesBrusselsBelgium
| | - Julie Désir
- Centre de Génétique HumaineInstitut de Pathologie et de GénétiqueGosseliesBelgium
| | - Camille Perazzolo
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaireUniversité Libre de BruxellesBrusselsBelgium
| | - Cindy Badoer
- Department of GeneticsHôpital ErasmeULB Center of Human GeneticsUniversité Libre de BruxellesBrusselsBelgium
| | - Valérie Jacquemin
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaireUniversité Libre de BruxellesBrusselsBelgium
| | - Julie Soblet
- Department of GeneticsHôpital ErasmeULB Center of Human GeneticsUniversité Libre de BruxellesBrusselsBelgium
- Hôpital Universitaire des Enfants Reine Fabiola (HUDERF)Université Libre de BruxellesBrusselsBelgium
| | - Isabelle Maystadt
- Centre de Génétique HumaineInstitut de Pathologie et de GénétiqueGosseliesBelgium
| | - Yusuf Tunca
- Department of Medical GeneticsGülhane Faculty of Medicine & Gülhane Training and Research HospitalUniversity of Health Sciences TurkeyAnkaraTurkey
| | | | | | | | | | - Anne Destree
- Centre de Génétique HumaineInstitut de Pathologie et de GénétiqueGosseliesBelgium
| | | | - Anna Jansen
- Universitair Ziekenhuis Brussel (UZ Brussel)Centrum Medische GeneticaUniversiteit Brussel (VUB)BrusselsBelgium
| | - Kathelijn Keymolen
- Universitair Ziekenhuis Brussel (UZ Brussel)Centrum Medische GeneticaUniversiteit Brussel (VUB)BrusselsBelgium
| | - Damien Lederer
- Centre de Génétique HumaineInstitut de Pathologie et de GénétiqueGosseliesBelgium
| | - Bart Loeys
- University and University Hospital of AntwerpAntwerpBelgium
| | | | - Stéphanie Moortgat
- Centre de Génétique HumaineInstitut de Pathologie et de GénétiqueGosseliesBelgium
| | - Geert Mortier
- University and University Hospital of AntwerpAntwerpBelgium
| | | | | | | | | | | | - Hilde Van Esch
- Center for Human GeneticsUniversity Hospitals LeuvenLeuvenBelgium
| | | | | | - Catheline Vilain
- Department of GeneticsHôpital ErasmeULB Center of Human GeneticsUniversité Libre de BruxellesBrusselsBelgium
- Hôpital Universitaire des Enfants Reine Fabiola (HUDERF)Université Libre de BruxellesBrusselsBelgium
| | | | | | - Alain Verloes
- Department of GeneticsAPHPRobert Debré University HospitalParisFrance
| | - Alec Aeby
- Hôpital Universitaire des Enfants Reine Fabiola (HUDERF)Université Libre de BruxellesBrusselsBelgium
| | - Nicolas Deconinck
- Hôpital Universitaire des Enfants Reine Fabiola (HUDERF)Université Libre de BruxellesBrusselsBelgium
| | | | - Isabelle Pirson
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaireUniversité Libre de BruxellesBrusselsBelgium
| | - Marc Abramowicz
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaireUniversité Libre de BruxellesBrusselsBelgium
- Department of Genetic Medicine and DevelopmentUniversity of GenevaGenèveSwitzerland
| |
Collapse
|
30
|
Denarier E, Ecklund KH, Berthier G, Favier A, O'Toole ET, Gory-Fauré S, De Macedo L, Delphin C, Andrieux A, Markus SM, Boscheron C. Modeling a disease-correlated tubulin mutation in budding yeast reveals insight into MAP-mediated dynein function. Mol Biol Cell 2021; 32:ar10. [PMID: 34379441 PMCID: PMC8684761 DOI: 10.1091/mbc.e21-05-0237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in the genes that encode α- and β-tubulin underlie many neurological diseases, most notably malformations in cortical development. In addition to revealing the molecular basis for disease etiology, studying such mutations can provide insight into microtubule function and the role of the large family of microtubule effectors. In this study, we use budding yeast to model one such mutation—Gly436Arg in α-tubulin, which is causative of malformations in cortical development—in order to understand how it impacts microtubule function in a simple eukaryotic system. Using a combination of in vitro and in vivo methodologies, including live cell imaging and electron tomography, we find that the mutant tubulin is incorporated into microtubules, causes a shift in α-tubulin isotype usage, and dramatically enhances dynein activity, which leads to spindle-positioning defects. We find that the basis for the latter phenotype is an impaired interaction between She1—a dynein inhibitor—and the mutant microtubules. In addition to revealing the natural balance of α-tubulin isotype utilization in cells, our results provide evidence of an impaired interaction between microtubules and a dynein regulator as a consequence of a tubulin mutation and sheds light on a mechanism that may be causative of neurodevelopmental diseases.
