1
|
Ao N, Du J, Jin S, Suo L, Yang J. The cellular and molecular mechanisms mediating the protective effects of sodium-glucose linked transporter 2 inhibitors against metabolic dysfunction-associated fatty liver disease. Diabetes Obes Metab 2024. [PMID: 39508115 DOI: 10.1111/dom.16043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as nonalcoholic fatty liver disease (NAFLD), is a common, highly heterogeneous condition that affects about a quarter of the world's population, with no approved drug therapy. Current evidence from preclinical research and a number of small clinical trials indicates that SGLT2 inhibitors could also be effective for MAFLD. MAFLD is associated with a higher risk of chronic liver disease and multiple extrahepatic events, especially cardiovascular disease (CVD) and chronic kidney disease (CKD). MAFLD is considered a more appropriate terminology than NAFLD because it captures the complex bidirectional interplay between fatty liver and metabolic dysfunctions associated with disease progression, such as obesity and type 2 diabetes mellitus (T2DM). SGLT2 inhibitors are antidiabetic drugs that block glucose reabsorption in the kidney proximal tubule. In this article, we reviewed current clinical evidence supporting the potential use of SGLT2 inhibitors as a drug therapy for MAFLD and discussed the possible cellular and molecular mechanisms involved. We also reviewed the clinical benefits of SGLT2 inhibitors against MAFLD-related comorbidities, especially CVD, CKD and cardiovascular-kidney-metabolic syndrome (CKM). The broad beneficial effects of SGLT2 inhibitors support their use, likely in combination with other drugs, as a therapy for MAFLD.
Collapse
Affiliation(s)
- Na Ao
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Du
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shi Jin
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Linna Suo
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Yang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Long J, Ren Z, Duan Y, Tao W, Li X, Li S, Li K, Huang Q, Chen J, Yang M, Li Y, Luo X, Liu D. Empagliflozin rescues lifespan and liver senescence in naturally aged mice. GeroScience 2024; 46:4969-4986. [PMID: 38922380 PMCID: PMC11336130 DOI: 10.1007/s11357-024-01250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Empagliflozin is currently known to decrease blood glucose levels, delay renal failure, and reduce the risk of cardiovascular death and all-cause mortality in patients with type 2 diabetes with cardiovascular disease. However, the effects of empagliflozin on the lifespan and health of naturally aged organisms are unclear. This study was designed to investigate the impacts and potential mechanisms of empagliflozin on lifespan and liver senescence in naturally aged mice. Our study revealed that empagliflozin improved survival and health in naturally aged mice. Empagliflozin extended the median survival of male mice by 5.9%. Meanwhile, empagliflozin improved learning memory and motor balance, decreased body weight, and downregulated the hepatic protein expression of P21, P16, α-SMA, and COL1A1. Empagliflozin modulates the structure of the intestinal flora, increasing the relative abundance of Lachnospiraceae, Ruminococcaceae, Lactobacillus, Blautia, and Muribaculaceae and decreasing the relative abundance of Erysipelotrichaceae, Turicibacter, and Dubosiella in naturally aged mice. Further exploration discovered that empagliflozin increased the concentration of SCFAs, decreased the levels of the inflammatory factors TNF-α, IL-6, and CXCL9, and regulated the PI3K/AKT/P21 and AMPK/SIRT1/NF-κB pathways, which may represent the underlying mechanisms involved in these beneficial hepatic effects. Taken together, the above results indicated that empagliflozin intervention could be considered a potential strategy for extending lifespan and slowing liver senescence in naturally aged mice.
