1
|
Wang X, Wei C, He D, Huang D, Zhao Y, Ran L, Wang X, Yu H, Liang Z, Gong L. Incidence and risk factor of sepsis in patients with severe community-acquired pneumonia: a Chinese, single-center, retrospective study. BMC Infect Dis 2025; 25:649. [PMID: 40316949 PMCID: PMC12048926 DOI: 10.1186/s12879-025-11027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/22/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Sepsis represents a high-risk mortality cohort among patients with severe community-acquired pneumonia (SCAP). Rapid and precise identification along with prompt decision-making, serves as a practical approach to improve patient prognosis. METHODS This retrospective observational study enrolled adult patients with severe community-acquired pneumonia (SCAP) who were continuously hospitalized in the intensive care unit (ICU) of West China Hospital, Sichuan University, from September 2011 to September 2019. Univariate and multivariate logistic regression analyses were employed to identify independent risk factors for co-sepsis, followed by the utilization of LASSO regression to filter features to establish a nomogram. Model robustness was evaluated via the C index, receiver operating characteristic (ROC) analysis, and calculation of the area under the curve (AUC). Furthermore, its predictive accuracy was assessed via decision curve analysis (DCA). RESULTS In total, 5855 SCAP patients were included in the present study, of whom 654 developed sepsis. Patients with sepsis exhibited a prolonged length of stay in the ICU and higher mortality rates, indicating a worse prognosis than those without sepsis. We identified 15 independent risk factors associated with the development of sepsis in SCAP patients. Further analysis incorporating 9 of these features to construct a nomogram demonstrated a C index of 0.722 (95%CI 0.702-0.742), including lactate, D-dimer, respiratory rate, heart rate, albumin, hemoglobin, activated partial thromboplastin time (APTT), glucose, and C-reactive protein (CRP) levels. The AUC values and DCA curves demonstrated that the model exhibited superior accuracy and overall net benefit in predicting co-sepsis development compared with the qSOFA, CURB-65, SOFA, and APACHE II scores. Additionally, the calibration curve confirmed good concordance between the predicted probabilities of the model. CONCLUSIONS This study investigated the risk factors for co-sepsis in SCAP patients and constructed an expedited, cost-effective and personalized model for predicting the probability of co-sepsis.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China
| | - Chang Wei
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China
| | - Dingxiu He
- Department of Emergency Medicine, The People's Hospital of Deyang, Deyang, Sichuan, China
| | - Dong Huang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China
| | - Yuean Zhao
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China
| | - Longyi Ran
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China
| | - Xinyuan Wang
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - He Yu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Zongan Liang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Linjing Gong
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
DeCuzzi NL, Oberbauer D, Chmiel KJ, Pargett M, Ferguson JM, Murphy D, Hardy M, Ram A, Zeki AA, Albeck JG. Spatiotemporal Clusters of Extracellular Signal-Regulated Kinase Activity Coordinate Cytokine-induced Inflammatory Responses in Human Airway Epithelial Cells. Am J Respir Cell Mol Biol 2025; 72:520-532. [PMID: 39556370 DOI: 10.1165/rcmb.2024-0256oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/18/2024] [Indexed: 11/19/2024] Open
Abstract
Spatially coordinated extracellular signal-regulated kinase (ERK) signaling events (SPREADs) transmit radially from a central point to adjacent cells via secreted ligands for EGFR (epidermal growth factor receptor) and other receptors. SPREADs maintain homeostasis in nonpulmonary epithelia, but it is unknown whether they play a role in the airway epithelium or are dysregulated in inflammatory disease. To address these questions, we measured SPREAD activity with live-cell ERK biosensors in human bronchial epithelial cell lines (HBE1 and 16HBE) and primary human bronchial epithelial cells, in both submerged and biphasic air-liquid interface culture conditions (i.e., differentiated cells). Airway epithelial cells were exposed to proinflammatory cytokines relevant to asthma and chronic obstructive pulmonary disease. Type 1 proinflammatory cytokines significantly increased the frequency of SPREADs, which coincided with epithelial barrier breakdown in differentiated primary human bronchial epithelial cells. Furthermore, SPREADs correlated with IL-6 peptide secretion and the appearance of localized clusters of phospho-STAT3 immunofluorescence. To probe the mechanism of SPREADs, cells were cotreated with pharmacological treatments (gefitinib, tocilizumab, hydrocortisone) or metabolic modulators (insulin, 2-deoxyglucose). Hydrocortisone, inhibitors of receptor signaling, and suppression of metabolic function decreased SPREAD occurrence, implying that proinflammatory cytokines and glucose metabolism modulate SPREADs in human airway epithelial cells via secreted EGFR and IL6R ligands. We conclude that spatiotemporal ERK signaling plays a role in barrier homeostasis and dysfunction during inflammation of the airway epithelium. This novel signaling mechanism could be exploited clinically to supplement corticosteroid treatment for asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Nicholaus L DeCuzzi
- Department of Molecular and Cellular Biology
- Division of Pulmonary, Critical Care, and Sleep Medicine, Lung Center, Department of Internal Medicine, School of Medicine, and
| | | | - Kenneth J Chmiel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Lung Center, Department of Internal Medicine, School of Medicine, and
| | | | | | | | | | | | - Amir A Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, Lung Center, Department of Internal Medicine, School of Medicine, and
- U.C. Davis Reversible Obstructive Airway Disease (ROAD) Center, University of California Davis, Davis, California; and
- Veterans Administration Medical Center, Mather, California
| | | |
Collapse
|
3
|
Laserna A, Cuenca JA, Martin P, Fowler C, Barahona-Correa J, Manjappachar N, Fowler C, Lopez-Olivo MA, Borges M, Sprung CL, Nates JL. Mortality time frame variability in septic shock clinical trials: A systematic review. Med Intensiva 2025:502172. [PMID: 40090798 DOI: 10.1016/j.medine.2025.502172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 03/18/2025]
Abstract
OBJECTIVE We sought to delineate the mortality outcome time frames reported in septic shock randomized control trials (RCTs). DESIGN Systematic review of PubMed, EMBASE, and the Cochrane Database of Systematic Reviews. SETTING Intensive care units. PARTICIPANTS Studies that included adult patients with septic shock. INTERVENTIONS Any type of intervention. MAIN VARIABLES OF INTEREST Information about the study, specific patient population, type of study intervention, specific intervention, and number of patients. Mortality time frames were analyzed for geographical differences and changes over time. RESULTS The search yielded 2660 unique citations. After screening, 132 eligible studies were identified. A total of 234 mortality time frames were collected from the included studies, of which 15 timeframes were unique. The most frequently reported time frame was 28-day mortality (n = 98, 74% of trials), followed by hospital mortality (n = 35, 27%), ICU mortality (n = 30, 23%), and 90-day mortality (n = 29, 22%). The most reported mortality time frame was 28 days in studies from every continent except Africa. The studies published between 2008 and 2013 (25%) more frequently reported hospital and ICU mortality combination than studies published between 2014 and 2019 (11.4%) (P = 0.043). CONCLUSIONS There was considerable variability in the mortality time frames reported in ICU-based septic shock trials. This variability may lead to under or overestimation of the problem, overlooking the effectiveness of the interventions studied, and further limiting the application of trials and their pooling in meta-analyses. A consensus regarding time frame reporting in septic shock trials is long overdue.
Collapse
Affiliation(s)
- Andres Laserna
- Department of Critical Care Medicine, Division of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, California, United States
| | - John A Cuenca
- Department of Critical Care Medicine, Division of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Texas Institute of Graduate Medical Education and Research (TIGMER), University of Incarnate Word, San Antonio, Texas, United States
| | - Peyton Martin
- Department of Critical Care Medicine, Division of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cosmo Fowler
- Department of Critical Care Medicine, Division of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Julian Barahona-Correa
- Department of Internal Medicine, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Nirmala Manjappachar
- Department of Critical Care Medicine, Division of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Clara Fowler
- Research Services and Assessment, Research Medical Library, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria A Lopez-Olivo
- Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marcio Borges
- Multidisciplinary Sepsis Unit, ICU, Son Llàtzer University Hospital, Balearic, Palma de Mallorca, Spain
| | - Charles L Sprung
- Department of Anesthesiology, Critical Care Medicine and Pain Medicine, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph L Nates
- Department of Critical Care Medicine, Division of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
4
|
Motos A, Yang M, Battaglini D, Yang H, Meli A, Bobi J, Cabrera R, Tanzella G, Vargas CR, Arrieta M, Llonch B, Rovira-Ribalta N, Barbeta E, di Giannatale P, Nogas S, Fernández-Barat L, Rigol M, Kiarostami K, Martín-Loeches I, Vila J, Martinez D, Bassi GL, Torres A. Corticosteroid and antimicrobial therapy in macrolide-resistant pneumococcal pneumonia porcine model. Intensive Care Med Exp 2025; 13:27. [PMID: 40016489 PMCID: PMC11868001 DOI: 10.1186/s40635-025-00731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/05/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Streptococcus pneumoniae, a primary cause of community-acquired pneumonia (CAP), is typically treated with β-lactams and macrolides or quinolones. Corticosteroids are now recommended as adjunctive therapy in severe CAP to improve outcomes. In this prospective randomized animal study, we evaluated the bactericidal efficacy of various antibiotic regimens combined with corticosteroids using a porcine pneumococcal pneumonia model. RESULTS In 30 White-Landrace female pigs, pneumonia was induced by intrabronchial inoculation of macrolide-resistant S. pneumoniae 19A isolate. Animals were randomized to receive saline, ceftriaxone (CRO) with levofloxacin (LVX), CRO with azithromycin (AZM), or combinations of these with methylprednisolone (MP). The primary outcome, S. pneumoniae concentrations in lung tissue after 48 h of treatment, showed that the CRO + LVX, CRO + AZM, CRO + LVX + MP, and CRO + AZM + MP groups were equally effective in reducing bacterial load. However, complete bacterial eradication from lung tissue was achieved only in the CRO + AZM + MP group. Secondary outcomes, including bacterial burden in tracheal aspirates and bronchoalveolar lavage (BAL) samples, showed similar bactericidal activity across all treatment groups. The CRO + AZM + MP group demonstrated the most controlled inflammatory response, achieving baseline levels of inflammation, while other groups exhibited elevated inflammatory markers. CONCLUSIONS Despite using a macrolide-resistant S. pneumoniae isolate, the combination of CRO, AZM, and MP achieves similar or even superior results compared to other antibiotic combinations. This regimen provides both bactericidal and immunomodulatory benefits, suggesting its effectiveness in treating macrolide-resistant S. pneumoniae pneumonia.
Collapse
Affiliation(s)
- Ana Motos
- Pneumology Department, Hospital Clínic, Thorax Institute, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Barcelona, Spain
- University of Nantes, Nantes, France
| | - Minlan Yang
- Pneumology Department, Hospital Clínic, Thorax Institute, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Department of Infectious Diseases, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Denise Battaglini
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Hua Yang
- Pneumology Department, Hospital Clínic, Thorax Institute, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Andrea Meli
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Internal Medicine Department, Respiratory Unit and Adult Cystic Fibrosis Center, and Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| | - Joaquim Bobi
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3015, Rotterdam, The Netherlands
| | - Roberto Cabrera
- Pneumology Department, Hospital Clínic, Thorax Institute, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Giacomo Tanzella
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Carmen Rosa Vargas
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Arrieta
- Pneumology Department, Hospital Clínic, Thorax Institute, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Blanca Llonch
- Pneumology Department, Hospital Clínic, Thorax Institute, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Nona Rovira-Ribalta
- Pneumology Department, Hospital Clínic, Thorax Institute, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Enric Barbeta
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Barcelona, Spain
- Surgical Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Pierluigi di Giannatale
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Anesthesiology, Critical Care Medicine and Emergency, SS. Annunziata Hospital, Chieti, Italy
| | - Stefano Nogas
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laia Fernández-Barat
- Pneumology Department, Hospital Clínic, Thorax Institute, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Montserrat Rigol
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Kasra Kiarostami
- Pneumology Department, Hospital Clínic, Thorax Institute, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Ignacio Martín-Loeches
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Barcelona, Spain
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, James's Street, Dublin, D08 NHY1, Ireland
| | - Jordi Vila
- University of Barcelona, Barcelona, Spain
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Department of Clinical Microbiology, Centre for Biomedical Diagnosis, Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica En Red- Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Daniel Martinez
- University of Barcelona, Barcelona, Spain
- Department of Pathology, Hospital Clinic, Barcelona, Spain
| | - Gianluigi Li Bassi
- Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, Australia
- University of Queensland, St Lucia, QLD, Australia
- Queensland University of Technology, Kelving Grove, QLD, Australia
- The Wesley Medical Research, Auchenflower, QLD, Australia
| | - Antoni Torres
- Pneumology Department, Hospital Clínic, Thorax Institute, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
- Centro de Investigación Biomedica En Red- Enfermedades Respiratorias (CIBERES), Barcelona, Spain.
- Servei de Pneumologia I Al•Lèrgia Respiratoria, Hospital Clínic, Calle Villarroel 170, Esc 6/8 Planta 2, 08036, Barcelona, Spain.
| |
Collapse
|
5
|
Xu Z, Liu X, Zhang L, Yan X. Comparative outcomes of corticosteroids, neuromuscular blocking agents, and inhaled nitric oxide in ARDS: a systematic review and network meta-analysis. Front Med (Lausanne) 2025; 12:1507805. [PMID: 39963433 PMCID: PMC11831700 DOI: 10.3389/fmed.2025.1507805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Objectives Acute respiratory distress syndrome (ARDS) is associated with high rates of morbidity and mortality. However, the evidence regarding the effectiveness of commonly used treatments, including corticosteroids, neuromuscular blocking agents (NMBAs), and inhaled nitric oxide (iNO), remains uncertain. Therefore, this study aimed to compare and rank these three treatments to identify the most effective option. Data sources We searched PubMed, Embase, Cochrane Library, and Web of Science for clinical trials from the earliest records to 1 May 2024. Study selection and data extraction Clinical trials evaluating three interventions compared with the control group for ARDS were included, with restrictions on any language. Data were extracted by two independent reviewers. Frequentist network meta-analysis (NMA) was performed to identify the most effective intervention, and treatments were ranked using the surface under the cumulative ranking (SUCRA) curve. The primary outcome was 28-day mortality, while secondary outcomes included ventilator-free days up to 28 days, ICU mortality, in-hospital mortality, and the incidence of new infection events. Data synthesis Data from 26 clinical trials encompassing 5,071 patients were analyzed. Vecuronium bromide was the most effective strategy for reducing 28-day mortality compared to conventional treatment, iNO, methylprednisolone, and placebo (OR 0.38, 95% CI 0.15-1.00, and OR 0.30, 95% CI 0.10-0.85 and OR 0.25, 95% CI 0.08-0.74 and OR 0.23, 95% CI 0.08-0.65; SUCRA: 96.6%). Dexamethasone was identified as the most effective treatment option for increasing ventilator-free days at 28 days compared to conventional therapy and cisatracurium (MD 3.60, 95% CI 1.77-5.43, and MD 3.40, 95% CI 0.87-5.92; SUCRA: 93.2%). Methylprednisolone demonstrated the highest effectiveness for preventing ICU mortality (SUCRA: 88.5%). Although dexamethasone, cisatracurium, conventional therapy, methylprednisolone, and iNO treatment did not show significant superiority in reducing in-hospital mortality, dexamethasone showed the highest probability of being the most effective treatment option (SUCRA: 79.7%). Furthermore, dexamethasone treatment showed the highest safety in reducing the incidence of new infection events compared with placebo and iNO (OR 0.61, 95% CI 0.42-0.88, and OR 0.33, 95% CI 0.19-0.58; SUCRA: 91.8%). Conclusion This NMA suggests that corticosteroids may provide benefits to patients with ARDS. While the application of NMBAs may reduce 28-day mortality, iNO did not demonstrate a significant beneficial effect as a therapeutic measure. Systematic review registration PROSPERO, CRD42022333165 https://www.crd.york.ac.uk/PROSPERO/.
