1
|
Diemer EW, Tuhkanen J, Sammallahti S, Heinonen K, Neumann A, Robinson SL, Suderman M, Jin J, Page CM, Fore R, Rifas-Shiman SL, Oken E, Perron P, Bouchard L, Hivert MF, Räikköne K, Lahti J, Yeung EH, Guan W, Mumford SL, Magnus MC, Håberg S, Nystad W, Parr CL, London SJ, Felix JF, Tiemeier H. Epigenome-wide meta-analysis of prenatal vitamin D insufficiency and cord blood DNA methylation. Epigenetics 2024; 19:2413815. [PMID: 39418282 PMCID: PMC11487971 DOI: 10.1080/15592294.2024.2413815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Low maternal vitamin D concentrations during pregnancy have been associated with a range of offspring health outcomes. DNA methylation is one mechanism by which the maternal vitamin D status during pregnancy could impact offspring's health in later life. We aimed to evaluate whether maternal vitamin D insufficiency during pregnancy was conditionally associated with DNA methylation in the offspring cord blood. Maternal vitamin D insufficiency (plasma 25-hydroxy vitamin D ≤ 75 nmol/L) during pregnancy and offspring cord blood DNA methylation, assessed using Illumina Infinium 450k or Illumina EPIC Beadchip, was collected for 3738 mother-child pairs in 7 cohorts as part of the Pregnancy and Childhood Epigenetics (PACE) consortium. Associations between maternal vitamin D and offspring DNA methylation, adjusted for fetal sex, maternal smoking, maternal age, maternal pre-pregnancy or early pregnancy BMI, maternal education, gestational age at measurement of 25(OH)D, parity, and cell type composition, were estimated using robust linear regression in each cohort, and a fixed-effects meta-analysis was conducted. The prevalence of vitamin D insufficiency ranged from 44.3% to 78.5% across cohorts. Across 364,678 CpG sites, none were associated with maternal vitamin D insufficiency at an epigenome-wide significant level after correcting for multiple testing using Bonferroni correction or a less conservative Benjamini-Hochberg False Discovery Rate approach (FDR, p > 0.05). In this epigenome-wide association study, we did not find convincing evidence of a conditional association of vitamin D insufficiency with offspring DNA methylation at any measured CpG site.
Collapse
Affiliation(s)
- Elizabeth W. Diemer
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Johanna Tuhkanen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Sara Sammallahti
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Kati Heinonen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Psychology/Welfare Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Sonia L. Robinson
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Christian M. Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Section for Statistics and Data Science, Department of Mathematics, Faculty of Mathematics and Natural Science, University of Oslo, Oslo, Norway
| | - Ruby Fore
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Sheryl L. Rifas-Shiman
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Patrice Perron
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Luigi Bouchard
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Katri Räikköne
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Edwina H. Yeung
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Sunni L. Mumford
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Maria C. Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Wenche Nystad
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| | - Christine L. Parr
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| | - Stephanie J. London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Janine F. Felix
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
2
|
Christiansen C, Potier L, Martin TC, Villicaña S, Castillo-Fernandez JE, Mangino M, Menni C, Tsai PC, Campbell PJ, Mullin S, Ordoñana JR, Monteagudo O, Sachdev PS, Mather KA, Trollor JN, Pietilainen KH, Ollikainen M, Dalgård C, Kyvik K, Christensen K, van Dongen J, Willemsen G, Boomsma DI, Magnusson PKE, Pedersen NL, Wilson SG, Grundberg E, Spector TD, Bell JT. Enhanced resolution profiling in twins reveals differential methylation signatures of type 2 diabetes with links to its complications. EBioMedicine 2024; 103:105096. [PMID: 38574408 PMCID: PMC11004697 DOI: 10.1016/j.ebiom.2024.105096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) susceptibility is influenced by genetic and environmental factors. Previous findings suggest DNA methylation as a potential mechanism in T2D pathogenesis and progression. METHODS We profiled DNA methylation in 248 blood samples from participants of European ancestry from 7 twin cohorts using a methylation sequencing platform targeting regulatory genomic regions encompassing 2,048,698 CpG sites. FINDINGS We find and replicate 3 previously unreported T2D differentially methylated CpG positions (T2D-DMPs) at FDR 5% in RGL3, NGB and OTX2, and 20 signals at FDR 25%, of which 14 replicated. Integrating genetic variation and T2D-discordant monozygotic twin analyses, we identify both genetic-based and genetic-independent T2D-DMPs. The signals annotate to genes with established GWAS and EWAS links to T2D and its complications, including blood pressure (RGL3) and eye disease (OTX2). INTERPRETATION The results help to improve our understanding of T2D disease pathogenesis and progression and may provide biomarkers for its complications. FUNDING Funding acknowledgements for each cohort can be found in the Supplementary Note.
Collapse
Affiliation(s)
| | - Louis Potier
- APHP, Paris Cité University, INSERM, Paris, France
| | | | | | | | | | | | - Pei-Chien Tsai
- King's College London, UK; Department of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Purdey J Campbell
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Shelby Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | | | | | | | | | | | - Kirsi H Pietilainen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland; HealthyWeightHub, Abdominal Center, Helsinki University Hospital and University of Helsinki, Finland
| | - Miina Ollikainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Finland
| | | | | | | | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, the Netherlands
| | | | | | - Scott G Wilson
- King's College London, UK; Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | | | | | | |
Collapse
|
3
|
Lin Z, Lu Y, Yu G, Teng H, Wang B, Yang Y, Li Q, Sun Z, Xu S, Wang W, Tian P. Genome-wide DNA methylation landscape of four Chinese populations and epigenetic variation linked to Tibetan high-altitude adaptation. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2354-2369. [PMID: 37115492 DOI: 10.1007/s11427-022-2284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/18/2023] [Indexed: 04/29/2023]
Abstract
DNA methylation (DNAm) is one of the major epigenetic mechanisms in humans and is important in diverse cellular processes. The variation of DNAm in the human population is related to both genetic and environmental factors. However, the DNAm profiles have not been investigated in the Chinese population of diverse ethnicities. Here, we performed double-strand bisulfite sequencing (DSBS) for 32 Chinese individuals representing four major ethnic groups including Han Chinese, Tibetan, Zhuang, and Mongolian. We identified a total of 604,649 SNPs and quantified DNAm at more than 14 million CpGs in the population. We found global DNAm-based epigenetic structure is different from the genetic structure of the population, and ethnic difference only partially explains the variation of DNAm. Surprisingly, non-ethnic-specific DNAm variations showed stronger correlation with the global genetic divergence than these ethnic-specific DNAm. Differentially methylated regions (DMRs) among these ethnic groups were found around genes in diverse biological processes. Especially, these DMR-genes between Tibetan and non-Tibetans were enriched around high-altitude genes including EPAS1 and EGLN1, suggesting DNAm alteration plays an important role in high-altitude adaptation. Our results provide the first batch of epigenetic maps for Chinese populations and the first evidence of the association of epigenetic changes with Tibetans' high-altitude adaptation.
Collapse
Affiliation(s)
- Zeshan Lin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Guoliang Yu
- GrandOmics Biosciences, Beijing, 102200, China
| | - Huajing Teng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Bao Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yajun Yang
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
| | - Qinglan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Peng Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
4
|
Morin A, Thompson EE, Helling BA, Shorey-Kendrick LE, Faber P, Gebretsadik T, Bacharier LB, Kattan M, O'Connor GT, Rivera-Spoljaric K, Wood RA, Barnes KC, Mathias RA, Altman MC, Hansen K, McEvoy CT, Spindel ER, Hartert T, Jackson DJ, Gern JE, McKennan CG, Ober C. A functional genomics pipeline to identify high-value asthma and allergy CpGs in the human methylome. J Allergy Clin Immunol 2023; 151:1609-1621. [PMID: 36754293 PMCID: PMC10859971 DOI: 10.1016/j.jaci.2022.12.828] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 02/09/2023]
Abstract
BACKGROUND DNA methylation of cytosines at cytosine-phosphate-guanine (CpG) dinucleotides (CpGs) is a widespread epigenetic mark, but genome-wide variation has been relatively unexplored due to the limited representation of variable CpGs on commercial high-throughput arrays. OBJECTIVES To explore this hidden portion of the epigenome, this study combined whole-genome bisulfite sequencing with in silico evidence of gene regulatory regions to design a custom array of high-value CpGs. This study focused on airway epithelial cells from children with and without allergic asthma because these cells mediate the effects of inhaled microbes, pollution, and allergens on asthma and allergic disease risk. METHODS This study identified differentially methylated regions from whole-genome bisulfite sequencing in nasal epithelial cell DNA from a total of 39 children with and without allergic asthma of both European and African ancestries. This study selected CpGs from differentially methylated regions, previous allergy or asthma epigenome-wide association studies (EWAS), or genome-wide association study loci, and overlapped them with functional annotations for inclusion on a custom Asthma&Allergy array. This study used both the custom and EPIC arrays to perform EWAS of allergic sensitization (AS) in nasal epithelial cell DNA from children in the URECA (Urban Environment and Childhood Asthma) birth cohort and using the custom array in the INSPIRE [Infant Susceptibility to Pulmonary Infections and Asthma Following RSV Exposure] birth cohort. Each CpG on the arrays was assigned to its nearest gene and its promotor capture Hi-C interacting gene and performed expression quantitative trait methylation (eQTM) studies for both sets of genes. RESULTS Custom array CpGs were enriched for intermediate methylation levels compared to EPIC CpGs. Intermediate methylation CpGs were further enriched among those associated with AS and for eQTMs on both arrays. CONCLUSIONS This study revealed signature features of high-value CpGs and evidence for epigenetic regulation of genes at AS EWAS loci that are robust to race/ethnicity, ascertainment, age, and geography.
Collapse
Affiliation(s)
- Andréanne Morin
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Emma E Thompson
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | | | - Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Ore
| | - Pieter Faber
- Genomics Core, University of Chicago, Chicago, Ill
| | - Tebeb Gebretsadik
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Leonard B Bacharier
- Department of Pediatrics, Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn
| | - Meyer Kattan
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - George T O'Connor
- Pulmonary Center, Boston University School of Medicine, Boston, Mass
| | | | - Robert A Wood
- Department of Pediatrics, Johns Hopkins University, Baltimore, Md
| | | | | | - Matthew C Altman
- Systems Immunology Division, Benaroya Research Institute Systems, Seattle, Wash; Department of Medicine, University of Washington, Seattle, Wash
| | - Kasper Hansen
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md
| | - Cindy T McEvoy
- Department of Pediatrics, Oregon Health and Science University, Portland, Ore
| | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Ore
| | - Tina Hartert
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Chris G McKennan
- Department of Statistics, University of Pittsburgh, Pittsburgh, Pa.
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill.
| |
Collapse
|
5
|
Cheung WA, Johnson AF, Rowell WJ, Farrow E, Hall R, Cohen ASA, Means JC, Zion TN, Portik DM, Saunders CT, Koseva B, Bi C, Truong TK, Schwendinger-Schreck C, Yoo B, Johnston JJ, Gibson M, Evrony G, Rizzo WB, Thiffault I, Younger ST, Curran T, Wenger AM, Grundberg E, Pastinen T. Direct haplotype-resolved 5-base HiFi sequencing for genome-wide profiling of hypermethylation outliers in a rare disease cohort. Nat Commun 2023; 14:3090. [PMID: 37248219 DOI: 10.1038/s41467-023-38782-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Long-read HiFi genome sequencing allows for accurate detection and direct phasing of single nucleotide variants, indels, and structural variants. Recent algorithmic development enables simultaneous detection of CpG methylation for analysis of regulatory element activity directly in HiFi reads. We present a comprehensive haplotype resolved 5-base HiFi genome sequencing dataset from a rare disease cohort of 276 samples in 152 families to identify rare (~0.5%) hypermethylation events. We find that 80% of these events are allele-specific and predicted to cause loss of regulatory element activity. We demonstrate heritability of extreme hypermethylation including rare cis variants associated with short (~200 bp) and large hypermethylation events (>1 kb), respectively. We identify repeat expansions in proximal promoters predicting allelic gene silencing via hypermethylation and demonstrate allelic transcriptional events downstream. On average 30-40 rare hypermethylation tiles overlap rare disease genes per patient, providing indications for variation prioritization including a previously undiagnosed pathogenic allele in DIP2B causing global developmental delay. We propose that use of HiFi genome sequencing in unsolved rare disease cases will allow detection of unconventional diseases alleles due to loss of regulatory element activity.