Collapse
Affiliation(s)
- Jiangchuan Long
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Ziyu Ren
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yaqian Duan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Wei Tao
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400010, China
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400010, China
| | - Shengbing Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Ke Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Qixuan Huang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Jie Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Mengliu Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Yang Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Xie Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Dongfang Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
- Chongqing Clinical Research Center for Geriatrics and Gerontology, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
3
|
Ito D, Shimizu S, Haisa A, Yanagisawa S, Inoue K, Saito D, Sumita T, Yanagisawa M, Uchida Y, Inukai K, Shimada A. Long-term effects of ipragliflozin and pioglitazone on metabolic dysfunction-associated steatotic liver disease in patients with type 2 diabetes: 5 year observational follow-up of a randomized, 24 week, active-controlled trial: Effect of ipragliflozin in MASLD. J Diabetes Investig 2024; 15:1220-1230. [PMID: 38775319 PMCID: PMC11363141 DOI: 10.1111/jdi.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 08/31/2024] Open
Abstract
AIMS/INTRODUCTION We conducted a 5 year post-trial monitoring study of our previous randomized 24 week, open-label, active-controlled trial that showed beneficial effects of ipragliflozin on metabolic dysfunction-associated steatotic liver disease (MASLD), identical to those of pioglitazone. MATERIALS AND METHODS In our previous trial, 66 patients with MASLD and type 2 diabetes were randomly assigned to receive either ipragliflozin (n = 32) or pioglitazone (n = 34). Upon its conclusion, 61 patients were monitored for 5 years for outcome measures of MASLD, glycemic, and metabolic parameters. Differences between the two groups were analyzed at baseline, 24 weeks, and 5 years; changes in outcome measures from baseline were also evaluated. RESULTS At 5 years, the mean liver-to-spleen attenuation ratio increased by 0.20 (from 0.78 ± 0.24 to 0.98 ± 0.20) in the ipragliflozin group and by 0.26 (from 0.76 ± 0.26 to 1.02 ± 0.20) in the pioglitazone group (P = 0.363). Similarly, ipragliflozin and pioglitazone significantly improved serum aminotransferase, HbA1c, and fasting plasma glucose levels over 5 years. In the ipragliflozin group, significant reductions in body weight and visceral fat area observed at 24 weeks were sustained throughout the 5 years (-4.0%, P = 0.0075 and -7.6%, P = 0.045, respectively). Moreover, ipragliflozin significantly reduced the values of fibrosis markers (serum ferritin and FIB-4 index), was well tolerated, and had a higher continuation rate for 5 years compared with pioglitazone. CONCLUSIONS Ipragliflozin and pioglitazone improved MASLD and glycemic parameters over 5 years. In the ipragliflozin group, significant reductions in body weight and visceral fat mass persisted for 5 years.
Collapse
Affiliation(s)
- Daisuke Ito
- Department of Endocrinology and DiabetesSaitama Medical UniversitySaitamaJapan
- Department of Internal MedicineOgawa Red Cross HospitalSaitamaJapan
| | - Satoshi Shimizu
- Department of Internal MedicineOgawa Red Cross HospitalSaitamaJapan
| | - Akifumi Haisa
- Department of Endocrinology and DiabetesSaitama Medical UniversitySaitamaJapan
- Department of Internal MedicineOgawa Red Cross HospitalSaitamaJapan
| | - Shinnosuke Yanagisawa
- Department of Endocrinology and DiabetesSaitama Medical UniversitySaitamaJapan
- Department of Internal MedicineOgawa Red Cross HospitalSaitamaJapan
- Satsuki Medical ClinicSaitamaJapan
| | - Kazuyuki Inoue
- Department of Endocrinology and DiabetesSaitama Medical UniversitySaitamaJapan
- Department of Internal MedicineOgawa Red Cross HospitalSaitamaJapan
| | - Daigo Saito
- Department of Endocrinology and DiabetesSaitama Medical UniversitySaitamaJapan
- Department of Internal MedicineOgawa Red Cross HospitalSaitamaJapan
| | - Takashi Sumita
- Department of Endocrinology and DiabetesSaitama Medical UniversitySaitamaJapan
- Department of Internal MedicineOgawa Red Cross HospitalSaitamaJapan
| | | | - Yoshihito Uchida
- Department of Gastroenterology and HepatologySaitama Medical UniversitySaitamaJapan
| | - Kouichi Inukai
- Department of Diabetes and EndocrinologyHigashiyamato HospitalTokyoJapan
| | - Akira Shimada
- Department of Endocrinology and DiabetesSaitama Medical UniversitySaitamaJapan
| |
Collapse
|
4
|
Suzuki A, Hayashi A, Oda S, Fujishima R, Shimizu N, Matoba K, Taguchi T, Toki T, Miyatsuka T. Prolonged impacts of sodium glucose cotransporter-2 inhibitors on metabolic dysfunction-associated steatotic liver disease in type 2 diabetes: a retrospective analysis through magnetic resonance imaging. Endocr J 2024; 71:767-775. [PMID: 38811192 DOI: 10.1507/endocrj.ej24-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
The beneficial effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors in people with type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) have been suggested in several reports based on serological markers, imaging data, and histopathology associated with steatotic liver disease. However, evidence regarding their long-term effects is currently insufficient. In this retrospective observational study, 34 people with T2D and MASLD, treated with SGLT2 inhibitors, were examined by proton density fat fraction derived by magnetic resonance imaging (MRI-PDFF) and other clinical data before, one year after the treatment. Furthermore, 22 of 34 participants underwent MRI-PDFF five years after SGLT2 inhibitors were initiated. HbA1c decreased from 8.9 ± 1.8% to 7.8 ± 1.0% at 1 year (p = 0.006) and 8.0 ± 1.1% at 5 years (p = 0.122). Body weight and fat mass significantly reduced from baseline to 1 and 5 year(s), respectively. MRI-PDFF significantly decreased from 15.3 ± 7.8% at baseline to 11.9 ± 7.6% (p = 0.001) at 1 year and further decreased to 11.3 ± 5.7% (p = 0.013) at 5 years. Thus, a 5-year observation demonstrated that SGLT2 inhibitors have beneficial effects on liver steatosis in people with T2D and MASLD.
