1
|
Shehata AA, Radwan MA, Ahmed HA. First molecular evidence of Candidatus Anaplasma camelii in two dromedary camels from Qatar. Trop Anim Health Prod 2025; 57:79. [PMID: 40009264 DOI: 10.1007/s11250-025-04334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
Anaplasma species are intracellular pathogens that impact human and animal health. Despite Qatar having the highest density of dromedary camel (Camelus dromedarius) population, there have been no previous reports of anaplasmosis in dromedary camels in the country. Here, two cases of 5-year-old female dromedary camels presented symptoms like fever, reduced appetite, edema, and respiratory distress. These camels had a history of unsuccessful treatment for trypanosomiasis, on that basis diagnosis of possible anaplasmosis was made. DNA was extracted from the whole blood and then subjected to PCR testing and sequencing targeting 16S rRNA and groEL genes which confirmed both cases to be positive for Anaplasma. Phylogenetic analysis using 16S rRNA exhibited a 100% similarity with Candidatus Anaplasma camelii, while groEL gene showed a 100% match with A. platys-like. Phylogenetic analysis indicated that Candidatus Anaplasma camelii and A. platys-like sequences were grouped in the same cluster either in 16S RNA or groEL and were closely related to A. platys. The Infected cases highlight the need for a large-scale molecular diagnostic effort to monitor the clinical health of animals with a particular focus on camels in Qatar. Additionally, this report points to the role of dromedary camels in supporting the enzootic cycle of Anaplasma transmission within the region. This report marks the first instance of camel anaplasmosis in Qatar. Surveillance of Anaplasma among susceptible hosts (animals and human) in Qatar is required for assessing the zoonotic potential.
Collapse
Affiliation(s)
- Amir A Shehata
- Camel Genetic Research Center, Tharb Camel Hospital, Leawaina, Qatar.
- Genome Research Unit, Animal Health Research Institute, Agricultural Research Center, Giza, Egypt.
| | - Mohamed A Radwan
- Camel Genetic Research Center, Tharb Camel Hospital, Leawaina, Qatar
- Genome Research Unit, Animal Health Research Institute, Agricultural Research Center, Giza, Egypt
| | - Hanaa A Ahmed
- Camel Genetic Research Center, Tharb Camel Hospital, Leawaina, Qatar
- Genome Research Unit, Animal Health Research Institute, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
2
|
Kratou M, Maitre A, Abuin-Denis L, Selmi R, Belkahia H, Alanazi AD, Gattan H, Al-Ahmadi BM, Shater AF, Mateos-Hernández L, Obregón D, Messadi L, Cabezas-Cruz A, Ben Said M. Microbial community variations in adult Hyalomma dromedarii ticks from single locations in Saudi Arabia and Tunisia. Front Microbiol 2025; 16:1543560. [PMID: 40008044 PMCID: PMC11850374 DOI: 10.3389/fmicb.2025.1543560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction The camel-infesting tick, Hyalomma dromedarii, is a prominent ectoparasite in the Middle East and North Africa (MENA) region, critically impacting camel health and acting as a vector for tick-borne pathogens. Despite prior studies on its microbiota, the effects of geographic origin and sex on microbial community structure and functional stability remain poorly understood. Methods To address this, we characterized the bacterial microbiota of H. dromedarii ticks collected from camels in Tunisia (TUN) and Saudi Arabia (SA) using 16S rRNA gene sequencing, microbial network analysis, and metabolic pathway prediction. Results Our findings indicate a dominant presence of Francisella endosymbionts in Tunisian ticks, suggesting adaptive roles of H. dromedarii ticks in arid ecosystems. Keystone taxa, particularly Staphylococcus and Corynebacterium, were identified as central to microbial network structure and resilience. Moreover, network robustness analyses demonstrated enhanced ecological stability in the Tunisian tick microbiota under perturbation, indicative of higher resilience to environmental fluctuations compared to Saudi Arabian ticks. Additionally, functional pathway predictions further revealed geographically distinct metabolic profiles between both groups (Tunisia vs. Saudi Arabia and males vs. females), underscoring environmental and biological influences on H. dromedarii microbiota assembly. Discussion These results highlight region-specific and sex-specific microbial adaptations in H. dromedarii, with potential implications for pathogen transmission dynamics and vector resilience. Understanding these microbial interactions may contribute to improved strategies for tick control and tick-borne disease prevention.
Collapse
Affiliation(s)
- Myriam Kratou
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L’Elevage (SELMET LRDE), Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Lianet Abuin-Denis
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Rachid Selmi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - Hanène Belkahia
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - Abdullah D. Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi, Saudi Arabia
| | - Hattan Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, Jeddah, Saudi Arabia
| | - Bassam M. Al-Ahmadi
- Department of Biology, Faculty of Science, Taibah University, Madinah, Saudi Arabia
| | - Abdullah F. Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Lilia Messadi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba, Tunisia
| |
Collapse
|
3
|
Perveen N, Cabezas-Cruz A, Iliashevich D, Abuin-Denis L, Sparagano OA, Willingham AL. Microbiome of Hyalomma dromedarii (Ixodida: Ixodidae) Ticks: Variation in Community Structure with Regard to Sex and Host Habitat. INSECTS 2024; 16:11. [PMID: 39859594 PMCID: PMC11766007 DOI: 10.3390/insects16010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025]
Abstract
Hyalomma dromedarii ticks are the main hematophagous ectoparasites of camels, harboring a variety of microbes that can affect tick vector competence and pathogen transmission. To better understand the tick microbiome influenced by sex and host habitat, we analyzed the bacterial community of H. dromedarii male and female ticks collected from camel farms, livestock markets, and slaughterhouses, representing the range of major habitats in the UAE, by sequencing the 16S rRNA gene. Tick samples were collected during 2022 and 2023. A total of 40 ticks (male (15), female (15), and nymph (10)) were selected from tick samples collected from camels and processed for genomic DNA and next-generation sequencing using the Illumina MiSeq platform. We obtained 151,168 read counts, and these formed 237 operational taxonomic units representing 11 phyla, 22 classes, 77 families, and 164 genera. The phyla Actinomycetota, Bacillota, Bacteroidota, Pseudomonadota, and Fusobacteriota were the most abundant. The bacterial genus Corynebacterium dominated the microbiomes of farm-collected female H. dromedarii ticks, while Proteus dominated the microbiomes of farm-collected male H. dromedarii ticks. In comparison, the microbiomes of H. dromedarii ticks collected from slaughterhouse samples were dominated by genus Francisella in both males and females. Our results confirm that the bacterial microbiomes of H. dromedarii ticks vary by sex and habitat settings. Furthermore, recent findings could deliver insight into the differences in the ability of camel ticks to acquire, maintain, and transmit pathogens in various habitats that may impact the tick vector competence of medically and agriculturally important species in the Middle East and North Africa (MENA) region and Asia.
Collapse
Affiliation(s)
- Nighat Perveen
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.C.-C.); (L.A.-D.)
| | - Daniil Iliashevich
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Lianet Abuin-Denis
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.C.-C.); (L.A.-D.)
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 Between 158 and 190, Havana CU-10600, Cuba
| | - Olivier Andre Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China;
- UK Management College, Manchester M11 1AA, UK
| | - Arve Lee Willingham
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
4
|
Elsawy BSM, Abdel-Ghany HSM, Alzan HF, Abdel-Shafy S, Shahein YE. Molecular screening of piroplasms and Anaplasmataceae agents in Hyalomma dromedarii ticks from camels over different seasons in Egypt. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:849-868. [PMID: 39320534 PMCID: PMC11534840 DOI: 10.1007/s10493-024-00957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/12/2024] [Indexed: 09/26/2024]
Abstract
Piroplasmosis, a disease of domestic and wild animals, is caused by tick-borne protozoa of the genera Babesia and Theileria, while anaplasmosis is caused by tick-borne bacteria of genera Anaplasma. Hyalomma dromedarii is the most dominant tick species infesting camels in Egypt and act as a vector of piroplasms, Anaplasma, Rickettsia and Ehrlichia spp. The available information concerning the detection of these pathogens in H. dromedarii infesting camels is limited. The present study aimed to evaluate the status of these pathogens in H. dromedarii ticks over four seasons of a year, in addition to investigate the infections of piroplasms and Anaplasmataceae besides their genetic diversity starting from June 2021 till April 2022. A total of 275 semi-engorged females of H. dromedarii were collected from different slaughtered camels, Toukh city slaughterhouse then investigated by Polymerase Chain Reaction (PCR) to detect piroplasms (Babesia spp., Theileria spp.) and Anaplasmataceae DNA targeting 18 S rRNA and 16 S rRNA genes, respectively followed by sequencing and phylogenetic analyses. Overall, piroplasms were detected in 38 ticks (13.8%), Babesia spp. was detected in 35 ticks (12.7%), while Theileria spp. was detected in one tick (0.4%). Anaplasmataceae was detected in 57 ticks (20.7%). Mixed infections of piroplasms and Anaplasmataceae were detected in 13 ticks (5%). Single infection either with piroplasms or Anaplasmataceae was detected in 25 (9%) and 44 (16%) ticks, respectively. The highest monthly rate of piroplasms was in April (spring) and Anaplasmataceae was in July (summer). Sequence analysis revealed that Babesia bigemina, Wolbachia spp. and Anaplasma marginale are the most dominant species in the examined tick samples. To the best of our knowledge, this study confirms the presence of B. bigemina, Wolbachia spp. and A. marginale in H. dromedarii in Egypt by sequencing.
Collapse
Affiliation(s)
- Bassma S M Elsawy
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
- Ticks and Tick-Borne Diseases Research Unit, Veterinary Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Hoda S M Abdel-Ghany
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
- Ticks and Tick-Borne Diseases Research Unit, Veterinary Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Heba F Alzan
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
- Ticks and Tick-Borne Diseases Research Unit, Veterinary Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Sobhy Abdel-Shafy
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
- Ticks and Tick-Borne Diseases Research Unit, Veterinary Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Yasser E Shahein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Giza, 12622, Dokki, Egypt.
| |
Collapse
|
5
|
Yousery A, Soliman DE, Samy AA, Allam AM, Shaalan MG, Abdel Hamid AE. Molecular detection of some zoonotic tick-borne pathogens in ticks collected from camels (Camelus dromedarius) as hosts and wild rodents as potential reservoirs. Vet Res Commun 2024; 48:3197-3207. [PMID: 39145855 PMCID: PMC11442481 DOI: 10.1007/s11259-024-10488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Ticks and tick-borne pathogens pose a great threat to human and animal health. The present study aimed to determine the prevalence of ticks that infest camels and investigate the presence of tick-borne pathogens in the blood of camels, associated ticks, and surrounding rodents as reservoirs. From 100 inspected camels, from different localities in the Giza governorate, 1000 ixodid ticks were collected; these ticks belonged to three genera: Hyalomma, Amblyomma, and Rhipicephalus. The genus Hyalomma was represented by four species, Hyalomma dromedarii was the most prevalent species (55.4%), followed by Hyalomma excavatum (22%), Hyalomma impeltatum (11.6%) and Hyalomma rufipes (2.8%). The genus Amblyomma was represented by two species, Amblyomma gemma (2.8%) and Amblyomma marmoreum (2.7%), while the genus Rhipicephalus was represented by only one species, Rhipicephalus pulchellus (2.7%). Ticks, camel blood, and rodents (total number 100 brown rats) are screened for tick-borne pathogens (Borrelia burgdorferi, Borrelia miyamotoi, Babesia sp., and Coxiella burnetii) using PCR. Camel blood was found to be infected with Borrelia burgdorferi (66.6%), Borrelia miyamotoi (55%), and Babesia sp. (11.6%). Coxiella burnetii DNA was detected in all the collected ticks but was not detected in the blood of camels or rodents. Borrelia miyamotoi was detected in 12.5% of H. impeltatum, 55% of Camels, and 6% of the rodents, which may indicate a proposed risk of dispersal of B. miyamotoi, the agent of tick-borne relapsing fever.
Collapse
Affiliation(s)
- Ayat Yousery
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Doaa E Soliman
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - A A Samy
- Department of Microbiology and Immunology, Veterinary Research Institute, National Research Centre, Dokki, Egypt
| | - Ahmad M Allam
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Dokki, Egypt
| | - Mona G Shaalan
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Amira E Abdel Hamid
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Ullah S, Alouffi A, Khan M, Khan M, Tila H, Tanaka T, da Silva Vaz I, Almutairi MM, Ali A. Molecular detection of Rickettsia aeschlimannii, Candidatus Rickettsia shennongii, Rickettsia sp. and Coxiella burnetii in ticks collected from camels. Sci Rep 2024; 14:22129. [PMID: 39333333 PMCID: PMC11436945 DOI: 10.1038/s41598-024-73663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Tick-borne bacteria of the genera Rickettsia and Coxiella cause several emerging veterinary and human infectious diseases. Ticks of the genus Hyalomma are medically important vectors due to their potential role in the transmission of pathogens to vertebrate hosts. There is an inadequate knowledge on tick-borne Rickettsia spp. and Coxiella spp. in ticks infesting transhumant camels in Pakistan. In this study, we conducted a molecular survey for screening of Rickettsia spp. and Coxiella spp. in ticks infesting camels. Seven hard tick species including Hyalomma dromedarii, Hyalomma anatolicum, Hyalomma scupense, Hyalomma isaaci, Hyalomma turanicum, Hyalomma asiaticum, and Rhipicephalus sanguineus s.l were confirmed on camels in three distinct physiographic regions of Khyber Pakhtunkhwa, Pakistan. A subset of morphologically identified ticks were subjected to molecular assays for the genetic characterization of ticks and the detection and genetic characterization of Rickettsia and Coxiella species using standard genetic markers. Ticks screened for pathogens resulted in the detection of Rickettsia aeschlimannii and Candidatus Rickettsia shennongii and Coxiella burnetii. The molecular analysis further reveals the presences of an undetermined Rickettsia aeschlimannii-like species, that is making a distinct phylogenetic clade with R. aeschlimannii. The detection of pathogens in camel ticks poses potential health hazards as these ticks frequently bites humans. Molecular screening of Rickettsia spp. and Coxiella spp. associated with camel ticks is a preliminary step toward the surveillance of evaluating their zoonotic threats in the region.
