1
|
Smith ME, Wahl D, Cavalier AN, McWilliams GT, Rossman MJ, Giordano GR, Bryan AD, Seals DR, LaRocca TJ. Repetitive element transcript accumulation is associated with inflammaging in humans. GeroScience 2024; 46:5663-5679. [PMID: 38641753 PMCID: PMC11493880 DOI: 10.1007/s11357-024-01126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/08/2024] [Indexed: 04/21/2024] Open
Abstract
Chronic, low-grade inflammation increases with aging, contributing to functional declines and diseases that reduce healthspan. Growing evidence suggests that transcripts from repetitive elements (RE) in the genome contribute to this "inflammaging" by stimulating innate immune activation, but evidence of RE-associated inflammation with aging in humans is limited. Here, we present transcriptomic and clinical data showing that RE transcript levels are positively related to gene expression of innate immune sensors, and to serum interleukin 6 (a marker of systemic inflammation), in a large group of middle-aged and older adults. We also: (1) use transcriptomics and whole-genome bisulfite (methylation) sequencing to show that many RE may be hypomethylated with aging, and that aerobic exercise, a healthspan-extending intervention, reduces RE transcript levels and increases RE methylation in older adults; and (2) extend our findings in a secondary dataset demonstrating age-related changes in RE chromatin accessibility. Collectively, our data support the idea that age-related RE transcript accumulation may play a role in inflammaging in humans, and that RE dysregulation with aging may be due in part to upstream epigenetic changes.
Collapse
Affiliation(s)
- Meghan E Smith
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Devin Wahl
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Alyssa N Cavalier
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Gabriella T McWilliams
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Gregory R Giordano
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Angela D Bryan
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
2
|
Shah S, Yu S, Zhang C, Ali I, Wang X, Qian Y, Xiao T. Retrotransposon SINEs in age-related diseases: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 101:102539. [PMID: 39395576 DOI: 10.1016/j.arr.2024.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Retrotransposons are self-replicating genomic elements that move from one genomic location to another using a "copy-and-paste" method involving RNA intermediaries. One family of retrotransposon that has garnered considerable attention for its association with age-related diseases and anti-aging interventions is the short interspersed nuclear elements (SINEs). This review summarizes current knowledge on the roles of SINEs in aging processes and therapies. To underscore the significant research on the involvement of SINEs in aging-related diseases, we commence by outlining compelling evidence on the classification and mechanism, highlighting implications in age-related phenomena. The intricate relationship between SINEs and diseases such as neurodegenerative disorders, heart failure, high blood pressure, atherosclerosis, type 2 diabetes mellitus, osteoporosis, visual system dysfunctions, and cancer is explored, emphasizing their roles in various age-related diseases. Recent investigations into the anti-aging potential of SINE-targeted treatments are examined, with particular attention to how SINE antisense RNA mitigate age-related alterations at the cellular and molecular levels, offering insights into potential therapeutic targets for age-related pathologies. This review aims to compile the most recent advances on the multifaceted roles of SINE retrotransposons in age-related diseases and anti-aging interventions, providing valuable insights into underlying mechanisms and therapeutic avenues for promoting healthy aging.
Collapse
Affiliation(s)
- Suleman Shah
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen 518055, China
| | - Siyi Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chen Zhang
- Department of Thoracic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Ilyas Ali
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen 518055, China
| | - Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang 050017, China
| | - Youhui Qian
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Tian Xiao
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
3
|
Bai S, Luo H, Tong H, Wu Y, Yuan Y. Advances on transfer and maintenance of large DNA in bacteria, fungi, and mammalian cells. Biotechnol Adv 2024; 76:108421. [PMID: 39127411 DOI: 10.1016/j.biotechadv.2024.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/07/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Advances in synthetic biology allow the design and manipulation of DNA from the scale of genes to genomes, enabling the engineering of complex genetic information for application in biomanufacturing, biomedicine and other areas. The transfer and subsequent maintenance of large DNA are two core steps in large scale genome rewriting. Compared to small DNA, the high molecular weight and fragility of large DNA make its transfer and maintenance a challenging process. This review outlines the methods currently available for transferring and maintaining large DNA in bacteria, fungi, and mammalian cells. It highlights their mechanisms, capabilities and applications. The transfer methods are categorized into general methods (e.g., electroporation, conjugative transfer, induced cell fusion-mediated transfer, and chemical transformation) and specialized methods (e.g., natural transformation, mating-based transfer, virus-mediated transfection) based on their applicability to recipient cells. The maintenance methods are classified into genomic integration (e.g., CRISPR/Cas-assisted insertion) and episomal maintenance (e.g., artificial chromosomes). Additionally, this review identifies the major technological advantages and disadvantages of each method and discusses the development for large DNA transfer and maintenance technologies.
Collapse
Affiliation(s)
- Song Bai
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Han Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Hanze Tong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Yi Wu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China. @tju.edu.cn
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Errbii M, Myrie A, Robinson D, Schultner E, Schrader L, Oettler J. Genetic Variation in Jamaican Populations of the Coffee Berry Borer, Hypothenemus hampei. Genome Biol Evol 2024; 16:evae217. [PMID: 39486017 PMCID: PMC11529894 DOI: 10.1093/gbe/evae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 11/03/2024] Open
Abstract
The coffee berry borer (CBB) Hypothenemus hampei was first described in Africa in 1867 and has spread to all major coffee-producing regions worldwide, including Jamaica. Using long-read sequencing, we produced a new high-quality reference genome (172.7 Mb) for the Jamaican strain of the CBB, with 93% of the genome assembled into 14 scaffolds. Whole genome sequencing of pooled samples from different populations across Jamaica showed that the CBB harbors low levels of genetic diversity alongside an excess of low-frequency alleles, indicative of a recent genetic bottleneck. The analyses also showed a recent surge in the activity of transposable elements (TEs), particularly LINE/R1 and LTR/Gypsy elements, within CBB populations. Our findings offer first insights into the evolutionary genomics of CBB populations in Jamaica, highlighting the potential role of TEs in shaping the genome of this important pest species.
Collapse
Affiliation(s)
- Mohammed Errbii
- Institute for Evolution and Biodiversity, University Münster, Münster 48149, Germany
| | - Ameka Myrie
- Zoologie/Evolutionsbiologie, Universität Regensburg, Regensburg 93053, Germany
| | - Dwight Robinson
- Department of Life Sciences, The University of the West Indies, Mona, Kingston, Jamaica
| | - Eva Schultner
- Zoologie/Evolutionsbiologie, Universität Regensburg, Regensburg 93053, Germany
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, University Münster, Münster 48149, Germany
| | - Jan Oettler
- Zoologie/Evolutionsbiologie, Universität Regensburg, Regensburg 93053, Germany
| |
Collapse
|
5
|
Kaur H, Shannon LM, Samac DA. A stepwise guide for pangenome development in crop plants: an alfalfa (Medicago sativa) case study. BMC Genomics 2024; 25:1022. [PMID: 39482604 PMCID: PMC11526573 DOI: 10.1186/s12864-024-10931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The concept of pangenomics and the importance of structural variants is gaining recognition within the plant genomics community. Due to advancements in sequencing and computational technology, it has become feasible to sequence the entire genome of numerous individuals of a single species at a reasonable cost. Pangenomes have been constructed for many major diploid crops, including rice, maize, soybean, sorghum, pearl millet, peas, sunflower, grapes, and mustards. However, pangenomes for polyploid species are relatively scarce and are available in only few crops including wheat, cotton, rapeseed, and potatoes. MAIN BODY In this review, we explore the various methods used in crop pangenome development, discussing the challenges and implications of these techniques based on insights from published pangenome studies. We offer a systematic guide and discuss the tools available for constructing a pangenome and conducting downstream analyses. Alfalfa, a highly heterozygous, cross pollinated and autotetraploid forage crop species, is used as an example to discuss the concerns and challenges offered by polyploid crop species. We conducted a comparative analysis using linear and graph-based methods by constructing an alfalfa graph pangenome using three publicly available genome assemblies. To illustrate the intricacies captured by pangenome graphs for a complex crop genome, we used five different gene sequences and aligned them against the three graph-based pangenomes. The comparison of the three graph pangenome methods reveals notable variations in the genomic variation captured by each pipeline. CONCLUSION Pangenome resources are proving invaluable by offering insights into core and dispensable genes, novel gene discovery, and genome-wide patterns of variation. Developing user-friendly online portals for linear pangenome visualization has made these resources accessible to the broader scientific and breeding community. However, challenges remain with graph-based pangenomes including compatibility with other tools, extraction of sequence for regions of interest, and visualization of genetic variation captured in pangenome graphs. These issues necessitate further refinement of tools and pipelines to effectively address the complexities of polyploid, highly heterozygous, and cross-pollinated species.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Laura M Shannon
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA
| | - Deborah A Samac
- USDA-ARS, Plant Science Research Unit, St. Paul, MN, 55108, USA
| |
Collapse
|
6
|
Polimeni B, Marasca F, Ranzani V, Bodega B. IRescue: uncertainty-aware quantification of transposable elements expression at single cell level. Nucleic Acids Res 2024; 52:e93. [PMID: 39271103 PMCID: PMC11514465 DOI: 10.1093/nar/gkae793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Transposable elements (TEs) are mobile DNA repeats known to shape the evolution of eukaryotic genomes. In complex organisms, they exhibit tissue-specific transcription. However, understanding their role in cellular diversity across most tissues remains a challenge, when employing single-cell RNA sequencing (scRNA-seq), due to their widespread presence and genetic similarity. To address this, we present IRescue (Interspersed Repeats single-cell quantifier), a software capable of estimating the expression of TE subfamilies at the single-cell level. IRescue incorporates a unique UMI deduplication algorithm to rectify sequencing errors and employs an Expectation-Maximization procedure to effectively redistribute the counts of multi-mapping reads. Our study showcases the precision of IRescue through analysis of both simulated and real single cell and nuclei RNA-seq data from human colorectal cancer, brain, skin aging, and PBMCs during SARS-CoV-2 infection and recovery. By linking the expression patterns of TE signatures to specific conditions and biological contexts, we unveil insights into their potential roles in cellular heterogeneity and disease progression.
Collapse
Affiliation(s)
- Benedetto Polimeni
- INGM, Istituto Nazionale di Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Federica Marasca
- INGM, Istituto Nazionale di Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Valeria Ranzani
- INGM, Istituto Nazionale di Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Beatrice Bodega
- INGM, Istituto Nazionale di Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Dayama G, Gupta S, Connizzo BK, Labadorf AT, Myers RH, Lau NC. Transposable element small and long RNAs in aging brains and implications in Huntington's and Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619758. [PMID: 39484439 PMCID: PMC11526979 DOI: 10.1101/2024.10.22.619758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Transposable Elements (TEs) are implicated in aging and neurodegenerative disorders, but the impact of brain TE RNA dynamics on these phenomena is not fully understood. Therefore, we quantified TE RNA changes in aging post-mortem human and mouse brains and in the neurodegenerative disorders Huntington's Disease (HD) and Parkinson's Disease (PD). We tracked TE small RNAs (smRNAs) expression landscape to assess the relationship to the active processing from TE long RNAs (lnRNAs). Human brain transcriptomes from the BrainSpan Atlas displayed a significant shift of TE smRNA patterns at age 20 years, whereas aging mouse brains lacked any such marked change, despite clear shift in aging-associated mRNA levels. Human frontal cortex displayed pronounced sense TE smRNAs during aging with a negative relationship between the TE smRNAs and lnRNAs indicative of age associated regulatory effects. Our analysis revealed TE smRNAs dysregulation in HD, while PD showed a stronger impact on TE lnRNAs, potentially correlating with the early average age of death for HD relative to PD. Furthermore, TE-silencing factor TRIM28 was down-regulated only in aging human brains, possibly explaining the lack of substantial TE RNA changes in aging mouse brains. Our study suggests brain TE RNAs may serve as novel biomarkers of human brain aging and neurodegenerative disorders.