Collapse
Affiliation(s)
- Agena Suzuki
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Akinori Hayashi
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Satoshi Oda
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Rei Fujishima
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Naoya Shimizu
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Kenta Matoba
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Tomomi Taguchi
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Takuya Toki
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Takeshi Miyatsuka
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| |
Collapse
|
5
|
Smati S, Sotin T, Deniel P, Ducheix S, Joubert M, Arnaud L, Hadjadj S, Cariou B, Le May C, Prieur X. Empagliflozin mitigates metabolic dysfunction-associated steatotic liver disease by reducing de novo lipogenesis in a mouse model of lipoatrophic diabetes. Diabetes Obes Metab 2024; 26:3466-3470. [PMID: 38699785 DOI: 10.1111/dom.15634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Affiliation(s)
- Sarra Smati
- l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Thibaud Sotin
- l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Perrine Deniel
- l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Simon Ducheix
- l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | | | - Lucie Arnaud
- l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Samy Hadjadj
- l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Bertrand Cariou
- l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Cédric Le May
- l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Xavier Prieur
- l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| |
Collapse
|
6
|
Behzad H, Mashayekhi S, Asham H, Sarbakhsh P, Entezari-Maleki T. Evaluating the effects of empagliflozin in preventing myocardial injury in patients undergoing percutaneous coronary intervention: A double-blind, randomized clinical trial. J Cardiovasc Thorac Res 2024; 16:113-119. [PMID: 39253345 PMCID: PMC11380744 DOI: 10.34172/jcvtr.33103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/24/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction Percutaneous Coronary Intervention (PCI) is a fundamental procedure for coronary artery disease management, yet the risk of adverse events such periprocedural myocardial injury (PMI) persists. This double-blind, randomized clinical trial aims to assess the efficacy of empagliflozin in preventing myocardial injury during PCI procedure. Methods A total of 90 patients were randomly assigned to two groups A and B; Group A as the intervention group received empagliflozin 25 mg 24 hours before and empagliflozin 10 mg 1-2 hours before coronary intervention and group Bas the control group received placebo at similar intervals. The primary outcome involved comparing baseline, 8-hour, and 24-hour cTnI and baseline and 24-hour hs-CRP levels after PCI in both groups to measure the incidence of periprocedural myocardial injury (PMI) and anti-inflammatory effects of empagliflozin. Results Baseline cTnI levels with P=0.955, 8 hours after PCI with P=0.469, and 24 hours after the intervention with P=0.980 were not statistically different in the two groups. Baseline levels of hs-CRP in both intervention and control groups were not statistically significantly different (P=0.982). Also, there was no statistically significant difference in hs-CRP levels 24 hours after PCI in two groups (P=0.198). Finally, the results showed that MACEs did not occur in any of the groups. Conclusion The results of this trial could not express the advantages of acute pretreatment with empagliflozin in preventing PCI-related myocardial injury.