Collapse
Affiliation(s)
- Zhiyuan Xu
- Department of Emergency Medicine, Xuzhou No. 1 People’s Hospital, Xuzhou, Jiangsu, China
| | - Xiao Liu
- Department of Emergency Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liang Zhang
- Department of Emergency Medicine, Xuzhou No. 1 People’s Hospital, Xuzhou, Jiangsu, China
| | - Xianliang Yan
- Department of Emergency Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Emergency Medicine, Suining County People’s Hospital, Xuzhou, Jiangsu, China
| |
Collapse
|
6
|
Li G, Chen D, Gao F, Huang W, Wang J, Li Y, Chen B, Zhong Y, Chen R, Huang M. Efficacy of corticosteroids in patients with acute respiratory distress syndrome: a meta-analysis. Ann Med 2024; 56:2381086. [PMID: 39165240 PMCID: PMC11340212 DOI: 10.1080/07853890.2024.2381086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 04/04/2024] [Accepted: 04/20/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS), are respiratory diseases with high morbidity and mortality. Clinical trials investigating the efficacy of corticosteroids in the treatment of ARDS often yield contradictory results. We hereby conducted a systematic review and meta-analysis to investigate the efficacy of corticosteroids in ARDS management. MATERIALS AND METHODS We conducted a search for randomized clinical trials (RCT) and observational studies that utilized corticosteroids for patients with ARDS in Web of Science, PubMed, and Embase. The primary outcome was mortality. Risk of bias was assessed using Cochrane or NOS scales. Statistical effect size was analyzed using the Mantel-Haenszel method. RESULTS A total of 20 studies, comprising 11 observational studies and 9 RCTs, were eligible for analysis. In RCTs, corticosteroids were associated with a reduction of mortality in ARDS patients (relative risk [RR] = 0.80, 95%CI: 0.71-0.91, p = 0.001). Further subgroup analysis indicated that specific variables, such as low-dose (RR = 0.81; 95%CI: 0.67-0.98; p = 0.034), methylprednisolone (RR = 0.70; 95%CI: 0.49-0.98; p = 0.035), and dexamethasone (RR = 0.82; 95%CI: 0.69-0.98; p = 0.029) were associated with mortality among patients receiving corticosteroids. However, in observational studies, corticosteroids increased the risk of death (RR = 1.16, 95%CI: 1.04-1.29; p = 0.001). Subgroup analysis showed that the use of high-dose corticosteroids was associated with higher patient mortality (RR = 1.20; 95%CI: 1.04-1.38; p = 0.001). CONCLUSIONS The efficacy of corticosteroids on the mortality of ARDS differed by the type and dosage of corticosteroids used, as well as the etiologies. Current data do not support routine use of corticosteroids in ARDS since protective effects were observed in RCTs but increased mortality was found in observational studies. More well designed and large clinical trials are needed to specify the favorable subgroups for corticosteroid therapy.
Collapse
Affiliation(s)
- Guowei Li
- Emergency Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dunfan Chen
- Emergency Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng Gao
- Emergency Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Huang
- Emergency Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin Wang
- Emergency Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yonglin Li
- Emergency Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baijian Chen
- Emergency Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuejia Zhong
- Emergency Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Chen
- Emergency Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Manhua Huang
- Emergency Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Millar JE, Craven TH, Shankar-Hari M. Steroids and Immunomodulatory Therapies for Acute Respiratory Distress Syndrome. Clin Chest Med 2024; 45:885-894. [PMID: 39443005 DOI: 10.1016/j.ccm.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by a dysregulated immune response to infection or injury. This framework has driven long-standing interest in immunomodulatory therapies as treatments for ARDS. In this narrative review, we first define what constitutes a dysregulated immune response in ARDS. In this context, we describe the rationale and available evidence for immunomodulatory therapies studied in randomized controlled trials of ARDS patients to date. Finally, we address factors that have contributed to the failure to develop therapies in the past and highlight current and future developments designed to address them.
Collapse
Affiliation(s)
- Jonathan E Millar
- Centre for Inflammation Research, Institute for Repair and Regeneration, University of Edinburgh, Edinburgh EH16 4UU, UK; Department of Critical Care, Intensive Care Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Thomas H Craven
- Centre for Inflammation Research, Institute for Repair and Regeneration, University of Edinburgh, Edinburgh EH16 4UU, UK; Department of Critical Care, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute for Repair and Regeneration, University of Edinburgh, Edinburgh EH16 4UU, UK; Department of Critical Care, Royal Infirmary of Edinburgh, Edinburgh, UK.
| |
Collapse
|
8
|
Chen Y, Kuang H, Zhu Y, Luo X. The effect and safety of corticosteroid treatment for severe community-acquired pneumonia: a meta-analysis of randomized controlled trials. Front Med (Lausanne) 2024; 11:1457469. [PMID: 39568743 PMCID: PMC11576290 DOI: 10.3389/fmed.2024.1457469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Background There is ongoing debate on the efficacy and safety of corticosteroid therapy for severe community-acquired pneumonia (sCAP). Our aim was to investigate the safety and therapeutic effectiveness of corticosteroids in the sCAP therapy. Methods Electronic databases (Cochrane Library, PubMed, Web of Science and Embase) were searched from inception to January 10, 2024. We examined for randomized controlled studies assessing the effectiveness and safety of corticosteroid therapy in individuals with sCAP. The primary outcome was short-term mortality. Subgroup analyses were carried out according to the corticosteroid type. Additionally, trial sequential analysis (TSA) was carried out. Results In total, 11 trials, including 1959 patients, met the predetermined standards and underwent analysis. Overall, our meta-analysis exhibited that corticosteroids may considerably lower short-term mortality when compared to control treatment [6 studies (1,582 patients); odds ratio (OR), 0.65; 95% confidence interval (CI) 0.49-0.88; p = 0.005] and C-reactive protein (CRP) levels [5 studies (359 patients); mean difference (MD), -6.97; 95% CI -12.33 to -1.60; p = 0.01], but TSA revealed that the sample size needs to be larger. Moreover, we observed that corticosteroids reduced the hospital length of stay [7 studies (999 patients); MD, -3.56; 95% CI, -4.28 to -2.84; p < 0.001], need for mechanical ventilation (MV) [7 studies (1,328 patients); OR, 0.60; 95% CI, 0.45-0.79; p = 0.001] and MV duration [4 studies (736 patients); MD, -5.62; 95% CI, -7.31 to -3.94; p < 0.001], which was in agreement with TSA. However, adverse events, length of hospital and intensive care unit (ICU) stay were not evidently shortened when TSA was utilized. Furthermore, subgroup analysis revealed that all of the above studies benefited from hydrocortisone treatment in comparison to the control group. Conclusion Our meta-analysis revealed that corticosteroids, especially hydrocortisone, could decrease the mortality of individuals with sCAP. Systematic review registration [https://clinicaltrials.gov/], identifier [CRD42023415555].
Collapse
Affiliation(s)
- Yang Chen
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Huanming Kuang
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Youfeng Zhu
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xing Luo
- Department of Intensive Care Unit, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Roginski MA, Atchinson PRA, Esteves AM, Lentz SA, Fjeld KJ, Markwood JM, Lauria MJ, Bernardoni B. Acute Respiratory Distress Syndrome: Updates for Critical Care Transport. Air Med J 2024; 43:566-571. [PMID: 39632039 DOI: 10.1016/j.amj.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 12/07/2024]
Affiliation(s)
| | | | | | | | | | | | - Michael J Lauria
- Resuscitation Engineering Science Unit (RESCU) Research Center, University of Washington, Seattle, WA
| | - Brittney Bernardoni
- University of Wisconsin School of Medicine and Public Health, Madison, WI; University of Wisconsin Health, Med Flight, Madison, WI
| |
Collapse
|
10
|
Zhao Y, Yao Z, Xu S, Yao L, Yu Z. Glucocorticoid therapy for acute respiratory distress syndrome: Current concepts. JOURNAL OF INTENSIVE MEDICINE 2024; 4:417-432. [PMID: 39310055 PMCID: PMC11411438 DOI: 10.1016/j.jointm.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 09/25/2024]
Abstract
Acute respiratory distress syndrome (ARDS), a fatal critical disease, is induced by various insults. ARDS represents a major global public health burden, and the management of ARDS continues to challenge healthcare systems globally, especially during the pandemic of the coronavirus disease 2019 (COVID-19). There remains no confirmed specific pharmacotherapy for ARDS, despite advances in understanding its pathophysiology. Debate continues about the potential role of glucocorticoids (GCs) as a promising ARDS clinical therapy. Questions regarding GC agent, dose, and duration in patients with ARDS need to be answered, because of substantial variations in GC administration regimens across studies. ARDS heterogeneity likely affects the therapeutic actions of exogenous GCs. This review includes progress in determining the GC mechanisms of action and clinical applications in ARDS, especially during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yuanrui Zhao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhun Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Song Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lan Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
11
|
Sun S, Yang D, Lv J, Xia H, Mao Z, Chen X, Gao Y. Pharmacological effects of specialized pro-resolving mediators in sepsis-induced organ dysfunction: a narrative review. Front Immunol 2024; 15:1444740. [PMID: 39372413 PMCID: PMC11451296 DOI: 10.3389/fimmu.2024.1444740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024] Open
Abstract
Sepsis is a life-threatening syndrome of organ dysfunction, characterized by uncontrolled inflammatory response and immune dysregulation, often leading to multiple organ failure and even death. Specialized pro-resolving mediators (SPMs), which are typically thought to be formed via consecutive steps of oxidation of polyenoic fatty acids, have been shown to suppress inflammation and promote timely resolution of inflammation. They are mainly divided into four categories: lipoxins, resolvins, protectins, and maresins. The SPMs may improve the prognosis of sepsis by modulating the immune and inflammatory balance, thereby holding promise for clinical applications. However, their biosynthetic and pharmacological properties are very complex. Through a literature review, we aim to comprehensively elucidate the protective mechanisms of different SPMs in sepsis and its organ damage, in order to provide sufficient theoretical basis for the future clinical translation of SPMs.
Collapse
Affiliation(s)
- Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Yang
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Lv
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Zhangyan Mao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yafen Gao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| |
Collapse
|
12
|
De Bruyn L, Téblick A, Van Oudenhove T, Vander Perre S, Derese I, Pauwels L, Derde S, De Vlieger G, Van den Berghe G, Langouche L. Glucocorticoid treatment increases cholesterol availability during critical illness: effect on adrenal and muscle function. Crit Care 2024; 28:295. [PMID: 39238038 PMCID: PMC11378467 DOI: 10.1186/s13054-024-05079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Hypocholesterolemia hallmarks critical illness though the underlying pathophysiology is incompletely understood. As low circulating cholesterol levels could partly be due to an increased conversion to cortisol/corticosterone, we hypothesized that glucocorticoid treatment, via reduced de novo adrenal cortisol/corticosterone synthesis, might improve cholesterol availability and as such affect adrenal gland and skeletal muscle function. METHODS In a matched set of prolonged critically ill patients (n = 324) included in the EPaNIC RCT, a secondary analysis was performed to assess the association between glucocorticoid treatment and plasma cholesterol from ICU admission to day five. Next, in a mouse model of cecal ligation and puncture-induced sepsis, septic mice were randomized to receive either hydrocortisone (1.2 mg/day) (n = 17) or placebo (n = 15) for 5 days, as compared with healthy mice (n = 18). Plasma corticosterone, cholesterol, and adrenocortical and myofiber cholesterol were quantified. Adrenal structure and steroidogenic capacity were evaluated. Muscle force and markers of atrophy, fibrosis and regeneration were quantified. In a consecutive mouse study with identical design (n = 24), whole body composition was assessed by EchoMRI to investigate impact on lean mass, fat mass, total and free water. RESULTS In human patients, glucocorticoid treatment was associated with higher plasma HDL- and LDL-cholesterol from respectively ICU day two and day three, up to day five (P < 0.05). Plasma corticosterone was no longer elevated in hydrocortisone-treated septic mice compared to placebo, whereas the sepsis-induced reduction in plasma HDL- and LDL-cholesterol and in adrenocortical cholesterol was attenuated (P < 0.05), but without improving the adrenocortical ACTH-induced CORT response and with increased adrenocortical inflammation and apoptosis (P < 0.05). Total body mass was further decreased in hydrocortisone-treated septic mice (P < 0.01) compared to placebo, with no additional effect on muscle mass, force or myofiber size. The sepsis-induced rise in markers of muscle atrophy and fibrosis was unaffected by hydrocortisone treatment, whereas markers of muscle regeneration were suppressed compared to placebo (P < 0.05). An increased loss of lean body mass and total and free water was observed in hydrocortisone-treated septic mice compared to placebo (P < 0.05). CONCLUSIONS Glucocorticoid treatment partially attenuated critical illness-induced hypocholesterolemia, but at a cost of impaired adrenal function, suppressed muscle regeneration and exacerbated loss of body mass.