Collapse
Affiliation(s)
- Warren A Cheung
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Adam F Johnson
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | | | - Emily Farrow
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
| | | | - Ana S A Cohen
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - John C Means
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Tricia N Zion
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | | | | | - Boryana Koseva
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Chengpeng Bi
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Tina K Truong
- Center for Human Genetics and Genomics, Department of Pediatrics, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Carl Schwendinger-Schreck
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Byunggil Yoo
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Jeffrey J Johnston
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Margaret Gibson
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Gilad Evrony
- Center for Human Genetics and Genomics, Department of Pediatrics, Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
| | - William B Rizzo
- Child Health Research Institute, Department of Pediatrics, Nebraska Medical Center, Omaha, NE, USA
| | - Isabelle Thiffault
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Scott T Younger
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
| | - Tom Curran
- Children's Mercy Research Institute, Kansas City, MO, USA
| | | | - Elin Grundberg
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA.
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA.
| | - Tomi Pastinen
- Department of Pediatrics, Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA.
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA.
| |
Collapse
|
6
|
Gunasekara CJ, MacKay H, Scott CA, Li S, Laritsky E, Baker MS, Grimm SL, Jun G, Li Y, Chen R, Wiemels JL, Coarfa C, Waterland RA. Systemic interindividual epigenetic variation in humans is associated with transposable elements and under strong genetic control. Genome Biol 2023; 24:2. [PMID: 36631879 PMCID: PMC9835319 DOI: 10.1186/s13059-022-02827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/01/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Genetic variants can modulate phenotypic outcomes via epigenetic intermediates, for example at methylation quantitative trait loci (mQTL). We present the first large-scale assessment of mQTL at human genomic regions selected for interindividual variation in CpG methylation, which we call correlated regions of systemic interindividual variation (CoRSIVs). These can be assayed in blood DNA and do not reflect interindividual variation in cellular composition. RESULTS We use target-capture bisulfite sequencing to assess DNA methylation at 4086 CoRSIVs in multiple tissues from each of 188 donors in the NIH Gene-Tissue Expression (GTEx) program. At CoRSIVs, DNA methylation in peripheral blood correlates with methylation and gene expression in internal organs. We also discover unprecedented mQTL at these regions. Genetic influences on CoRSIV methylation are extremely strong (median R2=0.76), cumulatively comprising over 70-fold more human mQTL than detected in the most powerful previous study. Moreover, mQTL beta coefficients at CoRSIVs are highly skewed (i.e., the major allele predicts higher methylation). Both surprising findings are independently validated in a cohort of 47 non-GTEx individuals. Genomic regions flanking CoRSIVs show long-range enrichments for LINE-1 and LTR transposable elements; the skewed beta coefficients may therefore reflect evolutionary selection of genetic variants that promote their methylation and silencing. Analyses of GWAS summary statistics show that mQTL polymorphisms at CoRSIVs are associated with metabolic and other classes of disease. CONCLUSIONS A focus on systemic interindividual epigenetic variants, clearly enhanced in mQTL content, should likewise benefit studies attempting to link human epigenetic variation to the risk of disease.
Collapse
Affiliation(s)
- Chathura J. Gunasekara
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Harry MacKay
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - C. Anthony Scott
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Shaobo Li
- grid.42505.360000 0001 2156 6853Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Eleonora Laritsky
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Maria S. Baker
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Sandra L. Grimm
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - Goo Jun
- grid.267308.80000 0000 9206 2401Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Yumei Li
- grid.39382.330000 0001 2160 926XDepartment of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Rui Chen
- grid.39382.330000 0001 2160 926XDepartment of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Joseph L. Wiemels
- grid.42505.360000 0001 2156 6853Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Cristian Coarfa
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX USA
| | - Robert A. Waterland
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
7
|
Yang CH, Fagnocchi L, Apostle S, Wegert V, Casaní-Galdón S, Landgraf K, Panzeri I, Dror E, Heyne S, Wörpel T, Chandler DP, Lu D, Yang T, Gibbons E, Guerreiro R, Bras J, Thomasen M, Grunnet LG, Vaag AA, Gillberg L, Grundberg E, Conesa A, Körner A, Pospisilik JA. Independent phenotypic plasticity axes define distinct obesity sub-types. Nat Metab 2022; 4:1150-1165. [PMID: 36097183 PMCID: PMC9499872 DOI: 10.1038/s42255-022-00629-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/29/2022] [Indexed: 01/04/2023]
Abstract
Studies in genetically 'identical' individuals indicate that as much as 50% of complex trait variation cannot be traced to genetics or to the environment. The mechanisms that generate this 'unexplained' phenotypic variation (UPV) remain largely unknown. Here, we identify neuronatin (NNAT) as a conserved factor that buffers against UPV. We find that Nnat deficiency in isogenic mice triggers the emergence of a bi-stable polyphenism, where littermates emerge into adulthood either 'normal' or 'overgrown'. Mechanistically, this is mediated by an insulin-dependent overgrowth that arises from histone deacetylase (HDAC)-dependent β-cell hyperproliferation. A multi-dimensional analysis of monozygotic twin discordance reveals the existence of two patterns of human UPV, one of which (Type B) phenocopies the NNAT-buffered polyphenism identified in mice. Specifically, Type-B monozygotic co-twins exhibit coordinated increases in fat and lean mass across the body; decreased NNAT expression; increased HDAC-responsive gene signatures; and clinical outcomes linked to insulinemia. Critically, the Type-B UPV signature stratifies both childhood and adult cohorts into four metabolic states, including two phenotypically and molecularly distinct types of obesity.
Collapse
Affiliation(s)
- Chih-Hsiang Yang
- Van Andel Institute, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | | | - Vanessa Wegert
- Van Andel Institute, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Kathrin Landgraf
- Medical Faculty, University of Leipzig, University Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, Leipzig, Germany
| | - Ilaria Panzeri
- Van Andel Institute, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Erez Dror
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Steffen Heyne
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Roche Diagnostics Deutschland, Mannheim, Germany
| | - Till Wörpel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Di Lu
- Van Andel Institute, Grand Rapids, MI, USA
| | - Tao Yang
- Van Andel Institute, Grand Rapids, MI, USA
| | - Elizabeth Gibbons
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Martin Thomasen
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Louise G Grunnet
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Allan A Vaag
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Linn Gillberg
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elin Grundberg
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, MO, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council (CSIC), Paterna, Valencia, Spain
- Microbiology and Cell Science Department, University of Florida, Gainesville, FL, USA
| | - Antje Körner
- Medical Faculty, University of Leipzig, University Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - J Andrew Pospisilik
- Van Andel Institute, Grand Rapids, MI, USA.
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
8
|
Derakhshan M, Kessler NJ, Ishida M, Demetriou C, Brucato N, Moore G, Fall CHD, Chandak GR, Ricaut FX, Prentice A, Hellenthal G, Silver M. Tissue- and ethnicity-independent hypervariable DNA methylation states show evidence of establishment in the early human embryo. Nucleic Acids Res 2022; 50:6735-6752. [PMID: 35713545 PMCID: PMC9749461 DOI: 10.1093/nar/gkac503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
We analysed DNA methylation data from 30 datasets comprising 3474 individuals, 19 tissues and 8 ethnicities at CpGs covered by the Illumina450K array. We identified 4143 hypervariable CpGs ('hvCpGs') with methylation in the top 5% most variable sites across multiple tissues and ethnicities. hvCpG methylation was influenced but not determined by genetic variation, and was not linked to probe reliability, epigenetic drift, age, sex or cell heterogeneity effects. hvCpG methylation tended to covary across tissues derived from different germ-layers and hvCpGs were enriched for proximity to ERV1 and ERVK retrovirus elements. hvCpGs were also enriched for loci previously associated with periconceptional environment, parent-of-origin-specific methylation, and distinctive methylation signatures in monozygotic twins. Together, these properties position hvCpGs as strong candidates for studying how stochastic and/or environmentally influenced DNA methylation states which are established in the early embryo and maintained stably thereafter can influence life-long health and disease.
Collapse
Affiliation(s)
| | - Noah J Kessler
- Department of Genetics, University of Cambridge,
Cambridge CB2 3EH, UK
| | - Miho Ishida
- UCL Great Ormond Street Institute of Child Health, UK
| | | | - Nicolas Brucato
- Laboratoire Évolution and Diversité Biologique (EDB UMR 5174), Université
de Toulouse Midi-Pyrénées, CNRS, IRD, UPS,Toulouse, France
| | | | - Caroline H D Fall
- MRC Lifecourse Epidemiology Unit, University of Southampton,
Southampton, UK
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular
and Molecular Biology,Hyderabad, India
| | - Francois-Xavier Ricaut
- Laboratoire Évolution and Diversité Biologique (EDB UMR 5174), Université
de Toulouse Midi-Pyrénées, CNRS, IRD, UPS,Toulouse, France
| | - Andrew M Prentice
- Medical Research Council Unit The Gambia at the London School of Hygiene
and Tropical Medicine, The Gambia
| | - Garrett Hellenthal
- UCL Genetics Institute, University College London,
Gower Street, London WC1E 6BT, UK
| | - Matt J Silver
- London School of Hygiene and Tropical Medicine, UK
- Medical Research Council Unit The Gambia at the London School of Hygiene
and Tropical Medicine, The Gambia
| |
Collapse
|
9
|
Shao X, Le Stunff C, Cheung W, Kwan T, Lathrop M, Pastinen T, Bougnères P. Differentially methylated CpGs in response to growth hormone administration in children with idiopathic short stature. Clin Epigenetics 2022; 14:65. [PMID: 35585611 PMCID: PMC9118695 DOI: 10.1186/s13148-022-01281-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Recombinant human growth hormone (rhGH) has shown a great growth-promoting potential in children with idiopathic short stature (ISS). However, the response to rhGH differs across individuals, largely due to genetic and epigenetic heterogeneity. Since epigenetic marks on the methylome can be dynamically influenced by GH, we performed a comprehensive pharmacoepigenomics analysis of DNA methylation changes associated with long-term rhGH administration in children with ISS.
Results We measured DNA methylation profiles before and after GH treatment (with a duration of ~ 18 months in average) on 47 healthy children using customized methylC-seq capture sequencing. Their changes were compared and associated with changes in plasma IGF1 by adjusting sex, age, treatment duration and estimated blood proportions. We observed a considerable inter-individual heterogeneity of DNA methylation changes responding to GH treatment. We identified 267 response-associated differentially methylated cytosines (DMCs) that were enriched in promoter regions, CpG islands and blood cell-type-specific regulatory elements. Furthermore, the genes associated with these DMCs were enriched in the biology process of “cell development,” “neuron differentiation” and “developmental growth,” and in the TGF-beta signaling pathway, PPAR Alpha pathway, endoderm differentiation pathway, adipocytokine signaling pathway as well as PI3K-Akt signaling pathway, and cAMP signaling pathway. Conclusion Our study provides a first insight in DNA methylation changes associated with rhGH administration, which may help understand mechanisms of epigenetic regulation on GH-responsive genes. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01281-z.
Collapse
Affiliation(s)
- Xiaojian Shao
- Digital Technologies Research Center, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada.
| | - Catherine Le Stunff
- UMR INSERM 1195 and Université Paris Saclay, Endocrinologie Pédiatrique, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Warren Cheung
- Genomic Medicine Center, Children's Mercy - Kansas City and Children's Mercy Research Institute, Kansas City, MO, 64108, USA
| | - Tony Kwan
- Department of Human Genetics, McGill University and McGill Genome Center, Montreal, QC, H3A 0G1, Canada
| | - Mark Lathrop
- Department of Human Genetics, McGill University and McGill Genome Center, Montreal, QC, H3A 0G1, Canada
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy - Kansas City and Children's Mercy Research Institute, Kansas City, MO, 64108, USA.
| | - Pierre Bougnères
- UMR INSERM 1195 and Université Paris Saclay, Endocrinologie Pédiatrique, Hôpital Bicêtre, 94276, Le Kremlin-Bicêtre Cedex, France.
| |
Collapse
|
10
|
Geographic Location Determines Differentially Methylated Gene Expressions in Autoimmune Diseases. IMMUNO 2021. [DOI: 10.3390/immuno1040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Further observations support the role of environmental factors in autoimmune diseases via the alteration of the epigenetic machinery. In this context, ultraviolet light, smoking, chemicals, and psychological stress have been described as likely examples of this phenomenon. For this study, we took advantage of the PRECISESADS IMI project, which gathered joint data from 2500 individuals with systemic autoimmune diseases, including systemic lupus erythematosus (SLE), systemic sclerosis (SSc), primary Sjögren’s syndrome (pSS), rheumatoid arthritis (RA), primary antiphospholipid syndrome (PAPS), and mixed connective tissue disease (MCTD), and aimed to determine such epigenetic modifications in SLE, SSc, pSS, and RA patients. Here, we performed a set of measures in several countries from the north and south of Europe. We observed that autoimmune patients from the north of Europe presented a higher hypomethylated profile associated with an increased gene expression than patients from the south. These genes were associated with interferon (IFN) pathways, immunity, and the pathways associated with cellular metabolism. Since the IFN scores were increased in this population, these patients presented a more inflammatory profile. To conclude, the geographical location of patients with autoimmune diseases has an impact on DNA methylation, RNA expression, and immunological profiles.