Collapse
Affiliation(s)
- Shafi Ullah
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
- Centro de Biotecnologia, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, Porto Alegre, 9500, 91501-970, RS, Brazil
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, 12354, Saudi Arabia
| | - Majid Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Hadia Tila
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
- Laboratory of Animal Microbiology, Graduate School of Agricultural Science/Faculty of Agriculture, Tohoku University, Sendai, 980-8572, Japan
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, Porto Alegre, 9500, 91501-970, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande de Sul, Avenida Bento Gonçalves, Porto Alegre, 9090, 91540-000, RS, Brazil
| | - Mashal M Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
7
|
Perveen N, Muzaffar SB, Jaradat A, Sparagano OA, Willingham AL. Camel tick species distribution in Saudi Arabia and United Arab Emirates using MaxEnt modelling. Parasitology 2024; 151:1024-1034. [PMID: 39696876 PMCID: PMC11772089 DOI: 10.1017/s0031182024001161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 12/20/2024]
Abstract
Ticks are important vectors and reservoirs of pathogens causing zoonotic diseases in camels and other livestock, rodents and other small mammals, birds and humans. Hyalomma dromedarii is the most abundant tick species in Saudi Arabia and United Arab Emirates (UAE) affecting primarily camels, and to a lesser extent, other livestock. Species presence data, land use/landcover, elevation, slope and 19 bioclimatic variables were used to model current and future distribution of H. dromedarii ticks using maximum entropy species distribution modelling (MaxEnt.). The model highlighted areas in the northern, eastern and southwestern parts of the study area as highly suitable for ticks. Several variables including land use/land cover (LULC) (53.1%), precipitation of coldest quarter (Bio19) (21.8%), elevation (20.6%), isothermality (Bio3) (1.9%), mean diurnal range [mean of monthly (max temp – min temp)] (Bio2) (1.8%), slope (0.5%), precipitation, seasonality (Bio15) (0.2%) influenced habitat suitability of ticks, predicting high tick density or abundance. Middle of the road scenario (ssp2-4.5) where CO2 levels remain similar to current levels, did not indicate a major change in the tick distributions. This tick distribution model could be used for targeting surveillance efforts and increasing the efficiency and accuracy of public health investigations and vector control strategies.
Collapse
Affiliation(s)
- Nighat Perveen
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, UAE
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, UAE
| | - Sabir B Muzaffar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, UAE
- Department of Science, The Natural History Museum, London, UK
| | - Areej Jaradat
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, UAE
| | - Olivier A Sparagano
- Agricultural Sciences and Practice, Royal Agricultural University, Cirencester, UK
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Arve L Willingham
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, UAE
| |
Collapse
|
8
|
Elhaig MM, AlFaleh FA, Wahdan A. Molecular epidemiology and associated risk factors of Anaplasma marginale in camels and possible co-infections. Microb Pathog 2024; 193:106753. [PMID: 38885885 DOI: 10.1016/j.micpath.2024.106753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Anaplasma spp. is an important pathogen that affects a wide range of animals, including camels. The current study aimed to assess the prevalence of six Anaplasma spp. in 400 camels from Ismailia, Suez, and Sharkia governorates in northern Egypt, as well as their associated risk factors and possible coinfections. Blood and fecal samples were examined using bacterial culture, the vitek2 system, and PCR. Genetic divergence among Anaplasma marginale (A. marginale) isolates was characterized using the msp4 gene. The overall prevalence of A. marginale was 19.5%. Sequencing analysis confirmed the PCR results, and a single A. marginale genotype was recognized by msp4 sequencing. The phylogenetic tree indicated that the study A. marginale isolates clustered together and were close to Egyptian A. marginale identified from buffalo (OP142725 and OP142726). Age, sex, housing type, tick infestation, body conditions, and tick control factors were significantly associated with camel anaplasmosis using a logistic regression model (odds ratio >1, P < 0.05). Multivariate logistic regression analysis revealed that the infection was 2.03, 1.9, 2.6, 1.9, and 1.8 times higher in females, semi-enclosed housing, ages >5 years, tick infestation, and emaciated camels. The risk of infection due to a tick control factor increased by 4.4 and 2.6 times when no control was applied or with irregular control, respectively. This is the first molecular report of A. marginale infection in camels in Ismailia, Suez, and Sharkia in northern Egypt, indicating a moderate prevalence of A. marginale and the involvement of multiple bacterial infections, mainly Escherichia coli and Salmonella spp. Thus, it is necessary to develop effective management and control for camel anaplasmosis.
Collapse
Affiliation(s)
- Mahmoud M Elhaig
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Faleh A AlFaleh
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, 11952, Saudi Arabia.
| | - Ali Wahdan
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
9
|
Djenane D, Aider M. The one-humped camel: The animal of future, potential alternative red meat, technological suitability and future perspectives. F1000Res 2024; 11:1085. [PMID: 38798303 PMCID: PMC11128057 DOI: 10.12688/f1000research.125246.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 05/29/2024] Open
Abstract
The 2020 world population data sheet indicates that world population is projected to increase from 7.8 billion in 2020 to 9.9 billion by 2050 (Increase of more than 25%). Due to the expected growth in human population, the demand for meats that could improve health status and provide therapeutic benefits is also projected to rise. The dromedary also known as the Arabian camel, or one-humped camel ( Camelus dromedarius), a pseudo ruminant adapted to arid climates, has physiological, biological and metabolic characteristics which give it a legendary reputation for surviving in the extreme conditions of desert environments considered restrictive for other ruminants. Camel meat is an ethnic food consumed across the arid regions of Middle East, North-East Africa, Australia and China. For these medicinal and nutritional benefits, camel meat can be a great option for sustainable meat worldwide supply. A considerable amount of literature has been published on technological aspects and quality properties of beef, lamb and pork but the information available on the technological aspects of the meat of the one humped camel is very limited. Camels are usually raised in less developed countries and their meat is as nutritionally good as any other traditional meat source. Its quality also depends on the breed, sex, age, breeding conditions and type of muscle consumed. A compilation of existing literature related to new technological advances in packaging, shelf-life and quality of camel meat has not been reviewed to the best of our knowledge. Therefore, this review attempts to explore the nutritional composition, health benefits of camel meat, as well as various technological and processing interventions to improve its quality and consumer acceptance. This review will be helpful for camel sector and highlight the potential for global marketability of camel meat and to generate value added products.
Collapse
Affiliation(s)
- Djamel Djenane
- Laboratory of Meat Quality and Food Safety, Department of Meat Science and Technology., University of Mouloud MAMMERI, Tizi-Ouzou, 15000, Algeria
| | - Mohammed Aider
- Department of Soil Sciences and Agri-Food Engineering, Université Laval, Quebec City, QC, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| |
Collapse
|
10
|
Pardinilla LM, Aljaberi S, Procter M, Hamdan L, Pasha SK, Al Aiyan A, Qablan MA. The prevalence of selected vector-borne diseases in dromedary camels (Camelus dromedarius) in the United Arab Emirates. Vet Parasitol Reg Stud Reports 2024; 50:101006. [PMID: 38644035 DOI: 10.1016/j.vprsr.2024.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 04/23/2024]
Abstract
Vector-borne diseases (VBDs) affecting dromedary camels (Camelus dromedarius) have considerable importance in the United Arab Emirates (UAE) because of the consequences associated with production decline and economic losses. Our study aimed to determine the prevalence of selected VBDs in camels in the UAE and identify risk factors. This research is currently affected by the low number of epidemiological molecular surveys addressing this issue. Blood samples were obtained from 425 dromedary camels from different locations across the UAE. Whole genomic DNA was isolated, and PCR screening was done to detect piroplasmids (Babesia/Theileria spp.), Trypanosoma spp., and Anaplasmataceae spp. (Anaplasma, Ehrlichia, Neorickettsia and Wolbachia spp.). Amplicons were sequenced, and phylogenetic trees were constructed. Trypanosoma sequences were identified as T. brucei evansi, whereas Anaplasmataceae sequences were identified as A. platys-like. All camels were negative for Babesia/Theileria spp. (0%); however, 18 camels were positive for T. b. evansi (4%) and 52 were positive for A. platys-like (12%). Mixed infection with T. b. evansi and A. platys-like was found in one camel. Statistical analyses revealed that camels with a brown coat colour were significantly more prone to acquire the A. platys-like strain compared with those having a clearer coat. A similar finding was observed when comparing urban moving camels with desert indoor and urban indoor camels. Continuous disease surveillance is required to ensure and maintain the good health status of the camels in the UAE. Nonetheless, the risk of disease outbreak remains if the misuse of drugs continues.
Collapse
Affiliation(s)
- Laia-M Pardinilla
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates; ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Saeed Aljaberi
- Veterinary Services Section, Public Health Services Department, Dubai Municipality, P.O. Box 67, Dubai, United Arab Emirates
| | - Miranda Procter
- Biology Department, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Layaly Hamdan
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Syed Kamaal Pasha
- Emirates Camel Center, P.O. Box 7660, Umm Al Quwain, United Arab Emirates
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Moneeb A Qablan
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates; ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
11
|
Khogali R, Bastos A, Bargul JL, Getange D, Kabii J, Masiga D, Villinger J. Tissue-specific localization of tick-borne pathogens in ticks collected from camels in Kenya: insights into vector competence. Front Cell Infect Microbiol 2024; 14:1382228. [PMID: 38698904 PMCID: PMC11063324 DOI: 10.3389/fcimb.2024.1382228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/15/2024] [Indexed: 05/05/2024] Open
Abstract
Background Tick-borne pathogen (TBP) surveillance studies often use whole-tick homogenates when inferring tick-pathogen associations. However, localized TBP infections within tick tissues (saliva, hemolymph, salivary glands, and midgut) can inform pathogen transmission mechanisms and are key to disentangling pathogen detection from vector competence. Methods We screened 278 camel blood samples and 504 tick tissue samples derived from 126 camel ticks sampled in two Kenyan counties (Laikipia and Marsabit) for Anaplasma, Ehrlichia, Coxiella, Rickettsia, Theileria, and Babesia by PCR-HRM analysis. Results Candidatus Anaplasma camelii infections were common in camels (91%), but absent in all samples from Rhipicephalus pulchellus, Amblyomma gemma, Hyalomma dromedarii, and Hyalomma rufipes ticks. We detected Ehrlichia ruminantium in all tissues of the four tick species, but Rickettsia aeschlimannii was only found in Hy. rufipes (all tissues). Rickettsia africae was highest in Am. gemma (62.5%), mainly in the hemolymph (45%) and less frequently in the midgut (27.5%) and lowest in Rh. pulchellus (29.4%), where midgut and hemolymph detection rates were 17.6% and 11.8%, respectively. Similarly, in Hy. dromedarii, R. africae was mainly detected in the midgut (41.7%) but was absent in the hemolymph. Rickettsia africae was not detected in Hy. rufipes. No Coxiella, Theileria, or Babesia spp. were detected in this study. Conclusions The tissue-specific localization of R. africae, found mainly in the hemolymph of Am. gemma, is congruent with the role of this tick species as its transmission vector. Thus, occurrence of TBPs in the hemolymph could serve as a predictor of vector competence of TBP transmission, especially in comparison to detection rates in the midgut, from which they must cross tissue barriers to effectively replicate and disseminate across tick tissues. Further studies should focus on exploring the distribution of TBPs within tick tissues to enhance knowledge of TBP epidemiology and to distinguish competent vectors from dead-end hosts.
Collapse
Affiliation(s)
- Rua Khogali
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North, Sudan
| | - Armanda Bastos
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Joel L. Bargul
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Dennis Getange
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - James Kabii
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
12
|
Intirach J, Lv X, Sutthanont N, Cai B, Champakaew D, Chen T, Han Q, Lv Z. Molecular and next-generation sequencing analysis of tick-borne pathogens of Rhipicephalus ticks (Acari: Ixodidae) in cattle and dogs. Acta Trop 2024; 252:107138. [PMID: 38307363 DOI: 10.1016/j.actatropica.2024.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Ticks are small and adaptable arachnid ectoparasites and global carriers of various pathogens that threaten both human and animal health. They are present in many parts of China. A total of 858 ticks were collected from various regions and hosts, then subjected to species identification based on morphological and molecular characteristics, as described in the authors' previous study. Eighty-three individual tick samples were selected for screening pathogens based on metagenomic next-generation sequencing (mNGS) and polymerase chain reaction (PCR) assays. The genomic DNA of tick species was extracted, and amplification of the bacterial 16S rRNA gene was carried out from DNA of individual ticks using V3-V4 hypervariable regions, before subjecting to metagenomic analysis. Each tick underwent specific PCR tests for identifying the bacterial species present, including Anaplasma, Ehrlichia, Coxiella, and Rickettsia, and also protozoans such as Babesia, Theileria, and Hepatozoon. Illumina NovaSeq sequencing results revealed that the dominant phylum and family in Rhipicephalus spp. were Bacteroidota and Muribaculaceae, respectively. Alpha diversity patterns varied depending on tick sex (R. linnaei only), species and location, but not on host. Furthermore, bacterial pathogens, including A. marginale (58 %, 29/50), A. platys (6 %, 3/50), E. minasensis (2 %, 1/50), Ehrlichia sp. (10 %, 5/50), T. sinensis (24 %, 12/50), T. orientalis (54 %, 27/50) and Coxiella-like bacteria (CLB) (80 %, 40/50) were detected in R. microplus, while E. canis (33.33 %, 10/30), H. canis (20 %, 6/30) and CLB (100 %, 30/30) were detected in R. linnaei. Also, Anaplasma sp. (33.33 %, 1/3), A. marginale (33.33 %, 1/3), R. felis (33.33 %, 1/3) and CLB (100 %, 3/3) were detected in R. haemaphysaloides. Dual and triple co-infections involving pathogens or CLB were detected in 84.00 % of R. microplus, 66.66 % of R. haemaphysaloides, and 33.00 % of R. linnaei. The report on microbial communities and pathogens, which found from Rhipicephalus spp. in Hainan Island, is an important step towards a better understanding of tick-borne disease transmission. This is the first report in the area on the presence of Anaplasma sp., A. marginale, R. felis and Coxiella, in R. haemaphysaloides.
Collapse
Affiliation(s)
- Jitrawadee Intirach
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China; Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, China; Hainan Tropical Diseases Research Center (Hainan Sub-Center, Chinese Center for Tropical Diseases Research), Haikou, Hainan 571199, China
| | - Xin Lv
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, China
| | - Nataya Sutthanont
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Benchi Cai
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, China
| | - Danita Champakaew
- Parasitology and Entomology Research Cluster (PERC), Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tao Chen
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, China; Hainan Provincial Bureau of Disease Prevention and Control, Haikou 570100, China.
