1
|
Hu H, Wan S, Hu Y, Wang Q, Li H, Zhang N. Deciphering the role of APOE in cerebral amyloid angiopathy: from genetic insights to therapeutic horizons. Ann Med 2025; 57:2445194. [PMID: 39745195 DOI: 10.1080/07853890.2024.2445194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/26/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Cerebral amyloid angiopathy (CAA), characterized by the deposition of amyloid-β (Aβ) peptides in the walls of medium and small vessels of the brain and leptomeninges, is a major cause of lobar hemorrhage in elderly individuals. Among the genetic risk factors for CAA that continue to be recognized, the apolipoprotein E (APOE) gene is the most significant and prevalent, as its variants have been implicated in more than half of all patients with CAA. While the presence of the APOE ε4 allele markedly increases the risk of CAA, the ε2 allele confers a protective effect relative to the common ε3 allele. These allelic variants encode three APOE isoforms that differ at two amino acid positions. The primary physiological role of APOE is to mediate lipid transport in the brain and periphery; however, it has also been shown to be involved in a wide array of biological functions, particularly those involving Aβ, in which it plays a known role in processing, production, aggregation, and clearance. The challenges posed by the reliance on postmortem histological analyses and the current absence of an effective intervention underscore the urgency for innovative APOE-targeted strategies for diagnosing CAA. This review not only deepens our understanding of the impact of APOE on the pathogenesis of CAA but can also help guide the exploration of targeted therapies, inspiring further research into the therapeutic potential of APOE.
Collapse
Affiliation(s)
- Hantian Hu
- Tianjin Medical University, Tianjin, China
| | - Siqi Wan
- Tianjin Medical University, Tianjin, China
| | - Yuetao Hu
- Tianjin Medical University, Tianjin, China
| | - Qi Wang
- Tianjin Medical University, Tianjin, China
| | - Hanyu Li
- Tianjin Medical University, Tianjin, China
| | - Nan Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Marottoli FM, Balu D, Flores-Barrera E, de la Villarmois EA, Zhang H, Chaudhary R, Talati R, Tseng KY, Tai LM. Loss of Endothelial APOE4 Dysregulates Neural Function In Vivo. J Am Heart Assoc 2024; 13:e035080. [PMID: 39611383 DOI: 10.1161/jaha.124.035080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/07/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND We recently found that loss of endothelial cell APOE3 disrupts neurovascular and synaptic function. However, whether endothelial APOE4 is detrimental or protective for neural function under physiological conditions is unknown. Therefore, the goal of this study was to determine the role of endothelial cell APOE4 in regulating brain function in vivo. METHODS AND RESULTS We developed APOE4fl/fl/Cdh5(PAC)-CreERT2+/- and APOE4fl/fl/Cdh5(PAC)-CreERT2-/- (control) mice. Knockdown of endothelial cell APOE4 was induced at ≈4 to 5 weeks of age. Experiments were conducted at 9 months of age to evaluate neurovascular and neuronal function via biochemistry, immunohistochemistry, behavior tests, and electrophysiology. Endothelial cell APOE4 knockdown resulted in higher neurovascular permeability, lower claudin-5 vessel coverage, impaired trace fear memory extinction, and disruption of cortical excitatory-inhibitory balance of synaptic activity. CONCLUSIONS Our data support the novel concept that endothelial cell APOE4 is protective for brain function when other cell types express APOE4.
Collapse
Affiliation(s)
- Felecia M Marottoli
- Department of Anatomy and Cell Biology University of Illinois at Chicago Chicago IL USA
| | - Deebika Balu
- Department of Anatomy and Cell Biology University of Illinois at Chicago Chicago IL USA
| | - Eden Flores-Barrera
- Department of Anatomy and Cell Biology University of Illinois at Chicago Chicago IL USA
| | | | - Hui Zhang
- Department of Anatomy and Cell Biology University of Illinois at Chicago Chicago IL USA
| | - Rohan Chaudhary
- Department of Anatomy and Cell Biology University of Illinois at Chicago Chicago IL USA
| | - Ruju Talati
- Department of Anatomy and Cell Biology University of Illinois at Chicago Chicago IL USA
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology University of Illinois at Chicago Chicago IL USA
| | - Leon M Tai
- Department of Anatomy and Cell Biology University of Illinois at Chicago Chicago IL USA
| |
Collapse
|
3
|
Preman P, Moechars D, Fertan E, Wolfs L, Serneels L, Shah D, Lamote J, Poovathingal S, Snellinx A, Mancuso R, Balusu S, Klenerman D, Arranz AM, Fiers M, De Strooper B. APOE from astrocytes restores Alzheimer's Aβ-pathology and DAM-like responses in APOE deficient microglia. EMBO Mol Med 2024; 16:3113-3141. [PMID: 39528861 PMCID: PMC11628604 DOI: 10.1038/s44321-024-00162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The major genetic risk factor for Alzheimer's disease (AD), APOE4, accelerates beta-amyloid (Aβ) plaque formation, but whether this is caused by APOE expressed in microglia or astrocytes is debated. We express here the human APOE isoforms in astrocytes in an Apoe-deficient AD mouse model. This is not only sufficient to restore the amyloid plaque pathology but also induces the characteristic transcriptional pathological responses in Apoe-deficient microglia surrounding the plaques. We find that both APOE4 and the protective APOE2 from astrocytes increase fibrillar plaque deposition, but differentially affect soluble Aβ aggregates. Microglia and astrocytes show specific alterations in function of APOE genotype expressed in astrocytes. Our experiments indicate a central role of the astrocytes in APOE mediated amyloid plaque pathology and in the induction of associated microglia responses.