Collapse
|
8
|
Xu T, Wang S, Ma T, Dong Y, Ashby CR, Hao GF. The identification of essential cellular genes is critical for validating drug targets. Drug Discov Today 2024; 29:104215. [PMID: 39428084 DOI: 10.1016/j.drudis.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Accurately identifying biological targets is crucial for advancing treatment options. Essential genes, vital for cell or organism survival, hold promise as potential drug targets in disease treatment. Although many studies have sought to identify essential genes as therapeutic targets in medicine and bioinformatics, systematic reviews on their relationship with drug targets are relatively rare. This work presents a comprehensive analysis to aid in identifying essential genes as potential targets for drug discovery, encompassing their relevance, identification methods, successful case studies, and challenges. This work will facilitate the identification of essential genes as therapeutic targets, thereby boosting new drug development.
Collapse
Affiliation(s)
- Ting Xu
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Shuang Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Tingting Ma
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Yawen Dong
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China.
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, USA.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
9
|
Pritam S, Scarpa A, Kofler R, Signor S. The impact of insertion bias into piRNA clusters on the invasion of transposable elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616898. [PMID: 39464153 PMCID: PMC11507707 DOI: 10.1101/2024.10.06.616898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
In our current understanding of transposable element (TE) invasions TEs move freely until they accidentally insert into a piRNA cluster. They are then silenced by the production of piRNA cognate to the TE. Under this model, one would expect that TEs might evolve to avoid piRNA clusters. Yet empirical observations show that some TEs, such as the P-element, insert into piRNA clusters preferentially. We were thus wondering if such a bias could be beneficial for the TE, for example by minimizing harm to the host while still being able to selfishly spread in populations. We decided to model insertion bias to determine if there was ever a situation in which insertion bias was beneficial to the TE. We performed extensive forward simulations of TE invasions with differing insertion biases into piRNA clusters. We found that insertion bias significantly altered the invasion dynamics of TEs, primarily by changing the copy number of the TE in individuals prior to silencing. Insertion into a piRNA cluster reduced the deleterious effects of TEs to the host population, but we found that TEs avoiding piRNA clusters out-compete TEs with a bias towards cluster insertions. Insertion bias was only beneficial to the TE when there was negative selection against TEs and a lack of recombination. Different TEs show different insertion biases into piRNA clusters suggesting they are an attribute of the TE not the host, yet scenarios in which this is beneficial to the TE are quite limited. This opens up an interesting area of future research into the dynamics of insertion bias during TE invasions.
Collapse
Affiliation(s)
| | - Almorò Scarpa
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
| | | |
Collapse
|
10
|
Tsai YT, Seymen N, Thompson IR, Zou X, Mumtaz W, Gerlevik S, Mufti GJ, Karimi MM. Expression of most retrotransposons in human blood correlates with biological aging. eLife 2024; 13:RP96575. [PMID: 39417397 PMCID: PMC11486490 DOI: 10.7554/elife.96575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Retrotransposons (RTEs) have been postulated to reactivate with age and contribute to aging through activated innate immune response and inflammation. Here, we analyzed the relationship between RTE expression and aging using published transcriptomic and methylomic datasets of human blood. Despite no observed correlation between RTE activity and chronological age, the expression of most RTE classes and families except short interspersed nuclear elements (SINEs) correlated with biological age-associated gene signature scores. Strikingly, we found that the expression of SINEs was linked to upregulated DNA repair pathways in multiple cohorts. We also observed DNA hypomethylation with aging and the significant increase in RTE expression level in hypomethylated RTEs except for SINEs. Additionally, our single-cell transcriptomic analysis suggested a role for plasma cells in aging mediated by RTEs. Altogether, our multi-omics analysis of large human cohorts highlights the role of RTEs in biological aging and suggests possible mechanisms and cell populations for future investigations.
Collapse
Affiliation(s)
- Yi-Ting Tsai
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUnited Kingdom
| | - Nogayhan Seymen
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUnited Kingdom
| | - I Richard Thompson
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUnited Kingdom
| | - Xinchen Zou
- MRC LMS, Imperial College LondonLondonUnited Kingdom
| | - Warisha Mumtaz
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUnited Kingdom
| | - Sila Gerlevik
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUnited Kingdom
| | - Ghulam J Mufti
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUnited Kingdom
| | - Mohammad M Karimi
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College LondonLondonUnited Kingdom
| |
Collapse
|
11
|
Martelossi J, Iannello M, Ghiselli F, Luchetti A. Widespread HCD-tRNA derived SINEs in bivalves rely on multiple LINE partners and accumulate in genic regions. Mob DNA 2024; 15:22. [PMID: 39415259 PMCID: PMC11481361 DOI: 10.1186/s13100-024-00332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Short interspersed nuclear elements (SINEs) are non-autonomous non-LTR retrotransposons widespread across eukaryotes. They exist both as lineage-specific, fast-evolving elements and as ubiquitous superfamilies characterized by highly conserved domains (HCD). Several of these superfamilies have been described in bivalves, however their overall distribution and impact on host genome evolution are still unknown due to the extreme scarcity of transposon libraries for the clade. In this study, we examined more than 40 bivalve genomes to uncover the distribution of HCD-tRNA-related SINEs, discover novel SINE-LINE partnerships, and understand their possible role in shaping bivalve genome evolution. RESULTS We found that bivalve HCD SINEs have an ancient origin, and they can rely on at least four different LINE clades. According to a "mosaic" evolutionary scenario, multiple LINE partner can promote the amplification of the same HCD SINE superfamilies while homologues LINE-derived tails are present between different superfamilies. Multiple SINEs were found to be highly similar between phylogenetically related species but separated by extremely long evolutionary timescales, up to ~ 400 million years. Studying their genomic distribution in a subset of five species, we observed different patterns of SINE enrichment in various genomic compartments as well as differences in the tendency of SINEs to form tandem-like and palindromic structures also within intronic sequences. Despite these differences, we observed that SINEs, especially older ones, tend to accumulate preferentially within genes, or in their close proximity, consistently with a model of survival bias for less harmful, short non-coding transposons in euchromatic genomic regions. CONCLUSION Here we conducted a wide characterization of tRNA-related SINEs in bivalves revealing their taxonomic distribution and LINE partnerships across the clade. Moreover, through the study of their genomic distribution in five species, we highlighted commonalities and differences with other previously studied eukaryotes, thus extending our understanding of SINE evolution across the tree of life.
Collapse
Affiliation(s)
- Jacopo Martelossi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
| | - Mariangela Iannello
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
| | - Andrea Luchetti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Groza C, Chen X, Wheeler TJ, Bourque G, Goubert C. A unified framework to analyze transposable element insertion polymorphisms using graph genomes. Nat Commun 2024; 15:8915. [PMID: 39414821 PMCID: PMC11484939 DOI: 10.1038/s41467-024-53294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/02/2024] [Indexed: 10/18/2024] Open
Abstract
Transposable elements are ubiquitous mobile DNA sequences generating insertion polymorphisms, contributing to genomic diversity. We present GraffiTE, a flexible pipeline to analyze polymorphic mobile elements insertions. By integrating state-of-the-art structural variant detection algorithms and graph genomes, GraffiTE identifies polymorphic mobile elements from genomic assemblies or long-read sequencing data, and genotypes these variants using short or long read sets. Benchmarking on simulated and real datasets reports high precision and recall rates. GraffiTE is designed to allow non-expert users to perform comprehensive analyses, including in models with limited transposable element knowledge and is compatible with various sequencing technologies. Here, we demonstrate the versatility of GraffiTE by analyzing human, Drosophila melanogaster, maize, and Cannabis sativa pangenome data. These analyses reveal the landscapes of polymorphic mobile elements and their frequency variations across individuals, strains, and cultivars.
Collapse
Affiliation(s)
- Cristian Groza
- Quantitative Life Sciences, McGill University, Montréal, QC, Canada
| | - Xun Chen
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Travis J Wheeler
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Guillaume Bourque
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Canadian Centre for Computational Genomics, McGill University, Montréal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montréal, QC, Canada
- Human Genetics, McGill University, Montréal, QC, Canada
| | - Clément Goubert
- Human Genetics, McGill University, Montréal, QC, Canada.
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
13
|
Kelsey MM, Kalekar RA, Sedivy JM. TE-Seq: A Transposable Element Annotation and RNA-Seq Pipeline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617912. [PMID: 39464133 PMCID: PMC11507816 DOI: 10.1101/2024.10.11.617912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Motivation The recognition that transposable elements (TEs) play important roles in many biological processes has elicited growing interest in analyzing sequencing data derived from this 'dark genome'. This is however complicated by the highly repetitive nature of these sequences in genomes, requiring the deployment of several problem-specific tools as well as the curation of appropriate genome annotations. This pipeline aims to make the analysis of TE sequences and their expression more generally accessible. Results The TE-Seq pipeline conducts an end-to-end analysis of RNA sequencing data, examining both genes and TEs. It implements the most current computational methods tailor-made for TEs, and produces a comprehensive analysis of TE expression at both the level of the individual element and at the TE clade level. Furthermore, if supplied with long-read DNA sequencing data, it is able to assess TE expression from non-reference (polymorphic) loci. As a demonstration, we analyzed proliferating, early senescent, and late senescent lung fibroblast RNA-Seq data, and created a custom reference genome and annotations for this cell strain using Nanopore sequencing data. We found that several retrotransposable element (RTE) clades were upregulated in senescence, which included non-reference, intact, and potentially active elements. Availability and implementation TE-Seq is made available as a Snakemake pipeline which can be obtained at https://github.com/maxfieldk/TE-Seq. All software dependencies besides Snakemake and Docker/Singularity are packaged into a container which is automatically built and deployed by the pipeline at runtime.
Collapse
Affiliation(s)
- Maxfield M.G. Kelsey
- Center on the Biology of Aging, and the Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Radha A. Kalekar
- Center on the Biology of Aging, and the Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - John M. Sedivy
- Center on the Biology of Aging, and the Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
14
|
Zhang J, Ataei L, Mittal K, Wu L, Caldwell L, Huynh L, Sarajideen S, Tse K, Simon MM, Mazid MA, Cook DP, Trcka D, Kwan T, Hoffman MM, Wrana JL, Esteban MA, Ramalho-Santos M. LINE1 and PRC2 control nucleolar organization and repression of the 8C state in human ESCs. Dev Cell 2024:S1534-5807(24)00574-4. [PMID: 39413784 DOI: 10.1016/j.devcel.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 08/02/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
The mechanisms that ensure developmental progression in the early human embryo remain largely unknown. Here, we show that the family of long interspersed nuclear element 1 (LINE1) transposons prevents the reversion of naive human embryonic stem cells (hESCs) to 8-cell-like cells (8CLCs). LINE1 RNA contributes to maintenance of H3K27me3 levels, particularly at chromosome 19 (Chr19). Chr19 is enriched for key 8C regulators, H3K27me3, and genes derepressed upon LINE1 knockdown or PRC2 inhibition. Moreover, Chr19 is strongly associated with the nucleolus in hESCs but less in 8CLCs. Direct inhibition of PRC2 activity induces the 8C program and leads to a relocalization of Chr19 away from the nucleolus. LINE1 KD or PRC2 inhibition induces nucleolar stress, and disruption of nucleolar architecture is sufficient to de-repress the 8C program. These results indicate that LINE1 RNA and PRC2 maintain H3K27me3-mediated gene repression and 3D nuclear organization to prevent developmental reversion of hESCs.
