1
|
Dyshlovoy SA, Paigin S, Afflerbach AK, Lobermeyer A, Werner S, Schüller U, Bokemeyer C, Schuh AH, Bergmann L, von Amsberg G, Joosse SA. Applications of Nanopore sequencing in precision cancer medicine. Int J Cancer 2024; 155:2129-2140. [PMID: 39031959 DOI: 10.1002/ijc.35100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/25/2024] [Accepted: 06/25/2024] [Indexed: 07/22/2024]
Abstract
Oxford Nanopore Technologies sequencing, also referred to as Nanopore sequencing, stands at the forefront of a revolution in clinical genetics, offering the potential for rapid, long read, and real-time DNA and RNA sequencing. This technology is currently making sequencing more accessible and affordable. In this comprehensive review, we explore its potential regarding precision cancer diagnostics and treatment. We encompass a critical analysis of clinical cases where Nanopore sequencing was successfully applied to identify point mutations, splice variants, gene fusions, epigenetic modifications, non-coding RNAs, and other pivotal biomarkers that defined subsequent treatment strategies. Additionally, we address the challenges of clinical applications of Nanopore sequencing and discuss the current efforts to overcome them.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Oxford, UK
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefanie Paigin
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Ann-Kristin Afflerbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annabelle Lobermeyer
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Institute for Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Paediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna H Schuh
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Oxford, UK
| | - Lina Bergmann
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon A Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Lu D, Liu C, Ji W, Xia R, Li S, Liu Y, Liu N, Liu Y, Deng XW, Li B. Nanopore ultra-long sequencing and adaptive sampling spur plant complete telomere-to-telomere genome assembly. MOLECULAR PLANT 2024:S1674-2052(24)00330-7. [PMID: 39420560 DOI: 10.1016/j.molp.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/11/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
The pursuit of complete telomere-to-telomere (T2T) genome assembly in plants, challenged by genomic complexity, has been advanced by Oxford Nanopore Technologies (ONT), which offers ultra-long, real-time sequencing. Despite its promise, sequencing length and gap filling remain significant challenges. This study optimized DNA extraction and library preparation, achieving DNA lengths exceeding 485 kb; average N50 read lengths of 80.57 kb, reaching up to 440 kb; and maximum reads of 5.83 Mb. Importantly, we demonstrated that combining ultra-long sequencing and adaptive sampling can effectively fill gaps during assembly, evidenced by successfully filling the remaining gaps of a near-complete Arabidopsis genome assembly and resolving the sequence of an unknown telomeric region in watermelon genome. Collectively, our strategies improve the feasibility of complete T2T genomic assemblies across various plant species, enhancing genome-based research in diverse fields.
Collapse
Affiliation(s)
- Dongdong Lu
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Caijuan Liu
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Wenjun Ji
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Ruiyan Xia
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Shanshan Li
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Yanxia Liu
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Naixu Liu
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Yongqi Liu
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Xing Wang Deng
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Bosheng Li
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China.
| |
Collapse
|
3
|
Geyer J, Opoku K, Lin J, Ramkissoon L, Mullighan C, Bhakta N, Alexander TB, Wang JR. Real-time genomic characterization of pediatric acute leukemia using adaptive sampling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617690. [PMID: 39416119 PMCID: PMC11483067 DOI: 10.1101/2024.10.11.617690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Effective treatment of pediatric acute leukemia is dependent on accurate genomic classification, typically derived from a combination of multiple time-consuming and costly techniques such as flow cytometry, fluorescence in situ hybridization (FISH), karyotype analysis, targeted PCR, and microarrays (Arber et al., 2016; Iacobucci & Mullighan, 2017; Narayanan & Weinberg, 2020). We investigated the feasibility of a comprehensive single-assay classification approach using long-read sequencing, with real-time genome target enrichment, to classify chromosomal abnormalities and structural variants characteristic of acute leukemia. We performed whole genome sequencing on DNA from diagnostic peripheral blood or bone marrow for 54 pediatric acute leukemia cases with diverse genomic subtypes. We demonstrated the characterization of known, clinically relevant karyotype abnormalities and structural variants concordant with standard-of-care clinical testing. Subtype-defining genomic alterations were identified in all cases following a maximum of forty-eight hours of sequencing. In 18 cases, we performed real-time analysis - concurrent with sequencing - and identified the driving alteration in as little as fifteen minutes (for karyotype) or up to six hours (for complex structural variants). Whole genome nanopore sequencing with adaptive sampling has the potential to provide detailed genomic classification of acute leukemia specimens with reduced cost and turnaround time compared to the current standard of care.
Collapse
Affiliation(s)
- Julie Geyer
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kofi Opoku
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Hackensack Meridian Health, JFK University Medical Center, Hackensack, NJ, USA
| | - John Lin
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lori Ramkissoon
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Nickhill Bhakta
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Thomas B. Alexander
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy R. Wang
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Zhang Y, Bi C, Nadeef S, Maddirevula S, Alqahtani M, Alkuraya FS, Li M. NanoRanger enables rapid single-base-pair resolution of genomic disorders. MED 2024; 5:1307-1325.e3. [PMID: 39047733 DOI: 10.1016/j.medj.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/13/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Delineating base-resolution breakpoints of complex rearrangements is crucial for an accurate clinical understanding of pathogenic variants and for carrier screening within family networks or the broader population. However, despite advances in genetic testing using short-read sequencing (SRS), this task remains costly and challenging. METHODS This study addresses the challenges of resolving missing disease-causing breakpoints in complex genomic disorders with suspected homozygous rearrangements by employing multiple long-read sequencing (LRS) strategies, including a novel and efficient strategy named nanopore-based rapid acquisition of neighboring genomic regions (NanoRanger). NanoRanger does not require large amounts of ultrahigh-molecular-weight DNA and stands out for its ease of use and rapid acquisition of large genomic regions of interest with deep coverage. FINDINGS We describe a cohort of 16 familial cases, each harboring homozygous rearrangements that defied breakpoint determination by SRS and optical genome mapping (OGM). NanoRanger identified the breakpoints with single-base-pair resolution, enabling accurate determination of the carrier status of unaffected family members as well as the founder nature of these genomic lesions and their frequency in the local population. The resolved breakpoints revealed that repetitive DNA, gene regulatory elements, and transcription activity contribute to genome instability in these novel recessive rearrangements. CONCLUSIONS Our data suggest that NanoRanger greatly improves the success rate of resolving base-resolution breakpoints of complex genomic disorders and expands access to LRS for the benefit of patients with Mendelian disorders. FUNDING M.L. is supported by KAUST Baseline Award no. BAS/1/1080-01-01 and KAUST Research Translation Fund Award no. REI/1/4742-01.
Collapse
Affiliation(s)
- Yingzi Zhang
- Bioscience Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Chongwei Bi
- Bioscience Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Seba Nadeef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.
| | - Mo Li
- Bioscience Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Bioengineering Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
5
|
Ferreira MR, Carratto TMT, Frontanilla TS, Bonadio RS, Jain M, de Oliveira SF, Castelli EC, Mendes-Junior CT. Advances in forensic genetics: Exploring the potential of long read sequencing. Forensic Sci Int Genet 2024; 74:103156. [PMID: 39427416 DOI: 10.1016/j.fsigen.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
DNA-based technologies have been used in forensic practice since the mid-1980s. While PCR-based STR genotyping using Capillary Electrophoresis remains the gold standard for generating DNA profiles in routine casework worldwide, the research community is continually seeking alternative methods capable of providing additional information to enhance discrimination power or contribute with new investigative leads. Oxford Nanopore Technologies (ONT) and PacBio third-generation sequencing have revolutionized the field, offering real-time capabilities, single-molecule resolution, and long-read sequencing (LRS). ONT, the pioneer of nanopore sequencing, uses biological nanopores to analyze nucleic acids in real-time. Its devices have revolutionized sequencing and may represent an interesting alternative for forensic research and routine casework, given that it offers unparalleled flexibility in a portable size: it enables sequencing approaches that range widely from PCR-amplified short target regions (e.g., CODIS STRs) to PCR-free whole transcriptome or even ultra-long whole genome sequencing. Despite its higher error rate compared to Illumina sequencing, it can significantly improve accuracy in read alignment against a reference genome or de novo genome assembly. This is achieved by generating long contiguous sequences that correctly assemble repetitive sections and regions with structural variation. Moreover, it allows real-time determination of DNA methylation status from native DNA without the need for bisulfite conversion. LRS enables the analysis of thousands of markers at once, providing phasing information and eliminating the need for multiple assays. This maximizes the information retrieved from a single invaluable sample. In this review, we explore the potential use of LRS in different forensic genetics approaches.
Collapse
Affiliation(s)
- Marcel Rodrigues Ferreira
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit - Unipex, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
| | - Thássia Mayra Telles Carratto
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Tamara Soledad Frontanilla
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Raphael Severino Bonadio
- Depto Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Miten Jain
- Department of Bioengineering, Department of Physics, Khoury College of Computer Sciences, Northeastern University, Boston, MA, United States
| | | | - Erick C Castelli
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit - Unipex, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil; Pathology Department, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
| | - Celso Teixeira Mendes-Junior
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil.
| |
Collapse
|
6
|
Lappan R, Chown SL, French M, Perlaza-Jiménez L, Macesic N, Davis M, Brown R, Cheng A, Clasen T, Conlan L, Goddard F, Henry R, Knight DR, Li F, Luby S, Lyras D, Ni G, Rice SA, Short F, Song J, Whittaker A, Leder K, Lithgow T, Greening C. Towards integrated cross-sectoral surveillance of pathogens and antimicrobial resistance: Needs, approaches, and considerations for linking surveillance to action. ENVIRONMENT INTERNATIONAL 2024; 192:109046. [PMID: 39378692 DOI: 10.1016/j.envint.2024.109046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Pathogenic and antimicrobial-resistant (AMR) microorganisms are continually transmitted between human, animal, and environmental reservoirs, contributing to the high burden of infectious disease and driving the growing global AMR crisis. The sheer diversity of pathogens, AMR mechanisms, and transmission pathways connecting these reservoirs create the need for comprehensive cross-sectoral surveillance to effectively monitor risks. Current approaches are often siloed by discipline and sector, focusing independently on parts of the whole. Here we advocate that integrated surveillance approaches, developed through transdisciplinary cross-sector collaboration, are key to addressing the dual crises of infectious diseases and AMR. We first review the areas of need, challenges, and benefits of cross-sectoral surveillance, then summarise and evaluate the major detection methods already available to achieve this (culture, quantitative PCR, and metagenomic sequencing). Finally, we outline how cross-sectoral surveillance initiatives can be fostered at multiple scales of action, and present key considerations for implementation and the development of effective systems to manage and integrate this information for the benefit of multiple sectors. While methods and technologies are increasingly available and affordable for comprehensive pathogen and AMR surveillance across different reservoirs, it is imperative that systems are strengthened to effectively manage and integrate this information.