Collapse
Affiliation(s)
- Pranav Preman
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Daan Moechars
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Leen Wolfs
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Lutgarde Serneels
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Disha Shah
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Jochen Lamote
- VIB FACS Expertise Center, Center for Cancer Biology, Leuven, Belgium
| | | | - An Snellinx
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB-UAntwerp, Centre for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sriram Balusu
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Amaia M Arranz
- Laboratory of Humanized Models of Disease, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Mark Fiers
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.
- UK Dementia Research Institute, University College London, London, UK.
| |
Collapse
|
4
|
Tang Y, Wei J, Wang XF, Long T, Xiang X, Qu L, Wang X, Yu C, Xiao X, Hu X, Zeng J, Xu Q, Wu A, Wu J, Qin D, Zhou X, Law BYK. Activation of autophagy by Citri Reticulatae Semen extract ameliorates amyloid-beta-induced cell death and cognition deficits in Alzheimer's disease. Neural Regen Res 2024; 19:2467-2479. [PMID: 38526283 PMCID: PMC11090445 DOI: 10.4103/nrr.nrr-d-23-00954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/08/2023] [Accepted: 12/26/2023] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00027/figure1/v/2024-03-08T184507Z/r/image-tiff Amyloid-beta-induced neuronal cell death contributes to cognitive decline in Alzheimer's disease. Citri Reticulatae Semen has diverse beneficial effects on neurodegenerative diseases, including Parkinson's and Huntington's diseases, however, the effect of Citri Reticulatae Semen on Alzheimer's disease remains unelucidated. In the current study, the anti-apoptotic and autophagic roles of Citri Reticulatae Semen extract on amyloid-beta-induced apoptosis in PC12 cells were first investigated. Citri Reticulatae Semen extract protected PC12 cells from amyloid-beta-induced apoptosis by attenuating the Bax/Bcl-2 ratio via activation of autophagy. In addition, Citri Reticulatae Semen extract was confirmed to bind amyloid-beta as revealed by biolayer interferometry in vitro, and suppress amyloid-beta-induced pathology such as paralysis, in a transgenic Caenorhabditis elegans in vivo model. Moreover, genetically defective Caenorhabditis elegans further confirmed that the neuroprotective effect of Citri Reticulatae Semen extract was autophagy-dependent. Most importantly, Citri Reticulatae Semen extract was confirmed to improve cognitive impairment, neuronal injury and amyloid-beta burden in 3×Tg Alzheimer's disease mice. As revealed by both in vitro and in vivo models, these results suggest that Citri Reticulatae Semen extract is a potential natural therapeutic agent for Alzheimer's disease via its neuroprotective autophagic effects.
Collapse
Affiliation(s)
- Yong Tang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao Special Administrative Region, China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jing Wei
- Eye School and Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection of Chengdu University of TCM, Chengdu, Sichuan Province, China
| | - Xiao-Fang Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Tao Long
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xiaohong Xiang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Liqun Qu
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao Special Administrative Region, China
| | - Xingxia Wang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao Special Administrative Region, China
| | - Chonglin Yu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xingli Xiao
- Department of Neurology, The First People’s Hospital of Neijiang, Neijiang, Sichuan Province, China
| | - Xueyuan Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jing Zeng
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Qin Xu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Betty Yuen-Kwan Law
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao Special Administrative Region, China
| |
Collapse
|
5
|
Lin PBC, Holtzman DM. Current insights into apolipoprotein E and the immune response in Alzheimer's disease. Immunol Rev 2024; 327:43-52. [PMID: 39445515 PMCID: PMC11578782 DOI: 10.1111/imr.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder and the most common cause of dementia. Genetic analyses identified apolipoprotein E (APOE) as the strongest genetic risk for late-onset AD. Studies have shown that ApoE modulates AD pathogenesis in part by influencing amyloid-β (Aβ) deposition. However, ApoE also appears to regulate elements of AD via regulation of innate immune response, especially through microglial and astrocyte activation. In model systems, it also regulates changes in T-cells. This review focuses on the key findings that have advanced our understanding of the role of ApoE in the pathogenesis of AD and the current view of innate immune response regulated by ApoE in AD, while discussing open questions and areas for future research.
