1
|
Arnau‐Soler A, Tremblay BL, Sun Y, Madore A, Simard M, Kersten ETG, Ghauri A, Marenholz I, Eiwegger T, Simons E, Chan ES, Nadeau K, Sampath V, Mazer BD, Elliott S, Hampson C, Soller L, Sandford A, Begin P, Hui J, Wilken BF, Gerdts J, Bourkas A, Ellis AK, Vasileva D, Clarke A, Eslami A, Ben‐Shoshan M, Martino D, Daley D, Koppelman GH, Laprise C, Lee Y, Asai Y. Food Allergy Genetics and Epigenetics: A Review of Genome-Wide Association Studies. Allergy 2025; 80:106-131. [PMID: 39698764 PMCID: PMC11724255 DOI: 10.1111/all.16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 10/12/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
In this review, we provide an overview of food allergy genetics and epigenetics aimed at clinicians and researchers. This includes a brief review of the current understanding of genetic and epigenetic mechanisms, inheritance of food allergy, as well as a discussion of advantages and limitations of the different types of studies in genetic research. We specifically focus on the results of genome-wide association studies in food allergy, which have identified 16 genetic variants that reach genome-wide significance, many of which overlap with other allergic diseases, including asthma, atopic dermatitis, and allergic rhinitis. Identified genes for food allergy are mainly involved in epithelial barrier function (e.g., FLG, SERPINB7) and immune function (e.g., HLA, IL4). Epigenome-wide significant findings at 32 loci are also summarized as well as 14 additional loci with significance at a false discovery of < 1 × 10-4. Integration of epigenetic and genetic data is discussed in the context of disease mechanisms, many of which are shared with other allergic diseases. The potential utility of genetic and epigenetic discoveries is deliberated. In the future, genetic and epigenetic markers may offer ways to predict the presence or absence of clinical IgE-mediated food allergy among sensitized individuals, likelihood of development of natural tolerance, and response to immunotherapy.
Collapse
Affiliation(s)
- Aleix Arnau‐Soler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité—Universitätsmedizin BerlinBerlinGermany
- German Center for Child and Adolescent Health (DZKJ)BerlinGermany
| | - Bénédicte L. Tremblay
- Département Des Sciences FondamentalesUniversité du Québec à ChicoutimiSaguenayQuebecCanada
| | - Yidan Sun
- Department of Pediatric Pulmonology and Pediatric AllergologyUniversity Medical Center Groningen, Beatrix Children's Hospital, University of GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)Groningenthe Netherlands
| | - Anne‐Marie Madore
- Département Des Sciences FondamentalesUniversité du Québec à ChicoutimiSaguenayQuebecCanada
| | - Mathieu Simard
- Département Des Sciences FondamentalesUniversité du Québec à ChicoutimiSaguenayQuebecCanada
| | - Elin T. G. Kersten
- Department of Pediatric Pulmonology and Pediatric AllergologyUniversity Medical Center Groningen, Beatrix Children's Hospital, University of GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)Groningenthe Netherlands
| | - Ahla Ghauri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité—Universitätsmedizin BerlinBerlinGermany
- German Center for Child and Adolescent Health (DZKJ)BerlinGermany
| | - Ingo Marenholz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité—Universitätsmedizin BerlinBerlinGermany
| | - Thomas Eiwegger
- Translational Medicine Program, Research InstituteHospital for Sick ChildrenTorontoOntarioCanada
- Department of Immunology, Temerty Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
- Karl Landsteiner University of Health SciencesKrems an der DonauAustria
- Department of Pediatric and Adolescent MedicineUniversity Hospital St. PöltenSt. PöltenAustria
- Department of Paediatrics, Division of Clinical Immunology and Allergy, Food Allergy and Anaphylaxis Program, the Hospital for Sick ChildrenThe University of TorontoTorontoOntarioCanada
| | - Elinor Simons
- Section of Allergy & Clinical Immunology, Department of Pediatrics & Child Health, University of ManitobaChildren's Hospital Research InstituteWinnipegManitobaCanada
| | - Edmond S. Chan
- Division of Allergy, Department of PediatricsThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kari Nadeau
- Department of Environmental StudiesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Vanitha Sampath
- Department of Environmental StudiesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Bruce D. Mazer
- Research Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Susan Elliott
- Department of Geography and Environmental ManagementUniversity of WaterlooWaterlooOntarioCanada
| | | | - Lianne Soller
- Division of Allergy, Department of PediatricsThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Andrew Sandford
- Department of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Heart Lung InnovationVancouverBritish ColumbiaCanada
| | - Philippe Begin
- Department of Pediatrics, Service of Allergy and Clinical ImmunologyCentre Hospitalier Universitaire Sainte‐JustineMontréalQuébecCanada
- Department of Medicine, Service of Allergy and Clinical ImmunologyCentre Hospitalier de l'Université de MontréalMontréalQuébecCanada
| | - Jennie Hui
- School of Population HealthUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Bethany F. Wilken
- School of Medicine, Department of MedicineQueen's UniversityKingstonOntarioCanada
| | | | - Adrienn Bourkas
- School of Medicine, Department of MedicineQueen's UniversityKingstonOntarioCanada
| | - Anne K. Ellis
- Division of Allergy & Immunology, Department of MedicineQueen's UniversityKingstonOntarioCanada
| | - Denitsa Vasileva
- Department of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Heart Lung InnovationVancouverBritish ColumbiaCanada
| | - Ann Clarke
- Department of Medicine, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Aida Eslami
- Département de médecine Sociale et préventive, Faculté de médecineUniversité LavalQuebecCanada
| | - Moshe Ben‐Shoshan
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Montréal Children's HospitalMcGill University Health CentreMontréalQuebecCanada
| | - David Martino
- Wal‐Yan Respiratory Research CentreTelethon Kids InstitutePerthAustralia
| | - Denise Daley
- Department of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Heart Lung InnovationVancouverBritish ColumbiaCanada
| | - Gerard H. Koppelman
- Department of Pediatric Pulmonology and Pediatric AllergologyUniversity Medical Center Groningen, Beatrix Children's Hospital, University of GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)Groningenthe Netherlands
| | - Catherine Laprise
- Département Des Sciences FondamentalesUniversité du Québec à ChicoutimiSaguenayQuebecCanada
| | - Young‐Ae Lee
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité—Universitätsmedizin BerlinBerlinGermany
- German Center for Child and Adolescent Health (DZKJ)BerlinGermany
| | - Yuka Asai
- Division of Dermatology, Department of MedicineQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
2
|
Xu Z, Forno E, Sun Y, Manni ML, Han YY, Kim S, Yue M, Vonk JM, Kersten ETM, Acosta-Perez E, Canino G, Koppelman GH, Chen W, Celedón JC. Nasal epithelial gene expression and total IgE in children and adolescents with asthma. J Allergy Clin Immunol 2024; 153:122-131. [PMID: 37742934 PMCID: PMC10842443 DOI: 10.1016/j.jaci.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Little is known about nasal epithelial gene expression and total IgE in youth. OBJECTIVE We aimed to identify genes whose nasal epithelial expression differs by total IgE in youth, and group them into modules that could be mapped to airway epithelial cell types. METHODS We conducted a transcriptome-wide association study of total IgE in 469 Puerto Ricans aged 9 to 20 years who participated in the Epigenetic Variation and Childhood Asthma in Puerto Ricans study, separately in all subjects and in those with asthma. We then attempted to replicate top findings for each analysis using data from 3 cohorts. Genes with a Benjamini-Hochberg-adjusted P value of less than .05 in the Epigenetic Variation and Childhood Asthma in Puerto Ricans study and a P value of less than .05 in the same direction of association in 1 or more replication cohort were considered differentially expressed genes (DEGs). DEGs for total IgE in subjects with asthma were further dissected into gene modules using coexpression analysis, and such modules were mapped to specific cell types in airway epithelia using public single-cell RNA-sequencing data. RESULTS A higher number of DEGs for total IgE were identified in subjects with asthma (n = 1179 DEGs) than in all subjects (n = 631 DEGs). In subjects with asthma, DEGs were mapped to 11 gene modules. The top module for positive correlation with total IgE was mapped to myoepithelial and mucus secretory cells in lower airway epithelia and was regulated by IL-4, IL5, IL-13, and IL-33. Within this module, hub genes included CDH26, FETUB, NTRK2, CCBL1, CST1, and CST2. Furthermore, an enrichment analysis showed overrepresentation of genes in signaling pathways for synaptogenesis, IL-13, and ferroptosis, supporting interactions between interleukin- and acetylcholine-induced responses. CONCLUSIONS Our findings for nasal epithelial gene expression support neuroimmune coregulation of total IgE in youth with asthma.
Collapse
Affiliation(s)
- Zhongli Xu
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa; School of Medicine, Tsinghua University, Beijing, China
| | - Erick Forno
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Yidan Sun
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, Groningen, The Netherlands
| | - Michelle L Manni
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Yueh Ying Han
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Soyeon Kim
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Molin Yue
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Judith M Vonk
- GRIAC Research Institute, University Medical Center Groningen, Groningen, The Netherlands; Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elin T M Kersten
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, Groningen, The Netherlands
| | - Edna Acosta-Perez
- Behavioral Sciences Research Institute of Puerto Rico, University of Puerto Rico, San Juan, Puerto Rico
| | - Glorisa Canino
- Behavioral Sciences Research Institute of Puerto Rico, University of Puerto Rico, San Juan, Puerto Rico; Department of Pediatrics, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, Groningen, The Netherlands
| | - Wei Chen
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Juan C Celedón
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pa.
| |
Collapse
|
3
|
Lebold KM, Cook M, Pincus AB, Nevonen KA, Davis BA, Carbone L, Calco GN, Pierce AB, Proskocil BJ, Fryer AD, Jacoby DB, Drake MG. Grandmaternal allergen sensitization reprograms epigenetic and airway responses to allergen in second-generation offspring. Am J Physiol Lung Cell Mol Physiol 2023; 325:L776-L787. [PMID: 37814791 PMCID: PMC11068409 DOI: 10.1152/ajplung.00103.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
Asthma susceptibility is influenced by environmental, genetic, and epigenetic factors. DNA methylation is one form of epigenetic modification that regulates gene expression and is both inherited and modified by environmental exposures throughout life. Prenatal development is a particularly vulnerable time period during which exposure to maternal asthma increases asthma risk in offspring. How maternal asthma affects DNA methylation in offspring and what the consequences of differential methylation are in subsequent generations are not fully known. In this study, we tested the effects of grandmaternal house dust mite (HDM) allergen sensitization during pregnancy on airway physiology and inflammation in HDM-sensitized and challenged second-generation mice. We also tested the effects of grandmaternal HDM sensitization on tissue-specific DNA methylation in allergen-naïve and -sensitized second-generation mice. Descendants of both allergen- and vehicle-exposed grandmaternal founders exhibited airway hyperreactivity after HDM sensitization. However, grandmaternal allergen sensitization significantly potentiated airway hyperreactivity and altered the epigenomic trajectory in second-generation offspring after HDM sensitization compared with HDM-sensitized offspring from vehicle-exposed founders. As a result, biological processes and signaling pathways associated with epigenetic modifications were distinct between lineages. A targeted analysis of pathway-associated gene expression found that Smad3 was significantly dysregulated as a result of grandmaternal allergen sensitization. These data show that grandmaternal allergen exposure during pregnancy establishes a unique epigenetic trajectory that reprograms allergen responses in second-generation offspring and may contribute to asthma risk.NEW & NOTEWORTHY Asthma susceptibility is influenced by environmental, genetic, and epigenetic factors. This study shows that maternal allergen exposure during pregnancy promotes unique epigenetic trajectories in second-generation offspring at baseline and in response to allergen sensitization, which is associated with the potentiation of airway hyperreactivity. These effects are one mechanism by which maternal asthma may influence the inheritance of asthma risk.
Collapse
Affiliation(s)
- Katie M Lebold
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, United States
| | - Madeline Cook
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Alexandra B Pincus
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Kimberly A Nevonen
- Knight Cardiovascular Institute Epigenetics Consortium, Oregon Health and Science University, Portland, Oregon, United States
| | - Brett A Davis
- Knight Cardiovascular Institute Epigenetics Consortium, Oregon Health and Science University, Portland, Oregon, United States
| | - Lucia Carbone
- Knight Cardiovascular Institute Epigenetics Consortium, Oregon Health and Science University, Portland, Oregon, United States
- Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, United States
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon, United States
| | - Gina N Calco
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Aubrey B Pierce
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Becky J Proskocil
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Allison D Fryer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - David B Jacoby
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Matthew G Drake
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| |
Collapse
|
4
|
Cao X, Tang X, Feng C, Lin J, Zhang H, Liu Q, Zheng Q, Zhuang H, Liu X, Li H, Khan NU, Shen L. A Systematic Investigation of Complement and Coagulation-Related Protein in Autism Spectrum Disorder Using Multiple Reaction Monitoring Technology. Neurosci Bull 2023; 39:1623-1637. [PMID: 37031449 PMCID: PMC10603015 DOI: 10.1007/s12264-023-01055-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/02/2023] [Indexed: 04/10/2023] Open
Abstract
Autism spectrum disorder (ASD) is one of the common neurodevelopmental disorders in children. Its etiology and pathogenesis are poorly understood. Previous studies have suggested potential changes in the complement and coagulation pathways in individuals with ASD. In this study, using multiple reactions monitoring proteomic technology, 16 of the 33 proteins involved in this pathway were identified as differentially-expressed proteins in plasma between children with ASD and controls. Among them, CFHR3, C4BPB, C4BPA, CFH, C9, SERPIND1, C8A, F9, and F11 were found to be altered in the plasma of children with ASD for the first time. SERPIND1 expression was positively correlated with the CARS score. Using the machine learning method, we obtained a panel composed of 12 differentially-expressed proteins with diagnostic potential for ASD. We also reviewed the proteins changed in this pathway in the brain and blood of patients with ASD. The complement and coagulation pathways may be activated in the peripheral blood of children with ASD and play a key role in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Chengyun Feng
- Maternal and Child Health Hospital of Baoan, Shenzhen, 518100, China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Qiong Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qihong Zheng
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Haiying Li
- Department of Endocrinology, Guiyang First People's Hospital, Guiyang, 550002, China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, 518060, China.
| |
Collapse
|
5
|
Rathod A, Melaram R, Zhang H, Arshad H, Ewart S, Ray M, Relton CL, Karmaus W, Holloway JW. The association of DNA methylation at birth with adolescent asthma is mediated by atopy. Clin Exp Allergy 2023; 53:1226-1229. [PMID: 37641502 PMCID: PMC10840950 DOI: 10.1111/cea.14386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Affiliation(s)
- Aniruddha Rathod
- Peter O’Donnell Jr School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rajesh Melaram
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
- NIHR Southampton Biomedical Research Center, University Hospital Southampton, Southampton, UK
| | - Susan Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Meredith Ray
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Caroline L. Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute for Health Research Bristol Biomedical Research Centre, University of Bristol and University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - John W. Holloway
- NIHR Southampton Biomedical Research Center, University Hospital Southampton, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
6
|
Kim S, Xu Z, Forno E, Qin Y, Park HJ, Yue M, Yan Q, Manni ML, Acosta-Pérez E, Canino G, Chen W, Celedón JC. Cis- and trans-eQTM analysis reveals novel epigenetic and transcriptomic immune markers of atopic asthma in airway epithelium. J Allergy Clin Immunol 2023; 152:887-898. [PMID: 37271320 PMCID: PMC10592527 DOI: 10.1016/j.jaci.2023.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/03/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Expression quantitative trait methylation (eQTM) analyses uncover associations between DNA methylation markers and gene expression. Most eQTM analyses of complex diseases have focused on cis-eQTM pairs (within 1 megabase). OBJECTIVES This study sought to identify cis- and trans-methylation markers associated with gene expression in airway epithelium from youth with and without atopic asthma. METHODS In this study, the investigators conducted both cis- and trans-eQTM analyses in nasal (airway) epithelial samples from 158 Puerto Rican youth with atopic asthma and 100 control subjects without atopy or asthma. The investigators then attempted to replicate their findings in nasal epithelial samples from 2 studies of children, while also examining whether their results in nasal epithelium overlap with those from an eQTM analysis in white blood cells from the Puerto Rican subjects. RESULTS This study identified 9,108 cis-eQTM pairs and 2,131,500 trans-eQTM pairs. Trans-associations were significantly enriched for transcription factor and microRNA target genes. Furthermore, significant cytosine-phosphate-guanine sites (CpGs) were differentially methylated in atopic asthma and significant genes were enriched for genes differentially expressed in atopic asthma. In this study, 50.7% to 62.6% of cis- and trans-eQTM pairs identified in Puerto Rican youth were replicated in 2 smaller cohorts at false discovery rate-adjusted P < .1. Replicated genes in the trans-eQTM analysis included biologically plausible asthma-susceptibility genes (eg, HDC, NLRP3, ITGAE, CDH26, and CST1) and are enriched in immune pathways. CONCLUSIONS Studying both cis- and trans-epigenetic regulation of airway epithelial gene expression can identify potential causal and regulatory pathways or networks for childhood asthma. Trans-eQTM CpGs may regulate gene expression in airway epithelium through effects on transcription factor and microRNA target genes.