Collapse
Affiliation(s)
- Juan Zhang
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3H7, Canada.
| | - Lamisa Ataei
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3H7, Canada
| | - Kirti Mittal
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3H7, Canada
| | - Liang Wu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lauren Caldwell
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3H7, Canada
| | - Linh Huynh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Shahil Sarajideen
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| | - Kevin Tse
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3H7, Canada
| | | | - Md Abdul Mazid
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - David P Cook
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3H7, Canada
| | - Daniel Trcka
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3H7, Canada
| | - Tony Kwan
- McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Michael M Hoffman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON M5G 1L7, Canada; Vector Institute for Artificial Intelligence, Toronto, ON M5G 1M1, Canada
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3H7, Canada
| | - Miguel A Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; BGI-Shenzhen, Shenzhen, China
| | - Miguel Ramalho-Santos
- Lunenfeld-Tanenbaum Research Institute and Department of Molecular Genetics, University of Toronto, Toronto, ON M5T 3H7, Canada.
| |
Collapse
|
15
|
Wang R, Zheng Y, Zhang Z, Song K, Wu E, Zhu X, Wu TP, Ding J. MATES: a deep learning-based model for locus-specific quantification of transposable elements in single cell. Nat Commun 2024; 15:8798. [PMID: 39394211 PMCID: PMC11470080 DOI: 10.1038/s41467-024-53114-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/24/2024] [Indexed: 10/13/2024] Open
Abstract
Transposable elements (TEs) are crucial for genetic diversity and gene regulation. Current single-cell quantification methods often align multi-mapping reads to either 'best-mapped' or 'random-mapped' locations and categorize them at the subfamily levels, overlooking the biological necessity for accurate, locus-specific TE quantification. Moreover, these existing methods are primarily designed for and focused on transcriptomics data, which restricts their adaptability to single-cell data of other modalities. To address these challenges, here we introduce MATES, a deep-learning approach that accurately allocates multi-mapping reads to specific loci of TEs, utilizing context from adjacent read alignments flanking the TE locus. When applied to diverse single-cell omics datasets, MATES shows improved performance over existing methods, enhancing the accuracy of TE quantification and aiding in the identification of marker TEs for identified cell populations. This development facilitates the exploration of single-cell heterogeneity and gene regulation through the lens of TEs, offering an effective transposon quantification tool for the single-cell genomics community.
Collapse
Affiliation(s)
- Ruohan Wang
- School of Computer Science, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Yumin Zheng
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Zijian Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kailu Song
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Erxi Wu
- Department of Neurosurgery, Baylor College of Medicine, Temple, TX, USA
- College of Medicine and Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, USA
- LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, USA
| | | | - Tao P Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Jun Ding
- School of Computer Science, McGill University, Montreal, Quebec, Canada.
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
- Department of Medicine, McGill University, Montreal, Quebec, Canada.
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, Quebec, Canada.
- Mila-Quebec AI Institue, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
Chour M, Porteu F, Depil S, Alcazer V. Endogenous retroelements in hematological malignancies: From epigenetic dysregulation to therapeutic targeting. Am J Hematol 2024. [PMID: 39387681 DOI: 10.1002/ajh.27501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Endogenous retroelements (EREs), which comprise half of the human genome, play a pivotal role in genome dynamics. Some EREs retained the ability to encode proteins, although most degenerated or served as a source for novel genes and regulatory elements during evolution. Despite ERE repression mechanisms developed to maintain genome stability, widespread pervasive ERE activation is observed in cancer including hematological malignancies. Challenging the perception of noncoding DNA as "junk," EREs are underestimated contributors to cancer driver mechanisms as well as antitumoral immunity by providing innate immune ligands and tumor antigens. This review highlights recent progress in understanding ERE co-option events in cancer and focuses on the controversial debate surrounding their causal role in shaping malignant phenotype. We provide insights into the rapidly evolving landscape of ERE research in hematological malignancies and their clinical implications in these cancers.
Collapse
Affiliation(s)
- Mohamed Chour
- Département de Biologie, Master Biosciences-Santé, École Normale Supérieure de Lyon, Lyon, France
- Centre International de Recherche en Infectiologie, INSERM U1111 CNRS UMR530, Lyon, France
| | - Françoise Porteu
- Institut Gustave Roussy, INSERM U1287 Université Paris Saclay, Villejuif, France
| | - Stéphane Depil
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286 Université Claude Bernard Lyon 1 Centre Léon Bérard, Lyon, France
- ErVimmune, Lyon, France
- Centre Léon Bérard, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
| | - Vincent Alcazer
- Centre International de Recherche en Infectiologie, INSERM U1111 CNRS UMR530, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- Service d'hématologie Clinique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| |
Collapse
|
17
|
Männer L, Schell T, Spies J, Galià-Camps C, Baranski D, Ben Hamadou A, Gerheim C, Neveling K, Helfrich EJN, Greve C. Chromosome-level genome assembly of the sacoglossan sea slug Elysia timida (Risso, 1818). BMC Genomics 2024; 25:941. [PMID: 39375624 PMCID: PMC11460185 DOI: 10.1186/s12864-024-10829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Sequencing and annotating genomes of non-model organisms helps to understand genome architecture, the genetic processes underlying species traits, and how these genes have evolved in closely-related taxa, among many other biological processes. However, many metazoan groups, such as the extremely diverse molluscs, are still underrepresented in the number of sequenced and annotated genomes. Although sequencing techniques have recently improved in quality and quantity, molluscs are still neglected due to difficulties in applying standardized protocols for obtaining genomic data. RESULTS In this study, we present the chromosome-level genome assembly and annotation of the sacoglossan sea slug species Elysia timida, known for its ability to store the chloroplasts of its food algae. In particular, by optimizing the long-read and chromosome conformation capture library preparations, the genome assembly was performed using PacBio HiFi and Arima HiC data. The scaffold and contig N50s, at 41.8 Mb and 1.92 Mb, respectively, are approximately 30-fold and fourfold higher compared to other published sacoglossan genome assemblies. Structural annotation resulted in 19,904 protein-coding genes, which are more contiguous and complete compared to publicly available annotations of Sacoglossa with respect to metazoan BUSCOs. We found no evidence for horizontal gene transfer (HGT), i.e. no photosynthetic genes encoded in the sacoglossan nucleus genome. However, we detected genes encoding polyketide synthases in E. timida, indicating that polypropionates are produced. HPLC-MS/MS analysis confirmed the presence of a large number of polypropionates, including known and yet uncharacterised compounds. CONCLUSIONS We can show that our methodological approach helps to obtain a high-quality genome assembly even for a "difficult-to-sequence" organism, which may facilitate genome sequencing in molluscs. This will enable a better understanding of complex biological processes in molluscs, such as functional kleptoplasty in Sacoglossa, by significantly improving the quality of genome assemblies and annotations.
Collapse
Affiliation(s)
- Lisa Männer
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany.
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany.
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Julia Spies
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-Von-Laue Straße 9, Frankfurt am Main, 60438, Germany
| | - Carles Galià-Camps
- Centre d'Estudis Avançats de Blanes (CEAB, CSIC), Accés Cala St. Francesc 14, Blanes, Girona, 17300, Spain
- Institut de Recerca de La Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Damian Baranski
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Alexander Ben Hamadou
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Charlotte Gerheim
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
| | - Kornelia Neveling
- Department of Human Genetics, Radboud University Medical Centre (Radboudumc), Nijmegen, Netherlands
| | - Eric J N Helfrich
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-Von-Laue Straße 9, Frankfurt am Main, 60438, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, Frankfurt, 60325, Germany.
- Senckenberg Research Institute, Senckenberganlage 25, Frankfurt, 60325, Germany.
| |
Collapse
|
18
|
Leal-Dutra CA, Vizueta J, Baril T, Kooij PW, Rødsgaard-Jørgensen A, Conlon BH, Croll D, Shik JZ. Genomic Signatures of Domestication in a Fungus Obligately Farmed by Leafcutter Ants. Mol Biol Evol 2024; 41:msae197. [PMID: 39288321 PMCID: PMC11451569 DOI: 10.1093/molbev/msae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/01/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
The naturally selected fungal crop (Leucoagaricus gongylophorus) farmed by leafcutter ants shows striking parallels with artificially selected plant crops domesticated by humans (e.g. polyploidy, engorged nutritional rewards, and dependence on cultivation). To date, poorly resolved L. gongylophorus genome assemblies based on short-read sequencing have constrained hypotheses about how millions of years under cultivation by ants shaped the fungal crop genome and potentially drove domestication. We use PacBio HiFi sequencing of L. gongylophorus from the leafcutter ant Atta colombica to identify 18 putatively novel biosynthetic gene clusters that likely cemented life as a cultivar (e.g. plant fragment degradation, ant-farmer communication, and antimicrobial defense). Comparative analyses with cultivated and free-living fungi showed genomic signatures of stepwise domestication transitions: (i) free-living to ant-cultivated: loss of genes conferring stress response and detoxification; (ii) hyphal food to engorged nutritional rewards: expansions of genes governing cellular homeostasis, carbohydrate metabolism, and siderophore biosynthesis; and (iii) detrital provisioning to freshly cut plant fragments: gene expansions promoting cell wall biosynthesis, fatty acid metabolism, and DNA repair. Comparisons across L. gongylophorus fungi farmed by 3 leafcutter ant species highlight genomic signatures of exclusively vertical clonal propagation and widespread transposable element activity. These results show how natural selection can shape domesticated cultivar genomes toward long-term ecological resilience of farming systems that have thrived across millennia.
Collapse
Affiliation(s)
- Caio A Leal-Dutra
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Joel Vizueta
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Tobias Baril
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, CH-2000 Neuchâtel, Switzerland
| | - Pepijn W Kooij
- Department of General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, SP, Brazil
| | - Asta Rødsgaard-Jørgensen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Benjamin H Conlon
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, CH-2000 Neuchâtel, Switzerland
| | - Jonathan Z Shik
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092 Ancon, Republic of Panama
| |
Collapse
|
19
|
Kravchenko P, Tachibana K. Rise and SINE: roles of transcription factors and retrotransposons in zygotic genome activation. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00772-6. [PMID: 39358607 DOI: 10.1038/s41580-024-00772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 10/04/2024]
Abstract
In sexually reproducing organisms, life begins with the fusion of transcriptionally silent gametes, the oocyte and sperm. Although initiation of transcription in the embryo, known as zygotic genome activation (ZGA), is universally required for development, the transcription factors regulating this process are poorly conserved. In this Perspective, we discuss recent insights into the mechanisms of ZGA in totipotent mammalian embryos, namely ZGA regulation by several transcription factors, including by orphan nuclear receptors (OrphNRs) such as the pioneer transcription factor NR5A2, and by factors of the DUX, TPRX and OBOX families. We performed a meta-analysis and compiled a list of pan-ZGA genes, and found that most of these genes are indeed targets of the above transcription factors. Remarkably, more than a third of these ZGA genes appear to be regulated both by OrphNRs such as NR5A2 and by OBOX proteins, whose motifs co-occur in SINE B1 retrotransposable elements, which are enriched near ZGA genes. We propose that ZGA in mice is activated by recruitment of multiple transcription factors to SINE B1 elements that function as enhancers, and discuss a potential relevance of this mechanism to Alu retrotransposable elements in human ZGA.