Collapse
Affiliation(s)
- Lauren De Bruyn
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium
| | - Arno Téblick
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium
| | - Tim Van Oudenhove
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium
| | - Sarah Vander Perre
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium
| | - Inge Derese
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium
| | - Lies Pauwels
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium
| | - Sarah Derde
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium
| | - Greet De Vlieger
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium
| | - Lies Langouche
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Leuven, Belgium.
| |
Collapse
|
13
|
Baljinnyam T, Fukuda S, Niimi Y, Prough D, Enkhbaatar P. Combined treatment with vitamin C, hydrocortisone and thiamine does not attenuate morbidity and mortality of septic sheep. Lab Anim Res 2024; 40:27. [PMID: 39135077 PMCID: PMC11318330 DOI: 10.1186/s42826-024-00213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Sepsis is associated with a highest mortality rate in the ICU. Present study tests the efficacy of combined therapy with vitamin C, hydrocortisone and thiamine (combined therapy) in the ovine model of sepsis induced by Pseudomonas aeruginosa. In this study, sepsis was induced in sheep by instillation of Pseudomonas aeruginosa (1 × 1011 CFU) into the lungs via bronchoscope, under anesthesia. Nine hours after injury, intravenous infusion of vitamin C (0.75 g every 6 h), hydrocortisone (25 mg every 6 h), and thiamine (100 mg every 12 h) or saline was given to the treatment and control groups. Cardiopulmonary variables were recorded. RESULTS The survival rate was 16.7% in control and 33.3% in treatment groups. In the control group, mean arterial pressure dropped from 93.6 ± 8.6 to 75.5 ± 9.7 mmHg by 9 h, which was not affected by the combined therapy. Pulmonary dysfunction was not attenuated by the combined therapy either. The combined therapy had no effect on increased extravascular lung water content and fluid effusion into thoracic cavity. The bacterial number in the bronchoalveolar lavage fluid was significantly increased in the treatment group than the control group. The blood bacterial number remained comparable between groups. CONCLUSIONS Combined vitamin C, hydrocortisone, and thiamine did not attenuate severity of ovine sepsis.
Collapse
Affiliation(s)
- Tuvshintugs Baljinnyam
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA.
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA.
| | - Satoshi Fukuda
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Yosuke Niimi
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Donald Prough
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
14
|
Pirracchio R, Venkatesh B, Legrand M. Low-Dose Corticosteroids for Critically Ill Adults With Severe Pulmonary Infections: A Review. JAMA 2024; 332:318-328. [PMID: 38865154 DOI: 10.1001/jama.2024.6096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Importance Severe pulmonary infections, including COVID-19, community-acquired pneumonia, influenza, and Pneumocystis pneumonia, are a leading cause of death among adults worldwide. Pulmonary infections in critically ill patients may cause septic shock, acute respiratory distress syndrome, or both, which are associated with mortality rates ranging between 30% and 50%. Observations Corticosteroids mitigate the immune response to infection and improve outcomes for patients with several types of severe pulmonary infections. Low-dose corticosteroids, defined as less than or equal to 400 mg hydrocortisone equivalent daily, can reduce mortality of patients with severe COVID-19, community-acquired pneumonia, and Pneumocystis pneumonia. A randomized clinical trial of 6425 patients hospitalized with COVID-19 who required supplemental oxygen or noninvasive or invasive mechanical ventilation reported that dexamethasone 6 mg daily for 10 days decreased 28-day mortality (23% vs 26%). A meta-analysis that included 7 randomized clinical trials of 1689 patients treated in the intensive care unit for severe bacterial community-acquired pneumonia reported that hydrocortisone equivalent less than or equal to 400 mg daily for 8 days or fewer was associated with lower 30-day mortality compared with placebo (10% vs 16%). In a meta-analysis of 6 randomized clinical trials, low-dose corticosteroids were associated with lower mortality rates compared with placebo for patients with HIV and moderate to severe Pneumocystis pneumonia (13% vs 25%). In a predefined subgroup analysis of a trial of low-dose steroid treatment for septic shock, patients with community-acquired pneumonia randomized to 7 days of intravenous hydrocortisone 50 mg every 6 hours and fludrocortisone 50 μg daily had decreased mortality compared with the placebo group (39% vs 51%). For patients with acute respiratory distress syndrome caused by various conditions, low-dose corticosteroids were associated with decreased in-hospital mortality (34% vs 45%) according to a meta-analysis of 8 studies that included 1091 patients. Adverse effects of low-dose corticosteroids may include hyperglycemia, gastrointestinal bleeding, neuropsychiatric disorders, muscle weakness, hypernatremia, and secondary infections. Conclusions and Relevance Treatment with low-dose corticosteroids is associated with decreased mortality for patients with severe COVID-19 infection, severe community-acquired bacterial pneumonia, and moderate to severe Pneumocystis pneumonia (for patients with HIV). Low-dose corticosteroids may also benefit critically ill patients with respiratory infections who have septic shock, acute respiratory distress syndrome, or both.
Collapse
Affiliation(s)
- Romain Pirracchio
- Department of Anesthesia and Perioperative Medicine, University of California San Francisco
- Associate Editor, JAMA
| | - Balasubramanian Venkatesh
- The George Institute for Global Health, University of New South Wales Sydney, Australia
- Gold Coast University Hospital, Southport, Queensland, Australia
| | - Matthieu Legrand
- Department of Anesthesia and Perioperative Medicine, University of California San Francisco
| |
Collapse
|
15
|
Forget MF, Wang HT, Carignan R, Dessureault A, Gravel M, Bienvenue J, Bouchard M, Durivage C, Coveney R, Munshi L. Critically Ill Older Adults' Representation in Intervention Trials: A Systematic Review. Crit Care Explor 2024; 6:e1107. [PMID: 38919511 PMCID: PMC11196082 DOI: 10.1097/cce.0000000000001107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVES Older adults may be under-represented in critical care research, and results may not apply to this specific population. Our primary objective was to evaluate the prevalence of inclusion of older adults across critical care trials focused on common ICU conditions or interventions. Our secondary objective was to evaluate whether older age was used as a stratification variable for randomization or outcome analysis. DESIGN SETTING AND SUBJECTS We performed a systematic review of previously published systematic reviews of randomized controlled trials (RCTs) in critical care. We searched PubMed, Ovid, CENTRAL, and Cochrane from 2009 to 2022. Systematic reviews of any interventions across five topics: acute respiratory distress syndrome (ARDS), sepsis/shock, nutrition, sedation, and mobilization were eligible. MAIN RESULTS We identified 216 systematic reviews and included a total of 253 RCTs and 113,090 patients. We extracted baseline characteristics and the reported proportion of older adults. We assessed whether any upper age limit was an exclusion criterion for trials, whether age was used for stratification during randomization or data analysis, and if age-specific subgroup analysis was present. The most prevalent topic was sepsis (78 trials, 31%), followed by nutrition (62 trials, 25%), ARDS (39 trials, 15%), mobilization (38 trials, 15%), and sedation (36 trials, 14%). Eighteen trials (7%) had exclusion criteria based on older age. Age distribution with information on older adults prevalence was given in six trials (2%). Age was considered in the analysis of ten trials (5%) using analytic methods to evaluate the outcome stratified by age. Conclusions In this systematic review, the proportion of older critically ill patients is undetermined, and it is unclear how age is or is not an effect modifier or to what extent the results are valid for older adult groups. Reporting age is important to guide clinicians in personalizing care. These results highlight the importance of incorporating older critically ill patients in future trials to ensure the results are generalizable to this growing population.
Collapse
Affiliation(s)
- Marie-France Forget
- Department of Medicine, Division of Geriatric Medicine, Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Han Ting Wang
- Department of Medicine, Division of Critical Care Medicine, Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Raphaelle Carignan
- Department of Medicine, Division of Internal Medicine, Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Alexandre Dessureault
- Department of Medicine, Division of Internal Medicine, Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Mathieu Gravel
- Department of Medicine, Faculty of Medicine, Université de Laval, Québec, QC, Canada
| | - Jeanne Bienvenue
- Department of Medicine, Division of Internal Medicine, Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Maude Bouchard
- Department of Medicine, Division of Internal Medicine, Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Camille Durivage
- Department of Medicine, Division of Internal Medicine, Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Richard Coveney
- Teaching Division/Library, Hôpital Maisonneuve-Rosemont, CIUSSS de l’Est-de-l’île-de-Montréal, Montréal, QC, Canada
| | - Laveena Munshi
- Interdepartmental Division of Critical Care, Sinai Health System, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Zhang Y, Wang H, Yang R, Zhang Y, Chen Y, Jiang C, Li X. Synergistic Therapeutic Effects of D-Mannitol-Cerium-Quercetin (Rutin) Coordination Polymer Nanoparticles on Acute Lung Injury. Molecules 2024; 29:2819. [PMID: 38930884 PMCID: PMC11206268 DOI: 10.3390/molecules29122819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/25/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Acute lung injury (ALI) remains a significant global health issue, necessitating novel therapeutic interventions. In our latest study, we pioneered the use of D-mannitol-cerium-quercetin/rutin coordination polymer nanoparticles (MCQ/R NPs) as a potential treatment for ALI. The MCQ/R NPs, which integrate rutin and quercetin for their therapeutic potential and D-mannitol for its pulmonary targeting, displayed exceptional efficacy. By utilizing cerium ions for optimal nanoparticle assembly, the MCQ/R NPs demonstrated an average size of less than 160 nm. Impressively, these nanoparticles outperformed conventional treatments in both antioxidative capabilities and biocompatibility. Moreover, our in vivo studies on LPS-induced ALI mice showed a significant reduction in lung tissue inflammation. This groundbreaking research presents MCQ/R NPs as a promising new approach in ALI therapeutics.
Collapse
Affiliation(s)
- Yusheng Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hong Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ruiying Yang
- Traditional Chinese Medicine College, China Pharmaceutical University, Nanjing, 211198, China
| | - Ying Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
17
|
Sinha S, Patnaik R, Behera S. Steroids in acute respiratory distress syndrome: A panacea or still a puzzle? World J Crit Care Med 2024; 13:91225. [PMID: 38855281 PMCID: PMC11155495 DOI: 10.5492/wjccm.v13.i2.91225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a unique entity marked by various etiologies and heterogenous pathophysiologies. There remain concerns regarding the efficacy of particular medications for each severity level apart from respiratory support. Among several pharmacotherapies which have been examined in the treatment of ARDS, corticosteroids, in particular, have demonstrated potential for improving the resolution of ARDS. Nevertheless, it is imperative to consider the potential adverse effects of hyperglycemia, susceptibility to hospital-acquired infections, and the development of intensive care unit acquired weakness when administering corticosteroids. Thus far, a multitude of trials spanning several decades have investigated the role of corticosteroids in ARDS. Further stringent trials are necessary to identify particular subgroups before implementing corticosteroids more widely in the treatment of ARDS. This review article provides a concise overview of the most recent evidence regarding the role and impact of corticosteroids in the management of ARDS.
Collapse
Affiliation(s)
- Sharmili Sinha
- Department of Critical Care Medicine, Apollo Hospitals, Bhubaneswar 751005, Odisha, India
| | - Rohit Patnaik
- Department of Critical Care Medicine, Medeor 24x7 Hospital, Al Danah 40330, Abu Dhabi, United Arab Emirates
| | - Srikant Behera
- Department of Internal Medicine and Critical Care, All India Institute of Medical Sciences, Bhubaneswar 751019, Odisha, India
| |
Collapse
|
18
|
Meunier É, Aubin vega M, Adam D, Privé A, Mohammad Nezhady MA, Lahaie I, Quiniou C, Chemtob S, Brochiero E. Evaluation of interleukin-1 and interleukin-6 receptor antagonists in a murine model of acute lung injury. Exp Physiol 2024; 109:966-979. [PMID: 38594909 PMCID: PMC11140168 DOI: 10.1113/ep091682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
The acute exudative phase of acute respiratory distress syndrome (ARDS), a severe form of respiratory failure, is characterized by alveolar damage, pulmonary oedema, and an exacerbated inflammatory response. There is no effective treatment for this condition, but based on the major contribution of inflammation, anti-inflammatory strategies have been evaluated in animal models and clinical trials, with conflicting results. In COVID-19 ARDS patients, interleukin (IL)-1 and IL-6 receptor antagonists (IL-1Ra and IL-6Ra, kineret and tocilizumab, respectively) have shown some efficacy. Moreover, we have previously developed novel peptides modulating IL-1R and IL-6R activity (rytvela and HSJ633, respectively) while preserving immune vigilance and cytoprotective pathways. We aimed to assess the efficacy of these novel IL-1Ra and IL-6Ra, compared to commercially available drugs (kineret, tocilizumab) during the exudative phase (day 7) of bleomycin-induced acute lung injury (ALI) in mice. Our results first showed that none of the IL-1Ra and IL-6Ra compounds attenuated bleomycin-induced weight loss and venousP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ increase. Histological analyses and lung water content measurements also showed that these drugs did not improve lung injury scores or pulmonary oedema, after the bleomycin challenge. Finally, IL-1Ra and IL-6Ra failed to alleviate the inflammatory status of the mice, as indicated by cytokine levels and alveolar neutrophil infiltration. Altogether, these results indicate a lack of beneficial effects of IL-1R and IL-6R antagonists on key parameters of ALI in the bleomycin mouse model.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Acute Lung Injury/drug therapy
- Acute Lung Injury/metabolism
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Bleomycin
- Disease Models, Animal
- Lung/metabolism
- Lung/drug effects
- Mice, Inbred C57BL
- Receptors, Interleukin-6/antagonists & inhibitors
- Receptors, Interleukin-6/metabolism
- Receptors, Interleukin-1/antagonists & inhibitors
- Receptors, Interleukin-1/metabolism
Collapse
Affiliation(s)
- Émilie Meunier
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada
- Département de MédecineUniversité de MontréalMontréalQuébecCanada
| | - Mélissa Aubin vega
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada
- Département de MédecineUniversité de MontréalMontréalQuébecCanada
| | - Damien Adam
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada
- Département de MédecineUniversité de MontréalMontréalQuébecCanada
| | - Anik Privé
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada
| | | | - Isabelle Lahaie
- Centre de recherche du Centre hospitalier Universitaire Sainte‐JustineMontréalQuébecCanada
| | - Christiane Quiniou
- Centre de recherche du Centre hospitalier Universitaire Sainte‐JustineMontréalQuébecCanada
| | - Sylvain Chemtob
- Centre de recherche du Centre hospitalier Universitaire Sainte‐JustineMontréalQuébecCanada
- Département de pédiatrieUniversité de MontréalMontréalQuébecCanada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada
- Département de MédecineUniversité de MontréalMontréalQuébecCanada
| |
Collapse
|
19
|
Teja B, Berube M, Pereira TV, Law AC, Schanock C, Pang B, Wunsch H, Walkey AJ, Bosch NA. Effectiveness of Fludrocortisone Plus Hydrocortisone versus Hydrocortisone Alone in Septic Shock: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Am J Respir Crit Care Med 2024; 209:1219-1228. [PMID: 38271488 PMCID: PMC11146553 DOI: 10.1164/rccm.202310-1785oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/25/2024] [Indexed: 01/27/2024] Open
Abstract
Rationale: The use of hydrocortisone in adult patients with septic shock is controversial, and the effectiveness of adding fludrocortisone to hydrocortisone remains uncertain. Objectives: To assess the comparative effectiveness and safety of fludrocortisone plus hydrocortisone, hydrocortisone alone, and placebo or usual care in adults with septic shock. Methods: A systematic review and a Bayesian network meta-analysis of peer-reviewed randomized trials were conducted. The primary outcome was all-cause mortality at last follow-up. Treatment effects are presented as relative risks (RRs) with 95% credible intervals (CrIs). Placebo or usual care was the reference treatment. Measurements and Main Results: Among 7,553 references, we included 17 trials (7,688 patients). All-cause mortality at last follow-up was lowest with fludrocortisone plus hydrocortisone (RR, 0.85; 95% CrI, 0.72-0.99; 98.3% probability of superiority, moderate-certainty evidence), followed by hydrocortisone alone (RR, 0.97; 95% CrI, 0.87-1.07; 73.1% probability of superiority, low-certainty evidence). The comparison of fludrocortisone plus hydrocortisone versus hydrocortisone alone was based primarily on indirect evidence (only two trials with direct evidence). Fludrocortisone plus hydrocortisone was associated with a 12% lower risk of all-cause mortality compared with hydrocortisone alone (RR, 0.88; 95% CrI, 0.74-1.03; 94.2% probability of superiority, moderate-certainty evidence). Conclusions: In adult patients with septic shock, fludrocortisone plus hydrocortisone was associated with lower risk of all-cause mortality at last follow-up than placebo and hydrocortisone alone. The scarcity of head-to-head trials comparing fludrocortisone plus hydrocortisone versus hydrocortisone alone led our network meta-analysis to rely primarily on indirect evidence for this comparison. Although we undertook several sensitivity analyses and assessments, these findings should be considered while also acknowledging the heterogeneity of included trials.