Collapse
|
11
|
Planterose Jiménez B, Kayser M, Vidaki A. Revisiting genetic artifacts on DNA methylation microarrays exposes novel biological implications. Genome Biol 2021; 22:274. [PMID: 34548083 PMCID: PMC8454075 DOI: 10.1186/s13059-021-02484-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Illumina DNA methylation microarrays enable epigenome-wide analysis vastly used for the discovery of novel DNA methylation variation in health and disease. However, the microarrays' probe design cannot fully consider the vast human genetic diversity, leading to genetic artifacts. Distinguishing genuine from artifactual genetic influence is of particular relevance in the study of DNA methylation heritability and methylation quantitative trait loci. But despite its importance, current strategies to account for genetic artifacts are lagging due to a limited mechanistic understanding on how such artifacts operate. RESULTS To address this, we develop and benchmark UMtools, an R-package containing novel methods for the quantification and qualification of genetic artifacts based on fluorescence intensity signals. With our approach, we model and validate known SNPs/indels on a genetically controlled dataset of monozygotic twins, and we estimate minor allele frequency from DNA methylation data and empirically detect variants not included in dbSNP. Moreover, we identify examples where genetic artifacts interact with each other or with imprinting, X-inactivation, or tissue-specific regulation. Finally, we propose a novel strategy based on co-methylation that can discern between genetic artifacts and genuine genomic influence. CONCLUSIONS We provide an atlas to navigate through the huge diversity of genetic artifacts encountered on DNA methylation microarrays. Overall, our study sets the ground for a paradigm shift in the study of the genetic component of epigenetic variation in DNA methylation microarrays.
Collapse
Affiliation(s)
- Benjamin Planterose Jiménez
- Erasmus MC, University Medical Center Rotterdam, Department of Genetic Identification, Rotterdam, the Netherlands
| | - Manfred Kayser
- Erasmus MC, University Medical Center Rotterdam, Department of Genetic Identification, Rotterdam, the Netherlands
| | - Athina Vidaki
- Erasmus MC, University Medical Center Rotterdam, Department of Genetic Identification, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Winkley K, Banerjee D, Bradley T, Koseva B, Cheung WA, Selvarangan R, Pastinen T, Grundberg E. Immune cell residency in the nasal mucosa may partially explain respiratory disease severity across the age range. Sci Rep 2021; 11:15927. [PMID: 34354210 PMCID: PMC8342554 DOI: 10.1038/s41598-021-95532-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 12/26/2022] Open
Abstract
Previous studies focusing on the age disparity in COVID-19 severity have suggested that younger individuals mount a more robust innate immune response in the nasal mucosa after infection with SARS-CoV-2. However, it is unclear if this reflects increased immune activation or increased immune residence in the nasal mucosa. We hypothesized that immune residency in the nasal mucosa of healthy individuals may differ across the age range. We applied single-cell RNA-sequencing and measured the cellular composition and transcriptional profile of the nasal mucosa in 35 SARS-CoV-2 negative children and adults, ranging in age from 4 months to 65 years. We analyzed in total of ~ 30,000 immune and epithelial cells and found that age and immune cell proportion in the nasal mucosa are inversely correlated, with little evidence for structural changes in the transcriptional state of a given cell type across the age range. Orthogonal validation by epigenome sequencing indicate that it is especially cells of the innate immune system that underlie the age-association. Additionally, we characterize the predominate immune cell type in the nasal mucosa: a resident T cell like population with potent antiviral properties. These results demonstrate fundamental changes in the immune cell makeup of the uninfected nasal mucosa over the lifespan. The resource we generate here is an asset for future studies focusing on respiratory infection and immunization strategies.
Collapse
Affiliation(s)
- Konner Winkley
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Dithi Banerjee
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Todd Bradley
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Boryana Koseva
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Warren A Cheung
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Rangaraj Selvarangan
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.
| | - Elin Grundberg
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.
| |
Collapse
|
13
|
Cervantes-Pérez SA, Yong-Villalobos L, Florez-Zapata NMV, Oropeza-Aburto A, Rico-Reséndiz F, Amasende-Morales I, Lan T, Martínez O, Vielle-Calzada JP, Albert VA, Herrera-Estrella L. Atypical DNA methylation, sRNA-size distribution, and female gametogenesis in Utricularia gibba. Sci Rep 2021; 11:15725. [PMID: 34344949 PMCID: PMC8333044 DOI: 10.1038/s41598-021-95054-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022] Open
Abstract
The most studied DNA methylation pathway in plants is the RNA Directed DNA Methylation (RdDM), a conserved mechanism that involves the role of noncoding RNAs to control the expansion of the noncoding genome. Genome-wide DNA methylation levels have been reported to correlate with genome size. However, little is known about the catalog of noncoding RNAs and the impact on DNA methylation in small plant genomes with reduced noncoding regions. Because of the small length of intergenic regions in the compact genome of the carnivorous plant Utricularia gibba, we investigated its repertoire of noncoding RNA and DNA methylation landscape. Here, we report that, compared to other angiosperms, U. gibba has an unusual distribution of small RNAs and reduced global DNA methylation levels. DNA methylation was determined using a novel strategy based on long-read DNA sequencing with the Pacific Bioscience platform and confirmed by whole-genome bisulfite sequencing. Moreover, some key genes involved in the RdDM pathway may not represented by compensatory paralogs or comprise truncated proteins, for example, U. gibba DICER-LIKE 3 (DCL3), encoding a DICER endonuclease that produces 24-nt small-interfering RNAs, has lost key domains required for complete function. Our results unveil that a truncated DCL3 correlates with a decreased proportion of 24-nt small-interfering RNAs, low DNA methylation levels, and developmental abnormalities during female gametogenesis in U. gibba. Alterations in female gametogenesis are reminiscent of RdDM mutant phenotypes in Arabidopsis thaliana. It would be interesting to further study the biological implications of the DCL3 truncation in U. gibba, as it could represent an initial step in the evolution of RdDM pathway in compact genomes.
Collapse
Affiliation(s)
- Sergio Alan Cervantes-Pérez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Lenin Yong-Villalobos
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico.,Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Department, Texas Tech University, Lubbock, TX, 79409, USA
| | - Nathalia M V Florez-Zapata
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico.,Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Paseo Bolívar (Circunvalar) #16-20, Bogotá, DC, 111311, Colombia
| | - Araceli Oropeza-Aburto
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Félix Rico-Reséndiz
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Itzel Amasende-Morales
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Tianying Lan
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Octavio Martínez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Jean Philippe Vielle-Calzada
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico. .,Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Department, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
14
|
Rost NS, Meschia JF, Gottesman R, Wruck L, Helmer K, Greenberg SM. Cognitive Impairment and Dementia After Stroke: Design and Rationale for the DISCOVERY Study. Stroke 2021; 52:e499-e516. [PMID: 34039035 PMCID: PMC8316324 DOI: 10.1161/strokeaha.120.031611] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stroke is a leading cause of the adult disability epidemic in the United States, with a major contribution from poststroke cognitive impairment and dementia (PSCID), the rates of which are disproportionally high among the health disparity populations. Despite the PSCID's overwhelming impact on public health, a knowledge gap exists with regard to the complex interaction between the acute stroke event and highly prevalent preexisting brain pathology related to cerebrovascular and Alzheimer disease or related dementia. Understanding the factors that modulate PSCID risk in relation to index stroke event is critically important for developing personalized prognostication of PSCID, targeted interventions to prevent it, and for informing future clinical trial design. The DISCOVERY study (Determinants of Incident Stroke Cognitive Outcomes and Vascular Effects on Recovery), a collaborative network of thirty clinical performance clinical sites with access to acute stroke populations and the expertise and capacity for systematic assessment of PSCID will address this critical challenge. DISCOVERY is a prospective, multicenter, observational, nested-cohort study of 8000 nondemented ischemic and hemorrhagic stroke patients enrolled at the time of index stroke and followed for a minimum of 2 years, with serial cognitive evaluations and assessments of functional outcome, with subsets undergoing research magnetic resonance imaging and positron emission tomography and comprehensive genetic/genomic and fluid biomarker testing. The overall scientific objective of this study is to elucidate mechanisms of brain resilience and susceptibility to PSCID in diverse US populations based on complex interplay between life-course exposure to multiple vascular risk factors, preexisting burden of microvascular and neurodegenerative pathology, the effect of strategic acute stroke lesions, and the mediating effect of genomic and epigenomic variation.
Collapse
Affiliation(s)
- Natalia S. Rost
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | | | | | - Karl Helmer
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA
| | - Steven M. Greenberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
15
|
Overweight and obesity in pregnancy: their impact on epigenetics. Eur J Clin Nutr 2021; 75:1710-1722. [PMID: 34230629 PMCID: PMC8636269 DOI: 10.1038/s41430-021-00905-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023]
Abstract
Over the last few decades, the prevalence of obesity has risen to epidemic proportions worldwide. Consequently, the number of obesity in pregnancy has risen drastically. Gestational overweight and obesity are associated with impaired outcomes for mother and child. Furthermore, studies show that maternal obesity can lead to long-term consequences in the offspring, increasing the risk for obesity and cardiometabolic disease in later life. In addition to genetic mechanisms, mounting evidence demonstrates the induction of epigenetic alterations by maternal obesity, which can affect the offspring’s phenotype, thereby influencing the later risk of obesity and cardiometabolic disease. Clear evidence in this regard comes from various animal models of maternal obesity. Evidence derived from clinical studies remains limited. The current article gives an overview of pathophysiological changes associated with maternal obesity and their consequences on placental structure and function. Furthermore, a short excurse is given on epigenetic mechanisms and emerging data regarding a putative interaction between metabolism and epigenetics. Finally, a summary of important findings of animal and clinical studies investigating maternal obesity-related epigenetic effects is presented also addressing current limitations of clinical studies.
Collapse
|
16
|
Breton CV, Landon R, Kahn LG, Enlow MB, Peterson AK, Bastain T, Braun J, Comstock SS, Duarte CS, Hipwell A, Ji H, LaSalle JM, Miller RL, Musci R, Posner J, Schmidt R, Suglia SF, Tung I, Weisenberger D, Zhu Y, Fry R. Exploring the evidence for epigenetic regulation of environmental influences on child health across generations. Commun Biol 2021; 4:769. [PMID: 34158610 PMCID: PMC8219763 DOI: 10.1038/s42003-021-02316-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/03/2021] [Indexed: 02/08/2023] Open
Abstract
Environmental exposures, psychosocial stressors and nutrition are all potentially important influences that may impact health outcomes directly or via interactions with the genome or epigenome over generations. While there have been clear successes in large-scale human genetic studies in recent decades, there is still a substantial amount of missing heritability to be elucidated for complex childhood disorders. Mounting evidence, primarily in animals, suggests environmental exposures may generate or perpetuate altered health outcomes across one or more generations. One putative mechanism for these environmental health effects is via altered epigenetic regulation. This review highlights the current epidemiologic literature and supporting animal studies that describe intergenerational and transgenerational health effects of environmental exposures. Both maternal and paternal exposures and transmission patterns are considered, with attention paid to the attendant ethical, legal and social implications.
Collapse
Affiliation(s)
- Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Remy Landon
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Linda G Kahn
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Michelle Bosquet Enlow
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alicia K Peterson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa Bastain
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joseph Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Cristiane S Duarte
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, NY, USA
| | - Alison Hipwell
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Ji
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, Davis, CA, USA
| | | | - Rashelle Musci
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jonathan Posner
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, NY, USA
| | - Rebecca Schmidt
- Department of Public Health Sciences, UC Davis School of Medicine, Davis, CA, USA
| | | | - Irene Tung
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California and Department of Epidemiology and Biostatistics, University of California, San Francisco, Oakland, CA, USA
| | - Rebecca Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Winkley K, Koseva B, Banerjee D, Cheung W, Selvarangan R, Pastinen T, Grundberg E. High-resolution epigenome analysis in nasal samples derived from children with respiratory viral infections reveals striking changes upon SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.09.21253155. [PMID: 33758880 PMCID: PMC7987039 DOI: 10.1101/2021.03.09.21253155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background DNA methylation patterns of the human genome can be modified by environmental stimuli and provide dense information on gene regulatory circuitries. We studied genome-wide DNA methylation in nasal samples from infants (<6 months) applying whole-genome bisulfite sequencing (WGBS) to characterize epigenome response to 10 different respiratory viral infections including SARS-CoV-2. Results We identified virus-specific differentially methylated regions (vDMR) with human metapneumovirus (hMPV) and SARS-CoV-2 followed by Influenza B (Flu B) causing the weakest vs. strongest epigenome response with 496 vs. 78541 and 14361 vDMR, respectively. We found a strong replication rate of FluB (52%) and SARS-CoV-2 (42%) vDMR in independent samples indicating robust epigenome perturbation upon infection. Among the FluB and SARS-CoV-2 vDMRs, around 70% were hypomethylated and significantly enriched among epithelial cell-specific regulatory elements whereas the hypermethylated vDMRs for these viruses mapped more frequently to immune cell regulatory elements, especially those of the myeloid lineage. The hypermethylated vDMRs were also enriched among genes and genetic loci in monocyte activation pathways and monocyte count. Finally, we perform single-cell RNA-sequencing characterization of nasal mucosa in response to these two viruses to functionally analyze the epigenome perturbations. Which supports the trends we identified in methylation data and highlights and important role for monocytes. Conclusions All together, we find evidence indicating genetic predisposition to innate immune response upon a respiratory viral infection. Our genome-wide monitoring of infant viral response provides first catalogue of associated host regulatory elements. Assessing epigenetic variation in individual patients may reveal evidence for viral triggers of childhood disease.