Collapse
Affiliation(s)
- E Denarier
- Univ. Grenoble Alpes, CEA, CNRS, GIN, IBS, Inserm, IRIG, F-38000 Grenoble, France
| | - K H Ecklund
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States
| | - G Berthier
- Univ. Grenoble Alpes, CEA, CNRS, GIN, IBS, Inserm, IRIG, F-38000 Grenoble, France
| | - A Favier
- Univ. Grenoble Alpes, CEA, CNRS, GIN, IBS, Inserm, IRIG, F-38000 Grenoble, France
| | - E T O'Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, Colorado, United States
| | - S Gory-Fauré
- Univ. Grenoble Alpes, CEA, CNRS, GIN, IBS, Inserm, IRIG, F-38000 Grenoble, France
| | - L De Macedo
- Univ. Grenoble Alpes, CEA, CNRS, GIN, IBS, Inserm, IRIG, F-38000 Grenoble, France
| | - C Delphin
- Univ. Grenoble Alpes, CEA, CNRS, GIN, IBS, Inserm, IRIG, F-38000 Grenoble, France
| | - A Andrieux
- Univ. Grenoble Alpes, CEA, CNRS, GIN, IBS, Inserm, IRIG, F-38000 Grenoble, France
| | - S M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States
| | - C Boscheron
- Univ. Grenoble Alpes, CEA, CNRS, GIN, IBS, Inserm, IRIG, F-38000 Grenoble, France
| |
Collapse
|
31
|
Neuser S, Brechmann B, Heimer G, Brösse I, Schubert S, O'Grady L, Zech M, Srivastava S, Sweetser DA, Dincer Y, Mall V, Winkelmann J, Behrends C, Darras BT, Graham RJ, Jayakar P, Byrne B, Bar-Aluma BE, Haberman Y, Szeinberg A, Aldhalaan HM, Hashem M, Al Tenaiji A, Ismayl O, Al Nuaimi AE, Maher K, Ibrahim S, Khan F, Houlden H, Ramakumaran VS, Pagnamenta AT, Posey JE, Lupski JR, Tan WH, ElGhazali G, Herman I, Muñoz T, Repetto GM, Seitz A, Krumbiegel M, Poli MC, Kini U, Efthymiou S, Meiler J, Maroofian R, Alkuraya FS, Abou Jamra R, Popp B, Ben-Zeev B, Ebrahimi-Fakhari D. Clinical, neuroimaging, and molecular spectrum of TECPR2-associated hereditary sensory and autonomic neuropathy with intellectual disability. Hum Mutat 2021; 42:762-776. [PMID: 33847017 DOI: 10.1002/humu.24206] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/18/2021] [Accepted: 04/08/2021] [Indexed: 12/24/2022]
Abstract
Bi-allelic TECPR2 variants have been associated with a complex syndrome with features of both a neurodevelopmental and neurodegenerative disorder. Here, we provide a comprehensive clinical description and variant interpretation framework for this genetic locus. Through international collaboration, we identified 17 individuals from 15 families with bi-allelic TECPR2-variants. We systemically reviewed clinical and molecular data from this cohort and 11 cases previously reported. Phenotypes were standardized using Human Phenotype Ontology terms. A cross-sectional analysis revealed global developmental delay/intellectual disability, muscular hypotonia, ataxia, hyporeflexia, respiratory infections, and central/nocturnal hypopnea as core manifestations. A review of brain magnetic resonance imaging scans demonstrated a thin corpus callosum in 52%. We evaluated 17 distinct variants. Missense variants in TECPR2 are predominantly located in the N- and C-terminal regions containing β-propeller repeats. Despite constituting nearly half of disease-associated TECPR2 variants, classifying missense variants as (likely) pathogenic according to ACMG criteria remains challenging. We estimate a pathogenic variant carrier frequency of 1/1221 in the general and 1/155 in the Jewish Ashkenazi populations. Based on clinical, neuroimaging, and genetic data, we provide recommendations for variant reporting, clinical assessment, and surveillance/treatment of individuals with TECPR2-associated disorder. This sets the stage for future prospective natural history studies.
Collapse
Affiliation(s)
- Sonja Neuser
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Barbara Brechmann
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatrics, Hospital for Children and Adolescents, Heidelberg University Hospital, Heidelberg, Germany
| | - Gali Heimer
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ines Brösse
- Department of Pediatrics, Hospital for Children and Adolescents, Heidelberg University Hospital, Heidelberg, Germany
| | - Susanna Schubert
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Lauren O'Grady
- Department of Pediatrics, Division of Medical Genetics and Metabolism, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Siddharth Srivastava
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David A Sweetser
- Department of Pediatrics, Division of Medical Genetics and Metabolism, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yasemin Dincer
- Lehrstuhl für Sozialpädiatrie, Department of Pediatrics, Technische Universität München, Germany.,Zentrum für Humangenetik und Laboratoriumsdiagnostik (MVZ), Martinsried, Germany
| | - Volker Mall
- Lehrstuhl für Sozialpädiatrie, Department of Pediatrics, Technische Universität München, Germany.,kbo-Kinderzentrum München, Munich, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (Synergy), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology (Synergy), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Basil T Darras
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert J Graham
- Department of Anesthesia, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Barry Byrne
- Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Bat El Bar-Aluma
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Haberman
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Amir Szeinberg
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hesham M Aldhalaan
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amal Al Tenaiji
- Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Omar Ismayl
- Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | | | - Karima Maher
- Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Shahnaz Ibrahim
- Department of Paediatrics and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| | - Fatima Khan
- Department of Paediatrics and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | | | - Alistair T Pagnamenta
- NIHR Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Wen-Hann Tan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Gehad ElGhazali
- Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Isabella Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Tatiana Muñoz
- Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Gabriela M Repetto
- Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Angelika Seitz
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Mandy Krumbiegel
- Institute of Human Genetics, Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Maria Cecilia Poli
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA.,Institute for Drug Discovery, University of Leipzig Medical Center, Leipzig, Germany
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Bruria Ben-Zeev
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Jurgens JA, Barry BJ, Lemire G, Chan WM, Whitman MC, Shaaban S, Robson CD, MacKinnon S, England EM, McMillan HJ, Kelly C, Pratt BM, O'Donnell-Luria A, MacArthur DG, Boycott KM, Hunter DG, Engle EC. Novel variants in TUBA1A cause congenital fibrosis of the extraocular muscles with or without malformations of cortical brain development. Eur J Hum Genet 2021; 29:816-826. [PMID: 33649541 PMCID: PMC8110841 DOI: 10.1038/s41431-020-00804-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 01/31/2023] Open
Abstract
Variants in multiple tubulin genes have been implicated in neurodevelopmental disorders, including malformations of cortical development (MCD) and congenital fibrosis of the extraocular muscles (CFEOM). Distinct missense variants in the beta-tubulin encoding genes TUBB3 and TUBB2B cause MCD, CFEOM, or both, suggesting substitution-specific mechanisms. Variants in the alpha tubulin-encoding gene TUBA1A have been associated with MCD, but not with CFEOM. Using exome sequencing (ES) and genome sequencing (GS), we identified 3 unrelated probands with CFEOM who harbored novel heterozygous TUBA1A missense variants c.1216C>G, p.(His406Asp); c.467G>A, p.(Arg156His); and c.1193T>G, p.(Met398Arg). MRI revealed small oculomotor-innervated muscles and asymmetrical caudate heads and lateral ventricles with or without corpus callosal thinning. Two of the three probands had MCD. Mutated amino acid residues localize either to the longitudinal interface at which α and β tubulins heterodimerize (Met398, His406) or to the lateral interface at which tubulin protofilaments interact (Arg156), and His406 interacts with the motor domain of kinesin-1. This series of individuals supports TUBA1A variants as a cause of CFEOM and expands our knowledge of tubulinopathies.