Collapse
Affiliation(s)
- Pavel Kravchenko
- Department of Totipotency, Max Planck Institute of Biochemistry, Munich, Germany
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Munich, Germany.
| |
Collapse
|
20
|
Schartl M, Woltering JM, Irisarri I, Du K, Kneitz S, Pippel M, Brown T, Franchini P, Li J, Li M, Adolfi M, Winkler S, de Freitas Sousa J, Chen Z, Jacinto S, Kvon EZ, Correa de Oliveira LR, Monteiro E, Baia Amaral D, Burmester T, Chalopin D, Suh A, Myers E, Simakov O, Schneider I, Meyer A. The genomes of all lungfish inform on genome expansion and tetrapod evolution. Nature 2024; 634:96-103. [PMID: 39143221 PMCID: PMC11514621 DOI: 10.1038/s41586-024-07830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
The genomes of living lungfishes can inform on the molecular-developmental basis of the Devonian sarcopterygian fish-tetrapod transition. We de novo sequenced the genomes of the African (Protopterus annectens) and South American lungfishes (Lepidosiren paradoxa). The Lepidosiren genome (about 91 Gb, roughly 30 times the human genome) is the largest animal genome sequenced so far and more than twice the size of the Australian (Neoceratodus forsteri)1 and African2 lungfishes owing to enlarged intergenic regions and introns with high repeat content (about 90%). All lungfish genomes continue to expand as some transposable elements (TEs) are still active today. In particular, Lepidosiren's genome grew extremely fast during the past 100 million years (Myr), adding the equivalent of one human genome every 10 Myr. This massive genome expansion seems to be related to a reduction of PIWI-interacting RNAs and C2H2 zinc-finger and Krüppel-associated box (KRAB)-domain protein genes that suppress TE expansions. Although TE abundance facilitates chromosomal rearrangements, lungfish chromosomes still conservatively reflect the ur-tetrapod karyotype. Neoceratodus' limb-like fins still resemble those of their extinct relatives and remained phenotypically static for about 100 Myr. We show that the secondary loss of limb-like appendages in the Lepidosiren-Protopterus ancestor was probably due to loss of sonic hedgehog limb-specific enhancers.
Collapse
Affiliation(s)
- Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany.
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA.
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria.
| | | | - Iker Irisarri
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature, Hamburg, Germany
| | - Kang Du
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA
| | - Susanne Kneitz
- Biochemistry and Cell Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Martin Pippel
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN-concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Thomas Brown
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN-concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Leibniz Institute for Zoo & Wildlife Research, Berlin, Germany
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Jing Li
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ming Li
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Mateus Adolfi
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Sylke Winkler
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Zhuoxin Chen
- Department of Developmental & Cell Biology, University of California, Irvine, CA, USA
| | - Sandra Jacinto
- Department of Developmental & Cell Biology, University of California, Irvine, CA, USA
| | - Evgeny Z Kvon
- Department of Developmental & Cell Biology, University of California, Irvine, CA, USA
| | | | - Erika Monteiro
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | | | | | - Domitille Chalopin
- Institute of Cellular Biochemistry and Genetics, CNRS, University of Bordeaux, Bordeaux, France
| | - Alexander Suh
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| | - Eugene Myers
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center of Systems Biology Dresden, Dresden, Germany
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Igor Schneider
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
21
|
Crepaldi C, Cabral-de-Mello DC, Parise-Maltempi PP. Comparative analysis of transposable elements dynamics in fish with different sex chromosome systems. Genome 2024; 67:339-350. [PMID: 38739948 DOI: 10.1139/gen-2023-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Transposable elements (TEs) are widespread genomic components with substantial roles in genome evolution and sex chromosome differentiation. In this study, we compared the TE composition of three closely related fish with different sex chromosome systems: Megaleporinus elongatus (Z1Z1Z2Z2/Z1W1Z2W2), Megaleporinus macrocephalus (ZZ/ZW) (both with highly differentiated W sex chromosomes), and Leporinus friderici (without heteromorphic sex chromosomes). We created custom TE libraries for each species using clustering methods and manual annotation and prediction, and we predicted TE temporal dynamics through divergence-based analysis. The TE abundance ranged from 16% to 21% in the three mobilomes, with L. friderici having the lowest overall. Despite the recent amplification of TEs in all three species, we observed differing expansion activities, particularly between the two genera. Both Megaleporinus recently experienced high retrotransposon activity, with a reduction in DNA TEs, which could have implications in sex chromosome composition. In contrast, L. friderici showed the opposite pattern. Therefore, despite having similar TE compositions, Megaleporinus and Leporinus exhibit distinct TE histories that likely evolved after their separation, highlighting a rapid TE expansion over short evolutionary periods.
Collapse
Affiliation(s)
- Carolina Crepaldi
- Universidade Estadual Paulista (UNESP) "Júlio de Mesquita Filho", Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, Brazil
| | - Diogo Cavalcanti Cabral-de-Mello
- Universidade Estadual Paulista (UNESP) "Júlio de Mesquita Filho", Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, Brazil
| | - Patricia Pasquali Parise-Maltempi
- Universidade Estadual Paulista (UNESP) "Júlio de Mesquita Filho", Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, Brazil
| |
Collapse
|
22
|
Li W, Zhang X, Zhang Q, Li Q, Li Y, Lv Y, Liu Y, Cao Y, Wang H, Chen X, Yang H. PICKLE and HISTONE DEACETYLASE6 coordinately regulate genes and transposable elements in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:1080-1094. [PMID: 38976580 DOI: 10.1093/plphys/kiae369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
Chromatin dynamics play essential roles in transcriptional regulation. The chromodomain helicase DNA-binding domain 3 chromatin remodeler PICKLE (PKL) and HISTONE DEACETYLASE6 (HDA6) are required for transcriptional gene silencing, but their coordinated function in gene repression requires further study. Through a genetic suppressor screen, we found that a point mutation at PKL could partially restore the developmental defects of a weak Polycomb repressive complex 1 (PRC1) mutant (ring1a-2 ring1b-3), in which RING1A expression is suppressed by a T-DNA insertion at the promoter. Compared to ring1a-2 ring1b-3, the expression of RING1A is increased, nucleosome occupancy is reduced, and the histone 3 lysine 9 acetylation (H3K9ac) level is increased at the RING1A locus in the pkl ring1a-2 ring1b-3 triple mutant. HDA6 interacts with PKL and represses RING1A expression similarly to PKL genetically and molecularly in the ring1a-2 ring1b-3 background. Furthermore, we show that PKL and HDA6 suppress the expression of a set of genes and transposable elements (TEs) by increasing nucleosome density and reducing H3K9ac. Genome-wide analysis indicated they possibly coordinately maintain DNA methylation as well. Our findings suggest that PKL and HDA6 function together to reduce H3K9ac and increase nucleosome occupancy, thereby facilitating gene/TE regulation in Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Xiaoling Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China
| | - Qingche Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Qingzhu Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Yanzhuo Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Yanfang Lv
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Yue Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Ying Cao
- College of Life Sciences, RNA Center, Capital Normal University, Beijing 100048, China
| | - Huamei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Hongchun Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
- RNA Institute, Wuhan University, Wuhan 430072, China
| |
Collapse
|
23
|
Gutman EG, Salvio AL, Fernandes RA, Duarte LA, Raposo-Vedovi JV, Alcaraz HF, Teixeira MA, Passos GF, de Medeiros KQM, Hammerle MB, Pires KL, Vasconcelos CCF, Leon LAA, Figueiredo CP, Alves-Leon SV. Long COVID: plasma levels of neurofilament light chain in mild COVID-19 patients with neurocognitive symptoms. Mol Psychiatry 2024; 29:3106-3116. [PMID: 38678084 PMCID: PMC11449780 DOI: 10.1038/s41380-024-02554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024]
Abstract
It is well known the potential of severe acute respiratory coronavirus type 2 (SARS-CoV-2) infection to induce post-acute sequelae, a condition called Long COVID. This syndrome includes several symptoms, but the central nervous system (CNS) main one is neurocognitive dysfunction. Recently it has been demonstrated the relevance of plasma levels of neurofilament light chain (pNfL), as a biomarker of early involvement of the CNS in COVID-19. The aim of this study was to investigate the relationship between pNfL in patients with post-acute neurocognitive symptoms and the potential of NfL as a prognostic biomarker in these cases. A group of 63 long COVID patients ranging from 18 to 59 years-old were evaluated, submitted to a neurocognitive battery assessment, and subdivided in different groups, according to results. Plasma samples were collected during the long COVID assessment and used for measurement of pNfL with the Single molecule array (SIMOA) assays. Levels of pNfL were significantly higher in long COVID patients with neurocognitive symptoms when compared to HC (p = 0.0031). Long COVID patients with cognitive impairment and fatigue symptoms presented higher pNfL levels when compared to long COVID patients without these symptoms, individually and combined (p = 0.0263, p = 0.0480, and 0.0142, respectively). Correlation analysis showed that levels of cognitive lost and exacerbation of fatigue in the neurocognitive evaluation had a significative correlation with higher pNfL levels (p = 0.0219 and 0.0255, respectively). Previous reports suggested that pNfL levels are related with higher risk of severity and predict lethality of COVID-19. Our findings demonstrate that SARS-CoV-2 infection seems to have a long-term impact on the brain, even in patients who presented mild acute disease. NfL measurements might be useful to identify CNS involvement in long COVID associated with neurocognitive symptoms and to identify who will need continuous monitoring and treatment support.
Collapse
Affiliation(s)
- Elisa Gouvea Gutman
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil
- Clinical Medicine post-graduation program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andreza Lemos Salvio
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil
| | - Renan Amphilophio Fernandes
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil
| | - Larissa Araujo Duarte
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil
- Clinical Medicine post-graduation program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jessica Vasques Raposo-Vedovi
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil
| | - Helena França Alcaraz
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil
| | - Milene Ataíde Teixeira
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil
| | | | | | - Mariana Beiral Hammerle
- Division of Neurology, Gaffrée and Guinle University Hospital, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Karina Lebeis Pires
- Division of Neurology, Gaffrée and Guinle University Hospital, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Soniza Vieira Alves-Leon
- Translational Neuroscience Laboratory (LabNet), Biomedical Institute, Federal University of the State of Rio de Janeiro/UNIRIO, Rio de Janeiro, RJ, ZIP CODE 20211-040, Brazil.
- Department of Neurology, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
24
|
Shaulson ED, Cohen AA, Picard M. The brain-body energy conservation model of aging. NATURE AGING 2024; 4:1354-1371. [PMID: 39379694 DOI: 10.1038/s43587-024-00716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/04/2024] [Indexed: 10/10/2024]
Abstract
Aging involves seemingly paradoxical changes in energy metabolism. Molecular damage accumulation increases cellular energy expenditure, yet whole-body energy expenditure remains stable or decreases with age. We resolve this apparent contradiction by positioning the brain as the mediator and broker in the organismal energy economy. As somatic tissues accumulate damage over time, costly intracellular stress responses are activated, causing aging or senescent cells to secrete cytokines that convey increased cellular energy demand (hypermetabolism) to the brain. To conserve energy in the face of a shrinking energy budget, the brain deploys energy conservation responses, which suppress low-priority processes, producing fatigue, physical inactivity, blunted sensory capacities, immune alterations and endocrine 'deficits'. We term this cascade the brain-body energy conservation (BEC) model of aging. The BEC outlines (1) the energetic cost of cellular aging, (2) how brain perception of senescence-associated hypermetabolism may drive the phenotypic manifestations of aging and (3) energetic principles underlying the modifiability of aging trajectories by stressors and geroscience interventions.