Collapse
Affiliation(s)
- Rachael Lappan
- Centre to Impact AMR, Monash University, Melbourne, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia; RISE: Revitalising Informal Settlements and their Environments, Melbourne, Australia; Securing Antarctica's Environmental Future, Monash University, Melbourne, Australia.
| | - Steven L Chown
- RISE: Revitalising Informal Settlements and their Environments, Melbourne, Australia; Securing Antarctica's Environmental Future, Monash University, Melbourne, Australia
| | - Matthew French
- RISE: Revitalising Informal Settlements and their Environments, Melbourne, Australia; Faculty of Art, Design and Architecture (MADA), Monash University, Melbourne, Australia
| | - Laura Perlaza-Jiménez
- Centre to Impact AMR, Monash University, Melbourne, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Nenad Macesic
- Centre to Impact AMR, Monash University, Melbourne, Australia; Department of Infectious Diseases, Alfred Health, Melbourne, Australia; Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia
| | - Mark Davis
- Centre to Impact AMR, Monash University, Melbourne, Australia; School of Social Sciences, Monash University, Melbourne, Australia
| | - Rebekah Brown
- RISE: Revitalising Informal Settlements and their Environments, Melbourne, Australia; Monash Sustainable Development Institute, Melbourne, Australia
| | - Allen Cheng
- Centre to Impact AMR, Monash University, Melbourne, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia; Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, Australia
| | - Thomas Clasen
- RISE: Revitalising Informal Settlements and their Environments, Melbourne, Australia; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Lindus Conlan
- Centre to Impact AMR, Monash University, Melbourne, Australia
| | - Frederick Goddard
- RISE: Revitalising Informal Settlements and their Environments, Melbourne, Australia; Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Rebekah Henry
- Centre to Impact AMR, Monash University, Melbourne, Australia; RISE: Revitalising Informal Settlements and their Environments, Melbourne, Australia; Department of Civil Engineering, Monash University, Melbourne, Australia
| | - Daniel R Knight
- Department of Microbiology, PathWest Laboratory Medicine WA, Nedlands, WA, Australia; School of Biomedical Sciences, The University of Western Australia, WA, Australia
| | - Fuyi Li
- Centre to Impact AMR, Monash University, Melbourne, Australia; Infection and Cancer Programs, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Stephen Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Dena Lyras
- Centre to Impact AMR, Monash University, Melbourne, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Gaofeng Ni
- Centre to Impact AMR, Monash University, Melbourne, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Scott A Rice
- Microbiomes for One Systems Health, CSIRO Agriculture and Food, Canberra, Australia
| | - Francesca Short
- Centre to Impact AMR, Monash University, Melbourne, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Jiangning Song
- Centre to Impact AMR, Monash University, Melbourne, Australia; Infection and Cancer Programs, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Andrea Whittaker
- Centre to Impact AMR, Monash University, Melbourne, Australia; School of Social Sciences, Monash University, Melbourne, Australia
| | - Karin Leder
- Centre to Impact AMR, Monash University, Melbourne, Australia; RISE: Revitalising Informal Settlements and their Environments, Melbourne, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Melbourne, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Chris Greening
- Centre to Impact AMR, Monash University, Melbourne, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia; RISE: Revitalising Informal Settlements and their Environments, Melbourne, Australia; Securing Antarctica's Environmental Future, Monash University, Melbourne, Australia.
| |
Collapse
|
7
|
Knobloch S, Salimi F, Buaya A, Ploch S, Thines M. RAPiD: a rapid and accurate plant pathogen identification pipeline for on-site nanopore sequencing. PeerJ 2024; 12:e17893. [PMID: 39346055 PMCID: PMC11438431 DOI: 10.7717/peerj.17893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/19/2024] [Indexed: 10/01/2024] Open
Abstract
Nanopore sequencing technology has enabled the rapid, on-site taxonomic identification of samples from anything and anywhere. However, sequencing errors, inadequate databases, as well as the need for bioinformatic expertise and powerful computing resources, have hampered the widespread use of the technology for pathogen identification in the agricultural sector. Here we present RAPiD, a lightweight and accurate real-time taxonomic profiling pipeline. Compared to other metagenomic profilers, RAPiD had a higher classification precision achieved through the use of a curated, non-redundant database of common agricultural pathogens and extensive quality filtering of alignments. On a fungal, bacterial and mixed mock community RAPiD was the only pipeline to detect all members of the communities. We also present a protocol for in-field sample processing enabling pathogen identification from plant sample to sequence within 3 h using low-cost equipment. With sequencing costs continuing to decrease and more high-quality reference genomes becoming available, nanopore sequencing provides a viable method for rapid and accurate pathogen identification in the field. A web implementation of the RAPiD pipeline for real-time analysis is available at https://agrifuture.senckenberg.de.
Collapse
Affiliation(s)
- Stephen Knobloch
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Society for Nature Research, Frankfurt, Germany
- Department of Food Technology, Fulda University of Applied Sciences, Fulda, Germany
| | - Fatemeh Salimi
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Society for Nature Research, Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Anthony Buaya
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Society for Nature Research, Frankfurt, Germany
| | - Sebastian Ploch
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Society for Nature Research, Frankfurt, Germany
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Society for Nature Research, Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
8
|
Fuhrmeister ER, Kim S, Mairal SA, McCormack C, Chieng B, Swarthout JM, Harvey Paulos A, Njenga SM, Pickering AJ. Context-Seq: CRISPR-Cas9 Targeted Nanopore Sequencing for Transmission Dynamics of Antimicrobial Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612745. [PMID: 39314343 PMCID: PMC11419053 DOI: 10.1101/2024.09.12.612745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Antimicrobial resistance (AMR) aligns with a One Health framework in that resistant bacteria and antibiotic resistance genes (ARGs) can be transmitted between humans, animals, and the environment. However, there is a critical need to more precisely understand how and to what extent AMR is exchanged between animals and humans. Metagenomic sequencing has low detection for rare targets such as ARGs, while whole genome sequencing of isolates is burdensome and misses exchange between uncultured bacterial species. We developed a novel, targeted sequencing assay using CRISPR-Cas9 to selectively sequence ARGs and their genomic context with long-read sequencing. Using this method, termed Context-Seq, we investigated overlapping AMR elements containing the ARGs bla CTX-M and bla TEM between adults, children, poultry, and dogs in animal-owning households in Nairobi, Kenya. We identified 22 genetically distinct clusters (> 80%ID over ≥ 3000 bp) containing bla TEM and one cluster containing bla CTX-M that were shared within and between households. Half of the clusters were shared between humans and animals, while the other half were shared only between animals (poultry-poultry, dog-dog, and dog-poultry). We identified potentially pathogenic hosts of ARGs including Escherichia coli, Klebsiella pneumonia, and Haemophilus influenzae across sample types. Context-Seq complements conventional methods to obtain an additional view of bacterial and mammalian hosts in the proliferation of AMR.
Collapse
Affiliation(s)
- Erica R. Fuhrmeister
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, USA
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Sooyeol Kim
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Shruteek A. Mairal
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Caroline McCormack
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Benard Chieng
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya
| | - Jenna M. Swarthout
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| | - Abigail Harvey Paulos
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Sammy M. Njenga
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya
| | - Amy J. Pickering
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
- Blum Center for Developing Economies, University of California, Berkeley, CA, USA
| |
Collapse
|
9
|
Pilling OA, Sundararaman SA, Brisson D, Beiting DP. Turning the needle into the haystack: Culture-independent amplification of complex microbial genomes directly from their native environment. PLoS Pathog 2024; 20:e1012418. [PMID: 39264872 PMCID: PMC11392400 DOI: 10.1371/journal.ppat.1012418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
High-throughput sequencing (HTS) has revolutionized microbiology, but many microbes exist at low abundance in their natural environment and/or are difficult, if not impossible, to culture in the laboratory. This makes it challenging to use HTS to study the genomes of many important microbes and pathogens. In this review, we discuss the development and application of selective whole genome amplification (SWGA) to allow whole or partial genomes to be sequenced for low abundance microbes directly from complex biological samples. We highlight ways in which genomic data generated by SWGA have been used to elucidate the population dynamics of important human pathogens and monitor development of antimicrobial resistance and the emergence of potential outbreaks. We also describe the limitations of this method and propose some potential innovations that could be used to improve the quality of SWGA and lower the barriers to using this method across a wider range of infectious pathogens.
Collapse
Affiliation(s)
- Olivia A Pilling
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sesh A Sundararaman
- Department of Pediatrics, Children's Hospital of Philadelphia, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dustin Brisson
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Pennsylvania, United States of America
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
10
|
Islam Sajib MS, Brunker K, Oravcova K, Everest P, Murphy ME, Forde T. Advances in Host Depletion and Pathogen Enrichment Methods for Rapid Sequencing-Based Diagnosis of Bloodstream Infection. J Mol Diagn 2024; 26:741-753. [PMID: 38925458 DOI: 10.1016/j.jmoldx.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Bloodstream infection is a major cause of morbidity and death worldwide. Timely and appropriate treatment can reduce mortality among critically ill patients. Current diagnostic methods are too slow to inform precise antibiotic choice, leading to the prescription of empirical antibiotics, which may fail to cover the resistance profile of the pathogen, risking poor patient outcomes. Additionally, overuse of broad-spectrum antibiotics may lead to more resistant organisms, putting further pressure on the dwindling pipeline of antibiotics, and risk transmission of these resistant organisms in the health care environment. Therefore, rapid diagnostics are urgently required to better inform antibiotic choice early in the course of treatment. Sequencing offers great promise in reducing time to microbiological diagnosis; however, the amount of host DNA compared with the pathogen in patient samples presents a significant obstacle. Various host-depletion and bacterial-enrichment strategies have been used in samples, such as saliva, urine, or tissue. However, these methods have yet to be collectively integrated and/or extensively explored for rapid bloodstream infection diagnosis. Although most of these workflows possess individual strengths, their lack of analytical/clinical sensitivity and/or comprehensiveness demands additional improvements or synergistic application. This review provides a distinctive classification system for various methods based on their working principles to guide future research, and discusses their strengths and limitations and explores potential avenues for improvement to assist the reader in workflow selection.
Collapse
Affiliation(s)
- Mohammad S Islam Sajib
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom.
| | - Kirstyn Brunker
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom; Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Katarina Oravcova
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul Everest
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Michael E Murphy
- Department of Microbiology, National Health Service Greater Glasgow and Clyde, Glasgow, United Kingdom; School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Taya Forde
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
11
|
Kawang K, Thongsuk P, Cholsaktrakool P, Anuntakarun S, Kunadirek P, Chuaypen N, Nilgate S, Chatsuwan T, Nookaew I, Sangpiromapichai N, Nilaratanakul V. Sensitivity and specificity of Nanopore sequencing for detecting carbapenem and 3rd-generation cephalosporin-resistant Enterobacteriaceae in urine samples: Real-time simulation with public antimicrobial resistance gene database. Heliyon 2024; 10:e35816. [PMID: 39253247 PMCID: PMC11382077 DOI: 10.1016/j.heliyon.2024.e35816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Objectives To evaluate the accuracy of beta-lactamase gene detection directly from urine samples by Nanopore sequencing. Methods DNA was extracted from bacterial pellets in spun urine. The purified DNA was then sequenced in native form by a Nanopore sequencer (MinION) to identify the organisms and beta-lactamase genes. Results were compared to routine urine cultures and standard antimicrobial susceptibility tests (AST). Results We processed 60 urine samples of which routine cultures grew Enterobacteriaceae, including 28 carbapenem-resistant (CRE), 17 extended-spectrum beta-lactamase (ESBL) or AmpC producing, and 15 non-ESBL/AmpC phenotypes. We excluded 7 samples with extremely low DNA amounts (<1 ng/μl) for a final case of 53 in total. The sensitivity of antimicrobial resistance gene detection within 6 h, the optimal duration from real-time simulation, of Nanopore sequencing for the diagnosis of carbapenem-resistant and ceftriaxone-resistant phenotypes was 73.9 % (95%CI 56.0-91.9 %) and 81.1 % (95%CI 68.5-93.7 %), while the specificity was 96.7 % (95%CI 90.2-100.0 %) and 56.3 % (95%CI 31.9-80.6 %), respectively. The median times for MinION to generate DNA reads containing carbapenemase and ESBL/AmpC genes were 93 min (IQR 17-245.5) and 99 min (IQR 31.25-269.75) after sequencing commencement, respectively. Conclusions Nanopore sequencing can identify bacterial genotypic resistance in urine and may enable clinicians to adjust antimicrobial therapy earlier than routine AST.
Collapse
Affiliation(s)
- Kornthara Kawang
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
- Excellence Center for Infectious Diseases, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Pannaporn Thongsuk
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Pornsawan Cholsaktrakool
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Songtham Anuntakarun
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pattapon Kunadirek
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Bumrungrad International Hospital, Bangkok, 10110, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sumanee Nilgate
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences (UAMS), Arkansas, 72205, United States
| | - Nicha Sangpiromapichai
- Master of Science Program in Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Voraphoj Nilaratanakul
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
- Healthcare-associated Infection Research Group STAR (Special Task Force for Activating Research), Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Infectious Diseases, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Byrne A, Le D, Sereti K, Menon H, Vaidya S, Patel N, Lund J, Xavier-Magalhães A, Shi M, Liang Y, Sterne-Weiler T, Modrusan Z, Stephenson W. Single-cell long-read targeted sequencing reveals transcriptional variation in ovarian cancer. Nat Commun 2024; 15:6916. [PMID: 39134520 PMCID: PMC11319652 DOI: 10.1038/s41467-024-51252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Single-cell RNA sequencing predominantly employs short-read sequencing to characterize cell types, states and dynamics; however, it is inadequate for comprehensive characterization of RNA isoforms. Long-read sequencing technologies enable single-cell RNA isoform detection but are hampered by lower throughput and unintended sequencing of artifacts. Here we develop Single-cell Targeted Isoform Long-Read Sequencing (scTaILoR-seq), a hybridization capture method which targets over a thousand genes of interest, improving the median number of on-target transcripts per cell by 29-fold. We use scTaILoR-seq to identify and quantify RNA isoforms from ovarian cancer cell lines and primary tumors, yielding 10,796 single-cell transcriptomes. Using long-read variant calling we reveal associations of expressed single nucleotide variants (SNVs) with alternative transcript structures. Phasing of SNVs across transcripts enables the measurement of allelic imbalance within distinct cell populations. Overall, scTaILoR-seq is a long-read targeted RNA sequencing method and analytical framework for exploring transcriptional variation at single-cell resolution.