Collapse
Affiliation(s)
- Soyeon Kim
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Zhongli Xu
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; School of Medicine, Tsinghua University, Beijing, China
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Yidi Qin
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, Pa
| | - Hyun Jung Park
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, Pa
| | - Molin Yue
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, Pa
| | - Qi Yan
- Department of Obstetrics and Gynecology, Columbia University, New York, NY
| | - Michelle L Manni
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh
| | - Edna Acosta-Pérez
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Wei Chen
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; School of Medicine, Tsinghua University, Beijing, China
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa; Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|
7
|
Recto K, Kachroo P, Huan T, Van Den Berg D, Lee GY, Bui H, Lee DH, Gereige J, Yao C, Hwang SJ, Joehanes R, Weiss ST, O'Connor GT, Levy D, DeMeo DL. Epigenome-wide DNA methylation association study of circulating IgE levels identifies novel targets for asthma. EBioMedicine 2023; 95:104758. [PMID: 37598461 PMCID: PMC10462855 DOI: 10.1016/j.ebiom.2023.104758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Identifying novel epigenetic signatures associated with serum immunoglobulin E (IgE) may improve our understanding of molecular mechanisms underlying asthma and IgE-mediated diseases. METHODS We performed an epigenome-wide association study using whole blood from Framingham Heart Study (FHS; n = 3,471, 46% females) participants and validated results using the Childhood Asthma Management Program (CAMP; n = 674, 39% females) and the Genetic Epidemiology of Asthma in Costa Rica Study (CRA; n = 787, 41% females). Using the closest gene to each IgE-associated CpG, we highlighted biologically plausible pathways underlying IgE regulation and analyzed the transcription patterns linked to IgE-associated CpGs (expression quantitative trait methylation loci; eQTMs). Using prior UK Biobank summary data from genome-wide association studies of asthma and allergy, we performed Mendelian randomization (MR) for causal inference testing using the IgE-associated CpGs from FHS with methylation quantitative trait loci (mQTLs) as instrumental variables. FINDINGS We identified 490 statistically significant differentially methylated CpGs associated with IgE in FHS, of which 193 (39.3%) replicated in CAMP and CRA (FDR < 0.05). Gene ontology analysis revealed enrichment in pathways related to transcription factor binding, asthma, and other immunological processes. eQTM analysis identified 124 cis-eQTMs for 106 expressed genes (FDR < 0.05). MR in combination with drug-target analysis revealed CTSB and USP20 as putatively causal regulators of IgE levels (Bonferroni adjusted P < 7.94E-04) that can be explored as potential therapeutic targets. INTERPRETATION By integrating eQTM and MR analyses in general and clinical asthma populations, our findings provide a deeper understanding of the multidimensional inter-relations of DNA methylation, gene expression, and IgE levels. FUNDING US NIH/NHLBI grants: P01HL132825, K99HL159234. N01-HC-25195 and HHSN268201500001I.
Collapse
Affiliation(s)
- Kathryn Recto
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Priyadarshini Kachroo
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA 02115, USA
| | - Tianxiao Huan
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - David Van Den Berg
- University of Southern California Methylation Characterization Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Gha Young Lee
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Helena Bui
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Dong Heon Lee
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Jessica Gereige
- Boston University School of Medicine, Pulmonary Center, Boston, MA 02118, USA
| | - Chen Yao
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Shih-Jen Hwang
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Roby Joehanes
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA
| | - Scott T Weiss
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA 02115, USA
| | - George T O'Connor
- The Framingham Heart Study, Framingham, MA 01702, USA; Boston University School of Medicine, Pulmonary Center, Boston, MA 02118, USA
| | - Daniel Levy
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; The Framingham Heart Study, Framingham, MA 01702, USA.
| | - Dawn L DeMeo
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Karmaus W, Kheirkhah Rahimabad P, Pham N, Mukherjee N, Chen S, Anthony TM, Arshad HS, Rathod A, Sultana N, Jones AD. Association of Metabolites, Nutrients, and Toxins in Maternal and Cord Serum with Asthma, IgE, SPT, FeNO, and Lung Function in Offspring. Metabolites 2023; 13:737. [PMID: 37367895 DOI: 10.3390/metabo13060737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
The role of metabolites, nutrients, and toxins (MNTs) in sera at the end of pregnancy and of their association with offspring respiratory and allergic disorders is underexplored. Untargeted approaches detecting a variety of compounds, known and unknown, are limited. In this cohort study, we first aimed at discovering associations of MNTs in grandmaternal (F0) serum with asthma, immunoglobulin E, skin prick tests, exhaled nitric oxide, and lung function parameters in their parental (F1) offspring. Second, for replication, we tested the identified associations of MNTs with disorders in their grandchildren (F2-offspring) based on F2 cord serum. The statistical analyses were sex-stratified. Using liquid chromatography/high-resolution mass spectrometry in F0, we detected signals for 2286 negative-ion lipids, 59 positive-ion lipids, and 6331 polar MNTs. Nine MNTs (one unknown MNT) discovered in F0-F1 and replicated in F2 showed higher risks of respiratory/allergic outcomes. Twelve MNTs (four unknowns) constituted a potential protection in F1 and F2. We recognized MNTs not yet considered candidates for respiratory/allergic outcomes: a phthalate plasticizer, an antihistamine, a bile acid metabolite, tryptophan metabolites, a hemiterpenoid glycoside, triacylglycerols, hypoxanthine, and polyphenol syringic acid. The findings suggest that MNTs are aspirants for clinical trials to prevent adverse respiratory/allergic outcomes.
Collapse
Affiliation(s)
- Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Parnian Kheirkhah Rahimabad
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Ngan Pham
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Nandini Mukherjee
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Su Chen
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-4375, USA
| | - Thilani M Anthony
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Hasan S Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- David Hide Asthma and Allergy Research Centre, Isle of Wight PO30 5TG, UK
| | - Aniruddha Rathod
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nahid Sultana
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - A Daniel Jones
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Doherty T, Dempster E, Hannon E, Mill J, Poulton R, Corcoran D, Sugden K, Williams B, Caspi A, Moffitt TE, Delany SJ, Murphy TM. A comparison of feature selection methodologies and learning algorithms in the development of a DNA methylation-based telomere length estimator. BMC Bioinformatics 2023; 24:178. [PMID: 37127563 PMCID: PMC10152624 DOI: 10.1186/s12859-023-05282-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND The field of epigenomics holds great promise in understanding and treating disease with advances in machine learning (ML) and artificial intelligence being vitally important in this pursuit. Increasingly, research now utilises DNA methylation measures at cytosine-guanine dinucleotides (CpG) to detect disease and estimate biological traits such as aging. Given the challenge of high dimensionality of DNA methylation data, feature-selection techniques are commonly employed to reduce dimensionality and identify the most important subset of features. In this study, our aim was to test and compare a range of feature-selection methods and ML algorithms in the development of a novel DNA methylation-based telomere length (TL) estimator. We utilised both nested cross-validation and two independent test sets for the comparisons. RESULTS We found that principal component analysis in advance of elastic net regression led to the overall best performing estimator when evaluated using a nested cross-validation analysis and two independent test cohorts. This approach achieved a correlation between estimated and actual TL of 0.295 (83.4% CI [0.201, 0.384]) on the EXTEND test data set. Contrastingly, the baseline model of elastic net regression with no prior feature reduction stage performed less well in general-suggesting a prior feature-selection stage may have important utility. A previously developed TL estimator, DNAmTL, achieved a correlation of 0.216 (83.4% CI [0.118, 0.310]) on the EXTEND data. Additionally, we observed that different DNA methylation-based TL estimators, which have few common CpGs, are associated with many of the same biological entities. CONCLUSIONS The variance in performance across tested approaches shows that estimators are sensitive to data set heterogeneity and the development of an optimal DNA methylation-based estimator should benefit from the robust methodological approach used in this study. Moreover, our methodology which utilises a range of feature-selection approaches and ML algorithms could be applied to other biological markers and disease phenotypes, to examine their relationship with DNA methylation and predictive value.
Collapse
Affiliation(s)
- Trevor Doherty
- School of Biological, Health and Sports Sciences, Technological University Dublin, Dublin, Ireland.
- SFI Centre for Research Training in Machine Learning, Technological University Dublin, Dublin, Ireland.
| | - Emma Dempster
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Richie Poulton
- Department of Psychology, University of Otago, Dunedin, 9016, New Zealand
| | - David Corcoran
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Karen Sugden
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Ben Williams
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Avshalom Caspi
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Terrie E Moffitt
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Sarah Jane Delany
- School of Computer Science, Technological University Dublin, Dublin, Ireland
| | - Therese M Murphy
- School of Biological, Health and Sports Sciences, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Bernabeu E, McCartney DL, Gadd DA, Hillary RF, Lu AT, Murphy L, Wrobel N, Campbell A, Harris SE, Liewald D, Hayward C, Sudlow C, Cox SR, Evans KL, Horvath S, McIntosh AM, Robinson MR, Vallejos CA, Marioni RE. Refining epigenetic prediction of chronological and biological age. Genome Med 2023; 15:12. [PMID: 36855161 PMCID: PMC9976489 DOI: 10.1186/s13073-023-01161-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Epigenetic clocks can track both chronological age (cAge) and biological age (bAge). The latter is typically defined by physiological biomarkers and risk of adverse health outcomes, including all-cause mortality. As cohort sample sizes increase, estimates of cAge and bAge become more precise. Here, we aim to develop accurate epigenetic predictors of cAge and bAge, whilst improving our understanding of their epigenomic architecture. METHODS First, we perform large-scale (N = 18,413) epigenome-wide association studies (EWAS) of chronological age and all-cause mortality. Next, to create a cAge predictor, we use methylation data from 24,674 participants from the Generation Scotland study, the Lothian Birth Cohorts (LBC) of 1921 and 1936, and 8 other cohorts with publicly available data. In addition, we train a predictor of time to all-cause mortality as a proxy for bAge using the Generation Scotland cohort (1214 observed deaths). For this purpose, we use epigenetic surrogates (EpiScores) for 109 plasma proteins and the 8 component parts of GrimAge, one of the current best epigenetic predictors of survival. We test this bAge predictor in four external cohorts (LBC1921, LBC1936, the Framingham Heart Study and the Women's Health Initiative study). RESULTS Through the inclusion of linear and non-linear age-CpG associations from the EWAS, feature pre-selection in advance of elastic net regression, and a leave-one-cohort-out (LOCO) cross-validation framework, we obtain cAge prediction with a median absolute error equal to 2.3 years. Our bAge predictor was found to slightly outperform GrimAge in terms of the strength of its association to survival (HRGrimAge = 1.47 [1.40, 1.54] with p = 1.08 × 10-52, and HRbAge = 1.52 [1.44, 1.59] with p = 2.20 × 10-60). Finally, we introduce MethylBrowsR, an online tool to visualise epigenome-wide CpG-age associations. CONCLUSIONS The integration of multiple large datasets, EpiScores, non-linear DNAm effects, and new approaches to feature selection has facilitated improvements to the blood-based epigenetic prediction of biological and chronological age.
Collapse
Affiliation(s)
- Elena Bernabeu
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Danni A Gadd
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Altos Labs, San Diego, USA
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Nicola Wrobel
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Sarah E Harris
- Department of Psychology, Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
| | - David Liewald
- Department of Psychology, Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
| | - Caroline Hayward
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Cathie Sudlow
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- BHF Data Science Centre, Health Data Research UK, London, UK
- Edinburgh Medical School, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Simon R Cox
- Department of Psychology, Lothian Birth Cohorts, University of Edinburgh, Edinburgh, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Altos Labs, San Diego, USA
| | - Andrew M McIntosh
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | | | - Catalina A Vallejos
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- The Alan Turing Institute, London, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
11
|
Recto KA, Huan T, Lee DH, Lee GY, Gereige J, Yao C, Hwang SJ, Joehanes R, Kelly RS, Lasky-Su J, O’Connor G, Levy D. Transcriptome-wide association study of circulating IgE levels identifies novel targets for asthma and allergic diseases. Front Immunol 2023; 14:1080071. [PMID: 36793728 PMCID: PMC9922991 DOI: 10.3389/fimmu.2023.1080071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Measurement of circulating immunoglobulin E (IgE) concentration is helpful for diagnosing and treating asthma and allergic diseases. Identifying gene expression signatures associated with IgE might elucidate novel pathways for IgE regulation. To this end, we performed a discovery transcriptome-wide association study to identify differentially expressed genes associated with circulating IgE levels in whole-blood derived RNA from 5,345 participants in the Framingham Heart Study across 17,873 mRNA gene-level transcripts. We identified 216 significant transcripts at a false discovery rate <0.05. We conducted replication using the meta-analysis of two independent external studies: the Childhood Asthma Management Program (n=610) and the Genetic Epidemiology of Asthma in Costa Rica Study (n=326); we then reversed the discovery and replication cohorts, which revealed 59 significant genes that replicated in both directions. Gene ontology analysis revealed that many of these genes were implicated in immune function pathways, including defense response, inflammatory response, and cytokine production. Mendelian randomization (MR) analysis revealed four genes (CLC, CCDC21, S100A13, and GCNT1) as putatively causal (p<0.05) regulators of IgE levels. GCNT1 (beta=1.5, p=0.01)-which is a top result in the MR analysis of expression in relation to asthma and allergic diseases-plays a role in regulating T helper type 1 cell homing, lymphocyte trafficking, and B cell differentiation. Our findings build upon prior knowledge of IgE regulation and provide a deeper understanding of underlying molecular mechanisms. The IgE-associated genes that we identified-particularly those implicated in MR analysis-can be explored as promising therapeutic targets for asthma and IgE-related diseases.
Collapse
Affiliation(s)
- Kathryn A. Recto
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| | - Tianxiao Huan
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| | - Dong Heon Lee
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| | - Gha Young Lee
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| | - Jessica Gereige
- Pulmonary Center, Boston University School of Medicine, Boston, MA, United States
| | - Chen Yao
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| | - Shih-Jen Hwang
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| | - Roby Joehanes
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| | - Rachel S. Kelly
- Brigham and Women’s Hospital, Channing Division of Network Medicine, Boston, MA, United States
| | - Jessica Lasky-Su
- Brigham and Women’s Hospital, Channing Division of Network Medicine, Boston, MA, United States
| | - George O’Connor
- Pulmonary Center, Boston University School of Medicine, Boston, MA, United States
| | - Daniel Levy
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- The Framingham Heart Study, Framingham, MA, United States
| |
Collapse
|
12
|
Yin W, Lei Y, Yang X, Zou J. A two-gene random forest model to diagnose osteoarthritis based on RNA-binding protein-related genes in knee cartilage tissue. Aging (Albany NY) 2023; 15:193-212. [PMID: 36641761 PMCID: PMC9876643 DOI: 10.18632/aging.204469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/20/2022] [Indexed: 01/16/2023]
Abstract
Osteoarthritis (OA) is one of the most common diseases in the orthopedic clinic, characterized by progressive cartilage degradation. RNA-binding proteins (RBPs) are capable of binding to RNAs at transcription and translation levels, playing an important role in the pathogenesis of OA. This study aims to investigate the diagnosis values of RBP-related genes in OA. The RBPs were collected from previous studies, and the GSE114007 dataset (control = 18, OA = 20) was downloaded from the Gene Expression Omnibus (GEO) as the training cohort. Through various bioinformatical and machine learning methods, including genomic difference detection, protein-protein interaction network analyses, Lasso regression, univariate logistic regression, Boruta algorithm, and SVM-RFE, RNMT and RBM24 were identified and then included into the random forest (RF) diagnosis model. GSE117999 dataset (control = 10, OA = 10) and clinical samples collected from local hospital (control = 10, OA = 11) were used for external validation. The RF model was a promising tool to diagnose OA in the training dataset (area under curve [AUC] = 1.000, 95% confidence interval [CI] = 1.000-1.000), the GSE117999 cohort (AUC = 0.900, 95% CI = 0.769-1.000), and local samples (AUC = 0.759, 95% CI = 0.568-0.951). Besides, qPCR and Western Blotting experiments showed that RNMT (P < 0.05) and RBM24 (P < 0.01) were both down-regulated in CHON-001 cells with IL-1β treatment. In all, an RF model to diagnose OA based on RNMT and RBM24 in cartilage tissue was constructed, providing a promising clinical tool and possible cut-in points in molecular mechanism clarification.