Collapse
Affiliation(s)
- Hossein Behzad
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Mashayekhi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hila Asham
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Sarbakhsh
- Department Research Center, Faculty of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Iwamoto Y, Kimura T, Dan K, Iwamoto H, Sanada J, Fushimi Y, Katakura Y, Shimoda M, Nogami Y, Shirakiya Y, Nakanishi S, Mune T, Kaku K, Kaneto H. Dipeptidyl peptidase-4 inhibitor and sodium-glucose cotransporter 2 inhibitor additively ameliorate hepatic steatosis through different mechanisms of action in high-fat diet-fed mice. Diabetes Obes Metab 2024; 26:2339-2348. [PMID: 38504118 DOI: 10.1111/dom.15548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
AIM Dipeptidyl peptidase-4 (DPP-4) inhibitors suppress the inactivation of incretin hormones and lower blood glucose levels by inhibiting DPP-4 function. Sodium-glucose cotransporter 2 (SGLT2) inhibitors lower blood glucose levels in an insulin-independent manner by inhibiting renal reabsorption of glucose. DPP-4 and SGLT2 inhibitors each have the potential to improve hepatic steatosis; however, their combined effects remain unclear. In this study, we examined the effects of the combination of these drugs on hepatic steatosis using high-fat diet-fed mice. METHOD C57BL/6J male mice were fed a 60% high-fat diet for 2 months to induce hepatic steatosis. Mice were divided into four groups (control; DPP-4 inhibitor anagliptin; SGLT2 inhibitor luseogliflozin; anagliptin and luseogliflozin combination), and the effects of each drug and their combination on hepatic steatosis after a 4-week intervention were evaluated. RESULTS There were no differences in blood glucose levels among the four groups. Anagliptin suppresses inflammation- and chemokine-related gene expression. It also improved macrophage fractionation in the liver. Luseogliflozin reduced body weight, hepatic gluconeogenesis and blood glucose levels in the oral glucose tolerance test. The combination treatment improved hepatic steatosis without interfering with the effects of anagliptin and luseogliflozin, respectively, and fat content and inflammatory gene expression in the liver were significantly improved in the combination group compared with the other groups. CONCLUSION The combination therapy with the DPP-4 inhibitor anagliptin and the SGLT2 inhibitor luseogliflozin inhibits fat deposition in the liver via anti-inflammatory effects during the early phase of diet-induced liver steatosis.
Collapse
Affiliation(s)
- Yuichiro Iwamoto
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Tomohiko Kimura
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Kazunori Dan
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Hideyuki Iwamoto
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Junpei Sanada
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Yoshiro Fushimi
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Yukino Katakura
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Masashi Shimoda
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Yuka Nogami
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Yoshiko Shirakiya
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Shuhei Nakanishi
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Tomoatsu Mune
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Kohei Kaku
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| | - Hideaki Kaneto
- Department of Diabetes, Metabolism and Endocrinology, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
8
|
Makri ES, Makri E, Goulas A, Xanthopoulos K, Polyzos SA. Animal studies of sodium-glucose co-transporter 2 inhibitors in nonalcoholic fatty liver disease. Ann Gastroenterol 2024; 37:280-290. [PMID: 38779641 PMCID: PMC11107411 DOI: 10.20524/aog.2024.0884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered one of the most common chronic liver diseases. Modern lifestyle, characterized by increasing rates of obesity and type 2 diabetes mellitus (T2DM), has led to a "pandemic" of NAFLD that imposes a personal health and socioeconomic burden. Apart from overnutrition and insulin resistance, various metabolic aberrations, gut microbiota and genetic predispositions are involved in the pathogenesis of the disease. The multifactorial nature of NAFLD's pathogenesis makes the development of pharmacological therapies for patients with this disease challenging. Sodium-glucose co-transporter 2 inhibitors (SGLT-2i) are antidiabetic agents that reduce blood glucose mainly by increasing its renal excretion. As T2DM is one of the major contributors to NAFLD, SGLT-2i have emerged as promising agents for the management of NAFLD. In this review, we summarize the main animal studies on SGLT-2i in models of NAFLD.