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, China.
| | - Zhiyue Lv
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
13
|
Zhao HX, Zan XQ, Tao JZ, Dan XG. Molecular Characterization of Tick-borne Pathogens in Bactrian Camels and Ticks from Gansu Province, China. Acta Parasitol 2024; 69:343-350. [PMID: 38087038 DOI: 10.1007/s11686-023-00752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/13/2023] [Indexed: 05/01/2024]
Abstract
PURPOSE Ticks are dangerous ectoparasites for humans and other animals, and tick-borne pathogens of Bactrian camels have been epidemiologically surveyed in Gansu Province, China. We aimed to determine the current distribution of tick-borne pathogens among Bactrian camels in Gansu during August 2013 using molecular tools. METHODS All ticks underwent morphological identification. We extracted DNA from the blood samples and ticks, screened them for Theileria, Babesia, Anaplasma, and Ehrlichia using standard or nested PCR with specific primers. RESULTS All ticks collected from the skin were identified as Hyalomma asiaticum. The blood and tick samples harbored similar pathogens, including the Theileria species, T. annulata, T. luwenshuni, T. uilenbergi, and T. capreoli, the Anaplasma species A. bovis and uncultured Anaplasma, the Ehrlichia species E. canis and uncultured Ehrlichia, and a new haplotype of Babesia species. CONCLUSION Our findings of anaplasmataceae and piroplasmida in Bactrian camels in Gansu provide a theoretical basis for deeper investigation into the epidemiology of tick-borne pathogens in these camels.
Collapse
Affiliation(s)
- Hong-Xi Zhao
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, People's Republic of China.
| | - Xiao-Qing Zan
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - Jin-Zhong Tao
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - Xin-Gang Dan
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, People's Republic of China
| |
Collapse
|
14
|
Alghamdi SQ, Alotaibi NF, Al-Ghamdi SN, Alqarni LS, Amna T, Moustafa SMN, Alsohaimi IH, Alruwaili IA, Nassar AM. High Antiparasitic and Antimicrobial Performance of Biosynthesized NiO Nanoparticles via Wasted Olive Leaf Extract. Int J Nanomedicine 2024; 19:1469-1485. [PMID: 38380146 PMCID: PMC10876883 DOI: 10.2147/ijn.s443965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Background Nowadays, recycling agricultural waste is of the utmost importance in the world for the production of valuable bioactive compounds and environmental protection. Olive leaf bioactive compounds have a significant potential impact on the pharmaceutical industry. These compounds possess remarkable biological characteristics, including antimicrobial, antiviral, anti-inflammatory, hypoglycemic, and antioxidant properties. Methods The present study demonstrates a green synthetic approach for the fabrication of nickel oxide nanoparticles (NiO-olive) using aqueous wasted olive leaf extract. Calcination of NiO-olive at 500°C led to the fabrication of pure NiO nanoparticles (NiO-pure). Different techniques, such as thermal gravimetric analysis (TGA), Fourier-transform infrared spectra (FTIR), ultraviolet-visible spectra (UV-Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM) fitted with energy-dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM), were used to characterize both NiO-olive and NiO-pure. The extract and nanoparticles were assessed for antiparasitic activity against adult ticks (Hyalomma dromedarii) and antimicrobial activity against Bacillus cereus, Pseudomonas aeruginosa, Aspergillus niger, and Candida albicans. Results From XRD, the crystal sizes of NiO-olive and NiO-pure were 32.94 nm and 13.85 nm, respectively. TGA, FTIR, and EDX showed the presence of olive organic residues in NiO-olive and their absence in NiO-pure. SEM and TEM showed an asymmetrical structure of NiO-olive and a regular, semi-spherical structure of NiO-pure. UV-Vis spectra showed surface plasmon resonance of NPs. Antiparasitic activity showed the highest mortality rate of 95% observed at a concentration of 0.06 mg/mL after four days of incubation. The antimicrobial activity showed the largest inhibition zone diameter of 33 ± 0.2 mm against the Candida albicans strain. Conclusion Nanoparticles of NiO-olive outperformed nanoparticles of NiO-pure and olive leaf extract in both antiparasitic and antimicrobial tests. These findings imply that NiO-olive may be widely used as an eco-friendly and effective antiparasitic and disinfection of sewage.
Collapse
Affiliation(s)
- Samia Q Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, 65799Saudi Arabia
| | - N F Alotaibi
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Sameera N Al-Ghamdi
- Chemistry Department, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | - Laila S Alqarni
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623Saudi Arabia
| | - Touseef Amna
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, 65799Saudi Arabia
| | - Shaima M N Moustafa
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | | | - I A Alruwaili
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - A M Nassar
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
15
|
El-Alfy ES, Abbas I, Saleh S, Elseadawy R, Fereig RM, Rizk MA, Xuan X. Tick-borne pathogens in camels: A systematic review and meta-analysis of the prevalence in dromedaries. Ticks Tick Borne Dis 2024; 15:102268. [PMID: 37769585 DOI: 10.1016/j.ttbdis.2023.102268] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Published data on tick-borne pathogens (TBPs) in camels worldwide have been collected to provide an overview of the global prevalence and species diversity of camelid TBPs. Several TBPs have been detected in dromedary camels, raising concerns regarding their role as natural or maintenance hosts for tick-borne pathogens. Insubstantial evidence exists regarding the natural infection of camels with Babesia spp., Theileria spp., Anaplasma spp., and Ehrlichia spp., particularly because most of the camels were considered healthy at the time of sampling. Based on polymerase chain reaction (PCR) testing, a pooled prevalence of 35.3% (95% CI: 22.6-48.1%) was estimated for Anaplasma, which was the most frequently tested TBP in dromedaries, and DNA of Anaplasma marginale, Anaplasma centrale, Anaplasma ovis, Anaplasma platys, and A. platys-like were isolated, of which ruminants and dogs are reservoirs. Similarly, the estimated pooled prevalence for the two piroplasmid genera; Babesia and Theileria was approximately equal (10-12%) regardless of the detection method (microscopy or PCR testing). Nevertheless, Babesia caballi, Theileria equi, and Theileria annulata DNA have frequently been detected in camels but they have not yet been proven to be natural hosts. Scarce data detected Babesia microti, Anaplasma phagocytophilum, and Borrelia burgdorferi sensu lato (s.l.) DNA in blood of dromedaries, although ticks of the genus Ixodes are distributed in limited areas where dromedaries are raised. Interestingly, a pooled seroprevalence of 47.7% (26.3-69.2%) was estimated for Crimean-Congo hemorrhagic fever virus, and viral RNA was detected in dromedary blood; however, their contribution to maintain the viral transmission cycles requires further experimental investigation. The substantially low incidence and scarcity of data on Rickettsia and Ehrlichia species could imply that camels were accidentally infected. In contrast, camels may play a role in the spread of Coxiella burnetii, which is primarily transmitted through the inhalation of aerosols emitted by diseased animals and contaminated environments. Bactrian camels showed no symptoms due to the examined TBPs, meanwhile, clinical disease was seen in alpacas infected with A. phagocytophilum. Similar to dromedaries, accidental tick bites may be the cause of TBP DNA found in the blood of Bactrian camels.
Collapse
Affiliation(s)
- El-Sayed El-Alfy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ibrahim Abbas
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Somaya Saleh
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Rana Elseadawy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ragab M Fereig
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Mohamed Abdo Rizk
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan; Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan
| |
Collapse
|
16
|
Shiri A, Kheirandish F, Sazmand A, Kayedi MH, Hosseini-Chegeni A. Molecular identification of hemoparasites in ixodid ticks in Iran. Vet Parasitol Reg Stud Reports 2024; 47:100967. [PMID: 38199703 DOI: 10.1016/j.vprsr.2023.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
A total of 386 ticks were processed in order to investigate the occurrence of selected tick transmitted pathogens (i.e., Theileria, Babesia, Hepatozoon and Cytauxzoon) in ixodid ticks in six provinces of Iran (East Azerbaijan, Gilan, Kermanshah, Khuzestan, Sistan & Baluchestan and Tehran). Ticks identified as Dermacentor marginatus, Hyalomma aegyptium, Hy. anatolicum, Hy. asiaticum, Hy. marginatum, Ixodes ricinus, Rhipicephalus annulatus and R. sanguineus sensu lato were collected from sheep and cattle. Conventional PCR and sequencing results revealed DNA of Theileria ovis in three R. sanguineus sensu lato pools and one D. marginatus pool from sheep in Kermanshah and East Azerbaijan, T. annulata in one Hy. asiaticum pool from cattle in Kermanshah, and He. canis in an individual female Hy. aegyptium in Kermanshah. Data herein indicate the role of R. sanguineus complex and D. marginatus in the epidemiology of ovine theileriosis in western and northwestern Iran. Potential role of Hyalomma aegyptium in the transmission of He. canis is discussed. Considering non-principled movement of livestock across the country and increasing reports about the resistance of ticks to common acaricides, test-and-treatment of infected livestock, vaccination of the livestock against endemic tick-borne pathogens, and the use of non-chemical tick management strategies are recommended.
Collapse
Affiliation(s)
- Aioub Shiri
- Department of Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran; Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Farnaz Kheirandish
- Department of Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran; Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Sazmand
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Hassan Kayedi
- Department of Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran; Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | | |
Collapse
|
17
|
Elsawy BSM, Mahmoud MS, Suarez CE, Alzan HF. Impact of Equine and Camel Piroplasmosis in Egypt: How Much Do We Know about the Current Situation? Pathogens 2023; 12:1318. [PMID: 38003783 PMCID: PMC10675018 DOI: 10.3390/pathogens12111318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Piroplasmosis is a global tick-borne disease caused by hemoprotozoan parasites, which causes high morbidity and substantial economic losses in farm animals. Equine and camel piroplasmosis causes significant losses worldwide and in Egypt. The multifactorial effects and overall impact of equine and camel piroplasmosis in Egypt remain poorly characterized. However, several Babesia and Theileria spp. as well as potential tick vectors affecting these two species have been identified in the country. Equine and camel piroplasmosis has been reported by all governates in the country. Thus, in this work, we intend to provide a broad depiction of the current approaches used for diagnosis and control and the impact of piroplasmosis on the equine and camel industries in Egypt. We also identified current gaps in knowledge that might help develop future research efforts towards improved intervention and control of equine and camel piroplasmosis. It is important to develop specific diagnostic tools suitable for the early and chronic diagnosis of this disease. Altogether, the current situation warrants the development of large-scale epidemiological studies in order to obtain an accurate estimate for equine and camel piroplasmosis to secure the highly needed food resources in the country.
Collapse
Affiliation(s)
- Bassma S. M. Elsawy
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Center Dokki, Giza 12622, Egypt; (B.S.M.E.); (M.S.M.)
- Tick and Tick-Borne Diseases Research Unit, Veterinary Research Institute, National Research Center Dokki, Giza 12622, Egypt
| | - Mona S. Mahmoud
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Center Dokki, Giza 12622, Egypt; (B.S.M.E.); (M.S.M.)
- Tick and Tick-Borne Diseases Research Unit, Veterinary Research Institute, National Research Center Dokki, Giza 12622, Egypt
| | - Carlos E. Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Animal Disease Research Unit, United States Department of Agricultural—Agricultural Research Service, Pullman, WA 99164, USA;
| | - Heba F. Alzan
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Center Dokki, Giza 12622, Egypt; (B.S.M.E.); (M.S.M.)
- Tick and Tick-Borne Diseases Research Unit, Veterinary Research Institute, National Research Center Dokki, Giza 12622, Egypt
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
18
|
Bardakci F, Al-Subaie SHM, Badraoui R, Adnan M, Siddiqui AJ. Molecular Characterization of Hard Ticks Infesting Camels in the Northern Region of Saudi Arabia Using the Barcoding Gene, Mitochondrial Cytochrome oxidase subunit I. Life (Basel) 2023; 13:1535. [PMID: 37511909 PMCID: PMC10381736 DOI: 10.3390/life13071535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The present study aimed to molecularly identify and characterize the hard ticks infesting camels from the northern region (Ha'il province) of Saudi Arabia using the mitochondrial barcoding gene cytochrome oxidase subunit I (COI). The sequences of tick samples from camels in three regions of Ha'il were aligned with those previously reported from different geographic regions, revealing nine haplotypes, of which six were newly described in this study for the first time. These haplotypes were used to determine their phylogenetic relationships using the maximum likelihood method, displaying two distinct clades corresponding to Hyalomma dromedarii and H. impeltatum. Moreover, the haplotypes showing the highest homology with those deposited in NCBI-GenBank from different geographic regions, including Saudi Arabia, were obtained and combined to determine their phylogenetic relationships among them. The results showed that the haplotypes belonging to two clades were grouped with those previously determined as H. dromedarii and H. impeltatum. Moreover, the presence of H. scupense (syn. H. detritum) together with H. impeltatum suggests possible asymmetrical hybridization and mitochondrial introgression between these species. H. scupense infesting different mammal species apart from camels were also clustered in a different clade, indicating the presence of different lineages of this species that show different host specificities.
Collapse
Affiliation(s)
- Fevzi Bardakci
- Department of Biology, College of Science, University of Ha'il, Ha'il P.O. Box 2440, Saudi Arabia
| | | | - Riadh Badraoui
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, Tunis 1007, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il P.O. Box 2440, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il P.O. Box 2440, Saudi Arabia
| |
Collapse
|
19
|
Ali M, Al-Ahmadi BM, Ibrahim R, Alahmadi S, Gattan H, Shater AF, Elshazly H. HARD TICKS (ACARI: IXODIDAE) INFESTING ARABIAN CAMELS (CAMELUS DROMEDARIUS) IN MEDINA AND QASSIM, SAUDI ARABIA. J Parasitol 2023; 109:252-258. [PMID: 37367177 DOI: 10.1645/22-109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Ixodid ticks are hematophagous obligatory ectoparasites that occur worldwide and transmit pathogens to humans and other vertebrates, causing economic livestock losses. The Arabian camel (Camelus dromedarius Linnaeus, 1758) is an important livestock animal in Saudi Arabia that is vulnerable to parasitism by ticks. The diversity and intensity of ticks on Arabian camels in certain localities in the Medina and Qassim regions of Saudi Arabia were determined. One hundred forty camels were examined for ticks, and 106 were infested (98 females, 8 males). A total of 452 ixodid ticks (267 males, 185 females) were collected from the infested Arabian camels. The tick infestation prevalence was 83.1% and 36.4% in female and male camels, respectively (female camels harbored significantly more ticks than did male camels). The recorded tick species were Hyalomma dromedarii Koch, 1844 (84.5%); Hyalomma truncatum Koch, 1844 (11.1%); Hyalomma impeltatum Schulze and Schlottke, 1929 (4.2%); and Hyalomma scupense Schulze, 1919 (0.22%). Hyalomma dromedarii was the predominant tick species in most regions, with a mean intensity of 2.15 ± 0.29 ticks/camel (2.5 ± 0.53 male ticks/camel, 1.8 ± 0.21 female ticks/camel). The proportion of male ticks was higher than that of female ticks (59.1 vs. 40.9%). To the best of our knowledge, this is the first survey of ixodid ticks on Arabian camels in Medina and Qassim, Saudi Arabia.