Collapse
Affiliation(s)
- Wenhua Yin
- Department of Orthopaedics, Yuebei People’s Hospital Affiliated to Medical College of Shantou University, Shaoguan, Guangdong 512026, China
| | - Ying Lei
- Department of Audit, Yuebei People’s Hospital Affiliated to Medical College of Shantou University, Shaoguan, Guangdong 512026, China
| | - Xuan Yang
- Department of Orthopaedics, Yuebei People’s Hospital Affiliated to Medical College of Shantou University, Shaoguan, Guangdong 512026, China
| | - Jiawei Zou
- Department of Orthopaedics, Yuebei People’s Hospital Affiliated to Medical College of Shantou University, Shaoguan, Guangdong 512026, China
| |
Collapse
|
13
|
Kilanowski A, Merid SK, Abrishamcar S, Feil D, Thiering E, Waldenberger M, Melén E, Peters A, Standl M, Hüls A. DNA methylation and aeroallergen sensitization: The chicken or the egg? Clin Epigenetics 2022; 14:114. [PMID: 36114581 PMCID: PMC9482323 DOI: 10.1186/s13148-022-01332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Background DNA methylation (DNAm) is considered a plausible pathway through which genetic and environmental factors may influence the development of allergies. However, causality has yet to be determined as it is unknown whether DNAm is rather a cause or consequence of allergic sensitization. Here, we investigated the direction of the observed associations between well-known environmental and genetic determinants of allergy, DNAm, and aeroallergen sensitization using a combination of high-dimensional and causal mediation analyses.
Methods Using prospectively collected data from the German LISA birth cohort from two time windows (6–10 years: N = 234; 10–15 years: N = 167), we tested whether DNAm is a cause or a consequence of aeroallergen sensitization (specific immunoglobulin E > 0.35kU/l) by conducting mediation analyses for both effect directions using maternal smoking during pregnancy, family history of allergies, and a polygenic risk score (PRS) for any allergic disease as exposure variables. We evaluated individual CpG sites (EPIC BeadChip) and allergy-related methylation risk scores (MRS) as potential mediators in the mediation analyses. We applied three high-dimensional mediation approaches (HIMA, DACT, gHMA) and validated results using causal mediation analyses. A replication of results was attempted in the Swedish BAMSE cohort.
Results Using high-dimensional methods, we identified five CpGs as mediators of prenatal exposures to sensitization with significant (adjusted p < 0.05) indirect effects in the causal mediation analysis (maternal smoking: two CpGs, family history: one, PRS: two). None of these CpGs could be replicated in BAMSE. The effect of family history on allergy-related MRS was significantly mediated by aeroallergen sensitization (proportions mediated: 33.7–49.6%), suggesting changes in DNAm occurred post-sensitization. Conclusion The results indicate that DNAm may be a cause or consequence of aeroallergen sensitization depending on genomic location. Allergy-related MRS, identified as a potential cause of sensitization, can be considered as a cross-sectional biomarker of disease. Differential DNAm in individual CpGs, identified as mediators of the development of sensitization, could be used as clinical predictors of disease development. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01332-5.
Collapse
|
14
|
Kilanowski A, Chen J, Everson T, Thiering E, Wilson R, Gladish N, Waldenberger M, Zhang H, Celedón JC, Burchard EG, Peters A, Standl M, Hüls A. Methylation risk scores for childhood aeroallergen sensitization: Results from the LISA birth cohort. Allergy 2022; 77:2803-2817. [PMID: 35437756 PMCID: PMC9437118 DOI: 10.1111/all.15315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Epigenomic (e.g., DNA methylation [DNAm]) changes have been hypothesized as intermediate step linking environmental exposures with allergic disease. Associations between individual DNAm at CpGs and allergic diseases have been reported, but their joint predictive capability is unknown. METHODS Data were obtained from 240 children of the German LISA cohort. DNAm was measured in blood clots at 6 (N = 234) and 10 years (N = 227) using the Illumina EPIC chip. Presence of aeroallergen sensitization was measured in blood at 6, 10, and 15 years. We calculated six methylation risk scores (MRS) for allergy-related phenotypes, like total and specific IgE, asthma, or any allergies, based on available publications and assessed their performances both cross-sectionally (biomarker) and prospectively (predictor of the disease). Dose-response associations between aeroallergen sensitization and MRS were evaluated. RESULTS All six allergy-related MRS were highly correlated (r > .86), and seven CpGs were included in more than one MRS. Cross-sectionally, we observed an 81% increased risk for aeroallergen sensitization at 6 years with an increased MRS by one standard deviation (best-performing MRS, 95% confidence interval = [43%; 227%]). Significant associations were also seen cross-sectionally at 10 years and prospectively, though the effect of the latter was attenuated when restricted to participants not sensitized at baseline. A clear dose-response relationship with levels of aeroallergen sensitization could be established cross-sectionally, but not prospectively. CONCLUSION We found good classification and prediction capabilities of calculated allergy-related MRS cross-sectionally, underlining the relevance of altered gene-regulation in allergic diseases and providing insights into potential DNAm biomarkers of aeroallergen sensitization.
Collapse
Affiliation(s)
- Anna Kilanowski
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA.,Institute for Medical Information Processing, Biometry, and Epidemiology; Pettenkofer School of Public Health, LMU Munich, Munich, Germany,Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Junyu Chen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Todd Everson
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA.,Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Elisabeth Thiering
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, Germany
| | - Rory Wilson
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Nicole Gladish
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Research Unit Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh
| | | | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Epidemiology, Ludwig-Maximilians University, Marchioninistr. 15, 81377 Munich, Germany
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,German Center for Lung Research (DZL), Gießen, Germany.,Corresponding Author Dr. Anke Huels (for methodologic requests), Rollins School of Public Health, Emory University, Department of Epidemiology, 1518 Clifton Rd NE, Atlanta, GA 30322, Phone: 404-727-4103, ; Dr. Marie Standl (for data related requests), Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institute of Epidemiology, Ingolstädter Landstraße 1, D-85764 Neuherberg, Phone: +49 89 3187-2952,
| | - Anke Hüls
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA.,Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA.,Corresponding Author Dr. Anke Huels (for methodologic requests), Rollins School of Public Health, Emory University, Department of Epidemiology, 1518 Clifton Rd NE, Atlanta, GA 30322, Phone: 404-727-4103, ; Dr. Marie Standl (for data related requests), Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institute of Epidemiology, Ingolstädter Landstraße 1, D-85764 Neuherberg, Phone: +49 89 3187-2952,
| |
Collapse
|
15
|
Abstract
The prevalence of allergic diseases such as asthma is globally increasing, posing threat to the life quality of the affected population. Genome-wide association studies (GWAS) suggest that genetic variations only account for a small proportion of immunoglobulin E (IgE)-mediated type I hypersensitivity. Recently, epigenetics has gained attention as an approach to further understand the missing heritability and underpinning mechanisms of allergic diseases. Furthermore, epigenetic regulation allows the evaluation of the interaction between an individual's genetic predisposition and their environmental exposures. This chapter summarizes several large-scale epigenome-wide association studies (EWAS) on asthma and other allergic diseases and draws a blueprint for future analysis and research direction.
Collapse
Affiliation(s)
- Yale Jiang
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Erick Forno
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wei Chen
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Bermick J, Schaller M. Epigenetic regulation of pediatric and neonatal immune responses. Pediatr Res 2022; 91:297-327. [PMID: 34239066 DOI: 10.1038/s41390-021-01630-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation of transcription is a collective term that refers to mechanisms known to regulate gene transcription without changing the underlying DNA sequence. These mechanisms include DNA methylation and histone tail modifications which influence chromatin accessibility, and microRNAs that act through post-transcriptional gene silencing. Epigenetics is known to regulate a variety of biological processes, and the role of epigtenetics in immunity and immune-mediated diseases is becoming increasingly recognized. While DNA methylation is the most widely studied, each of these systems play an important role in the development and maintenance of appropriate immune responses. There is clear evidence that epigenetic mechanisms contribute to developmental stage-specific immune responses in a cell-specific manner. There is also mounting evidence that prenatal exposures alter epigenetic profiles and subsequent immune function in exposed offspring. Early life exposures that are associated with poor long-term health outcomes also appear to impact immune specific epigenetic patterning. Finally, each of these epigenetic mechanisms contribute to the pathogenesis of a wide variety of diseases that manifest during childhood. This review will discuss each of these areas in detail. IMPACT: Epigenetics, including DNA methylation, histone tail modifications, and microRNA expression, dictate immune cell phenotypes. Epigenetics influence immune development and subsequent immune health. Prenatal, perinatal, and postnatal exposures alter immune cell epigenetic profiles and subsequent immune function. Numerous pediatric-onset diseases have an epigenetic component. Several successful strategies for childhood diseases target epigenetic mechanisms.
Collapse
Affiliation(s)
- Jennifer Bermick
- Department of Pediatrics, Division of Neonatology, University of Iowa, Iowa City, IA, USA. .,Iowa Inflammation Program, University of Iowa, Iowa City, IA, USA.
| | - Matthew Schaller
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Montesinos-López OA, Montesinos-López A, Mosqueda-Gonzalez BA, Montesinos-López JC, Crossa J, Ramirez NL, Singh P, Valladares-Anguiano FA. A zero altered Poisson random forest model for genomic-enabled prediction. G3-GENES GENOMES GENETICS 2021; 11:6042695. [PMID: 33693599 PMCID: PMC8022945 DOI: 10.1093/g3journal/jkaa057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022]
Abstract
In genomic selection choosing the statistical machine learning model is of paramount importance. In this paper, we present an application of a zero altered random forest model with two versions (ZAP_RF and ZAPC_RF) to deal with excess zeros in count response variables. The proposed model was compared with the conventional random forest (RF) model and with the conventional Generalized Poisson Ridge regression (GPR) using two real datasets, and we found that, in terms of prediction performance, the proposed zero inflated random forest model outperformed the conventional RF and GPR models.
Collapse
Affiliation(s)
| | - Abelardo Montesinos-López
- Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, 44430 Guadalajara, Jalisco, México
| | | | | | - José Crossa
- Colegio de Postgraduados, Montecillos, Edo. de México CP 56230, México.,International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera Mexico-Veracruz, CP 52640, Edo. de México, México
| | - Nerida Lozano Ramirez
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera Mexico-Veracruz, CP 52640, Edo. de México, México
| | - Pawan Singh
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera Mexico-Veracruz, CP 52640, Edo. de México, México
| | | |
Collapse
|
18
|
Danielewicz H, Gurgul A, Dębińska A, Myszczyszyn G, Szmatoła T, Myszkal A, Jasielczuk I, Drabik-Chamerska A, Hirnle L, Boznański A. Maternal atopy and offspring epigenome-wide methylation signature. Epigenetics 2021; 16:629-641. [PMID: 32902349 PMCID: PMC8143219 DOI: 10.1080/15592294.2020.1814504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/18/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
The increase in the prevalence of allergic diseases is believed to partially depend on environmental changes. DNA methylation is a major epigenetic mechanism, which is known to respond to environmental factors. A number of studies have revealed that patterns of DNA methylation may potentially predict allergic diseases.Here, we examined how maternal atopy is associated with methylation patterns in the cord blood of neonates.We conducted an epigenome-wide association study in a cohort of 96 mother-child pairs. Pregnant women aged not more than 35 years old, not currently smoking or exposed to environmental tobacco smoke, who did not report obesity before conception were considered eligible. They were further tested for atopy. Converted DNA from cord blood was analysed using Infinium MethylationEPIC; for statistical analysis, RnBeads software was applied. Gestational age and sex were included as covariates in the final analysis.83 DM sites were associated with maternal atopy. Within the top DM sites, there were CpG sites which mapped to genes SCD, ITM2C, NT5C3A and NPEPL1. Regional analysis revealed 25 tiling regions, 4 genes, 3 CpG islands and 5 gene promoters, (including PIGCP1, ADAM3A, ZSCAN12P1) associated with maternal atopy. Gene content analysis revealed pointwise enrichments in pathways related to purine-containing compound metabolism, the G1/S transition of the mitotic cell cycle, stem cell division and cellular glucose homoeostasis.These findings suggest that maternal atopy provides a unique intrauterine environment that may constitute the first environment in which exposure is associated with methylation patterns in newborn.
Collapse
Affiliation(s)
- Hanna Danielewicz
- 1st Department of Pediatrics, Allergy and Cardiology, Wroclaw Medical University, Wroclaw, Poland
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Kraków, Poland
| | - Anna Dębińska
- 1st Department of Pediatrics, Allergy and Cardiology, Wroclaw Medical University, Wroclaw, Poland
| | - Grzegorz Myszczyszyn
- 1st Department of Gynecology and Obstetrics, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Szmatoła
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Kraków, Poland
| | - Anna Myszkal
- 1st Department of Gynecology and Obstetrics, University Hospital of Jan Mikulicz-Radecki in Wroclaw, Wroclaw, Poland
| | - Igor Jasielczuk
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Kraków, Poland
| | - Anna Drabik-Chamerska
- 1st Department of Pediatrics, Allergy and Cardiology, Wroclaw Medical University, Wroclaw, Poland
| | - Lidia Hirnle
- 1st Department of Gynecology and Obstetrics, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Boznański
- 1st Department of Pediatrics, Allergy and Cardiology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
19
|
Han L, Kaushal A, Zhang H, Kadalayil L, Duan J, Holloway JW, Karmaus W, Banerjee P, Tsai SF, Wen HJ, Arshad SH, Wang SL. DNA Methylation at Birth is Associated with Childhood Serum Immunoglobulin E Levels. Epigenet Insights 2021; 14:25168657211008108. [PMID: 33870089 PMCID: PMC8024453 DOI: 10.1177/25168657211008108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/25/2020] [Indexed: 01/09/2023] Open
Abstract
Immunoglobulin E (IgE) is known to play an important role in allergic diseases. Epigenetic traits acquired due to modification of deoxyribonucleic acid (DNA) methylation (DNAm) in early life may have phenotypic consequences through their role in transcriptional regulation with relevance to the developmental origins of diseases including allergy. However, epigenome-scale studies on the longitudinal association of cord blood DNAm with IgE over time are lacking. Our study aimed to examine the association of DNAm at birth with childhood serum IgE levels during early life. Genome-scale DNAm and total serum IgE measured at birth, 5, 8, and 11 years of children in the Taiwan Maternal and Infant Cohort Study were included in the study in the discovery stage. Linear mixed models were implemented to assess the association between cord blood DNAm at ~310K 5′-cytosine-phosphate-guanine-3′ (CpG) sites with repeated IgE measurements, adjusting for cord blood IgE. Identified statistically significant CpGs (at a false discovery rate, FDR, of 0.05) were further tested in an independent replication cohort, the Isle of Wight (IoW) birth cohort. We mapped replicated CpGs to genes and conducted gene ontology analysis using ToppFun to identify significantly enriched pathways and biological processes of the genes. Cord blood DNAm of 273 CpG sites were significantly (FDR = 0.05) associated with IgE levels longitudinally. Among the identified CpGs available in both cohorts (184 CpGs), 92 CpGs (50%) were replicated in the IoW in terms of consistency in direction of associations between DNA methylation and IgE levels later in life, and 16 of the 92 CpGs showed statistically significant associations (P < .05). Gene ontology analysis identified 4 pathways (FDR = 0.05). The identified 16 CpG sites had the potential to serve as epigenetic markers associated with later IgE production, beneficial to allergic disease prevention and intervention.
Collapse
Affiliation(s)
- Luhang Han
- Department of Mathematical Sciences, University of Memphis, Memphis, TN, USA
| | | | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, USA
| | - Latha Kadalayil
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jiasong Duan
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, USA
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, USA
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
| | - Shih-Fen Tsai
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli
| | - Hui-Ju Wen
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, UK
| | - Shu-Li Wang
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli.,School of Public Health, National Defense Medical Center, Taipei.,Department of Public Health, China Medical University, Taichung
| |
Collapse
|
20
|
Wang J, Zhang H, Rezwan FI, Relton C, Arshad SH, Holloway JW. Pre-adolescence DNA methylation is associated with BMI status change from pre- to post-adolescence. Clin Epigenetics 2021; 13:64. [PMID: 33766110 PMCID: PMC7995693 DOI: 10.1186/s13148-021-01042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/28/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Previous studies have shown that DNA methylation (DNAm) is associated with body mass index (BMI). However, it is unknown whether DNAm at pre-adolescence is associated with BMI status transition from pre- to post-adolescence. In the Isle of Wight (IoW) birth cohort, genome-wide DNA methylation in whole blood was measured using Illumina Infinium Human450 and EPIC BeadChip arrays in n = 325 subjects, and pre- to post-adolescence BMI transition was classified into four groups: (1) normal to normal, (2) normal to overweight or obese, (3) overweight or obese to normal, and (4) persistent overweight or obese. We used recursive random forest to screen genome-wide Cytosine-phosphate-Guanine (CpG) sites with DNAm potentially associated with BMI transition for each gender, and the association of BMI status transition with DNAm at an earlier age was assessed via logistic regressions. To evaluate gender specificity, interactions between DNAm and gender were included in the model. Findings in the IoW cohort were further tested in an independent cohort, the Avon Longitudinal Study of Parents and Children (ALSPAC). RESULTS In total, 174 candidate CpGs were selected including CpGs from screening and CpGs previously associated correctionally with BMI in children and adults. Of these 174 CpGs, pre-adolescent DNAm of 38 CpGs in the IoW cohort was associated with BMI status transition, including 30 CpGs showing gender-specific associations. Thirteen CpGs showed consistent associations between the IoW cohort and the ALSPAC cohort (11 of which were gender-specific). CONCLUSION Pre-adolescence DNAm is associated with the change in BMI status from pre- to post-adolescence and such associations are likely to be gender-specific.