Collapse
Affiliation(s)
- Ashley Byrne
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Daniel Le
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Kostianna Sereti
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA
| | - Hari Menon
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Samir Vaidya
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Neha Patel
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Jessica Lund
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Ana Xavier-Magalhães
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Minyi Shi
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Yuxin Liang
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Timothy Sterne-Weiler
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA
- Department of Oncology Bioinformatics, Genentech, South San Francisco, CA, USA
| | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA.
| | - William Stephenson
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
13
|
Wong C, Tham CY, Yang L, Benton MC, Narang V, Denil S, Duan K, Yew YW, Lee B, Florez de Sessions P, Common JEA. Nanopore Sequencing Enables Allelic Phasing of FLG Loss-of-Function Variants, Intragenic Copy Number Variation, and Methylation Status in Atopic Dermatitis and Ichthyosis Vulgaris. J Invest Dermatol 2024; 144:1883-1886.e9. [PMID: 38336337 DOI: 10.1016/j.jid.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Affiliation(s)
- Colin Wong
- A∗STAR Skin Research Laboratory, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | | | - Lin Yang
- Oxford Nanopore Technologies, Singapore, Singapore
| | | | - Vipin Narang
- Singapore Immunology Network, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Simon Denil
- A∗STAR Skin Research Laboratory, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Kaibo Duan
- Singapore Immunology Network, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Yik Weng Yew
- National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; Centre for Biomedical Informatics, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; A∗STAR Infectious Diseases Labs (A∗STAR ID Labs), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | | | - John E A Common
- A∗STAR Skin Research Laboratory, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore; Skin Research Institute of Singapore, Singapore, Singapore.
| |
Collapse
|
14
|
Djeghout B, Le-Viet T, Martins LDO, Savva GM, Evans R, Baker D, Page A, Elumogo N, Wain J, Janecko N. Capturing clinically relevant Campylobacter attributes through direct whole genome sequencing of stool. Microb Genom 2024; 10. [PMID: 39213166 DOI: 10.1099/mgen.0.001284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Campylobacter is the leading bacterial cause of infectious intestinal disease, but the pathogen typically accounts for a very small proportion of the overall stool microbiome in each patient. Diagnosis is even more difficult due to the fastidious nature of Campylobacter in the laboratory setting. This has, in part, driven a change in recent years, from culture-based to rapid PCR-based diagnostic assays which have improved diagnostic detection, whilst creating a knowledge gap in our clinical and epidemiological understanding of Campylobacter genotypes - no isolates to sequence. In this study, direct metagenomic sequencing approaches were used to assess the possibility of replacing genome sequences with metagenome sequences; metagenomic sequencing outputs were used to describe clinically relevant attributes of Campylobacter genotypes. A total of 37 diarrhoeal stool samples with Campylobacter and five samples with an unknown pathogen result were collected and processed with and without filtration, DNA was extracted, and metagenomes were sequenced by short-read sequencing. Culture-based methods were used to validate Campylobacter metagenome-derived genome (MDG) results. Sequence output metrics were assessed for Campylobacter genome quality and accuracy of characterization. Of the 42 samples passing quality checks for analysis, identification of Campylobacter to the genus and species level was dependent on Campylobacter genome read count, coverage and genome completeness. A total of 65% (24/37) of samples were reliably identified to the genus level through Campylobacter MDG, 73% (27/37) by culture and 97% (36/37) by qPCR. The Campylobacter genomes with a genome completeness of over 60% (n=21) were all accurately identified at the species level (100%). Of those, 72% (15/21) were identified to sequence types (STs), and 95% (20/21) accurately identified antimicrobial resistance (AMR) gene determinants. Filtration of stool samples enhanced Campylobacter MDG recovery and genome quality metrics compared to the corresponding unfiltered samples, which improved the identification of STs and AMR profiles. The phylogenetic analysis in this study demonstrated the clustering of the metagenome-derived with culture-derived genomes and revealed the reliability of genomes from direct stool sequencing. Furthermore, Campylobacter genome spiking percentages ranging from 0 to 2% total metagenome abundance in the ONT MinION sequencer, configured to adaptive sequencing, exhibited better assembly quality and accurate identification of STs, particularly in the analysis of metagenomes containing 2 and 1% of Campylobacter jejuni genomes. Direct sequencing of Campylobacter from stool samples provides clinically relevant and epidemiologically important genomic information without the reliance on cultured genomes.
Collapse
Affiliation(s)
- Bilal Djeghout
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Thanh Le-Viet
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | | | - George M Savva
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Rhiannon Evans
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - David Baker
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Andrew Page
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Ngozi Elumogo
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- Eastern Pathology Alliance, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - John Wain
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Nicol Janecko
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| |
Collapse
|
15
|
Farrall T, Brawner J, Dinsdale A, Kehoe M. A Review of Probe-Based Enrichment Methods to Inform Plant Virus Diagnostics. Int J Mol Sci 2024; 25:8348. [PMID: 39125919 PMCID: PMC11312432 DOI: 10.3390/ijms25158348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Modern diagnostic techniques based on DNA sequence similarity are currently the gold standard for the detection of existing and emerging pathogens. Whilst individual assays are inexpensive to use, assay development is costly and carries risks of not being sensitive or specific enough to capture an increasingly diverse range of targets. Sequencing can provide the entire nucleic acid content of a sample and may be used to identify all pathogens present in the sample when the depth of coverage is sufficient. Targeted enrichment techniques have been used to increase sequence coverage and improve the sensitivity of detection within virus samples, specifically, to capture sequences for a range of different viruses or increase the number of reads from low-titre virus infections. Vertebrate viruses have been well characterised using in-solution hybridisation capture to target diverse virus families. The use of probes for genotyping and strain identification has been limited in plants, and uncertainty around sensitivity is an impediment to the development of a large-scale virus panel to use within regulatory settings and diagnostic pipelines. This review aims to compare significant studies that have used targeted enrichment of viruses to identify approaches to probe design and potential for use in plant virus detection and characterisation.
Collapse
Affiliation(s)
- Thomas Farrall
- Plant Innovation Centre, Australian Government, Department of Agriculture, Fisheries and Forestry (DAFF), Canberra, ACT 2601, Australia; (T.F.); (A.D.)
- Forest Research Institute, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Jeremy Brawner
- Forest Research Institute, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA
| | - Adrian Dinsdale
- Plant Innovation Centre, Australian Government, Department of Agriculture, Fisheries and Forestry (DAFF), Canberra, ACT 2601, Australia; (T.F.); (A.D.)
| | - Monica Kehoe
- Diagnostic Laboratory Services, Biosecurity and Sustainability, Department of Primary Industries and Regional Development (DPIRD), Perth, WA 6151, Australia
| |
Collapse
|
16
|
Fan K, Li M, Zhang J, Xie Z, Jiang D, Bo X, Zhao D, Shi S, Ni M. ReadCurrent: a VDCNN-based tool for fast and accurate nanopore selective sequencing. Brief Bioinform 2024; 25:bbae435. [PMID: 39226890 PMCID: PMC11370629 DOI: 10.1093/bib/bbae435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/20/2024] [Indexed: 09/05/2024] Open
Abstract
Nanopore selective sequencing allows the targeted sequencing of DNA of interest using computational approaches rather than experimental methods such as targeted multiplex polymerase chain reaction or hybridization capture. Compared to sequence-alignment strategies, deep learning (DL) models for classifying target and nontarget DNA provide large speed advantages. However, the relatively low accuracy of these DL-based tools hinders their application in nanopore selective sequencing. Here, we present a DL-based tool named ReadCurrent for nanopore selective sequencing, which takes electric currents as inputs. ReadCurrent employs a modified very deep convolutional neural network (VDCNN) architecture, enabling significantly lower computational costs for training and quicker inference compared to conventional VDCNN. We evaluated the performance of ReadCurrent across 10 nanopore sequencing datasets spanning human, yeasts, bacteria, and viruses. We observed that ReadCurrent achieved a mean accuracy of 98.57% for classification, outperforming four other DL-based selective sequencing methods. In experimental validation that selectively sequenced microbial DNA from human DNA, ReadCurrent achieved an enrichment ratio of 2.85, which was higher than the 2.7 ratio achieved by MinKNOW using the sequence-alignment strategy. In summary, ReadCurrent can rapidly classify target and nontarget DNA with high accuracy, providing an alternative in the toolbox for nanopore selective sequencing. ReadCurrent is available at https://github.com/Ming-Ni-Group/ReadCurrent.
Collapse
Affiliation(s)
- Kechen Fan
- Advanced & Interdisciplinary Biotechnology, Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North Third Ring East Road, Chaoyang District, Beijing 100029, China
| | - Mengfan Li
- Advanced & Interdisciplinary Biotechnology, Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
- Information Center, Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Jiarong Zhang
- Advanced & Interdisciplinary Biotechnology, Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
- School of Forensic Medicine, Shanxi Medical University, No. 55 Wenhua Street, Yuci District, Jinzhong 030600, China
| | - Zihan Xie
- Advanced & Interdisciplinary Biotechnology, Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
- College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 North Third Ring East Road, Chaoyang District, Beijing 100029, China
| | - Daguang Jiang
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North Third Ring East Road, Chaoyang District, Beijing 100029, China
| | - Xiaochen Bo
- Advanced & Interdisciplinary Biotechnology, Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Dongsheng Zhao
- Information Center, Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Shenghui Shi
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North Third Ring East Road, Chaoyang District, Beijing 100029, China
| | - Ming Ni
- Advanced & Interdisciplinary Biotechnology, Academy of Military Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing 100850, China
| |
Collapse
|
17
|
Yuen ZWS, Shanmuganandam S, Stanley M, Jiang S, Hein N, Daniel R, McNevin D, Jack C, Eyras E. Profiling age and body fluid DNA methylation markers using nanopore adaptive sampling. Forensic Sci Int Genet 2024; 71:103048. [PMID: 38640705 DOI: 10.1016/j.fsigen.2024.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
DNA methylation plays essential roles in regulating physiological processes, from tissue and organ development to gene expression and aging processes and has emerged as a widely used biomarker for the identification of body fluids and age prediction. Currently, methylation markers are targeted independently at specific CpG sites as part of a multiplexed assay rather than through a unified assay. Methylation detection is also dependent on divergent methodologies, ranging from enzyme digestion and affinity enrichment to bisulfite treatment, alongside various technologies for high-throughput profiling, including microarray and sequencing. In this pilot study, we test the simultaneous identification of age-associated and body fluid-specific methylation markers using a single technology, nanopore adaptive sampling. This innovative approach enables the profiling of multiple CpG marker sites across entire gene regions from a single sample without the need for specialized DNA preparation or additional biochemical treatments. Our study demonstrates that adaptive sampling achieves sufficient coverage in regions of interest to accurately determine the methylation status, shows a robust consistency with whole-genome bisulfite sequencing data, and corroborates known CpG markers of age and body fluids. Our work also resulted in the identification of new sites strongly correlated with age, suggesting new possible age methylation markers. This study lays the groundwork for the systematic development of nanopore-based methodologies in both age prediction and body fluid identification, highlighting the feasibility and potential of nanopore adaptive sampling while acknowledging the need for further validation and expansion in future research.