Collapse
Affiliation(s)
- Bijan Teja
- Interdepartmental Division of Critical Care Medicine and
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Megan Berube
- The Pulmonary Center, Department of Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Tiago V. Pereira
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Anica C. Law
- The Pulmonary Center, Department of Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Carly Schanock
- Medical College of Wisconsin Libraries, Milwaukee, Wisconsin
| | - Brandon Pang
- The Pulmonary Center, Department of Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Hannah Wunsch
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York; and
| | - Allan J. Walkey
- Division of Health Systems Sciences, Medical School, University of Massachusetts, Boston, Massachusetts
| | - Nicholas A. Bosch
- The Pulmonary Center, Department of Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| |
Collapse
|
20
|
Wu D, Li Y, Dong SH, Gao Y. Clinical outcomes of corticosteroid administration for acute respiratory distress syndrome in adults based on meta-analyses and trial sequential analysis. Ann Saudi Med 2024; 44:167-182. [PMID: 38853475 PMCID: PMC11268472 DOI: 10.5144/0256-4947.2024.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/27/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS), which results in lung injury as a consequence of sepsis and septic shock, is associated with severe systemic inflammation and is responsible for a high worldwide mortality rate. OBJECTIVE Investigate whether corticosteroids could benefit clinical outcomes in adult with ARDS. METHODS A comprehensive search of electronic databases Ovid MEDLINE, Ovid EMbase, and Cochrane Library from their inception to 7 May 2023 was conducted to identify studies that met the eligibility criteria, including only randomized controlled trials. The study was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the methods of trial sequential analysis. MAIN OUTCOME MEASURES Mortality rates, including including the 14-, 28-, 45-, and 60-day mortality, hospital mortality, and intensive care unit (ICU) mortality. SAMPLE SIZE 17 studies with 2508 patients. RESULTS Data relating to mortality at 14, 28, 45, and 60 days were not significantly different when treatments with corticosteroids and placebo were compared. In terms of hospital and ICU mortality, the mortality of those who had received corticosteroids was significantly lower than that of those who had not. ARDS patients who received assisted ventilation benefited from corticosteroid therapy, as revealed by the significant difference in outcome days between those who received assisted ventilation and those who did not. Corticosteroid had significantly more days free from mechanical ventilation, ICU-free days, and MODS-free days during the first 28 days, but not more organ support-free days up to day 28. CONCLUSION Although corticosteroid therapy did not reduce mortality rates at different observation periods, it significantly reduced hospital and ICU mortality. Administering corticosteroids to ARDS patients significantly decreased the days of assisted ventilation and time cost consumption. This study confirmed that long-term use of low-dose glucocorticoids may have a positive effect on early ARDS. LIMITATION Risk of bias due to the differences in patient characteristics.
Collapse
Affiliation(s)
- Di Wu
- From the Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine/Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Yue Li
- From the Department of Respiratory Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine/Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Shao-Hua Dong
- From the Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine/Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Yue Gao
- From the Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine/Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
21
|
Chaudhuri D, Nei AM, Rochwerg B, Balk RA, Asehnoune K, Cadena R, Carcillo JA, Correa R, Drover K, Esper AM, Gershengorn HB, Hammond NE, Jayaprakash N, Menon K, Nazer L, Pitre T, Qasim ZA, Russell JA, Santos AP, Sarwal A, Spencer-Segal J, Tilouche N, Annane D, Pastores SM. 2024 Focused Update: Guidelines on Use of Corticosteroids in Sepsis, Acute Respiratory Distress Syndrome, and Community-Acquired Pneumonia. Crit Care Med 2024; 52:e219-e233. [PMID: 38240492 DOI: 10.1097/ccm.0000000000006172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
RATIONALE New evidence is available examining the use of corticosteroids in sepsis, acute respiratory distress syndrome (ARDS) and community-acquired pneumonia (CAP), warranting a focused update of the 2017 guideline on critical illness-related corticosteroid insufficiency. OBJECTIVES To develop evidence-based recommendations for use of corticosteroids in hospitalized adults and children with sepsis, ARDS, and CAP. PANEL DESIGN The 22-member panel included diverse representation from medicine, including adult and pediatric intensivists, pulmonologists, endocrinologists, nurses, pharmacists, and clinician-methodologists with expertise in developing evidence-based Clinical Practice Guidelines. We followed Society of Critical Care Medicine conflict of interest policies in all phases of the guideline development, including task force selection and voting. METHODS After development of five focused Population, Intervention, Control, and Outcomes (PICO) questions, we conducted systematic reviews to identify the best available evidence addressing each question. We evaluated the certainty of evidence using the Grading of Recommendations Assessment, Development, and Evaluation approach and formulated recommendations using the evidence-to-decision framework. RESULTS In response to the five PICOs, the panel issued four recommendations addressing the use of corticosteroids in patients with sepsis, ARDS, and CAP. These included a conditional recommendation to administer corticosteroids for patients with septic shock and critically ill patients with ARDS and a strong recommendation for use in hospitalized patients with severe CAP. The panel also recommended against high dose/short duration administration of corticosteroids for septic shock. In response to the final PICO regarding type of corticosteroid molecule in ARDS, the panel was unable to provide specific recommendations addressing corticosteroid molecule, dose, and duration of therapy, based on currently available evidence. CONCLUSIONS The panel provided updated recommendations based on current evidence to inform clinicians, patients, and other stakeholders on the use of corticosteroids for sepsis, ARDS, and CAP.
Collapse
Affiliation(s)
- Dipayan Chaudhuri
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Andrea M Nei
- Department of Pharmacy, Mayo Clinic Hospital-Rochester, Rochester, MN
| | - Bram Rochwerg
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Robert A Balk
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL
| | - Karim Asehnoune
- Department of Anesthesiology, CHU Nantes, Université de Nantes, Pôle Anesthésie-Réanimation, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France
| | - Rhonda Cadena
- Department of Internal Medicine, Wake Forest School of Medicine, Atrium Health, Carolinas Medical Center, Charlotte, NC
| | - Joseph A Carcillo
- Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - Ricardo Correa
- Department of Endocrinology, Diabetes and Metabolism, Endocrine and Metabolism Institute, Cleveland Clinic, Cleveland, OH
| | | | - Annette M Esper
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA
| | - Hayley B Gershengorn
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami Miller School of Medicine; Miami, FL
- Division of Critical Care Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Naomi E Hammond
- Malcolm Fisher Department of Intensive Care Medicine, Critical Care Program, The George Institute for Global Health, UNSW Sydney, Newtown, NSW, Australia
- Malcolm Fisher Department of Intensive Care, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Namita Jayaprakash
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI
- Division of Pulmonary and Critical Care Medicine, Henry Ford Hospital, Detroit, MI
| | - Kusum Menon
- Division of Pediatric Critical Care, University of Ottawa and Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Pediatrics, University of Ottawa and Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Lama Nazer
- King Hussein Cancer Center Department of Pharmacy, Amman, Jordan
| | - Tyler Pitre
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Zaffer A Qasim
- Department of Emergency Medicine and Critical Care Medicine, University of Pennsylvania Health System, Philadelphia, PA
| | - James A Russell
- Division of Critical Care, Department of Medicine, Centre for Heart Lung Innovation St. Paul's Hospital University of British Columbia, Vancouver, BC, Canada
| | - Ariel P Santos
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Aarti Sarwal
- Department of Neurology [Neurocritical Care], Atrium Wake Forest School of Medicine, Winston Salem, NC
| | - Joanna Spencer-Segal
- Department of Internal Medicine and Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI
| | - Nejla Tilouche
- Intensive Care Unit, Service de Réanimation Polyvalente, Hôpital de Gonesse, Gonesse, France
| | - Djillali Annane
- Department of Intensive Care, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris, Garches, France
- School of Medicine Simone Veil, University of Versailles Saint Quentin, University Paris-Saclay, Versaillles, France
- IHU Prometheus Fédération Hospitalo-Universitaire SEPSIS, University Paris-Saclay, INSERM, Garches, France
| | - Stephen M Pastores
- Department of Anesthesiology and Critical Care Medicine, Critical Care Center, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
22
|
Lai PC, Lai CH, Lai ECC, Huang YT. Do We Need to Administer Fludrocortisone in Addition to Hydrocortisone in Adult Patients With Septic Shock? An Updated Systematic Review With Bayesian Network Meta-Analysis of Randomized Controlled Trials and an Observational Study With Target Trial Emulation. Crit Care Med 2024; 52:e193-e202. [PMID: 38156911 PMCID: PMC10930378 DOI: 10.1097/ccm.0000000000006161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
OBJECTIVES This systematic review and Bayesian network meta-analysis evaluated the efficacy and safety of hydrocortisone combined with fludrocortisone or hydrocortisone alone, compared with placebo in adult patients with septic shock. DATA SOURCES By extending a prior Cochrane review, databases, including PubMed, Embase, the Cochrane Library, and ClinicalTrials.gov , along with other relevant websites, were searched until August 31, 2023. STUDY SELECTION Randomized controlled trials (RCTs) and observational studies using target trial emulation were included. DATA EXTRACTION The primary outcome was short-term mortality with an emphasis on 28- or 30-day mortality as the main measure and in-hospital or ICU mortality as the nearest surrogate of this measure. Three of the most common adverse events, namely, gastroduodenal bleeding, superinfection, and hyperglycemia, were also considered. DATA SYNTHESIS A total of 19 studies involving 95,841 patients were included. Hydrocortisone plus fludrocortisone showed the lowest short-term mortality versus placebo (odds ratio [OR]: 0.79; 95% credible interval [CrI], 0.64-0.99; number needed to treat [NNT]: 21, range: 12-500; low certainty of evidence) in terms of informative priors. The surface under the cumulative ranking curve values for hydrocortisone plus fludrocortisone, hydrocortisone alone, and placebo were 0.9469, 0.4542, and 0.0989, respectively. Consistent results were observed in RCTs alone and those using a daily 200-mg dose of hydrocortisone. Although gastroduodenal bleeding or superinfection showed no clear increase, hyperglycemia risk increased. The ORs were 0.53 for placebo versus hydrocortisone plus fludrocortisone and 0.64 for placebo versus hydrocortisone alone, with very low certainty of evidence. CONCLUSIONS In adults with septic shock, hydrocortisone plus fludrocortisone improved short-term survival with minimal adverse events compared with hydrocortisone alone or placebo. However, these findings are not definitive due to the limited certainty of evidence and wide NNT range. Additional large-scale, placebo-controlled RCTs are needed to provide conclusive evidence.
Collapse
Affiliation(s)
- Pei-Chun Lai
- Education Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Han Lai
- Education Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biostatistics, Vanderbilt University Medical Centre, Nashville, TN
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Edward Chia-Cheng Lai
- School of Pharmacy, Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Ta Huang
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
23
|
Trieu M, Qadir N. Adjunctive Therapies in Acute Respiratory Distress Syndrome. Crit Care Clin 2024; 40:329-351. [PMID: 38432699 DOI: 10.1016/j.ccc.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Despite significant advances in understanding acute respiratory distress syndrome (ARDS), mortality rates remain high. The appropriate use of adjunctive therapies can improve outcomes, particularly for patients with moderate to severe hypoxia. In this review, the authors discuss the evidence basis behind prone positioning, recruitment maneuvers, neuromuscular blocking agents, corticosteroids, pulmonary vasodilators, and extracorporeal membrane oxygenation and considerations for their use in individual patients and specific clinical scenarios. Because the heterogeneity of ARDS poses challenges in finding universally effective treatments, an individualized approach and continued research efforts are crucial for optimizing the utilization of adjunctive therapies and improving patient outcomes.