Collapse
Grants
- UM1 HG008900 NHGRI NIH HHS
- Howard Hughes Medical Institute
- R01 HG009141 NHGRI NIH HHS
- CIHR
- U54 HD090255 NICHD NIH HHS
- T32 NS007473 NINDS NIH HHS
- P30 EY014104 NEI NIH HHS
- P30 EY003790 NEI NIH HHS
- T32 GM007748 NIGMS NIH HHS
- T32 EY007145 NEI NIH HHS
- R01 EY027421 NEI NIH HHS
- K08 EY027850 NEI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI)
- U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- Broad Institute of MIT and Harvard Center for Mendelian Genomics (NHGRI/NEI/NHLBI UM1HG008900), Care4Rare Canada Consortium funded by Genome Canada and the Ontario Genomics Institute (OGI-147), the Canadian Institutes of Health Research, Ontario Research Fund, Genome Alberta, Genome British Columbia, Genome Quebec, and Children’s Hospital of Eastern Ontario Foundation, U.S. Department of Health & Human Services NIH/ NEI 5K08EY027850, BCH Ophthalmology Foundation Faculty Discovery Award, Children’s Hospital Ophthalmology Foundation, Inc., Boston, MA, Howard Hughes Medical Institute
- NIH/NEI 5K08EY027850, BCH Ophthalmology Foundation Faculty Discovery Award, and Children’s Hospital Ophthalmology Foundation, Inc., Boston, MA
- NEI R01EY027421, NHLBI X01HL132377. E.C.E. is a Howard Hughes Medical Institute Investigator.
Collapse
Affiliation(s)
- Julie A Jurgens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brenda J Barry
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Gabrielle Lemire
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Wai-Man Chan
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Mary C Whitman
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sherin Shaaban
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Caroline D Robson
- Division of Neuroradiology, Department of Radiology, Boston Children's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Sarah MacKinnon
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Eleina M England
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Hugh J McMillan
- Division of Neurology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Christopher Kelly
- Pediatric Ophthalmology and Physician Informatics, MultiCare Health System, Tacoma, WA, USA
| | - Brandon M Pratt
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Anne O'Donnell-Luria
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Daniel G MacArthur
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW, Sydney, NSW, Australia
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - David G Hunter
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Elizabeth C Engle
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Jin S, Park SE, Won D, Lee ST, Han SH, Han J. TUBB3 M323V Syndrome Presents with Infantile Nystagmus. Genes (Basel) 2021; 12:genes12040575. [PMID: 33921132 PMCID: PMC8071555 DOI: 10.3390/genes12040575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 01/28/2023] Open
Abstract
Variants in the TUBB3 gene, one of the tubulin-encoding genes, are known to cause congenital fibrosis of the extraocular muscles type 3 and/or malformations of cortical development. Herein, we report a case of a 6-month-old infant with c.967A>G:p.(M323V) variant in the TUBB3 gene, who had only infantile nystagmus without other ophthalmological abnormalities. Subsequent brain magnetic resonance imaging (MRI) revealed cortical dysplasia. Neurological examinations did not reveal gross or fine motor delay, which are inconsistent with the clinical characteristics of patients with the M323V syndrome reported so far. A protein modeling showed that the M323V mutation in the TUBB3 gene interferes with αβ heterodimer formation with the TUBA1A gene. This report emphasizes the importance of considering TUBB3 and TUBA1A tubulinopathy in infantile nystagmus. A brain MRI should also be considered for these patients, although in the absence of other neurologic signs or symptoms.
Collapse
Affiliation(s)
- Soohwa Jin
- Department of Opthalmology, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Sung-Eun Park
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (S.-E.P.); (S.-H.H.)
| | - Dongju Won
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (D.W.); (S.-T.L.)