Collapse
Affiliation(s)
- Zaka Wing-Sze Yuen
- EMBL Australia Partner Laboratory Network, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; The Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; The Centre for Computational Biomedical Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Somasundhari Shanmuganandam
- Department of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia; Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra, ACT 2601, Australia
| | - Maurice Stanley
- Department of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia; Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra, ACT 2601, Australia
| | - Simon Jiang
- Department of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia; Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Australian National University, Canberra, ACT 2601, Australia; Department of Renal Medicine, The Canberra Hospital, Canberra, ACT 2605, Australia
| | - Nadine Hein
- ACRF Department of Cancer Biology and Therapeutics and Division of Genome Sciences and Cancer, John Curtin School of Medical Research, Australian National University, Acton, Canberra, Australia
| | - Runa Daniel
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Dennis McNevin
- Centre for Forensic Science, School of Mathematical & Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Cameron Jack
- ANU Bioinformatics Consultancy, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Eduardo Eyras
- EMBL Australia Partner Laboratory Network, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; The Shine-Dalgarno Centre for RNA Innovation, John Curtin School of Medical Research, The Australian National University, Canberra, Australia; The Centre for Computational Biomedical Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
18
|
Gamboa-Suárez BA, Lotta-Arévalo IA, Sarmiento-Salazar F, Matta NE. Finding a needle in a haystack: DNA Haemoproteus columbae enrichment using percoll density gradient and flow cytometry. Vet Parasitol 2024; 328:110170. [PMID: 38513447 DOI: 10.1016/j.vetpar.2024.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Isolation of genomic DNA of blood parasites in birds, reptiles, amphibians, and fishes is a challenging task, given that their red blood cells are nucleated; for that reason, parasite genomic DNA is only a fraction of the total extracted DNA, and it is challenging to obtain concentrated high-quality genetic material. Percoll Density Gradient (PDG) and flow cytometry are tools for separating and analyzing cell populations or even a single cell, and both represent potent approaches for isolating avian haemosporidians parasites. Our experimental design included several steps seeking to concentrate the parasite´s DNA. We used blood samples from a Rock pigeon infected with Haemoproteus columbae. After inducing parasite exflagellation and gametogenesis in vitro, we subjected the samples to a Percoll Density Gradient to separate the parasites from the rest of the blood cells. Following centrifugation, the layer containing extracellular parasites underwent a flow cytometry and cell sorting process, during which we selected two different subpopulations of cells for analysis. Based on qPCR analyses, we demonstrate parasite DNA enrichment in Percoll Density Gradient and flow cytometry samples; simultaneously, these samples showed the lowest concentration of Columba livia DNA. However, the concentration of parasite DNA was higher in the PDG than in the cell sorting sample. This study reports the concentration of the Haemoproteus parasite by flow cytometry without DNA-intercalating dyes, and this methodology can serve as a technique for DNA enrichment of blood parasites infecting nucleated red blood cells to improve techniques that allow obtaining complete genomes.
Collapse
Affiliation(s)
- Brayan Andrés Gamboa-Suárez
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Colombia; Departamento de Salud Animal, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Sede Bogotá, Colombia.
| | | | - Felipe Sarmiento-Salazar
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Colombia
| | - Nubia E Matta
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Colombia
| |
Collapse
|
19
|
Fernández-Suárez E, González-Del Pozo M, Méndez-Vidal C, Martín-Sánchez M, Mena M, de la Morena-Barrio B, Corral J, Borrego S, Antiñolo G. Long-read sequencing improves the genetic diagnosis of retinitis pigmentosa by identifying an Alu retrotransposon insertion in the EYS gene. Mob DNA 2024; 15:9. [PMID: 38704576 PMCID: PMC11069205 DOI: 10.1186/s13100-024-00320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Biallelic variants in EYS are the major cause of autosomal recessive retinitis pigmentosa (arRP) in certain populations, a clinically and genetically heterogeneous disease that may lead to legal blindness. EYS is one of the largest genes (~ 2 Mb) expressed in the retina, in which structural variants (SVs) represent a common cause of disease. However, their identification using short-read sequencing (SRS) is not always feasible. Here, we conducted targeted long-read sequencing (T-LRS) using adaptive sampling of EYS on the MinION sequencing platform (Oxford Nanopore Technologies) to definitively diagnose an arRP family, whose affected individuals (n = 3) carried the heterozygous pathogenic deletion of exons 32-33 in the EYS gene. As this was a recurrent variant identified in three additional families in our cohort, we also aimed to characterize the known deletion at the nucleotide level to assess a possible founder effect. RESULTS T-LRS in family A unveiled a heterozygous AluYa5 insertion in the coding exon 43 of EYS (chr6(GRCh37):g.64430524_64430525ins352), which segregated with the disease in compound heterozygosity with the previously identified deletion. Visual inspection of previous SRS alignments using IGV revealed several reads containing soft-clipped bases, accompanied by a slight drop in coverage at the Alu insertion site. This prompted us to develop a simplified program using grep command to investigate the recurrence of this variant in our cohort from SRS data. Moreover, LRS also allowed the characterization of the CNV as a ~ 56.4kb deletion spanning exons 32-33 of EYS (chr6(GRCh37):g.64764235_64820592del). The results of further characterization by Sanger sequencing and linkage analysis in the four families were consistent with a founder variant. CONCLUSIONS To our knowledge, this is the first report of a mobile element insertion into the coding sequence of EYS, as a likely cause of arRP in a family. Our study highlights the value of LRS technology in characterizing and identifying hidden pathogenic SVs, such as retrotransposon insertions, whose contribution to the etiopathogenesis of rare diseases may be underestimated.
Collapse
Affiliation(s)
- Elena Fernández-Suárez
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Seville, Spain
| | - María González-Del Pozo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Seville, Spain
| | - Cristina Méndez-Vidal
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Seville, Spain
| | - Marta Martín-Sánchez
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Seville, Spain
| | - Marcela Mena
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Seville, Spain
| | - Belén de la Morena-Barrio
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, Murcia, Spain
| | - Javier Corral
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, Murcia, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain.
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Seville, Spain.
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC, University of Seville, Seville, Spain.
- Center for Biomedical Network Research On Rare Diseases (CIBERER), Seville, Spain.
| |
Collapse
|
20
|
Mordig M, Rätsch G, Kahles A. SimReadUntil for benchmarking selective sequencing algorithms on ONT devices. Bioinformatics 2024; 40:btae199. [PMID: 38603597 PMCID: PMC11065473 DOI: 10.1093/bioinformatics/btae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/02/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024] Open
Abstract
MOTIVATION The Oxford Nanopore Technologies (ONT) ReadUntil API enables selective sequencing, which aims to selectively favor interesting over uninteresting reads, e.g. to deplete or enrich certain genomic regions. The performance gain depends on the selective sequencing decision-making algorithm (SSDA) which decides whether to reject a read, stop receiving a read, or wait for more data. Since real runs are time-consuming and costly, simulating the ONT sequencer with support for the ReadUntil API is highly beneficial for comparing and optimizing new SSDAs. Existing software like MinKNOW and UNCALLED only return raw signal data, are memory-intensive, require huge and often unavailable multi-fast5 files (≥100GB) and are not clearly documented. RESULTS We present the ONT device simulator SimReadUntil that takes a set of full reads as input, distributes them to channels and plays them back in real time including mux scans, channel gaps and blockages, and allows to reject reads as well as stop receiving data from them. Our modified ReadUntil API provides the basecalled reads rather than the raw signal, reducing computational load and focusing on the SSDA rather than on basecalling. Tuning the parameters of tools like ReadFish and ReadBouncer becomes easier because a GPU for basecalling is no longer required. We offer various methods to extract simulation parameters from a sequencing summary file and adapt ReadFish to replicate one of their enrichment experiments. SimReadUntil's gRPC interface allows standardized interaction with a wide range of programming languages. AVAILABILITY AND IMPLEMENTATION Code and fully worked examples are available on GitHub (https://github.com/ratschlab/sim_read_until).
Collapse
Affiliation(s)
- Maximilian Mordig
- Biomedical Informatics Group, Department of Computer Science, ETH Zurich, Zürich, 8092, Switzerland
- Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, 72076, Germany
| | - Gunnar Rätsch
- Biomedical Informatics Group, Department of Computer Science, ETH Zurich, Zürich, 8092, Switzerland
- Biomedical Informatics Research, University Hospital Zurich, Zürich, 8091, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
- Department of Biology, ETH Zurich, Zürich, 8092, Switzerland
| | - André Kahles
- Biomedical Informatics Group, Department of Computer Science, ETH Zurich, Zürich, 8092, Switzerland
- Biomedical Informatics Research, University Hospital Zurich, Zürich, 8091, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| |
Collapse
|
21
|
Hewel C, Schmidt H, Runkel S, Kohnen W, Schweiger-Seemann S, Michel A, Bikar SE, Lieb B, Plachter B, Hankeln T, Linke M, Gerber S. Nanopore adaptive sampling of a metagenomic sample derived from a human monkeypox case. J Med Virol 2024; 96:e29610. [PMID: 38654702 DOI: 10.1002/jmv.29610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
In 2022, a series of human monkeypox cases in multiple countries led to the largest and most widespread outbreak outside the known endemic areas. Setup of proper genomic surveillance is of utmost importance to control such outbreaks. To this end, we performed Nanopore (PromethION P24) and Illumina (NextSeq. 2000) Whole Genome Sequencing (WGS) of a monkeypox sample. Adaptive sampling was applied for in silico depletion of the human host genome, allowing for the enrichment of low abundance viral DNA without a priori knowledge of sample composition. Nanopore sequencing allowed for high viral genome coverage, tracking of sample composition during sequencing, strain determination, and preliminary assessment of mutational pattern. In addition to that, only Nanopore data allowed us to resolve the entire monkeypox virus genome, with respect to two structural variants belonging to the genes OPG015 and OPG208. These SVs in important host range genes seem stable throughout the outbreak and are frequently misassembled and/or misannotated due to the prevalence of short read sequencing or short read first assembly. Ideally, standalone standard Illumina sequencing should not be used for Monkeypox WGS and de novo assembly, since it will obfuscate the structure of the genome, which has an impact on the quality and completeness of the genomes deposited in public databases and thus possibly on the ability to evaluate the complete genetic reason for the host range change of monkeypox in the current pandemic.
Collapse
Affiliation(s)
- Charlotte Hewel
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hanno Schmidt
- SARS-CoV-2 Sequencing Consortium Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Runkel
- SARS-CoV-2 Sequencing Consortium Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Transfusion Unit & Test Center, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Wolfgang Kohnen
- SARS-CoV-2 Sequencing Consortium Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Hygiene and Infection Prevention, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susann Schweiger-Seemann
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- SARS-CoV-2 Sequencing Consortium Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - André Michel
- SARS-CoV-2 Sequencing Consortium Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Medical Management Department, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sven-Ernö Bikar
- SARS-CoV-2 Sequencing Consortium Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- StarSEQ GmbH, Mainz, Germany
| | | | - Bodo Plachter
- SARS-CoV-2 Sequencing Consortium Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Hankeln
- SARS-CoV-2 Sequencing Consortium Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Faculty of Biology, Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Matthias Linke
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- SARS-CoV-2 Sequencing Consortium Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- SARS-CoV-2 Sequencing Consortium Mainz, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
22
|
Ulrich JU, Epping L, Pilz T, Walther B, Stingl K, Semmler T, Renard BY. Nanopore adaptive sampling effectively enriches bacterial plasmids. mSystems 2024; 9:e0094523. [PMID: 38376263 PMCID: PMC10949517 DOI: 10.1128/msystems.00945-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Bacterial plasmids play a major role in the spread of antibiotic resistance genes. However, their characterization via DNA sequencing suffers from the low abundance of plasmid DNA in those samples. Although sample preparation methods can enrich the proportion of plasmid DNA before sequencing, these methods are expensive and laborious, and they might introduce a bias by enriching only for specific plasmid DNA sequences. Nanopore adaptive sampling could overcome these issues by rejecting uninteresting DNA molecules during the sequencing process. In this study, we assess the application of adaptive sampling for the enrichment of low-abundant plasmids in known bacterial isolates using two different adaptive sampling tools. We show that a significant enrichment can be achieved even on expired flow cells. By applying adaptive sampling, we also improve the quality of de novo plasmid assemblies and reduce the sequencing time. However, our experiments also highlight issues with adaptive sampling if target and non-target sequences span similar regions. IMPORTANCE Antimicrobial resistance causes millions of deaths every year. Mobile genetic elements like bacterial plasmids are key drivers for the dissemination of antimicrobial resistance genes. This makes the characterization of plasmids via DNA sequencing an important tool for clinical microbiologists. Since plasmids are often underrepresented in bacterial samples, plasmid sequencing can be challenging and laborious. To accelerate the sequencing process, we evaluate nanopore adaptive sampling as an in silico method for the enrichment of low-abundant plasmids. Our results show the potential of this cost-efficient method for future plasmid research but also indicate issues that arise from using reference sequences.