Collapse
Affiliation(s)
- Peter Bor-Chian Lin
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, Missouri, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Chandra S, Vassar R. The role of the gut microbiome in the regulation of astrocytes in Alzheimer's disease. Neurotherapeutics 2024; 21:e00425. [PMID: 39054180 PMCID: PMC11585888 DOI: 10.1016/j.neurot.2024.e00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and is the most common cause of dementia. AD is characterized pathologically by proteinaceous aggregates composed of amyloid beta (Aβ) and tau as well as progressive neurodegeneration. Concurrently with the buildup of protein aggregates, a strong neuroinflammatory response, in the form of reactive astrocytosis and microgliosis, occurs in the AD brain. It has recently been shown that the gut microbiome (GMB), composed of trillions of bacteria in the human intestine, can regulate both reactive astrocytosis and microgliosis in the context of both amyloidosis and tauopathy. Many studies have implicated microglia in these processes. However, growing evidence suggests that interactions between the GMB and astrocytes have a much larger role than previously thought. In this review, we summarize evidence regarding the gut microbiome in the control of reactive astrocytosis in AD.
Collapse
Affiliation(s)
- Sidhanth Chandra
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA; Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Robert Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
7
|
Chen F, Zhao J, Meng F, He F, Ni J, Fu Y. The vascular contribution of apolipoprotein E to Alzheimer's disease. Brain 2024; 147:2946-2965. [PMID: 38748848 DOI: 10.1093/brain/awae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease, the most prevalent form of dementia, imposes a substantial societal burden. The persistent inadequacy of disease-modifying drugs targeting amyloid plaques and neurofibrillary tangles suggests the contribution of alternative pathogenic mechanisms. A frequently overlooked aspect is cerebrovascular dysfunction, which may manifest early in the progression of Alzheimer's disease pathology. Mounting evidence underscores the pivotal role of the apolipoprotein E gene, particularly the apolipoprotein ε4 allele as the strongest genetic risk factor for late-onset Alzheimer's disease, in the cerebrovascular pathology associated with Alzheimer's disease. In this review, we examine the evidence elucidating the cerebrovascular impact of both central and peripheral apolipoprotein E on the pathogenesis of Alzheimer's disease. We present a novel three-hit hypothesis, outlining potential mechanisms that shed light on the intricate relationship among different pathogenic events. Finally, we discuss prospective therapeutics targeting the cerebrovascular pathology associated with apolipoprotein E and explore their implications for future research endeavours.
Collapse
Affiliation(s)
- Feng Chen
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Fanxia Meng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jie Ni
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuan Fu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
8
|
Jackson RJ, Hyman BT, Serrano-Pozo A. Multifaceted roles of APOE in Alzheimer disease. Nat Rev Neurol 2024; 20:457-474. [PMID: 38906999 DOI: 10.1038/s41582-024-00988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
For the past three decades, apolipoprotein E (APOE) has been known as the single greatest genetic modulator of sporadic Alzheimer disease (AD) risk, influencing both the average age of onset and the lifetime risk of developing AD. The APOEε4 allele significantly increases AD risk, whereas the ε2 allele is protective relative to the most common ε3 allele. However, large differences in effect size exist across ethnoracial groups that are likely to depend on both global genetic ancestry and local genetic ancestry, as well as gene-environment interactions. Although early studies linked APOE to amyloid-β - one of the two culprit aggregation-prone proteins that define AD - in the past decade, mounting work has associated APOE with other neurodegenerative proteinopathies and broader ageing-related brain changes, such as neuroinflammation, energy metabolism failure, loss of myelin integrity and increased blood-brain barrier permeability, with potential implications for longevity and resilience to pathological protein aggregates. Novel mouse models and other technological advances have also enabled a number of therapeutic approaches aimed at either attenuating the APOEε4-linked increased AD risk or enhancing the APOEε2-linked AD protection. This Review summarizes this progress and highlights areas for future research towards the development of APOE-directed therapeutics.
Collapse
Affiliation(s)
- Rosemary J Jackson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| |
Collapse
|
9
|
Narasimhan S, Holtzman DM, Apostolova LG, Cruchaga C, Masters CL, Hardy J, Villemagne VL, Bell J, Cho M, Hampel H. Apolipoprotein E in Alzheimer's disease trajectories and the next-generation clinical care pathway. Nat Neurosci 2024; 27:1236-1252. [PMID: 38898183 DOI: 10.1038/s41593-024-01669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/18/2024] [Indexed: 06/21/2024]
Abstract
Alzheimer's disease (AD) is a complex, progressive primary neurodegenerative disease. Since pivotal genetic studies in 1993, the ε4 allele of the apolipoprotein E gene (APOE ε4) has remained the strongest single genome-wide associated risk variant in AD. Scientific advances in APOE biology, AD pathophysiology and ApoE-targeted therapies have brought APOE to the forefront of research, with potential translation into routine AD clinical care. This contemporary Review will merge APOE research with the emerging AD clinical care pathway and discuss APOE genetic risk as a conduit to genomic-based precision medicine in AD, including ApoE's influence in the ATX(N) biomarker framework of AD. We summarize the evidence for APOE as an important modifier of AD clinical-biological trajectories. We then illustrate the utility of APOE testing and the future of ApoE-targeted therapies in the next-generation AD clinical-diagnostic pathway. With the emergence of new AD therapies, understanding how APOE modulates AD pathophysiology will become critical for personalized AD patient care.