Collapse
Affiliation(s)
- Medhat Ali
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawwarah, 344, Saudi Arabia
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Bassam M Al-Ahmadi
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawwarah, 344, Saudi Arabia
| | - Reda Ibrahim
- Department of Economic Entomology, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Saeed Alahmadi
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawwarah, 344, Saudi Arabia
| | - Hattan Gattan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21362, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Centre, Jeddah, 21362, Saudi Arabia
| | - Abdullah F Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, 71491, Saudi Arabia
| | - Hayam Elshazly
- Department of Biology, Faculty of Sciences and Arts - Scientific Departments, Qassim University, Buraydah, Qassim, 52571, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| |
Collapse
|
20
|
Kratou M, Belkahia H, Selmi R, Andolsi R, Dhibi M, Mhadhbi M, Messadi L, Ben Said M. Diversity and Phylogeny of Cattle Ixodid Ticks and Associated Spotted Fever Group Rickettsia spp. in Tunisia. Pathogens 2023; 12:pathogens12040552. [PMID: 37111438 PMCID: PMC10146803 DOI: 10.3390/pathogens12040552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Tick-borne rickettsioses are mainly caused by obligate intracellular bacteria belonging to the spotted fever group (SFG) of the Rickettsia genus. So far, the causative agents of SFG rickettsioses have not been detected in cattle ticks from Tunisia. Therefore, the aim of this study was to investigate the diversity and phylogeny of ticks associated with cattle from northern Tunisia and their associated Rickettsia species. Adult ticks (n = 338) were collected from cattle in northern Tunisia. The obtained ticks were identified as Hyalomma excavatum (n = 129), Rhipicephalus sanguineus sensu lato (n = 111), Hyalomma marginatum (n = 84), Hyalomma scupense (n = 12) and Hyalomma rufipes (n = 2). After DNA extraction from the ticks, 83 PCR products based on the mitochondrial 16S rRNA gene were sequenced and a total of four genotypes for Rh. sanguineus s.l., two for Hy. marginatum and Hy. excavatum and only one for Hy. scupense and Hy. rufipes were recorded, with the occurrence of one, two and three novel genotypes, respectively, for Hy. marginatum, Hy. excavatum and Rh. sanguineus s.l. mitochondrial 16S rRNA partial sequences. The tick DNA was tested for the presence of Rickettsia spp. by using PCR measurements and sequencing targeting three different genes (ompB, ompA and gltA). Of the 338 analyzed ticks, 90 (26.6%), including 38 (34.2%) Rh. sanguineus s.l., 26 (20.1%) Hy. excavatum, 25 (29.8%) Hy. marginatum and one (50%) Hy. rufipes tick, were positive for Rickettsia spp. Based on 104 partial sequences of the three analyzed genes, the BLAST analysis and phylogenetic study showed the infection of Hy. excavatum, Hy. marginatum and Rh. sanguineus s.l. tick specimens with R. massiliae, R. aeschlimannii and R. sibirica subsp. mongolitimonae and one Hy. rufipes tick specimen with R. aeschlimannii. In addition, coinfection with R. massiliae and R. aeschlimannii was reported in one Hy. marginatum and one Rh. sanguineus s.l. tick specimen, while a coinfection with R. massiliae and R. sibirica subsp. mongolitimonae was recorded in one Rh. sanguineus s.l. tick specimen. In conclusion, our study reports, for the first time in Tunisia, the infection of cattle ticks belonging to Hyalomma and Rhipicephalus genera with zoonotic Rickettsia species belonging to the SFG group.
Collapse
Affiliation(s)
- Myriam Kratou
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Hanene Belkahia
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Rachid Selmi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
- Ministry of National Defense, General Directorate of Military Health, Veterinary Service, Tunis 1008, Tunisia
| | - Rihab Andolsi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Mokhtar Dhibi
- Laboratory of Parasitology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Moez Mhadhbi
- Laboratory of Parasitology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Lilia Messadi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
- Laboratory of Parasitology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| |
Collapse
|
21
|
Masoud HMM, Helmy MS, Darwish DA, Ibrahim MA. Purification, characterization, and enzyme kinetics of a glutathione S transferase from larvae of the camel tick Hyalomma dromedarii. J Genet Eng Biotechnol 2023; 21:28. [PMID: 36884105 PMCID: PMC9995618 DOI: 10.1186/s43141-023-00486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Glutathione s-transferases (GSTs) perform an essential role in detoxification of xenobiotics and endogenous compounds via their conjugation to reduce glutathione. RESULTS A GST enzyme, designated tick larvae glutathione S transferase (TLGST), was purified from larvae of the camel tick Hyalomma dromedarii via ammonium sulfate precipitation, glutathione-Sepharose affinity column and Sephacryl S-300 chromatography. TLGST-specific activity was found to be 1.56 Umg-1 which represents 39 folds and 32.2% recovery. The molecular weight of TLGST purified from camel tick larvae was found as 42 kDa by gel filtration. TLGST has a pI value of 6.9 and was found a heterodimeric protein of 28 and 14 kDa subunits as detected on SDS-PAGE. The Lineweaver-Burk plot calculated the km for CDNB to be 0.43 mM with Vmax value of 9.2 Umg-1. TLGST exhibited its optimal activity at pH 7.9. Co2+, Ni2+ and Mn2+ increased the activity of TLGST while Ca2+, Cu2+, Fe2+ and Zn2+ inhibited it. TLGST was inhibited by cumene hydroperoxide, p-hydroxymercuribenzoate, lithocholic acid, hematin, triphenyltin chloride, p-chloromercuribenzoic acid (pCMB), N-p-Tosyl-L-phenylalanine chloromethyl ketone (TPCK), iodoacetamide, EDTA and quercetin. pCMB inhibited TLGST competitively with Ki value of 0.3 mM. CONCLUSIONS These findings will help to understand the various physiologic conditions of ticks and targeting TLGST could be significant tool for development of prospective vaccines against ticks as a bio-control strategy to overcome the rapid grows in pesticide-resistant tick populations.
Collapse
Affiliation(s)
- Hassan M. M. Masoud
- Molecular Biology Department, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
- Proteome Research Laboratory, Central Laboratories Network and Centers of Excellence, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
| | - Mohamed S. Helmy
- Molecular Biology Department, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
- Proteome Research Laboratory, Central Laboratories Network and Centers of Excellence, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
| | - Doaa A. Darwish
- Molecular Biology Department, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
- Proteome Research Laboratory, Central Laboratories Network and Centers of Excellence, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
| | - Mahmoud A. Ibrahim
- Molecular Biology Department, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
- Proteome Research Laboratory, Central Laboratories Network and Centers of Excellence, National Research Centre, El-Tahrir St, Dokki, Giza, Egypt
| |
Collapse
|
22
|
Uiterwijk M, Vojta L, Šprem N, Beck A, Jurković D, Kik M, Duscher GG, Hodžić A, Reljić S, Sprong H, Beck R. Diversity of Hepatozoon species in wild mammals and ticks in Europe. Parasit Vectors 2023; 16:27. [PMID: 36694253 PMCID: PMC9872412 DOI: 10.1186/s13071-022-05626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/18/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Hepatozoon spp. are tick-borne parasites causing subclinical to clinical disease in wild and domestic animals. Aim of this study was to determine Hepatozoon prevalence and species distribution among wild mammals and ticks in Europe. METHODS Samples of wild mammals and ticks, originating from Austria, Bosnia and Herzegovina, Croatia, Belgium and the Netherlands, were tested with PCR to amplify a ~ 670-bp fragment of the small subunit ribosomal RNA gene. RESULTS Of the 2801 mammal samples that were used for this study, 370 (13.2%) tested positive. Hepatozoon canis was detected in samples of 178 animals (3 Artiodactyla, 173 Carnivora, 1 Eulipotyphia, 1 Lagomorpha), H. martis in 125 (3 Artiodactyla, 122 Carnivora), H. sciuri in 13 (all Rodentia), Hepatozoon sp. in 47 (among which Hepatozoon sp. Vole isolate, all Rodentia) and H. ayorgbor in 4 (all Rodentia). Regarding origin, 2.9% (6/208) tested positive from Austria, 2.8% (1/36) from Bosnia and Herzegovina, 14.6% (173/1186) from Croatia and 13.9% (190/1371) from Belgium/the Netherlands. Of the 754 ticks collected, 0.0% (0/35) Hyalomma sp., 16.0% (4/25) Dermacentor spp., 0.0% (0/23) Haemaphysalis spp., 5.3% (24/50) Ixodes and 1.4% (3/221) Rhipicephalus spp. tested positive for Hepatozoon (4.2%; 32/754), most often H. canis (n = 22). CONCLUSIONS Hepatozoon canis is most present in mammals (especially in Carnivora such as gray wolves and golden jackals) and ticks, followed by H. martis, which was found merely in stone martens and pine martens. None of the rodent-associated Hepatozoon spp. were detected in the ticks, suggesting the possible implication of other arthropod species or non-vectorial routes in the transmission cycle of the hemoprotozoans in rodents. Our findings of H. canis in ticks other than R. sanguineus add to the observation that other ticks are also involved in the life cycle of Hepatozoon. Now that presence of Hepatozoon has been demonstrated in red foxes, gray wolves, mustelids and rodents from the Netherlands and/or Belgium, veterinary clinicians should be aware of the possibility of spill-over to domestic animals, such as dogs.
Collapse
Affiliation(s)
- Mathilde Uiterwijk
- Centre for Monitoring of Vectors (CMV), Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP), Netherlands Food and Consumer Product Safety Authority (NVWA), Wageningen, the Netherlands
| | - Lea Vojta
- Division of Molecular Biology, Laboratory for Molecular Plant Biology and Biotechnology, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Nikica Šprem
- Department of Fisheries, Apiculture, Wildlife Management and Special Zoology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Ana Beck
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Daria Jurković
- Laboratory for Parasitology, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, Zagreb, Croatia
| | - Marja Kik
- Faculty of Veterinary Medicine, Dutch Wildlife Health Centre, Utrecht University, Utrecht, the Netherlands
| | - Georg G. Duscher
- Austrian Agency for Health & Food Safety (AGES), Vienna, Austria
| | - Adnan Hodžić
- Centre for Microbiology and Environmental System Science (CMESS), Department of Microbiology and Ecosystem Science, Division of Microbial Ecology (DoME), University of Vienna, Vienna, Austria
| | - Slaven Reljić
- Department of Forensic and State Veterinary Medicine, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Hein Sprong
- Centre of Infectious Disease Control of the National Institute for Public Health and the Environment (Cib-RIVM), Bilthoven, the Netherlands
| | - Relja Beck
- Laboratory for Parasitology, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, Zagreb, Croatia
| |
Collapse
|
23
|
Moudgil AD, Daundkar PS, Nehra AK, Vohra S, Gupta S, Sharma D. Molecular characterization of Hyalomma dromedarii and evaluation of acaricidal potential of herbal methanolic extracts against H. dromedarii larvae in comparison to synthetic acaricides. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 89:141-156. [PMID: 36477934 DOI: 10.1007/s10493-022-00763-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
The present study had two aims: molecular characterization of Hyalomma dromedarii infesting one-humped camels of Haryana (North India), and assessment of the acaricidal potential of herbal methanolic extracts against H. dromedarii larvae in comparison to synthetic acaricides. Phylogenetics and population neutrality indices were assessed by targeting partial amplification of mitochondrial 16S rDNA sequences. Larval packet test (LPT) was performed to evaluate the acaricidal efficacy of herbal extracts (Ferula asafoetida and Trachyspermum ammi) and synthetic acaricides (deltamethrin and fipronil). Phylogenetic studies established the collected ticks to be H. dromedarii, exhibiting a homology of 99.8-100%. However, the present study isolates formed a different sub-clade compared to H. dromedarii sequences from Egypt, Senegal, Tunisia and Saudi Arabia. Nucleotide and haplotype diversity values were indicative of demographic expansion and low gene flow. Negative values of Tajima's D (-0.612) and Fu and Li's Fst (-0.479) highlighted deviations from neutrality and emphasized recent population expansion. The median lethal concentration (LC50) values recorded for T. ammi, F. asafoetida and their combination were 3.68, 2.87 and 2.59 mg/mL, respectively, whereas the 90% lethal concentration (LC90) values were 4.09, 3.58 and 3.35 mg/mL, respectively. It was also observed that the H. dromedarii population under study was completely susceptible to both the formulated synthetic acaricides. In conclusion, combination of methanolic extracts of F. asafoetida and T. ammi could provide a potential substitute to toxic synthetic chemical acaricides and might prove a valuable component of integrated tick management strategies.
Collapse
Affiliation(s)
- Aman D Moudgil
- Department of Veterinary Parasitology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, 125004, Hisar, Haryana, India.
| | - Prashant S Daundkar
- Department of Veterinary Pharmacology, DGCN College of Veterinary and Animal Sciences, CSK Himachal Pradesh Krishi Vishwavidyalaya Palampur (H.P), 176062, Palampur, India
| | - Anil K Nehra
- Department of Veterinary Parasitology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, 125004, Hisar, Haryana, India
| | - Sukhdeep Vohra
- Department of Veterinary Parasitology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, 125004, Hisar, Haryana, India
| | - Snehil Gupta
- Department of Veterinary Parasitology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, 125004, Hisar, Haryana, India
| | - Dinesh Sharma
- Department of Veterinary Pharmacology, DGCN College of Veterinary and Animal Sciences, CSK Himachal Pradesh Krishi Vishwavidyalaya Palampur (H.P), 176062, Palampur, India
| |
Collapse
|
24
|
Yasmeen N, Kashif M, Arif T, Khan A, Ali M, Khan MA, Farooq M, Said MB, Iqbal F. Distribution, prevalence and diversity of ticks (Acari: Ixodidae) infesting one-humped camels from Southwest Punjab, Pakistan. Vet Parasitol Reg Stud Reports 2023; 37:100825. [PMID: 36623905 DOI: 10.1016/j.vprsr.2022.100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
In tropical countries like Pakistan, ticks are the most prevalent vectors for transmitting diseases to wild and domestic animals leading to their morbidity and mortality. In the present study, a total of 593 ticks infesting one-humped camels (n = 244) were collected during April till June 2021 from two tehsils of Layyah district located in Punjab (Pakistan) in order to investigate their diversity, prevalence and distribution. Data analysis revealed that camels located in Tehsil Choubara were significantly more tick infested than camels from Tehsil Layyah (P = 0.02). It was observed that the older camels were more prone to tick infestation that younger ones. Hyalomma and Rhipicephalus were the two tick genera identified during the present study and tick specimens of Hyalomma genus were the most prevalent (n = 590, 99.5%). In particular, Hyalomma dromedarii was the most prevalent tick species (n = 559, 94.3%), followed by Hyalomma anatolicum (n = 24, 4%), Hyalomma marginatum (n = 7, 1.2%) and Rhipicephalus sanguineus sensu lato (n = 3, 0.5%). The overall abundance of male ticks was higher than the female ticks with a ratio of 1:2.1. Neck was the most preferred site for the tick infestation followed by ventral, sternum, under tail, head, udder and back of analyzed camels. To our knowledge, this is the first report regarding tick diversity on camels from Layyah district and based on our finding, we recommend large-scale tick control strategies to be implemented in this district to uplift the livestock sector.