Collapse
Affiliation(s)
- Jens-Uwe Ulrich
- Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam, Potsdam, Germany
- Department of Mathematics and Computer Science, Free University of Berlin, Berlin, Germany
- Phylogenomics Unit, Center for Artificial Intelligence in Public Health Research, Robert Koch Institute, Wildau, Germany
| | - Lennard Epping
- Genome Sequencing and Genomic Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Tanja Pilz
- Genome Sequencing and Genomic Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Birgit Walther
- Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | - Kerstin Stingl
- National Reference Laboratory for Campylobacter, Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Torsten Semmler
- Genome Sequencing and Genomic Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Bernhard Y. Renard
- Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam, Potsdam, Germany
| |
Collapse
|
23
|
Prentice MB, Gilbertson MLJ, Storm DJ, Turner WC, Walsh DP, Pinkerton ME, Kamath PL. Metagenomic sequencing sheds light on microbes putatively associated with pneumonia-related fatalities of white-tailed deer ( Odocoileus virginianus). Microb Genom 2024; 10:001214. [PMID: 38536208 PMCID: PMC10995629 DOI: 10.1099/mgen.0.001214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024] Open
Abstract
With emerging infectious disease outbreaks in human, domestic and wild animal populations on the rise, improvements in pathogen characterization and surveillance are paramount for the protection of human and animal health, as well as the conservation of ecologically and economically important wildlife. Genomics offers a range of suitable tools to meet these goals, with metagenomic sequencing facilitating the characterization of whole microbial communities associated with emerging and endemic disease outbreaks. Here, we use metagenomic sequencing in a case-control study to identify microbes in lung tissue associated with newly observed pneumonia-related fatalities in 34 white-tailed deer (Odocoileus virginianus) in Wisconsin, USA. We identified 20 bacterial species that occurred in more than a single individual. Of these, only Clostridium novyi was found to substantially differ (in number of detections) between case and control sample groups; however, this difference was not statistically significant. We also detected several bacterial species associated with pneumonia and/or other diseases in ruminants (Mycoplasma ovipneumoniae, Trueperella pyogenes, Pasteurella multocida, Anaplasma phagocytophilum, Fusobacterium necrophorum); however, these species did not substantially differ between case and control sample groups. On average, we detected a larger number of bacterial species in case samples than controls, supporting the potential role of polymicrobial infections in this system. Importantly, we did not detect DNA of viruses or fungi, suggesting that they are not significantly associated with pneumonia in this system. Together, these results highlight the utility of metagenomic sequencing for identifying disease-associated microbes. This preliminary list of microbes will help inform future research on pneumonia-associated fatalities of white-tailed deer.
Collapse
Affiliation(s)
| | - Marie L. J. Gilbertson
- Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Wisconsin, USA
| | | | - Wendy C. Turner
- U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Wisconsin, USA
| | - Daniel P. Walsh
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Montana, USA
| | - Marie E. Pinkerton
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Wisconsin, USA
| | - Pauline L. Kamath
- School of Food and Agriculture, University of Maine, Maine, USA
- Maine Center for Genetics in the Environment, University of Maine, Orono, Maine, USA
| |
Collapse
|
24
|
Buytaers FE, Verhaegen B, Van Nieuwenhuysen T, Roosens NHC, Vanneste K, Marchal K, De Keersmaecker SCJ. Strain-level characterization of foodborne pathogens without culture enrichment for outbreak investigation using shotgun metagenomics facilitated with nanopore adaptive sampling. Front Microbiol 2024; 15:1330814. [PMID: 38495515 PMCID: PMC10940517 DOI: 10.3389/fmicb.2024.1330814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction Shotgun metagenomics has previously proven effective in the investigation of foodborne outbreaks by providing rapid and comprehensive insights into the microbial contaminant. However, culture enrichment of the sample has remained a prerequisite, despite the potential impact on pathogen detection resulting from the growth competition. To circumvent the need for culture enrichment, we explored the use of adaptive sampling using various databases for a targeted nanopore sequencing, compared to shotgun metagenomics alone. Methods The adaptive sampling method was first tested on DNA of mashed potatoes mixed with DNA of a Staphylococcus aureus strain previously associated with a foodborne outbreak. The selective sequencing was used to either deplete the potato sequencing reads or enrich for the pathogen sequencing reads, and compared to a shotgun sequencing. Then, living S. aureus were spiked at 105 CFU into 25 g of mashed potatoes. Three DNA extraction kits were tested, in combination with enrichment using adaptive sampling, following whole genome amplification. After data analysis, the possibility to characterize the contaminant with the different sequencing and extraction methods, without culture enrichment, was assessed. Results Overall, the adaptive sampling outperformed the shotgun sequencing. While the use of a host removal DNA extraction kit and targeted sequencing using a database of foodborne pathogens allowed rapid detection of the pathogen, the most complete characterization was achieved when using solely a database of S. aureus combined with a conventional DNA extraction kit, enabling accurate placement of the strain on a phylogenetic tree alongside outbreak cases. Discussion This method shows great potential for strain-level analysis of foodborne outbreaks without the need for culture enrichment, thereby enabling faster investigations and facilitating precise pathogen characterization. The integration of adaptive sampling with metagenomics presents a valuable strategy for more efficient and targeted analysis of microbial communities in foodborne outbreaks, contributing to improved food safety and public health.
Collapse
Affiliation(s)
- Florence E. Buytaers
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Bavo Verhaegen
- National Reference Laboratory for Foodborne Outbreaks (NRL-FBO) and for Coagulase Positive Staphylococci (NRL-CPS), Foodborne Pathogens, Sciensano, Brussels, Belgium
| | - Tom Van Nieuwenhuysen
- National Reference Laboratory for Foodborne Outbreaks (NRL-FBO) and for Coagulase Positive Staphylococci (NRL-CPS), Foodborne Pathogens, Sciensano, Brussels, Belgium
| | | | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Information Technology, IDlab, IMEC, Ghent University, Ghent, Belgium
| | | |
Collapse
|
25
|
Ahsan MU, Gouru A, Chan J, Zhou W, Wang K. A signal processing and deep learning framework for methylation detection using Oxford Nanopore sequencing. Nat Commun 2024; 15:1448. [PMID: 38365920 PMCID: PMC10873387 DOI: 10.1038/s41467-024-45778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/04/2024] [Indexed: 02/18/2024] Open
Abstract
Oxford Nanopore sequencing can detect DNA methylations from ionic current signal of single molecules, offering a unique advantage over conventional methods. Additionally, adaptive sampling, a software-controlled enrichment method for targeted sequencing, allows reduced representation methylation sequencing that can be applied to CpG islands or imprinted regions. Here we present DeepMod2, a comprehensive deep-learning framework for methylation detection using ionic current signal from Nanopore sequencing. DeepMod2 implements both a bidirectional long short-term memory (BiLSTM) model and a Transformer model and can analyze POD5 and FAST5 signal files generated on R9 and R10 flowcells. Additionally, DeepMod2 can run efficiently on central processing unit (CPU) through model pruning and can infer epihaplotypes or haplotype-specific methylation calls from phased reads. We use multiple publicly available and newly generated datasets to evaluate the performance of DeepMod2 under varying scenarios. DeepMod2 has comparable performance to Guppy and Dorado, which are the current state-of-the-art methods from Oxford Nanopore Technologies that remain closed-source. Moreover, we show a high correlation (r = 0.96) between reduced representation and whole-genome Nanopore sequencing. In summary, DeepMod2 is an open-source tool that enables fast and accurate DNA methylation detection from whole-genome or adaptive sequencing data on a diverse range of flowcell types.
Collapse
Affiliation(s)
- Mian Umair Ahsan
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Anagha Gouru
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joe Chan
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
26
|
Neujahr AC, Loy DS, Loy JD, Brodersen BW, Fernando SC. Rapid detection of high consequence and emerging viral pathogens in pigs. Front Vet Sci 2024; 11:1341783. [PMID: 38384961 PMCID: PMC10879307 DOI: 10.3389/fvets.2024.1341783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction An increasing emergence of novel animal pathogens has been observed over the last decade. Viruses are a major contributor to the increased emergence and therefore, veterinary surveillance and testing procedures are greatly needed to rapidly and accurately detect high-consequence animal diseases such as Foot and Mouth Disease, Highly Pathogenic Avian Influenza, Classical Swine Fever, and African Swine Fever. The major detection methods for such diseases include real-time PCR assays and pathogen-specific antibodies among others. However, due to genetic drift or -shift in virus genomes, failure to detect such pathogens is a risk with devastating consequences. Additionally, the emergence of novel pathogens with no prior knowledge requires non-biased detection methods for discovery. Methods Utilizing enrichment techniques coupled with Oxford Nanopore Technologies MinION™ sequencing platform, we developed a sample processing and analysis pipeline to identify DNA and RNA viruses and bacterial pathogens from clinical samples. Results and discussion The sample processing and analysis pipeline developed allows the identification of both DNA and RNA viruses and bacterial pathogens simultaneously from a single tissue sample and provides results in less than 12 h. Preliminary evaluation of this method using surrogate viruses in different matrices and using clinical samples from animals with unknown disease causality, we demonstrate that this method can be used to simultaneously detect pathogens from multiple domains of life simultaneously with high confidence.
Collapse
Affiliation(s)
- Alison C. Neujahr
- Department of Complex Biosystems, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Duan S. Loy
- Nebraska Veterinary Diagnostic Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - John Dustin Loy
- Nebraska Veterinary Diagnostic Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Bruce W. Brodersen
- Nebraska Veterinary Diagnostic Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Samodha C. Fernando
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Food Science, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
27
|
Harris PNA, Bauer MJ, Lüftinger L, Beisken S, Forde BM, Balch R, Cotta M, Schlapbach L, Raman S, Shekar K, Kruger P, Lipman J, Bialasiewicz S, Coin L, Roberts JA, Paterson DL, Irwin AD. Rapid nanopore sequencing and predictive susceptibility testing of positive blood cultures from intensive care patients with sepsis. Microbiol Spectr 2024; 12:e0306523. [PMID: 38193658 PMCID: PMC10846127 DOI: 10.1128/spectrum.03065-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
We aimed to evaluate the performance of Oxford Nanopore Technologies (ONT) sequencing from positive blood culture (BC) broths for bacterial identification and antimicrobial susceptibility prediction. Patients with suspected sepsis in four intensive care units were prospectively enrolled. Human-depleted DNA was extracted from positive BC broths and sequenced using ONT (MinION). Species abundance was estimated using Kraken2, and a cloud-based system (AREScloud) provided in silico predictive antimicrobial susceptibility testing (AST) from assembled contigs. Results were compared to conventional identification and phenotypic AST. Species-level agreement between conventional methods and AST predicted from sequencing was 94.2% (49/52), increasing to 100% in monomicrobial infections. In 262 high-quality AREScloud AST predictions across 24 samples, categorical agreement (CA) was 89.3%, with major error (ME) and very major error (VME) rates of 10.5% and 12.1%, respectively. Over 90% CA was achieved for some taxa (e.g., Staphylococcus aureus) but was suboptimal for Pseudomonas aeruginosa. In 470 AST predictions across 42 samples, with both high quality and exploratory-only predictions, overall CA, ME, and VME rates were 87.7%, 8.3%, and 28.4%. VME rates were inflated by false susceptibility calls in a small number of species/antibiotic combinations with few representative resistant isolates. Time to reporting from sequencing could be achieved within 8-16 h from BC positivity. Direct sequencing from positive BC broths is feasible and can provide accurate predictive AST for some species. ONT-based approaches may be faster but significant improvements in accuracy are required before it can be considered for clinical use.IMPORTANCESepsis and bloodstream infections carry a high risk of morbidity and mortality. Rapid identification and susceptibility prediction of causative pathogens, using Nanopore sequencing direct from blood cultures, may offer clinical benefit. We assessed this approach in comparison to conventional phenotypic methods and determined the accuracy of species identification and susceptibility prediction from genomic data. While this workflow holds promise, and performed well for some common bacterial species, improvements in sequencing accuracy and more robust predictive algorithms across a diverse range of organisms are required before this can be considered for clinical use. However, results could be achieved in timeframes that are faster than conventional phenotypic methods.
Collapse
Affiliation(s)
- Patrick N. A. Harris
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women’s Hospital, Brisbane, Australia
- Herston Infectious Disease Institute, Royal Brisbane and Women’s Hospital Campus, Brisbane, Australia
| | - Michelle J. Bauer
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | | | | | - Brian M. Forde
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Ross Balch
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Menino Cotta
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Luregn Schlapbach
- University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Sainath Raman
- Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Paediatric Intensive Care Unit, Queensland Children’s Hospital, South Brisbane, Australia
| | - Kiran Shekar
- Adult Intensive Care Services, The Prince Charles Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Peter Kruger
- Intensive Care Unit, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Department of Anaesthesiology and Critical Care, The University of Queensland, St Lucia, Queensland, Australia
| | - Jeff Lipman
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
- Intensive Care Unit, Royal Brisbane and Women’s Hospital, Brisbane, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Seweryn Bialasiewicz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, Faculty of Science, University of Queensland, Brisbane, Australia
| | - Lachlan Coin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jason A. Roberts
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
- Herston Infectious Disease Institute, Royal Brisbane and Women’s Hospital Campus, Brisbane, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - David L. Paterson
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
- ADVANCE-ID, Saw Swee School of Public Health, National University of Singapore, Singapore, Singapore
| | - Adam D. Irwin
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
- Infection Management and Prevention Service, Queensland Children’s Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
28
|
Cao L, Kong Y, Fan Y, Ni M, Tourancheau A, Ksiezarek M, Mead EA, Koo T, Gitman M, Zhang XS, Fang G. mEnrich-seq: methylation-guided enrichment sequencing of bacterial taxa of interest from microbiome. Nat Methods 2024; 21:236-246. [PMID: 38177508 PMCID: PMC11474163 DOI: 10.1038/s41592-023-02125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
Metagenomics has enabled the comprehensive study of microbiomes. However, many applications would benefit from a method that sequences specific bacterial taxa of interest, but not most background taxa. We developed mEnrich-seq (in which 'm' stands for methylation and seq for sequencing) for enriching taxa of interest from metagenomic DNA before sequencing. The core idea is to exploit the self versus nonself differentiation by natural bacterial DNA methylation and rationally choose methylation-sensitive restriction enzymes, individually or in combination, to deplete host and background taxa while enriching targeted taxa. This idea is integrated with library preparation procedures and applied in several applications to enrich (up to 117-fold) pathogenic or beneficial bacteria from human urine and fecal samples, including species that are hard to culture or of low abundance. We assessed 4,601 bacterial strains with mapped methylomes so far and showed broad applicability of mEnrich-seq. mEnrich-seq provides microbiome researchers with a versatile and cost-effective approach for selective sequencing of diverse taxa of interest.