Collapse
Affiliation(s)
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University in St. Louis, St. Louis, MO, USA
| | - Liana G Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Neurosciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin L Masters
- Florey Institute and the University of Melbourne, Parkville, Victoria, Australia
| | - John Hardy
- Department of Neurodegenerative Disease and Dementia Research Institute, Reta Lila Weston Research Laboratories, UCL Institute of Neurology, Queen Square, London, UK
| | | | | | | | | |
Collapse
|
10
|
Zhang P, Shi X, He D, Hu Y, Zhang Y, Zhao Y, Ma S, Cao S, Zhai M, Fan Z. Fer-1 Protects against Isoflurane-Induced Ferroptosis in Astrocytes and Cognitive Impairment in Neonatal Mice. Neurotox Res 2024; 42:27. [PMID: 38819761 DOI: 10.1007/s12640-024-00706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
Early and prolonged exposure to anesthetic agents could cause neurodevelopmental disorders in children. Astrocytes, heavily outnumber neurons in the brain, are crucial regulators of synaptic formation and function during development. However, how general anesthetics act on astrocytes and the impact on cognition are still unclear. In this study, we investigated the role of ferroptosis and GPX4, a major hydroperoxide scavenger playing a pivotal role in suppressing the process of ferroptosis, and their underlying mechanism in isoflurane-induced cytotoxicity in astrocytes and cognitive impairment. Our results showed that early 6 h isoflurane anesthesia induced cognitive impairment in mice. Ferroptosis-relative genes and metabolic changes were involved in the pathological process of isoflurane-induced cytotoxicity in astrocytes. The level of GPX4 was decreased while the expression of 4-HNE and generation of ROS were elevated after isoflurane exposure. Selectively blocking ferroptosis with Fer-1 attenuated the abovementioned cytotoxicity in astrocytes, paralleling with the reverse of the changes in GPX4, ROS and 4-HNE secondary to isoflurane anesthesia. Fer-1 attenuated the cognitive impairment induced by prolonged isoflurane exposure. Thus, ferroptosis conduced towards isoflurane-induced cytotoxicity in astrocytes via suppressing GPX4 and promoting lipid peroxidation. Fer-1 was expected to be an underlying intervention for the neurotoxicity induced by isoflurane in the developing brain, and to alleviate cognitive impairment in neonates.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Anesthesiology, Air Force Hospital of Western Theater Command, PLA, Chengdu, 610011, China
| | - Xiaotong Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Danyi He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu Hu
- Department of Anesthesiology, Air Force Hospital of Western Theater Command, PLA, Chengdu, 610011, China
| | - Yongchao Zhang
- Air Force Hospital of Western Theater Command, PLA, Chengdu, 610011, China
| | - Youyi Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Sanxing Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Shuhui Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Meiting Zhai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ze Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
11
|
Ventura-Antunes L, Nackenoff A, Romero-Fernandez W, Bosworth AM, Prusky A, Wang E, Carvajal-Tapia C, Shostak A, Harmsen H, Mobley B, Maldonado J, Solopova E, Caleb Snider J, David Merryman W, Lippmann ES, Schrag M. Arteriolar degeneration and stiffness in cerebral amyloid angiopathy are linked to β-amyloid deposition and lysyl oxidase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.583563. [PMID: 38659767 PMCID: PMC11042178 DOI: 10.1101/2024.03.08.583563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is a vasculopathy characterized by vascular β-amyloid (Aβ) deposition on cerebral blood vessels. CAA is closely linked to Alzheimer's disease (AD) and intracerebral hemorrhage. CAA is associated with the loss of autoregulation in the brain, vascular rupture, and cognitive decline. To assess morphological and molecular changes associated with the degeneration of penetrating arterioles in CAA, we analyzed post-mortem human brain tissue from 26 patients with mild, moderate, and severe CAA end neurological controls. The tissue was optically cleared for three-dimensional light sheet microscopy, and morphological features were quantified using surface volume rendering. We stained Aβ, vascular smooth muscle (VSM), lysyl oxidase (LOX), and vascular markers to visualize the relationship between degenerative morphological features, including vascular dilation, dolichoectasia (variability in lumenal diameter) and tortuosity, and the volumes of VSM, Aβ, and LOX in arterioles. Atomic force microscopy (AFM) was used to assess arteriolar wall stiffness, and we identified a pattern of morphological features associated with degenerating arterioles in the cortex. The volume of VSM associated with the arteriole was reduced by around 80% in arterioles with severe CAA and around 60% in cases with mild/moderate CAA. This loss of VSM correlated with increased arteriolar diameter and variability of diameter, suggesting VSM loss contributes to arteriolar laxity. These vascular morphological features correlated strongly with Aβ deposits. At sites of microhemorrhage, Aβ was consistently present, although the morphology of the deposits changed from the typical organized ring shape to sharply contoured shards with marked dilation of the vessel. AFM showed that arteriolar walls with CAA were more than 400% stiffer than those without CAA. Finally, we characterized the association of vascular degeneration with LOX, finding strong associations with VSM loss and vascular degeneration. These results show an association between vascular Aβ deposition, microvascular degeneration, and increased vascular stiffness, likely due to the combined effects of replacement of VSM by β-amyloid, cross-linking of extracellular matrices (ECM) by LOX, and possibly fibrosis. This advanced microscopic imaging study clarifies the association between Aβ deposition and vascular fragility. Restoration of physiologic ECM properties in penetrating arteries may yield a novel therapeutic strategy for CAA.