Collapse
Affiliation(s)
- Nusrat Yasmeen
- Department of Zoology, Ghazi University, Dera Ghazi Khan 32200, Pakistan
| | - Muhammad Kashif
- Department of Zoology, Ghazi University, Dera Ghazi Khan 32200, Pakistan
| | - Tehreem Arif
- Institute of Zoology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Adil Khan
- Department of Botany and Zoology, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ali
- College of Veterinary Sciences, Bahauddin Zakariya University, Bahadur Sub Campus Layyah, 31200, Pakistan
| | - Muzaffar Ali Khan
- Department of Microbiology and Molecular Genetics, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Farooq
- Department of Zoology, Ghazi University, Dera Ghazi Khan 32200, Pakistan
| | - Mourad Ben Said
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia; Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia.
| | - Furhan Iqbal
- Institute of Zoology, Bahauddin Zakariya University, Multan 60800, Pakistan.
| |
Collapse
|
25
|
MALDI-TOF MS Identification of Dromedary Camel Ticks and Detection of Associated Microorganisms, Southern Algeria. Microorganisms 2022; 10:microorganisms10112178. [DOI: 10.3390/microorganisms10112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
This study used MALDI-TOF MS and molecular tools to identify tick species infesting camels from Tamanrasset in southern Algeria and to investigate their associated microorganisms. Ninety-one adult ticks were collected from nine camels and were morphologically identified as Hyalomma spp., Hyalomma dromedarii, Hyalomma excavatum, Hyalomma impeltatum and Hyalomma anatolicum. Next, the legs of all ticks were subjected to MALDI-TOF MS, and 88/91 specimens provided good-quality MS spectra. Our homemade MALDI-TOF MS arthropod spectra database was then updated with the new MS spectra of 14 specimens of molecularly confirmed species in this study. The spectra of the remaining tick specimens not included in the MS database were queried against the upgraded database. All 74 specimens were correctly identified by MALDI-TOF MS, with logarithmic score values ranging from 1.701 to 2.507, with median and mean values of 2.199 and 2.172 ± 0.169, respectively. One H. impeltatum and one H. dromedarii (2/91; 2.20%) tested positive by qPCR for Coxiella burnetii, the agent of Q fever. We also report the first detection of an Anaplasma sp. close to A. platys in H. dromedarii in Algeria and a potentially new Ehrlichia sp. in H. impeltatum.
Collapse
|
26
|
Nabil M, Khater HF, Selim A, Baz MM, Govindarajan M, A. A. Taie H, Negm S. Acaricidal Efficacy of Silver Nanoformulations of Commiphora molmol and Zingiber officinale against the Camel Tick, Hyalomma dromedarii (Ixodida: Ixodidae). INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Yessinou RE, Cazan CD, Bonnet SI, Farougou S, Mihalca AD. Geographical distribution of hard ticks (Acari:Ixodidae) and tick-host associations in Benin, Burkina-Faso, Ivory-Coast and Togo. Acta Trop 2022; 232:106510. [PMID: 35568068 DOI: 10.1016/j.actatropica.2022.106510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 12/25/2022]
Abstract
Knowledge of ticks and associated pathogens is crucial to assess the risk of exposure of humans and animals to pathogens. For this review, we collected relevant data from published articles and field collections to provide an update on the biodiversity of ticks, and tick-host associations in four countries of West Africa: Benin, Burkina-Faso, Ivory-Coast, and Togo. The literature review was done according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. The search was limited to literature published from 1953 to 2021 in English and French sources. Out of 104 articles retrieved, only 41 studies met the eligibility criteria and were included in the review. The final database included a total of 53,619 adults, nymphs and larval ticks belonging to 24 species and five genera (Amblyomma, Haemaphysalis, Hyalomma, Ixodes and Rhipicephalus) that were collected from 23 different species of wild and domestic animals. This is the first record of Ixodes aulacodi and Rhipicephalus simpsoni in Benin, together with two new host records for A. latum. This checklist allows an update on tick-host associations and provides information on the diversity of ticks in West Africa.
Collapse
Affiliation(s)
- Roland Eric Yessinou
- Communicable Disease Research Unit (URMaT), University of Abomey-Calavi, Cotonou, Benin, 01 Po. Box: 2009, Cotonou, Benin.
| | - Cristina Daniela Cazan
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Calea Mănăştur, 400372, Cluj-Napoca, Romania; CDS-9 Molecular Biology and Veterinary Parasitology Unit, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Mănăştur, 400372, Cluj-Napoca, Romania
| | - Sarah Irène Bonnet
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, CNRS UMR 2000, Université de Paris, 75015, Paris, France; Animal Health Department, INRAE, 37380, Nouzilly, France
| | - Souaïbou Farougou
- Communicable Disease Research Unit (URMaT), University of Abomey-Calavi, Cotonou, Benin, 01 Po. Box: 2009, Cotonou, Benin
| | - Andrei Daniel Mihalca
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Calea Mănăştur, 400372, Cluj-Napoca, Romania
| |
Collapse
|
28
|
Selmi R, Belkahia H, Sazmand A, Ben Said M, Messadi L. Epidemiology and genetic characteristics of tick-borne bacteria in dromedary camels of the world. Acta Trop 2022; 234:106599. [PMID: 35810831 DOI: 10.1016/j.actatropica.2022.106599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/01/2022]
Abstract
This review presents updated knowledge on the main tick-borne bacteria infecting one-humped camels (Camelus dromedarius) around the world. Camels are increasingly the subject of several scientific investigations, showing that they are receptive and carriers of several zoonotic bacteria. An appraisal is also given of the relative public health importance of these bacterial infections according to One Health concept. Microscopic, serologic and molecular findings are appropriately generated in order to exploit epidemiological data, and phylogeographic specificities associated to each vector-borne bacterium. Indeed, camels and their ticks harbour similar species and genotypes of pathogenic bacteria commonly identified in other animals, e.g., Anaplasma spp.,Ehrlichia spp., Borrelia spp., Rickettsia spp., Coxiella burnetii, Bartonella spp. and hemotrophic mycoplasmas. This evidence suggests an epidemiological role of camels in the spread of these pathogens in their natural habitats. However, these infections are commonly asymptomatic in camels resulting in underestimation of the impact of these infections. Furthermore, camels have recently been proven to have their own specific unclassified strains, such as Candidatus Anaplasma camelii and Candidatus Bartonella camelii, implying that possible interactions may lead to the emergence of pathogenic and zoonotic bacteria. In camel-rearing areas of the world, spatial and temporal spread of these infections, due to climatic and ecological changes and human activities such as development projects and urbanization, is expected. Hence the data presented herein provides a basis for strategic frameworks for the research and the development of novel diagnosis and control strategies worldwide, which are needed to protect camels, other livestock, and people in contact with dromedaries from threats that arthropod-borne pathogens can pose.
Collapse
Affiliation(s)
- Rachid Selmi
- Laboratory of Microbiology at the National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia; Ministry of National Defense, General Directorate of Military Health, Military center of Veterinary Medicine, Tunis, Tunisia.
| | - Hanène Belkahia
- Laboratory of Microbiology at the National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Alireza Sazmand
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan 6517658978, Iran
| | - Mourad Ben Said
- Laboratory of Microbiology at the National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia; Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Lilia Messadi
- Laboratory of Microbiology at the National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia.
| |
Collapse
|
29
|
Salman D, Sivakumar T, Otgonsuren D, Mahmoud ME, Elmahallawy EK, Khalphallah A, Kounour AMEY, Bayomi SA, Igarashi M, Yokoyama N. Molecular survey of Babesia, Theileria, Trypanosoma, and Anaplasma infections in camels (Camelus dromedaries) in Egypt. Parasitol Int 2022; 90:102618. [PMID: 35777654 DOI: 10.1016/j.parint.2022.102618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/26/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
Abstract
The one-humped camel (Camelus dromedarius) or dromedary is an economically important domestic animal. However, infectious diseases, including those caused by vector-borne hemopathogens, frequently compromise the health and production of camels. In this study, we examined infections caused by Babesia, Theileria, Trypanosoma, and Anaplasma species in camels in Egypt. We analyzed blood DNA samples from 148 camels reared in six Egyptian governorates (Giza, Asyut, Sohag, Qena, Luxor, and the Red Sea) using pathogen-specific Polymerase Chain Reaction (PCR) assays. Our results indicated that 29 (19.6%), 22 (14.9%), 1 (0.7%), 2 (1.4%), 1 (0.7%), 2 (1.4%), and 28 (18.9%) of the surveyed animals were infected with Babesia bovis, B. bigemina, Babesia sp. Mymensingh, Theileria sp. Yokoyama, Theileria equi, Trypanosoma evansi, and Anaplasma marginale, respectively. We found that a total of 68 (45.9%) animals were infected with at least one of the detected hemopathogens. Sequencing analyses of PCR amplicons confirmed our diagnostic results. This study is the first to report Theileria sp. Yokoyama and Babesia sp. Mymensingh in Egypt. This is also the first report of infection with these two species in one-humped camel. In conclusion, this study found that camels in Egypt are infected with several vector-borne hemopathogens, including novel parasite species.
Collapse
Affiliation(s)
- Doaa Salman
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; Department of Animal Medicine, Faculty of Veterinary Medicine, Sohag University, 82524 Sohag, Egypt
| | - Thillaiampalam Sivakumar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Davaajav Otgonsuren
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Motamed E Mahmoud
- Department of Animal Behavior and Husbandry (breeding, genetics and management), Faculty of Veterinary Medicine, Sohag University, 82524 Sohag, Egypt
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, 82524 Sohag, Egypt
| | - Arafat Khalphallah
- Division of Internal Medicine, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Ahmed M E Y Kounour
- Department of Animal Medicine, Faculty of Veterinary Medicine, Sohag University, 82524 Sohag, Egypt
| | - Sara A Bayomi
- Division of Clinical Laboratory Diagnosis, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Makoto Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; OIE Reference Laboratories for Bovine Babesiosis and Equine Piroplasmosis, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
30
|
Molecular Detection of Tick-Borne Rickettsial Pathogens Associated with the Arabian Camel (Camelus dromedarius) in Riyadh and the Eastern Region, Saudi Arabia. Acta Parasitol 2022; 67:794-801. [PMID: 35107775 DOI: 10.1007/s11686-022-00520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/11/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND In Saudi Arabia, records on molecular identification of tick-borne infections in camels are relatively scarce; few molecular epidemiological studies have been conducted. OBJECTIVE This study aimed to find Anaplasma species and Piroplasma spp. in camels from Riyadh and the Eastern Region, Saudi Arabia. ANIMALS A total of 1369 blood samples were collected from camels from Riyadh and the Eastern Region and analyzed for the DNA of Anaplasma and Piroplasma species by polymerase chain reaction (PCR). RESULTS Piroplasma spp. infection was not observed in any of the blood samples. 616 camels (44.99%) were found to be positive for Anaplasma infection by PCR targeting the 16S rRNA and COX1 genes. Six Anaplasma sequences for the 16S rRNA gene (OK481101-OK481106) were deposited in GenBank and six for the COX1 gene (OK490994-OK490999). They showed 98.3% and 62.7% similarities with Anaplasma marginale (A. marginale) detected in Kenya and Brazil, respectively. Phylogenetic studies revealed that the 12 sequences reported in this study were closely related; they were found in the same cluster as A. marginale isolates previously recorded in South Africa, Brazil, USA, China, and Israel. CONCLUSION Finally, 12 Anaplasma sequences closely related to A. marginale were detected in camels in Riyadh and the Eastern Region, Saudi Arabia. Camels in these areas were confirmed to be free of Piroplasma.
Collapse
|
31
|
Collins M, Ngetich C, Owido M, Getange D, Harris R, Bargul JL, Bodha B, Njoroge D, Muloi D, Martins DJ, Villinger J, Githaka N, Baylis M, Fèvre EM, Kanduma E, Younan M, Bell-Sakyi L. Detection of Antibodies to Ehrlichia spp. in Dromedary Camels and Co-Grazing Sheep in Northern Kenya Using an Ehrlichia ruminantium Polyclonal Competitive ELISA. Microorganisms 2022; 10:microorganisms10050916. [PMID: 35630361 PMCID: PMC9144424 DOI: 10.3390/microorganisms10050916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
A disease with clinical and post-mortem presentation similar to those seen in heartwater, a tick-borne disease of domestic and wild ruminants caused by the intracellular bacterium Ehrlichia ruminantium, was first reported in dromedary camels in Kenya in 2016; investigations carried out at the time to determine the cause were inconclusive. In the present study, we screened sera from Kenyan camels collected before (2015) and after (2020) the 2016 disease outbreak for antibodies to Ehrlichia spp. using an E. ruminantium polyclonal competitive ELISA (PC-ELISA). Median antibody levels were significantly higher (p < 0.0001) amongst camels originating from areas where the heartwater-like disease was reported than from disease-free areas, for animals sampled in both 2015 and 2020. Overall median seropositivity was higher in camels sampled in 2015 than in 2020, which could have been due to higher mean age in the former group. Camels that were PCR-positive for Candidatus Ehrlichia regneryi had significantly lower (p = 0.03) median antibody levels than PCR-negative camels. Our results indicate that Kenyan camels are frequently exposed to E. ruminantium from an early age, E. ruminantium was unlikely to have been the sole cause of the outbreak of heartwater-like disease; and Ca. E. regneryi does not appreciably cross-react with E. ruminantium in the PC-ELISA.
Collapse
Affiliation(s)
- Marisol Collins
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (M.C.); (R.H.); (D.M.); (M.B.); (E.M.F.)
| | - Collins Ngetich
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya; (C.N.); (M.O.); (N.G.)
| | - Milton Owido
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya; (C.N.); (M.O.); (N.G.)
| | - Dennis Getange
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya; (D.G.); (J.L.B.)
| | - Robert Harris
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (M.C.); (R.H.); (D.M.); (M.B.); (E.M.F.)
| | - Joel L. Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya; (D.G.); (J.L.B.)