Collapse
Affiliation(s)
- Lei Cao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yimeng Kong
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yu Fan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mi Ni
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan Tourancheau
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Magdalena Ksiezarek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward A Mead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tonny Koo
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa Gitman
- Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
29
|
Wang S, Mao X, Wang F, Zuo X, Fan C. Data Storage Using DNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307499. [PMID: 37800877 DOI: 10.1002/adma.202307499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/01/2023] [Indexed: 10/07/2023]
Abstract
The exponential growth of global data has outpaced the storage capacities of current technologies, necessitating innovative storage strategies. DNA, as a natural medium for preserving genetic information, has emerged as a highly promising candidate for next-generation storage medium. Storing data in DNA offers several advantages, including ultrahigh physical density and exceptional durability. Facilitated by significant advancements in various technologies, such as DNA synthesis, DNA sequencing, and DNA nanotechnology, remarkable progress has been made in the field of DNA data storage over the past decade. However, several challenges still need to be addressed to realize practical applications of DNA data storage. In this review, the processes and strategies of in vitro DNA data storage are first introduced, highlighting recent advancements. Next, a brief overview of in vivo DNA data storage is provided, with a focus on the various writing strategies developed to date. At last, the challenges encountered in each step of DNA data storage are summarized and promising techniques are discussed that hold great promise in overcoming these obstacles.
Collapse
Affiliation(s)
- Shaopeng Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
30
|
De Meulenaere K, Cuypers WL, Gauglitz JM, Guetens P, Rosanas-Urgell A, Laukens K, Cuypers B. Selective whole-genome sequencing of Plasmodium parasites directly from blood samples by nanopore adaptive sampling. mBio 2024; 15:e0196723. [PMID: 38054750 PMCID: PMC10790762 DOI: 10.1128/mbio.01967-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Malaria is caused by parasites of the genus Plasmodium, and reached a global disease burden of 247 million cases in 2021. To study drug resistance mutations and parasite population dynamics, whole-genome sequencing of patient blood samples is commonly performed. However, the predominance of human DNA in these samples imposes the need for time-consuming laboratory procedures to enrich Plasmodium DNA. We used the Oxford Nanopore Technologies' adaptive sampling feature to circumvent this problem and enrich Plasmodium reads directly during the sequencing run. We demonstrate that adaptive nanopore sequencing efficiently enriches Plasmodium reads, which simplifies and shortens the timeline from blood collection to parasite sequencing. In addition, we show that the obtained data can be used for monitoring genetic markers, or to generate nearly complete genomes. Finally, owing to its inherent mobility, this technology can be easily applied on-site in endemic areas where patients would benefit the most from genomic surveillance.
Collapse
Affiliation(s)
- Katlijn De Meulenaere
- Department of Computer Science, Adrem Data Lab, University of Antwerp, Wilrijk, Belgium
- Department of Biomedical Sciences, Malariology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Wim L. Cuypers
- Department of Computer Science, Adrem Data Lab, University of Antwerp, Wilrijk, Belgium
| | - Julia M. Gauglitz
- Department of Computer Science, Adrem Data Lab, University of Antwerp, Wilrijk, Belgium
| | - Pieter Guetens
- Department of Biomedical Sciences, Malariology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Malariology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Kris Laukens
- Department of Computer Science, Adrem Data Lab, University of Antwerp, Wilrijk, Belgium
- Excellence centre for Microbial Systems Technology, University of Antwerp, Wilrijk, Belgium
| | - Bart Cuypers
- Department of Computer Science, Adrem Data Lab, University of Antwerp, Wilrijk, Belgium
- Excellence centre for Microbial Systems Technology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
31
|
Wang J, Yang L, Cheng A, Tham CY, Tan W, Darmawan J, de Sessions PF, Wan Y. Direct RNA sequencing coupled with adaptive sampling enriches RNAs of interest in the transcriptome. Nat Commun 2024; 15:481. [PMID: 38212309 PMCID: PMC10784512 DOI: 10.1038/s41467-023-44656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
Abundant cellular transcripts occupy most of the sequencing reads in the transcriptome, making it challenging to assay for low-abundant transcripts. Here, we utilize the adaptive sampling function of Oxford Nanopore sequencing to selectively deplete and enrich RNAs of interest without biochemical manipulation before sequencing. Adaptive sampling performed on a pool of in vitro transcribed RNAs resulted in a net increase of 22-30% in the proportion of transcripts of interest in the population. Enriching and depleting different proportions of the Candida albicans transcriptome also resulted in a 11-13.5% increase in the number of reads on target transcripts, with longer and more abundant transcripts being more efficiently depleted. Depleting all currently annotated Candida albicans transcripts did not result in an absolute enrichment of remaining transcripts, although we identified 26 previously unknown transcripts and isoforms, 17 of which are antisense to existing transcripts. Further improvements in the adaptive sampling of RNAs will allow the technology to be widely applied to study RNAs of interest in diverse transcriptomes.
Collapse
Affiliation(s)
- Jiaxu Wang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore
| | - Lin Yang
- Oxford Nanopore Technologies, Singapore, 138667, Singapore
| | - Anthony Cheng
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore
| | | | - Wenting Tan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore
| | - Jefferson Darmawan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore
| | | | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore.
| |
Collapse
|
32
|
Terrazos Miani MA, Borcard L, Gempeler S, Baumann C, Bittel P, Leib SL, Neuenschwander S, Ramette A. NASCarD (Nanopore Adaptive Sampling with Carrier DNA): A Rapid, PCR-Free Method for SARS-CoV-2 Whole-Genome Sequencing in Clinical Samples. Pathogens 2024; 13:61. [PMID: 38251368 PMCID: PMC10818518 DOI: 10.3390/pathogens13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Whole-genome sequencing (WGS) represents the main technology for SARS-CoV-2 lineage characterization in diagnostic laboratories worldwide. The rapid, near-full-length sequencing of the viral genome is commonly enabled by high-throughput sequencing of PCR amplicons derived from cDNA molecules. Here, we present a new approach called NASCarD (Nanopore Adaptive Sampling with Carrier DNA), which allows a low amount of nucleic acids to be sequenced while selectively enriching for sequences of interest, hence limiting the production of non-target sequences. Using COVID-19 positive samples available during the omicron wave, we demonstrate how the method may lead to >99% genome completeness of the SARS-CoV-2 genome sequences within 7 h of sequencing at a competitive cost. The new approach may have applications beyond SARS-CoV-2 sequencing for other DNA or RNA pathogens in clinical samples.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alban Ramette
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 25, 3001 Bern, Switzerland
| |
Collapse
|
33
|
Abdelrazek S, Bush E, Oliver C, Liu H, Sharma P, Johnson MA, Donegan MA, Almeida RPP, Nita M, Vinatzer BA. A Survey of Xylella fastidiosa in the U.S. State of Virginia Reveals Wide Distribution of Both Subspecies fastidiosa and multiplex in Grapevine. PHYTOPATHOLOGY 2024; 114:35-46. [PMID: 37530473 DOI: 10.1094/phyto-06-23-0212-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Global travel and trade in combination with climate change are expanding the geographic distribution of plant pathogens. The bacterium Xylella fastidiosa is a prime example. Native to the Americas, it has spread to Europe, Asia, and the Middle East. To assess the risk that pathogen introductions pose to crops in newly invaded areas, it is key to survey their diversity, host range, and disease incidence in relation to climatic conditions where they are already present. We performed a survey of X. fastidiosa in grapevine in Virginia using a combination of quantitative PCR, multilocus sequencing, and metagenomics. We also analyzed samples from deciduous trees with leaf scorch symptoms. X. fastidiosa subspecies fastidiosa was identified in grapevines in all regions of the state, even in Northern Virginia, where the temperature was below -9°C for 10 days per year on average in the years preceding sampling. Unexpectedly, we also found for the first time grapevine samples infected with X. fastidiosa subspecies multiplex (Xfm). The Xfm lineage found in grapevines had been previously isolated from blueberries in the Southeastern United States and was distinct from that found in deciduous trees in Virginia. The obtained results will be important for risk assessment of X. fastidiosa introductions in other parts of the world.
Collapse
Affiliation(s)
- Sahar Abdelrazek
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061
| | - Elizabeth Bush
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061
| | - Charlotte Oliver
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Tech, Winchester, VA 22602
| | - Haijie Liu
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061
| | - Parul Sharma
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061
- Graduate Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061
| | - Marcela A Johnson
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061
- Graduate Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061
| | - Monica A Donegan
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720
| | - Mizuho Nita
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061
- Alson H. Smith Jr. Agricultural Research and Extension Center, Virginia Tech, Winchester, VA 22602
| | - Boris A Vinatzer
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
34
|
Wrenn DC, Drown DM. Nanopore adaptive sampling enriches for antimicrobial resistance genes in microbial communities. GIGABYTE 2023; 2023:gigabyte103. [PMID: 38111521 PMCID: PMC10726737 DOI: 10.46471/gigabyte.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global public health threat. Environmental microbial communities act as reservoirs for AMR, containing genes associated with resistance, their precursors, and the selective pressures promoting their persistence. Genomic surveillance could provide insights into how these reservoirs change and impact public health. Enriching for AMR genomic signatures in complex microbial communities would strengthen surveillance efforts and reduce time-to-answer. Here, we tested the ability of nanopore sequencing and adaptive sampling to enrich for AMR genes in a mock community of environmental origin. Our setup implemented the MinION mk1B, an NVIDIA Jetson Xavier GPU, and Flongle flow cells. Using adaptive sampling, we observed consistent enrichment by composition. On average, adaptive sampling resulted in a target composition 4× higher than without adaptive sampling. Despite a decrease in total sequencing output, adaptive sampling increased target yield in most replicates. We also demonstrate enrichment in a diverse community using an environmental sample. This method enables rapid and flexible genomic surveillance.
Collapse
Affiliation(s)
- Danielle C. Wrenn
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Devin M. Drown
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| |
Collapse
|
35
|
Chaemsaithong P, Jenjaroenpun P, Pongchaikul P, Singsaneh A, Thaipisuttikul I, Romero R, Wongsurawat T. Rapid detection of bacteria and antimicrobial resistant genes in intraamniotic infection using nanopore adaptive sampling. Am J Obstet Gynecol 2023; 229:690-693.e1. [PMID: 37572835 PMCID: PMC11027119 DOI: 10.1016/j.ajog.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Nanopore adaptive sampling to diagnose intraamniotic infection
Collapse
Affiliation(s)
- Piya Chaemsaithong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Samut Prakarn, Thailand; Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom, Thailand; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Arunee Singsaneh
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Iyarit Thaipisuttikul
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI.