Collapse
Affiliation(s)
- Evangelia S. Makri
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki (Evangelia S. Makri, Eleftheria Makri, Antonis Goulas, Stergios A. Polyzos)
| | - Eleftheria Makri
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki (Evangelia S. Makri, Eleftheria Makri, Antonis Goulas, Stergios A. Polyzos)
| | - Antonis Goulas
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki (Evangelia S. Makri, Eleftheria Makri, Antonis Goulas, Stergios A. Polyzos)
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki (Konstantinos Xanthopoulos)
- Institute of Applied Biosciences, Centre for Research and Technology, Thessaloniki (Konstantinos Xanthopoulos), Greece
| | - Stergios A. Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki (Evangelia S. Makri, Eleftheria Makri, Antonis Goulas, Stergios A. Polyzos)
| |
Collapse
|
9
|
Hu J, Teng J, Hui S, Liang L. SGLT-2 inhibitors as novel treatments of multiple organ fibrosis. Heliyon 2024; 10:e29486. [PMID: 38644817 PMCID: PMC11031788 DOI: 10.1016/j.heliyon.2024.e29486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
Fibrosis, a significant health issue linked to chronic inflammatory diseases, affects various organs and can lead to serious damage and loss of function. Despite the availability of some treatments, their limitations necessitate the development of new therapeutic options. Sodium-glucose cotransporter 2 inhibitors (SGLT2i), known for their glucose-lowering ability, have shown promise in offering protective effects against fibrosis in multiple organs through glucose-independent mechanisms. This review explores the anti-fibrotic potential of SGLT2i across different tissues, providing insights into their underlying mechanisms and highlighting recent research advancements. The evidence positions SGLT2i as a potential future treatments for fibrotic diseases.
Collapse
Affiliation(s)
- Junpei Hu
- Department of Geriatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, China
| | - Jianhui Teng
- Department of Geriatrics, Hunan Provincial People's Hospital, China
| | - Shan Hui
- Department of Geriatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, China
| | - Lihui Liang
- Department of Geriatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, China
| |
Collapse
|
10
|
Mak JHC, Lui DTW, Fong CHY, Cheung CYY, Wong Y, Lee ACH, Hoo RLC, Xu A, Tan KCB, Lam KSL, Lee CH. Serum thrombospondin-2 level changes with liver stiffness improvement in patients with type 2 diabetes. Clin Endocrinol (Oxf) 2024; 100:230-237. [PMID: 38127469 DOI: 10.1111/cen.15010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Baseline circulating thrombospondin-2 (TSP2) level was identified as a potential novel hepatic fibrosis biomarker that associates with development and progression of hepatic fibrosis in patients with nonalcoholic fatty liver disease and type 2 diabetes. Here, we investigated whether circulating TSP2 levels changed with improvement in liver stiffness (LS), which reflects liver fibrosis on transient elastography. DESIGN Serum TSP2 levels were measured in participants from a randomized, open-label intervention study, at baseline and after 24-weeks treatment of either dapagliflozin 10 mg (N = 30) or sitagliptin 100 mg daily (N = 30). Vibration-controlled transient elastography was performed to evaluate the severity of hepatic fibrosis and steatosis using LS and controlled attenuation parameter (CAP), respectively. PATIENTS AND MEASUREMENTS Among all 60 participants with similar clinical characteristics at baseline (mean HbA1c 8.9%, CAP 289 dB/m and LS 5.8 kPa), despite similar HbA1c lowering, treatment with dapagliflozin, but not sitagliptin, led to significant improvements in body weight (BW) (p = .012), CAP (p = .015) and LS (p = .011) after 24 weeks. RESULTS Serum TSP2 level decreased significantly from baseline in dapagliflozin-treated participants (p = .035), whereas no significant change was observed with sitagliptin. In correlation analysis, change in serum TSP2 levels only positively correlated with change in LS (r = .487, p = .006), but not with changes in BW, CAP or HbA1c after dapagliflozin treatment. CONCLUSIONS Serum TSP2 level decreased with LS after dapagliflozin treatment, and was independent of improvements in BW, glycemic control and hepatic steatosis, further supporting the potential of serum TSP2 level as a novel hepatic fibrosis biomarker in type 2 diabetes.