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya;
| | - Boku Bodha
- Directorate of Veterinary Services, County Government of Marsabit, Marsabit P.O. Box 384-60500, Kenya;
| | - Daniel Njoroge
- Department of Biochemistry and Molecular Biology, Faculty of Science, Egerton University, Njoro P.O. Box 536-20115, Kenya;
| | - Dishon Muloi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (M.C.); (R.H.); (D.M.); (M.B.); (E.M.F.)
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya; (C.N.); (M.O.); (N.G.)
| | | | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya;
| | - Naftaly Githaka
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya; (C.N.); (M.O.); (N.G.)
| | - Matthew Baylis
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (M.C.); (R.H.); (D.M.); (M.B.); (E.M.F.)
| | - Eric M. Fèvre
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (M.C.); (R.H.); (D.M.); (M.B.); (E.M.F.)
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya; (C.N.); (M.O.); (N.G.)
| | - Esther Kanduma
- Department of Biochemistry, Faculty of Science and Technology, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya;
| | - Mario Younan
- Food and Agriculture Organisation of the United Nations (FAO), Programme and Operational Support to Syria Crisis, UN Cross-Border Hub, Gaziantep 27010, Turkey;
| | - Lesley Bell-Sakyi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (M.C.); (R.H.); (D.M.); (M.B.); (E.M.F.)
- Correspondence:
| |
Collapse
|
32
|
Perveen N, Muzaffar SB, Vijayan R, Al-Deeb MA. Assessing Temporal Changes in Microbial Communities in Hyalomma dromedarii Collected From Camels in the UAE Using High-Throughput Sequencing. Front Vet Sci 2022; 9:861233. [PMID: 35433895 PMCID: PMC9008585 DOI: 10.3389/fvets.2022.861233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
Ticks (Acari) are ectoparasites of animals that harbor communities of microbes of importance to animal and human health. Microbial communities associated with ticks exhibit temporal patterns of variation in their composition, with different genera dominating at different times of the year. In this study, molecular tools were used to assess the composition of the microbial communities associated with Hyalomma dromdarii. Adult ticks were collected every month for 1 year from 25 camels in the UAE. A total of 12 DNA pools were prepared (one pool for each month). We monitored the microbiota of ticks using high-throughput sequencing of the V3–V4 region of the bacterial 16S rRNA gene. A total of 614 operational taxonomic units were produced through de novo clustering and belonged to 17 phyla, 30 classes, 46 orders, 118 families, and 222 genera. Fifteen bacterial families were found to be the most abundant. The dominant bacterial communities associated with H. dromedarii belonged to the genera Staphylococcus, Bacillus, Francisella, and Corynebacterium, which were reported with high relative abundance from all months. No significant correlation occurred between the abundance of microbial families or genera in H. dromedarii ticks and the ambient temperature. Our findings revealed, for the first time in the UAE, temporal fluctuations of microbial communities in H. dromedarii ticks and provided key insights on the interaction between different microbial groups. Moreover, our results contribute to the current understanding of disease development and allow more investigations for potentially pathogenic microbiota.
Collapse
|
33
|
Selim A, Manaa E, Abdelhady A, Ben Said M, Sazmand A. Serological and molecular surveys of Anaplasma spp. in Egyptian cattle reveal high A. marginale infection prevalence. IRANIAN JOURNAL OF VETERINARY RESEARCH 2022; 22:288-297. [PMID: 35126536 DOI: 10.22099/ijvr.2021.40587.5879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Bovine anaplasmosis is an infectious disease with worldwide distribution. It spreads by various routes mainly through tick bites. AIMS This study aimed to investigate bovine related Anaplasma spp. in cattle from three northern governorates of Egypt by serological and molecular assays, to evaluate the associated risk factors and to analyze the phylogeny of revealed A. marginale isolates. METHODS During 2020, a total of 650 blood samples were collected from asymptomatic cattle in the governorates of Kafr El-Sheikh (n=240), Menofia (n=230), and Al-Gharbia (n=180). Sera samples were examined using the Anaplasma antibody test kit, cELISA v2. Blood genomic DNA of seropositive cattle was then examined by PCRs specific to A. marginale, A. centrale, and A. bovis. Selected positive samples were subjected to nucleotide sequencing. Risk factors (i.e. geographical area, breed, type of production, sex, age, herd size, season, husbandry system, tick infestation, and application of acaricides) were evaluated by logistic regression approach. RESULTS In total, 130 cattle (20%, 95% CI: 17.1-23.3) were recorded seropositive for Anaplasma species. Major risk factors associated with seropositivity were being crossbred, dairy cattle, aged more than 5 years, summer season, herd size of below 300, pasture grazing, tick infestation, and not being subjected to regular treatment with acaricides. By using species-specific PCR, only A. marginale was detected. Nucleotide sequencing showed the occurrence of two different msp4 genotypes. CONCLUSION This study shows the high prevalence of A. marginale in cattle of Kafr El-Sheikh, Al-Gharbia, and Menofia. However, the connection between Anaplasma species and their tick vectors remains unknown in Egypt and merits further investigations. Since these infections primarily spread through ixodid tick bites, effective ectoparasite control strategies, regular examination of cattle and successful chemoprophylaxis are recommended.
Collapse
Affiliation(s)
- A Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - E Manaa
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - A Abdelhady
- Department of Parasitology and Animal Diseases, National Research Center, Dokki, Giza, Egypt
| | - M Ben Said
- Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba, Tunisia, and Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba, Tunisia
| | - A Sazmand
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran, and Zoonotic Diseases Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
34
|
Assessment of Seroprevalence and Associated Risk Factors for Anaplasmosis in Camelus dromedarius. Vet Sci 2022; 9:vetsci9020057. [PMID: 35202310 PMCID: PMC8877320 DOI: 10.3390/vetsci9020057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Anaplasmosis is an infectious disease in camels caused by an obligate intracellular bacterium that is transmitted by ticks. (2) Methods: A cross-sectional study was conducted during 2020 to study the seroprevalence of Anaplasma spp. among Camelus dromedarius in three governorates in Egypt and assess the associated risk factors. Serum samples from 365 camels were examined by a competitive enzyme-linked immunosorbent assay (cELISA) test. (3) Results: Overall, the seroprevalence of anaplasmosis among camels was 18.6%. Multivariable logistic regression was performed, and it was discovered that tick infestation, application of acaricides, grooming practice and body condition were potential risk factors for Anaplasma spp. infection (odds ratio > 1) in dromedary camels. In contrast, the locality in which the camels lived and their age were not significant effects with regard to the occurrence of anaplasmosis. (4) Conclusions: The current findings suggest that improvement of protective measures to limit the effects of the identified risk factors can help to reduce the spread of anaplasmosis among camels in Egypt.
Collapse
|
35
|
Metwally DM, Alajmi R, Alsulami MN, Al-Turaiki IM, Abdel-Gaber R, Alkhuriji AF, Albohiri HH, Mohamed K, Baghdadi HB, El-Khadragy MF, Isaias GT, El-Ashram S. Identification of Theileria spp. in sheep and goats from Jeddah, Saudi Arabia, using molecular techniques. PeerJ 2021; 9:e12596. [PMID: 34966592 PMCID: PMC8667737 DOI: 10.7717/peerj.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022] Open
Abstract
Background Thileriosis is a tick -born disease caused by hemoprotozoan parasites which has global veterinary and economic implications. Methods Blood samples were collected from 216 sheep and 83 goats from Jeddah, Saudi Arabia, were analyzed to determine whether the animals were infected with Theileria spp. parasites. The parasites were detected using a polymerase chain reaction (PCR) targeting the gene of 18S rRNA followed by sequencing. Results According to obtained findings, Theileria spp. were detected in sheep (57.8%, 48/83) and goats (51.9%, 112/216). Phylogenetic analysis to sequence data showed that T. ovis identified in this study were found to be closely connected to an isolate from Turkey, with 84.4–99.8% pairwise identity and 52.35–99.79% coverage.
Collapse
Affiliation(s)
- Dina M Metwally
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reem Alajmi
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muslimah N Alsulami
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Isra M Al-Turaiki
- Department of Information Technology, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Rewaida Abdel-Gaber
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia.,Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Afrah F Alkhuriji
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Haleema H Albohiri
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Khalil Mohamed
- Epidemioligy Department, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Hanadi B Baghdadi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, Dammam City, Saudi Arabia
| | - Manal F El-Khadragy
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.,Department of Zoology and Entomology, Faculty of Science, University of Helwan, Cairo, Egypt
| | - Guillermo T Isaias
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Saeed El-Ashram
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.,Faculty of Science, Kafrelsheikh University, Kafr el-Sheikh, Egypt.,College of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China
| |
Collapse
|
36
|
Noaman V, Sazmand A. Anaplasma ovis infection in sheep from Iran: molecular prevalence, associated risk factors, and spatial clustering. Trop Anim Health Prod 2021; 54:6. [PMID: 34890017 DOI: 10.1007/s11250-021-03007-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
The aim of this cross-sectional study was to determine the molecular prevalence and associated risk factors in sheep populations of Iran. To this end, between March 2017 and February 2018 jugular vein blood samples were collected from 1842 apparently healthy sheep from 327 herds in nine provinces in four ecological zones of Iran. A specific nested-PCR targeting the msp4 gene of A. ovis was employed. Fourteen variables were subjected to logistic regression analyses (univariate and multivariate) to specify the potential risk factors for infection. Statistically significant variables in univariate analyses (P ≤ 0.20) were assessed by multivariable logistic regression to control the confounding factors. Anaplasma ovis DNA was detected in 51.1% of herds (167/327) and 28.3% of animals (521/1842). Among geographical zones, herd and animal prevalence was highest in the Persian-Gulf zone (P < 0.001), and among provinces, Lorestan (in west) and Khuzestan (in south-west) had the highest prevalence (P < 0.001). Analysis of factors associated with A. ovis infection revealed that distance from other farms (OR = 2.52, P < 0.001), presence of other animal species in the farm (OR = 2.03, P = 0.046), season (OR = 1.40, P = 0.005), breed (OR = 3.762, P < 0.001), and age of sheep (OR = 1.20, P = 0.049) are potential risks in Iran. The spatial scan statistic in SaTScan recognized two high risks clusters for A. ovis infection in central (Semnan province) and the Persian-Gulf (Khuzestan province) zones amongst the study areas (P < 0.001). Sequence and phylogenetic analysis of the msp4 gene confirmed the detection of A. ovis. This research is the largest study focusing on ovine anaplasmosis in Iran and shows that infected sheep are present in all geographic zones, bioclimatic areas, and provinces.
Collapse
Affiliation(s)
- Vahid Noaman
- Department of Parasitic Disease Research, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. .,Veterinary Medicine Department, Isfahan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran.
| | - Alireza Sazmand
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, 6517658978, Hamedan, Iran.,Zoonotic Diseases Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, 8915173160, Yazd, Iran
| |
Collapse
|
37
|
Atif FA, Mehnaz S, Qamar MF, Roheen T, Sajid MS, Ehtisham-ul-Haque S, Kashif M, Ben Said M. Epidemiology, Diagnosis, and Control of Canine Infectious Cyclic Thrombocytopenia and Granulocytic Anaplasmosis: Emerging Diseases of Veterinary and Public Health Significance. Vet Sci 2021; 8:vetsci8120312. [PMID: 34941839 PMCID: PMC8705095 DOI: 10.3390/vetsci8120312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
This review highlights the diagnostic methods used, the control strategies adopted, and the global epidemiological status of canine cyclic thrombocytopenia and granulocytic anaplasmosis at the animal–human interface. Canine anaplasmosis is an important worldwide disease, mainly caused by Anaplasma platys and A. phagocytophilum with zoonotic implications. A. platys chiefly infects platelets in canids, while A. phagocytophilum is the most common zoonotic pathogen infecting neutrophils of various vertebrate hosts. Diagnosis is based on the identification of clinical signs, the recognition of intracellular inclusions observed by microscopic observation of stained blood smear, and/or methods detecting antibodies or nucleic acids, although DNA sequencing is usually required to confirm the pathogenic strain. Serological cross-reactivity is the main problem in serodiagnosis. Prevalence varies from area to area depending on tick exposure. Tetracyclines are significant drugs for human and animal anaplasmosis. No universal vaccine is yet available that protects against diverse geographic strains. The control of canine anaplasmosis therefore relies on the detection of vectors/reservoirs, control of tick vectors, and prevention of iatrogenic/mechanical transmission. The control strategies for human anaplasmosis include reducing high-risk tick contact activities (such as gardening and hiking), careful blood transfusion, by passing immunosuppression, recognizing, and control of reservoirs/vectors.
Collapse
Affiliation(s)
- Farhan Ahmad Atif
- Medicine Section, Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore 54600, Pakistan; (S.M.); (M.K.)
- Correspondence: or (F.A.A.); or (M.B.S.); Tel.: +92-47-7671270 (F.A.A.); +216-58-964147 (M.B.S.)
| | - Saba Mehnaz
- Medicine Section, Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore 54600, Pakistan; (S.M.); (M.K.)
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Muhammad Fiaz Qamar
- Department of Pathobiology, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore 54600, Pakistan; (M.F.Q.); (S.E.-u.-H.)
| | - Taleeha Roheen
- Department of Chemistry (Biochemistry), University of Sargodha, Sargodha 40100, Pakistan;
| | - Muhammad Sohail Sajid
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Syed Ehtisham-ul-Haque
- Department of Pathobiology, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore 54600, Pakistan; (M.F.Q.); (S.E.-u.-H.)
| | - Muhammad Kashif
- Medicine Section, Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore 54600, Pakistan; (S.M.); (M.K.)
| | - Mourad Ben Said
- Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
- Laboratory of Microbiology at the National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
- Correspondence: or (F.A.A.); or (M.B.S.); Tel.: +92-47-7671270 (F.A.A.); +216-58-964147 (M.B.S.)
| |
Collapse
|
38
|
Prevalence, Distribution, and Molecular Record of Four Hard Ticks from Livestock in the United Arab Emirates. INSECTS 2021; 12:insects12111016. [PMID: 34821817 PMCID: PMC8617910 DOI: 10.3390/insects12111016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 01/09/2023]
Abstract
Simple Summary Ticks, as blood feeders and vectors of many diseases, can negatively impact livestock and human health, with potential economic impacts on the livestock industry. In this study, we documented the occurrence of four tick species (Hyalomma dromedarii, Hyalomma anatolicum, Rhipicephalus sanguineus, and Amblyomma lepidum) on camels, cows, sheep, and goats from three areas in the United Arab Emirates (UAE). Our findings indicated that H. dromedarii was the most prevalent tick species on camels. The other tick species were present at varying levels on hosts. Some of the tick species collected in this study are potential carriers of tick-borne diseases that are serious and sometimes fatal to humans and animals. Thus, there is a need for more research on ticks and tick-borne diseases in the UAE. Abstract Ticks are important arthropod vectors that serve as reservoirs of pathogens. Rapid urbanization and changes in animal breeding practices could be causing a rise in tick burden on animals. Studies on tick distribution on livestock and tick molecular diversity from the United Arab Emirates (UAE) are limited. The aim of this study was to (i) provide molecular and morphological identification of tick species, (ii) compare tick infestation between different hosts, (iii) compare tick infestation in relation to the sex of the host, and (iv) assess the prevalence of tick species on hosts. A total of 5950 ticks were collected from camels (4803 ticks), cows (651 ticks), goats (219 ticks), and sheep (277 ticks). Ticks were identified based on morphological characters at the species level using taxonomic keys. In addition, Polymerase Chain Reaction (PCR) amplification of the cytochrome oxidase subunit 1 (cox1) and 16S rRNA mitochondrial genes was used to identify ticks. Four species were confirmed based on molecular and morphological characterization, namely, Hyalomma dromedarii, Hyalomma anatolicum, Rhipicephalus sanguineus, and Amblyomma lepidum. Hyalomma dromedarii (94.3%) was the most abundant species, followed by H. anatolicum (32.8%). Camels were heavily infested (94%) with ticks as compared to cows (38%), sheep (37%), and goats (14%). Widespread occurrence of these four tick species in the UAE poses a risk of spreading tick-borne pathogens wherever the conditions of infection prevail.