Collapse
Affiliation(s)
- Jiajing Wang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA.
| | - Faisal I Rezwan
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, Bedfordshire, UK
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - S Hasan Arshad
- The David Hide Asthma and Allergy Research Centre, St Mary's, Hospital, Parkhurst Road, Newport, PO30 5TG, Isle of Wight, UK
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, SO16 6YD, UK
| | - John W Holloway
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, SO16 6YD, UK
| |
Collapse
|
21
|
Sunny SK, Zhang H, Mzayek F, Relton CL, Ring S, Henderson AJ, Ewart S, Holloway JW, Arshad SH. Pre-adolescence DNA methylation is associated with lung function trajectories from pre-adolescence to adulthood. Clin Epigenetics 2021; 13:5. [PMID: 33407823 PMCID: PMC7789734 DOI: 10.1186/s13148-020-00992-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The pattern of lung function development from pre-adolescence to adulthood plays a significant role in the pathogenesis of respiratory diseases. Inconsistent findings in genetic studies on lung function trajectories, the importance of DNA methylation (DNA-M), and the critical role of adolescence in lung function development motivated the present study of pre-adolescent DNA-M with lung function trajectories. This study investigated epigenome-wide associations of DNA-M at cytosine-phosphate-guanine dinucleotide sites (CpGs) at childhood with lung function trajectories from childhood to young adulthood. METHODS DNA-M was measured in peripheral blood at age 10 years in the Isle of Wight (IOW) birth cohort. Spirometry was conducted at ages 10, 18, and 26 years. A training/testing-based method was used to screen CpGs. Multivariable logistic regressions were applied to assess the association of DNA-M with lung function trajectories from pre-adolescence to adulthood. To detect differentially methylated regions (DMRs) among CpGs, DMR enrichment analysis was conducted. Findings were further tested in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Pathway analyses were performed on the mapped genes of the identified CpGs and DMRs. Biological relevance of the identified CpGs was assessed with gene expression. All analyses were stratified by sex. RESULTS High and low trajectories of FVC, FEV1, and FEV1/FVC in each sex were identified. At PBonferroni < 0.05, DNA-M at 96 distinct CpGs (41 in males) showed associations with FVC, FEV1, and FEV1/FVC trajectories in IOW cohort. These 95 CpGs (cg24000797 was disqualified) were further tested in ALSPAC; 44 CpGs (19 in males) of these 95 showed the same directions of association as in the IOW cohort; and three CpGs (two in males) were replicated. DNA-M at two and four CpGs showed significant associations with the corresponding gene expression in males and females, respectively. At PFDR < 0.05, 23 and 10 DMRs were identified in males and females, respectively. Pathways were identified; some of those were linked to lung function and chronic obstructive lung diseases. CONCLUSION The identified CpGs at pre-adolescence have the potential to serve as candidate markers for lung function trajectory prediction and chronic lung diseases.
Collapse
Affiliation(s)
- Shadia Khan Sunny
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN 38152 USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN 38152 USA
| | - Fawaz Mzayek
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN 38152 USA
| | - Caroline L. Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN UK
| | - Susan Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN UK
- Population Health Sciences, University of Bristol, Bristol, BS8 2BN UK
| | - A. John Henderson
- Population Health Sciences, University of Bristol, Bristol, BS8 2BN UK
| | - Susan Ewart
- Large Animal Clinical Sciences, Michigan State University, East Lansing, MI USA
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD UK
| | - S. Hasan Arshad
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD UK
- The David Hide Asthma and Allergy Research Centre, St Mary’s Hospital, Parkhurst Road, Newport, Isle of Wight, PO30 5TG UK
| |
Collapse
|
22
|
Ghosh S, Samanta G, De la Sen M. Feature selection and classification approaches in gene expression of breast cancer. AIMS BIOPHYSICS 2021. [DOI: 10.3934/biophy.2021029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
<abstract>
<p>DNA microarray technology with biological data-set can monitor the expression levels of thousands of genes simultaneously. Microarray data analysis is important in phenotype classification of diseases. In this work, the computational part basically predicts the tendency towards mortality using different classification techniques by identifying features from the high dimensional dataset. We have analyzed the breast cancer transcriptional genomic data of 1554 transcripts captured over from 272 samples. This work presents effective methods for gene classification using Logistic Regression (LR), Random Forest (RF), Decision Tree (DT) and constructs a classifier with an upgraded rate of accuracy than all features together. The performance of these underlying methods are also compared with dimension reduction method, namely, Principal Component Analysis (PCA). The methods of feature reduction with RF, LR and decision tree (DT) provide better performance than PCA. It is observed that both techniques LR and RF identify TYMP, ERS1, C-MYB and TUBA1a genes. But some features corresponding to the genes such as ARID4B, DNMT3A, TOX3, RGS17 and PNLIP are uniquely pointed out by LR method which are leading to a significant role in breast cancer. The simulation is based on <italic>R</italic>-software.</p>
</abstract>
Collapse
|
23
|
Watanabe H, Miyake K, Matsuoka T, Kojima R, Sakurai D, Masuyama K, Yamagata Z. LPCAT2 Methylation, a Novel Biomarker for the Severity of Cedar Pollen Allergic Rhinitis in Japan. Am J Rhinol Allergy 2020; 35:631-639. [PMID: 33356413 DOI: 10.1177/1945892420983646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recently, the role of the epigenome in allergies has been receiving increasing attention. Although several genes that are methylated in relation to serum immunoglobulin E (IgE) concentration have been reported by epigenome-wide association studies, little is known about the DNA methylation sites associated with the symptoms and severity of cedar pollinosis (CP). OBJECTIVE Our aim was to analyze the association between DNA methylation and the symptoms and severity of CP in peripheral blood mononuclear cells (PBMCs) and nasal mucosa scraping cells (NMSCs). METHODS We recruited 70 participants during the cedar pollen dispersal season. IgE levels were measured by a fluorescence enzyme immunoassay. We analyzed DNA methylation of acyl-CoA thioesterase 7 (ACOT7), mucin 4 (MUC4), schlafen 12 (SLFN12), lysophosphatidylcholine acyltransferase 2 (LPCAT2), and interleukin-4 (IL4) in PBMCs and NMSCs using bisulfite next-generation sequencing; the correlation of DNA methylation with non-specific IgE and cedar pollen-specific IgE levels in peripheral blood samples was also investigated. Symptom severity and DNA methylation were investigated in 15 untreated CP patients. RESULTS Non-specific IgE levels showed a significant negative correlation with average IL4 methylation in PBMCs (r = -0.46, P < 0.0001) but not with methylation of ACOT7, MUC4, SLFN12, and LPCAT2. Cedar pollen-specific IgE levels showed a significant negative correlation with average IL4 and MUC4 methylation in PBMCs (r = -0.31, P = 0.01 and r = -0.241, P = 0.046, respectively) but not with methylation of ACOT7, SLFN12, and LPCAT2. The methylation of some genes in NMSCs was not significantly correlated with IgE levels. The mean methylation of LPCAT2 in NMSCs showed a decreasing trend with increasing severity of CP (P = 0.027). CONCLUSION LPCAT2 methylation in NMSCs may reflect the severity of CP and could be used as a novel biomarker to identify suitable treatment options for CP.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan.,Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Kunio Miyake
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Tomokazu Matsuoka
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Reiji Kojima
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Daiju Sakurai
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Keisuke Masuyama
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan.,Department of Otorhinolaryngology, Suwa Central Hospital, Chino, Japan
| | - Zentaro Yamagata
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| |
Collapse
|
24
|
Xu CJ, Gruzieva O, Qi C, Esplugues A, Gehring U, Bergström A, Mason D, Chatzi L, Porta D, Lodrup Carlsen KC, Baïz N, Madore AM, Alenius H, van Rijkom B, Jankipersadsing SA, van der Vlies P, Kull I, van Hage M, Bustamante M, Lertxundi A, Torrent M, Santorelli G, Fantini MP, Hovland V, Pesce G, Fyhrquist N, Laatikainen T, Nawijn MC, Li Y, Wijmenga C, Netea MG, Bousquet J, Anto JM, Laprise C, Haahtela T, Annesi-Maesano I, Carlsen KH, Gori D, Kogevinas M, Wright J, Söderhäll C, Vonk JM, Sunyer J, Melén E, Koppelman GH. Shared DNA methylation signatures in childhood allergy: The MeDALL study. J Allergy Clin Immunol 2020; 147:1031-1040. [PMID: 33338541 DOI: 10.1016/j.jaci.2020.11.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/14/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Differential DNA methylation associated with allergy might provide novel insights into the shared or unique etiology of asthma, rhinitis, and eczema. OBJECTIVE We sought to identify DNA methylation profiles associated with childhood allergy. METHODS Within the European Mechanisms of the Development of Allergy (MeDALL) consortium, we performed an epigenome-wide association study of whole blood DNA methylation by using a cross-sectional design. Allergy was defined as having symptoms from at least 1 allergic disease (asthma, rhinitis, or eczema) and positive serum-specific IgE to common aeroallergens. The discovery study included 219 case patients and 417 controls at age 4 years and 228 case patients and 593 controls at age 8 years from 3 birth cohorts, with replication analyses in 325 case patients and 1111 controls. We performed additional analyses on 21 replicated sites in 785 case patients and 2124 controls by allergic symptoms only from 8 cohorts, 3 of which were not previously included in analyses. RESULTS We identified 80 differentially methylated CpG sites that showed a 1% to 3% methylation difference in the discovery phase, of which 21 (including 5 novel CpG sites) passed genome-wide significance after meta-analysis. All 21 CpG sites were also significantly differentially methylated with allergic symptoms and shared between asthma, rhinitis, and eczema. The 21 CpG sites mapped to relevant genes, including ACOT7, LMAN3, and CLDN23. All 21 CpG sties were differently methylated in asthma in isolated eosinophils, and 10 were replicated in respiratory epithelium. CONCLUSION Reduced whole blood DNA methylation at 21 CpG sites was significantly associated with childhood allergy. The findings provide novel insights into the shared molecular mechanisms underlying asthma, rhinitis, and eczema.
Collapse
Affiliation(s)
- Cheng-Jian Xu
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Centre for Individualized Infection Medicine, CiiM, a joint venture between Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Cancan Qi
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ana Esplugues
- Nursing Department, Faculty of Nursing and Chiropody, Universitat de València, València, Spain; FISABIO-Universitat Jaume I-Universitat de València Joint Research Unit of Epidemiology and Environmental Health, València, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dan Mason
- Bradford Institute for Health Research, Bradford, United Kingdom
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Daniela Porta
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Karin C Lodrup Carlsen
- Division of Paediatric and Adolescent Medicine, The Faculty of Medicine, University of Oslo, Oslo, Norway; Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Nour Baïz
- Sorbonne University and INSERM, Epidemiology of Allergic and Respiratory Diseases (EPAR) Department, IPLESP, Medical School Saint Antoine, Paris, France
| | - Anne-Marie Madore
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec City, Canada
| | - Harri Alenius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bianca van Rijkom
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Soesma A Jankipersadsing
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pieter van der Vlies
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; HZPC Research BV, Metslawier, The Netherlands
| | - Inger Kull
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden
| | - Mariona Bustamante
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Institute of Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Aitana Lertxundi
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Preventive Medicine and Public Health Department, University of Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; Health Research institute Biodonostia, Donostia-San Sebastian, Gipuzkoa, Spain
| | - Matias Torrent
- Health Research Institute of the Balearic Islands, Spain; ib-salut, Area de Salut de Menorca, Spain
| | | | - Maria Pia Fantini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Vegard Hovland
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Giancarlo Pesce
- Sorbonne University and INSERM, Epidemiology of Allergic and Respiratory Diseases (EPAR) Department, IPLESP, Medical School Saint Antoine, Paris, France
| | | | - Nanna Fyhrquist
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Human Microbiome Program, Medicum, University of Helsinki, Helsinki, Finland
| | - Tiina Laatikainen
- Finnish Institute for Health and Welfare, Helsinki, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Martijn C Nawijn
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yang Li
- Centre for Individualized Infection Medicine, CiiM, a joint venture between Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Jean Bousquet
- University Hospital, Montpellier, France; Department of Dermatology, Charité, Berlin, Germany
| | - Josep M Anto
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Institute of Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Catherine Laprise
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec City, Canada; Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Saguenay, Québec City, Canada; Centre de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Saguenay, Québec, Canada
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Isabella Annesi-Maesano
- Sorbonne University and INSERM, Epidemiology of Allergic and Respiratory Diseases (EPAR) Department, IPLESP, Medical School Saint Antoine, Paris, France
| | - Kai-Håkon Carlsen
- Division of Paediatric and Adolescent Medicine, The Faculty of Medicine, University of Oslo, Oslo, Norway; Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Davide Gori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - John Wright
- Bradford Institute for Health Research, Bradford, United Kingdom
| | - Cilla Söderhäll
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Judith M Vonk
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jordi Sunyer
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Institute of Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Erik Melén
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden; Sachs' Children's Hospital, Stockholm, Sweden
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
25
|
Mukhopadhyay S, Ghosh S, Das D, Arun P, Roy B, Biswas NK, Maitra A, Majumder PP. Application of Random Forest and data integration identifies three dysregulated genes and enrichment of Central Carbon Metabolism pathway in Oral Cancer. BMC Cancer 2020; 20:1219. [PMID: 33317464 PMCID: PMC7737291 DOI: 10.1186/s12885-020-07709-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/03/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Studies of epigenomic alterations associated with diseases primarily focus on methylation profiles of promoter regions of genes, but not of other genomic regions. In our past work (Das et al. 2019) on patients suffering from gingivo-buccal oral cancer - the most prevalent form of cancer among males in India - we have also focused on promoter methylation changes and resultant impact on transcription profiles. Here, we have investigated alterations in non-promoter (gene-body) methylation profiles and have carried out an integrative analysis of gene-body methylation and transcriptomic data of oral cancer patients. METHODS Tumor and adjacent normal tissue samples were collected from 40 patients. Data on methylation in the non-promoter (gene-body) regions of genes and transcriptome profiles were generated and analyzed. Because of high dimensionality and highly correlated nature of these data, we have used Random Forest (RF) and other data-analytical methods. RESULTS Integrative analysis of non-promoter methylation and transcriptome data revealed significant methylation-driven alterations in some genes that also significantly impact on their transcription levels. These changes result in enrichment of the Central Carbon Metabolism (CCM) pathway, primarily by dysregulation of (a) NTRK3, which plays a dual role as an oncogene and a tumor suppressor; (b) SLC7A5 (LAT1) which is a transporter dedicated to essential amino acids, and is overexpressed in cancer cells to meet the increased demand for nutrients that include glucose and essential amino acids; and, (c) EGFR which has been earlier implicated in progression, recurrence, and stemness of oral cancer, but we provide evidence of epigenetic impact on overexpression of this gene for the first time. CONCLUSIONS In rapidly dividing cancer cells, metabolic reprogramming from normal cells takes place to enable enhanced proliferation. Here, we have identified that among oral cancer patients, genes in the CCM pathway - that plays a fundamental role in metabolic reprogramming - are significantly dysregulated because of perturbation of methylation in non-promoter regions of the genome. This result compliments our previous result that perturbation of promoter methylation results in significant changes in key genes that regulate the feedback process of DNA methylation for the maintenance of normal cell division.