Collapse
Affiliation(s)
- Evan D Shaulson
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Alan A Cohen
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA.
- Department of Neurology, H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia Translational Neuroscience Initiative, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
25
|
Xu Z, Wei H, Li M, Qiu Y, Li L, Xu KW, Guo Z. Impact of Chromosomal Fusion and Transposable Elements on the Genomic Evolution and Genetic Diversity of Ilex Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:2649. [PMID: 39339625 PMCID: PMC11435385 DOI: 10.3390/plants13182649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
The genus Ilex belongs to the sole family and is the single genus within the order Aquifoliales, exhibiting significant phenotypic diversity. However, the genetic differences underlying these phenotypic variations have rarely been studied. In this study, collinearity analyses of three Ilex genomes, Ilex latifolia Thunb., Ilex polyneura (Hand.-Mazz.) S. Y. Hu, and Ilex asprella Champ. ex Benth., indicated a recent fusion event contributing to the reduction of chromosomes in I. asprella. Comparative genome analyses showed slight differences in gene annotation among the three species, implying a minimal disruption of genes following chromosomal fusion in I. asprella. Comprehensive annotation of transposable elements (TEs) revealed that TEs constitute a significant portion of the Ilex genomes, with LTR transposons being predominant. TEs exhibited an inverse relationship with gene density, potentially influencing gene regulation and chromosomal architecture. TE insertions were shown to affect the conformation and binding sites of key genes such as 7-deoxyloganetin glucosyltransferase and transmembrane kinase (TMK) genes, highlighting potential functional impacts. The structural variations caused by TE insertions suggest significant roles in the evolutionary dynamics, leading to either loss or gain of gene function. This study underscores the importance of TEs in shaping the genomic landscape and evolutionary trajectories of Ilex species.
Collapse
Affiliation(s)
- Zhenxiu Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.X.); (H.W.)
| | - Haikun Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.X.); (H.W.)
| | - Mingyue Li
- Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Yingjie Qiu
- Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Lei Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang 261000, China
| | - Ke-Wang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.X.); (H.W.)
| | - Zhonglong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.X.); (H.W.)
| |
Collapse
|
26
|
Zhang G, Félix MA, Andersen EC. Transposon-mediated genic rearrangements underlie variation in small RNA pathways. SCIENCE ADVANCES 2024; 10:eado9461. [PMID: 39303031 DOI: 10.1126/sciadv.ado9461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024]
Abstract
Transposable elements (TEs) can alter host gene structure and expression, whereas host organisms develop mechanisms to repress TE activities. In the nematode Caenorhabditis elegans, a small interfering RNA pathway dependent on the helicase ERI-6/7 primarily silences retrotransposons and recent genes of likely viral origin. By studying gene expression variation among wild C. elegans strains, we found that structural variants and transposon remnants likely underlie expression variation in eri-6/7 and the pathway targets. We further found that multiple insertions of the DNA transposons, Polintons, reshuffled the eri-6/7 locus and induced inversion of eri-6 in some wild strains. In the inverted configuration, gene function was previously shown to be repaired by unusual trans-splicing mediated by direct repeats. We identified that these direct repeats originated from terminal inverted repeats of Polintons. Our findings highlight the role of host-transposon interactions in driving rapid host genome diversification among natural populations and shed light on evolutionary novelty in genes and splicing mechanisms.
Collapse
Affiliation(s)
- Gaotian Zhang
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, Paris, France
| | - Erik C Andersen
- Biology Department, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
27
|
Kim EJ, Doh H, Yang J, Eyun SI. The occurrence of positive selection on BicA transporter of Microcystis aeruginosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116795. [PMID: 39083868 DOI: 10.1016/j.ecoenv.2024.116795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
The rapid growth of cyanobacteria, particularly Microcystis aeruginosa, poses a significant threat to global water security. The proliferation of toxic Microcystis aeruginosa raises concerns due to its potential harm to human health and socioeconomic impacts. Dense blooms contribute to spatiotemporal inorganic carbon depletion, promoting interest in the roles of carbon-concentrating mechanisms (CCMs) for competitive carbon uptake. Despite the importance of HCO3- transporters, genetic evaluations and functional predictions in M. aeruginosa remain insufficient. In this study, we explored the diversity of HCO3- transporters in the genomes of 46 strains of M. aeruginosa, assessing positive selection for each. Intriguingly, although the Microcystis BicA transporter became a partial gene in 23 out of 46 genomic strains, we observed significant positive sites. Structural analyses, including predicted 2D and 3D models, confirmed the structural conservation of the Microcystis BicA transporter. Our findings suggest that the Microcystis BicA transport likely plays a crucial role in competitive carbon uptake, emphasizing its ecological significance. The ecological function of the Microcystis BicA transport in competitive growth during cyanobacterial blooms raises important questions. Future studies require experimental confirmation to better understand the role of the Microcysits BicA transporter in cyanobacterial blooms dynamics.
Collapse
Affiliation(s)
- Eun-Jeong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Huijeong Doh
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Jihye Yang
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
28
|
Alizada A, Martins A, Mouniée N, Rodriguez Suarez JV, Bertin B, Gueguen N, Mirouse V, Maupetit-Mehouas S, Rivera AJ, Lau NC, Hannon GJ, Nicholson BC, Brasset E. The transcription factor Traffic jam orchestrates the somatic piRNA pathway in Drosophila ovaries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612307. [PMID: 39314383 PMCID: PMC11419008 DOI: 10.1101/2024.09.10.612307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Transposable elements (TEs) pose a threat to genome integrity, and the piRNA pathway in animal gonads plays a crucial role in silencing TE activity. While the transcriptional regulation of the piRNA pathway components in germ cells has been documented in mice and flies, the mechanisms orchestrating the transcriptional program of the somatic piRNA pathway in Drosophila ovaries remains unresolved. Here, we demonstrate that Traffic jam (Tj), an orthologue of a large Maf transcription factor in mammals, is a master regulator of the piRNA pathway in ovarian somatic cells, playing a crucial role in maintaining TE silencing and genomic integrity in somatic tissues. We show that Tj directly binds to the promoters of somatic-enriched piRNA factors such as fs(1)Yb , nxf2 , panx , and armi , as well as the flamenco piRNA cluster, a major locus for TE silencing in somatic cells. Depletion of Tj in somatic follicle cells results in a significant downregulation of these piRNA factors, a complete loss of flam expression and de-repression of gypsy -family TEs, which have gained the ability to activate in ovarian somatic cells allowing them to infect germ cells and be transmitted to future generations. We have identified an enhancer carrying Tj binding motifs located downstream of the flam promoter that is essential for robust and tissue-specific flam expression in somatic follicle cells of the adult ovary. This work uncovers a previously unappreciated layer of transcriptional regulation of the piRNA pathway, and we propose that the arms race between the host and TEs has driven the evolution of promoters in piRNA genes and clusters to respond to a unique transcription factor thereby ensuring efficient silencing of gypsy -family TEs. Highlights Traffic jam (Tj) acts as a master regulator of the somatic piRNA pathway in Drosophila . Tj directly controls the expression of the flamenco piRNA cluster, crucial for transposon silencing. Tj regulates a network of piRNA pathway genes, mirroring the gene-regulatory mechanism of A-MYB in the mouse testis.Cis-regulatory elements with Tj motifs are arranged in a palindromic sequence.
Collapse
|
29
|
Palm SM, Van Treeck B, Collins K. Experimental considerations for precise RNA-mediated insertion of transgenes. Methods Enzymol 2024; 705:1-24. [PMID: 39389660 DOI: 10.1016/bs.mie.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Precise RNA-mediated insertion of transgenes (PRINT) is a pioneering method for site-specific, safe-harbor transgene supplementation of the human genome that harnesses a eukaryotic retroelement protein and relies solely on the delivery of RNA. Here we outline important considerations in the design of the two required RNAs, details for the production and transfection of these RNAs to cells, and read-outs for successful transgene addition. Throughout, tips and key concepts are laid out to enable general use of this method.
Collapse
Affiliation(s)
- Sarah M Palm
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, United States
| | - Briana Van Treeck
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, United States
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, United States.
| |
Collapse
|
30
|
Kulski JK, Pfaff AL, Koks S. SVA Regulation of Transposable Element Clustered Transcription within the Major Histocompatibility Complex Genomic Class II Region of the Parkinson's Progression Markers Initiative. Genes (Basel) 2024; 15:1185. [PMID: 39336776 PMCID: PMC11431313 DOI: 10.3390/genes15091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
SINE-VNTR-Alu (SVA) retrotransposons can regulate expression quantitative trait loci (eQTL) of coding and noncoding genes including transposable elements (TEs) distributed throughout the human genome. Previously, we reported that expressed SVAs and human leucocyte antigen (HLA) class II genotypes on chromosome 6 were associated significantly with Parkinson's disease (PD). Here, our aim was to follow-up our previous study and evaluate the SVA associations and their regulatory effects on the transcription of TEs within the HLA class II genomic region. We reanalyzed the transcriptome data of peripheral blood cells from the Parkinson's Progression Markers Initiative (PPMI) for 1530 subjects for TE and gene RNAs with publicly available computing packages. Four structurally polymorphic SVAs regulate the transcription of 20 distinct clusters of 235 TE loci represented by LINES (37%), SINES (28%), LTR/ERVs (23%), and ancient transposon DNA elements (12%) that are located in close proximity to HLA genes. The transcribed TEs were mostly short length, with an average size of 389 nucleotides. The numbers, types and profiles of positive and negative regulation of TE transcription varied markedly between the four regulatory SVAs. The expressed SVA and TE RNAs in blood cells appear to be enhancer-like elements that are coordinated differentially in the regulation of HLA class II genes. Future work on the mechanisms underlying their regulation and potential impact is essential for elucidating their roles in normal cellular processes and disease pathogenesis.
Collapse
Affiliation(s)
- Jerzy K. Kulski
- Faculty of Health and Medical Sciences, School of Biomedical Science, The University of Western Australia, Crawley, WA 6009, Australia;
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Abigail L. Pfaff
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
31
|
Wu Y, Wang F, Lyu K, Liu R. Comparative Analysis of Transposable Elements in the Genomes of Citrus and Citrus-Related Genera. PLANTS (BASEL, SWITZERLAND) 2024; 13:2462. [PMID: 39273946 PMCID: PMC11397423 DOI: 10.3390/plants13172462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Transposable elements (TEs) significantly contribute to the evolution and diversity of plant genomes. In this study, we explored the roles of TEs in the genomes of Citrus and Citrus-related genera by constructing a pan-genome TE library from 20 published genomes of Citrus and Citrus-related accessions. Our results revealed an increase in TE content and the number of TE types compared to the original annotations, as well as a decrease in the content of unclassified TEs. The average length of TEs per assembly was approximately 194.23 Mb, representing 41.76% (Murraya paniculata) to 64.76% (Citrus gilletiana) of the genomes, with a mean value of 56.95%. A significant positive correlation was found between genome size and both the number of TE types and TE content. Consistent with the difference in mean whole-genome size (39.83 Mb) between Citrus and Citrus-related genera, Citrus genomes contained an average of 34.36 Mb more TE sequences than Citrus-related genomes. Analysis of the estimated insertion time and half-life of long terminal repeat retrotransposons (LTR-RTs) suggested that TE removal was not the primary factor contributing to the differences among genomes. These findings collectively indicate that TEs are the primary determinants of genome size and play a major role in shaping genome structures. Principal coordinate analysis (PCoA) of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) identifiers revealed that the fragmented TEs were predominantly derived from ancestral genomes, while intact TEs were crucial in the recent evolutionary diversification of Citrus. Moreover, the presence or absence of intact TEs near the AdhE superfamily was closely associated with the bitterness trait in the Citrus species. Overall, this study enhances TE annotation in Citrus and Citrus-related genomes and provides valuable data for future genetic breeding and agronomic trait research in Citrus.