Collapse
Affiliation(s)
- Megan Trieu
- Division of Pulmonary Critical Care Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, 9300 Campus Point Drive, #7381, La Jolla, CA 92037-1300, USA
| | - Nida Qadir
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Room 43-229 CHS, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
DeCuzzi NL, Oberbauer DP, Chmiel KJ, Pargett M, Ferguson JM, Murphy D, Zeki AA, Albeck JG. Spatiotemporal Clusters of ERK Activity Coordinate Cytokine-induced Inflammatory Responses in Human Airway Epithelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578773. [PMID: 38352523 PMCID: PMC10862831 DOI: 10.1101/2024.02.03.578773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
RATIONALE Spatially coordinated ERK signaling events ("SPREADs") transmit radially from a central point to adjacent cells via secreted ligands for EGFR and other receptors. SPREADs maintain homeostasis in non-pulmonary epithelia, but it is unknown whether they play a role in the airway epithelium or are dysregulated in inflammatory disease. OBJECTIVES (1) To characterize spatiotemporal ERK activity in response to pro-inflammatory ligands, and (2) to assess pharmacological and metabolic regulation of cytokine-mediated SPREADs. METHODS SPREADs were measured by live-cell ERK biosensors in human bronchial epithelial cell lines (HBE1 and 16HBE) and primary human bronchial epithelial (pHBE) cells, in both submerged and biphasic Air-Liquid Interface (ALI) culture conditions (i.e., differentiated cells). Cells were exposed to pro-inflammatory cytokines relevant to asthma and chronic obstructive pulmonary disease (COPD), and to pharmacological treatments (gefitinib, tocilizumab, hydrocortisone) and metabolic modulators (insulin, 2-deoxyglucose) to probe the airway epithelial mechanisms of SPREADs. Phospho-STAT3 immunofluorescence was used to measure localized inflammatory responses to IL-6. RESULTS Pro-inflammatory cytokines significantly increased the frequency of SPREADs. Notably, differentiated pHBE cells display increased SPREAD frequency that coincides with airway epithelial barrier breakdown. SPREADs correlate with IL-6 peptide secretion and localized pSTAT3. Hydrocortisone, inhibitors of receptor signaling, and suppression of metabolic function decreased SPREAD occurrence. CONCLUSIONS Pro-inflammatory cytokines modulate SPREADs in human airway epithelial cells via both secreted EGFR and IL6R ligands. SPREADs correlate with changes in epithelial barrier permeability, implying a role for spatiotemporal ERK signaling in barrier homeostasis and dysfunction during inflammation. The involvement of SPREADs in airway inflammation suggests a novel signaling mechanism that could be exploited clinically to supplement corticosteroid treatment for asthma and COPD.
Collapse
Affiliation(s)
- Nicholaus L. DeCuzzi
- Department of Molecular and Cellular Biology, University of California, Davis
- School of Medicine; Department of Internal Medicine; Division of Pulmonary, Critical Care, and Sleep Medicine; Lung Center; University of California, Davis
| | - Daniel P. Oberbauer
- Department of Molecular and Cellular Biology, University of California, Davis
| | - Kenneth J. Chmiel
- School of Medicine; Department of Internal Medicine; Division of Pulmonary, Critical Care, and Sleep Medicine; Lung Center; University of California, Davis
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis
| | - Justa M. Ferguson
- Department of Molecular and Cellular Biology, University of California, Davis
| | - Devan Murphy
- Department of Molecular and Cellular Biology, University of California, Davis
| | - Amir A. Zeki
- School of Medicine; Department of Internal Medicine; Division of Pulmonary, Critical Care, and Sleep Medicine; Lung Center; University of California, Davis
- U. C. Davis Reversible Obstructive Airway Disease (ROAD) Center
- Veterans Administration Medical Center, Mather, CA
| | - John G. Albeck
- Department of Molecular and Cellular Biology, University of California, Davis
| |
Collapse
|
25
|
Chaudhuri D, Israelian L, Putowski Z, Prakash J, Pitre T, Nei AM, Spencer-Segal JL, Gershengorn HB, Annane D, Pastores SM, Rochwerg B. Adverse Effects Related to Corticosteroid Use in Sepsis, Acute Respiratory Distress Syndrome, and Community-Acquired Pneumonia: A Systematic Review and Meta-Analysis. Crit Care Explor 2024; 6:e1071. [PMID: 38567382 PMCID: PMC10986917 DOI: 10.1097/cce.0000000000001071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVES We postulate that corticosteroid-related side effects in critically ill patients are similar across sepsis, acute respiratory distress syndrome (ARDS), and community-acquired pneumonia (CAP). By pooling data across all trials that have examined corticosteroids in these three acute conditions, we aim to examine the side effects of corticosteroid use in critical illness. DATA SOURCES We performed a comprehensive search of MEDLINE, Embase, Centers for Disease Control and Prevention library of COVID research, CINAHL, and Cochrane center for trials. STUDY SELECTION We included randomized controlled trials (RCTs) that compared corticosteroids to no corticosteroids or placebo in patients with sepsis, ARDS, and CAP. DATA EXTRACTION We summarized data addressing the most described side effects of corticosteroid use in critical care: gastrointestinal bleeding, hyperglycemia, hypernatremia, superinfections/secondary infections, neuropsychiatric effects, and neuromuscular weakness. DATA SYNTHESIS We included 47 RCTs (n = 13,893 patients). Corticosteroids probably have no effect on gastrointestinal bleeding (relative risk [RR], 1.08; 95% CI, 0.87-1.34; absolute risk increase [ARI], 0.3%; moderate certainty) or secondary infections (RR, 0.97; 95% CI, 0.89-1.05; absolute risk reduction, 0.5%; moderate certainty) and may have no effect on neuromuscular weakness (RR, 1.22; 95% CI, 1.03-1.45; ARI, 1.4%; low certainty) or neuropsychiatric events (RR, 1.19; 95% CI, 0.82-1.74; ARI, 0.5%; low certainty). Conversely, they increase the risk of hyperglycemia (RR, 1.21; 95% CI, 1.11-1.31; ARI, 5.4%; high certainty) and probably increase the risk of hypernatremia (RR, 1.59; 95% CI, 1.29-1.96; ARI, 2.3%; moderate certainty). CONCLUSIONS In ARDS, sepsis, and CAP, corticosteroids are associated with hyperglycemia and probably with hypernatremia but likely have no effect on gastrointestinal bleeding or secondary infections. More data examining effects of corticosteroids, particularly on neuropsychiatric outcomes and neuromuscular weakness, would clarify the safety of this class of drugs in critical illness.
Collapse
Affiliation(s)
| | - Lori Israelian
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Zbigniew Putowski
- Centre for Intensive Care and Perioperative Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Jay Prakash
- Department of Critical Care Medicine, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Tyler Pitre
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrea M Nei
- Department of Pharmacy, Mayo Clinic Hospital, Rochester, MN
| | - Joanna L Spencer-Segal
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI
| | - Hayley B Gershengorn
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL
- Division of Critical Care Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Djillali Annane
- Department of Intensive Care, Hôpital Raymond Poincaré, FHU SEPSIS, AP-HP, Garches, France
- Paris Saclay University, UVSQ, INSERM, Lab of Inflammation & Infection 2I (U1173), Montigny-le-Bretonneux, France
| | - Stephen M Pastores
- Critical Care Center, Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | - Bram Rochwerg
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
26
|
See XY, Wang TH, Chang YC, Lo J, Liu W, Choo CYW, Lee YC, Ma KSK, Chiang CH, Hsia YP, Chiang CH, Chiang CH. Impact of different corticosteroids on severe community-acquired pneumonia: a systematic review and meta-analysis. BMJ Open Respir Res 2024; 11:e002141. [PMID: 38262670 PMCID: PMC10806634 DOI: 10.1136/bmjresp-2023-002141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVES Randomised controlled trials (RCTs) have demonstrated conflicting results regarding the effects of corticosteroids on the treatment of severe community-acquired pneumonia (CAP). We aimed to investigate the efficacy and safety of different corticosteroids on patients who were hospitalised for severe CAP. METHODS We performed a systematic search through PubMed, Embase, Cochrane Central Register of Controlled Trials, Web of Science, and Scopus from inception to May 2023. The primary outcome was all-cause mortality. Data analysis was performed using a random-effects model. RESULTS A total of 10 RCTs comprising 1962 patients were included. Corticosteroids were associated with a lower rate of all-cause mortality (risk ratio (RR), 0.70 (95% CI 0.54 to 0.90); I2=0.00%). When stratified into different corticosteroid types, hydrocortisone was associated with an approximately 50% lower mortality risk (RR, 0.48 (95% CI 0.32 to 0.72); I2=0.00%). However, dexamethasone, methylprednisolone or prednisolone were not associated with an improvement in mortality. Furthermore, hydrocortisone was associated with a reduction in the rate of mechanical ventilation, acute respiratory distress syndrome, shock and duration of intensive care unit stay. These trends were not observed for dexamethasone, methylprednisolone or prednisolone. Corticosteroids were not associated with an increased risk of adverse events including gastrointestinal bleeding, secondary infection or hyperglycaemia. CONCLUSIONS The use of hydrocortisone, but not other types of corticosteroids, was associated with a reduction in mortality and improvement in pneumonia outcomes among patients hospitalised with severe CAP.PROSPERO registration numberCRD42023431360.
Collapse
Affiliation(s)
- Xin Ya See
- Department of Medicine, Unity Hospital, Rochester Regional Health, Rochester, New York, USA
| | - Tsu Hsien Wang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Foundation, New Taipei City, Taiwan
| | - Yu-Cheng Chang
- Department of Medicine, Danbury Hospital, Danbury, Connecticut, USA
| | - Juien Lo
- Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Weitao Liu
- Department of Medicine, Yale New Haven Hospital, New Haven, Connecticut, USA
| | | | - Yu-Che Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Kevin Sheng Kai Ma
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Cho-Hsien Chiang
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yuan Ping Hsia
- Department of Family Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Foundation, New Taipei City, Taiwan
| | - Cho-Hung Chiang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Cho-Han Chiang
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| |
Collapse
|
27
|
Li M, Noordam R, Winter EM, van Meurs M, Bouma HR, Arbous MS, Rensen PCN, Kooijman S. Hydrocortisone-associated death and hospital length of stay in patients with sepsis: A retrospective cohort of large-scale clinical care data. Biomed Pharmacother 2024; 170:115961. [PMID: 38039761 DOI: 10.1016/j.biopha.2023.115961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
PURPOSE Sepsis is one of the leading causes of morbidity and mortality worldwide with approximately 50 million annual cases. There is ongoing debate on the clinical benefit of hydrocortisone in the prevention of death in septic patients. Here we evaluated the association between hydrocortisone treatment and mortality in patients diagnosed with sepsis in a large-scale clinical dataset. METHODS Data from patients between 2008 and 2019 were extracted from the retrospective Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Patients who received hydrocortisone after diagnosis were matched using propensity-score matching with patients who did not, to balance confounding (by indication and contraindication) factors between the groups. 90-day mortality and survivors' length of hospital stay was compared between patients who did or did not receive hydrocortisone. RESULTS A total of 31,749 septic patients were included in the study (mean age: 67, men: 57.3%, in-hospital mortality: 15.6%). 90-day mortality was higher among the 1802 patients receiving hydrocortisone when compared with the 6348 matched non-users (hazard ratio: 1.35, 95% CI: 1.24-1.47). Hydrocortisone treatment was also associated with increased in-hospital mortality (40.9% vs. 27.6%, p < 0.0001) and prolonged hospital stay in those who survived until discharge (median 12.6 days vs. 10.8 days, p < 0.0001). Stratification for age, gender, ethnicity, occurrence of septic shock, and the need for vasopressor drug administration such as (nor)epinephrine did not reveal sub-population(s) benefiting of hydrocortisone use. CONCLUSION Hydrocortisone treatment is associated with increased risk of death as well as prolonged hospital stay in septic patients. Although residual confounding (by indication) cannot be ruled out completely due to the observational nature of the study, the present study suggests clinical implication of hydrocortisone use in patients with sepsis.
Collapse
Affiliation(s)
- Mohan Li
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Elizabeth M Winter
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Matijs van Meurs
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hjalmar R Bouma
- Department of Clinical Pharmacy and Pharmacology and Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - M Sesmu Arbous
- Department of Intensive Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick C N Rensen
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Kooijman
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
28
|
Qadir N, Sahetya S, Munshi L, Summers C, Abrams D, Beitler J, Bellani G, Brower RG, Burry L, Chen JT, Hodgson C, Hough CL, Lamontagne F, Law A, Papazian L, Pham T, Rubin E, Siuba M, Telias I, Patolia S, Chaudhuri D, Walkey A, Rochwerg B, Fan E. An Update on Management of Adult Patients with Acute Respiratory Distress Syndrome: An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 2024; 209:24-36. [PMID: 38032683 PMCID: PMC10870893 DOI: 10.1164/rccm.202311-2011st] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background: This document updates previously published Clinical Practice Guidelines for the management of patients with acute respiratory distress syndrome (ARDS), incorporating new evidence addressing the use of corticosteroids, venovenous extracorporeal membrane oxygenation, neuromuscular blocking agents, and positive end-expiratory pressure (PEEP). Methods: We summarized evidence addressing four "PICO questions" (patient, intervention, comparison, and outcome). A multidisciplinary panel with expertise in ARDS used the Grading of Recommendations, Assessment, Development, and Evaluation framework to develop clinical recommendations. Results: We suggest the use of: 1) corticosteroids for patients with ARDS (conditional recommendation, moderate certainty of evidence), 2) venovenous extracorporeal membrane oxygenation in selected patients with severe ARDS (conditional recommendation, low certainty of evidence), 3) neuromuscular blockers in patients with early severe ARDS (conditional recommendation, low certainty of evidence), and 4) higher PEEP without lung recruitment maneuvers as opposed to lower PEEP in patients with moderate to severe ARDS (conditional recommendation, low to moderate certainty), and 5) we recommend against using prolonged lung recruitment maneuvers in patients with moderate to severe ARDS (strong recommendation, moderate certainty). Conclusions: We provide updated evidence-based recommendations for the management of ARDS. Individual patient and illness characteristics should be factored into clinical decision making and implementation of these recommendations while additional evidence is generated from much-needed clinical trials.