Collapse
Affiliation(s)
- Konner Winkley
- Department of Pediatrics, Genomic Medicine Center, Children’s Mercy Kansas City, Kansas City, Missouri, US
| | - Boryana Koseva
- Department of Pediatrics, Genomic Medicine Center, Children’s Mercy Kansas City, Kansas City, Missouri, US
| | - Dithi Banerjee
- Department of Pathology and Laboratory Medicine, Children’s Mercy Kansas City, Kansas City, Missouri, US
| | - Warren Cheung
- Department of Pediatrics, Genomic Medicine Center, Children’s Mercy Kansas City, Kansas City, Missouri, US
| | - Rangaraj Selvarangan
- Department of Pathology and Laboratory Medicine, Children’s Mercy Kansas City, Kansas City, Missouri, US
| | - Tomi Pastinen
- Department of Pediatrics, Genomic Medicine Center, Children’s Mercy Kansas City, Kansas City, Missouri, US
| | - Elin Grundberg
- Department of Pediatrics, Genomic Medicine Center, Children’s Mercy Kansas City, Kansas City, Missouri, US
| |
Collapse
|
18
|
Planterose Jiménez B, Liu F, Caliebe A, Montiel González D, Bell JT, Kayser M, Vidaki A. Equivalent DNA methylation variation between monozygotic co-twins and unrelated individuals reveals universal epigenetic inter-individual dissimilarity. Genome Biol 2021; 22:18. [PMID: 33402197 PMCID: PMC7786996 DOI: 10.1186/s13059-020-02223-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although the genomes of monozygotic twins are practically identical, their methylomes may evolve divergently throughout their lifetime as a consequence of factors such as the environment or aging. Particularly for young and healthy monozygotic twins, DNA methylation divergence, if any, may be restricted to stochastic processes occurring post-twinning during embryonic development and early life. However, to what extent such stochastic mechanisms can systematically provide a stable source of inter-individual epigenetic variation remains uncertain until now. RESULTS We enriched for inter-individual stochastic variation by using an equivalence testing-based statistical approach on whole blood methylation microarray data from healthy adolescent monozygotic twins. As a result, we identified 333 CpGs displaying similarly large methylation variation between monozygotic co-twins and unrelated individuals. Although their methylation variation surpasses measurement error and is stable in a short timescale, susceptibility to aging is apparent in the long term. Additionally, 46% of these CpGs were replicated in adipose tissue. The identified sites are significantly enriched at the clustered protocadherin loci, known for stochastic methylation in developing neurons. We also confirmed an enrichment in monozygotic twin DNA methylation discordance at these loci in whole genome bisulfite sequencing data from blood and adipose tissue. CONCLUSIONS We have isolated a component of stochastic methylation variation, distinct from genetic influence, measurement error, and epigenetic drift. Biomarkers enriched in this component may serve in the future as the basis for universal epigenetic fingerprinting, relevant for instance in the discrimination of monozygotic twin individuals in forensic applications, currently impossible with standard DNA profiling.
Collapse
Affiliation(s)
- Benjamin Planterose Jiménez
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Fan Liu
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Amke Caliebe
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
- University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Diego Montiel González
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Athina Vidaki
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
19
|
Dong Z, Shen X, Hao Y, Li J, Li H, Xu H, Yin L, Kuang W. Gut Microbiome: A Potential Indicator for Differential Diagnosis of Major Depressive Disorder and General Anxiety Disorder. Front Psychiatry 2021; 12:651536. [PMID: 34589003 PMCID: PMC8473618 DOI: 10.3389/fpsyt.2021.651536] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 08/19/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Major depressive disorder (MDD) and general anxiety disorder (GAD) share many common features, leading to numerous challenges in their differential diagnosis. Given the importance of the microbiota-gut-brain axis, we investigated the differences in gut microbiota between representative cases of these two diseases and sought to develop a microbiome-based approach for their differential diagnosis. Methods: We enrolled 23 patients with MDD, 21 with GAD, and 10 healthy subjects (healthy crowd, HC) in the present study. We used 16S rRNA gene-sequencing analysis to determine the microbial compositions of the gut microbiome based on Illumina Miseq and according to the standard protocol. Results: GAD showed a significant difference in microbiota richness and diversity as compared with HC. Additionally, Otu24167, Otu19140, and Otu19751 were significantly decreased in MDD relative to HC, and Otu2581 and Otu10585 were significantly increased in GAD relative to MDD. At the genus level, the abundances of Sutterella and Fusicatenibacter were significantly lower in MDD relative to HC, and the abundances of Fusicatenibacter and Christensenellaceae_R7_group were significantly lower in GAD than in HC. The abundance of Sutterella was significantly higher whereas that of Faecalibacterium was significantly lower in GAD relative to MDD. Moreover, we observed that Christensenellaceae_R7_group negatively correlated with the factor score (Limited to Hopelessness) and total score of HAMD-24 (p < 0.05), whereas Fusicatenibacter negatively correlated with FT4 (p < 0.05). Furthermore, the GAD group showed significant differences at the genus level for Faecalibacterium, which negatively correlated with PTC (p < 0.05). Conclusions: This study elucidated a unique gut-microbiome signature associated with MDD and GAD that could facilitate differential diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoling Shen
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Yanni Hao
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Jin Li
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Haoran Li
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Haizheng Xu
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Li Yin
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Weihong Kuang
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Yu F, Xu C, Deng HW, Shen H. A novel computational strategy for DNA methylation imputation using mixture regression model (MRM). BMC Bioinformatics 2020; 21:552. [PMID: 33261550 PMCID: PMC7708217 DOI: 10.1186/s12859-020-03865-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND DNA methylation is an important heritable epigenetic mark that plays a crucial role in transcriptional regulation and the pathogenesis of various human disorders. The commonly used DNA methylation measurement approaches, e.g., Illumina Infinium HumanMethylation-27 and -450 BeadChip arrays (27 K and 450 K arrays) and reduced representation bisulfite sequencing (RRBS), only cover a small proportion of the total CpG sites in the human genome, which considerably limited the scope of the DNA methylation analysis in those studies. RESULTS We proposed a new computational strategy to impute the methylation value at the unmeasured CpG sites using the mixture of regression model (MRM) of radial basis functions, integrating information of neighboring CpGs and the similarities in local methylation patterns across subjects and across multiple genomic regions. Our method achieved a better imputation accuracy over a set of competing methods on both simulated and empirical data, particularly when the missing rate is high. By applying MRM to an RRBS dataset from subjects with low versus high bone mineral density (BMD), we recovered methylation values of ~ 300 K CpGs in the promoter regions of chromosome 17 and identified some novel differentially methylated CpGs that are significantly associated with BMD. CONCLUSIONS Our method is well applicable to the numerous methylation studies. By expanding the coverage of the methylation dataset to unmeasured sites, it can significantly enhance the discovery of novel differential methylation signals and thus reveal the mechanisms underlying various human disorders/traits.
Collapse
Affiliation(s)
- Fangtang Yu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Chao Xu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Hong-Wen Deng
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Hui Shen
- Center for Bioinformatics and Genomics, Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
21
|
Lanata CM, Blazer A, Criswell LA. The Contribution of Genetics and Epigenetics to Our Understanding of Health Disparities in Rheumatic Diseases. Rheum Dis Clin North Am 2020; 47:65-81. [PMID: 34042055 DOI: 10.1016/j.rdc.2020.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Socioeconomic determinants of health are associated with worse outcomes in the rheumatic diseases and contribute significantly to health disparities. However, genetic and epigenetic risk factors may affect different populations disproportionally and further exacerbate health disparities. We discuss the role of genetics and epigenetics to the health disparities observed in rheumatic diseases. We review concepts of population genetics and natural selection, current genome-wide genetic and epigenetic studies of several autoimmune diseases, and environmental exposures associated with disease risk in different populations. To understand how genomics influence health disparities in the rheumatic diseases, further studies in different populations worldwide are needed.
Collapse
Affiliation(s)
- Cristina M Lanata
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco, 513 Parnassus Avenue, MSB S865, San Francisco, CA, USA
| | - Ashira Blazer
- Department of Medicine, Division of Rheumatology, NYU Langone Health, 550 1st Avenue, MSB 606, New York, NY 10029, USA
| | - Lindsey A Criswell
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco, 513 Parnassus Avenue, MSB S864, San Francisco, CA, USA.
| |
Collapse
|
22
|
Goncearenco A, LaBarre BA, Petrykowska HM, Jaratlerdsiri W, Bornman MSR, Turner SD, Hayes VM, Elnitski L. DNA methylation profiles unique to Kalahari KhoeSan individuals. Epigenetics 2020; 16:537-553. [PMID: 32892676 PMCID: PMC8078743 DOI: 10.1080/15592294.2020.1809852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Genomes of KhoeSan individuals of the Kalahari Desert provide the greatest understanding of single nucleotide diversity in the human genome. Compared with individuals in industrialized environments, the KhoeSan have a unique foraging and hunting lifestyle. Given these dramatic environmental differences, and the responsiveness of the methylome to environmental exposures of many types, we hypothesized that DNA methylation patterns would differ between KhoeSan and neighbouring agropastoral and/or industrial Bantu. We analysed Illumina HumanMethylation 450 k array data generated from blood samples from 38 KhoeSan and 42 Bantu, and 6 Europeans. After removing CpG positions associated with annotated and novel polymorphisms and controlling for white blood cell composition, sex, age and technical variation we identified 816 differentially methylated CpG loci, out of which 133 had an absolute beta-value difference of at least 0.05. Notably SLC39A4/ZIP4, which plays a role in zinc transport, was one of the most differentially methylated loci. Although the chronological ages of the KhoeSan are not formally recorded, we compared historically estimated ages to methylation-based calculations. This study demonstrates that the epigenetic profile of KhoeSan individuals reveals differences from other populations, and along with extensive genetic diversity, this community brings increased accessibility and understanding to the diversity of the human genome.
Collapse
Affiliation(s)
- Alexander Goncearenco
- Genomic Functional Analysis Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brenna A LaBarre
- Genomic Functional Analysis Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.,Graduate Program in Bioinformatics, Boston University, Boston, MA, USA
| | | | - Weerachai Jaratlerdsiri
- Laboratory for Human Comparative & Prostate Cancer Genomics, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - M S Riana Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Stephen D Turner
- Division of Biomedical Informatics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Vanessa M Hayes
- Laboratory for Human Comparative & Prostate Cancer Genomics, Garvan Institute of Medical Research, Darlinghurst, Australia.,School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Faculty of Health Sciences, University of Limpopo, Sovenga, South Africa.,Sydney Medical School, University of Sydney, Camperdown, Australia
| | - Laura Elnitski
- Genomic Functional Analysis Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Wang M, Zhao J, Wang Y, Mao Y, Zhao X, Huang P, Liu Q, Ma Y, Yao Y, Yang Z, Yuan W, Cui W, Payne TJ, Li MD. Genome-wide DNA methylation analysis reveals significant impact of long-term ambient air pollution exposure on biological functions related to mitochondria and immune response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114707. [PMID: 32388307 DOI: 10.1016/j.envpol.2020.114707] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 05/28/2023]
Abstract
Exposure to long-term ambient air pollution is believed to have adverse effects on human health. However, the mechanisms underlying these impacts are poorly understood. DNA methylation, a crucial epigenetic modification, is susceptible to environmental factors and likely involved in these processes. We conducted a whole-genome bisulfite sequencing study on 120 participants from a highly polluted region (HPR) and a less polluted region (LPR) in China, where the HPR had much higher concentrations of five air pollutants (PM2.5, PM10, SO2, NO2, and CO) (fold difference 1.6 to 6.6 times; P value 1.80E-07 to 3.19E-23). Genome-wide methylation analysis revealed 371 DMRs in subjects from the two areas and these DMRs were located primarily in gene regulatory elements such as promoters and enhancers. Gene enrichment analysis showed that DMR-related genes were significantly enriched in diseases related to pulmonary disorders and cancers and in biological processes related to mitochondrial assembly and cytokine production. Further, HPR participants showed a higher mtDNA copy number. Of those identified DMRs, 15 were significantly correlated with mtDNA copy number. Finally, cytokine assay indicated that an increased plasma interleukin-5 level was associated with greater air pollution. Taken together, our findings suggest that exposure to long-term ambient air pollution can lead to alterations in DNA methylation whose functions relate to mitochondria and immune responses.