Collapse
Affiliation(s)
| | - Sahana Ghosh
- National Institute of Biomedical Genomics, Kalyani, 741251, India
| | - Debodipta Das
- National Institute of Biomedical Genomics, Kalyani, 741251, India
| | - P Arun
- Tata Medical Centre, Kolkata, India
| | - Bidyut Roy
- Indian Statistical Institute, Kolkata, India
| | - Nidhan K Biswas
- National Institute of Biomedical Genomics, Kalyani, 741251, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, 741251, India
| | - Partha P Majumder
- National Institute of Biomedical Genomics, Kalyani, 741251, India. .,Indian Statistical Institute, Kolkata, India.
| |
Collapse
|
26
|
Hoang TT, Sikdar S, Xu CJ, Lee MK, Cardwell J, Forno E, Imboden M, Jeong A, Madore AM, Qi C, Wang T, Bennett BD, Ward JM, Parks CG, Beane-Freeman LE, King D, Motsinger-Reif A, Umbach DM, Wyss AB, Schwartz DA, Celedón JC, Laprise C, Ober C, Probst-Hensch N, Yang IV, Koppelman GH, London SJ. Epigenome-wide association study of DNA methylation and adult asthma in the Agricultural Lung Health Study. Eur Respir J 2020; 56:13993003.00217-2020. [PMID: 32381493 PMCID: PMC7469973 DOI: 10.1183/13993003.00217-2020] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Epigenome-wide studies of methylation in children support a role for epigenetic mechanisms in asthma; however, studies in adults are rare and few have examined non-atopic asthma. We conducted the largest epigenome-wide association study (EWAS) of blood DNA methylation in adults in relation to non-atopic and atopic asthma. We measured DNA methylation in blood using the Illumina MethylationEPIC array among 2286 participants in a case-control study of current adult asthma nested within a United States agricultural cohort. Atopy was defined by serum specific immunoglobulin E (IgE). Participants were categorised as atopy without asthma (n=185), non-atopic asthma (n=673), atopic asthma (n=271), or a reference group of neither atopy nor asthma (n=1157). Analyses were conducted using logistic regression. No associations were observed with atopy without asthma. Numerous cytosine–phosphate–guanine (CpG) sites were differentially methylated in non-atopic asthma (eight at family-wise error rate (FWER) p<9×10−8, 524 at false discovery rate (FDR) less than 0.05) and implicated 382 novel genes. More CpG sites were identified in atopic asthma (181 at FWER, 1086 at FDR) and implicated 569 novel genes. 104 FDR CpG sites overlapped. 35% of CpG sites in non-atopic asthma and 91% in atopic asthma replicated in studies of whole blood, eosinophils, airway epithelium, or nasal epithelium. Implicated genes were enriched in pathways related to the nervous system or inflammation. We identified numerous, distinct differentially methylated CpG sites in non-atopic and atopic asthma. Many CpG sites from blood replicated in asthma-relevant tissues. These circulating biomarkers reflect risk and sequelae of disease, as well as implicate novel genes associated with non-atopic and atopic asthma. Distinct methylation signals are found in non-atopic and atopic asthma. Most are related to gene expression and are replicated in asthma-relevant tissues, confirming the value of blood DNA methylation for identifying novel genes linked in asthma pathogenesis.https://bit.ly/2VnbJg3
Collapse
Affiliation(s)
- Thanh T Hoang
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA.,Joint first authors
| | - Sinjini Sikdar
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA.,Dept of Mathematics and Statistics, Old Dominion University, Norfolk, VA, USA.,Joint first authors
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Centre for Experimental and Clinical Infection Research (TWINCORE), Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,Joint first authors
| | - Mi Kyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Jonathan Cardwell
- Dept of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Erick Forno
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.,Dept of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Medea Imboden
- Chronic Disease Epidemiology Unit, Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Dept of Public Health, University of Basel, Basel, Switzerland
| | - Ayoung Jeong
- Chronic Disease Epidemiology Unit, Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Dept of Public Health, University of Basel, Basel, Switzerland
| | - Anne-Marie Madore
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Cancan Qi
- Dept of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, University of Groningen, Beatrix Children's Hospital and GRIAC Research Institute, Groningen, The Netherlands
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Brian D Bennett
- Integrative Bioinformatics Support Group, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - James M Ward
- Integrative Bioinformatics Support Group, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Laura E Beane-Freeman
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Debra King
- Clinical Pathology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Alison Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - Annah B Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| | - David A Schwartz
- Dept of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Juan C Celedón
- Division of Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.,Dept of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada.,Centre Intersectoriel en Santé Durable, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada.,Dept of Pediatrics, Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean, Saguenay, QC, Canada
| | - Carole Ober
- Dept of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Nicole Probst-Hensch
- Chronic Disease Epidemiology Unit, Dept of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Dept of Public Health, University of Basel, Basel, Switzerland
| | - Ivana V Yang
- Dept of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gerard H Koppelman
- Dept of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, University of Groningen, Beatrix Children's Hospital and GRIAC Research Institute, Groningen, The Netherlands
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC, USA
| |
Collapse
|
27
|
Melén E, Bergström A, Kull I, Almqvist C, Andersson N, Asarnoj A, Borres MP, Georgellis A, Pershagen G, Westman M, van Hage M, Ballardini N. Male sex is strongly associated with IgE-sensitization to airborne but not food allergens: results up to age 24 years from the BAMSE birth cohort. Clin Transl Allergy 2020; 10:15. [PMID: 32489587 PMCID: PMC7247167 DOI: 10.1186/s13601-020-00319-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Background Up to half of the population in high-income countries has allergen-specific IgE antibodies. However, data regarding sex differences of IgE-sensitization from childhood to adulthood is limited. Objective To explore IgE-sensitization to common foods and airborne allergens in relation to sex over time in a population-based cohort followed up to young adulthood. Methods The Swedish population-based birth cohort BAMSE includes 4089 subjects who have been followed regularly with questionnaires and clinical investigations. A recent 24-year follow-up included 3069 participants (75%). Sera collected at 4, 8, 16 and 24 years were analyzed for IgE-antibodies to 14 common foods and airborne allergens. Results At 24 years sensitization to foods had decreased compared to previous follow-ups affecting 8.4%, while sensitization to airborne allergens was more common, affecting 42.2%. Male sex was associated with IgE-sensitization to airborne allergens at all ages (overall OR: 1.68, 95% CI 1.46–1.94) while there was no statistically significant association between sex and sensitization to food allergens (overall OR: 1.10, 95% CI 0.93–1.32). Levels of allergen-specific IgE did not differ significantly between males and females for any of the tested foods or airborne allergens at any age, following adjustment for multiple comparisons. Conclusion IgE-sensitization to airborne allergens increases with age up to young adulthood, whereas sensitization to food allergens seems to level off. Male sex is strongly associated with IgE-sensitization to airborne allergens from early childhood up to young adulthood. In contrast, there is little evidence for associations between sex and IgE-sensitization to foods.
Collapse
Affiliation(s)
- Erik Melén
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, 11883 Stockholm, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden.,Sachs' Children and Youth Hospital, Södersjukhuset, 11883 Stockholm, Sweden
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, 113 65 Stockholm, Sweden
| | - Inger Kull
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, 11883 Stockholm, Sweden.,Sachs' Children and Youth Hospital, Södersjukhuset, 11883 Stockholm, Sweden
| | - Catarina Almqvist
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, 171 76 Stockholm, Sweden.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17 77 Stockholm, Sweden
| | - Niklas Andersson
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Anna Asarnoj
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, 171 76 Stockholm, Sweden.,Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Magnus P Borres
- Department of Women's and Children's Health, Uppsala University and Thermo Fisher Scientific, Uppsala, Sweden
| | - Antonis Georgellis
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, 113 65 Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, 113 65 Stockholm, Sweden
| | - Marit Westman
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Natalia Ballardini
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, 11883 Stockholm, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden.,Sachs' Children and Youth Hospital, Södersjukhuset, 11883 Stockholm, Sweden
| |
Collapse
|
28
|
Merid SK, Novoloaca A, Sharp GC, Küpers LK, Kho AT, Roy R, Gao L, Annesi-Maesano I, Jain P, Plusquin M, Kogevinas M, Allard C, Vehmeijer FO, Kazmi N, Salas LA, Rezwan FI, Zhang H, Sebert S, Czamara D, Rifas-Shiman SL, Melton PE, Lawlor DA, Pershagen G, Breton CV, Huen K, Baiz N, Gagliardi L, Nawrot TS, Corpeleijn E, Perron P, Duijts L, Nohr EA, Bustamante M, Ewart SL, Karmaus W, Zhao S, Page CM, Herceg Z, Jarvelin MR, Lahti J, Baccarelli AA, Anderson D, Kachroo P, Relton CL, Bergström A, Eskenazi B, Soomro MH, Vineis P, Snieder H, Bouchard L, Jaddoe VW, Sørensen TIA, Vrijheid M, Arshad SH, Holloway JW, Håberg SE, Magnus P, Dwyer T, Binder EB, DeMeo DL, Vonk JM, Newnham J, Tantisira KG, Kull I, Wiemels JL, Heude B, Sunyer J, Nystad W, Munthe-Kaas MC, Räikkönen K, Oken E, Huang RC, Weiss ST, Antó JM, Bousquet J, Kumar A, Söderhäll C, Almqvist C, Cardenas A, Gruzieva O, Xu CJ, Reese SE, Kere J, Brodin P, Solomon O, Wielscher M, Holland N, Ghantous A, Hivert MF, Felix JF, Koppelman GH, London SJ, Melén E. Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age. Genome Med 2020; 12:25. [PMID: 32114984 PMCID: PMC7050134 DOI: 10.1186/s13073-020-0716-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Preterm birth and shorter duration of pregnancy are associated with increased morbidity in neonatal and later life. As the epigenome is known to have an important role during fetal development, we investigated associations between gestational age and blood DNA methylation in children. METHODS We performed meta-analysis of Illumina's HumanMethylation450-array associations between gestational age and cord blood DNA methylation in 3648 newborns from 17 cohorts without common pregnancy complications, induced delivery or caesarean section. We also explored associations of gestational age with DNA methylation measured at 4-18 years in additional pediatric cohorts. Follow-up analyses of DNA methylation and gene expression correlations were performed in cord blood. DNA methylation profiles were also explored in tissues relevant for gestational age health effects: fetal brain and lung. RESULTS We identified 8899 CpGs in cord blood that were associated with gestational age (range 27-42 weeks), at Bonferroni significance, P < 1.06 × 10- 7, of which 3343 were novel. These were annotated to 4966 genes. After restricting findings to at least three significant adjacent CpGs, we identified 1276 CpGs annotated to 325 genes. Results were generally consistent when analyses were restricted to term births. Cord blood findings tended not to persist into childhood and adolescence. Pathway analyses identified enrichment for biological processes critical to embryonic development. Follow-up of identified genes showed correlations between gestational age and DNA methylation levels in fetal brain and lung tissue, as well as correlation with expression levels. CONCLUSIONS We identified numerous CpGs differentially methylated in relation to gestational age at birth that appear to reflect fetal developmental processes across tissues. These findings may contribute to understanding mechanisms linking gestational age to health effects.
Collapse
Affiliation(s)
- Simon Kebede Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Alexei Novoloaca
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Gemma C Sharp
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Leanne K Küpers
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alvin T Kho
- Computational Health Informatics Program, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ritu Roy
- Computational Biology And Informatics, University of California, San Francisco, San Francisco, CA, USA
- HDF Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Lu Gao
- Department of Preventive Medicine, University of Southern California, Los Angeles, USA
| | - Isabella Annesi-Maesano
- Sorbonne Université and INSERM, Epidemiology of Allergic and Respiratory Diseases Department (EPAR), Pierre Louis Institute of Epidemiology and Public Health (IPLESP UMRS 1136), Saint-Antoine Medical School, Paris, France
| | - Pooja Jain
- NIHR-Health Protection Research Unit, Respiratory Infections and Immunity, Imperial College London, London, UK
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
| | - Michelle Plusquin
- NIHR-Health Protection Research Unit, Respiratory Infections and Immunity, Imperial College London, London, UK
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Manolis Kogevinas
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Catherine Allard
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Florianne O Vehmeijer
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Nabila Kazmi
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, USA
| | - Faisal I Rezwan
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, USA
| | - Sylvain Sebert
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Genomic of Complex diseases, School of Public Health, Imperial College London, London, UK
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Phillip E Melton
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Australia
- Curtin/UWA Centre for Genetic Origins of Health and Disease, School of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Debbie A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol NIHR Biomedical Research Centre, Bristol, UK
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm, Stockholm Region, Sweden
| | - Carrie V Breton
- Department of Preventive Medicine, University of Southern California, Los Angeles, USA
| | - Karen Huen
- Children's Environmental Health Laboratory, University of California, Berkeley, Berkeley, CA, USA
| | - Nour Baiz
- Sorbonne Université and INSERM, Epidemiology of Allergic and Respiratory Diseases Department (EPAR), Pierre Louis Institute of Epidemiology and Public Health (IPLESP UMRS 1136), Saint-Antoine Medical School, Paris, France
| | - Luigi Gagliardi
- Division of Neonatology and Pediatrics, Ospedale Versilia, Viareggio, AUSL Toscana Nord Ovest, Pisa, Italy
| | - Tim S Nawrot
- NIHR-Health Protection Research Unit, Respiratory Infections and Immunity, Imperial College London, London, UK
- Department of Public Health & Primary Care, Leuven University, Leuven, Belgium
| | - Eva Corpeleijn
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Patrice Perron
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
- Department of Medicine, Université de Sherbrooke, Sherbrooke, Canada
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Ellen Aagaard Nohr
- Research Unit for Gynaecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mariona Bustamante
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Susan L Ewart
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, USA
| | - Shanshan Zhao
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, RTP, Durham, NC, USA
| | | | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Marjo-Riitta Jarvelin
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, UK
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Denise Anderson
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol NIHR Biomedical Research Centre, Bristol, UK
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm, Stockholm Region, Sweden
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), University of California, Berkeley, Berkeley, CA, USA
| | - Munawar Hussain Soomro
- Sorbonne Université and INSERM, Epidemiology of Allergic and Respiratory Diseases Department (EPAR), Pierre Louis Institute of Epidemiology and Public Health (IPLESP UMRS 1136), Saint-Antoine Medical School, Paris, France
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Luigi Bouchard
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of medical biology, CIUSSS-SLSJ, Saguenay, QC, Canada
| | - Vincent W Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Thorkild I A Sørensen
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section on Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martine Vrijheid
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - S Hasan Arshad
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- The David Hide Asthma and Allergy Research Centre, Newport, Isle of Wight, UK
| | - John W Holloway
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Per Magnus
- Norwegian Institute of Public Health, Oslo, Norway
| | - Terence Dwyer
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
- Murdoch Children's Research Institute, Australia Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Judith M Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - John Newnham
- Faculty of Health and Medical Sciences, UWA Medical School, University of Western Australia, Perth, Australia
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Inger Kull
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Sachs' Children's Hospital, Södersjukhuset, 118 83, Stockholm, Sweden
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, University of Southern California, Los Angeles, USA
| | - Barbara Heude
- INSERM, UMR1153 Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Research Team on Early life Origins of Health (EarOH), Paris Descartes University, Paris, France
| | - Jordi Sunyer
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | | | - Monica C Munthe-Kaas
- Norwegian Institute of Public Health, Oslo, Norway
- Department of Pediatric Oncology and Hematology, Oslo University Hospital, Oslo, Norway
| | | | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Josep Maria Antó
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Jean Bousquet
- University Hospital, Montpellier, France
- Department of Dermatology, Charité, Berlin, Germany
| | - Ashish Kumar
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Cilla Söderhäll
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm, Stockholm Region, Sweden
| | - Cheng-Jian Xu
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, GRIAC Research Institute Groningen, Groningen, The Netherlands
| | - Sarah E Reese
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, RTP, Durham, NC, USA
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Folkhälsa Research Institute, Helsinki, and Stem Cells and Metabolism Research Program, University of Helsinki Finland, Helsinki, Finland
| | - Petter Brodin
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Newborn Medicine, Karolinska University Hospital, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Olivia Solomon
- Children's Environmental Health Laboratory, University of California, Berkeley, Berkeley, CA, USA
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, UK
| | - Nina Holland
- Children's Environmental Health Laboratory, University of California, Berkeley, Berkeley, CA, USA
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Marie-France Hivert
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, GRIAC Research Institute Groningen, Groningen, The Netherlands
| | - Stephanie J London
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, RTP, Durham, NC, USA
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.
- Sachs' Children's Hospital, South General Hospital, Stockholm, Sweden.
| |
Collapse
|
29
|
Lin PI, Shu H, Mersha TB. Comparing DNA methylation profiles across different tissues associated with the diagnosis of pediatric asthma. Sci Rep 2020; 10:151. [PMID: 31932625 PMCID: PMC6957523 DOI: 10.1038/s41598-019-56310-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022] Open
Abstract
DNA methylation (DNAm) profiles in central airway epithelial cells (AECs) may play a key role in pathological processes in asthma. The goal of the current study is to compare the diagnostic performance of DNAm markers across three tissues: AECs, nasal epithelial cells (NECs), and peripheral blood mononuclear cells (PBMCs). Additionally, we focused on the results using the machine learning algorithm in the context of multi-locus effects to evaluate the diagnostic performance of the optimal subset of CpG sites. We obtained 74 subjects with asthma and 41 controls from AECs, 15 subjects with asthma and 14 controls from NECs, 697 subjects with asthma and 97 controls from PBMCs. Epigenome-wide DNA methylation levels in AECs, NECs and PBMCs were measured using the Infinium Human Methylation 450 K BeadChip. Overlap analysis across the three different sample sources at the locus and pathway levels were studied to investigate shared or unique pathophysiological processes of asthma across tissues. Using the top 100 asthma-associated methylation markers as classifiers from each dataset, we found that both AEC- and NEC-based DNAm signatures exerted a lower classification error than the PBMC-based DNAm markers (p-value = 0.0002). The area-under-the-curve (AUC) analysis based on out-of-bag errors using the random forest classification algorithm revealed that PBMC-, NEC-, and AEC-based methylation data yielded 31 loci (AUC: 0.87), 8 loci (AUC: 0.99), and 4 loci (AUC: 0.97) from each optimal subset of tissue-specific markers, respectively. We also discovered the locus-locus interaction of DNAm levels of the CDH6 gene and RAPGEF3 gene might interact with each other to jointly predict the risk of asthma – which suggests the pivotal role of cell-cell junction in the pathological changes of asthma. Both AECs and NECs might provide better diagnostic accuracy and efficacy levels than PBMCs. Further research is warranted to evaluate how these tissue-specific DNAm markers classify and predict asthma risk.