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (D.W.); (S.-T.L.)
| | - Sueng-Han Han
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (S.-E.P.); (S.-H.H.)
| | - Jinu Han
- Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence: ; Tel.: +82-2-2019-3445
| |
Collapse
|
34
|
Refining Genotypes and Phenotypes in KCNA2-Related Neurological Disorders. Int J Mol Sci 2021; 22:ijms22062824. [PMID: 33802230 PMCID: PMC7999221 DOI: 10.3390/ijms22062824] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Pathogenic variants in KCNA2, encoding for the voltage-gated potassium channel Kv1.2, have been identified as the cause for an evolving spectrum of neurological disorders. Affected individuals show early-onset developmental and epileptic encephalopathy, intellectual disability, and movement disorders resulting from cerebellar dysfunction. In addition, individuals with a milder course of epilepsy, complicated hereditary spastic paraplegia, and episodic ataxia have been reported. By analyzing phenotypic, functional, and genetic data from published reports and novel cases, we refine and further delineate phenotypic as well as functional subgroups of KCNA2-associated disorders. Carriers of variants, leading to complex and mixed channel dysfunction that are associated with a gain- and loss-of-potassium conductance, more often show early developmental abnormalities and an earlier onset of epilepsy compared to individuals with variants resulting in loss- or gain-of-function. We describe seven additional individuals harboring three known and the novel KCNA2 variants p.(Pro407Ala) and p.(Tyr417Cys). The location of variants reported here highlights the importance of the proline(405)–valine(406)–proline(407) (PVP) motif in transmembrane domain S6 as a mutational hotspot. A novel case of self-limited infantile seizures suggests a continuous clinical spectrum of KCNA2-related disorders. Our study provides further insights into the clinical spectrum, genotype–phenotype correlation, variability, and predicted functional impact of KCNA2 variants.
Collapse
|
35
|
Moreno-De-Luca A, Millan F, Pesacreta DR, Elloumi HZ, Oetjens MT, Teigen C, Wain KE, Scuffins J, Myers SM, Torene RI, Gainullin VG, Arvai K, Kirchner HL, Ledbetter DH, Retterer K, Martin CL. Molecular Diagnostic Yield of Exome Sequencing in Patients With Cerebral Palsy. JAMA 2021; 325:467-475. [PMID: 33528536 PMCID: PMC7856544 DOI: 10.1001/jama.2020.26148] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Cerebral palsy is a common neurodevelopmental disorder affecting movement and posture that often co-occurs with other neurodevelopmental disorders. Individual cases of cerebral palsy are often attributed to birth asphyxia; however, recent studies indicate that asphyxia accounts for less than 10% of cerebral palsy cases. OBJECTIVE To determine the molecular diagnostic yield of exome sequencing (prevalence of pathogenic and likely pathogenic variants) in individuals with cerebral palsy. DESIGN, SETTING, AND PARTICIPANTS A retrospective cohort study of patients with cerebral palsy that included a clinical laboratory referral cohort with data accrued between 2012 and 2018 and a health care-based cohort with data accrued between 2007 and 2017. EXPOSURES Exome sequencing with copy number variant detection. MAIN OUTCOMES AND MEASURES The primary outcome was the molecular diagnostic yield of exome sequencing. RESULTS Among 1345 patients from the clinical laboratory referral cohort, the median age was 8.8 years (interquartile range, 4.4-14.7 years; range, 0.1-66 years) and 601 (45%) were female. Among 181 patients in the health care-based cohort, the median age was 41.9 years (interquartile range, 28.0-59.6 years; range, 4.8-89 years) and 96 (53%) were female. The molecular diagnostic yield of exome sequencing was 32.7% (95% CI, 30.2%-35.2%) in the clinical laboratory referral cohort and 10.5% (95% CI, 6.0%-15.0%) in the health care-based cohort. The molecular diagnostic yield ranged from 11.2% (95% CI, 6.4%-16.2%) for patients without intellectual disability, epilepsy, or autism spectrum disorder to 32.9% (95% CI, 25.7%-40.1%) for patients with all 3 comorbidities. Pathogenic and likely pathogenic variants were identified in 229 genes (29.5% of 1526 patients); 86 genes were mutated in 2 or more patients (20.1% of 1526 patients) and 10 genes with mutations were independently identified in both cohorts (2.9% of 1526 patients). CONCLUSIONS AND RELEVANCE Among 2 cohorts of patients with cerebral palsy who underwent exome sequencing, the prevalence of pathogenic and likely pathogenic variants was 32.7% in a cohort that predominantly consisted of pediatric patients and 10.5% in a cohort that predominantly consisted of adult patients. Further research is needed to understand the clinical implications of these findings.