Collapse
Affiliation(s)
- Maiqiu Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Junsheng Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Mao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlong Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinghao Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyan Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Thomas J Payne
- ACT Center for Tobacco Treatment, Education and Research, Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Zocher S, Schilling S, Grzyb AN, Adusumilli VS, Bogado Lopes J, Günther S, Overall RW, Winter Y, Kempermann G. Early-life environmental enrichment generates persistent individualized behavior in mice. SCIENCE ADVANCES 2020; 6:eabb1478. [PMID: 32923634 PMCID: PMC7449688 DOI: 10.1126/sciadv.abb1478] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Individuals differ in their response to environmental stimuli, but the stability of individualized behaviors and their associated changes in brain plasticity are poorly understood. We developed a novel model of enriched environment to longitudinally monitor 40 inbred mice exploring 35 connected cages over periods of 3 to 6 months. We show that behavioral individuality that emerged during the first 3 months of environmental enrichment persisted when mice were withdrawn from the enriched environment for 3 additional months. Behavioral trajectories were associated with stable interindividual differences in adult hippocampal neurogenesis and persistent epigenetic effects on neuronal plasticity genes in the hippocampus. Using genome-wide DNA methylation sequencing, we show that one-third of the DNA methylation changes were maintained after withdrawal from the enriched environment. Our results suggest that, even under conditions that control genetic background and shared environment, early-life experiences result in lasting individualized changes in behavior, brain plasticity, and epigenetics.
Collapse
Affiliation(s)
- Sara Zocher
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Tatzberg 41, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Susan Schilling
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Tatzberg 41, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Anna N. Grzyb
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Tatzberg 41, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Vijay S. Adusumilli
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Tatzberg 41, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Jadna Bogado Lopes
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Tatzberg 41, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Sandra Günther
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Tatzberg 41, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Rupert W. Overall
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Tatzberg 41, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - York Winter
- Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Tatzberg 41, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| |
Collapse
|
25
|
Allum F, Grundberg E. Capturing functional epigenomes for insight into metabolic diseases. Mol Metab 2020; 38:100936. [PMID: 32199819 PMCID: PMC7300388 DOI: 10.1016/j.molmet.2019.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Metabolic diseases such as obesity are known to be driven by both environmental and genetic factors. Although genome-wide association studies of common variants and their impact on complex traits have provided some biological insight into disease etiology, identified genetic variants have been found to contribute only a small proportion to disease heritability, and to map mainly to non-coding regions of the genome. To link variants to function, association studies of cellular traits, such as epigenetic marks, in disease-relevant tissues are commonly applied. SCOPE OF THE REVIEW We review large-scale efforts to generate genome-wide maps of coordinated epigenetic marks and their utility in complex disease dissection with a focus on DNA methylation. We contrast DNA methylation profiling methods and discuss the advantages of using targeted methods for single-base resolution assessments of methylation levels across tissue-specific regulatory regions to deepen our understanding of contributing factors leading to complex diseases. MAJOR CONCLUSIONS Large-scale assessments of DNA methylation patterns in metabolic disease-linked study cohorts have provided insight into the impact of variable epigenetic variants in disease etiology. In-depth profiling of epigenetic marks at regulatory regions, particularly at tissue-specific elements, will be key to dissect the genetic and environmental components contributing to metabolic disease onset and progression.
Collapse
Affiliation(s)
- Fiona Allum
- Department of Human Genetics, McGill University, Montréal, Québec, H3A 0C7, Canada; McGill University and Genome Quebec Innovation Centre, Montréal, Québec, H3A 0G1, Canada
| | - Elin Grundberg
- Children's Mercy Kansas City, Kansas City, MO, 64108, United States.
| |
Collapse
|
26
|
Murphy PJ, Guo J, Jenkins TG, James ER, Hoidal JR, Huecksteadt T, Broberg DS, Hotaling JM, Alonso DF, Carrell DT, Cairns BR, Aston KI. NRF2 loss recapitulates heritable impacts of paternal cigarette smoke exposure. PLoS Genet 2020; 16:e1008756. [PMID: 32520939 PMCID: PMC7307791 DOI: 10.1371/journal.pgen.1008756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/22/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Paternal cigarette smoke (CS) exposure is associated with increased risk of behavioral disorders and cancer in offspring, but the mechanism has not been identified. Here we use mouse models to investigate mechanisms and impacts of paternal CS exposure. We demonstrate that CS exposure induces sperm DNAme changes that are partially corrected within 28 days of removal from CS exposure. Additionally, paternal smoking is associated with changes in prefrontal cortex DNAme and gene expression patterns in offspring. Remarkably, the epigenetic and transcriptional effects of CS exposure that we observed in wild type mice are partially recapitulated in Nrf2-/- mice and their offspring, independent of smoking status. Nrf2 is a central regulator of antioxidant gene transcription, and mice lacking Nrf2 consequently display elevated oxidative stress, suggesting that oxidative stress may underlie CS-induced heritable epigenetic changes. Importantly, paternal sperm DNAme changes do not overlap with DNAme changes measured in offspring prefrontal cortex, indicating that the observed DNAme changes in sperm are not directly inherited. Additionally, the changes in sperm DNAme associated with CS exposure were not observed in sperm of unexposed offspring, suggesting the effects are likely not maintained across multiple generations.
Collapse
Affiliation(s)
- Patrick J. Murphy
- Department of Biomedical Genetics, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, United States of America
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jingtao Guo
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Timothy G. Jenkins
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Emma R. James
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - John R. Hoidal
- Department of Internal Medicine, University of Utah School of Medicine and Salt Lake VA Medical Center, Salt Lake City, Utah, United States of America
| | - Thomas Huecksteadt
- Department of Internal Medicine, University of Utah School of Medicine and Salt Lake VA Medical Center, Salt Lake City, Utah, United States of America
| | - Dallin S. Broberg
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - James M. Hotaling
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - David F. Alonso
- Department of Psychology, University of Utah, Salt Lake City, Utah, United States of America
| | - Douglas T. Carrell
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Bradley R. Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kenneth I. Aston
- Andrology and IVF Laboratories, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
27
|
Mattis KK, Gloyn AL. From Genetic Association to Molecular Mechanisms for Islet-cell Dysfunction in Type 2 Diabetes. J Mol Biol 2020; 432:1551-1578. [PMID: 31945378 DOI: 10.1016/j.jmb.2019.12.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/30/2022]
Abstract
Genome-wide association studies (GWAS) have identified over 400 signals robustly associated with risk for type 2 diabetes (T2D). At the vast majority of these loci, the lead single nucleotide polymorphisms (SNPs) reside in noncoding regions of the genome, which hampers biological inference and translation of genetic discoveries into disease mechanisms. The study of these T2D risk variants in normoglycemic individuals has revealed that a significant proportion are exerting their disease risk through islet-cell dysfunction. The central role of the islet is also demonstrated by numerous studies, which have shown an enrichment of these signals in islet-specific epigenomic annotations. In recent years the emergence of authentic human beta-cell lines, and advances in genome-editing technologies coupled with improved protocols differentiating human pluripotent stem cells into beta-like cells has opened up new opportunities for T2D disease modeling. Here we review the current understanding on the genetic basis of T2D focusing on approaches, which have facilitated the identification of causal variants and their effector transcripts in human islets. We will present examples of functional studies based on animal and conventional cellular systems and highlight the potential of novel stem cell-based T2D disease models.
Collapse
Affiliation(s)
- Katia K Mattis
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, UK
| | - Anna L Gloyn
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, UK; National Institute of Health Research, Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK.
| |
Collapse
|
28
|
Abstract
Primary Sjögren's syndrome (SjS) is a chronic and systemic autoimmune epithelitis with predominant female incidence, which is characterized by exocrine gland dysfunction. Incompletely understood, the etiology of SjS is multi-factorial and evidence is growing to consider that epigenetic factors are playing a crucial role in its development. Independent from DNA sequence mutations, epigenetics is described as inheritable and reversible processes that modify gene expression. Epigenetic modifications reported in minor salivary gland and lymphocytes from SjS patients are related to (i) an abnormal DNA methylation process inducing in turn defective control of normally repressed genes involving such matters as autoantigens, retrotransposons, and the X chromosome in women; (ii) altered nucleosome positioning associated with autoantibody production; and (iii) altered control of microRNA. Results from epigenome-wide association studies have further revealed the importance of the interferon pathway in disease progression, the calcium signaling pathway for controlling fluid secretions, and a cell-specific cross talk with risk factors associated with SjS. Importantly, epigenetic modifications are reversible thus opening opportunities for therapeutic procedures in this currently incurable disease.
Collapse
|
29
|
Abstract
Twin registries have developed as a valuable resource for the study of many aspects of disease and society over the years in many different countries. A number of these registries include large numbers of twins with data collected at varying information levels for twin cohorts over the past several decades. More recent expansion of twin datasets has allowed for the collection of genetic data, together with many other levels of 'omic' information along with multiple demographic, physiological, health outcomes and other measures typically used in epidemiologic research. Other twin data sources outside these registries reflect research interests in particular aspects of disease or specific phenotypic assessment. Twin registries have the potential to play a key role in many aspects of the artificial intelligence/machine learning-driven projects of the future and will continue to keep adapting to the changing research landscape.
Collapse
|
30
|
Chan D, Shao X, Dumargne MC, Aarabi M, Simon MM, Kwan T, Bailey JL, Robaire B, Kimmins S, San Gabriel MC, Zini A, Librach C, Moskovtsev S, Grundberg E, Bourque G, Pastinen T, Trasler JM. Customized MethylC-Capture Sequencing to Evaluate Variation in the Human Sperm DNA Methylome Representative of Altered Folate Metabolism. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:87002. [PMID: 31393794 PMCID: PMC6792365 DOI: 10.1289/ehp4812] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND The sperm DNA methylation landscape is unique and critical for offspring health. If gamete-derived DNA methylation escapes reprograming in early embryos, epigenetic defects in sperm may be transmitted to the next generation. Current techniques to assess sperm DNA methylation show bias toward CpG-dense regions and do not target areas of dynamic methylation, those predicted to be environmentally sensitive and tunable regulatory elements. OBJECTIVES Our goal was to assess variation in human sperm DNA methylation and design a targeted capture panel to interrogate the human sperm methylome. METHODS To characterize variation in sperm DNA methylation, we performed whole genome bisulfite sequencing (WGBS) on an equimolar pool of sperm DNA from a wide cross section of 30 men varying in age, fertility status, methylenetetrahydrofolate reductase (MTHFR) genotype, and exposures. With our targeted capture panel, in individual samples, we examined the effect of MTHFR genotype ([Formula: see text] 677CC, [Formula: see text] 677TT), as well as high-dose folic acid supplementation ([Formula: see text], per genotype, before and after supplementation). RESULTS Through WGBS we discovered nearly 1 million CpGs possessing intermediate methylation levels (20-80%), termed dynamic sperm CpGs. These dynamic CpGs, along with 2 million commonly assessed CpGs, were used to customize a capture panel for targeted interrogation of the human sperm methylome and test its ability to detect effects of altered folate metabolism. As compared with MTHFR 677CC men, those with the 677TT genotype (50% decreased MTHFR activity) had both hyper- and hypomethylation in their sperm. High-dose folic acid supplement treatment exacerbated hypomethylation in MTHFR 677TT men compared with 677CC. In both cases, [Formula: see text] of altered methylation was found in dynamic sperm CpGs, uniquely measured by our assay. DISCUSSION Our sperm panel allowed the discovery of differential methylation following conditions affecting folate metabolism in novel dynamic sperm CpGs. Improved ability to examine variation in sperm DNA methylation can facilitate comprehensive studies of environment-epigenome interactions. https://doi.org/10.1289/EHP4812.