Collapse
Affiliation(s)
| | - Alex Nackenoff
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Allison M Bosworth
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alex Prusky
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emmeline Wang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Alena Shostak
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hannah Harmsen
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bret Mobley
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jose Maldonado
- Vanderbilt Neurovisualization Lab, Vanderbilt University, Nashville, TN, USA
| | - Elena Solopova
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J. Caleb Snider
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - W. David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ethan S Lippmann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Matthew Schrag
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville TN, USA
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
12
|
Bhattarai P, Gunasekaran TI, Belloy ME, Reyes-Dumeyer D, Jülich D, Tayran H, Yilmaz E, Flaherty D, Turgutalp B, Sukumar G, Alba C, McGrath EM, Hupalo DN, Bacikova D, Le Guen Y, Lantigua R, Medrano M, Rivera D, Recio P, Nuriel T, Ertekin-Taner N, Teich AF, Dickson DW, Holley S, Greicius M, Dalgard CL, Zody M, Mayeux R, Kizil C, Vardarajan BN. Rare genetic variation in fibronectin 1 (FN1) protects against APOEε4 in Alzheimer's disease. Acta Neuropathol 2024; 147:70. [PMID: 38598053 PMCID: PMC11006751 DOI: 10.1007/s00401-024-02721-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4-mediated AD pathology. To test this, we leveraged whole-genome sequencing (WGS) data in the National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain (COL6A2) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. An independent analysis in a large cohort of 7185 APOEε4 homozygous carriers found that rs140926439 variant in FN1 was protective of AD (OR = 0.29; 95% CI [0.11, 0.78], P = 0.014) and delayed age at onset of disease by 3.37 years (95% CI [0.42, 6.32], P = 0.025). The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4-mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b-the ortholog for human FN1. We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling, and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests that vascular deposition of FN1 is related to the pathogenicity of APOEε4, and LOF variants in FN1 may reduce APOEε4-related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.
Collapse
Affiliation(s)
- Prabesh Bhattarai
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Tamil Iniyan Gunasekaran
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Michael E Belloy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dolly Reyes-Dumeyer
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Dörthe Jülich
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Hüseyin Tayran
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Elanur Yilmaz
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Delaney Flaherty
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Bengisu Turgutalp
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Gauthaman Sukumar
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Camille Alba
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Elisa Martinez McGrath
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Daniel N Hupalo
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Dagmar Bacikova
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Rafael Lantigua
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Department of Medicine, College of Physicians and Surgeons, Columbia University New York, New York, USA
| | - Martin Medrano
- School of Medicine, Pontificia Universidad Catolica Madre y Maestra, Santiago, Dominican Republic
| | - Diones Rivera
- Department of Neurology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
- School of Medicine, Universidad Pedro Henriquez Urena (UNPHU), Santo Domingo, Dominican Republic
| | - Patricia Recio
- Department of Neurology, CEDIMAT, Plaza de la Salud, Santo Domingo, Dominican Republic
| | - Tal Nuriel
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Andrew F Teich
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Scott Holley
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Michael Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The American Genome Center, Center for Military Precision Health, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Michael Zody
- New York Genome Center, New York, NY, 10013, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St., New York, NY, 10032, USA
| | - Caghan Kizil
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA.
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Badri N Vardarajan
- Department of Neurology, Columbia University Irving Medical Center, Columbia University New York, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, Columbia University, New York, NY, USA.