Collapse
Affiliation(s)
- Andrés Moreno-De-Luca
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania
- Department of Radiology, Geisinger, Danville, Pennsylvania
- Diagnostic Medicine Institute, Geisinger, Danville, Pennsylvania
| | | | - Denis R. Pesacreta
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
| | | | - Matthew T. Oetjens
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
| | | | - Karen E. Wain
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania
| | | | - Scott M. Myers
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
| | | | | | | | - H. Lester Kirchner
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania
| | - David H. Ledbetter
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania
| | | | - Christa L. Martin
- Autism & Developmental Medicine Institute, Geisinger, Danville, Pennsylvania
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania
| |
Collapse
|
36
|
Kolbjer S, Martin DA, Pettersson M, Dahlin M, Anderlid BM. Lissencephaly in an epilepsy cohort: Molecular, radiological and clinical aspects. Eur J Paediatr Neurol 2021; 30:71-81. [PMID: 33453472 DOI: 10.1016/j.ejpn.2020.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Lissencephaly is a rare malformation of cortical development due to abnormal transmantle migration resulting in absent or reduced gyration. The lissencephaly spectrum consists of agyria, pachygyria and subcortical band heterotopia. In this study we compared genetic aetiology, neuroradiology, clinical phenotype and response to antiepileptic drugs in patients with epilepsy and lissencephaly spectrum malformations. METHODS The study group consisted of 20 patients - 13 males and 7 females, aged 18 months to 21 years at the time of data collection. Genetic testing was performed by oligonucleotide array comparative genomic hybridization (microarray), multiplex ligation-dependent probe amplification (MLPA), targeted gene panels and whole exome/genome sequencing. All neuroradiological investigations were re-evaluated and the malformations were classified by the same neuroradiologist. Clinical features and response to anti-epileptic drugs (AEDs) were evaluated by retrospective review of medical records. RESULTS In eleven patients (55%) mutations in PAFAH1B1 (LIS1) or variable microdeletions of 17p13.3 including the PAFAH1B1 gene were detected. Four patients (20%) had tubulin encoding gene mutations (TUBA1A, TUBG1 and TUBGCP6). Mutations in DCX, DYNC1H1, ADGRG1 and WDR62 were identified in single patients. In one patient, a possibly pathogenic intragenic deletion in TRIO was detected. A clear radiologic distinction could be made between tubulinopathies and PAFAH1B1 related lissencephaly. The majority of the patients had therapy resistant epilepsy and epileptic spasms was the most prominent seizure type. The best therapeutic response to seizure control in our cohort was obtained by the ketogenic diet, vigabatrin, clobazam, phenobarbital and valproate. CONCLUSION The most common genetic aetiologies in our cohort of 20 individuals with epilepsy and lissencephaly spectrum were intragenic deletions or single nucleotide mutations in PAFAH1B1 or larger deletions in 17p13.3, encompassing PAFAH1B1, followed by mutations in tubulin encoding genes. Radiological findings could reliably predict molecular results only in agyria with a posterior to anterior gradient. Radiological and molecular findings did not correlate consistently with severity of clinical outcome or therapeutic response.
Collapse
Affiliation(s)
- Sintia Kolbjer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Neuropaediatrics, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.
| | - Daniel A Martin
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Department of Paediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Dahlin
- Department of Neuropaediatrics, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
37
|
Xie L, Huang J, Dai L, Luo J, Zhang J, Peng Q, Sun J, Zhang W. Loss-of-Function Plays a Major Role in Early Neurogenesis of Tubulin α-1 A (TUBA1A) Mutation-Related Brain Malformations. Mol Neurobiol 2020; 58:1291-1302. [PMID: 33165829 DOI: 10.1007/s12035-020-02193-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/30/2020] [Indexed: 11/26/2022]
Abstract
Tubulin α-1 A (TUBA1A) mutations cause a wide spectrum of brain abnormalities. Although many mutations have been identified and functionally verified, there are clearly many more, and the relationship between TUBA1A mutations and brain malformations remains unclear. The aim of this study was to identify a TUBA1A mutation in a fetus with severe brain abnormalities, verify it functionally, and determine the mechanism of the mutation-related pathogenesis. A de novo missense mutation of the TUBA1A gene, c.167C>G p.T56R/P.THR56Arg, was identified by exon sequencing. Computer simulations showed that the mutation results in a disruption of lateral interactions between the microtubules. Transfection of 293T cells with TUBA1A p.T56R showed that the mutated protein is only partially incorporated into the microtubule network, resulting in a decrease in the rate of microtubule re-integration in comparison with the wild-type protein. The mechanism of pathological changes induced by the mutant gene was determined by knockdown and overexpression. It was found that knockdown of TUBA1A reduced the generation of neural progenitor cells, while overexpression of wild-type or mutant TUBA1A promoted neurogenesis. Our identification and functional verification of the novel TUBA1A mutation extends the TUBA1A gene-phenotype database. Loss-of-function of TUBA1A was shown to play an important role in early neurogenesis of TUBA1A mutation-related brain malformations.
Collapse
Affiliation(s)
- Liangqun Xie
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Jingrui Huang
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Lei Dai
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Jiefeng Luo
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Jiejie Zhang
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Qiaozhen Peng
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Jingchi Sun
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Weishe Zhang
- Department of Obstetrics, Xiangya Hospital Central South University, 87 Xiangya Road, Changsha, 410008, China.
- Hunan Engineering Research Center of Early Life Development and Disease Prevention, 87 Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
38
|
Lenz D, Stahl M, Seidl E, Schöndorf D, Brennenstuhl H, Gesenhues F, Heinzmann T, Longerich T, Mendes MI, Prokisch H, Salomons GS, Schön C, Smith DEC, Sommerburg O, Wagner M, Westhoff JH, Reiter K, Staufner C, Griese M. Rescue of respiratory failure in pulmonary alveolar proteinosis due to pathogenic MARS1 variants. Pediatr Pulmonol 2020; 55:3057-3066. [PMID: 32833345 DOI: 10.1002/ppul.25031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pulmonary alveolar proteinosis (PAP) is a heterogeneous condition with more than 100 different underlying disorders that need to be differentiated to target therapeutic options, which are generally limited. METHODS The clinical course of two brothers with pathogenic variants in the methionyl-tRNA synthetase (MARS)1 gene was compared to previously published patients. Functional studies in patient-derived fibroblasts were performed and therapeutic options evaluated. RESULTS The younger brother was diagnosed with PAP at the age of 1 year. Exome sequencing revealed the homozygous MARS1 variant p.(Arg598Cys), leading to interstitial lung and liver disease (ILLD). At 2 years of age, following surgery hypoglycemia was detected, the pulmonary condition deteriorated, and the patient developed multiorgan failure. Six therapeutic whole lung lavages (WLL) were necessary to improve respiratory insufficiency. Methionine supplementation was started and a high protein diet ensured, leading to complete respiratory recovery. The older brother, homozygous for the same MARS1 variant, had a long-known distinct eating preference of methionine-rich food and showed a less severe clinical phenotype. Decreased aminoacylation activity confirmed the pathogenicity of p.(Arg598Cys) in vitro. In agreement with our review of currently published ILLD patients, the presence of hepatopathy, developmental delay, muscular hypotonia, and anemia support the multisystemic character of the disease. CONCLUSIONS Catabolic events can provoke a severe deterioration of the pulmonary situation in ILLD with a need for repetitive WLL. Although the precise role of oral methionine supplementation and high protein intake are unknown, we observed an apparent treatment benefit, which needs to be evaluated systematically in controlled trials.