Collapse
Affiliation(s)
- Donovan Chan
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Xiaojian Shao
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Marie-Charlotte Dumargne
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Animal Sciences, McGill University, Montreal, Quebec, Canada
| | - Mahmoud Aarabi
- Medical Genetics & Genomics Laboratories, University of Pittsburgh Medical Center (UPMC) Magee-Womens Hospital, Pittsburgh, Pennsylvania, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Tony Kwan
- McGill University and Génome Québec Innovation Centre, Montreal, Quebec, Canada
| | - Janice L. Bailey
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Faculté des sciences de l’agriculture et de l’alimentation, Quebec, Quebec, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Sarah Kimmins
- Department of Animal Sciences, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Maria C. San Gabriel
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Urology, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Armand Zini
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Division of Urology, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Clifford Librach
- Canadian Reproductive Assisted Technology (CReATe) Fertility Centre, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Sergey Moskovtsev
- Canadian Reproductive Assisted Technology (CReATe) Fertility Centre, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Elin Grundberg
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Center for Pediatric Genomic Medicine, Children’s Mercy Kansas City, Kansas City, Missouri, USA
| | - Guillaume Bourque
- Canadian Centre for Computational Genomics, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Center for Pediatric Genomic Medicine, Children’s Mercy Kansas City, Kansas City, Missouri, USA
| | - Jacquetta M. Trasler
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Methylome and transcriptome maps of human visceral and subcutaneous adipocytes reveal key epigenetic differences at developmental genes. Sci Rep 2019; 9:9511. [PMID: 31266983 PMCID: PMC6606599 DOI: 10.1038/s41598-019-45777-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Adipocytes support key metabolic and endocrine functions of adipose tissue. Lipid is stored in two major classes of depots, namely visceral adipose (VA) and subcutaneous adipose (SA) depots. Increased visceral adiposity is associated with adverse health outcomes, whereas the impact of SA tissue is relatively metabolically benign. The precise molecular features associated with the functional differences between the adipose depots are still not well understood. Here, we characterised transcriptomes and methylomes of isolated adipocytes from matched SA and VA tissues of individuals with normal BMI to identify epigenetic differences and their contribution to cell type and depot-specific function. We found that DNA methylomes were notably distinct between different adipocyte depots and were associated with differential gene expression within pathways fundamental to adipocyte function. Most striking differential methylation was found at transcription factor and developmental genes. Our findings highlight the importance of developmental origins in the function of different fat depots.
Collapse
|
32
|
Gunasekara CJ, Scott CA, Laritsky E, Baker MS, MacKay H, Duryea JD, Kessler NJ, Hellenthal G, Wood AC, Hodges KR, Gandhi M, Hair AB, Silver MJ, Moore SE, Prentice AM, Li Y, Chen R, Coarfa C, Waterland RA. A genomic atlas of systemic interindividual epigenetic variation in humans. Genome Biol 2019; 20:105. [PMID: 31155008 PMCID: PMC6545702 DOI: 10.1186/s13059-019-1708-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND DNA methylation is thought to be an important determinant of human phenotypic variation, but its inherent cell type specificity has impeded progress on this question. At exceptional genomic regions, interindividual variation in DNA methylation occurs systemically. Like genetic variants, systemic interindividual epigenetic variants are stable, can influence phenotype, and can be assessed in any easily biopsiable DNA sample. We describe an unbiased screen for human genomic regions at which interindividual variation in DNA methylation is not tissue-specific. RESULTS For each of 10 donors from the NIH Genotype-Tissue Expression (GTEx) program, CpG methylation is measured by deep whole-genome bisulfite sequencing of genomic DNA from tissues representing the three germ layer lineages: thyroid (endoderm), heart (mesoderm), and brain (ectoderm). We develop a computational algorithm to identify genomic regions at which interindividual variation in DNA methylation is consistent across all three lineages. This approach identifies 9926 correlated regions of systemic interindividual variation (CoRSIVs). These regions, comprising just 0.1% of the human genome, are inter-correlated over long genomic distances, associated with transposable elements and subtelomeric regions, conserved across diverse human ethnic groups, sensitive to periconceptional environment, and associated with genes implicated in a broad range of human disorders and phenotypes. CoRSIV methylation in one tissue can predict expression of associated genes in other tissues. CONCLUSIONS In addition to charting a previously unexplored molecular level of human individuality, this atlas of human CoRSIVs provides a resource for future population-based investigations into how interindividual epigenetic variation modulates risk of disease.
Collapse
Affiliation(s)
- Chathura J Gunasekara
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - C Anthony Scott
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Eleonora Laritsky
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Maria S Baker
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Harry MacKay
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jack D Duryea
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Noah J Kessler
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Keneba, The Gambia
- Department of Women and Children's Health, King's College London, London, UK
| | - Garrett Hellenthal
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, WC1E 6BT, UK
| | - Alexis C Wood
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kelly R Hodges
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Manisha Gandhi
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Amy B Hair
- Department of Pediatrics - Neonatology, Baylor College of Medicine, Houston, TX, USA
| | - Matt J Silver
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Keneba, The Gambia
| | - Sophie E Moore
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Keneba, The Gambia
- Department of Women and Children's Health, King's College London, London, UK
| | - Andrew M Prentice
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Keneba, The Gambia
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| | - Robert A Waterland
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
33
|
Kim JY, Cha MJ, Park YS, Kang J, Choi JJ, In SM, Kim DK. Upregulation of FZD5 in Eosinophilic Chronic Rhinosinusitis with Nasal Polyps by Epigenetic Modification. Mol Cells 2019; 42:345-355. [PMID: 31082802 PMCID: PMC6530644 DOI: 10.14348/molcells.2019.2418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 01/21/2023] Open
Abstract
Eosinophilic chronic rhinosinusitis with nasal polyps (CRSwNP) is one of the most challenging problems in clinical rhinology. FZD5 is a receptor for Wnt5A, and its complex with Wnt5A contributes to activating inflammation and tissue modification. Nasal polyps and eosinophil/non-eosinophil counts are reported to be directly correlated. This study investigated the expression and distribution of FZD5, and the role of eosinophil infiltration and FZD5 in eosinophilic CRSwNP pathogenesis. The prognostic role of eosinophil levels was evaluated in seven patients with CRSwNP. Fifteen patients with CRS were classified based on the percentage of eosinophils in nasal polyp tissue. Methylated genes were detected using methyl-CpG-binding domain sequencing, and qRT-PCR and immunohistochemistry were used to detect FZD5 expression in nasal polyp tissue samples. The results showed that mRNA expression of FZD5 was upregulated in nasal polyps. FZD5 expression was significantly higher in nasal polyp samples from patients with eosinophilic CRSwNP than in those from patients with non-eosinophilic CRSwNP, as indicated by immunohistochemistry. Furthermore, inflammatory cytokine levels were higher in eosinophilic CRSwNP-derived epithelial cells than in normal tissues. In conclusion, FZD5 expression in nasal mucosal epithelial cells is correlated with inflammatory cells and might play a role in the pathogenesis of eosinophilic CRSwNP.
Collapse
Affiliation(s)
- Jong-Yeup Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon 35365,
Korea
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon 35365,
Korea
| | - Min-Ji Cha
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon 35365,
Korea
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon 35365,
Korea
| | - Young-Seon Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon 35365,
Korea
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon 35365,
Korea
| | - Jaeku Kang
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365,
Korea
- Department of Pharmacology, College of Medicine, Konyang University, Daejeon 35365,
Korea
| | - Jong-Joong Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon 35365,
Korea
| | - Seung Min In
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon 35365,
Korea
| | - Dong-Kyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Chuncheon 24253,
Korea
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24253,
Korea
| |
Collapse
|
34
|
Alfimova MV, Kondratiev NV, Golov AK, Golimbet VE. DNA Methylation at the Schizophrenia and Intelligence GWAS-Implicated MIR137HG Locus May Be Associated with Disease and Cognitive Functions. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419020029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Bedi Y, Golding MC. Context is King — Questioning the causal role of DNA methylation in environmentally induced changes in gene expression. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Colbran LL, Chen L, Capra JA. Sequence Characteristics Distinguish Transcribed Enhancers from Promoters and Predict Their Breadth of Activity. Genetics 2019; 211:1205-1217. [PMID: 30696717 PMCID: PMC6456323 DOI: 10.1534/genetics.118.301895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/27/2019] [Indexed: 01/08/2023] Open
Abstract
Enhancers and promoters both regulate gene expression by recruiting transcription factors (TFs); however, the degree to which enhancer vs. promoter activity is due to differences in their sequences or to genomic context is the subject of ongoing debate. We examined this question by analyzing the sequences of thousands of transcribed enhancers and promoters from hundreds of cellular contexts previously identified by cap analysis of gene expression. Support vector machine classifiers trained on counts of all possible 6-bp-long sequences (6-mers) were able to accurately distinguish promoters from enhancers and distinguish their breadth of activity across tissues. Classifiers trained to predict enhancer activity also performed well when applied to promoter prediction tasks, but promoter-trained classifiers performed poorly on enhancers. This suggests that the learned sequence patterns predictive of enhancer activity generalize to promoters, but not vice versa. Our classifiers also indicate that there are functionally relevant differences in enhancer and promoter GC content beyond the influence of CpG islands. Furthermore, sequences characteristic of broad promoter or broad enhancer activity matched different TFs, with predicted ETS- and RFX-binding sites indicative of promoters, and AP-1 sites indicative of enhancers. Finally, we evaluated the ability of our models to distinguish enhancers and promoters defined by histone modifications. Separating these classes was substantially more difficult, and this difference may contribute to ongoing debates about the similarity of enhancers and promoters. In summary, our results suggest that high-confidence transcribed enhancers and promoters can largely be distinguished based on biologically relevant sequence properties.
Collapse
Affiliation(s)
- Laura L Colbran
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee 37235
| | - Ling Chen
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| | - John A Capra
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee 37235
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
- Center for Structural Biology, Departments of Biomedical Informatics and Computer Science, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
37
|
Allum F, Hedman ÅK, Shao X, Cheung WA, Vijay J, Guénard F, Kwan T, Simon MM, Ge B, Moura C, Boulier E, Rönnblom L, Bernatsky S, Lathrop M, McCarthy MI, Deloukas P, Tchernof A, Pastinen T, Vohl MC, Grundberg E. Dissecting features of epigenetic variants underlying cardiometabolic risk using full-resolution epigenome profiling in regulatory elements. Nat Commun 2019; 10:1209. [PMID: 30872577 PMCID: PMC6418220 DOI: 10.1038/s41467-019-09184-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/25/2019] [Indexed: 12/16/2022] Open
Abstract
Sparse profiling of CpG methylation in blood by microarrays has identified epigenetic links to common diseases. Here we apply methylC-capture sequencing (MCC-Seq) in a clinical population of ~200 adipose tissue and matched blood samples (Ntotal~400), providing high-resolution methylation profiling (>1.3 M CpGs) at regulatory elements. We link methylation to cardiometabolic risk through associations to circulating plasma lipid levels and identify lipid-associated CpGs with unique localization patterns in regulatory elements. We show distinct features of tissue-specific versus tissue-independent lipid-linked regulatory regions by contrasting with parallel assessments in ~800 independent adipose tissue and blood samples from the general population. We follow-up on adipose-specific regulatory regions under (1) genetic and (2) epigenetic (environmental) regulation via integrational studies. Overall, the comprehensive sequencing of regulatory element methylomes reveals a rich landscape of functional variants linked genetically as well as epigenetically to plasma lipid traits.
Collapse
Affiliation(s)
- Fiona Allum
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada
| | - Åsa K Hedman
- Department of Medicine Solna, Cardiovascular Medicine Unit, Karolinska Institute, Stockholm, 171 76, Sweden
| | - Xiaojian Shao
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada
| | - Warren A Cheung
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada
- Children's Mercy Hospitals and Clinics, Kansas City, MO, 64108, USA
| | - Jinchu Vijay
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada
| | - Frédéric Guénard
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Tony Kwan
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada
| | - Marie-Michelle Simon
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada
| | - Bing Ge
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada
| | - Cristiano Moura
- Department of Epidemiology, McGill University, Montréal, QC, H3A 1A2, Canada
| | - Elodie Boulier
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada
| | - Lars Rönnblom
- Department of Medical Sciences, Uppsala University, Uppsala, 751 85, Sweden
| | - Sasha Bernatsky
- Department of Epidemiology, McGill University, Montréal, QC, H3A 1A2, Canada
| | - Mark Lathrop
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Old Road, Headington, Oxford, OX3 7LJ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - André Tchernof
- Québec Heart and Lung Institute, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada
- Children's Mercy Hospitals and Clinics, Kansas City, MO, 64108, USA
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Elin Grundberg
- Department of Human Genetics, McGill University, Montréal, QC, H3A 0C7, Canada.
- McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada.
- Children's Mercy Hospitals and Clinics, Kansas City, MO, 64108, USA.
| |
Collapse
|
38
|
Olsvik PA, Whatmore P, Penglase SJ, Skjærven KH, Anglès d'Auriac M, Ellingsen S. Associations Between Behavioral Effects of Bisphenol A and DNA Methylation in Zebrafish Embryos. Front Genet 2019; 10:184. [PMID: 30906313 PMCID: PMC6418038 DOI: 10.3389/fgene.2019.00184] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
Endocrine-disrupting contaminants have been associated with aberrant changes in epigenetic pathways in animals. In this study, zebrafish embryos were exposed bisphenol A (BPA) to search for associations between behavior and epigenetic mechanisms in fish. For concentration-dependent responses, embryos were exposed to a range of BPA concentrations (0.1 nM to 30 μM). Embryos were analyzed for locomotor activity at 3-, 4-, and 5-days post fertilization (dpf) in response to changing light conditions. Based on concentration-dependent effects on behavior and gene expression, 10 μM BPA [from 24 to 96 hours post fertilization (hpf)] was used for a whole-genome bisulfite sequencing (WGBS) study searching for genome-wide impacts on DNA methylation. Over the examined concentration ranges, hyperactivity was demonstrated for exposures to 0.001 μM BPA in comparison to embryos exposed to lower or higher BPA concentrations. Transcriptional analysis showed significant effects at >0.01 μM BPA for two genes related to DNA methylation (dnmt1, cbs). BPA exposure did not significantly affect global DNA methylation, but 20,474 differentially methylated (DM) sites in 4,873 genes were identified by WGBS analysis. Most DM sites were identified within gene bodies. The genes with the most DM sites were all protocadherin 2 gamma subfamily genes, related to axon targeting, synaptic development and neuronal survival. KEGG pathways most significantly affected by BPA exposure were phosphatidylinositol signaling system, followed by VEGF and MAPK signaling pathways. This study shows that BPA can affect zebrafish embryo swimming activity at very low concentrations as well as affecting numerous methylated sites in genes which are overrepresented in functionally relevant metabolic pathways. In conclusion, altered methylation patterns of genes associated with nervous system development might lead to abnormal swimming activity.