Collapse
Affiliation(s)
- Ping-I Lin
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Huan Shu
- Department of Health Sciences, Karlstad University, Karlstad, Sweden.,Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Tesfaye B Mersha
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
30
|
Replicated methylation changes associated with eczema herpeticum and allergic response. Clin Epigenetics 2019; 11:122. [PMID: 31443688 PMCID: PMC6706929 DOI: 10.1186/s13148-019-0714-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023] Open
Abstract
Background Although epigenetic mechanisms are important risk factors for allergic disease, few studies have evaluated DNA methylation differences associated with atopic dermatitis (AD), and none has focused on AD with eczema herpeticum (ADEH+). We will determine how methylation varies in AD individuals with/without EH and associated traits. We modeled differences in genome-wide DNA methylation in whole blood cells from 90 ADEH+, 83 ADEH−, and 84 non-atopic, healthy control subjects, replicating in 36 ADEH+, 53 ADEH−, and 55 non-atopic healthy control subjects. We adjusted for cell-type composition in our models and used genome-wide and candidate-gene approaches. Results We replicated one CpG which was significantly differentially methylated by severity, with suggestive replication at four others showing differential methylation by phenotype or severity. Not adjusting for eosinophil content, we identified 490 significantly differentially methylated CpGs (ADEH+ vs healthy controls, genome-wide). Many of these associated with severity measures, especially eosinophil count (431/490 sites). Conclusions We identified a CpG in IL4 associated with serum tIgE levels, supporting a role for Th2 immune mediating mechanisms in AD. Changes in eosinophil level, a measure of disease severity, are associated with methylation changes, providing a potential mechanism for phenotypic changes in immune response-related traits. Electronic supplementary material The online version of this article (10.1186/s13148-019-0714-1) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Zhu H, Liang C. CRISPR-DT: designing gRNAs for the CRISPR-Cpf1 system with improved target efficiency and specificity. BIOINFORMATICS (OXFORD, ENGLAND) 2019; 35:2783-2789. [PMID: 30615056 DOI: 10.1101/269910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 05/25/2023]
Abstract
MOTIVATION The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cpf1 system has been successfully applied in genome editing. However, target efficiency of the CRISPR-Cpf1 system varies among different guide RNA (gRNA) sequences. RESULTS In this study, we reanalyzed the published CRISPR-Cpf1 gRNAs data and found many sequence and structural features related to their target efficiency. With the aid of Random Forest in feature selection, a support vector machine model was created to predict target efficiency for any given gRNAs. We have developed the first CRISPR-Cpf1 web service application, CRISPR-DT (CRISPR DNA Targeting), to help users design optimal gRNAs for the CRISPR-Cpf1 system by considering both target efficiency and specificity. CRISPR-DT will empower researchers in genome editing. AVAILABILITY AND IMPLEMENTATION CRISPR-DT, mainly implemented in Perl, PHP and JavaScript, is freely available at http://bioinfolab.miamioh.edu/CRISPR-DT. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Houxiang Zhu
- Department of Biology, Miami University, Oxford, OH, USA
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, USA
- Department of Computer Science and Software Engineering, Miami University, Oxford, OH, USA
| |
Collapse
|
32
|
Zhu H, Liang C. CRISPR-DT: designing gRNAs for the CRISPR-Cpf1 system with improved target efficiency and specificity. Bioinformatics 2019; 35:2783-2789. [PMID: 30615056 DOI: 10.1093/bioinformatics/bty1061] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 12/26/2022] Open
Abstract
MOTIVATION The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cpf1 system has been successfully applied in genome editing. However, target efficiency of the CRISPR-Cpf1 system varies among different guide RNA (gRNA) sequences. RESULTS In this study, we reanalyzed the published CRISPR-Cpf1 gRNAs data and found many sequence and structural features related to their target efficiency. With the aid of Random Forest in feature selection, a support vector machine model was created to predict target efficiency for any given gRNAs. We have developed the first CRISPR-Cpf1 web service application, CRISPR-DT (CRISPR DNA Targeting), to help users design optimal gRNAs for the CRISPR-Cpf1 system by considering both target efficiency and specificity. CRISPR-DT will empower researchers in genome editing. AVAILABILITY AND IMPLEMENTATION CRISPR-DT, mainly implemented in Perl, PHP and JavaScript, is freely available at http://bioinfolab.miamioh.edu/CRISPR-DT. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Houxiang Zhu
- Department of Biology, Miami University, Oxford, OH, USA
| | - Chun Liang
- Department of Biology, Miami University, Oxford, OH, USA
- Department of Computer Science and Software Engineering, Miami University, Oxford, OH, USA
| |
Collapse
|
33
|
Everson TM, Zhang H, Lockett GA, Kaushal A, Forthofer M, Ewart SL, Burrows K, Relton CL, Sharp GC, Henderson AJ, Patil VK, Rezwan FI, Arshad SH, Holloway JW, Karmaus W. Epigenome-wide association study of asthma and wheeze characterizes loci within HK1. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2019; 15:43. [PMID: 31367216 PMCID: PMC6657035 DOI: 10.1186/s13223-019-0356-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/12/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND To identify novel epigenetic markers of adolescent asthma and replicate findings in an independent cohort, then explore whether such markers are detectable at birth, predictive of early-life wheeze, and associated with gene expression in cord blood. METHODS We performed epigenome-wide screening with recursive random forest feature selection and internal validation in the IOW birth cohort. We then tested whether we could replicate these findings in the independent cohort ALSPAC and followed-up our top finding with children of the IOW cohort. RESULTS We identified 10 CpG sites associated with adolescent asthma at a 5% false discovery rate (IOW, n = 370), five of which exhibited evidence of associations in the replication study (ALSPAC, n = 720). One site, cg16658191, within HK1 displayed particularly strong associations after cellular heterogeneity adjustments in both cohorts (ORIOW = 0.17, 95% CI 0.04-0.57) (ORALSPAC = 0.57, 95% CI 0.38-0.87). Additionally, higher expression of HK1 (OR = 3.81, 95% CI 1.41-11.77) in cord blood was predictive of wheezing in infancy (n = 82). CONCLUSION We identified novel associations between asthma and wheeze with methylation at cg16658191 and the expression of HK1, which may serve as markers of, predictors of, and potentially etiologic factors involved in asthma and early life wheeze.
Collapse
Affiliation(s)
- Todd M. Everson
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208 USA
- Present Address: Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA 30322 USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, 236A Robison Hall, Memphis, TN 38152 USA
| | - Gabrielle A. Lockett
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD UK
| | - Akhilesh Kaushal
- Center for Precision and Environmental Health, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030 USA
| | - Melinda Forthofer
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208 USA
- Present Address: Department of Public Health Sciences at the College of Health and Human Services, University of North Carolina Charlotte, 9201 University City Boulevard, Charlotte, NC 28223 USA
| | - Susan L. Ewart
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI USA
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN UK
| | - Caroline L. Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN UK
| | - Gemma C. Sharp
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN UK
| | - A. John Henderson
- Avon Longitudinal Study of Parents and Children, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN UK
| | - Veeresh K. Patil
- The David Hide Asthma and Allergy Research Centre, St Mary’s Hospital, Newport, Isle of Wight UK
| | - Faisal I. Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD UK
| | - S. Hasan Arshad
- Clinical and Experimental Sciences Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD UK
- The David Hide Asthma and Allergy Research Centre, St Mary’s Hospital, Newport, Isle of Wight UK
- NIHR Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD UK
- Clinical and Experimental Sciences Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, 236A Robison Hall, Memphis, TN 38152 USA
| |
Collapse
|
34
|
Zhang H, Kaushal A, Merid SK, Melén E, Pershagen G, Rezwan FI, Han L, Ewart S, Arshad SH, Karmaus W, Holloway JW. DNA methylation and allergic sensitizations: A genome-scale longitudinal study during adolescence. Allergy 2019; 74:1166-1175. [PMID: 30762239 DOI: 10.1111/all.13746] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The presence of allergic sensitization has a major influence on the development and course of common childhood conditions such as asthma and rhinitis. The etiology of allergic sensitization is poorly understood, and its underlying biological mechanisms are not well established. Several studies showed that DNA methylation (DNAm) at some CpGs is associated with allergic sensitization. However, no studies have focused on the critical adolescence period. METHODS We assessed the association of pre- and postadolescence genome-wide DNAm with allergic sensitization against indoor, outdoor and food allergens, using linear mixed models. We hypothesized that DNAm is associated with sensitization in general, and with poly-sensitization status, and these associations are age- and gender-specific. We tested these hypotheses in the IoW cohort (n = 376) and examined the findings in the BAMSE cohort (n = 267). RESULTS Via linear mixed models, we identified 35 CpGs in IoW associated with allergic sensitization (at false discovery rate of 0.05), of which 33 were available in BAMSE and replicated with respect to the direction of associations with allergic sensitization. At the 35 CpGs except for cg19210306 on C13orf27, a reduction in methylation among atopic subjects was observed, most notably for cg21220721 and cg11699125 (ACOT7). DNAm at cg10159529 was strongly correlated with expression of IL5RA in peripheral blood (P-value = 6.76 × 10-20 ). Three CpGs (cg14121142, cg23842695, and cg26496795) were identified in IoW with age-specific association between DNAm and allergic sensitization. CONCLUSION In adolescence, the status of allergic sensitization was associated with DNAm differentiation and at some CpGs the association is likely to be age-specific.
Collapse
Affiliation(s)
- Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences; School of Public Health; University of Memphis; Memphis TN
| | - Akhilesh Kaushal
- Center for Precision Environmental Health; Baylor College of Medicine; Houston Texas
| | - Simon Kebede Merid
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
| | - Erik Melén
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
- Sachs' Children's Hospital; Stockholm Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine; Karolinska Institutet; Stockholm Sweden
| | - Faisal I. Rezwan
- Faculty of Medicine; Clinical and Experimental Sciences; University of Southampton; Southampton UK
| | - Luhang Han
- Department of Mathematical Sciences; University of Memphis; Memphis Tennessee
| | - Susan Ewart
- College of Veterinary Medicine; Michigan State University; East Lansing Michigan
| | - S. Hasan Arshad
- Faculty of Medicine; Clinical and Experimental Sciences; University of Southampton; Southampton UK
- David Hide Asthma and Allergy Research Centre; Isle of Wight UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences; School of Public Health; University of Memphis; Memphis TN
| | - John W. Holloway
- Faculty of Medicine; Clinical and Experimental Sciences; University of Southampton; Southampton UK
- Human Development and Health; Faculty of Medicine; University of Southampton; Southampton UK
| |
Collapse
|
35
|
Peng C, Van Meel ER, Cardenas A, Rifas-Shiman SL, Sonawane AR, Glass KR, Gold DR, Platts-Mills TA, Lin X, Oken E, Hivert MF, Baccarelli AA, De Jong NW, Felix JF, Jaddoe VW, Duijts L, Litonjua AA, DeMeo DL. Epigenome-wide association study reveals methylation pathways associated with childhood allergic sensitization. Epigenetics 2019; 14:445-466. [PMID: 30876376 DOI: 10.1080/15592294.2019.1590085] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Epigenetic mechanisms integrate both genetic variability and environmental exposures. However, comprehensive epigenome-wide analysis has not been performed across major childhood allergic phenotypes. We examined the association of epigenome-wide DNA methylation in mid-childhood peripheral blood (Illumina HumanMethyl450K) with mid-childhood atopic sensitization, environmental/inhalant and food allergen sensitization in 739 children in two birth cohorts (Project Viva-Boston, and the Generation R Study-Rotterdam). We performed covariate-adjusted epigenome-wide association meta-analysis and employed pathway and regional analyses of results. Seven-hundred and five methylation sites (505 genes) were significantly cross-sectionally associated with mid-childhood atopic sensitization, 1411 (905 genes) for environmental and 45 (36 genes) for food allergen sensitization (FDR<0.05). We observed differential methylation across multiple genes for all three phenotypes, including genes implicated previously in innate immunity (DICER1), eosinophilic esophagitis and sinusitis (SIGLEC8), the atopic march (AP5B1) and asthma (EPX, IL4, IL5RA, PRG2, SIGLEC8, CLU). In addition, most of the associated methylation marks for all three phenotypes occur in putative transcription factor binding motifs. Pathway analysis identified multiple methylation sites associated with atopic sensitization and environmental allergen sensitization located in/near genes involved in asthma, mTOR signaling, and inositol phosphate metabolism. We identified multiple differentially methylated regions associated with atopic sensitization (8 regions) and environmental allergen sensitization (26 regions). A number of nominally significant methylation sites in the cord blood analysis were epigenome-wide significant in the mid-childhood analysis, and we observed significant methylation - time interactions among a subset of sites examined. Our findings provide insights into epigenetic regulatory pathways as markers of childhood allergic sensitization.
Collapse
Affiliation(s)
- Cheng Peng
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA
| | - Evelien R Van Meel
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,c Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Andres Cardenas
- d Division of Environmental Health Science , University of California, Berkeley, School of Public Health , Berkeley , CA , USA
| | - Sheryl L Rifas-Shiman
- e Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine , Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston , MA , USA
| | - Abhijeet R Sonawane
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA
| | - Kimberly R Glass
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA.,f Department of Biostatistics , Harvard T.H Chan School of Public Health , Boston , MA , USA
| | - Diane R Gold
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA.,g Department of Environmental Health , Harvard T. H. Chan School of Public Health , Boston , MA , USA
| | - Thomas A Platts-Mills
- h Division of Allergy and Clinical Immunology , University of Virginia School of Medicine , Charlottesville , VA , USA
| | - Xihong Lin
- f Department of Biostatistics , Harvard T.H Chan School of Public Health , Boston , MA , USA.,i Department of Statistics , Harvard University , Cambridge , MA , USA
| | - Emily Oken
- e Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine , Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston , MA , USA
| | - Marie-France Hivert
- e Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine , Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston , MA , USA.,j Diabetes Unit , Massachusetts General Hospital , Boston , MA , USA
| | - Andrea A Baccarelli
- k Department of Environmental Health Sciences , Columbia University Mailman School of Public Health , New York , NY , USA
| | - Nicolette W De Jong
- l Department of Internal Medicine, Allergology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Janine F Felix
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,m Department of Epidemiology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,n Department of Pediatrics, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Vincent W Jaddoe
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,m Department of Epidemiology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,n Department of Pediatrics, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Liesbeth Duijts
- b The Generation R Study Group, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,c Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC , University Medical Center Rotterdam , Rotterdam , the Netherlands.,o Department of Pediatrics, Division of Neonatology , Erasmus MC, University Medical Center Rotterdam , Rotterdam , the Netherlands
| | - Augusto A Litonjua
- p Department of Pediatrics, Division of Pulmonary Medicine , University of Rochester Medical Center , Rochester , NY , USA
| | - Dawn L DeMeo
- a Channing Division of Network Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA.,q Division of Pulmonary and Critical Care, Harvard Medical School , Department of Medicine, Brigham and Women's Hospital , Boston , MA , USA
| |
Collapse
|
36
|
Epigenetic age acceleration is associated with allergy and asthma in children in Project Viva. J Allergy Clin Immunol 2019; 143:2263-2270.e14. [PMID: 30738172 DOI: 10.1016/j.jaci.2019.01.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Epigenetic clocks have been suggested to capture one feature of the complexity between aging and the epigenome. However, little is known about the epigenetic clock in childhood allergy and asthma. OBJECTIVE We sought to examine associations of DNA methylation age (DNAmAge) and epigenetic age acceleration with childhood allergy and asthma. METHODS We calculated DNAmAge and age acceleration at birth, early childhood, and midchildhood based on the IlluminaHumanMethylation450BeadChip in Project Viva. We evaluated epigenetic clock associations with allergy and asthma using covariate-adjusted linear and logistic regressions. We attempted to replicate our findings in the Genetics of Asthma in Costa Rica Study. RESULTS At midchildhood (mean age, 7.8 years) in Project Viva, DNAmAge and age acceleration were cross-sectionally associated with greater total serum IgE levels and greater odds of atopic sensitization. Every 1-year increase in intrinsic epigenetic age acceleration was associated with a 1.22 (95% CI, 1.07-1.39), 1.17 (95% CI, 1.03-1.34), and 1.29 (95% CI, 1.12-1.49) greater odds of atopic sensitization and environmental and food allergen sensitization. DNAmAge and extrinsic epigenetic age acceleration were also cross-sectionally associated with current asthma at midchildhood. DNAmAge and age acceleration at birth and early childhood were not associated with midchildhood allergy or asthma. The midchildhood association between age acceleration and atopic sensitization were replicated in an independent data set. CONCLUSIONS Because the epigenetic clock might reflect immune and developmental components of biological aging, our study suggests pathways through which molecular epigenetic mechanisms of immunity, development, and maturation can interact along the age axis and associate with childhood allergy and asthma by midchildhood.
Collapse
|
37
|
Kakade A, Kumari B, Dholaniya PS. Feature selection using logistic regression in case-control DNA methylation data of Parkinson's disease: A comparative study. J Theor Biol 2018; 457:14-18. [PMID: 30120951 DOI: 10.1016/j.jtbi.2018.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 01/18/2023]
Abstract
Parkinson's disease (PD) is described as a progressive neurological disorder caused by the degeneration of dopaminergic neurons in substantia nigra pars compacta. The pathogenesis of the disease is not fully understood but it has been linked with complex genetic, epigenetic and environmental interactions. A substantial number of studies have shown the role of epigenetic modifications in support of the progression of PD. In the present study, we have analyzed the data containing methylation patterns of 1726 transcripts captured over from 66 samples of 450k, which includes 43 controls and 23 diseased samples. We used Logistic Regression (LR) for feature reduction and build a classifier with an improved accuracy rate than all features together. The performance of the classifier was compared with other feature reduction approaches viz. Random Forest (RF) and Principal Component Analysis (PCA). Feature reduction with LR and RF performed better than PCA. Some of the features corresponding to the genes such as COMT, DCTN1 and PRNP were uniquely identified by LR and are reported to play a significant role in PD.