Collapse
Affiliation(s)
- Jimmy Ho Cheung Mak
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David Tak-Wai Lui
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Carol Ho-Yi Fong
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chloe Yu-Yan Cheung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ying Wong
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Alan Chun-Hong Lee
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ruby Lai-Chong Hoo
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Aimin Xu
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kathryn Choon-Beng Tan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Karen Siu-Ling Lam
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chi-Ho Lee
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Ong Lopez AMC, Pajimna JAT. Efficacy of sodium glucose cotransporter 2 inhibitors on hepatic fibrosis and steatosis in non-alcoholic fatty liver disease: an updated systematic review and meta-analysis. Sci Rep 2024; 14:2122. [PMID: 38267513 PMCID: PMC10808406 DOI: 10.1038/s41598-024-52603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/21/2024] [Indexed: 01/26/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a substantial contributor to liver-related morbidity worldwide, and yet, there are no standard, universal pharmacologic therapies approved for this indication. The aim of this systematic review and meta-analysis is to evaluate the effectiveness of SGLT-2 inhibitors in improving hepatic steatosis and hepatic fibrosis in patients with NAFLD. An extensive electronic database search was done to identify studies published from inception until December 2023, without any language restrictions. All randomized controlled trials (RCT) that evaluated the use of SGLT-2 inhibitors for patients with NAFLD, regardless of diabetes mellitus status, were included. The Cochrane Risk of Bias 2.0 tool was used to assess the risk of bias of each study included. Evidence from all studies were synthesized as mean differences for continuous data, and as risk ratio for dichotomous outcomes. An inverse variance or Mantel-Haenszel test was used in conjunction with a random-effects meta-analysis model, where necessary. 18 eligible RCTs involving 1330 participants were analyzed, all of which had risk of bias ranging from low to some concerns. Significant difference in means was observed for controlled attenuation parameter (6 trials, n = 372; MD: - 10.59 dB/m, 95% CI [- 18.25, - 2.92], p = 0.007, I2 = 0%); L/S ratio (3 trials, n = 163; MD: 0.11, 95% CI [0.01, 0.21], p = 0.04, I2 = 78%); LSM (7 trials, n = 447; MD: - 0.67 kPa, 95% CI [- 1.19, - 0.16], p = 0.010, I2 = 69%); MRI-PDFF (5 trials, n = 330; MD: - 2.61%, 95% CI [- 5.05, - 0.17], p = 0.04, I2 = 78%), and FIB-4 index (10 trials, n = 648; MD: - 0.12, 95% CI [- 0.21, - 0.04], p = 0.005, I2 = 16%) after SGLT-2 inhibitor treatment as compared to controls. In conclusion, the use of SGLT-2 inhibitors may lead to slight improvement of hepatic steatosis and/or fibrosis as compared to controls in patients with NAFLD and Type 2 diabetes mellitus based on imaging and histopathology biomarkers with low to moderate certainty of evidence.
Collapse
Affiliation(s)
- Albert Macaire C Ong Lopez
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, St. Luke's Medical Center- Quezon City, 279 E Rodriguez Sr. Ave, 1112, Quezon City, Metro Manila, Philippines.
| | - Janine Audrei T Pajimna
- Department of Medicine, St. Luke's Medical Center-Quezon City, 279 E Rodriguez Sr. Ave, 1112, Quezon City, Metro Manila, Philippines
| |
Collapse
|
12
|
Shakour N, Karami S, Iranshahi M, Butler AE, Sahebkar A. Antifibrotic effects of sodium-glucose cotransporter-2 inhibitors: A comprehensive review. Diabetes Metab Syndr 2024; 18:102934. [PMID: 38154403 DOI: 10.1016/j.dsx.2023.102934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/25/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND AND AIMS Scar tissue accumulation in organs is the underlying cause of many fibrotic diseases. Due to the extensive array of organs affected, the long-term nature of fibrotic processes and the large number of people who suffer from the negative impact of these diseases, they constitute a serious health problem for modern medicine and a huge economic burden on society. Sodium-glucose cotransporter-2 inhibitors (SGLT2is) are a relatively new class of anti-diabetic pharmaceuticals that offer additional benefits over and above their glucose-lowering properties; these medications modulate a variety of diseases, including fibrosis. Herein, we have collated and analyzed all available research on SGLT2is and their effects on organ fibrosis, together with providing a proposed explanation as to the underlying mechanisms. METHODS PubMed, ScienceDirect, Google Scholar and Scopus were searched spanning the period from 2012 until April 2023 to find relevant articles describing the antifibrotic effects of SGLT2is. RESULTS The majority of reports have shown that SGLT2is are protective against lung, liver, heart and kidney fibrosis as well as arterial stiffness. According to the results of clinical trials and animal studies, many SGLT2 inhibitors are promising candidates for the treatment of fibrosis. Recent studies have demonstrated that SGLT2is affect an array of cellular processes, including hypoxia, inflammation, oxidative stress, the renin-angiotensin system and metabolic activities, all of which have been linked to fibrosis. CONCLUSION Extensive evidence indicates that SGLT2is are promising treatments for fibrosis, demonstrating protective effects in various organs and influencing key cellular processes linked to fibrosis.