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
13
|
Blumenfeld J, Yip O, Kim MJ, Huang Y. Cell type-specific roles of APOE4 in Alzheimer disease. Nat Rev Neurosci 2024; 25:91-110. [PMID: 38191720 PMCID: PMC11073858 DOI: 10.1038/s41583-023-00776-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
The ɛ4 allele of the apolipoprotein E gene (APOE), which translates to the APOE4 isoform, is the strongest genetic risk factor for late-onset Alzheimer disease (AD). Within the CNS, APOE is produced by a variety of cell types under different conditions, posing a challenge for studying its roles in AD pathogenesis. However, through powerful advances in research tools and the use of novel cell culture and animal models, researchers have recently begun to study the roles of APOE4 in AD in a cell type-specific manner and at a deeper and more mechanistic level than ever before. In particular, cutting-edge omics studies have enabled APOE4 to be studied at the single-cell level and have allowed the identification of critical APOE4 effects in AD-vulnerable cellular subtypes. Through these studies, it has become evident that APOE4 produced in various types of CNS cell - including astrocytes, neurons, microglia, oligodendrocytes and vascular cells - has diverse roles in AD pathogenesis. Here, we review these scientific advances and propose a cell type-specific APOE4 cascade model of AD. In this model, neuronal APOE4 emerges as a crucial pathological initiator and driver of AD pathogenesis, instigating glial responses and, ultimately, neurodegeneration. In addition, we provide perspectives on future directions for APOE4 research and related therapeutic developments in the context of AD.
Collapse
Affiliation(s)
- Jessica Blumenfeld
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Oscar Yip
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Min Joo Kim
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Bhattarai P, Gunasekaran TI, Reyes-Dumeyer D, Jülich D, Tayran H, Yilmaz E, Flaherty D, Lantigua R, Medrano M, Rivera D, Recio P, Ertekin-Taner N, Teich AF, Dickson DW, Holley S, Mayeux R, Kizil C, Vardarajan BN. Rare genetic variation in Fibronectin 1 ( FN1 ) protects against APOEe4 in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573895. [PMID: 38260431 PMCID: PMC10802344 DOI: 10.1101/2024.01.02.573895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4 ; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4- mediated AD pathology. To test this, we leveraged whole genome sequencing (WGS) data in National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain ( COL6A2 ) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4 -mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b - the ortholog for human FN1 . We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests vascular deposition of FN1 is related to the pathogenicity of APOEε4 , LOF variants in FN1 may reduce APOEε4 -related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.
Collapse
|
15
|
Muñoz-Castro C, Serrano-Pozo A. Astrocyte-Neuron Interactions in Alzheimer's Disease. ADVANCES IN NEUROBIOLOGY 2024; 39:345-382. [PMID: 39190082 DOI: 10.1007/978-3-031-64839-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Besides its two defining misfolded proteinopathies-Aβ plaques and tau neurofibrillary tangles-Alzheimer's disease (AD) is an exemplar of a neurodegenerative disease with prominent reactive astrogliosis, defined as the set of morphological, molecular, and functional changes that astrocytes suffer as the result of a toxic exposure. Reactive astrocytes can be observed in the vicinity of plaques and tangles, and the relationship between astrocytes and these AD neuropathological lesions is bidirectional so that each AD neuropathological hallmark causes specific changes in astrocytes, and astrocytes modulate the severity of each neuropathological feature in a specific manner. Here, we will review both how astrocytes change as a result of their chronic exposure to AD neuropathology and how those astrocytic changes impact each AD neuropathological feature. We will emphasize the repercussions that AD-associated reactive astrogliosis has for the astrocyte-neuron interaction and highlight areas of uncertainty and priorities for future research.
Collapse
Affiliation(s)
- Clara Muñoz-Castro
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, Seville, Spain
| | - Alberto Serrano-Pozo
- Massachusetts General Hospital Neurology Department, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Liemisa B, Newbury SF, Novy MJ, Pasato JA, Morales-Corraliza J, Peng KY, Mathews PM. Brain apolipoprotein E levels in mice challenged by a Western diet increase in an allele-dependent manner. AGING BRAIN 2023; 4:100102. [PMID: 38058491 PMCID: PMC10696459 DOI: 10.1016/j.nbas.2023.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Human apolipoprotein E (APOE) is the greatest determinant of genetic risk for memory deficits and Alzheimer's disease (AD). While APOE4 drives memory loss and high AD risk, APOE2 leads to healthy brain aging and reduced AD risk compared to the common APOE3 variant. We examined brain APOE protein levels in humanized mice homozygous for these alleles and found baseline levels to be age- and isoform-dependent: APOE2 levels were greater than APOE3, which were greater than APOE4. Despite the understanding that APOE lipoparticles do not traverse the blood-brain barrier, we show that brain APOE levels are responsive to dietary fat intake. Challenging mice for 6 months on a Western diet high in fat and cholesterol increased APOE protein levels in an allele-dependent fashion with a much greater increase within blood plasma than within the brain. In the brain, APOE2 levels responded most to the Western diet challenge, increasing by 20 % to 30 %. While increased lipoparticles are generally deleterious in the periphery, we propose that higher brain APOE2 levels may represent a readily available pool of beneficial lipid particles for neurons.