Collapse
|
39
|
Oh G, Koncevičius K, Ebrahimi S, Carlucci M, Groot DE, Nair A, Zhang A, Kriščiūnas A, Oh ES, Labrie V, Wong AHC, Gordevičius J, Jia P, Susic M, Petronis A. Circadian oscillations of cytosine modification in humans contribute to epigenetic variability, aging, and complex disease. Genome Biol 2019; 20:2. [PMID: 30606238 PMCID: PMC6317262 DOI: 10.1186/s13059-018-1608-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/06/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Maintenance of physiological circadian rhythm plays a crucial role in human health. Numerous studies have shown that disruption of circadian rhythm may increase risk for malignant, psychiatric, metabolic, and other diseases. RESULTS Extending our recent findings of oscillating cytosine modifications (osc-modCs) in mice, in this study, we show that osc-modCs are also prevalent in human neutrophils. Osc-modCs may play a role in gene regulation, can explain parts of intra- and inter-individual epigenetic variation, and are signatures of aging. Finally, we show that osc-modCs are linked to three complex diseases and provide a new interpretation of cross-sectional epigenome-wide association studies. CONCLUSIONS Our findings suggest that loss of balance between cytosine methylation and demethylation during the circadian cycle can be a potential mechanism for complex disease. Additional experiments, however, are required to investigate the possible involvement of confounding effects, such as hidden cellular heterogeneity. Circadian rhythmicity, one of the key adaptations of life forms on Earth, may contribute to frailty later in life.
Collapse
Affiliation(s)
- Gabriel Oh
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Karolis Koncevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Sasha Ebrahimi
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Matthew Carlucci
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Daniel Erik Groot
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Akhil Nair
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Aiping Zhang
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Algimantas Kriščiūnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Edward S. Oh
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Viviane Labrie
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI USA
| | - Albert H. C. Wong
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Juozas Gordevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Peixin Jia
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Miki Susic
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Art Petronis
- The Krembil Family Epigenetics Laboratory, The Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
40
|
Olsvik PA, Whatmore P, Penglase SJ, Skjærven KH, Anglès d'Auriac M, Ellingsen S. Associations Between Behavioral Effects of Bisphenol A and DNA Methylation in Zebrafish Embryos. Front Genet 2019. [PMID: 30906313 DOI: 10.3389/fgene.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Endocrine-disrupting contaminants have been associated with aberrant changes in epigenetic pathways in animals. In this study, zebrafish embryos were exposed bisphenol A (BPA) to search for associations between behavior and epigenetic mechanisms in fish. For concentration-dependent responses, embryos were exposed to a range of BPA concentrations (0.1 nM to 30 μM). Embryos were analyzed for locomotor activity at 3-, 4-, and 5-days post fertilization (dpf) in response to changing light conditions. Based on concentration-dependent effects on behavior and gene expression, 10 μM BPA [from 24 to 96 hours post fertilization (hpf)] was used for a whole-genome bisulfite sequencing (WGBS) study searching for genome-wide impacts on DNA methylation. Over the examined concentration ranges, hyperactivity was demonstrated for exposures to 0.001 μM BPA in comparison to embryos exposed to lower or higher BPA concentrations. Transcriptional analysis showed significant effects at >0.01 μM BPA for two genes related to DNA methylation (dnmt1, cbs). BPA exposure did not significantly affect global DNA methylation, but 20,474 differentially methylated (DM) sites in 4,873 genes were identified by WGBS analysis. Most DM sites were identified within gene bodies. The genes with the most DM sites were all protocadherin 2 gamma subfamily genes, related to axon targeting, synaptic development and neuronal survival. KEGG pathways most significantly affected by BPA exposure were phosphatidylinositol signaling system, followed by VEGF and MAPK signaling pathways. This study shows that BPA can affect zebrafish embryo swimming activity at very low concentrations as well as affecting numerous methylated sites in genes which are overrepresented in functionally relevant metabolic pathways. In conclusion, altered methylation patterns of genes associated with nervous system development might lead to abnormal swimming activity.
Collapse
|
41
|
Li S, Wong EM, Nguyen TL, Joo JHE, Stone J, Dite GS, Giles GG, Saffery R, Southey MC, Hopper JL. Causes of blood methylomic variation for middle-aged women measured by the HumanMethylation450 array. Epigenetics 2018; 12:973-981. [PMID: 29099274 DOI: 10.1080/15592294.2017.1384891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
To address the limitations in current classic twin/family research on the genetic and/or environmental causes of human methylomic variation, we measured blood DNA methylation for 479 women (mean age 56 years) including 66 monozygotic (MZ), 66 dizygotic (DZ) twin pairs and 215 sisters of twins, and 11 random technical duplicates using the HumanMethylation450 array. For each methylation site, we estimated the correlation for pairs of duplicates, MZ twins, DZ twins, and siblings, fitted variance component models by assuming the variation is explained by genetic factors, by shared and individual environmental factors, and by independent measurement error, and assessed the best fitting model. We found that the average (standard deviation) correlations for duplicate, MZ, DZ, and sibling pairs were 0.10 (0.35), 0.07 (0.21), -0.01 (0.14) and -0.04 (0.07). At the genome-wide significance level of 10-7, 93.3% of sites had no familial correlation, and 5.6%, 0.1%, and 0.2% of sites were correlated for MZ, DZ, and sibling pairs. For 86.4%, 6.9%, and 7.1% of sites, the best fitting model included measurement error only, a genetic component, and at least one environmental component. For the 13.6% of sites influenced by genetic and/or environmental factors, the average proportion of variance explained by environmental factors was greater than that explained by genetic factors (0.41 vs. 0.37, P value <10-15). Our results are consistent with, for middle-aged woman, blood methylomic variation measured by the HumanMethylation450 array being largely explained by measurement error, and more influenced by environmental factors than by genetic factors.
Collapse
Affiliation(s)
- Shuai Li
- a Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health , University of Melbourne , Parkville , Victoria , Australia
| | - Ee Ming Wong
- b Genetic Epidemiology Laboratory, Department of Pathology , University of Melbourne , Parkville , Victoria , Australia.,c Precision Medicine, School of Clinical Sciences at Monash Health , Monash University , Clayton , Victoria , Australia
| | - Tuong L Nguyen
- a Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health , University of Melbourne , Parkville , Victoria , Australia
| | - Ji-Hoon Eric Joo
- b Genetic Epidemiology Laboratory, Department of Pathology , University of Melbourne , Parkville , Victoria , Australia.,c Precision Medicine, School of Clinical Sciences at Monash Health , Monash University , Clayton , Victoria , Australia
| | - Jennifer Stone
- d Centre for Genetic Origins of Health and Disease , Curtin University and the University of Western Australia , Perth , Western Australia , Australia
| | - Gillian S Dite
- a Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health , University of Melbourne , Parkville , Victoria , Australia
| | - Graham G Giles
- a Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health , University of Melbourne , Parkville , Victoria , Australia.,e Cancer Epidemiology and Intelligence Division , Cancer Council Victoria , Melbourne , Victoria , Australia
| | - Richard Saffery
- f Murdoch Children's Research Institute , Royal Children's Hospital , Parkville , Victoria , Australia.,g Department of Paediatrics , University of Melbourne , Parkville , Victoria , Australia
| | - Melissa C Southey
- b Genetic Epidemiology Laboratory, Department of Pathology , University of Melbourne , Parkville , Victoria , Australia.,c Precision Medicine, School of Clinical Sciences at Monash Health , Monash University , Clayton , Victoria , Australia
| | - John L Hopper
- a Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health , University of Melbourne , Parkville , Victoria , Australia
| |
Collapse
|
42
|
Caron M, St-Onge P, Drouin S, Richer C, Sontag T, Busche S, Bourque G, Pastinen T, Sinnett D. Very long intergenic non-coding RNA transcripts and expression profiles are associated to specific childhood acute lymphoblastic leukemia subtypes. PLoS One 2018; 13:e0207250. [PMID: 30440012 PMCID: PMC6237371 DOI: 10.1371/journal.pone.0207250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/26/2018] [Indexed: 11/18/2022] Open
Abstract
Very long intergenic non-coding RNAs (vlincRNAs) are a novel class of long transcripts (~50 kb to 1 Mb) with cell type- or cancer-specific expression. We report the discovery and characterization of 256 vlincRNAs from a cohort of 64 primary childhood pre-B and pre-T acute lymphoblastic leukemia (cALL) samples, of which 61% are novel and specifically expressed in cALL. Validation was performed in 35 pre-B and pre-T cALL primary samples. We show that their expression is cALL immunophenotype and molecular subtype-specific and correlated with epigenetic modifications on their promoters, much like protein-coding genes. While the biological functions of these vlincRNAs are still unknown, our results suggest they could play a role in cALL etiology or progression.
Collapse
Affiliation(s)
- Maxime Caron
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Pascal St-Onge
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Simon Drouin
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Chantal Richer
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Thomas Sontag
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Stephan Busche
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Daniel Sinnett
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
43
|
Garg P, Joshi RS, Watson C, Sharp AJ. A survey of inter-individual variation in DNA methylation identifies environmentally responsive co-regulated networks of epigenetic variation in the human genome. PLoS Genet 2018; 14:e1007707. [PMID: 30273333 PMCID: PMC6181428 DOI: 10.1371/journal.pgen.1007707] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 10/11/2018] [Accepted: 09/08/2018] [Indexed: 12/22/2022] Open
Abstract
While population studies have resulted in detailed maps of genetic variation in humans, to date there are few robust maps of epigenetic variation. We identified sites containing clusters of CpGs with high inter-individual epigenetic variation, termed Variably Methylated Regions (VMRs) in five purified cell types. We observed that VMRs occur preferentially at enhancers and 3' UTRs. While the majority of VMRs have high heritability, a subset of VMRs within the genome show highly correlated variation in trans, forming co-regulated networks that have low heritability, differ between cell types and are enriched for specific transcription factor binding sites and biological pathways of functional relevance to each tissue. For example, in T cells we defined a network of 95 co-regulated VMRs enriched for genes with roles in T-cell activation; in fibroblasts a network of 34 co-regulated VMRs comprising all four HOX gene clusters enriched for control of tissue growth; and in neurons a network of 18 VMRs enriched for roles in synaptic signaling. By culturing genetically-identical fibroblasts under varying environmental conditions, we experimentally demonstrated that some VMR networks are responsive to the environment, with methylation levels at these loci changing in a coordinated fashion in trans dependent on cellular growth. Intriguingly these environmentally-responsive VMRs showed a strong enrichment for imprinted loci (p<10-80), suggesting that these are particularly sensitive to environmental conditions. Our study provides a detailed map of common epigenetic variation in the human genome, showing that both genetic and environmental causes underlie this variation.
Collapse
Affiliation(s)
- Paras Garg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ricky S. Joshi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Corey Watson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Andrew J. Sharp
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
44
|
Lanata CM, Chung SA, Criswell LA. DNA methylation 101: what is important to know about DNA methylation and its role in SLE risk and disease heterogeneity. Lupus Sci Med 2018; 5:e000285. [PMID: 30094041 PMCID: PMC6069928 DOI: 10.1136/lupus-2018-000285] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
Abstract
SLE is a complex autoimmune disease that results from the interplay of genetics, epigenetics and environmental exposures. DNA methylation is an epigenetic mechanism that regulates gene expression and tissue differentiation. Among all the epigenetic modifications, DNA methylation perturbations have been the most widely studied in SLE. It mediates processes relevant to SLE, including lymphocyte development, X-chromosome inactivation and the suppression of endogenous retroviruses. The establishment of most DNA methylation marks occurs in utero; however, a small percentage of epigenetic marks are dynamic and can change throughout a person’s lifetime and in relation to exposures. In this review, we discuss the current understanding of the biology of DNA methylation and its regulators, the measurement and interpretation of methylation marks, the effects of genetics on DNA methylation and the role of environmental exposures with relevance to SLE. We also summarise research findings associated with SLE disease risk and heterogeneity. The robust finding of hypomethylation of interferon-responsive genes in patients with SLE and new associations beyond interferon-responsive genes such as cell-specific methylation abnormalities are described. We also discuss methylation changes associated with lupus nephritis, autoantibody status and disease activity. Lastly, we explore future research directions, emphasising the need for longitudinal studies, cell tissue and context-specific profiling, as well as integrative approaches. With new technologies, DNA methylation perturbations could be targeted and edited, offering novel therapeutic approaches.