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Karami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Wakamatsu S, Jojima T, Hashiguchi M, Kishi H, Niitani T, Sakurai S, Iijima T, Kogai T, Tomaru T, Usui I, Aso Y. Inhibition of IL-33 signaling ameliorate hepatic fibrosis with decreasing MCP-1 in a mouse model of diabetes and non-alcoholic steatohepatitis; comparison for luseogliflozin, an SGLT2 inhibitor. J Diabetes Complications 2024; 38:108650. [PMID: 38035640 DOI: 10.1016/j.jdiacomp.2023.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is increasing globally, and seeking therapeutic molecule targets is urgent. Several studies have demonstrated that IL-33 plays an important role in the progression of Non-alcoholic steatohepatitis (NASH) with fibrosis and the proliferation of hepatocellular carcinoma (HCC). However, whether the inhibition of IL-33 signaling prevents NAFLD from progressing to NASH and HCC has not been clarified. We investigated the effects of a novel antibody, IL-33RAb, and luseogliflozin, a SGLT2 inhibitor, when administered to a model mouse for NASH and HCC, and their effects were compared to investigate the mechanisms of how IL-33 is involved in the pathogenesis of NASH progression. Compared with the positive control of luseogliflozin, inhibition of IL-33 signaling ameliorated decreasing hepatic fibrosis via decreasingαSMA and MCP-1, and also partially suppressed the progression of the HCC cell line in in vitro experiments. These findings suggest that inhibition of IL-33 possibly prevents progression from NASH to HCC, and their effect may be a newly arrived therapeutic agent.
Collapse
Affiliation(s)
- Sho Wakamatsu
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Teruo Jojima
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan.
| | - Masaaki Hashiguchi
- Department of Cell Biology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5, Tokyo 113-8602, Japan
| | - Haruka Kishi
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Takafumi Niitani
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Shintaro Sakurai
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Toshie Iijima
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Takahiko Kogai
- Department of Infection Control and Clinical Laboratory Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Takuya Tomaru
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Isao Usui
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan.
| | - Yoshimasa Aso
- Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi 321-0293, Japan
| |
Collapse
|
14
|
Koutentakis M, Kuciński J, Świeczkowski D, Surma S, Filipiak KJ, Gąsecka A. The Ketogenic Effect of SGLT-2 Inhibitors-Beneficial or Harmful? J Cardiovasc Dev Dis 2023; 10:465. [PMID: 37998523 PMCID: PMC10672595 DOI: 10.3390/jcdd10110465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT-2) inhibitors, also called gliflozins or flozins, are a class of drugs that have been increasingly used in the management of type 2 diabetes mellitus (T2DM) due to their glucose-lowering, cardiovascular (CV), and renal positive effects. However, recent studies suggest that SGLT-2 inhibitors might also have a ketogenic effect, increasing ketone body production. While this can be beneficial for some patients, it may also result in several potential unfavorable effects, such as decreased bone mineral density, infections, and ketoacidosis, among others. Due to the intricate and multifaceted impact caused by SGLT-2 inhibitors, this initially anti-diabetic class of medications has been effectively used to treat both patients with chronic kidney disease (CKD) and those with heart failure (HF). Additionally, their therapeutic potential appears to extend beyond the currently investigated conditions. The objective of this review article is to present a thorough summary of the latest research on the mechanism of action of SGLT-2 inhibitors, their ketogenesis, and their potential synergy with the ketogenic diet for managing diabetes. The article particularly discusses the benefits and risks of combining SGLT-2 inhibitors with the ketogenic diet and their clinical applications and compares them with other anti-diabetic agents in terms of ketogenic effects. It also explores future directions regarding the ketogenic effects of SGLT-2 inhibitors.