Collapse
|
39
|
Alghamdi SQ, Low VL, Alkathiry HA, Alagaili AN, McGarry JW, Makepeace BL. Automatic barcode gap discovery reveals diverse clades of Rhipicephalus spp. and Haemaphysalis spp. ticks from small mammals in 'Asir, Saudi Arabia. Parasit Vectors 2021; 14:541. [PMID: 34666829 PMCID: PMC8527726 DOI: 10.1186/s13071-021-05049-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/01/2021] [Indexed: 01/14/2023] Open
Abstract
Background The ixodid tick genera Rhipicephalus and Haemaphysalis contain several species of medical and/or veterinary importance, but their diversity in some regions of the world remains under-explored. For instance, very few modern studies have been performed on the taxonomy of these genera on the Arabian Peninsula. Methods In this study, we trapped small mammals in the 'Asir Mountains of south-western Saudi Arabia and collected tick specimens for morphological examination and molecular barcoding, targeting three mitochondrial loci: cox1, 16S rRNA and 12S rRNA. Results We obtained a total of 733 ticks (608 Haemaphysalis spp. and 125 Rhipicephalus spp.) from 75 small mammal hosts belonging to six species. All tick specimens were immature except for nine adults recovered from a hedgehog (Paraechinus aethiopicus). Morphologically, the Rhipicephalus ticks resembled R. camicasi, but the Haemaphysalis ticks showed differences in palp morphology compared with species previously described from Saudi Arabia. Phylogenetic analysis and automatic barcode gap discovery identified a novel clade of Rhipicephalus sp. representing most of the nymphs. This was most closely related to R. leporis, R. guilhoni and R. linnaei. The adult ticks and a small proportion of nymphs clustered with R. camicasi sequences from a previous study. Finally, the Haemaphysalis nymphs formed two distinct clades that were clearly separated from all reference sequences but closest to some African species. Conclusions This apparent high level of tick diversity observed in a single study site of only ~ 170 km2, on a relatively small number of hosts, highlights the potential for the discovery of new tick species on the Arabian Peninsula. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05049-x.
Collapse
Affiliation(s)
- Samia Q Alghamdi
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK.,College of Science, Al Baha University, Al Baha Province, Alaqiq, 65779-77388, Saudi Arabia
| | - Van Lun Low
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hadil A Alkathiry
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK.,Department of Biology, Imam Muhammad Ibn Saud Islamic University, Riyadh, 13318, Saudi Arabia
| | - Abdulaziz N Alagaili
- Department of Zoology, King Saud University Mammals Research Chair, King Saud University, Riyadh, 12372, Saudi Arabia
| | - John W McGarry
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| | - Benjamin L Makepeace
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK.
| |
Collapse
|
40
|
Molecular detection of zoonotic blood pathogens in ticks from illegally imported turtles in Italy. Acta Trop 2021; 222:106038. [PMID: 34224721 DOI: 10.1016/j.actatropica.2021.106038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022]
Abstract
International trade of animals may represent a gateway for the spreading of zoonotic pathogens and their vectors. Amongst animals, reptiles are commonly illegally imported worldwide, being Italy in the fifth position of importation of these animals. Thus, the current study analysed the pathogens associated with Hyalomma aegyptium ticks, which were collected from illegally imported tortoises from North Africa to Italy. All tick DNA samples were tested by conventional PCR for the presence of Anaplasma spp., Babesia spp., Borrelia spp., Coxiella burnetti, Ehrlichia spp., Hepatozoon spp., Rickettsia spp. and microfilariae of filarioids. Out of 22% (n=161) of ticks screened, 78.9% (n=127) were males and 21.1% (n=34) females. Among them, three male specimens collected from two different turtles (1.9%; 95% CI; 0.5-5.5) scored positive for Anaplasma spp./Ehrlichia spp., whereas all females were negative. BLAST analysis of the sequences obtained from positive samples revealed 99-99.3% nucleotide identity with the sequence of Ehrlichia ewingii available in GenBank. The finding of E. ewingii in ticks from imported reptiles warrants the need for imposing strict rules in the international trade of reptiles to effectively reduce the introduction of exotic pathogens and their vectors in new geographic areas.
Collapse
|
41
|
Choubdar N, Karimian F, Koosha M, Nejati J, Oshaghi MA. Hyalomma spp. ticks and associated Anaplasma spp. and Ehrlichia spp. on the Iran-Pakistan border. Parasit Vectors 2021; 14:469. [PMID: 34521455 PMCID: PMC8439021 DOI: 10.1186/s13071-021-04956-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/14/2021] [Indexed: 12/04/2022] Open
Abstract
Background Anaplasmosis and ehrlichiosis are tick-borne diseases affecting humans and livestock, particularly in tropical and subtropical regions. Animal husbandry is the main activity of people on the borders of Iran and Pakistan, with thousands of cattle crossing the border each week. Methods PCR and sequencing of the 16S rRNA gene was used to determine the percentage and geographical distribution of the pathogens carried by Hyalomma spp. (n = 306) collected from 126 goats, cattle and camels in the region between November 2017 and late March 2018. Results In total, 1124 hard ticks including 1020 Hyalomma spp. ticks belonging to six species (Hyalomma anatolicum, Hyalomma asiaticum, Hyalomma marginatum, Hyalomma dromedarii, Hyalomma schulzei, and Hyalomma detritum) were found on the borders of Iran and Pakistan, with H. anatolicum being the most prevalent tick species. Anaplasma spp. and/or Ehrlichia spp. DNA was found in 68.3% of the engorged tick specimens (n = 256). Sequencing of a subset (12.6%) of PCR-positive samples revealed Anaplasma ovis, Anaplasma marginale, and Ehrlichia ewingii DNA in 81.8%, 9.1%, and 9.1% of the ticks, respectively. To our knowledge, this is the first report of E. ewingii, an important human pathogen, in Iran. Conclusions Based on molecular analysis, three pathogenic Anaplasmataceae were detected in six Hyalomma spp. parasitizing cattle, goats and camels, confirming the presence of these pathogens along the Iran-Pakistan border. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04956-3.
Collapse
Affiliation(s)
- Nayyereh Choubdar
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateh Karimian
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Koosha
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalil Nejati
- Department of Public Health, School of Public Health, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Viral RNA Metagenomics of Hyalomma Ticks Collected from Dromedary Camels in Makkah Province, Saudi Arabia. Viruses 2021; 13:v13071396. [PMID: 34372602 PMCID: PMC8310382 DOI: 10.3390/v13071396] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 12/30/2022] Open
Abstract
Arthropod-borne infections are a medical and economic threat to humans and livestock. Over the last three decades, several unprecedented viral outbreaks have been recorded in the Western part of the Arabian Peninsula. However, little is known about the circulation and diversity of arthropod-borne viruses in this region. To prepare for new outbreaks of vector-borne diseases, it is important to detect which viruses circulate in each vector population. In this study, we used a metagenomics approach to characterize the RNA virome of ticks infesting dromedary camels (Camelus dromedaries) in Makkah province, Saudi Arabia. Two hundred ticks of species Hyalomma dromedarii (n = 196) and Hyalomma impeltatum (n = 4) were collected from the Alkhurma district in Jeddah and Al-Taif city. Virome analysis showed the presence of several tick-specific viruses and tick-borne viruses associated with severe illness in humans. Some were identified for the first time in the Arabian Peninsula. The human disease-associated viruses detected included Crimean Congo Hemorrhagic fever virus and Tamdy virus (family Nairoviridae), Guertu virus (family Phenuiviridae), and a novel coltivirus that shares similarities with Tarumizu virus, Tai forest reovirus and Kundal virus (family Reoviridae). Furthermore, Alkhurma hemorrhagic virus (Flaviviridae) was detected in two tick pools by specific qPCR. In addition, tick-specific viruses in families Phenuiviridae (phleboviruses), Iflaviridae, Chuviridae, Totiviridae and Flaviviridae (Pestivirus) were detected. The presence of human pathogenetic viruses warrants further efforts in tick surveillance, xenosurveillence, vector control, and sero-epidemiological investigations in human and animal populations to predict, contain and mitigate future outbreaks in the region.
Collapse
|
43
|
Getange D, Bargul JL, Kanduma E, Collins M, Bodha B, Denge D, Chiuya T, Githaka N, Younan M, Fèvre EM, Bell-Sakyi L, Villinger J. Ticks and Tick-Borne Pathogens Associated with Dromedary Camels ( Camelus dromedarius) in Northern Kenya. Microorganisms 2021; 9:1414. [PMID: 34209060 PMCID: PMC8306667 DOI: 10.3390/microorganisms9071414] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Ticks and tick-borne pathogens (TBPs) are major constraints to camel health and production, yet epidemiological data on their diversity and impact on dromedary camels remain limited. We surveyed the diversity of ticks and TBPs associated with camels and co-grazing sheep at 12 sites in Marsabit County, northern Kenya. We screened blood and ticks (858 pools) from 296 camels and 77 sheep for bacterial and protozoan TBPs by high-resolution melting analysis and sequencing of PCR products. Hyalomma (75.7%), Amblyomma (17.6%) and Rhipicephalus (6.7%) spp. ticks were morphologically identified and confirmed by molecular analyses. We detected TBP DNA in 80.1% of blood samples from 296 healthy camels. "Candidatus Anaplasma camelii", "Candidatus Ehrlichia regneryi" and Coxiella burnetii were detected in both camels and associated ticks, and Ehrlichia chaffeensis, Rickettsia africae, Rickettsia aeschlimannii and Coxiella endosymbionts were detected in camel ticks. We also detected Ehrlichia ruminantium, which is responsible for heartwater disease in ruminants, in Amblyomma ticks infesting camels and sheep and in sheep blood, indicating its endemicity in Marsabit. Our findings also suggest that camels and/or the ticks infesting them are disease reservoirs of zoonotic Q fever (C. burnetii), ehrlichiosis (E. chaffeensis) and rickettsiosis (R. africae), which pose public health threats to pastoralist communities.
Collapse
Affiliation(s)
- Dennis Getange
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya; (D.G.); (T.C.)
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Joel L. Bargul
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya; (D.G.); (T.C.)
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Esther Kanduma
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya;
| | - Marisol Collins
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (M.C.); (E.M.F.); (L.B.-S.)
| | - Boku Bodha
- Directorate of Veterinary Services, County Government of Marsabit, Marsabit P.O. Box 384-60500, Kenya; (B.B.); (D.D.)
| | - Diba Denge
- Directorate of Veterinary Services, County Government of Marsabit, Marsabit P.O. Box 384-60500, Kenya; (B.B.); (D.D.)
| | - Tatenda Chiuya
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya; (D.G.); (T.C.)
| | - Naftaly Githaka
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya;
| | - Mario Younan
- Food and Agriculture Organization of the United Nations (FAO), Programme & Operational Support to Syria Crisis, UN cross-border hub, Gaziantep 27010, Turkey;
| | - Eric M. Fèvre
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (M.C.); (E.M.F.); (L.B.-S.)
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya;
| | - Lesley Bell-Sakyi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (M.C.); (E.M.F.); (L.B.-S.)
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya; (D.G.); (T.C.)
| |
Collapse
|
44
|
Selim A, Alanazi AD, Sazmand A, Otranto D. Seroprevalence and associated risk factors for vector-borne pathogens in dogs from Egypt. Parasit Vectors 2021; 14:175. [PMID: 33752744 PMCID: PMC7986556 DOI: 10.1186/s13071-021-04670-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Background Dogs play an important role as reservoirs of many zoonotic vector-borne pathogens worldwide, yet reports of canine vector-borne diseases (CVBDs) in Egypt are scarce. Methods Serum samples were collected from pet dogs (n = 500) of the three most common breeds (German Shepherd, Rottweiler and Pit Bull) in five Governates of Cairo (n = 230), Giza (n = 110), Al-Qalyubia (n = 60), Al-Gharbia (n = 60) and Kafr El-Sheikh (n = 40) with a hot desert climate. The presence of antibodies to Anaplasma spp. (A. phagocytophilum, A. platys), Ehrlichia spp. (E. canis, E. chaffeensis, E. ewingii), Borrelia burgdorferi (s.l.) and Dirofilaria immitis were assessed using IDEXX SNAP® 4Dx® ELISA tests. For each pathogen, risk factors (i.e. geographical area, keeping condition, sex, age, breed, tick infestation, weekly sanitation of dog enclosures and application of ectoparasiticides) were evaluated by logistic regression approach. Results In total, 18.2% (n = 91, 95% CI 15.1–21.8) of dogs scored seropositive for at least one pathogen, the most frequent being Ehrlichia spp. (n = 56; 11.2%; 95% CI 8.7–14.3) followed by Anaplasma spp. (n = 33; 6.6%, 95% CI 4.7–9.1), Borrelia burgdorferi (s.l.) (n = 9; 1.8%, 95% CI 0.9–3.4) and D. immitis (n = 7; 1.4%, 95% CI 0.9–2.9). In the tested population, 15.4% (95% CI 12.5–18.8) of dogs were exposed to a single pathogen while 2.4 (95% CI 1.4–4.2) and 0.4% (95% CI 0.1–1.4) were simultaneously exposed to two or three pathogens, respectively. Major risk factors associated with VBDs were living outdoors (Anaplasma spp., P = 0.0001; Ehrlichia spp., P = 0.0001), female sex (Ehrlichia spp., P = 0.005), German Shepherd breed (Anaplasma spp., P = 0.04; Ehrlichia spp., P = 0.03), tick infestation (Anaplasma spp., P = 0.0001; Ehrlichia spp., P = 0.0001; B. burgdorferi (s.l.), P = 0.003; D. immitis, P = 0.02), irregular sanitation (Anaplasma spp., P = 0.0001; Ehrlichia spp., P = 0.0001; B. burgdorferi (s.l.), P = 0.002; D. immitis, P = 0.01) and not using ectoparasiticides (Anaplasma spp., P = 0.0001; Ehrlichia spp., P = 0.0001; B. burgdorferi (s.l.), P = 0.007). Conclusion To our knowledge, this is the first large-scale seroepidemiological study of CVBDs in Egypt. Considering that all of the detected pathogens are potentially zoonotic, effective ectoparasite control strategies, regular examination of pet dogs and successful chemoprophylaxis are advocated. ![]()
Collapse
Affiliation(s)
- Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt.