Collapse
|
29
|
Song J, Li M, Chen C, Zhou J, Wang L, Yan Y, She J, Tong L, Song Y. Regulator of G protein signaling protein 6 alleviates acute lung injury by inhibiting inflammation and promoting cell self-renewal in mice. Cell Mol Biol Lett 2023; 28:102. [PMID: 38066447 PMCID: PMC10709870 DOI: 10.1186/s11658-023-00488-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a disease with high mortality and morbidity. Regulator of G protein signaling protein 6 (RGS6), identified as a tumor suppressor gene, has received increasing attention owing to its close relationship with oxidative stress and inflammation. However, the association between ARDS and RGS6 has not been reported. METHODS Congruously regulated G protein-coupled receptor (GPCR)-related genes and differentially expressed genes (DEGs) in an acute lung injury (ALI) model were identified, and functional enrichment analysis was conducted. In an in vivo study, the effects of RGS6 knockout were studied in a mouse model of ALI induced by lipopolysaccharide (LPS). HE staining, ELISA, and immunohistochemistry were used to evaluate pathological changes and the degree of inflammation. In vitro, qRT‒PCR, immunofluorescence staining, and western blotting were used to determine the dynamic changes in RGS6 expression in cells. The RGS6 overexpression plasmid was constructed for transfection. qRT‒PCR was used to assess proinflammatory factors transcription. Western blotting and flow cytometry were used to evaluate apoptosis and reactive oxygen species (ROS) production. Organoid culture was used to assess the stemness and self-renewal capacity of alveolar epithelial type II cells (AEC2s). RESULTS A total of 110 congruously regulated genes (61 congruously upregulated and 49 congruously downregulated genes) were identified among GPCR-related genes and DEGs in the ALI model. RGS6 was downregulated in vivo and in vitro in the ALI model. RGS6 was expressed in the cytoplasm and accumulated in the nucleus after LPS stimulation. Compared with the control group, we found higher mortality, more pronounced body weight changes, more serious pulmonary edema and pathological damage, and more neutrophil infiltration in the RGS6 knockout group upon LPS stimulation in vivo. Moreover, AEC2s loss was significantly increased upon RGS6 knockout. Organoid culture assays showed slower alveolar organoid formation, fewer alveolar organoids, and impaired development of new structures after passaging upon RGS6 knockout. In addition, RGS6 overexpression decreased ROS production as well as proinflammatory factor transcription in macrophages and decreased apoptosis in epithelial cells. CONCLUSIONS RGS6 plays a protective role in ALI not only in early inflammatory responses but also in endogenous lung stem cell regeneration.
Collapse
Affiliation(s)
- Juan Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Pulmonary Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, 361000, China
- Shanghai Respiratory Research Institute, Shanghai, 200032, China
| | - Miao Li
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Respiratory Research Institute, Shanghai, 200032, China
| | - Cuicui Chen
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Respiratory Research Institute, Shanghai, 200032, China
| | - Jian Zhou
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Respiratory Research Institute, Shanghai, 200032, China
| | - Linlin Wang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Respiratory Research Institute, Shanghai, 200032, China
| | - Yu Yan
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Respiratory Research Institute, Shanghai, 200032, China
| | - Jun She
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Respiratory Research Institute, Shanghai, 200032, China.
| | - Lin Tong
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Pulmonary Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, 361000, China.
- Shanghai Respiratory Research Institute, Shanghai, 200032, China.
| | - Yuanlin Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Pulmonary Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, 361000, China.
- Shanghai Respiratory Research Institute, Shanghai, 200032, China.
| |
Collapse
|
30
|
Chudow MB, Condeni MS, Dhar S, Heavner MS, Nei AM, Bissell BD. Current Practice Review in the Management of Acute Respiratory Distress Syndrome. J Pharm Pract 2023; 36:1454-1471. [PMID: 35728076 DOI: 10.1177/08971900221108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute respiratory distress syndrome (ARDS) presents as an acute inflammatory lung injury characterized by refractory hypoxemia and non-cardiac pulmonary edema. An estimated 10% of patients in the intensive care unit and 25% of those who are mechanically ventilated are diagnosed with ARDS. Increased awareness is warranted as mortality rates remain high and delays in diagnosing ARDS are common. The COVID-19 pandemic highlights the importance of understanding ARDS management. Treatment of ARDS can be challenging due to the complexity of the disease state and conflicting existing evidence. Therefore, it is imperative that pharmacists understand both pharmacologic and non-pharmacologic treatment strategies to optimize patient care. This narrative review provides a critical evaluation of current literature describing management practices for ARDS. A review of treatment modalities and supportive care strategies will be presented.
Collapse
Affiliation(s)
- Melissa B Chudow
- Department of Pharmacotherapeutics and Clinical Research, University of South Florida Taneja College of Pharmacy, Tampa, FL, USA
| | - Melanie S Condeni
- MUSC College of Pharmacy, Medical University of South Carolina, Charleston, SC, USA
| | - Sanjay Dhar
- Pulmonary Critical Care Ultrasound and Research, Pulmonary and Critical Care Fellowship Program, Division of Pulmonary, Critical Care & Sleep Medicine, University of Kentucky, Lexington, KY, USA
| | - Mojdeh S Heavner
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Andrea M Nei
- Mayo Clinic College of Medicine & Science, Critical Care Pharmacist, Department of Pharmacy, Mayo Clinic Hospital, Rochester, MN, USA
| | - Brittany D Bissell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
31
|
Guzzardella A, Motos A, Vallverdú J, Torres A. Corticosteroids in sepsis and community-acquired pneumonia. Med Klin Intensivmed Notfmed 2023; 118:86-92. [PMID: 38051381 DOI: 10.1007/s00063-023-01093-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
Sepsis and septic shock, which are often caused by pneumonia, impact millions of people every year. Despite adequate antibiotic therapy, mortality remains high, up to 45% in septic shock, which is characterized by an inappropriate, excessive immune response of the host. Moreover, critical illness-related corticosteroid insufficiency often coexists. Against this background, several trials and meta-analyses evaluated corticosteroid therapy as adjuvant therapy with heterogeneous results. Indeed, before 2000, high-dosage, short courses of corticosteroid treatment resulted in no benefit on mortality and a higher rate of adverse events. After 2000, thanks to a deeper understanding of the pathophysiology, low-dosage with longer courses of treatment were tested. With this regimen, a faster decrease in inflammation and faster resolution of shock, with a low rate of mild adverse events, was demonstrated although no clear effect on mortality was shown. To date, guidelines on sepsis and septic shock and guidelines on severe community-acquired pneumonia suggest corticosteroid use in selected patients. Furthermore, by utilizing latent class analysis, phenotypes of sepsis patients who benefit the most from corticosteroid treatment were recently identified. Future research should be guided by a precision medicine approach to identify adequate dosage and duration of corticosteroid treatment for appropriate patients. This article is freely available.
Collapse
Affiliation(s)
- Amedeo Guzzardella
- Department of Pneumology, Hospital Clinic of Barcelona, August Pi i Sunyer Biomedical Research Institute-IDIBAPS, Barcelona, Spain
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Ana Motos
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Vallverdú
- Department of Anesthesiology and Reanimation, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Antoni Torres
- Department of Pneumology, Hospital Clinic of Barcelona, August Pi i Sunyer Biomedical Research Institute-IDIBAPS, Barcelona, Spain.
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Pulmonary Medicine, Hospital Clinic of Barcelona, C/Villarroel 170, 08036, Barcelona, Spain.
| |
Collapse
|
32
|
Zhang S, Hu D, Zhuo Y, Cui L, Li D, Zhang L, Yang L, Wang X. Protective effect of liriodendrin on IgG immune complex-induced acute lung injury via inhibiting SRC/STAT3/MAPK signaling pathway: a network pharmacology research. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3269-3283. [PMID: 37243760 DOI: 10.1007/s00210-023-02534-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
The primary objectives of this research were to investigate the protective effects of liriodendrin against IgG immune complex (IgG-IC)-induced acute lung injury (ALI) and to elucidate the underlying mechanisms. This study employed a mouse and cell model of IgG-IC-induced acute lung injury. Lung tissue was stained with hematoxylin-eosin to observe pathological alterations and arterial blood gas analysis was tested. Inflammatory cytokines, including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α), were measured using ELISA. The mRNA expression of inflammatory cytokines was assessed via RT-qPCR. Molecular docking and enrichment analysis were combined to identify the most potential signaling pathways modulated by liriodendrin, which were then verified using western blot analysis in IgG-IC-induced ALI models. We identified 253 shared targets between liriodendrin and IgG-IC-induced acute lung injury from the database. Through network pharmacology, enrichment analysis, and molecular docking, SRC was determined to be the most closely associated target of liriodendrin in IgG-IC-induced ALI. Pretreatment with liriodendrin notably reduced the increased cytokine secretion of IL-1β, IL-6, and TNF-α. Histopathological analysis of lung tissue demonstrated a protective effect of liriodendrin on IgG-IC-induced acute lung injury in mice. Arterial blood gas analysis showed liriodendrin ameliorated acidosis and hypoxemia efficiently. Further studies revealed that liriodendrin pretreatment substantially attenuated the elevated phosphorylation levels of SRC's downstream components (JNK, P38, and STAT3), suggesting that liriodendrin may protect against IgG-IC-induced ALI via the SRC/STAT3/MAPK pathway. Our findings indicate that liriodendrin protects against IgG-IC-induced acute lung injury by inhibiting the SRC/STAT3/MAPK signaling pathway, suggesting that liriodendrin may serve as a potential treatment for acute lung injury caused by IgG-IC.
Collapse
Affiliation(s)
- Sijia Zhang
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Dongsheng Hu
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Lingzhi Cui
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Dihua Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China.
| | - Ximo Wang
- Graduate School, Tianjin Medical University, Tianjin, China.
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China.
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin University, Tianjin, China.
| |
Collapse
|
33
|
Saha R, Pham T, Sinha P, Maddali MV, Bellani G, Fan E, Summers C, Douiri A, Rubenfeld GD, Calfee CS, Laffey JG, McAuley DF, Shankar-Hari M. Estimating the attributable fraction of mortality from acute respiratory distress syndrome to inform enrichment in future randomised clinical trials. Thorax 2023; 78:990-1003. [PMID: 37495364 PMCID: PMC10581447 DOI: 10.1136/thorax-2023-220262] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Efficiency of randomised clinical trials of acute respiratory distress syndrome (ARDS) depends on the fraction of deaths attributable to ARDS (AFARDS) to which interventions are targeted. Estimates of AFARDS in subpopulations of ARDS could improve design of ARDS trials. METHODS We performed a matched case-control study using the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE cohort. Primary outcome was intensive care unit mortality. We used nearest neighbour propensity score matching without replacement to match ARDS to non-ARDS populations. We derived two separate AFARDS estimates by matching patients with ARDS to patients with non-acute hypoxaemic respiratory failure (non-AHRF) and to patients with AHRF with unilateral infiltrates only (AHRF-UL). We also estimated AFARDS in subgroups based on severity of hypoxaemia, number of lung quadrants involved and hyperinflammatory versus hypoinflammatory phenotypes. Additionally, we derived AFAHRF estimates by matching patients with AHRF to non-AHRF controls, and AFAHRF-UL estimates by matching patients with AHRF-UL to non-AHRF controls. RESULTS Estimated AFARDS was 20.9% (95% CI 10.5% to 31.4%) when compared with AHRF-UL controls and 38.0% (95% CI 34.4% to 41.6%) compared with non-AHRF controls. Within subgroups, estimates for AFARDS compared with AHRF-UL controls were highest in patients with severe hypoxaemia (41.1% (95% CI 25.2% to 57.1%)), in those with four quadrant involvement on chest radiography (28.9% (95% CI 13.4% to 44.3%)) and in the hyperinflammatory subphenotype (26.8% (95% CI 6.9% to 46.7%)). Estimated AFAHRF was 33.8% (95% CI 30.5% to 37.1%) compared with non-AHRF controls. Estimated AFAHRF-UL was 21.3% (95% CI 312.8% to 29.7%) compared with non-AHRF controls. CONCLUSIONS Overall AFARDS mean values were between 20.9% and 38.0%, with higher AFARDS seen with severe hypoxaemia, four quadrant involvement on chest radiography and hyperinflammatory ARDS.
Collapse
Affiliation(s)
- Rohit Saha
- Criticlal Care, King's College Hospital NHS Trust, London, UK
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Tài Pham
- Service de médecine intensive-réanimation, Paris-Saclay University Faculty of Medicine, Le Kremlin-Bicetre, France
- Equipe d'Epidémiologie respiratoire intégrative, CESP, Paris-Saclay University, Gif-sur-Yvette, France
| | - Pratik Sinha
- Department of Anaesthesiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Manoj V Maddali
- Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, California, USA
| | - Giacomo Bellani
- Emergency and Intensive Care, University of Milan-Bicocca, Monza, Italy
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto Faculty of Medicine, Toronto, Ontario, Canada
| | - Charlotte Summers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Abdel Douiri
- School of Population Health & Environmental Sciences, King's College London, London, UK
| | - Gordon D Rubenfeld
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Carolyn S Calfee
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California, USA
| | - John Gerard Laffey
- Anaesthesia, School of Medicine, National University of Ireland Galway, Galway, Ireland
- National Centre for Biomedical Engineering Sciences, National University of Ireland Galway, Galway, Ireland
| | - Daniel Francis McAuley
- ICU, QUB, Belfast, UK
- School of Medicine,Dentistry and Biomedical Sciences, Queen's University Belfast Wellcome-Wolfson Institute for Experimental Medicine, Belfast, UK
| | - Manu Shankar-Hari
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
34
|
Zhang J, Ge P, Liu J, Luo Y, Guo H, Zhang G, Xu C, Chen H. Glucocorticoid Treatment in Acute Respiratory Distress Syndrome: An Overview on Mechanistic Insights and Clinical Benefit. Int J Mol Sci 2023; 24:12138. [PMID: 37569514 PMCID: PMC10418884 DOI: 10.3390/ijms241512138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), triggered by various pathogenic factors inside and outside the lungs, leads to diffuse lung injury and can result in respiratory failure and death, which are typical clinical critical emergencies. Severe acute pancreatitis (SAP), which has a poor clinical prognosis, is one of the most common diseases that induces ARDS. When SAP causes the body to produce a storm of inflammatory factors and even causes sepsis, clinicians will face a two-way choice between anti-inflammatory and anti-infection objectives while considering the damaged intestinal barrier and respiratory failure, which undoubtedly increases the difficulty of the diagnosis and treatment of SAP-ALI/ARDS. For a long time, many studies have been devoted to applying glucocorticoids (GCs) to control the inflammatory response and prevent and treat sepsis and ALI/ARDS. However, the specific mechanism is not precise, the clinical efficacy is uneven, and the corresponding side effects are endless. This review discusses the mechanism of action, current clinical application status, effectiveness assessment, and side effects of GCs in the treatment of ALI/ARDS (especially the subtype caused by SAP).
Collapse
Affiliation(s)
- Jinquan Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jie Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Haoya Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Comprehensive Cancer Center, Monrovia, CA 91016, USA
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
35
|
Yoshihro S, Taito S, Yatabe T. The influence of steroid type on outcomes in patients with acute respiratory distress syndrome. J Intensive Care 2023; 11:32. [PMID: 37430366 DOI: 10.1186/s40560-023-00681-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Recent systematic reviews and meta-analyses have suggested that low-dose steroids are effective in the treatment of acute respiratory distress syndrome (ARDS). Recent guidelines recommend the use of low-dose steroids instead of high-dose steroids. These systematic reviews were conducted based on the concept that the effect of steroids is constant regardless of their type. We discuss whether the type of steroid used influences the outcomes in patients with ARDS. MAIN BODY From a pharmacological standpoint, methylprednisolone has little activity as a mineralocorticoid and may cause pulmonary hypertension. The results of the rank probability of our previous network meta-analysis revealed that low-dose methylprednisolone might be an optimal treatment compared to using other types of steroids or no steroids in terms of ventilator-free days. Similarly, an analysis of individual data from four randomized controlled trials suggested that low-dose methylprednisolone was associated with decreased mortality in patients with ARDS. Dexamethasone has attracted the attention of clinicians as a novel adjunct therapy for ARDS. CONCLUSION Recent evidence has shown that low-dose methylprednisolone may be an effective treatment option for ARDS. The timing of initiation and duration of low-dose methylprednisolone therapy should be verified in future studies.