Collapse
Affiliation(s)
- Yilei Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fusheng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Keliang Lyu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
32
|
Hays M. Genetic conflicts in budding yeast: The 2μ plasmid as a model selfish element. Semin Cell Dev Biol 2024; 161-162:31-41. [PMID: 38598944 DOI: 10.1016/j.semcdb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Antagonistic coevolution, arising from genetic conflict, can drive rapid evolution and biological innovation. Conflict can arise both between organisms and within genomes. This review focuses on budding yeasts as a model system for exploring intra- and inter-genomic genetic conflict, highlighting in particular the 2-micron (2μ) plasmid as a model selfish element. The 2μ is found widely in laboratory strains and industrial isolates of Saccharomyces cerevisiae and has long been known to cause host fitness defects. Nevertheless, the plasmid is frequently ignored in the context of genetic, fitness, and evolution studies. Here, I make a case for further exploring the evolutionary impact of the 2μ plasmid as well as other selfish elements of budding yeasts, discuss recent advances, and, finally, future directions for the field.
Collapse
Affiliation(s)
- Michelle Hays
- Department of Genetics, Stanford University, Stanford, CA, United States.
| |
Collapse
|
33
|
Wang J, Zhou X, Han T, Zhang H. Epigenetic signatures of trophoblast lineage and their biological functions. Cells Dev 2024; 179:203934. [PMID: 38942294 DOI: 10.1016/j.cdev.2024.203934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/13/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
Trophoblasts play a crucial role in embryo implantation and in interacting with the maternal uterus. The trophoblast lineage develops into a substantial part of the placenta, a temporary extra-embryonic organ, capable of undergoing distinctive epigenetic events during development. The critical role of trophoblast-specific epigenetic signatures in regulating placental development has become known, significantly advancing our understanding of trophoblast identity and lineage development. Scientific efforts are revealing how trophoblast-specific epigenetic signatures mediate stage-specific gene regulatory programming during the development of the trophoblast lineage. These epigenetic signatures have a significant impact on blastocyst formation, placental development, as well as the growth and survival of embryos and fetuses. In evolution, DNA hypomethylation in the trophoblast lineage is conserved, and there is a significant disparity in the control of epigenetic dynamics and the landscape of genomic imprinting. Scientists have used murine and human multipotent trophoblast cells as in vitro models to recapitulate the essential epigenetic processes of placental development. Here, we review the epigenetic signatures of the trophoblast lineage and their biological functions to enhance our understanding of placental evolution, development, and function.
Collapse
Affiliation(s)
- Jianqi Wang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaobo Zhou
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Reproductive Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Tingli Han
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China; The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Hua Zhang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China.
| |
Collapse
|
34
|
Wang S, Zhang C, Li Y, Li R, Du K, Sun C, Shen X, Guo B. ScRNA-seq reveals the spatiotemporal distribution of camptothecin pathway and transposon activity in Camptotheca acuminata shoot apexes and leaves. PHYSIOLOGIA PLANTARUM 2024; 176:e14508. [PMID: 39295090 DOI: 10.1111/ppl.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/21/2024]
Abstract
Camptotheca acuminata Decne., a significant natural source of the anticancer drug camptothecin (CPT), synthesizes CPT through the monoterpene indole alkaloid (MIA) pathway. In this study, we used single-cell RNA sequencing (scRNA-seq) to generate datasets encompassing over 60,000 cells from C. acuminata shoot apexes and leaves. After cell clustering and annotation, we identified five major cell types in shoot apexes and four in leaves. Analysis of MIA pathway gene expression revealed that most of them exhibited heightened expression in proliferating cells (PCs) and vascular cells (VCs). In contrast to MIA biosynthesis in Catharanthus roseus, CPT biosynthesis in C. acuminata did not exhibit multicellular compartmentalization. Some putative genes encoding enzymes and transcription factors (TFs) related to the biosynthesis of CPT and its derivatives were identified through co-expression analysis. These include 19 cytochrome P450 genes, 8 O-methyltransferase (OMT) genes, and 62 TFs. Additionally, these pathway genes exhibited dynamic expression patterns during VC and EC development. Furthermore, by integrating gene and transposable element (TE) expression data, we constructed novel single-cell transcriptome atlases for C. acuminata. This approach significantly facilitated the identification of rare cell types, including peripheral zone cells (PZs). Some TE families displayed cell type specific, tissue specific, or developmental stage-specific expression patterns, suggesting crucial roles for these TEs in cell differentiation and development. Overall, this study not only provides novel insights into CPT biosynthesis and spatial-temporal TE expression characteristics in C. acuminata, but also serves as a valuable resource for further comprehensive investigations into the development and physiology of this species.
Collapse
Affiliation(s)
- Shu Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuyi Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rucan Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ke Du
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaofeng Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baolin Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
35
|
Du AY, Chobirko JD, Zhuo X, Feschotte C, Wang T. Regulatory transposable elements in the encyclopedia of DNA elements. Nat Commun 2024; 15:7594. [PMID: 39217141 PMCID: PMC11366022 DOI: 10.1038/s41467-024-51921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Transposable elements (TEs) comprise ~50% of our genome, but knowledge of how TEs affect genome evolution remains incomplete. Leveraging ENCODE4 data, we provide the most comprehensive study to date of TE contributions to the regulatory genome. We find 236,181 (~25%) human candidate cis-regulatory elements (cCREs) are TE-derived, with over 90% lineage-specific since the human-mouse split, accounting for 8-36% of lineage-specific cCREs. Except for SINEs, cCRE-associated transcription factor (TF) motifs in TEs are derived from ancestral TE sequence more than expected by chance. We show that TEs may adopt similar regulatory activities of elements near their integration site. Since human-mouse divergence, TEs have contributed 3-56% of TF binding site turnover events across 30 examined TFs. Finally, TE-derived cCREs are similar to non-TE cCREs in terms of MPRA activity and GWAS variant enrichment. Overall, our results substantiate the notion that TEs have played an important role in shaping the human regulatory genome.
Collapse
Affiliation(s)
- Alan Y Du
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason D Chobirko
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Xiaoyu Zhuo
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
36
|
Del Toro-De León G, van Boven J, Santos-González J, Jiao WB, Peng H, Schneeberger K, Köhler C. Epigenetic and transcriptional consequences in the endosperm of chemically induced transposon mobilization in Arabidopsis. Nucleic Acids Res 2024; 52:8833-8848. [PMID: 38967011 PMCID: PMC11347142 DOI: 10.1093/nar/gkae572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
Genomic imprinting, an epigenetic phenomenon leading to parent-of-origin-specific gene expression, has independently evolved in the endosperm of flowering plants and the placenta of mammals-tissues crucial for nurturing embryos. While transposable elements (TEs) frequently colocalize with imprinted genes and are implicated in imprinting establishment, direct investigations of the impact of de novo TE transposition on genomic imprinting remain scarce. In this study, we explored the effects of chemically induced transposition of the Copia element ONSEN on genomic imprinting in Arabidopsis thaliana. Through the combination of chemical TE mobilization and doubled haploid induction, we generated a line with 40 new ONSEN copies. Our findings reveal a preferential targeting of maternally expressed genes (MEGs) for transposition, aligning with the colocalization of H2A.Z and H3K27me3 in MEGs-both previously identified as promoters of ONSEN insertions. Additionally, we demonstrate that chemically-induced DNA hypomethylation induces global transcriptional deregulation in the endosperm, leading to the breakdown of MEG imprinting. This study provides insights into the consequences of chemically induced TE remobilization in the endosperm, revealing that chemically-induced epigenome changes can have long-term consequences on imprinted gene expression.
Collapse
Affiliation(s)
- Gerardo Del Toro-De León
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Joram van Boven
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala 75007, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala 75007, Sweden
| | - Wen-Biao Jiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoran Peng
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
| | - Korbinian Schneeberger
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
- Faculty for Biology, LMU Munich, Planegg-Martinsried 82152, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Düsseldorf 40225, Germany
| | - Claudia Köhler
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam 14476, Germany
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala 75007, Sweden
| |
Collapse
|
37
|
Jansen G, Gebert D, Kumar TR, Simmons E, Murphy S, Teixeira FK. Tolerance thresholds underlie responses to DNA damage during germline development. Genes Dev 2024; 38:631-654. [PMID: 39054057 PMCID: PMC11368186 DOI: 10.1101/gad.351701.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Selfish DNA modules like transposable elements (TEs) are particularly active in the germline, the lineage that passes genetic information across generations. New TE insertions can disrupt genes and impair the functionality and viability of germ cells. However, we found that in P-M hybrid dysgenesis in Drosophila, a sterility syndrome triggered by the P-element DNA transposon, germ cells harbor unexpectedly few new TE insertions despite accumulating DNA double-strand breaks (DSBs) and inducing cell cycle arrest. Using an engineered CRISPR-Cas9 system, we show that generating DSBs at silenced P-elements or other noncoding sequences is sufficient to induce germ cell loss independently of gene disruption. Indeed, we demonstrate that both developing and adult mitotic germ cells are sensitive to DSBs in a dosage-dependent manner. Following the mitotic-to-meiotic transition, however, germ cells become more tolerant to DSBs, completing oogenesis regardless of the accumulated genome damage. Our findings establish DNA damage tolerance thresholds as crucial safeguards of genome integrity during germline development.
Collapse
Affiliation(s)
- Gloria Jansen
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Daniel Gebert
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | | | - Emily Simmons
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Sarah Murphy
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Felipe Karam Teixeira
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom;
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| |
Collapse
|
38
|
Liu Y, Molchanov V, Zhao Y, Lu D, Liu H, Jang HJ, Yang T. H3K9me3 loss and ERVs activation as hallmarks for osteoarthritis progression and knee joint aging. Osteoarthritis Cartilage 2024:S1063-4584(24)01353-0. [PMID: 39153567 DOI: 10.1016/j.joca.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/23/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE This study aims to link aberrant endogenous retroviruses (ERVs) activation and osteoarthritis (OA) progression by comparing the chromatin accessibility and transcriptomic landscapes of diseased or intact joint tissues of OA patients. METHOD We performed ERVs-centric analysis on published ATAC-seq and RNA-seq data from OA patients' cartilage tissues. Here, we compared the outer region of the lateral tibial plateau, representing intact cartilage, to the inner region of the medial tibial plateau, representing damaged cartilage. In addition, cartilage tissue sections from OA patients and post-traumatic OA mouse models were assayed for global H3K9me3 abundance through immunohistochemistry staining. RESULTS Chromatin accessibility and transcription of ERVs, particularly from evolutionarily "intermediate age" ERVs families (ERV1 and ERVL), were enriched and elevated in OA cartilage. This integrative analysis suggests that H3K9me3-related heterochromatin loss might be mechanistically connected to ERV activation in OA tissue. We further verified that global H3K9me3 levels were reduced in diseased cartilage relative to intact tissue in OA patients and injury-induced OA mice. CONCLUSION The findings suggest a compelling hypothesis that the loss of H3K9me3, either due to aging or cellular stressors, may lead to ERVs reactivation that contributes to tissue inflammation and OA progression. This study unveils the intricate relationship between epigenetic alterations, ERVs activation, and OA, paving the way for potential therapeutic interventions targeting these pathogenic mechanisms.