Collapse
Affiliation(s)
- Cristina M Lanata
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Sharon A Chung
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Lindsey A Criswell
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
45
|
Moggs J, Terranova R. Chromatin dynamics underlying latent responses to xenobiotics. Toxicol Res (Camb) 2018; 7:606-617. [PMID: 30090610 PMCID: PMC6062062 DOI: 10.1039/c7tx00317j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/26/2018] [Indexed: 11/21/2022] Open
Abstract
Pleiotropic xenobiotics can trigger dynamic alterations in mammalian chromatin structure and function but many of these are likely non-adverse and simply reflect short-term changes in DNA transactions underlying normal homeostatic, adaptive and protective cellular responses. However, it is plausible that a subset of xenobiotic-induced perturbations of somatic tissue or germline epigenomes result in delayed-onset and long-lasting adverse effects, in particular if they occur during critical stages of growth and development. These could include reprogramming, dedifferentiation, uncontrolled growth, and cumulative toxicity effects through molecular memory of prior xenobiotic exposures or altered susceptibility to subsequent xenobiotic exposures. Here we discuss the current evidence for epigenetic mechanisms underlying latent responses to xenobiotics, and the potential for identifying molecular epigenetic changes that are prodromal to overt morphologic or functional toxicity phenotypes.
Collapse
Affiliation(s)
- Jonathan Moggs
- Preclinical Safety , Translational Medicine , Novartis Institutes for BioMedical Research , Basel , Switzerland
| | - Rémi Terranova
- Preclinical Safety , Translational Medicine , Novartis Institutes for BioMedical Research , Basel , Switzerland
| |
Collapse
|
46
|
Kular L, Kular S. Epigenetics applied to psychiatry: Clinical opportunities and future challenges. Psychiatry Clin Neurosci 2018; 72:195-211. [PMID: 29292553 DOI: 10.1111/pcn.12634] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/12/2017] [Accepted: 12/26/2017] [Indexed: 12/11/2022]
Abstract
Psychiatric disorders are clinically heterogeneous and debilitating chronic diseases resulting from a complex interplay between gene variants and environmental factors. Epigenetic processes, such as DNA methylation and histone posttranslational modifications, instruct the cell/tissue to correctly interpret external signals and adjust its functions accordingly. Given that epigenetic modifications are sensitive to environment, stable, and reversible, epigenetic studies in psychiatry could represent a promising approach to better understanding and treating disease. In the present review, we aim to discuss the clinical opportunities and challenges arising from the epigenetic research in psychiatry. Using selected examples, we first recapitulate key findings supporting the role of adverse life events, alone or in combination with genetic risk, in epigenetic programming of neuropsychiatric systems. Epigenetic studies further report encouraging findings about the use of methylation changes as diagnostic markers of disease phenotype and predictive tools of progression and response to treatment. Then we discuss the potential of using targeted epigenetic pharmacotherapy, combined with psychosocial interventions, for future personalized medicine for patients. Finally, we review the methodological limitations that could hinder interpretation of epigenetic data in psychiatry. They mainly arise from heterogeneity at the individual and tissue level and require future strategies in order to reinforce the biological relevance of epigenetic data and its translational use in psychiatry. Overall, we suggest that epigenetics could provide new insights into a more comprehensive interpretation of mental illness and might eventually improve the nosology, treatment, and prevention of psychiatric disorders.
Collapse
Affiliation(s)
- Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sonia Kular
- Adult Psychiatry Unit of Laval Secteur Est, Laval, France
| |
Collapse
|
47
|
Yi SV. Insights into Epigenome Evolution from Animal and Plant Methylomes. Genome Biol Evol 2018; 9:3189-3201. [PMID: 29036466 PMCID: PMC5721340 DOI: 10.1093/gbe/evx203] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2017] [Indexed: 12/14/2022] Open
Abstract
Evolutionary studies of DNA methylation offer insights into the mechanisms governing the variation of genomic DNA methylation across different species. Comparisons of gross levels of DNA methylation between distantly related species indicate that the size of the genome and the level of genomic DNA methylation are positively correlated. In plant genomes, this can be reliably explained by the genomic contents of repetitive sequences. In animal genomes, the role of repetitive sequences on genomic DNA methylation is less clear. On a shorter timescale, population-level comparisons demonstrate that genetic variation can explain the observed variability of DNA methylation to some degree. The amount of DNA methylation variation that has been attributed to genetic variation in the human population studies so far is substantially lower than that from Arabidopsis population studies, but this disparity might reflect the differences in the computational and experimental techniques used. The effect of genetic variation on DNA methylation has been directly examined in mammalian systems, revealing several causative factors that govern DNA methylation. On the other hand, studies from Arabidopsis have furthered our understanding of spontaneous mutations of DNA methylation, termed “epimutations.” Arabidopsis has an extremely high rate of spontaneous epimutations, which may play a major role in shaping the global DNA methylation landscape in this genome. Key missing information includes the frequencies of spontaneous epimutations in other lineages, in particular animal genomes, and how population-level variation of DNA methylation leads to species-level differences.
Collapse
Affiliation(s)
- Soojin V Yi
- School of Biological Sciences, Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
48
|
Genome-wide methylation analysis of a large population sample shows neurological pathways involvement in chronic widespread musculoskeletal pain. Pain 2018; 158:1053-1062. [PMID: 28221285 PMCID: PMC5427989 DOI: 10.1097/j.pain.0000000000000880] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chronic widespread musculoskeletal pain (CWP), has a considerable heritable component, which remains to be explained. Epigenetic factors may contribute to and account for some of the heritability estimate. We analysed epigenome-wide methylation using MeDIPseq in whole blood DNA from 1708 monozygotic and dizygotic Caucasian twins having CWP prevalence of 19.9%. Longitudinally stable methylation bins (lsBINs), were established by testing repeated measurements conducted ≥3 years apart, n = 292. DNA methylation variation at lsBINs was tested for association with CWP in a discovery set of 50 monozygotic twin pairs discordant for CWP, and in an independent dataset (n = 1608 twins), and the results from the 2 samples were combined using Fisher method. Functional interpretation of the most associated signals was based on functional genomic annotations, gene ontology, and pathway analyses. Of 723,029 signals identified as lsBINs, 26,399 lsBINs demonstrated the same direction of association in both discovery and replication datasets at nominal significance (P ≤ 0.05). In the combined analysis across 1708 individuals, whereas no lsBINs showed genome-wide significance (P < 10-8), 24 signals reached p≤9E-5, and these included association signals mapping in or near to IL17A, ADIPOR2, and TNFRSF13B. Bioinformatics analyses of the associated methylation bins showed enrichment for neurological pathways in CWP. We estimate that the variance explained by epigenetic factors in CWP is 6%. This, the largest study to date of DNA methylation in CWP, points towards epigenetic modification of neurological pathways in CWP and provides proof of principle of this method in teasing apart the complex risk factors for CWP.
Collapse
|
49
|
Herceg Z, Ghantous A, Wild CP, Sklias A, Casati L, Duthie SJ, Fry R, Issa JP, Kellermayer R, Koturbash I, Kondo Y, Lepeule J, Lima SC, Marsit CJ, Rakyan V, Saffery R, Taylor JA, Teschendorff AE, Ushijima T, Vineis P, Walker CL, Waterland RA, Wiemels J, Ambatipudi S, Esposti DD, Hernandez-Vargas H. Roadmap for investigating epigenome deregulation and environmental origins of cancer. Int J Cancer 2018; 142:874-882. [PMID: 28836271 PMCID: PMC6027626 DOI: 10.1002/ijc.31014] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/25/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022]
Abstract
The interaction between the (epi)genetic makeup of an individual and his/her environmental exposure record (exposome) is accepted as a determinant factor for a significant proportion of human malignancies. Recent evidence has highlighted the key role of epigenetic mechanisms in mediating gene-environment interactions and translating exposures into tumorigenesis. There is also growing evidence that epigenetic changes may be risk factor-specific ("fingerprints") that should prove instrumental in the discovery of new biomarkers in cancer. Here, we review the state of the science of epigenetics associated with environmental stimuli and cancer risk, highlighting key developments in the field. Critical knowledge gaps and research needs are discussed and advances in epigenomics that may help in understanding the functional relevance of epigenetic alterations. Key elements required for causality inferences linking epigenetic changes to exposure and cancer are discussed and how these alterations can be incorporated in carcinogen evaluation and in understanding mechanisms underlying epigenome deregulation by the environment.
Collapse
Affiliation(s)
- Zdenko Herceg
- International Agency for Research on Cancer (IARC), 150 Cours Albert-Thomas, Lyon 69008, France
| | - Akram Ghantous
- International Agency for Research on Cancer (IARC), 150 Cours Albert-Thomas, Lyon 69008, France
| | - Christopher P. Wild
- International Agency for Research on Cancer (IARC), 150 Cours Albert-Thomas, Lyon 69008, France
| | - Athena Sklias
- International Agency for Research on Cancer (IARC), 150 Cours Albert-Thomas, Lyon 69008, France
| | - Lavinia Casati
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Susan J. Duthie
- School of Pharmacy and Life Sciences, The Robert Gordon University, Aberdeen, United Kingdom
| | - Rebecca Fry
- Gillings School of Global Public Health, UNC, Chapel Hill, NC
| | - Jean-Pierre Issa
- Fels Institute for Cancer Research & Molecular Biology, Philadelphia, PA
| | | | | | - Yukata Kondo
- Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | | | | - Vardhman Rakyan
- Centre for Genomics and Child Health, Blizard Institute, London, United Kingdom
| | | | | | - Andrew E. Teschendorff
- Statistical Cancer Genomics, UCL Cancer Institute & Dept. of Woman’s Cancer, University College London, United Kingdom
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Shanghai 200031, China
| | | | - Paolo Vineis
- MRC/PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Cheryl Lyn Walker
- Departments of Molecular & Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX
| | - Robert A. Waterland
- Baylor College of Medicine, USDA/ARS Children’s Nutrition Research Center, Houston, TX
| | - Joe Wiemels
- UCSF School of Medicine, Epidemiology & Biostatistics, San Francisco, CA
| | - Srikant Ambatipudi
- International Agency for Research on Cancer (IARC), 150 Cours Albert-Thomas, Lyon 69008, France
| | - Davide Degli Esposti
- International Agency for Research on Cancer (IARC), 150 Cours Albert-Thomas, Lyon 69008, France
| | - Hector Hernandez-Vargas
- International Agency for Research on Cancer (IARC), 150 Cours Albert-Thomas, Lyon 69008, France
| |
Collapse
|
50
|
Davegårdh C, García-Calzón S, Bacos K, Ling C. DNA methylation in the pathogenesis of type 2 diabetes in humans. Mol Metab 2018; 14:12-25. [PMID: 29496428 PMCID: PMC6034041 DOI: 10.1016/j.molmet.2018.01.022] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 02/08/2023] Open
Abstract
Background Type 2 diabetes (T2D) is a multifactorial, polygenic disease caused by impaired insulin secretion and insulin resistance. Genome-wide association studies (GWAS) were expected to resolve a large part of the genetic component of diabetes; yet, the single nucleotide polymorphisms identified by GWAS explain less than 20% of the estimated heritability for T2D. There was subsequently a need to look elsewhere to find disease-causing factors. Mechanisms mediating the interaction between environmental factors and the genome, such as epigenetics, may be of particular importance in the pathogenesis of T2D. Scope of Review This review summarizes knowledge of the impact of epigenetics on the pathogenesis of T2D in humans. In particular, the review will focus on alterations in DNA methylation in four human tissues of importance for the disease; pancreatic islets, skeletal muscle, adipose tissue, and the liver. Case–control studies and studies examining the impact of non-genetic and genetic risk factors on DNA methylation in humans will be considered. These studies identified epigenetic changes in tissues from subjects with T2D versus non-diabetic controls. They also demonstrate that non-genetic factors associated with T2D such as age, obesity, energy rich diets, physical activity and the intrauterine environment impact the epigenome in humans. Additionally, interactions between genetics and epigenetics seem to influence the pathogenesis of T2D. Conclusions Overall, previous studies by our group and others support a key role for epigenetics in the growing incidence of T2D.
Collapse
Affiliation(s)
- Cajsa Davegårdh
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden.
| | - Sonia García-Calzón
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden
| | - Karl Bacos
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes, Lund University Diabetes Centre (LUDC), Box 50332, 20213 Malmö, Sweden
| |
Collapse
|