| | - Abdullah D Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi, 11911, Saudi Arabia.
| | - Alireza Sazmand
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, 6517658978, Iran. .,Zoonotic Diseases Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, 8915173160, Iran.
| | - Domenico Otranto
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, 6517658978, Iran.,Department of Veterinary Medicine, University of Bari, 70010, Bari, Italy
| |
Collapse
|
45
|
Exploring Prokaryotic and Eukaryotic Microbiomes Helps in Detecting Tick-Borne Infectious Agents in the Blood of Camels. Pathogens 2021; 10:pathogens10030351. [PMID: 33809738 PMCID: PMC8002256 DOI: 10.3390/pathogens10030351] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/22/2022] Open
Abstract
Dromedary camels (Camelus dromedarius) are widely distributed in Africa, the Middle East and northern India. In this study, we aimed to detect tick-borne pathogens through investigating prokaryotic and eukaryotic microorganisms in camel blood based on a metagenomic approach and then to characterize potentially pathogenic organisms using traditional molecular techniques. We showed that the bacteria circulating in the blood of camels is dominated by Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria. At the genus level, Sediminibacterium, Hydrotalea, Bradyrhizobium and Anaplasma were the most abundant taxa. Eukaryotic profile was dominated by Fungi, Charophyta and Apicomplexa. At the genus level, Theileria was detected in 10 out of 18 samples, while Sarcocystis, Hoplorhynchus and Stylocephalus were detected in one sample each. Our metagenomic approach was successful in the detection of several pathogens or potential pathogens including Anaplasma sp., Theileria ovis, Th. separata, Th. annulate, Th. mutans-like and uncharacterized Theileria sp. For further characterization, we provided the partial sequences of citrate synthase (gltA) and heat-shock protein (groEL) genes of Candidatus Anaplasma camelii. We also detected Trypanosoma evansi type A using polymerase chain reaction (PCR) targeting the internal transcribed spacer 1 (ITS1) region. This combined metagenomic and traditional approach will contribute to a better understanding of the epidemiology of pathogens including tick-borne bacteria and protozoa in animals.
Collapse
|
46
|
Hemida MG, Alhammadi M, Almathen F, Alnaeem A. Lack of detection of the Middle East respiratory syndrome coronavirus (MERS-CoV) nucleic acids in some Hyalomma dromedarii infesting some Camelus dromedary naturally infected with MERS-CoV. BMC Res Notes 2021; 14:96. [PMID: 33691761 PMCID: PMC7945619 DOI: 10.1186/s13104-021-05496-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/19/2021] [Indexed: 12/03/2022] Open
Abstract
Objective The Middle East respiratory syndrome coronavirus (MERS-CoV) is one of the zoonotic coronaviruses [Hemida Peer J 7:e7556, 2019; Hemida et al. One Health 8:100102, 2019]. The dromedary camels remained the only known animal reservoir for this virus. Several aspects of the transmission cycle of the virus between animals, including arthropod-borne infection, is still largely unknown. The main objective of the current work was to study the possibility of MERS-CoV transmission through some arthropod vectors, particularly the hard ticks. To achieve this objective, we identified a positive MERS-CoV dromedary camel herd using the commercial available real-time PCR kits. We collected some arthropods, particularly the ticks from these positive animals as well as from the animal habitats. We tested these arthropods for the presence of MERS-CoV viral RNAs. Results Our results showing the absence of any detectable MERS-CoV-RNAs in these arthropods despite these animals were actively shedding the virus in their nasal secretions. Our results are confirming for the first the failure of detection of the MERS-CoV in ticks infesting dromedary camels. Failure of the detection of MERS-CoV in ticks infesting positive naturally infected MERS-CoV camels is strongly suggesting that ticks do not play roles in the transmission of the virus among the animals and close contact humans.
Collapse
Affiliation(s)
- Maged Gomaa Hemida
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hufuf, Al-Ahasa, Saudi Arabia. .,Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Mohammed Alhammadi
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Hufuf, Al-Ahasa, Saudi Arabia
| | - Faisal Almathen
- Department of Public Health and Animal Husbandry, Veterinary Medicine, King Faisal University, Al-Ahasa, Saudi Arabia
| | - Abdelmohsen Alnaeem
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahasa, Saudi Arabia
| |
Collapse
|
47
|
El Tigani-Asil ETA, Blanda V, Abdelwahab GE, Hammadi ZMA, Habeeba S, Khalafalla AI, Alhosani MA, La Russa F, Migliore S, Torina A, Loria GR, Al Muhairi SS. Molecular Investigation on Tick-Borne Hemoparasites and Coxiella burnetii in Dromedary Camels ( Camelusdromedarius) in Al Dhafra Region of Abu Dhabi, UAE. Animals (Basel) 2021; 11:ani11030666. [PMID: 33801532 PMCID: PMC8000914 DOI: 10.3390/ani11030666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/05/2023] Open
Abstract
Camels represent an important resource for inhabitants of the most arid regions of the world and their survival is mainly related to environment conditions including the risk of parasitic diseases, which may represent a significant cause of losses in livestock production of these areas. Camels may be parasitized by several hematophagous arthropods, which can be vectors of several diseases including zoonosis. This study aimed to investigate in dromedary camels and their ticks the importance of tick-borne hemoparasites that might be responsible for a recent and obscure morbidity of camels in Al Dhafra region of Abu Dhabi, UAE. Blood samples and ticks from 93 naturally infected camels belonging to 36 herds, affected by variable acute clinical syndromes lasting from 3 to 5 days, were analyzed through molecular techniques for specific DNA presence of different blood pathogens: Anaplasmamarginale/Anaplasmaovis, Anaplasma phagocytophilum, Coxiella burnetii,Babesia spp., and Theileria spp. DNA. All the 72 ticks collected belonged to the Hyalomma dromedarii species and were negative for blood pathogens. n = 15 camels (16.1%) were found positive to the following tick-borne hemoparasites: A. phagocytophilum 11 (11.8%), Coxiella burnetii 3 (3.2%), and Babesia/Theileria spp. 2 (2.1%). One singular camel showed coinfection of C. burnetii and A. phagocytophiulm. Genetic profile of C. burnetii showed a high phylogenetic relatedness to European, Asian and African C. burnetii strains. This is the first laboratory investigation on tick-borne pathogens in camels in UAE, and the first report of A. phagocytophilum and C. burnetii. Moreover, since the detected pathogens are recognized pathogens for humans, this study highlights the zoonotic risk for humans working in camel husbandry.
Collapse
Affiliation(s)
| | - Valeria Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | | | | | - Shameem Habeeba
- Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi Emirate 52150, United Arab Emirates
| | | | - Mohamed Ali Alhosani
- Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi Emirate 52150, United Arab Emirates
| | - Francesco La Russa
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Sergio Migliore
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Alessandra Torina
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Guido Ruggero Loria
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Salama Suhail Al Muhairi
- Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi Emirate 52150, United Arab Emirates
| |
Collapse
|
48
|
Omer SA, Alsuwaid DF, Mohammed OB. Molecular characterization of ticks and tick-borne piroplasms from cattle and camel in Hofuf, eastern Saudi Arabia. Saudi J Biol Sci 2021; 28:2023-2028. [PMID: 33732089 PMCID: PMC7938143 DOI: 10.1016/j.sjbs.2021.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 11/27/2022] Open
Abstract
The aims of the present study were to characterize ticks infesting the dromedary camel and cattle in Hofuf, Eastern Saudi Arabia and to determine the piroplasms that they may harbor. DNA was extracted from ticks, collected from camels and cattle, using commercial kits and subjected to polymerase chain reaction using specific primers for the amplification of ticks and piroplasms DNA. The cytochrome oxidase subunit I mitochondrial gene (COI) was used for characterization of ticks whereas partial 18S rRNA gene (18S rRNA) was used for piroplasms characterization. Ticks were genetically identified as Hyalomma dromedarii and Hyalomma anatolicum. Both cattle and camel in Hofuf, were found to be infested with both species. Both ticks identified as H. dromedarii and H. anatolicum from camels and cows showed 100% identity to COI sequences from the same species available in GenBank. Only Theileria annulata DNA was amplified from both H. anatolicum and H. dromedarii infesting cattle. None of the ticks collected from camels revealed DNA of piroplasms. T. annulata DNA was reported for the first time from Hofuf and the role of both H. anatolicum and H. dromedarii as potential vectors for this parasite in cattle in Saudi Arabia has been documented for the first time.
Collapse
Affiliation(s)
- Sawsan A. Omer
- Department of Zoology, College of Science, King Saud University, University Centre for Women Students, P. O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Duha F. Alsuwaid
- Department of Zoology, College of Science, King Saud University, University Centre for Women Students, P. O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Osama B. Mohammed
- Department of Zoology, College of Science, King Saud University, Riyadh 11541, Saudi Arabia
| |
Collapse
|
49
|
Perveen N, Muzaffar SB, Al-Deeb MA. Ticks and Tick-Borne Diseases of Livestock in the Middle East and North Africa: A Review. INSECTS 2021; 12:83. [PMID: 33477991 PMCID: PMC7835866 DOI: 10.3390/insects12010083] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 01/18/2023]
Abstract
Ticks are important vectors of an array of viral, bacterial and protozoan pathogens resulting in a wide range of animal and human diseases. There is limited information in the literature about tick species in the Middle East and North Africa (MENA) countries, even though they have suitable climate and vegetation for ticks and their hosts. We reviewed the occurrence of tick species and the pathogens they transmit from the MENA on published papers from 1901-2020. We found taxonomic records of 55 tick species infesting livestock representing the following eight genera: Ornithodoros, Otobius, Amblyomma, Dermacentor, Haemaphysalis, Hyalomma, Ixodes, and Rhipicephalus. In addition, 15 pathogens were recorded causing diseases of significance, with Crimean-Congo hemorrhagic fever, theileriosis, babesiosis and anaplasmosis being widely distributed diseases in the region. In recent decades, there has been increasing trends in disease occurrence and movement associated with global movement of humans and global trade of animals. We suggest that disease control and prevention could be achieved effectively through good integration between public health, veterinary medicine and animal management, and ecological approaches. We recommend further research in the areas of tick ecology and tick born-disease transmission. Furthermore, we suggest evaluation and improvement of disease control policies in the region.
Collapse
Affiliation(s)
| | | | - Mohammad Ali Al-Deeb
- Department of Biology, United Arab Emirates University, Al-Ain 15551, UAE; (N.P.); (S.B.M.)
| |
Collapse
|
50
|
Alanazi AD, Alouffi AS, Alshahrani MY, Alyousif MS, Abdullah HHAM, Allam AM, Elsawy BSM, Abdel-Shafy S, Alsulami MN, Khan A, Iqbal F. A report on tick burden and molecular detection of tick-borne pathogens in cattle blood samples collected from four regions in Saudi Arabia. Ticks Tick Borne Dis 2021; 12:101652. [PMID: 33465662 DOI: 10.1016/j.ttbdis.2021.101652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 01/12/2023]
Abstract
Babesiosis, theileriosis and anaplasmosis are among the most commonly reported tick-borne diseases in cattle and are associated with significant economic losses. Through the present study the researchers aimed to report the presence of various pathogens that cause babesiosis, theileriosis and anaplasmosis in cattle collected from different provinces in Saudi Arabia and to report their phylogenetic relationship. A total of 362 blood samples of cattle along with ticks that were present on the cattle were collected from four regions (Riyadh, Al-Kharj, Al-Hasa and Al-Qassim) of Saudi Arabia. Blood samples were screened by polymerase chain reaction (PCR) for the presence of various Babesia, Theileria and Anaplasma species by amplification of their 18S rRNA and/or 23S rRNA genes. A total of 541 ticks were collected and identified from the cattle. These included Hyalomma anatolicum, Hyalomma dromedarii, Hyalomma impeltatum, Hyalomma excavatum, Rhipicephalus annulatus and Rhipicephalus turanicus. Regarding tick-borne pathogens, the overall prevalence was 1.9 % (7/362) for Theileria annulata, (2/362) 0.6 % for Theileria and (21/362) 5.8 % for Anaplasma ovis. Four of the cattle were found to be co-infected with more than one pathogen (1.1 %). We did not detect any Babesia species in the blood of the studied cattle. Prevalence of the Theileria and Anaplasma species was highest in cattle that resided in Riyadh, followed by cattle from Al-Hasa and Al-Qassim. Representative amplified partial-gene sequences of T. annulata (GenBank accession numbers MK826137-39) and A. ovis (GenBank acc. no. MK 880224) were submitted to GenBank. The presence of ticks on cattle was found to be associated with a high prevalence of Theileria spp. (P = 0.02) and Anaplasma ovis (P < 0.001). We report novel genotypes of T. annulata and A. ovis from cattle in Saudi Arabia and we recommend that molecular surveys are undertaken throughout the country to address the prevalence and geographical distribution of tick-borne infections for their effective diagnosis and treatment.
Collapse
Affiliation(s)
- Abdullah D Alanazi
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi, 11911, Saudi Arabia.
| | | | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha, 9088, Saudi Arabia
| | - Mohamed S Alyousif
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hend H A M Abdullah
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, 33 Bohouth St., Dokki, 12622, Giza, Egypt
| | - Ahmad M Allam
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, 33 Bohouth St., Dokki, 12622, Giza, Egypt
| | - Bassma S M Elsawy
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, 33 Bohouth St., Dokki, 12622, Giza, Egypt
| | - Sobhy Abdel-Shafy
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, 33 Bohouth St., Dokki, 12622, Giza, Egypt
| | - Muslimah N Alsulami
- Department of Biology, College of Science, University of Jeddah, Saudi Arabia
| | - Adil Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Pakistan
| | - Furhan Iqbal
- Institute of Pure and Applied Biology, Bahauddin Zakariya University Multan, 60800, Pakistan.
| |
Collapse
|