Collapse
Affiliation(s)
- Ye Liu
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Vladimir Molchanov
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Yaguang Zhao
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Di Lu
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Huadie Liu
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - H Josh Jang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Tao Yang
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
39
|
Shi G, Pang Q, Lin Z, Zhang X, Huang K. Repetitive Sequence Stability in Embryonic Stem Cells. Int J Mol Sci 2024; 25:8819. [PMID: 39201503 PMCID: PMC11354519 DOI: 10.3390/ijms25168819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Repetitive sequences play an indispensable role in gene expression, transcriptional regulation, and chromosome arrangements through trans and cis regulation. In this review, focusing on recent advances, we summarize the epigenetic regulatory mechanisms of repetitive sequences in embryonic stem cells. We aim to bridge the knowledge gap by discussing DNA damage repair pathway choices on repetitive sequences and summarizing the significance of chromatin organization on repetitive sequences in response to DNA damage. By consolidating these insights, we underscore the critical relationship between the stability of repetitive sequences and early embryonic development, seeking to provide a deeper understanding of repetitive sequence stability and setting the stage for further research and potential therapeutic strategies in developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Qianwen Pang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Zhancheng Lin
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Xinyi Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Q.P.); (Z.L.); (X.Z.)
| | - Kaimeng Huang
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
40
|
Zhang H, Gu Z, Zeng Y, Zhang Y. Mechanism of heterochromatin remodeling revealed by the DDM1 bound nucleosome structures. Structure 2024; 32:1222-1230.e4. [PMID: 38870940 DOI: 10.1016/j.str.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/07/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
The SWI/SNF2 chromatin remodeling factor decreased DNA methylation 1 (DDM1) is essential for the silencing of transposable elements (TEs) in both euchromatic and heterochromatic regions. Here, we determined the cryo-EM structures of DDM1-nucleosomeH2A and DDM1-nucleosomeH2A.W complexes at near-atomic resolution in the presence of the ATP analog ADP-BeFx. The structures show that nucleosomal DNA is unwrapped more on the surface of the histone octamer containing histone H2A than that containing histone H2A.W. DDM1 embraces one DNA gyre of the nucleosome and interacts with the N-terminal tails of histone H4. Although we did not observe DDM1-H2A.W interactions in our structures, the results of the pull-down experiments suggest a direct interaction between DDM1 and the core region of histone H2A.W. Our work provides mechanistic insights into the heterochromatin remodeling process driven by DDM1 in plants.
Collapse
Affiliation(s)
- Hongwei Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Zhanxi Gu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Zeng
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
41
|
Ben Amara W, Djebbi S, Khemakhem MM. Evolutionary History of the DD41D Family of Tc1/Mariner Transposons in Two Mayetiola Species. Biochem Genet 2024:10.1007/s10528-024-10898-z. [PMID: 39117934 DOI: 10.1007/s10528-024-10898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Tc1/mariner elements are ubiquitous in eukaryotic genomes including insects. They are diverse and divided into families and sub-families. The DD34D family including mauritiana and irritans subfamilies have already been identified in two closely related species of Cecidomyiids M. destructor and M. hordei. In the current study the de novo and similarity-based methods allowed the identification for the first time of seven consensuses in M. destructor and two consensuses in M. hordei belonging to DD41D family whereas the in vitro method allowed the amplification of two and three elements in these two species respectively. Most of identified elements accumulated different mutations and long deletions spanning the N-terminal region of the transposase. Phylogenetic analyses showed that the DD41D elements were clustered in two groups belonging to rosa and Long-TIR subfamilies. The age estimation of the last transposition events of the identified Tc1/mariner elements in M. destructor showed different evolutionary histories. Indeed, irritans elements have oscillated between periods of silencing and reappearance while rosa and mauritiana elements have shown regular activity with large recent bursts. The study of insertion sites showed that they are mostly intronic and that some recently transposed elements occurred in genes linked to putative DNA-binding domains and enzymes involved in metabolic chains. Thus, this study gave evidence of the existence of DD41D family in two Mayetiola species and an insight on their evolutionary history.
Collapse
Affiliation(s)
- Wiem Ben Amara
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 1068, Tunis, Tunisia
| | - Salma Djebbi
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 1068, Tunis, Tunisia
| | - Maha Mezghani Khemakhem
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, 1068, Tunis, Tunisia.
| |
Collapse
|
42
|
Dziulko AK, Allen H, Chuong EB. An endogenous retrovirus regulates tumor-specific expression of the immune transcriptional regulator SP140. Hum Mol Genet 2024; 33:1454-1464. [PMID: 38751339 PMCID: PMC11305685 DOI: 10.1093/hmg/ddae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 07/26/2024] Open
Abstract
Speckled Protein 140 (SP140) is a chromatin reader with critical roles regulating immune cell transcriptional programs, and SP140 splice variants are associated with immune diseases including Crohn's disease, multiple sclerosis, and chronic lymphocytic leukemia. SP140 expression is currently thought to be restricted to immune cells. However, by analyzing human transcriptomic datasets from a wide range of normal and cancer cell types, we found recurrent cancer-specific expression of SP140, driven by an alternative intronic promoter derived from an intronic endogenous retrovirus (ERV). The ERV belongs to the primate-specific LTR8B family and is regulated by oncogenic mitogen-activated protein kinase (MAPK) signaling. The ERV drives expression of multiple cancer-specific isoforms, including a nearly full-length isoform that retains all the functional domains of the full-length canonical isoform and is also localized within the nucleus, consistent with a role in chromatin regulation. In a fibrosarcoma cell line, silencing the cancer-specific ERV promoter of SP140 resulted in increased sensitivity to interferon-mediated cytotoxicity and dysregulation of multiple genes. Our findings implicate aberrant ERV-mediated SP140 expression as a novel mechanism contributing to immune gene dysregulation in a wide range of cancer cells.
Collapse
Affiliation(s)
- Adam K Dziulko
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, JSC Biotech Bldg, Boulder, Colorado 80303, USA
| | - Holly Allen
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, JSC Biotech Bldg, Boulder, Colorado 80303, USA
| | - Edward B Chuong
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, JSC Biotech Bldg, Boulder, Colorado 80303, USA
| |
Collapse
|
43
|
Zhu T, Xia C, Yu R, Zhou X, Xu X, Wang L, Zong Z, Yang J, Liu Y, Ming L, You Y, Chen D, Xie W. Comprehensive mapping and modelling of the rice regulome landscape unveils the regulatory architecture underlying complex traits. Nat Commun 2024; 15:6562. [PMID: 39095348 PMCID: PMC11297339 DOI: 10.1038/s41467-024-50787-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
Unraveling the regulatory mechanisms that govern complex traits is pivotal for advancing crop improvement. Here we present a comprehensive regulome atlas for rice (Oryza sativa), charting the chromatin accessibility across 23 distinct tissues from three representative varieties. Our study uncovers 117,176 unique open chromatin regions (OCRs), accounting for ~15% of the rice genome, a notably higher proportion compared to previous reports in plants. Integrating RNA-seq data from matched tissues, we confidently predict 59,075 OCR-to-gene links, with enhancers constituting 69.54% of these associations, including many known enhancer-to-gene links. Leveraging this resource, we re-evaluate genome-wide association study results and discover a previously unknown function of OsbZIP06 in seed germination, which we subsequently confirm through experimental validation. We optimize deep learning models to decode regulatory grammar, achieving robust modeling of tissue-specific chromatin accessibility. This approach allows to predict cross-variety regulatory dynamics from genomic sequences, shedding light on the genetic underpinnings of cis-regulatory divergence and morphological disparities between varieties. Overall, our study establishes a foundational resource for rice functional genomics and precision molecular breeding, providing valuable insights into regulatory mechanisms governing complex traits.
Collapse
Affiliation(s)
- Tao Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, National Resource Center for Mutant Mice, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| | - Chunjiao Xia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ranran Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, National Resource Center for Mutant Mice, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xinkai Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, National Resource Center for Mutant Mice, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xingbing Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, National Resource Center for Mutant Mice, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhanxiang Zong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junjiao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yinmeng Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Luchang Ming
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuxin You
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, National Resource Center for Mutant Mice, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Gastroenterology, Nanjing Drum Tower Hospital, National Resource Center for Mutant Mice, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China.
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
44
|
Li Z, Li Z, Zhang Y, Zhou L, Xu Q, Li L, Zeng L, Xue J, Niu H, Zhong J, Yu Q, Li D, Gui M, Huang Y, Tu S, Zhang Z, Song CQ, Wu J, Shen EZ. Mammalian PIWI-piRNA-target complexes reveal features for broad and efficient target silencing. Nat Struct Mol Biol 2024; 31:1222-1231. [PMID: 38658622 DOI: 10.1038/s41594-024-01287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
The PIWI-interacting RNA (piRNA) pathway is an adaptive defense system wherein piRNAs guide PIWI family Argonaute proteins to recognize and silence ever-evolving selfish genetic elements and ensure genome integrity. Driven by this intensive host-pathogen arms race, the piRNA pathway and its targeted transposons have coevolved rapidly in a species-specific manner, but how the piRNA pathway adapts specifically to target silencing in mammals remains elusive. Here, we show that mouse MILI and human HILI piRNA-induced silencing complexes (piRISCs) bind and cleave targets more efficiently than their invertebrate counterparts from the sponge Ephydatia fluviatilis. The inherent functional differences comport with structural features identified by cryo-EM studies of piRISCs. In the absence of target, MILI and HILI piRISCs adopt a wider nucleic-acid-binding channel and display an extended prearranged piRNA seed as compared with EfPiwi piRISC, consistent with their ability to capture targets more efficiently than EfPiwi piRISC. In the presence of target, the seed gate-which enforces seed-target fidelity in microRNA RISC-adopts a relaxed state in mammalian piRISC, revealing how MILI and HILI tolerate seed-target mismatches to broaden the target spectrum. A vertebrate-specific lysine distorts the piRNA seed, shifting the trajectory of the piRNA-target duplex out of the central cleft and toward the PAZ lobe. Functional analyses reveal that this lysine promotes target binding and cleavage. Our study therefore provides a molecular basis for the piRNA targeting mechanism in mice and humans, and suggests that mammalian piRNA machinery can achieve broad target silencing using a limited supply of piRNA species.
Collapse
Affiliation(s)
- Zhiqing Li
- School of Basic Medical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Zhenzhen Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuqi Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Lunni Zhou
- School of Basic Medical Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Qikui Xu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Lili Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Lin Zeng
- Department of Computer Science and Engineering, Center for Cognitive Machines and Computational Health (CMaCH), Shanghai Jiao Tong University, Shanghai, China
| | - Junchao Xue
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Huilin Niu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jing Zhong
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Qilu Yu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Dengfeng Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Miao Gui
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of Sciences, Shanghai, China
| | - Shikui Tu
- Department of Computer Science and Engineering, Center for Cognitive Machines and Computational Health (CMaCH), Shanghai Jiao Tong University, Shanghai, China
| | - Zhao Zhang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Chun-Qing Song
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Jianping Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
| | - En-Zhi Shen
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
45
|
Diaby M, Wu H, Gao B, Shi S, Wang B, Wang S, Wang Y, Wu Z, Chen C, Wang X, Song C. A Naturally Active Spy Transposon Discovered from the Insect Genome of Colletes gigas as a Promising Novel Gene Transfer Tool. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400969. [PMID: 38774947 PMCID: PMC11304231 DOI: 10.1002/advs.202400969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Indexed: 08/09/2024]
Abstract
Novel active DNA transposons, such as Spy transposons from the PHIS superfamily, are identified through bioinformatics in this study. The native transposases cgSpy and cvSpy displayed transposition activities of approximately 85% and 35% compared to the hyperactive piggyBac transposase (hyPB). The cgSpy transposon showed unique characteristics, including a lack of overproduction inhibition and reduced efficiency for insertion sizes between 3.1 to 8.5 kb. Integration preferences of cgSpy are found in genes and regulatory regions, making it suitable for genetic manipulation. Evaluation in T-cell engineering demonstrated that cgSpy-mediated chimeric antigen receptor (CAR) modification is comparable to the PB system, indicating its potential utility in cell therapy. This study unveils the promising application of the active native transposase, Spy, from Colletes gigas, as a valuable tool for genetic engineering, particularly in T-cell manipulation.