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Long-Read Lab (Si-LoL), Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Rd., Siriraj, Bangkok Noi, Bangkok, Thailand 10700; Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR.
| |
Collapse
|
36
|
Naarmann-de Vries IS, Gjerga E, Gandor CLA, Dieterich C. Adaptive sampling for nanopore direct RNA-sequencing. RNA (NEW YORK, N.Y.) 2023; 29:1939-1949. [PMID: 37673469 PMCID: PMC10653383 DOI: 10.1261/rna.079727.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023]
Abstract
Nanopore long-read sequencing enables real-time monitoring and controlling of individual nanopores. This allows us to enrich or deplete specific sequences in DNA sequencing in a process called "adaptive sampling." So far, adaptive sampling (AS) was not applicable to the direct sequencing of RNA. Here, we show that AS is feasible and useful for direct RNA sequencing (DRS), which has its specific technical and biological challenges. Using a well-controlled in vitro transcript-based model system, we identify essential characteristics and parameter settings for AS in DRS, as the superior performance of depletion over enrichment. Here, the efficiency of depletion is close to the theoretical maximum. Additionally, we demonstrate that AS efficiently depletes specific transcripts in transcriptome-wide sequencing applications. Specifically, we applied our AS approach to poly(A)-enriched RNA samples from human-induced pluripotent stem cell-derived cardiomyocytes and mouse whole heart tissue and show efficient 2.5- to 2.8-fold depletion of highly abundant mitochondrial-encoded transcripts. Finally, we characterize depletion and enrichment performance for complex transcriptome subsets, that is, at the level of the entire Chromosome 11, proving the general applicability of direct RNA AS. Our analyses provide evidence that AS is especially useful to enable the detection of lowly expressed transcripts and reduce the sequencing of highly abundant disturbing transcripts.
Collapse
Affiliation(s)
- Isabel S Naarmann-de Vries
- Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Enio Gjerga
- Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Catharina L A Gandor
- Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christoph Dieterich
- Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Zheng H, Marçais G, Kingsford C. Creating and Using Minimizer Sketches in Computational Genomics. J Comput Biol 2023; 30:1251-1276. [PMID: 37646787 PMCID: PMC11082048 DOI: 10.1089/cmb.2023.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Processing large data sets has become an essential part of computational genomics. Greatly increased availability of sequence data from multiple sources has fueled breakthroughs in genomics and related fields but has led to computational challenges processing large sequencing experiments. The minimizer sketch is a popular method for sequence sketching that underlies core steps in computational genomics such as read mapping, sequence assembling, k-mer counting, and more. In most applications, minimizer sketches are constructed using one of few classical approaches. More recently, efforts have been put into building minimizer sketches with desirable properties compared with the classical constructions. In this survey, we review the history of the minimizer sketch, the theories developed around the concept, and the plethora of applications taking advantage of such sketches. We aim to provide the readers a comprehensive picture of the research landscape involving minimizer sketches, in anticipation of better fusion of theory and application in the future.
Collapse
Affiliation(s)
- Hongyu Zheng
- Computer Science Department, Princeton University, Princeton, New Jersey, USA
| | - Guillaume Marçais
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Carl Kingsford
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
38
|
Lin Y, Zhang Y, Sun H, Jiang H, Zhao X, Teng X, Lin J, Shu B, Sun H, Liao Y, Zhou J. NanoDeep: a deep learning framework for nanopore adaptive sampling on microbial sequencing. Brief Bioinform 2023; 25:bbad499. [PMID: 38189540 PMCID: PMC10772945 DOI: 10.1093/bib/bbad499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Nanopore sequencers can enrich or deplete the targeted DNA molecules in a library by reversing the voltage across individual nanopores. However, it requires substantial computational resources to achieve rapid operations in parallel at read-time sequencing. We present a deep learning framework, NanoDeep, to overcome these limitations by incorporating convolutional neural network and squeeze and excitation. We first showed that the raw squiggle derived from native DNA sequences determines the origin of microbial and human genomes. Then, we demonstrated that NanoDeep successfully classified bacterial reads from the pooled library with human sequence and showed enrichment for bacterial sequence compared with routine nanopore sequencing setting. Further, we showed that NanoDeep improves the sequencing efficiency and preserves the fidelity of bacterial genomes in the mock sample. In addition, NanoDeep performs well in the enrichment of metagenome sequences of gut samples, showing its potential applications in the enrichment of unknown microbiota. Our toolkit is available at https://github.com/lysovosyl/NanoDeep.
Collapse
Affiliation(s)
- Yusen Lin
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yongjun Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Hang Sun
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Hang Jiang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xing Zhao
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Xiaojuan Teng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jingxia Lin
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Bowen Shu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Hao Sun
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Yuhui Liao
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jiajian Zhou
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
39
|
Ghielmetti G, Loubser J, Kerr TJ, Stuber T, Thacker T, Martin LC, O'Hare MA, Mhlophe SK, Okunola A, Loxton AG, Warren RM, Moseley MH, Miller MA, Goosen WJ. Advancing animal tuberculosis surveillance using culture-independent long-read whole-genome sequencing. Front Microbiol 2023; 14:1307440. [PMID: 38075895 PMCID: PMC10699144 DOI: 10.3389/fmicb.2023.1307440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 02/12/2024] Open
Abstract
Animal tuberculosis is a significant infectious disease affecting both livestock and wildlife populations worldwide. Effective disease surveillance and characterization of Mycobacterium bovis (M. bovis) strains are essential for understanding transmission dynamics and implementing control measures. Currently, sequencing of genomic information has relied on culture-based methods, which are time-consuming, resource-demanding, and concerning in terms of biosafety. This study explores the use of culture-independent long-read whole-genome sequencing (WGS) for a better understanding of M. bovis epidemiology in African buffaloes (Syncerus caffer). By comparing two sequencing approaches, we evaluated the efficacy of Illumina WGS performed on culture extracts and culture-independent Oxford Nanopore adaptive sampling (NAS). Our objective was to assess the potential of NAS to detect genomic variants without sample culture. In addition, culture-independent amplicon sequencing, targeting mycobacterial-specific housekeeping and full-length 16S rRNA genes, was applied to investigate the presence of microorganisms, including nontuberculous mycobacteria. The sequencing quality obtained from DNA extracted directly from tissues using NAS is comparable to the sequencing quality of reads generated from culture-derived DNA using both NAS and Illumina technologies. We present a new approach that provides complete and accurate genome sequence reconstruction, culture independently, and using an economically affordable technique.
Collapse
Affiliation(s)
- Giovanni Ghielmetti
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Johannes Loubser
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tanya J. Kerr
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tod Stuber
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States
| | - Tyler Thacker
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States
| | - Lauren C. Martin
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Michaela A. O'Hare
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sinegugu K. Mhlophe
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Abisola Okunola
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre G. Loxton
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robin M. Warren
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mark H. Moseley
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Michele A. Miller
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wynand J. Goosen
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
40
|
Bloemen B, Gand M, Vanneste K, Marchal K, Roosens NHC, De Keersmaecker SCJ. Development of a portable on-site applicable metagenomic data generation workflow for enhanced pathogen and antimicrobial resistance surveillance. Sci Rep 2023; 13:19656. [PMID: 37952062 PMCID: PMC10640560 DOI: 10.1038/s41598-023-46771-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023] Open
Abstract
Rapid, accurate and comprehensive diagnostics are essential for outbreak prevention and pathogen surveillance. Real-time, on-site metagenomics on miniaturized devices, such as Oxford Nanopore Technologies MinION sequencing, could provide a promising approach. However, current sample preparation protocols often require substantial equipment and dedicated laboratories, limiting their use. In this study, we developed a rapid on-site applicable DNA extraction and library preparation approach for nanopore sequencing, using portable devices. The optimized method consists of a portable mechanical lysis approach followed by magnetic bead-based DNA purification and automated sequencing library preparation, and resulted in a throughput comparable to a current optimal, laboratory-based protocol using enzymatic digestion to lyse cells. By using spike-in reference communities, we compared the on-site method with other workflows, and demonstrated reliable taxonomic profiling, despite method-specific biases. We also demonstrated the added value of long-read sequencing by recovering reads containing full-length antimicrobial resistance genes, and attributing them to a host species based on the additional genomic information they contain. Our method may provide a rapid, widely-applicable approach for microbial detection and surveillance in a variety of on-site settings.
Collapse
Affiliation(s)
- Bram Bloemen
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
- Department of Information Technology, IDLab, Ghent University, IMEC, 9052, Ghent, Belgium
| | - Mathieu Gand
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
| | - Kathleen Marchal
- Department of Information Technology, IDLab, Ghent University, IMEC, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Nancy H C Roosens
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
| | - Sigrid C J De Keersmaecker
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium.
| |
Collapse
|
41
|
Ishida H, John U, Murray SA, Bhattacharya D, Chan CX. Developing model systems for dinoflagellates in the post-genomic era. JOURNAL OF PHYCOLOGY 2023; 59:799-808. [PMID: 37657822 DOI: 10.1111/jpy.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
Dinoflagellates are a diverse group of eukaryotic microbes that are ubiquitous in aquatic environments. Largely photosynthetic, they encompass symbiotic, parasitic, and free-living lineages with a broad spectrum of trophism. Many free-living taxa can produce bioactive secondary metabolites such as biotoxins, some of which cause harmful algal blooms. In contrast, most symbiotic species are crucial for sustaining coral reef health. The year 2023 marked a decade since the first genome data of dinoflagellates became available. The growing genome-scale resources for these taxa are highlighting their remarkable evolutionary and genomic complexities. Here, we discuss the prospect of developing dinoflagellate models using the criteria of accessibility, tractability, resources, research support, and promise. Moving forward in the post-genomic era, we argue for the development of fit-to-purpose models that tailor to specific biological contexts, and that a one-size-fits-all model is inadequate for encapsulating the complex biology, ecology, and evolutionary history of dinoflagellates.
Collapse
Affiliation(s)
- Hisatake Ishida
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Queensland, Australia
| | - Uwe John
- Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
| | - Shauna A Murray
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Cheong Xin Chan
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
42
|
Leitner K, Motheramgari K, Borth N, Marx N. Nanopore Cas9-targeted sequencing enables accurate and simultaneous identification of transgene integration sites, their structure and epigenetic status in recombinant Chinese hamster ovary cells. Biotechnol Bioeng 2023; 120:2403-2418. [PMID: 36938677 DOI: 10.1002/bit.28382] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/27/2023] [Accepted: 03/12/2023] [Indexed: 03/21/2023]
Abstract
The integration of a transgene expression construct into the host genome is the initial step for the generation of recombinant cell lines used for biopharmaceutical production. The stability and level of recombinant gene expression in Chinese hamster ovary (CHO) can be correlated to the copy number, its integration site as well as the epigenetic context of the transgene vector. Also, undesired integration events, such as concatemers, truncated, and inverted vector repeats, are impacting the stability of recombinant cell lines. Thus, to characterize cell clones and to isolate the most promising candidates, it is crucial to obtain information on the site of integration, the structure of integrated sequence and the epigenetic status. Current sequencing techniques allow to gather this information separately but do not offer a comprehensive and simultaneous resolution. In this study, we present a fast and robust nanopore Cas9-targeted sequencing (nCats) pipeline to identify integration sites, the composition of the integrated sequence as well as its DNA methylation status in CHO cells that can be obtained simultaneously from the same sequencing run. A Cas9-enrichment step during library preparation enables targeted and directional nanopore sequencing with up to 724× median on-target coverage and up to 153 kb long reads. The data generated by nCats provides sensitive, detailed, and correct information on the transgene integration sites and the expression vector structure, which could only be partly produced by traditional Targeted Locus Amplification-seq data. Moreover, with nCats the DNA methylation status can be analyzed from the same raw data without prior DNA amplification.
Collapse
Affiliation(s)
- Klaus Leitner
- Austrian Center of Industrial Biotechnology GmbH, Vienna, Austria
| | | | - Nicole Borth
- Austrian Center of Industrial Biotechnology GmbH, Vienna, Austria
- Department of Biotechnology, Institute of Animal Cell Technology and Systems Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Nicolas Marx
- Department of Biotechnology, Institute of Animal Cell Technology and Systems Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
43
|
Ojala T, Häkkinen AE, Kankuri E, Kankainen M. Current concepts, advances, and challenges in deciphering the human microbiota with metatranscriptomics. Trends Genet 2023; 39:686-702. [PMID: 37365103 DOI: 10.1016/j.tig.2023.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
Metatranscriptomics refers to the analysis of the collective microbial transcriptome of a sample. Its increased utilization for the characterization of human-associated microbial communities has enabled the discovery of many disease-state related microbial activities. Here, we review the principles of metatranscriptomics-based analysis of human-associated microbial samples. We describe strengths and weaknesses of popular sample preparation, sequencing, and bioinformatics approaches and summarize strategies for their use. We then discuss how human-associated microbial communities have recently been examined and how their characterization may change. We conclude that metatranscriptomics insights into human microbiotas under health and disease have not only expanded our knowledge on human health, but also opened avenues for rational antimicrobial drug use and disease management.