Collapse
Affiliation(s)
- Braison Liemisa
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Samantha F. Newbury
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Mariah J. Novy
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Jonathan A. Pasato
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
| | - Jose Morales-Corraliza
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Katherine Y. Peng
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paul M. Mathews
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
17
|
Sun YY, Wang Z, Huang HC. Roles of ApoE4 on the Pathogenesis in Alzheimer's Disease and the Potential Therapeutic Approaches. Cell Mol Neurobiol 2023; 43:3115-3136. [PMID: 37227619 PMCID: PMC10211310 DOI: 10.1007/s10571-023-01365-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
The Apolipoprotein E ε4 (ApoE ε4) allele, encoding ApoE4, is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). Emerging epidemiological evidence indicated that ApoE4 contributes to AD through influencing β-amyloid (Aβ) deposition and clearance. However, the molecular mechanisms of ApoE4 involved in AD pathogenesis remains unclear. Here, we introduced the structure and functions of ApoE isoforms, and then we reviewed the potential mechanisms of ApoE4 in the AD pathogenesis, including the effect of ApoE4 on Aβ pathology, and tau phosphorylation, oxidative stress; synaptic function, cholesterol transport, and mitochondrial dysfunction; sleep disturbances and cerebrovascular integrity in the AD brains. Furthermore, we discussed the available strategies for AD treatments that target to ApoE4. In general, this review overviews the potential roles of ApoE4 in the AD development and suggests some therapeutic approaches for AD. ApoE4 is genetic risk of AD. ApoE4 is involved in the AD pathogenesis. Aβ deposition, NFT, oxidative stress, abnormal cholesterol, mitochondrial dysfunction and neuroinflammation could be observed in the brains with ApoE4. Targeting the interaction of ApoE4 with the AD pathology is available strategy for AD treatments.
Collapse
Affiliation(s)
- Yu-Ying Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191 China
- Key Laboratory of Natural Products Development and Innovative Drug Research, Beijing Union University, Beijing, 100023 China
| | - Zhun Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191 China
- Key Laboratory of Natural Products Development and Innovative Drug Research, Beijing Union University, Beijing, 100023 China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191 China
- Key Laboratory of Natural Products Development and Innovative Drug Research, Beijing Union University, Beijing, 100023 China
| |
Collapse
|
18
|
Marottoli FM, Zhang H, Flores-Barrera E, Artur de la Villarmois E, Damen FC, Miguelez Fernández AM, Blesson HV, Chaudhary R, Nguyen AL, Nwokeji AE, Talati R, John AS, Madadakere K, Lutz SE, Cai K, Tseng KY, Tai LM. Endothelial Cell APOE3 Regulates Neurovascular, Neuronal, and Behavioral Function. Arterioscler Thromb Vasc Biol 2023; 43:1952-1966. [PMID: 37650329 PMCID: PMC10521805 DOI: 10.1161/atvbaha.123.319816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Specialized brain endothelial cells and human APOE3 are independently important for neurovascular function, yet whether APOE3 expression by endothelial cells contributes to brain function is currently unknown. In the present study, we determined whether the loss of endothelial cell APOE3 impacts brain vascular and neural function. METHODS We developed APOE3fl/fl/Cdh5(PAC)-CreERT2+/- (APOE3Cre+/-) and APOE3fl/fl/Cdh5(PAC)-CreERT2-/- (APOE3Cre-/-, control) mice and induced endothelial cell APOE3 knockdown with tamoxifen at ≈4 to 5 weeks of age. Neurovascular and neuronal function were evaluated by biochemistry, immunohistochemistry, behavioral testing, and electrophysiology at 9 months of age. RESULTS We found that the loss of endothelial APOE3 expression was sufficient to cause neurovascular dysfunction including higher permeability and lower vessel coverage in tandem with deficits in spatial memory and fear memory extinction and a disruption of cortical excitatory/inhibitory balance. CONCLUSIONS Our data collectively support the novel concept that endothelial APOE3 plays a critical role in the regulation of the neurovasculature, neural circuit function, and behavior.