Collapse
Affiliation(s)
- Dominic Lenz
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Mirjam Stahl
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Centre for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elias Seidl
- Dr. von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Dominik Schöndorf
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
| | - Heiko Brennenstuhl
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Florian Gesenhues
- Dr. von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Tina Heinzmann
- Department of Neonatology, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marisa I Mendes
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Holger Prokisch
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Carola Schön
- Dr. von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Desirée E C Smith
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Olaf Sommerburg
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Centre for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.,Dr. von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany.,Institute of Neurogenomics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Jens H Westhoff
- Department of Pediatrics I, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Karl Reiter
- Dr. von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Christian Staufner
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Griese
- Dr. von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
39
|
Schröter J, Döring JH, Garbade SF, Hoffmann GF, Kölker S, Ries M, Syrbe S. Cross-sectional quantitative analysis of the natural history of TUBA1A and TUBB2B tubulinopathies. Genet Med 2020; 23:516-523. [PMID: 33082561 PMCID: PMC7935713 DOI: 10.1038/s41436-020-01001-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 11/09/2022] Open
Abstract
Purpose TUBA1A and TUBB2B tubulinopathies are rare neurodevelopmental disorders characterized by cortical and extracortical malformations and heterogenic phenotypes. There is a need for quantitative clinical endpoints that will be beneficial for future diagnostic and therapeutic trials. Methods Quantitative natural history modeling of individuals with TUBA1A and TUBB2B tubulinopathies from clinical reports and database entries of DECIPHER and ClinVar. Main outcome measures were age at disease onset, survival, and diagnostic delay. Phenotypical, neuroradiological, and histopathological features were descriptively illustrated. Results Mean age at disease onset was 4 (TUBA1A) and 6 months (TUBB2B), respectively. Mortality was equally estimated with 7% at 3.2 (TUBA1A) and 8.0 years (TUBB2B). Diagnostic delay was significantly higher in TUBB2B (12.3 years) compared with TUBA1A tubulinopathy (4.2 years). We delineated the isotype-dependent clinical, neuroradiological, and histopathological phenotype of affected individuals and present brain malformations associated with epilepsy and an unfavorable course of disease. Conclusion The natural history of tubulinopathies is defined by the genotype and associated brain malformations. Defined data on estimated survival, diagnostic delay, and disease characteristics of TUBA1A and TUBB2B tubulinopathy will help to raise disease awareness and encourage future clinical trials to optimize genetic testing, family counseling, and supportive care.
Collapse
Affiliation(s)
- Julian Schröter
- Division of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jan H Döring
- Division of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sven F Garbade
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Ries
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Steffen Syrbe
- Division of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
40
|
Jin SC, Lewis SA, Bakhtiari S, Zeng X, Sierant MC, Shetty S, Nordlie SM, Elie A, Corbett MA, Norton BY, van Eyk CL, Haider S, Guida BS, Magee H, Liu J, Pastore S, Vincent JB, Brunstrom-Hernandez J, Papavasileiou A, Fahey MC, Berry JG, Harper K, Zhou C, Zhang J, Li B, Zhao H, Heim J, Webber DL, Frank MSB, Xia L, Xu Y, Zhu D, Zhang B, Sheth AH, Knight JR, Castaldi C, Tikhonova IR, López-Giráldez F, Keren B, Whalen S, Buratti J, Doummar D, Cho M, Retterer K, Millan F, Wang Y, Waugh JL, Rodan L, Cohen JS, Fatemi A, Lin AE, Phillips JP, Feyma T, MacLennan SC, Vaughan S, Crompton KE, Reid SM, Reddihough DS, Shang Q, Gao C, Novak I, Badawi N, Wilson YA, McIntyre SJ, Mane SM, Wang X, Amor DJ, Zarnescu DC, Lu Q, Xing Q, Zhu C, Bilguvar K, Padilla-Lopez S, Lifton RP, Gecz J, MacLennan AH, Kruer MC. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat Genet 2020; 52:1046-1056. [PMID: 32989326 PMCID: PMC9148538 DOI: 10.1038/s41588-020-0695-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/20/2020] [Indexed: 01/28/2023]
Abstract
In addition to commonly associated environmental factors, genomic factors may cause cerebral palsy. We performed whole-exome sequencing of 250 parent-offspring trios, and observed enrichment of damaging de novo mutations in cerebral palsy cases. Eight genes had multiple damaging de novo mutations; of these, two (TUBA1A and CTNNB1) met genome-wide significance. We identified two novel monogenic etiologies, FBXO31 and RHOB, and showed that the RHOB mutation enhances active-state Rho effector binding while the FBXO31 mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. Network analyses identified enrichment of Rho GTPase, extracellular matrix, focal adhesion and cytoskeleton pathways. Cerebral palsy risk genes in enriched pathways were shown to regulate neuromotor function in a Drosophila reverse genetics screen. We estimate that 14% of cases could be attributed to an excess of damaging de novo or recessive variants. These findings provide evidence for genetically mediated dysregulation of early neuronal connectivity in cerebral palsy.