Collapse
Affiliation(s)
- Shodai Yoshihro
- Department of Pharmaceutical Services, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Shunsuke Taito
- Division of Rehabilitation, Department of Clinical Practice and Support, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Tomoaki Yatabe
- Emergency Department, Nishichita General Hospital, 3-1, Nakanoike, Tokai-Shi, Aichi, 477-8522, Japan.
| |
Collapse
|
36
|
Liang G, Wang W, He Z. Sepsis associated with acute lung injury over the period 2012-2021: a bibliometric analysis. Front Physiol 2023; 14:1079736. [PMID: 37398906 PMCID: PMC10307965 DOI: 10.3389/fphys.2023.1079736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Background: Sepsis associated with acute lung injury (ALI) is a common acute and severe disease with severe socioeconomic burden. The aim of this study is to explore the literatures of sepsis associated with ALI from a bibliometric perspective. Methods: Articles and reviews related to sepsis associated with ALI published from 2012 to 2021 in the Web of Science Core Collection were retrieved. Countries, affiliations, journals, authors, references, co-citation and keyword analysis in this field were visually analyzed using WOS citation reports, bibliometric.com, CtieSpace and VOSviewer software. Results: Over the last decade (2012-2021), marked progress has been made in the area of sepsis associated with ALI research. 836 papers were enrolled in this study. China accounts for the most contributors. Articles from the United States has the highest average cited. Shanghai Jiao Tong University, University of California System and Huazhong University of Science Technology were the main contributing institutions. Articles in International Immunopharmacology, Inflammation, Shock and Critical Care were cited the most. Matthay MA and Ware LB were the main contributors to this field. Inflammation and NF-κB have always been the focus of sepsis associated with ALI related research, and programmed cell death (including apoptosis, necroptosis and pyroptosis) may be the important direction of future research. Conclusion: Research on the sepsis associated with ALI is flourishing. The research on programmed cell death is a hot spot and may be a promising research field in the coming years.
Collapse
|
37
|
Kuperminc E, Heming N, Carlos M, Annane D. Corticosteroids in ARDS. J Clin Med 2023; 12:jcm12093340. [PMID: 37176780 PMCID: PMC10179626 DOI: 10.3390/jcm12093340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is frequently associated with sepsis. ARDS and sepsis exhibit a common pathobiology, namely excessive inflammation. Corticosteroids are powerful anti-inflammatory agents that are routinely used in septic shock and in oxygen-dependent SARS-CoV-2 related acute respiratory failure. Recently, corticosteroids were found to reduce mortality in severe community-acquired pneumonia. Corticosteroids may therefore also have a role to play in the treatment of ARDS. This narrative review was undertaken following a PubMed search for English language reports published before January 2023 using the terms acute respiratory distress syndrome, sepsis and steroids. Additional reports were identified by examining the reference lists of selected articles and based on personnel knowledge of the authors of the field. High-quality research is needed to fully understand the role of corticosteroids in the treatment of ARDS and to determine the optimal timing, dosing and duration of treatment.
Collapse
Affiliation(s)
- Emmanuelle Kuperminc
- Department of Intensive Care, Hôpital Raymond Poincaré, APHP University Versailles Saint Quentin-University Paris Saclay, 92380 Garches, France
| | - Nicholas Heming
- Department of Intensive Care, Hôpital Raymond Poincaré, APHP University Versailles Saint Quentin-University Paris Saclay, 92380 Garches, France
- Laboratory of Infection & Inflammation-U1173, School of Medicine Simone Veil, University Versailles Saint Quentin-University Paris Saclay, INSERM, 92380 Garches, France
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis), 92380 Garches, France
| | - Miguel Carlos
- Department of Intensive Care, Hôpital Raymond Poincaré, APHP University Versailles Saint Quentin-University Paris Saclay, 92380 Garches, France
| | - Djillali Annane
- Department of Intensive Care, Hôpital Raymond Poincaré, APHP University Versailles Saint Quentin-University Paris Saclay, 92380 Garches, France
- Laboratory of Infection & Inflammation-U1173, School of Medicine Simone Veil, University Versailles Saint Quentin-University Paris Saclay, INSERM, 92380 Garches, France
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis), 92380 Garches, France
| |
Collapse
|
38
|
Al-Sofyani KA. Corticosteroids treatment for pediatric acute respiratory syndrome: A critical review. Saudi Med J 2023; 44:440-449. [PMID: 37182909 PMCID: PMC10187748 DOI: 10.15537/smj.2023.44.5.20220672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Approximately 25% of all pediatric consultations are due to respiratory conditions, 10% of which are for asthma. Regarding prevalence, bronchiolitis, acute bronchitis, and respiratory infections are other leading pediatric respiratory illnesses. Compared to the aforementioned diseases, pediatric acute respiratory distress syndrome (PARDS) is rare but lethal in the Intensive Care Unit patients. According to global studies, the mortality in PARDS ranges from 13.3% to 60.7%. Before the Pediatric Acute Lung Injury Consensus Conference (PALICC), adult acute respiratory distress syndrome (ARDS) management guidelines were used for PARDS. The PALICC set new criteria to identify PARDS with a different treatment and management approach. Steroids have been used to treat ARDS in some cases, although their effectiveness in treating pediatric patients is highly debated in the scientific community. This review examines steroid use in treating PARDS, emphasizes current developments in the field, and gives a broad overview of PARDS management.
Collapse
Affiliation(s)
- Khouloud A. Al-Sofyani
- From the Department of Pediatric, Pediatric Critical Care Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
39
|
Fei Q, Bentley I, Ghadiali SN, Englert JA. Pulmonary drug delivery for acute respiratory distress syndrome. Pulm Pharmacol Ther 2023; 79:102196. [PMID: 36682407 PMCID: PMC9851918 DOI: 10.1016/j.pupt.2023.102196] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
The acute respiratory distress syndrome (ARDS) is a life-threatening condition that causes respiratory failure. Despite numerous clinical trials, there are no molecularly targeted pharmacologic therapies to prevent or treat ARDS. Drug delivery during ARDS is challenging due to the heterogenous nature of lung injury and occlusion of lung units by edema fluid and inflammation. Pulmonary drug delivery during ARDS offers several potential advantages including limiting the off-target and off-organ effects and directly targeting the damaged and inflamed lung regions. In this review we summarize recent ARDS clinical trials using both systemic and pulmonary drug delivery. We then discuss the advantages of pulmonary drug delivery and potential challenges to its implementation. Finally, we discuss the use of nanoparticle drug delivery and surfactant-based drug carriers as potential strategies for delivering therapeutics to the injured lung in ARDS.
Collapse
Affiliation(s)
- Qinqin Fei
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA; Department of Biomedical Engineering, The Ohio State University, 140West 19th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ian Bentley
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Samir N Ghadiali
- Department of Biomedical Engineering, The Ohio State University, 140West 19th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Joshua A Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
40
|
Singh P, Mohsin M, Sultan A, Jha P, Khan MM, Syed MA, Chopra M, Serajuddin M, Rahmani AH, Almatroodi SA, Alrumaihi F, Dohare R. Combined Multiomics and In Silico Approach Uncovers PRKAR1A as a Putative Therapeutic Target in Multi-Organ Dysfunction Syndrome. ACS OMEGA 2023; 8:9555-9568. [PMID: 36936296 PMCID: PMC10018728 DOI: 10.1021/acsomega.3c00020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Despite all epidemiological, clinical, and experimental research efforts, therapeutic concepts in sepsis and sepsis-induced multi-organ dysfunction syndrome (MODS) remain limited and unsatisfactory. Currently, gene expression data sets are widely utilized to discover new biomarkers and therapeutic targets in diseases. In the present study, we analyzed MODS expression profiles (comprising 13 sepsis and 8 control samples) retrieved from NCBI-GEO and found 359 differentially expressed genes (DEGs), among which 170 were downregulated and 189 were upregulated. Next, we employed the weighted gene co-expression network analysis (WGCNA) to establish a MODS-associated gene co-expression network (weighted) and identified representative module genes having an elevated correlation with age. Based on the results, a turquoise module was picked as our hub module. Further, we constructed the PPI network comprising 35 hub module DEGs. The DEGs involved in the highest-confidence PPI network were utilized for collecting pathway and gene ontology (GO) terms using various libraries. Nucleotide di- and triphosphate biosynthesis and interconversion was the most significant pathway. Also, 3 DEGs within our PPI network were involved in the top 5 significantly enriched ontology terms, with hypercortisolism being the most significant term. PRKAR1A was the overlapping gene between top 5 significant pathways and GO terms, respectively. PRKAR1A was considered as a therapeutic target in MODS, and 2992 ligands were screened for binding with PRKAR1A. Among these ligands, 3 molecules based on CDOCKER score (molecular dynamics simulated-based score, which allows us to rank the binding poses according to their quality and to identify the best pose for each system) and crucial interaction with human PRKAR1A coding protein and protein kinase-cyclic nucleotide binding domains (PKA RI alpha CNB-B domain) via active site binding residues, viz. Val283, Val302, Gln304, Val315, Ile327, Ala336, Ala337, Val339, Tyr373, and Asn374, were considered as lead molecules.
Collapse
Affiliation(s)
- Prithvi Singh
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Mohsin
- Department
of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Armiya Sultan
- Department
of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Prakash Jha
- Laboratory
of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar
Center for Biomedical Research, University
of Delhi, New Delhi 110007, India
| | - Mohd Mabood Khan
- Department
of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Mansoor Ali Syed
- Department
of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Madhu Chopra
- Laboratory
of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar
Center for Biomedical Research, University
of Delhi, New Delhi 110007, India
| | - Mohammad Serajuddin
- Department
of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Arshad Husain Rahmani
- Department
of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A. Almatroodi
- Department
of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department
of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ravins Dohare
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
41
|
Norepinephrine May Exacerbate Septic Acute Kidney Injury: A Narrative Review. J Clin Med 2023; 12:jcm12041373. [PMID: 36835909 PMCID: PMC9960985 DOI: 10.3390/jcm12041373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Sepsis, the most serious complication of infection, occurs when a cascade of potentially life-threatening inflammatory responses is triggered. Potentially life-threatening septic shock is a complication of sepsis that occurs when hemodynamic instability occurs. Septic shock may cause organ failure, most commonly involving the kidneys. The pathophysiology and hemodynamic mechanisms of acute kidney injury in the case of sepsis or septic shock remain to be elucidated, but previous studies have suggested multiple possible mechanisms or the interplay of multiple mechanisms. Norepinephrine is used as the first-line vasopressor in the management of septic shock. Studies have reported different hemodynamic effects of norepinephrine on renal circulation, with some suggesting that it could possibly exacerbate acute kidney injury caused by septic shock. This narrative review briefly covers the updates on sepsis and septic shock regarding definitions, statistics, diagnosis, and management, with an explanation of the putative pathophysiological mechanisms and hemodynamic changes, as well as updated evidence. Sepsis-associated acute kidney injury remains a major burden on the healthcare system. This review aims to improve the real-world clinical understanding of the possible adverse outcomes of norepinephrine use in sepsis-associated acute kidney injury.
Collapse
|
42
|
Abstract
Coronavirus disease 2019 (COVID-19) pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant mortality in pandemic proportions. Inflammation in response to the infection contributes to the pathogenesis of pneumonia. This review will discuss prior studies on the use of glucocorticoids to treat respiratory infections, the rationale for the use glucocorticoids in COVID-19, and review of existing data. We will also highlight outstanding research questions for future studies.
Collapse
Affiliation(s)
- Francesco Amati
- Respiratory Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Antonio Tonutti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - John Huston
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Critical Care and Sleep Medicine, Center for Pulmonary Infection Research and Treatment, Yale School of Medicine, New Haven, Connecticut
| | - Charles S. Dela Cruz
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Critical Care and Sleep Medicine, Center for Pulmonary Infection Research and Treatment, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
43
|
Godbole NM, Chowdhury AA, Chataut N, Awasthi S. Tight Junctions, the Epithelial Barrier, and Toll-like Receptor-4 During Lung Injury. Inflammation 2022; 45:2142-2162. [PMID: 35779195 PMCID: PMC9649847 DOI: 10.1007/s10753-022-01708-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Lung epithelium is constantly exposed to the environment and is critically important for the orchestration of initial responses to infectious organisms, toxins, and allergic stimuli, and maintenance of normal gaseous exchange and pulmonary function. The integrity of lung epithelium, fluid balance, and transport of molecules is dictated by the tight junctions (TJs). The TJs are formed between adjacent cells. We have focused on the topic of the TJ structure and function in lung epithelial cells. This review includes a summary of the last twenty years of literature reports published on the disrupted TJs and epithelial barrier in various lung conditions and expression and regulation of specific TJ proteins against pathogenic stimuli. We discuss the molecular signaling and crosstalk among signaling pathways that control the TJ structure and function. The Toll-like receptor-4 (TLR4) recognizes the pathogen- and damage-associated molecular patterns released during lung injury and inflammation and coordinates cellular responses. The molecular aspects of TLR4 signaling in the context of TJs or the epithelial barrier are not fully known. We describe the current knowledge and possible networking of the TLR4-signaling with cellular and molecular mechanisms of TJs, lung epithelial barrier function, and resistance to treatment strategies.
Collapse
Affiliation(s)
- Nachiket M Godbole
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Asif Alam Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Neha Chataut
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
44
|
Jin L, Liao W, Zhou X, Wang Y, Qian J. Hydrocortisone alleviates sepsis-induced acute kidney injury through HSF-1-mediated transcriptional suppression of XPO1. Tissue Cell 2022; 79:101915. [DOI: 10.1016/j.tice.2022.101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/28/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022]
|
45
|
Abstract
OBJECTIVE A deep understanding of the relationship between a scarce drug's dose and clinical response is necessary to appropriately distribute a supply-constrained drug along these lines. SUMMARY OF KEY DATA The vast majority of drug development and repurposing during the COVID-19 pandemic - an event that has made clear the ever-present scarcity in healthcare systems -has been ignorant of scarcity and dose optimisation's ability to help address it. CONCLUSIONS Future pandemic clinical trials systems should obtain dose optimisation data, as these appear necessary to enable appropriate scarce resource allocation according to societal values.