Collapse
Affiliation(s)
- Aishwarya Kakade
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500 046, India
| | - Baby Kumari
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500 046, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500 046, India.
| |
Collapse
|
38
|
Mørkve Knudsen T, Rezwan FI, Jiang Y, Karmaus W, Svanes C, Holloway JW. Transgenerational and intergenerational epigenetic inheritance in allergic diseases. J Allergy Clin Immunol 2018; 142:765-772. [PMID: 30040975 PMCID: PMC6167012 DOI: 10.1016/j.jaci.2018.07.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/07/2023]
Abstract
It has become clear that early life (including in utero exposures) is a key window of vulnerability during which environmental exposures can alter developmental trajectories and initiate allergic disease development. However, recent evidence suggests that there might be additional windows of vulnerability to environmental exposures in the parental generation before conception or even in previous generations. There is evidence suggesting that information of prior exposures can be transferred across generations, and experimental animal models suggest that such transmission can be conveyed through epigenetic mechanisms. Although the molecular mechanisms of intergenerational and transgenerationational epigenetic transmission have yet to be determined, the realization that environment before conception can alter the risks of allergic diseases has profound implications for the development of public health interventions to prevent disease. Future research in both experimental models and in multigenerational human cohorts is needed to better understand the role of intergenerational and transgenerational effects in patients with asthma and allergic disease. This will provide the knowledge basis for a new approach to efficient intervention strategies aimed at reducing the major public health challenge of these conditions.
Collapse
Affiliation(s)
| | - Faisal I Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tenn
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tenn
| | - Cecilie Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
39
|
Arshad SH, Holloway JW, Karmaus W, Zhang H, Ewart S, Mansfield L, Matthews S, Hodgekiss C, Roberts G, Kurukulaaratchy R. Cohort Profile: The Isle Of Wight Whole Population Birth Cohort (IOWBC). Int J Epidemiol 2018; 47:1043-1044i. [PMID: 29547889 PMCID: PMC6124620 DOI: 10.1093/ije/dyy023] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- S Hasan Arshad
- The David Hide Asthma and Allergy Research Centre, Newport, Isle of Wight, UK
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - John W Holloway
- Human Development and Health, University of Southampton, Southampton, UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, USA
| | - Susan Ewart
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Linda Mansfield
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Sharon Matthews
- The David Hide Asthma and Allergy Research Centre, Newport, Isle of Wight, UK
| | - Claire Hodgekiss
- The David Hide Asthma and Allergy Research Centre, Newport, Isle of Wight, UK
| | - Graham Roberts
- The David Hide Asthma and Allergy Research Centre, Newport, Isle of Wight, UK
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
- Human Development and Health, University of Southampton, Southampton, UK
| | - Ramesh Kurukulaaratchy
- The David Hide Asthma and Allergy Research Centre, Newport, Isle of Wight, UK
- Clinical and Experimental Sciences, University of Southampton, Southampton, UK
- NIHR Biomedical Research Centre, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
40
|
Li B, Zhang N, Wang YG, George AW, Reverter A, Li Y. Genomic Prediction of Breeding Values Using a Subset of SNPs Identified by Three Machine Learning Methods. Front Genet 2018; 9:237. [PMID: 30023001 PMCID: PMC6039760 DOI: 10.3389/fgene.2018.00237] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
The analysis of large genomic data is hampered by issues such as a small number of observations and a large number of predictive variables (commonly known as “large P small N”), high dimensionality or highly correlated data structures. Machine learning methods are renowned for dealing with these problems. To date machine learning methods have been applied in Genome-Wide Association Studies for identification of candidate genes, epistasis detection, gene network pathway analyses and genomic prediction of phenotypic values. However, the utility of two machine learning methods, Gradient Boosting Machine (GBM) and Extreme Gradient Boosting Method (XgBoost), in identifying a subset of SNP makers for genomic prediction of breeding values has never been explored before. In this study, using 38,082 SNP markers and body weight phenotypes from 2,093 Brahman cattle (1,097 bulls as a discovery population and 996 cows as a validation population), we examined the efficiency of three machine learning methods, namely Random Forests (RF), GBM and XgBoost, in (a) the identification of top 400, 1,000, and 3,000 ranked SNPs; (b) using the subsets of SNPs to construct genomic relationship matrices (GRMs) for the estimation of genomic breeding values (GEBVs). For comparison purposes, we also calculated the GEBVs from (1) 400, 1,000, and 3,000 SNPs that were randomly selected and evenly spaced across the genome, and (2) from all the SNPs. We found that RF and especially GBM are efficient methods in identifying a subset of SNPs with direct links to candidate genes affecting the growth trait. In comparison to the estimate of prediction accuracy of GEBVs from using all SNPs (0.43), the 3,000 top SNPs identified by RF (0.42) and GBM (0.46) had similar values to those of the whole SNP panel. The performance of the subsets of SNPs from RF and GBM was substantially better than that of evenly spaced subsets across the genome (0.18–0.29). Of the three methods, RF and GBM consistently outperformed the XgBoost in genomic prediction accuracy.
Collapse
Affiliation(s)
- Bo Li
- CSIRO Agriculture and Food, St Lucia, QLD, Australia.,Shandong Technology and Business University, School of Computer Science and Technology, YanTai, China.,Shandong Co-Innovation Centre of Future Intelligent Computing, YanTai, China
| | - Nanxi Zhang
- Centre for Applications in Natural Resource Mathematics, University of Queensland, St Lucia, QLD, Australia
| | - You-Gan Wang
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | | | | | - Yutao Li
- CSIRO Agriculture and Food, St Lucia, QLD, Australia
| |
Collapse
|
41
|
Peng C, Cardenas A, Rifas-Shiman SL, Hivert MF, Gold DR, Platts-Mills TA, Lin X, Oken E, Baccarelli AA, Litonjua AA, DeMeo DL. Epigenome-wide association study of total serum immunoglobulin E in children: a life course approach. Clin Epigenetics 2018; 10:55. [PMID: 29692868 PMCID: PMC5905182 DOI: 10.1186/s13148-018-0488-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
Background IgE-mediated sensitization may be epigenetically programmed in utero, but early childhood environment may further alter complex traits and disease phenotypes through epigenetic plasticity. However, the epigenomic footprint underpinning IgE-mediated type-I hypersensitivity has not been well-understood, especially under a longitudinal early-childhood life-course framework. Methods We used epigenome-wide DNA methylation (IlluminaHumanMethylation450 BeadChip) in cord blood and mid-childhood peripheral blood to investigate pre- and post-natal methylation marks associated with mid-childhood (age 6.7-10.2) total serum IgE levels in 217 mother-child pairs in Project Viva-a prospective longitudinal pre-birth cohort in eastern Massachusetts, USA. We identified methylation sites associated with IgE using covariate-adjusted robust linear regressions. Results Nineteen methylation marks in cord blood were associated with IgE in mid-childhood (FDR < 0.05) in genes implicated in cell signaling, growth, and development. Among these, two methylation sites (C7orf50, ZAR1) remained robust after the adjustment for the change in DNA methylation from birth to mid-childhood (FDR < 0.05). An analysis of the change in methylation between cord blood and mid-childhood DNA (Δ-DNAm) identified 395 methylation marks in 272 genes associated with mid-childhood IgE (FDR < 0.05), with multiple sites located within ACOT7 (4 sites), EPX (5 sites), EVL (3 sites), KSR1 (4 sites), ZFPM1 (3 sites), and ZNF862 (3 sites). Several of these methylation loci were previously associated with asthma (ADAM19, EPX, IL4, IL5RA, and PRG2). Conclusion This study identified fetally programmed and mid-childhood methylation signals associated with mid-childhood IgE. Epigenetic priming during fetal development and early childhood likely plays an important role in IgE-mediated type-I hypersensitivity.
Collapse
Affiliation(s)
- Cheng Peng
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, 4th Floor, Boston, MA 02115 USA
| | - Andres Cardenas
- 2Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA
| | - Sheryl L Rifas-Shiman
- 2Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA
| | - Marie-France Hivert
- 2Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA.,3Diabetes Unit, Massachusetts General Hospital, Boston, MA USA
| | - Diane R Gold
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, 4th Floor, Boston, MA 02115 USA.,4Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA USA
| | - Thomas A Platts-Mills
- 5Division of Allergy and Clinical Immunology, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Xihong Lin
- 6Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA USA
| | - Emily Oken
- 2Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA
| | - Andrea A Baccarelli
- 7Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY USA
| | - Augusto A Litonjua
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, 4th Floor, Boston, MA 02115 USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, 4th Floor, Boston, MA 02115 USA
| |
Collapse
|
42
|
Wise SK, Lin SY, Toskala E, Orlandi RR, Akdis CA, Alt JA, Azar A, Baroody FM, Bachert C, Canonica GW, Chacko T, Cingi C, Ciprandi G, Corey J, Cox LS, Creticos PS, Custovic A, Damask C, DeConde A, DelGaudio JM, Ebert CS, Eloy JA, Flanagan CE, Fokkens WJ, Franzese C, Gosepath J, Halderman A, Hamilton RG, Hoffman HJ, Hohlfeld JM, Houser SM, Hwang PH, Incorvaia C, Jarvis D, Khalid AN, Kilpeläinen M, Kingdom TT, Krouse H, Larenas-Linnemann D, Laury AM, Lee SE, Levy JM, Luong AU, Marple BF, McCoul ED, McMains KC, Melén E, Mims JW, Moscato G, Mullol J, Nelson HS, Patadia M, Pawankar R, Pfaar O, Platt MP, Reisacher W, Rondón C, Rudmik L, Ryan M, Sastre J, Schlosser RJ, Settipane RA, Sharma HP, Sheikh A, Smith TL, Tantilipikorn P, Tversky JR, Veling MC, Wang DY, Westman M, Wickman M, Zacharek M. International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis. Int Forum Allergy Rhinol 2018; 8:108-352. [PMID: 29438602 PMCID: PMC7286723 DOI: 10.1002/alr.22073] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Critical examination of the quality and validity of available allergic rhinitis (AR) literature is necessary to improve understanding and to appropriately translate this knowledge to clinical care of the AR patient. To evaluate the existing AR literature, international multidisciplinary experts with an interest in AR have produced the International Consensus statement on Allergy and Rhinology: Allergic Rhinitis (ICAR:AR). METHODS Using previously described methodology, specific topics were developed relating to AR. Each topic was assigned a literature review, evidence-based review (EBR), or evidence-based review with recommendations (EBRR) format as dictated by available evidence and purpose within the ICAR:AR document. Following iterative reviews of each topic, the ICAR:AR document was synthesized and reviewed by all authors for consensus. RESULTS The ICAR:AR document addresses over 100 individual topics related to AR, including diagnosis, pathophysiology, epidemiology, disease burden, risk factors for the development of AR, allergy testing modalities, treatment, and other conditions/comorbidities associated with AR. CONCLUSION This critical review of the AR literature has identified several strengths; providers can be confident that treatment decisions are supported by rigorous studies. However, there are also substantial gaps in the AR literature. These knowledge gaps should be viewed as opportunities for improvement, as often the things that we teach and the medicine that we practice are not based on the best quality evidence. This document aims to highlight the strengths and weaknesses of the AR literature to identify areas for future AR research and improved understanding.
Collapse
Affiliation(s)
| | | | | | | | - Cezmi A. Akdis
- Allergy/Asthma, Swiss Institute of Allergy and Asthma Research, Switzerland
| | | | - Antoine Azar
- Allergy/Immunology, Johns Hopkins University, USA
| | | | | | | | | | - Cemal Cingi
- Otolaryngology, Eskisehir Osmangazi University, Turkey
| | | | | | | | | | | | | | - Adam DeConde
- Otolaryngology, University of California San Diego, USA
| | | | | | | | | | | | | | - Jan Gosepath
- Otorhinolaryngology, Helios Kliniken Wiesbaden, Germany
| | | | | | | | - Jens M. Hohlfeld
- Respiratory Medicine, Hannover Medical School, Airway Research Fraunhofer Institute for Toxicology and Experimental Medicine, German Center for Lung Research, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | - Amber U. Luong
- Otolaryngology, McGovern Medical School at the University of Texas Health Science Center Houston, USA
| | | | | | | | - Erik Melén
- Pediatric Allergy, Karolinska Institutet, Sweden
| | | | | | - Joaquim Mullol
- Otolaryngology, Universitat de Barcelona, Hospital Clinic, IDIBAPS, Spain
| | | | | | | | - Oliver Pfaar
- Rhinology/Allergy, Medical Faculty Mannheim, Heidelberg University, Center for Rhinology and Allergology, Wiesbaden, Germany
| | | | | | - Carmen Rondón
- Allergy, Regional University Hospital of Málaga, Spain
| | - Luke Rudmik
- Otolaryngology, University of Calgary, Canada
| | - Matthew Ryan
- Otolaryngology, University of Texas Southwestern, USA
| | - Joaquin Sastre
- Allergology, Hospital Universitario Fundacion Jiminez Diaz, Spain
| | | | | | - Hemant P. Sharma
- Allergy/Immunology, Children's National Health System, George Washington University School of Medicine, USA
| | | | | | | | | | | | - De Yun Wang
- Otolaryngology, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
43
|
Felix JF, Joubert BR, Baccarelli AA, Sharp GC, Almqvist C, Annesi-Maesano I, Arshad H, Baïz N, Bakermans-Kranenburg MJ, Bakulski KM, Binder EB, Bouchard L, Breton CV, Brunekreef B, Brunst KJ, Burchard EG, Bustamante M, Chatzi L, Cheng Munthe-Kaas M, Corpeleijn E, Czamara D, Dabelea D, Davey Smith G, De Boever P, Duijts L, Dwyer T, Eng C, Eskenazi B, Everson TM, Falahi F, Fallin MD, Farchi S, Fernandez MF, Gao L, Gaunt TR, Ghantous A, Gillman MW, Gonseth S, Grote V, Gruzieva O, Håberg SE, Herceg Z, Hivert MF, Holland N, Holloway JW, Hoyo C, Hu D, Huang RC, Huen K, Järvelin MR, Jima DD, Just AC, Karagas MR, Karlsson R, Karmaus W, Kechris KJ, Kere J, Kogevinas M, Koletzko B, Koppelman GH, Küpers LK, Ladd-Acosta C, Lahti J, Lambrechts N, Langie SAS, Lie RT, Liu AH, Magnus MC, Magnus P, Maguire RL, Marsit CJ, McArdle W, Melén E, Melton P, Murphy SK, Nawrot TS, Nisticò L, Nohr EA, Nordlund B, Nystad W, Oh SS, Oken E, Page CM, Perron P, Pershagen G, Pizzi C, Plusquin M, Raikkonen K, Reese SE, Reischl E, Richiardi L, Ring S, Roy RP, Rzehak P, Schoeters G, Schwartz DA, Sebert S, Snieder H, Sørensen TIA, Starling AP, Sunyer J, Taylor JA, Tiemeier H, Ullemar V, Vafeiadi M, Van Ijzendoorn MH, Vonk JM, Vriens A, Vrijheid M, Wang P, Wiemels JL, Wilcox AJ, Wright RJ, Xu CJ, Xu Z, Yang IV, Yousefi P, Zhang H, Zhang W, Zhao S, Agha G, Relton CL, Jaddoe VWV, London SJ. Cohort Profile: Pregnancy And Childhood Epigenetics (PACE) Consortium. Int J Epidemiol 2018; 47:22-23u. [PMID: 29025028 PMCID: PMC5837319 DOI: 10.1093/ije/dyx190] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Janine F Felix
- Department of Epidemiology, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Generation R Study Group Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bonnie R Joubert
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Gemma C Sharp
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Isabella Annesi-Maesano
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP UMRS 1136), Epidemiology of Allergic and Respiratory diseases department (EPAR), Medical School Saint-Antoine, Paris, France
| | - Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Nour Baïz
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP UMRS 1136), Epidemiology of Allergic and Respiratory diseases department (EPAR), Medical School Saint-Antoine, Paris, France
| | | | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Elisabeth B Binder
- Department Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Luigi Bouchard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada
- ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, Saguenay, QC, Canada
| | - Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Universiteit Utrecht, Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kelly J Brunst
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Mariona Bustamante
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Genomics and Disease Group, Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Monica Cheng Munthe-Kaas
- Department of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Norwegian Institute of Public Health, Oslo, Norway
| | - Eva Corpeleijn
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Darina Czamara
- Department Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Life Course Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Patrick De Boever
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Faculty of Sciences, Hasselt University, Diepenbeek, Belgium
| | - Liesbeth Duijts
- Department of Epidemiology, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Generation R Study Group Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Terence Dwyer
- The George Institute for Global Health, Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Oxford, United Kingdom
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research on Children's Health, University of California, Berkeley, CA, USA
| | - Todd M Everson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Fahimeh Falahi
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - M Daniele Fallin
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Sara Farchi
- Department of Epidemiology, Regional Health Service, Lazio Region, Rome, Italy
| | - Mariana F Fernandez
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, University of Granada, San Cecilio University Hospital, Granada, Spain
| | - Lu Gao
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Matthew W Gillman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Semira Gonseth
- University of California, Berkeley, School of Public Health, Berkeley, USA
| | - Veit Grote
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, USA
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Nina Holland
- Center for Environmental Research on Children's Health, University of California, Berkeley, CA, USA
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, USA
| | - John W Holloway
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Karen Huen
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, USA
| | - Marjo-Riitta Järvelin
- Center For Lifecourse Health Research, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Dereje D Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Allan C Just
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, USA
- Children’s Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, USA
| | - Katerina J Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Manolis Kogevinas
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Gerard H Koppelman
- University of Groningen, Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, GRIAC Research Institute Groningen, The Netherlands
| | - Leanne K Küpers
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Christine Ladd-Acosta
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Jari Lahti
- Department of Psychology and Logopedics, Faulty of Medicine, University of Helsinki, Helsinki, Finland