Collapse
Affiliation(s)
- Sheng Chih Jin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Sara A Lewis
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Xue Zeng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Michael C Sierant
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Sheetal Shetty
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Sandra M Nordlie
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Aureliane Elie
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Mark A Corbett
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Bethany Y Norton
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Clare L van Eyk
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, UK
| | - Brandon S Guida
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Helen Magee
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - James Liu
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Stephen Pastore
- Molecular Brain Sciences, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - John B Vincent
- Molecular Brain Sciences, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | | | - Michael C Fahey
- Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
| | - Jesia G Berry
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kelly Harper
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Chongchen Zhou
- Henan Key Laboratory of Child Genetics and Metabolism, Rehabilitation Department, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Junhui Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Jennifer Heim
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Dani L Webber
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mahalia S B Frank
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lei Xia
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dengna Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bohao Zhang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Amar H Sheth
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - James R Knight
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | | - Irina R Tikhonova
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | | - Boris Keren
- Department of Genetics, Pitié-Salpêtrière Hospital, APHP.Sorbonne Université, Paris, France
| | - Sandra Whalen
- UF de Génétique Clinique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, APHP.Sorbonne Université, Hôpital Armand Trousseau, Paris, France
| | - Julien Buratti
- Department of Genetics, Pitié-Salpêtrière Hospital, APHP.Sorbonne Université, Paris, France
| | - Diane Doummar
- Sorbonne Université, APHP, Service de Neurologie Pédiatrique et Centre de Référence Neurogénétique, Hôpital Armand Trousseau, Paris, France
| | | | | | | | - Yangong Wang
- Institute of Biomedical Science and Children's Hospital, and Key Laboratory of Reproduction Regulation of the National Population and Family Planning Commission (NPFPC), Shanghai Institute of Planned Parenthood Research (SIPPR), IRD, Fudan University, Shanghai, China
| | - Jeff L Waugh
- Departments of Pediatrics & Neurology, University of Texas Southwestern and Children's Medical Center of Dallas, Dallas, TX, USA
| | - Lance Rodan
- Departments of Genetics & Genomics and Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Julie S Cohen
- Division of Neurogenetics and Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Ali Fatemi
- Division of Neurogenetics and Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Angela E Lin
- Medical Genetics, Department of Pediatrics, MassGeneral Hospital for Children, Boston, MA, USA
| | - John P Phillips
- Departments of Pediatrics and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Timothy Feyma
- Division of Pediatric Neurology, Gillette Children's Hospital, St Paul, MN, USA
| | - Suzanna C MacLennan
- Department of Paediatric Neurology, Women's & Children's Hospital, Adelaide, South Australia, Australia
| | - Spencer Vaughan
- Departments of Molecular & Cellular Biology and Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Kylie E Crompton
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Susan M Reid
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Dinah S Reddihough
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Qing Shang
- Henan Key Laboratory of Child Genetics and Metabolism, Rehabilitation Department, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Gao
- Rehabilitation Department, Children's Hospital of Zhengzhou University/Henan Children's Hospital, Zhengzhou, China
| | - Iona Novak
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Nadia Badawi
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Yana A Wilson
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Sarah J McIntyre
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Shrikant M Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - David J Amor
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Daniela C Zarnescu
- Departments of Molecular & Cellular Biology and Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Qinghe Xing
- Institute of Biomedical Science and Children's Hospital, and Key Laboratory of Reproduction Regulation of the National Population and Family Planning Commission (NPFPC), Shanghai Institute of Planned Parenthood Research (SIPPR), IRD, Fudan University, Shanghai, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Kaya Bilguvar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Sergio Padilla-Lopez
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Jozef Gecz
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Alastair H MacLennan
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
41
|
Genotypic diversity and phenotypic spectrum of infantile liver failure syndrome type 1 due to variants in LARS1. Genet Med 2020; 22:1863-1873. [PMID: 32699352 DOI: 10.1038/s41436-020-0904-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Biallelic variants in LARS1, coding for the cytosolic leucyl-tRNA synthetase, cause infantile liver failure syndrome 1 (ILFS1). Since its description in 2012, there has been no systematic analysis of the clinical spectrum and genetic findings. METHODS Individuals with biallelic variants in LARS1 were included through an international, multicenter collaboration including novel and previously published patients. Clinical variables were analyzed and functional studies were performed in patient-derived fibroblasts. RESULTS Twenty-five individuals from 15 families were ascertained including 12 novel patients with eight previously unreported variants. The most prominent clinical findings are recurrent elevation of liver transaminases up to liver failure and encephalopathic episodes, both triggered by febrile illness. Magnetic resonance image (MRI) changes during an encephalopathic episode can be consistent with metabolic stroke. Furthermore, growth retardation, microcytic anemia, neurodevelopmental delay, muscular hypotonia, and infection-related seizures are prevalent. Aminoacylation activity is significantly decreased in all patient cells studied upon temperature elevation in vitro. CONCLUSION ILFS1 is characterized by recurrent elevation of liver transaminases up to liver failure in conjunction with abnormalities of growth, blood, nervous system, and musculature. Encephalopathic episodes with seizures can occur independently from liver crises and may present with metabolic stroke.