Collapse
Affiliation(s)
- Garth Strohbehn
- Center for Clinical Management Research, Veterans Affairs Ann Arbor Health Care, Ann Arbor, Michigan, USA
| | - Govind Persad
- Sturm College of Law, University of Denver, Denver, Colorado, USA
| | - William F Parker
- Maclean Center for Clinical Medical Ethics, University of Chicago, Chicago, Illinois, USA
| | - Srinivas Murthy
- Paediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
46
|
Tan Y, Zou YF, Zhang HB, Liu X, Qian CY, Liu MW. The protective mechanism of salidroside modulating miR-199a-5p/TNFAIP8L2 on lipopolysaccharide-induced MLE-12 cells. Int J Immunopathol Pharmacol 2022; 36:3946320221132712. [PMID: 36214213 PMCID: PMC9551330 DOI: 10.1177/03946320221132712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Salidroside is used for treating inflammation-based diseases; however, its molecular mechanism is unclear. In this study, we determined the protective role of salidroside on the endotoxin-induced damage caused to the mouse alveolar epithelial type II (MLE-12) cells and its underlying mechanism. METHODS An in vitro model for acute lung injury was constructed by inducing the MLE-12 cells using lipopolysaccharide (lipopolysaccharides, 1 mg/L). Then, The MTT assay was conducted to assess the survival rate of the MLE-12 cells in the different groups. After the treatment, apoptosis of MLE-12 cells was determined, and the mRNA and protein expression of miR-199a-5p, HMGB1, NF-kB65, TNFAIP8L2, p-IkB-α, and TLR4 was estimated by Western Blotting and RT-PCR. ELISA was also used to measure the concentration of inflammatory cytokine molecules IL-1β, IL-6, TNF-α, and IL-18 in the cell-free supernatant. Lastly, cell morphology was examined using the AO/EB technique. RESULTS We showed that salidroside reduced the protein and gene expression of HMGB1, NF-kB65, miR-199a-5p, p-IkB-α, and TLR4, whereas it increased the gene and protein expression of TNFAIP8L2. Furthermore, it decreased the concentrations of cytokine molecules like IL-1β, IL-6, TNF-α, and IL-18 in the cell-free supernatant. MLE-12 also showed a lower apoptosis rate, higher survival rate, and better cell morphology. CONCLUSION Salidroside significantly inhibited the LPS-induced MLE-12 cell damage. Our results suggest that this could be by reducing miR-199a-5p and enhancing TNFAIP8L2 expression.
Collapse
Affiliation(s)
- Yang Tan
- Department of Emergency Medicine,
The First
Affiliated Hospital of Kunming Medical
University, Kunming, China
| | - Yong-fan Zou
- Department of Emergency Medicine,
The First
Affiliated Hospital of Kunming Medical
University, Kunming, China
| | - Huang-bo Zhang
- Trauma Center,
The First
Affiliated Hospital of Kunming Medical
University, Kunming, China
| | - Xu Liu
- Department of Infectious Diseases,
Yan-an Hospital
of Kunming City, Kunming, China
| | - Chuan-yun Qian
- Department of Emergency Medicine,
The First
Affiliated Hospital of Kunming Medical
University, Kunming, China
| | - Ming-Wei Liu
- Department of Emergency Medicine,
The First
Affiliated Hospital of Kunming Medical
University, Kunming, China
- Ming-Wei Liu, Department of Emergency
Medicine, The First Affiliated Hospital of Kunming Medical University, 295
Xichang Road, Wuhua District, Kunming 650032, China.
| |
Collapse
|
47
|
Carstensen S, Müller M, Tan GLA, Pasion KA, Hohlfeld JM, Herrera VLM, Ruiz-Opazo N. “Rogue” neutrophil-subset [DEspR+CD11b+/CD66b+] immunotype is an actionable therapeutic target for neutrophilic inflammation-mediated tissue injury – studies in human, macaque and rat LPS-inflammation models. Front Immunol 2022; 13:1008390. [PMID: 36275710 PMCID: PMC9581391 DOI: 10.3389/fimmu.2022.1008390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background and objective The correlation (Rs > 0.7) of neutrophils expressing the dual endothelin1/signal peptide receptor (DEspR+CD11b+/CD66b+) with severity of hypoxemia (SF-ratio) and multi-organ failure (SOFA-score) in patients with acute respiratory distress syndrome (ARDS) suggest the hypothesis that the DEspR+ neutrophil-subset is an actionable therapeutic target in ARDS. To test this hypothesis, we conducted in vivo studies to validate DEspR+ neutrophil-subset as therapeutic target and test efficacy of DEspR-inhibition in acute neutrophilic hyperinflammation models. Methods We performed tests in lipopolysaccharide (LPS)-induced acute neutrophilic inflammation in three species – human, rhesus macaque, rat – with increasing dose-dependent severity. We measured DEspR+CD66b+ neutrophils in bronchoalveolar lavage fluid (BALF) in healthy volunteers (HVs) 24-hours after segmental LPS-challenge by ChipCytometry, and DEspR+CD11b+ neutrophils in whole blood and BALF in an LPS-induced transient acute lung injury (ALI) model in macaques. We determined anti-DEspR antibody efficacy in vivo in LPS-ALI macaque model and in high-mortality LPS-induced encephalopathy in hypertensive rats. Results ChipCytometry detected increased BALF total neutrophil and DEspR+CD66b+ neutrophil counts after segmental LPS-challenge compared to baseline (P =0.034), as well as increased peripheral neutrophil counts and neutrophil-lymphocyte ratio (NLR) compared to pre-LPS level (P <0.05). In the LPS-ALI macaque model, flow cytometry detected increased DEspR+ and DEspR[-] neutrophils in BALF, which was associated with moderate-severe hypoxemia. After determining pharmacokinetics of single-dose anti-DEspR[hu6g8] antibody, one-time pre-LPS anti-DEspR treatment reduced hypoxemia (P =0.03) and neutrophil influx into BALF (P =0.0001) in LPS-ALI vs vehicle mock-treated LPS-ALI macaques. Ex vivo live cell imaging of macaque neutrophils detected greater “intrinsic adhesion to hard-surface” in DEspR+ vs DEspR[-] neutrophils (P <0.001). Anti-DEspR[hu6g8] antibody abrogated intrinsic high adhesion in DEspR+ neutrophils, but not in DEspR[-] neutrophils (P <0.001). In the LPS-encephalopathy rat model, anti-DEspR[10a3] antibody treatment increased median survival (P =0.0007) and exhibited brain target engagement and bioeffects. Conclusion Detection of increased DEspR+ neutrophil-subset in human BALF after segmental LPS-challenge supports the correlation of circulating DEspR+ neutrophil counts with severity measure (SOFA-score) in ARDS. Efficacy and safety of targeted inhibition of DEspR+CD11b+ neutrophil-subset in LPS-induced transient-ALI and high-mortality encephalopathy models identify a potential therapeutic target for neutrophil-mediated secondary tissue injury.
Collapse
Affiliation(s)
- Saskia Carstensen
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Department of Biomarker Analysis and Development, Hannover, Germany
| | - Meike Müller
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Department of Biomarker Analysis and Development, Hannover, Germany
| | - Glaiza L. A. Tan
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University School of Medicine, Boston MA, United States
| | - Khristine Amber Pasion
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University School of Medicine, Boston MA, United States
| | - Jens M. Hohlfeld
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Department of Biomarker Analysis and Development, Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Victoria L. M. Herrera
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University School of Medicine, Boston MA, United States
| | - Nelson Ruiz-Opazo
- Whitaker Cardiovascular Institute and Department of Medicine, Boston University School of Medicine, Boston MA, United States
- *Correspondence: Nelson Ruiz-Opazo,
| |
Collapse
|
48
|
Hong S, Jian C, Wang H, Wang X, Xing L, Qiao L. Effects of different doses of methylprednisolone therapy on acute respiratory distress syndrome: results from animal and clinical studies. BMC Pulm Med 2022; 22:348. [PMID: 36114531 PMCID: PMC9482269 DOI: 10.1186/s12890-022-02148-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background The optimal dose of glucocorticoids for acute respiratory distress syndrome (ARDS) is uncertain. This study aimed to evaluate the effects of different doses of methylprednisolone on sepsis-induced acute lung injury (ALI) rats and a cohort of moderate and severe ARDS patients. Methods ALI rats, challenged with lipopolysaccharide, were randomly received intraperitoneal injection of normal saline (model group) and different doses of methylprednisolone (0.5, 2, 8 mg/kg, named as low-, moderate- and high-dose group, respectively) for 5 days. The body weight changes of rats, inflammatory factors in bronchoalveolar lavage fluid (BALF), lung wet/dry ratio, histopathological score, and the mRNA expressions of glucocorticoid receptor α (GRα), GRβ and nuclear factor-κB (NF-κB) were measured. Forty moderate and severe ARDS patients were treated with standard of care or plus different doses of methylprednisolone (40, 80, 120 mg/day, named as low-, moderate- and high-dose group, respectively) for 5 days. Clinical outcomes were PaO2/FiO2 ratio and C-reactive protein (CRP) level at day 5, intubation rate, hospital stay, 28-day mortality, and adverse events rate. Results In animal experiment, different doses of methylprednisolone could increase the body weight of rats, and reduce inflammatory factors in BALF and the degree of lung injury compared with model group. The efficacy of methylprednisolone at moderate-dose was better than that at low-dose, but was equivalent to that at high-dose, which was consistent with the differential changes in the mRNA expression of GRα, GRβ and NF-κB. In clinical study, the moderate-dose group was associated with higher PaO2/FiO2 ratio and lower CRP level. No significant difference in other clinical outcomes among groups was detected. Conclusions This study showed that the efficacy of methylprednisolone in ARDS treatment was not always dose-dependent due to the differential regulation of related receptors. The moderate-dose of methylprednisolone may be the potential optimal dose for ARDS treatment, which needs to be further verified by larger clinical trials.
Collapse
|
49
|
Meta-Analysis of the Effect of Glucocorticoids on Adult Acute Respiratory Distress Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4020489. [PMID: 35990837 PMCID: PMC9385278 DOI: 10.1155/2022/4020489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
Objectives The aim of this study is to investigate the effect of glucocorticoids in adult patients with acute respiratory distress syndrome (ARDS) by meta-analysis. Methods PubMed, Cochrane Library, Embase, CNKI, Wanfang Database, and Chinese Biomedical literature database were searched. A randomized controlled trial (RCTS) on glucocorticoid therapy in adult patients with ARDS was conducted from the time of database construction to December 2021. The content is about the randomized controlled trial (RCT) of glucocorticoid treatment for adult patients with ARDS, without limiting the dose and course of glucocorticoid treatment. The quality of the included RCTS was evaluated by using the bias risk assessment tool of the Cochrane Collaboration network, and the basic information, clinical features, and target outcomes of the literature were extracted. The effects of glucocorticoids on mortality and oxygenation index (PaO2/FiO2) in adult ARDS patients were evaluated by meta-analysis. Results A total of 1,441 ARDS patients in 10 RCTs were finally included, including 734 patients in the glucocorticoid treatment group (hormone group) and 707 patients in the conventional treatment group (control group). The 10 studies included have a good overall design and high quality. Compared with controls, glucocorticoid use was significantly associated with a decrease in mortality in adult ARDS patients (relative risk (RR) = 0.73, 95% confidence interval (95% CI) = 0.59–0.90, P = 0.003). Analysis showed that glucocorticoids significantly reduced the mortality in ARDS patients treated with medium and low doses of steroids (RR = 0.73, 95% CI = 0.58–0.92, P = 0.007). In patients with early administration of steroids, intervention with glucocorticoids was significantly associated with the decreased mortality in adult ARDS patients compared with controls (RR = 0.74, 95% CI 0.56–0.99, P = 0.04). Among patients with more than 7 days of hormone therapy, treatment with glucocorticoids was significantly associated with decreased mortality in adult ARDS patients (RR = 0.66, 95% CI = 0.50–0.88, P = 0.005) compared with controls. Glucocorticoids tended to improve PaO2/FiO2 in adult ARDS patients compared with controls, but the difference was not statistically significant (weighted mean difference (WMD) = 11.60, 95% = CI = 15.02–38.22, P = 0.39). Conclusion Glucocorticoid therapy can reduce mortality in adult ARDS patients, and the benefit is more pronounced in patients with medium- and low-dose hormone therapy, early hormone administration, and hormone therapy for more than 7 days. However, no improvement in PaO2/FiO2 by glucocorticoid treatment was found, which needs to be confirmed by further studies.
Collapse
|
50
|
Association between Glucocorticoids and Mortality in Patients with Severe Pneumonia: A Systematic Review and Meta-Analysis Based on Randomized Controlled Trials. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1191205. [PMID: 35979047 PMCID: PMC9377960 DOI: 10.1155/2022/1191205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 01/02/2023]
Abstract
Objective To explore the associations between glucocorticoid use and the clinical outcome of patients with severe pneumonia. Methods Medical databases including PubMed, EMBASE, and ScienceDirect were searched for relevant literature. Two independent researchers extracted the primary endpoint from the included literature. The Cochrane Q test and I2 statistics were used to evaluate the interstudy heterogeneity. The combined risk estimates were calculated by random effect model, and the source of heterogeneity was evaluated by subgroup analysis. Funnel plot and Egger's test were used to assess publication bias. P < 0.05 denoted statistical significance. Results A total of 12 literature, including 8171 patients with 1083 deaths, were included in this study for meta-analysis. The use of glucocorticoids significantly increased the mortality (RR = 1.44, 95% CI: 1.13, 1.84, P < 0.001), the risk of requiring mechanical ventilation (RR = 1.62, 95% CI: 1.30, 2.02, P < 0.001), and the incidence of nosocomial infection (RR = 1.36, 95% CI: 1.01, 1.82, P = 0.04) in patients with severe pneumonia as compared with the control group. In addition, the use of glucocorticoids did not seem to be associated with length of treatment in the intensive care unit (mean difference = 1.47, 95% CI: -1.04, 3.96, P = 0.25) and the length of hospital stay (mean difference = 0.55, 95% CI: -3.90, 4.99, P = 0.81). Conclusion The use of glucocorticoids may increase the mortality, the incidence of hospital-acquired pneumonia, and the need for mechanical ventilation in patients with severe pneumonia.
Collapse
|