- Collegium for Advanced Studies, University of Helsinki, Helsinki, Finland
| | - Nathalie Lambrechts
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Sabine AS Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Faculty of Sciences, Hasselt University, Diepenbeek, Belgium
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Andrew H Liu
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Children's Hospital Colorado, Aurora, CO, USA
| | - Maria C Magnus
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- Department for Non-Communicable Diseases, Domain for Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Per Magnus
- Norwegian Institute of Public Health, Oslo, Norway
| | - Rachel L Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Wendy McArdle
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Sachs Children’s Hospital, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Phillip Melton
- The Curtin UWA Centre for Genetic Origins of Health and Disease, Faculty of Health Sciences, Curtin University and Faculty of Medicine Dentistry & Health Sciences, The University of Western Australia, Perth, Australia
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Public Health & Primary Care, Leuven University, Leuven, Belgium
| | - Lorenza Nisticò
- National Center of Epidemiology, Surveillance and Health Promotion, Istituto Superiore di Sanità, Rome, Italy
| | - Ellen A Nohr
- Research Unit for Gynaecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Björn Nordlund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | | | - Sam S Oh
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Patrice Perron
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Costanza Pizzi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- MRC/PHE Centre for Environment and Health School of Public Health, Imperial College London, London, UK
| | - Katri Raikkonen
- Department of Psychology and Logopedics, Faulty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sarah E Reese
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, USA
| | - Eva Reischl
- Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Helmholtz Zentrum Muenchen, Munich, Germany
| | - Lorenzo Richiardi
- Department of Medical Sciences, University of Turin, Turin, Italy
- AOU Città della Salute e della Sceinza, CPO Piemonte, Turin, Italy
| | - Susan Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Ritu P Roy
- Helen Diller Family Comprehensive Cancer Center (HDFCCC), UCSF, San Francisco, CA, USA
- Computational Biology Core, UCSF, San Francisco, CA, USA
| | - Peter Rzehak
- Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians Universität München (LMU), Munich, Germany
| | - Greet Schoeters
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - David A Schwartz
- Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sylvain Sebert
- Center For Lifecourse Health Research, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Genomics of Complex Diseases, School of Public Health, Imperial College London, London, United Kingdom
| | - Harold Snieder
- Generation R Study Group Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thorkild IA Sørensen
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section on Metabolic Genetics, and Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Epidemiology (formerly Institute of Preventive Medicine), Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
| | - Anne P Starling
- Department of Epidemiology, Colorado School of Public Health
- Life Course Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jordi Sunyer
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Jack A Taylor
- National Institute of Environmental Health Sciences, Epidemiology Branch, Durham, NC, USA
| | - Henning Tiemeier
- Department of Epidemiology, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vilhelmina Ullemar
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Marinus H Van Ijzendoorn
- Centre for Child and Family Studies, Leiden University, Leiden, The Netherlands
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, GRIAC Research Institute Groningen, the Netherlands
| | - Annette Vriens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Martine Vrijheid
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph L Wiemels
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
- Department of Neurosurgery, UCSF, San Francisco, CA, USA
| | - Allen J Wilcox
- National Institute of Environmental Health Sciences, Epidemiology Branch, Durham, NC, USA
| | - Rosalind J Wright
- Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health & Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cheng-Jian Xu
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, GRIAC Research Institute Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - Zongli Xu
- National Institute of Environmental Health Sciences, Epidemiology Branch, Durham, NC, USA
| | - Ivana V Yang
- Department of Epidemiology, Colorado School of Public Health
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul Yousefi
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, USA
| | - Weiming Zhang
- Life Course Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Shanshan Zhao
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, USA
| | - Golareh Agha
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Vincent WV Jaddoe
- Department of Epidemiology, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Generation R Study Group Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Stephanie J London
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, USA
| |
Collapse
|
44
|
Arshad SH, Karmaus W, Zhang H, Holloway JW. Multigenerational cohorts in patients with asthma and allergy. J Allergy Clin Immunol 2017; 139:415-421. [PMID: 28183434 DOI: 10.1016/j.jaci.2016.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 12/16/2022]
Abstract
Recent observations that disease risk can be transmitted across generations without the need for direct exposure of the child to the index environmental insult has sparked interest in transgenerational inheritance. Epigenetics describes processes that modify gene expression without a change in the nucleotide sequence. Epigenetic processes can be induced in response to environmental exposures, can influence disease risk, and might explain these multigenerational effects. In experimental models a number of epigenetic mechanisms have been identified that could mediate vertical transmission of epigenetic inheritance. However, relevance of these findings to human disease is not yet clear. An alternative model is one in which transgenerational inheritance of disease risk requires the presence of exposure-related diseases in the mother during pregnancy (termed induced epigenetic transmission model). A number of cross-sectional studies have investigated multigenerational effects in allergy and asthma. However, given the early-life origins of asthma and allergy, birth cohort studies are ideal to investigate the effect of genetic predisposition, epigenetics, and environmental exposures, avoiding pitfalls, such as recall bias and confounding by ongoing exposures, disease, and treatment. The well-characterized 3 generations of the Isle of Wight cohort include 2 consecutive birth cohorts, providing longitudinal data that can be studied for epigenetic transfer of information, such as the effect of grand parental smoking or exposure to other toxic compounds. Further large multigenerational birth cohorts are needed to establish the clinical relevance of this phenomenon and differentiate between vertical and induced transmission models, which might influence future preventive strategies.
Collapse
Affiliation(s)
- S Hasan Arshad
- David Hide Asthma and Allergy Research Centre, Isle of Wight, United Kingdom; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, Tenn
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, Tenn
| | - John W Holloway
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
45
|
Li X, Zhu D, Dong M, Zafar Nezhad M, Janke A, Levy PD. SDT: A Tree Method for Detecting Patient Subgroups with Personalized Risk Factors. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE PROCEEDINGS. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE 2017; 2017:193-202. [PMID: 28815129 PMCID: PMC5543368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Eradicating health disparity is a new focus for precision medicine research. Identifying patient subgroups is an effective approach to customized treatments for maximizing efficiency in precision medicine. Some features may be important risk factors for specific patient subgroups but not necessarily for others, resulting in a potential divergence in treatments designed for a given population. In this paper, we propose a tree-based method, called Subgroup Detection Tree (SDT), to detect patient subgroups with personalized risk factors. SDT differs from conventional CART in the splitting criterion that prioritizes the potential risk factors. Subgroups are automatically formed as leaf nodes in the tree growing procedure. We applied SDT to analyze a clinical hypertension (HTN) dataset, investigating significant risk factors for hypertensive heart disease in African-American patients, and uncovered significant correlations between vitamin D and selected subgroups of patients. Further, SDT is enhanced with ensemble learning to reduce the variance of prediction tasks.
Collapse
Affiliation(s)
- Xiangrui Li
- Department of Computer Science, Detroit, MI, USA
| | - Dongxiao Zhu
- Department of Computer Science, Detroit, MI, USA
| | - Ming Dong
- Department of Computer Science, Detroit, MI, USA
| | | | | | - Phillip D. Levy
- Department of Emergency Medicine and Cardiovascular Research Institute. Wayne State University, Detroit, MI, USA
| |
Collapse
|
46
|
Ek WE, Ahsan M, Rask-Andersen M, Liang L, Moffatt MF, Gyllensten U, Johansson Å. Epigenome-wide DNA methylation study of IgE concentration in relation to self-reported allergies. Epigenomics 2017; 9:407-418. [PMID: 28322575 DOI: 10.2217/epi-2016-0158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM Epigenetic mechanisms are critical for normal immune development and epigenetic alterations might therefore be possible contributors to immune diseases. To investigate if DNA methylation in whole blood is associated with total and allergen-specific IgE levels. METHODS We performed an epigenome-wide association study to investigate the association between DNA methylation and IgE level, allergen-specific IgE and self-reported immune diseases and allergies in 728 individuals. RESULTS We identified and replicated 15 CpG sites associated with IgE, mapping to biologically relevant genes, including ACOT7, ILR5A, KCNH2, PRG2 and EPX. A total of 331 loci were associated with allergen-specific IgE, but none of these CpG sites were associated with self-reported allergies and immune diseases. CONCLUSION This study shows that IgE levels are associated with DNA methylation levels at numerous CpG sites, which might provide new leads for investigating the links between IgE and allergic inflammation.
Collapse
Affiliation(s)
- Weronica E Ek
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Box 815 75108 Uppsala, Sweden
| | - Muhammad Ahsan
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Box 815 75108 Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Box 815 75108 Uppsala, Sweden
| | - Liming Liang
- Department of Epidemiology & Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Miriam F Moffatt
- National Heart & Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Ulf Gyllensten
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Box 815 75108 Uppsala, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics & Pathology, Science for Life Laboratory, Uppsala University, Box 815 75108 Uppsala, Sweden
| |
Collapse
|
47
|
Chen W, Wang T, Pino-Yanes M, Forno E, Liang L, Yan Q, Hu D, Weeks DE, Baccarelli A, Acosta-Perez E, Eng C, Han YY, Boutaoui N, Laprise C, Davies GA, Hopkin JM, Moffatt MF, Cookson WOCM, Canino G, Burchard EG, Celedón JC. An epigenome-wide association study of total serum IgE in Hispanic children. J Allergy Clin Immunol 2017; 140:571-577. [PMID: 28069425 DOI: 10.1016/j.jaci.2016.11.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/26/2016] [Accepted: 11/24/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Total IgE is a therapeutic target in patients with allergic diseases. DNA methylation in white blood cells (WBCs) was associated with total IgE levels in an epigenome-wide association study of white subjects. Whether DNA methylation of eosinophils explains these findings is insufficiently understood. METHODS We tested for association between genome-wide DNA methylation in WBCs and total IgE levels in 2 studies of Hispanic children: the Puerto Rico Genetics of Asthma and Lifestyle Study (PR-GOAL; n = 306) and the Genes-environments and Admixture in Latino Americans (GALA II) study (n = 573). Whole-genome methylation of DNA from WBCs was measured by using the Illumina Infinium HumanMethylation450 BeadChip. Total IgE levels were measured by using the UniCAP 100 system. In PR-GOAL WBC types (ie, neutrophils, eosinophils, basophils, lymphocytes, and monocytes) in peripheral blood were measured by using Coulter Counter techniques. In the GALA II study WBC types were imputed. Multivariable linear regression was used for the analysis of DNA methylation and total IgE levels, which was first conducted separately for each cohort, and then results from the 2 cohorts were combined in a meta-analysis. RESULTS CpG sites in multiple genes, including novel findings and results previously reported in white subjects, were significantly associated with total IgE levels. However, adjustment for WBC types resulted in markedly fewer significant sites. Top findings from this adjusted meta-analysis were in the genes ZFPM1 (P = 1.5 × 10-12), ACOT7 (P = 2.5 × 10-11), and MND1 (P = 1.4 × 10-9). CONCLUSIONS In an epigenome-wide association study adjusted for WBC types (including eosinophils), methylation changes in genes enriched in pathways relevant to asthma and immune responses were associated with total IgE levels among Hispanic children.
Collapse
Affiliation(s)
- Wei Chen
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pa
| | - Ting Wang
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pa
| | - Maria Pino-Yanes
- Instituto de Salud Carlos III, CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pa
| | - Liming Liang
- Departments of Epidemiology and Biostatistics, Harvard School of Public Health, Boston, Mass
| | - Qi Yan
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pa
| | - Donglei Hu
- Department of Therapeutic Sciences and Bioengineering, University of California at San Francisco, San Francisco, Calif
| | - Daniel E Weeks
- Departments of Human Genetics and Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pa
| | - Andrea Baccarelli
- Department of Environmental Medicine, Harvard School of Public Health, Boston, Mass
| | - Edna Acosta-Perez
- Behavioral Sciences Research Institute and Department of Pediatrics, University of Puerto Rico, San Juan, Puerto Rico
| | - Celeste Eng
- Department of Therapeutic Sciences and Bioengineering, University of California at San Francisco, San Francisco, Calif
| | - Yueh-Ying Han
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pa
| | - Nadia Boutaoui
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pa
| | | | - Gwyneth A Davies
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Julian M Hopkin
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Glorisa Canino
- Behavioral Sciences Research Institute and Department of Pediatrics, University of Puerto Rico, San Juan, Puerto Rico
| | - Esteban G Burchard
- Department of Therapeutic Sciences and Bioengineering, University of California at San Francisco, San Francisco, Calif
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|
48
|
Vercelli D. Does epigenetics play a role in human asthma? Allergol Int 2016; 65:123-126. [PMID: 26778244 DOI: 10.1016/j.alit.2015.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 02/02/2023] Open
Abstract
Asthma and other allergic diseases are among the most prevalent chronic non-communicable diseases of childhood. According to the World Health Organization, asthma affects >7.0 million children under 18 in the United States, with an economic burden that is estimated to exceed that of tuberculosis and HIV/AIDS combined. Despite much research, the natural history of asthma and its pathogenesis are still in many ways elusive. This review discusses our current understanding of the role epigenetic processes play in asthma pathogenesis, focusing on genome-wide, population-based studies.
Collapse
|
49
|
Langie SAS, Szarc vel Szic K, Declerck K, Traen S, Koppen G, Van Camp G, Schoeters G, Vanden Berghe W, De Boever P. Whole-Genome Saliva and Blood DNA Methylation Profiling in Individuals with a Respiratory Allergy. PLoS One 2016; 11:e0151109. [PMID: 26999364 PMCID: PMC4801358 DOI: 10.1371/journal.pone.0151109] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/22/2016] [Indexed: 12/17/2022] Open
Abstract
The etiology of respiratory allergies (RA) can be partly explained by DNA methylation changes caused by adverse environmental and lifestyle factors experienced early in life. Longitudinal, prospective studies can aid in the unravelment of the epigenetic mechanisms involved in the disease development. High compliance rates can be expected in these studies when data is collected using non-invasive and convenient procedures. Saliva is an attractive biofluid to analyze changes in DNA methylation patterns. We investigated in a pilot study the differential methylation in saliva of RA (n = 5) compared to healthy controls (n = 5) using the Illumina Methylation 450K BeadChip platform. We evaluated the results against the results obtained in mononuclear blood cells from the same individuals. Differences in methylation patterns from saliva and mononuclear blood cells were clearly distinguishable (PAdj<0.001 and |Δβ|>0.2), though the methylation status of about 96% of the cg-sites was comparable between peripheral blood mononuclear cells and saliva. When comparing RA cases with healthy controls, the number of differentially methylated sites (DMS) in saliva and blood were 485 and 437 (P<0.05 and |Δβ|>0.1), respectively, of which 216 were in common. The methylation levels of these sites were significantly correlated between blood and saliva. The absolute levels of methylation in blood and saliva were confirmed for 3 selected DMS in the PM20D1, STK32C, and FGFR2 genes using pyrosequencing analysis. The differential methylation could only be confirmed for DMS in PM20D1 and STK32C genes in saliva. We show that saliva can be used for genome-wide methylation analysis and that it is possible to identify DMS when comparing RA cases and healthy controls. The results were replicated in blood cells of the same individuals and confirmed by pyrosequencing analysis. This study provides proof-of-concept for the applicability of saliva-based whole-genome methylation analysis in the field of respiratory allergy.
Collapse
Affiliation(s)
- Sabine A. S. Langie
- Environmental Risk and Health unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- * E-mail:
| | - Katarzyna Szarc vel Szic
- Environmental Risk and Health unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), University of Antwerp, Wilrijk, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), University of Antwerp, Wilrijk, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Sophie Traen
- Environmental Risk and Health unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Gudrun Koppen
- Environmental Risk and Health unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Guy Van Camp
- Laboratory of Cancer Research and Clinical Oncology, Center for Medical Genetics, University of Antwerp, Edegem, Belgium
| | - Greet Schoeters
- Environmental Risk and Health unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
- University of Southern Denmark, Institute of Public Health, Department of Environmental Medicine, Odense, Denmark
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), University of Antwerp, Wilrijk, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Patrick De Boever
- Environmental Risk and Health unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|