Collapse
|
42
|
Brock S, Vanderhasselt T, Vermaning S, Keymolen K, Régal L, Romaniello R, Wieczorek D, Storm TM, Schaeferhoff K, Hehr U, Kuechler A, Krägeloh-Mann I, Haack TB, Kasteleijn E, Schot R, Mancini GMS, Webster R, Mohammad S, Leventer RJ, Mirzaa G, Dobyns WB, Bahi-Buisson N, Meuwissen M, Jansen AC, Stouffs K. Defining the phenotypical spectrum associated with variants in TUBB2A. J Med Genet 2020; 58:33-40. [PMID: 32571897 PMCID: PMC7803914 DOI: 10.1136/jmedgenet-2019-106740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/05/2020] [Accepted: 03/05/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Variants in genes belonging to the tubulin superfamily account for a heterogeneous spectrum of brain malformations referred to as tubulinopathies. Variants in TUBB2A have been reported in 10 patients with a broad spectrum of brain imaging features, ranging from a normal cortex to polymicrogyria, while one patient has been reported with progressive atrophy of the cerebellar vermis. METHODS In order to further refine the phenotypical spectrum associated with TUBB2A, clinical and imaging features of 12 patients with pathogenic TUBB2A variants, recruited via the international network of the authors, were reviewed. RESULTS We report 12 patients with eight novel and one recurrent variants spread throughout the TUBB2A gene but encoding for amino acids clustering at the protein surface. Eleven patients (91.7%) developed seizures in early life. All patients suffered from intellectual disability, and 11 patients had severe motor developmental delay, with 4 patients (36.4 %) being non-ambulatory. The cerebral cortex was normal in five individuals and showed dysgyria of variable severity in seven patients. Associated brain malformations were less frequent in TUBB2A patients compared with other tubulinopathies. None of the patients had progressive cerebellar atrophy. CONCLUSION The imaging phenotype associated with pathogenic variants in TUBB2A is highly variable, ranging from a normal cortex to extensive dysgyria with associated brain malformations. For recurrent variants, no clear genotype-phenotype correlations could be established, suggesting the role of additional modifiers.
Collapse
Affiliation(s)
- Stefanie Brock
- Department of Pathology, Universitair Ziekenhuis Brussel, Brussels, Belgium .,Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tim Vanderhasselt
- Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Sietske Vermaning
- Belgium Center for Reproduction and Genetics, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Kathelijn Keymolen
- Belgium Center for Reproduction and Genetics, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Luc Régal
- Pediatric Neurology Unit, Department of Pediatrics, Universitair Ziekenhuis, Brussels, Belgium
| | - Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute, IRCCS Eugenio Medea, Lecco, Italy
| | - Dagmar Wieczorek
- Institut fuer Humangenetik, Universitaetsklininikum Essen, Essen, Germany.,Institute of Human Genetics, Heinrich Heine University Düsseldorf, Dusseldorf, Nordrhein-Westfalen, Germany
| | - Tim Matthias Storm
- Institut für Humangenetik, Technische Universität München, Munchen, Bayern, Germany
| | - Karin Schaeferhoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Ute Hehr
- Zentrum für Humangenetik Regensburg, Universitätsklinikum Regensburg, Regensburg, Bayern, Germany
| | - Alma Kuechler
- Institut fuer Humangenetik, Universitaetsklininikum Essen, Essen, Germany
| | - Ingeborg Krägeloh-Mann
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital Tübingen, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, Eberhard-Karls-Universitat Tubingen Medizinische Fakultat, Tübingen, Baden-Württemberg, Germany
| | - Esmee Kasteleijn
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Rachel Schot
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Grazia Maria Simonetta Mancini
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Richard Webster
- Department of Neurology, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Shekeeb Mohammad
- Department of Neurology, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Richard J Leventer
- Department of Neurology, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Ghayda Mirzaa
- Division of Genetic Medicine, Department of Pediatrics, Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - William B Dobyns
- Division of Genetic Medicine, Department of Pediatrics, Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Nadia Bahi-Buisson
- Embryology and Genetics of Congenital Malformations, INSERM, Paris, Île-de-France, France
| | - Marije Meuwissen
- Center of Human Genetics, Universiteit Antwerpen, Antwerpen, Belgium
| | - Anna C Jansen
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium.,Pediatric Neurology Unit, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Katrien Stouffs
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, Universitair Ziekenhuis Brussel, Brussels, Belgium, Brussels, Belgium
| |
Collapse
|
43
|
Wei H, Krishnappa J, Lin G, Kavalloor N, Lim JY, Goh CYJ, Jamuar SS, Thomas T, Tan EC. Microcephaly with a simplified gyral pattern in a child with a de novo TUBA1A variant. Am J Med Genet A 2019; 182:576-578. [PMID: 31833200 DOI: 10.1002/ajmg.a.61444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/17/2019] [Accepted: 11/26/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Heming Wei
- Research Laboratory, KK Women's & Children's Hospital, Singapore
| | - Janardhan Krishnappa
- Neurology Service, Department of Paediatrics, KK Women's & Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Medical School, Singapore
| | - Grace Lin
- Research Laboratory, KK Women's & Children's Hospital, Singapore
| | - Nirmal Kavalloor
- Department of Neonatology, KK Women's & Children's Hospital, Singapore
| | - Jiin Ying Lim
- Genetics Service, Department of Paediatrics, KK Women's & Children's Hospital, Singapore
| | | | - Saumya Shekhar Jamuar
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Medical School, Singapore.,Genetics Service, Department of Paediatrics, KK Women's & Children's Hospital, Singapore
| | - Terrence Thomas
- Neurology Service, Department of Paediatrics, KK Women's & Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Medical School, Singapore
| | - Ene Choo Tan
- Research Laboratory, KK Women's & Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Medical School, Singapore
| |
Collapse
|