Collapse
Affiliation(s)
- Felecia M. Marottoli
- Departments of Anatomy and Cell Biology (F.M.M., H.Z., E.F.-B., E.A.d.l.V., A.M.M.M.F., H.V.B., R.C., A.L.N., A.E.N., R.T., A.S.J., K.M., S.E.L., K.Y.T., L.M.T.), University of Illinois at Chicago
| | - Hui Zhang
- Departments of Anatomy and Cell Biology (F.M.M., H.Z., E.F.-B., E.A.d.l.V., A.M.M.M.F., H.V.B., R.C., A.L.N., A.E.N., R.T., A.S.J., K.M., S.E.L., K.Y.T., L.M.T.), University of Illinois at Chicago
| | - Eden Flores-Barrera
- Departments of Anatomy and Cell Biology (F.M.M., H.Z., E.F.-B., E.A.d.l.V., A.M.M.M.F., H.V.B., R.C., A.L.N., A.E.N., R.T., A.S.J., K.M., S.E.L., K.Y.T., L.M.T.), University of Illinois at Chicago
| | - Emilce Artur de la Villarmois
- Departments of Anatomy and Cell Biology (F.M.M., H.Z., E.F.-B., E.A.d.l.V., A.M.M.M.F., H.V.B., R.C., A.L.N., A.E.N., R.T., A.S.J., K.M., S.E.L., K.Y.T., L.M.T.), University of Illinois at Chicago
| | | | - Anabel M.M. Miguelez Fernández
- Departments of Anatomy and Cell Biology (F.M.M., H.Z., E.F.-B., E.A.d.l.V., A.M.M.M.F., H.V.B., R.C., A.L.N., A.E.N., R.T., A.S.J., K.M., S.E.L., K.Y.T., L.M.T.), University of Illinois at Chicago
| | - Hannah V. Blesson
- Departments of Anatomy and Cell Biology (F.M.M., H.Z., E.F.-B., E.A.d.l.V., A.M.M.M.F., H.V.B., R.C., A.L.N., A.E.N., R.T., A.S.J., K.M., S.E.L., K.Y.T., L.M.T.), University of Illinois at Chicago
| | - Rohan Chaudhary
- Departments of Anatomy and Cell Biology (F.M.M., H.Z., E.F.-B., E.A.d.l.V., A.M.M.M.F., H.V.B., R.C., A.L.N., A.E.N., R.T., A.S.J., K.M., S.E.L., K.Y.T., L.M.T.), University of Illinois at Chicago
| | - Anthony L. Nguyen
- Departments of Anatomy and Cell Biology (F.M.M., H.Z., E.F.-B., E.A.d.l.V., A.M.M.M.F., H.V.B., R.C., A.L.N., A.E.N., R.T., A.S.J., K.M., S.E.L., K.Y.T., L.M.T.), University of Illinois at Chicago
| | - Amanda E. Nwokeji
- Departments of Anatomy and Cell Biology (F.M.M., H.Z., E.F.-B., E.A.d.l.V., A.M.M.M.F., H.V.B., R.C., A.L.N., A.E.N., R.T., A.S.J., K.M., S.E.L., K.Y.T., L.M.T.), University of Illinois at Chicago
| | - Ruju Talati
- Departments of Anatomy and Cell Biology (F.M.M., H.Z., E.F.-B., E.A.d.l.V., A.M.M.M.F., H.V.B., R.C., A.L.N., A.E.N., R.T., A.S.J., K.M., S.E.L., K.Y.T., L.M.T.), University of Illinois at Chicago
| | - Ashwin S. John
- Departments of Anatomy and Cell Biology (F.M.M., H.Z., E.F.-B., E.A.d.l.V., A.M.M.M.F., H.V.B., R.C., A.L.N., A.E.N., R.T., A.S.J., K.M., S.E.L., K.Y.T., L.M.T.), University of Illinois at Chicago
| | - Kushi Madadakere
- Departments of Anatomy and Cell Biology (F.M.M., H.Z., E.F.-B., E.A.d.l.V., A.M.M.M.F., H.V.B., R.C., A.L.N., A.E.N., R.T., A.S.J., K.M., S.E.L., K.Y.T., L.M.T.), University of Illinois at Chicago
| | - Sarah E. Lutz
- Departments of Anatomy and Cell Biology (F.M.M., H.Z., E.F.-B., E.A.d.l.V., A.M.M.M.F., H.V.B., R.C., A.L.N., A.E.N., R.T., A.S.J., K.M., S.E.L., K.Y.T., L.M.T.), University of Illinois at Chicago
| | - Kejia Cai
- Radiology (F.C.D., K.C.), University of Illinois at Chicago
- Bioengineering (K.C.), University of Illinois at Chicago
| | - Kuei Y. Tseng
- Departments of Anatomy and Cell Biology (F.M.M., H.Z., E.F.-B., E.A.d.l.V., A.M.M.M.F., H.V.B., R.C., A.L.N., A.E.N., R.T., A.S.J., K.M., S.E.L., K.Y.T., L.M.T.), University of Illinois at Chicago
| | - Leon M. Tai
- Departments of Anatomy and Cell Biology (F.M.M., H.Z., E.F.-B., E.A.d.l.V., A.M.M.M.F., H.V.B., R.C., A.L.N., A.E.N., R.T., A.S.J., K.M., S.E.L., K.Y.T., L.M.T.), University of Illinois at Chicago
| |
Collapse
|