Collapse
Affiliation(s)
- Mohamed Diaby
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Han Wu
- School of Basic Medical SciencesShenzhen University Medical SchoolShenzhen UniversityShenzhenGuangdong518055China
| | - Bo Gao
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Shasha Shi
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Bingqing Wang
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Saisai Wang
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Yali Wang
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Zherui Wu
- School of Basic Medical SciencesShenzhen University Medical SchoolShenzhen UniversityShenzhenGuangdong518055China
| | - Cai Chen
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Xiaoyan Wang
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| | - Chengyi Song
- College of Animal Science & TechnologyYangzhou UniversityYangzhouJiangsu225009China
| |
Collapse
|
46
|
Soraci L, Corsonello A, Paparazzo E, Montesanto A, Piacenza F, Olivieri F, Gambuzza ME, Savedra EV, Marino S, Lattanzio F, Biscetti L. Neuroinflammaging: A Tight Line Between Normal Aging and Age-Related Neurodegenerative Disorders. Aging Dis 2024; 15:1726-1747. [PMID: 38300639 PMCID: PMC11272206 DOI: 10.14336/ad.2023.1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/01/2023] [Indexed: 02/02/2024] Open
Abstract
Aging in the healthy brain is characterized by a low-grade, chronic, and sterile inflammatory process known as neuroinflammaging. This condition, mainly consisting in an up-regulation of the inflammatory response at the brain level, contributes to the pathogenesis of age-related neurodegenerative disorders. Development of this proinflammatory state involves the interaction between genetic and environmental factors, able to induce age-related epigenetic modifications. Indeed, the exposure to environmental compounds, drugs, and infections, can contribute to epigenetic modifications of DNA methylome, histone fold proteins, and nucleosome positioning, leading to epigenetic modulation of neuroinflammatory responses. Furthermore, some epigenetic modifiers, which combine and interact during the life course, can contribute to modeling of epigenome dynamics to sustain, or dampen the neuroinflammatory phenotype. The aim of this review is to summarize current knowledge about neuroinflammaging with a particular focus on epigenetic mechanisms underlying the onset and progression of neuroinflammatory cascades in the central nervous system; furthermore, we describe some diagnostic biomarkers that may contribute to increase diagnostic accuracy and help tailor therapeutic strategies in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center of Aging (IRCCS INRCA), Cosenza, Italy.
| | - Andrea Corsonello
- Unit of Geriatric Medicine, Italian National Research Center of Aging (IRCCS INRCA), Cosenza, Italy.
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Italian National Research Center of Aging (IRCCS INRCA), IRCCS INRCA, Ancona, Italy.
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.
- Clinic of Laboratory and Precision Medicine, Italian National Research Center of Aging (IRCCS INRCA), Ancona, Italy.
| | | | | | - Silvia Marino
- IRCCS Centro Neurolesi "Bonino-Pulejo”, Messina, Italy.
| | | | - Leonardo Biscetti
- Section of Neurology, Italian National Research Center on Aging (IRCCS INRCA), Ancona, Italy.
| |
Collapse
|
47
|
Cappucci U, Proietti M, Casale AM, Schiavo S, Chiavarini S, Accardo S, Manzo S, Piacentini L. Assessing genotoxic effects of plastic leachates in Drosophila melanogaster. CHEMOSPHERE 2024; 361:142440. [PMID: 38821133 DOI: 10.1016/j.chemosphere.2024.142440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Plastic polymers were largely added with chemical substances to be utilized in the items and product manufacturing. The leachability of these substances is a matter of concern given the wide amount of plastic waste, particularly in terrestrial environments, where soil represents a sink for these novel contaminants and a possible pathway of human health risk. In this study, we integrated genetic, molecular, and behavioral approaches to comparatively evaluate toxicological effects of plastic leachates, virgin and oxodegradable polypropylene (PP) and polyethylene (PE), in Drosophila melanogaster, a novel in vivo model organism for environmental monitoring studies and (eco)toxicological research. The results of this study revealed that while conventional toxicological endpoints such as developmental times and longevity remain largely unaffected, exposure to plastic leachates induces chromosomal abnormalities and transposable element (TE) activation in neural tissues. The combined effects of DNA damage and TE mobilization contribute to genome instability and increase the likelihood of LOH events, thus potentiating tumor growth and metastatic behavior ofRasV12 clones. Collectively, these findings indicate that plastic leachates exert genotoxic effects in Drosophila thus highlighting potential risks associated with leachate-related plastic pollution and their implications for ecosystems and human health.
Collapse
Affiliation(s)
- Ugo Cappucci
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Mirena Proietti
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Assunta Maria Casale
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Simona Schiavo
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy
| | - Salvatore Chiavarini
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy
| | - Sara Accardo
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy
| | - Sonia Manzo
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy.
| | - Lucia Piacentini
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
48
|
Paineau M, Minio A, Mestre P, Fabre F, Mazet ID, Couture C, Legeai F, Dumartinet T, Cantu D, Delmotte F. Multiple deletions of candidate effector genes lead to the breakdown of partial grapevine resistance to downy mildew. THE NEW PHYTOLOGIST 2024; 243:1490-1505. [PMID: 39021210 DOI: 10.1111/nph.19861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/21/2024] [Indexed: 07/20/2024]
Abstract
Grapevine downy mildew, caused by the oomycete Plasmopara viticola (P. viticola, Berk. & M. A. Curtis; Berl. & De Toni), is a global threat to Eurasian wine grapes Vitis vinifera. Although resistant grapevine varieties are becoming more accessible, P. viticola populations are rapidly evolving to overcome these resistances. We aimed to uncover avirulence genes related to Rpv3.1-mediated grapevine resistance. We sequenced the genomes and characterized the development of 136 P. viticola strains on resistant and sensitive grapevine cultivars. A genome-wide association study was conducted to identify genomic variations associated with resistant-breaking phenotypes. We identified a genomic region associated with the breakdown of Rpv3.1 grapevine resistance (avrRpv3.1 locus). A diploid-aware reassembly of the P. viticola INRA-Pv221 genome revealed structural variations in this locus, including a 30 kbp deletion. Virulent P. viticola strains displayed multiple deletions on both haplotypes at the avrRpv3.1 locus. These deletions involve two paralog genes coding for proteins with 800-900 amino acids and signal peptides. These proteins exhibited a structure featuring LWY-fold structural modules, common among oomycete effectors. When transiently expressed, these proteins induced cell death in grapevines carrying Rpv3.1 resistance, confirming their avirulence nature. This discovery sheds light on the genetic mechanisms enabling P. viticola to adapt to grapevine resistance, laying a foundation for developing strategies to manage this destructive crop pathogen.
Collapse
Affiliation(s)
- Manon Paineau
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
- Department of Viticulture and Enology, University of California Davis, Davis, 95616, CA, USA
| | - Andrea Minio
- Department of Viticulture and Enology, University of California Davis, Davis, 95616, CA, USA
| | - Pere Mestre
- INRAE, Université de Strasbourg, SVQV, F-68125, Colmar, France
| | - Frédéric Fabre
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
| | - Isabelle D Mazet
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
| | - Carole Couture
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
| | - Fabrice Legeai
- INRAE, IGEPP, F-35650, Le-Rheu, France
- INRIA, IRISA, GenOuest Core Facility, F-35000, Rennes, France
| | | | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, 95616, CA, USA
- Genome Center, University of California Davis, Davis, 95616, CA, USA
| | - François Delmotte
- INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France
| |
Collapse
|
49
|
van den Bos E, Gadau J, Schrader L. Molecular identification of polymorphic transposable elements in populations of the invasive ant Cardiocondyla obscurior. Biol Methods Protoc 2024; 9:bpae050. [PMID: 39050818 PMCID: PMC11268152 DOI: 10.1093/biomethods/bpae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Transposable elements (TEs) are found in virtually every eukaryotic genome and are important for generating de novo genetic variation. However, outside of costly and time-consuming whole-genome sequencing approaches, the set of available methods to study TE polymorphisms in non-model species is very limited. The Transposon Display (TD) is a simple yet effective technique to characterize polymorphisms across samples by identifying amplified fragment length polymorphisms using primers targeting specific TE families. So far, this technique has almost exclusively been used in plants. Here, we present an optimized TD protocol for insect species with small genomes such as ants (ca. 200-600 Mb). We characterized TE polymorphisms between two distinct genetic lineages of the invasive ant Cardiocondyla obscurior, as well as between neighboring populations of the New World lineage. We found active LTR/Ty3 retrotransposons, that contributed to the genetic diversification of populations in this species.
Collapse
Affiliation(s)
- Esther van den Bos
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, Münster 48149, Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, Münster 48149, Germany
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, Münster 48149, Germany
| |
Collapse
|
50
|
Baumgartner L, Ipsaro JJ, Hohmann U, Handler D, Schleiffer A, Duchek P, Brennecke J. Evolutionary adaptation of an HP1-protein chromodomain integrates chromatin and DNA sequence signals. eLife 2024; 13:RP93194. [PMID: 38995818 PMCID: PMC11245307 DOI: 10.7554/elife.93194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Members of the diverse heterochromatin protein 1 (HP1) family play crucial roles in heterochromatin formation and maintenance. Despite the similar affinities of their chromodomains for di- and tri-methylated histone H3 lysine 9 (H3K9me2/3), different HP1 proteins exhibit distinct chromatin-binding patterns, likely due to interactions with various specificity factors. Previously, we showed that the chromatin-binding pattern of the HP1 protein Rhino, a crucial factor of the Drosophila PIWI-interacting RNA (piRNA) pathway, is largely defined by a DNA sequence-specific C2H2 zinc finger protein named Kipferl (Baumgartner et al., 2022). Here, we elucidate the molecular basis of the interaction between Rhino and its guidance factor Kipferl. Through phylogenetic analyses, structure prediction, and in vivo genetics, we identify a single amino acid change within Rhino's chromodomain, G31D, that does not affect H3K9me2/3 binding but disrupts the interaction between Rhino and Kipferl. Flies carrying the rhinoG31D mutation phenocopy kipferl mutant flies, with Rhino redistributing from piRNA clusters to satellite repeats, causing pronounced changes in the ovarian piRNA profile of rhinoG31D flies. Thus, Rhino's chromodomain functions as a dual-specificity module, facilitating interactions with both a histone mark and a DNA-binding protein.
Collapse
Affiliation(s)
- Lisa Baumgartner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Jonathan J Ipsaro
- Howard Hughes Medical Institute, W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States
| | - Ulrich Hohmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Dominik Handler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Alexander Schleiffer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Peter Duchek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|