Collapse
Affiliation(s)
- Teija Ojala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Hematology Research Unit, University of Helsinki, Helsinki, Finland; Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusimaa (HUS), Helsinki, Finland.
| |
Collapse
|
44
|
Hook PW, Timp W. Beyond assembly: the increasing flexibility of single-molecule sequencing technology. Nat Rev Genet 2023; 24:627-641. [PMID: 37161088 PMCID: PMC10169143 DOI: 10.1038/s41576-023-00600-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/11/2023]
Abstract
The maturation of high-throughput short-read sequencing technology over the past two decades has shaped the way genomes are studied. Recently, single-molecule, long-read sequencing has emerged as an essential tool in deciphering genome structure and function, including filling gaps in the human reference genome, measuring the epigenome and characterizing splicing variants in the transcriptome. With recent technological developments, these single-molecule technologies have moved beyond genome assembly and are being used in a variety of ways, including to selectively sequence specific loci with long reads, measure chromatin state and protein-DNA binding in order to investigate the dynamics of gene regulation, and rapidly determine copy number variation. These increasingly flexible uses of single-molecule technologies highlight a young and fast-moving part of the field that is leading to a more accessible era of nucleic acid sequencing.
Collapse
Affiliation(s)
- Paul W Hook
- Department of Biomedical Engineering, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Winston Timp
- Department of Biomedical Engineering, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
45
|
Romagnoli S, Bartalucci N, Vannucchi AM. Resolving complex structural variants via nanopore sequencing. Front Genet 2023; 14:1213917. [PMID: 37674481 PMCID: PMC10479017 DOI: 10.3389/fgene.2023.1213917] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/26/2023] [Indexed: 09/08/2023] Open
Abstract
The recent development of high-throughput sequencing platforms provided impressive insights into the field of human genetics and contributed to considering structural variants (SVs) as the hallmark of genome instability, leading to the establishment of several pathologic conditions, including neoplasia and neurodegenerative and cognitive disorders. While SV detection is addressed by next-generation sequencing (NGS) technologies, the introduction of more recent long-read sequencing technologies have already been proven to be invaluable in overcoming the inaccuracy and limitations of NGS technologies when applied to resolve wide and structurally complex SVs due to the short length (100-500 bp) of the sequencing read utilized. Among the long-read sequencing technologies, Oxford Nanopore Technologies developed a sequencing platform based on a protein nanopore that allows the sequencing of "native" long DNA molecules of virtually unlimited length (typical range 1-100 Kb). In this review, we focus on the bioinformatics methods that improve the identification and genotyping of known and novel SVs to investigate human pathological conditions, discussing the possibility of introducing nanopore sequencing technology into routine diagnostics.
Collapse
Affiliation(s)
| | | | - Alessandro Maria Vannucchi
- CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, DENOTHE Excellence Center, Careggi University Hospital and Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
46
|
Oda S, Ushiama M, Nakamura W, Gotoh M, Tanabe N, Watanabe T, Odaka Y, Aoyagi K, Sakamoto H, Nakajima T, Sugano K, Yoshida T, Shiraishi Y, Hirata M. A complex rearrangement between APC and TP63 associated with familial adenomatous polyposis identified by multimodal genomic analysis: a case report. Front Oncol 2023; 13:1205847. [PMID: 37601671 PMCID: PMC10434623 DOI: 10.3389/fonc.2023.1205847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Genetic testing of the APC gene by sequencing analysis and MLPA is available across commercial laboratories for the definitive genetic diagnosis of familial adenomatous polyposis (FAP). However, some genetic alterations are difficult to detect using conventional analyses. Here, we report a case of a complex genomic APC-TP63 rearrangement, which was identified in a patient with FAP by a series of genomic analyses, including multigene panel testing, chromosomal analyses, and long-read sequencing. A woman in her thirties was diagnosed with FAP due to multiple polyps in her colon and underwent total colectomy. Subsequent examination revealed fundic gland polyposis. No family history suggesting FAP was noted except for a first-degree relative with desmoid fibromatosis. The conventional APC gene testing was performed by her former doctor, but no pathogenic variant was detected, except for 2 variants of unknown significance. The patient was referred to our hospital for further genetic analysis. After obtaining informed consent in genetic counseling, we conducted a multigene panel analysis. As insertion of a part of the TP63 sequence was detected within exon16 of APC, further analyses, including chromosomal analysis and long-read sequencing, were performed and a complex translocation between chromosomes 3 and 5 containing several breakpoints in TP63 and APC was identified. No phenotype associated with TP63 pathogenic variants, such as split-hand/foot malformation (SHFM) or ectrodactyly, ectodermal dysplasia, or cleft lip/palate syndrome (EEC) was identified in the patient or her relatives. Multimodal genomic analyses should be considered in cases where no pathogenic germline variants are detected by conventional genetic testing despite an evident medical or family history of hereditary cancer syndromes.
Collapse
Affiliation(s)
- Satoyo Oda
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Mineko Ushiama
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Wataru Nakamura
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Masahiro Gotoh
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Noriko Tanabe
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoko Watanabe
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| | - Yoko Odaka
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuhiko Aoyagi
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiromi Sakamoto
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Takeshi Nakajima
- Department Medical Ethics/Medical Genetics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Clinical Genetics, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kokichi Sugano
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Genetic Medicine, Kyoundo Hospital, Sasaki Foundation, Tokyo, Japan
| | - Teruhiko Yoshida
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Makoto Hirata
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
47
|
Wrenn DC, Drown DM. Nanopore Adaptive Sampling Enriches for Antimicrobial Resistance Genes in Microbial Communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546783. [PMID: 37425917 PMCID: PMC10327016 DOI: 10.1101/2023.06.27.546783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Antimicrobial resistance (AMR) is a global public health threat. Environmental microbial communities act as reservoirs for AMR, containing genes associated with resistance, their precursors, and the selective pressures to encourage their persistence. Genomic surveillance could provide insight into how these reservoirs are changing and their impact on public health. The ability to enrich for AMR genomic signatures in complex microbial communities would strengthen surveillance efforts and reduce time-to-answer. Here, we test the ability of nanopore sequencing and adaptive sampling to enrich for AMR genes in a mock community of environmental origin. Our setup implemented the MinION mk1B, an NVIDIA Jetson Xavier GPU, and flongle flow cells. We observed consistent enrichment by composition when using adaptive sampling. On average, adaptive sampling resulted in a target composition that was 4x higher than a treatment without adaptive sampling. Despite a decrease in total sequencing output, the use of adaptive sampling increased target yield in most replicates.
Collapse
Affiliation(s)
- Danielle C. Wrenn
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Devin M. Drown
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| |
Collapse
|
48
|
Esteller-Cucala P, Palmada-Flores M, Kuderna LFK, Fontsere C, Serres-Armero A, Dabad M, Torralvo M, Faella A, Ferrández-Peral L, Llovera L, Fornas O, Julià E, Ramírez E, González I, Hecht J, Lizano E, Juan D, Marquès-Bonet T. Y chromosome sequence and epigenomic reconstruction across human populations. Commun Biol 2023; 6:623. [PMID: 37296226 PMCID: PMC10256797 DOI: 10.1038/s42003-023-05004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Recent advances in long-read sequencing technologies have allowed the generation and curation of more complete genome assemblies, enabling the analysis of traditionally neglected chromosomes, such as the human Y chromosome (chrY). Native DNA was sequenced on a MinION Oxford Nanopore Technologies sequencing device to generate genome assemblies for seven major chrY human haplogroups. We analyzed and compared the chrY enrichment of sequencing data obtained using two different selective sequencing approaches: adaptive sampling and flow cytometry chromosome sorting. We show that adaptive sampling can produce data to create assemblies comparable to chromosome sorting while being a less expensive and time-consuming technique. We also assessed haplogroup-specific structural variants, which would be otherwise difficult to study using short-read sequencing data only. Finally, we took advantage of this technology to detect and profile epigenetic modifications among the considered haplogroups. Altogether, we provide a framework to study complex genomic regions with a simple, fast, and affordable methodology that could be applied to larger population genomics datasets.
Collapse
Affiliation(s)
- Paula Esteller-Cucala
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain.
| | - Marc Palmada-Flores
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Lukas F K Kuderna
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Claudia Fontsere
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Aitor Serres-Armero
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona, Spain
| | - María Torralvo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Armida Faella
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Luis Ferrández-Peral
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Laia Llovera
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Oscar Fornas
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Doctor Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, Barcelona, Spain
| | - Eva Julià
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Doctor Aiguader 88, Barcelona, Spain
| | - Erika Ramírez
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Doctor Aiguader 88, Barcelona, Spain
| | - Irene González
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Doctor Aiguader 88, Barcelona, Spain
| | - Jochen Hecht
- Centre for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Doctor Aiguader 88, Barcelona, Spain
| | - Esther Lizano
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Spain
| | - David Juan
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain
| | - Tomàs Marquès-Bonet
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Doctor Aiguader 88, Barcelona, Spain.
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, Barcelona, Spain.
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Cerdanyola del Vallès, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
49
|
Hatfield RG, Ryder D, Tidy AM, Hartnell DM, Dean KJ, Batista FM. Combining Nanopore Sequencing with Recombinase Polymerase Amplification Enables Identification of Dinoflagellates from the Alexandrium Genus, Providing a Rapid, Field Deployable Tool. Toxins (Basel) 2023; 15:372. [PMID: 37368673 DOI: 10.3390/toxins15060372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The armoured dinoflagellate Alexandrium can be found throughout many of the world's temperate and tropical marine environments. The genus has been studied extensively since approximately half of its members produce a family of potent neurotoxins, collectively called saxitoxin. These compounds represent a significant threat to animal and environmental health. Moreover, the consumption of bivalve molluscs contaminated with saxitoxin poses a threat to human health. The identification of Alexandrium cells collected from sea water samples using light microscopy can provide early warnings of a toxic event, giving harvesters and competent authorities time to implement measures that safeguard consumers. However, this method cannot reliably resolve Alexandrium to a species level and, therefore, is unable to differentiate between toxic and non-toxic variants. The assay outlined in this study uses a quick recombinase polymerase amplification and nanopore sequencing method to first target and amplify a 500 bp fragment of the ribosomal RNA large subunit and then sequence the amplicon so that individual species from the Alexandrium genus can be resolved. The analytical sensitivity and specificity of the assay was assessed using seawater samples spiked with different Alexandrium species. When using a 0.22 µm membrane to capture and resuspend cells, the assay was consistently able to identify a single cell of A. minutum in 50 mL of seawater. Phylogenetic analysis showed the assay could identify the A. catenella, A. minutum, A. tamutum, A. tamarense, A. pacificum, and A. ostenfeldii species from environmental samples, with just the alignment of the reads being sufficient to provide accurate, real-time species identification. By using sequencing data to qualify when the toxic A. catenella species was present, it was possible to improve the correlation between cell counts and shellfish toxicity from r = 0.386 to r = 0.769 (p ≤ 0.05). Furthermore, a McNemar's paired test performed on qualitative data highlighted no statistical differences between samples confirmed positive or negative for toxic species of Alexandrium by both phylogenetic analysis and real time alignment with the presence or absence of toxins in shellfish. The assay was designed to be deployed in the field for the purposes of in situ testing, which required the development of custom tools and state-of-the-art automation. The assay is rapid and resilient to matrix inhibition, making it suitable as a potential alternative detection method or a complementary one, especially when applying regulatory controls.
Collapse
Affiliation(s)
- Robert G Hatfield
- Centre for Environment Fisheries and Aquaculture Science, Weymouth DT48UB, UK
| | - David Ryder
- Centre for Environment Fisheries and Aquaculture Science, Weymouth DT48UB, UK
| | - Annabel M Tidy
- Centre for Environment Fisheries and Aquaculture Science, Weymouth DT48UB, UK
| | - David M Hartnell
- Centre for Environment Fisheries and Aquaculture Science, Weymouth DT48UB, UK
| | - Karl J Dean
- Centre for Environment Fisheries and Aquaculture Science, Weymouth DT48UB, UK
| | - Frederico M Batista
- Centre for Environment Fisheries and Aquaculture Science, Weymouth DT48UB, UK
| |
Collapse
|
50
|
Ribas MP, García-Ulloa M, Espunyes J, Cabezón O. Improving the assessment of ecosystem and wildlife health: microbiome as an early indicator. Curr Opin Biotechnol 2023; 81:102923. [PMID: 36996728 DOI: 10.1016/j.copbio.2023.102923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023]
Abstract
Human activities are causing dramatic declines in ecosystem health, compromising the functioning of the life-support system, economic activity, and animal and human health. In this context, monitoring the health of ecosystems and wildlife populations is crucial for determining ecological dynamics and assessing management interventions. A growing body of evidence indicates that microbiome provides a meaningful early indicator of ecosystem and wildlife health. Microbiome is ubiquitous and both environmental and host-associated microbiomes rapidly reflect anthropogenic disturbances. However, we still need to overcome current limitations such as nucleic acid degradation, sequencing depth, and the establishment of baseline data to maximize the potential of microbiome studies.
Collapse
|