Collapse
Affiliation(s)
- Michail Koutentakis
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Jakub Kuciński
- Central Clinical Hospital, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Damian Świeczkowski
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdańsk, Poland;
| | - Stanisław Surma
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Krzysztof J. Filipiak
- Department of Clinical Sciences, Maria Sklodowska-Curie Medical Academy, 00-001 Warsaw, Poland;
- Department of Hypertensiology, Angiology and Internal Medicine, Poznań University of Medical Sciences, 61-848 Poznań, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| |
Collapse
|
15
|
Noah AA, El-Mezayen NS, El-Ganainy SO, Darwish IE, Afify EA. Reversal of fibrosis and portal hypertension by Empagliflozin treatment of CCl 4-induced liver fibrosis: Emphasis on gal-1/NRP-1/TGF-β and gal-1/NRP-1/VEGFR2 pathways. Eur J Pharmacol 2023; 959:176066. [PMID: 37769984 DOI: 10.1016/j.ejphar.2023.176066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
To date, liver fibrosis has no clinically approved treatment. Empagliflozin (EMPA), a highly selective sodium-glucose-cotransporter-2 (SGLT2) inhibitor, has shown ameliorative potential in liver diseases without revealing its full mechanisms. Neuropilin-1 (NRP-1) is a novel regulator of profibrogenic signaling pathways related to hepatic stellate cells (HSCs) and hepatic sinusoidal endothelial cells (HSECs) that modulates intrahepatic profibrogenic and angiogenic pathways. Herein, EMPA's antifibrotic potentials and effects on galactin-1 (Gal-1)/NRP-1 signaling pathways have been evaluated in an experimental liver fibrosis rat model by testing different EMPA dose regimens. EMPA treatment brought a dose-dependent decrease in Gal-1/NRP-1 hepatic expression. This was coupled with suppression of major HSCs pro-fibrotic pathways; transforming growth factor-β (TGF-β)/TGF-βRI/Smad2 and platelet-derived growth factor-beta (PDGF-β) with a diminution of hepatic Col 1A1 level. In addition, EMPA prompted a protuberant suppression of the angiogenic pathway; vascular endothelial growth factor (VEGF)/VEGF-receptor-2 (VEGFR-2)/SH2-Domain Containing Adaptor Protein-B (Shb), and reversal of altered portal hypertension (PHT) markers; endothelin-1 (ET-1) and endothelial nitric oxide synthase (eNOS). The amelioration of liver fibrosis was coupled with a remarkable improvement in liver aminotransferases and histologic hepatic fibrosis Ishak scores. The highest EMPA dose showed a good safety profile with minimal changes in renal function and glycemic control. Thus, the current study brought about novel findings for a potential liver fibrosis treatment modality via targeting NRP-1 signaling pathways by EMPA.
Collapse
Affiliation(s)
- Ashraf A Noah
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Clinical Research Administration, Alexandria Directorate of Health Affairs, Egyptian Ministry of Health and Population, Alexandria, Egypt
| | - Nesrine S El-Mezayen
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Inas E Darwish
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Elham A Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
16
|
Abdalla N, Abo-ElMatty DM, Saleh S, Ghattas MH, Omar NN. Empagliflozin suppresses hedgehog pathway, alleviates ER stress, and ameliorates hepatic fibrosis in rats. Sci Rep 2023; 13:19046. [PMID: 37923828 PMCID: PMC10624673 DOI: 10.1038/s41598-023-46288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Worldwide mortality from hepatic fibrosis remains high, due to hepatocellular carcinoma and end stage liver failure. The progressive nature of hepatic fibrosis from inflammation to cicatrized tissues warrants subtle intervention with pharmacological agents that hold potential. Empagliflozin (Empa), a novel hypoglycemic drug with antioxidant and anti-inflammatory properties, has lately been proposed to have additional antifibrotic activities. In the current study, we examined the antifibrotic effect of the Empa through modulating the activity of hepatic stellate cells by hedgehog (Hh) pathway. We also assessed the markers of inflammatory response and endoplasmic reticulum (ER) stress. Male Albino rats were treated with either CCl4 (0.4 mg/kg twice/week) and/or Empa (10 mg/kg/day) for eight weeks. In this study, CCl4 rats had active Hh signaling as indicated by overexpression of Patched 1, Smoothened and Glioblastoma-2. CCl4 induced ER stress as CHOP expression was upregulated and ERAD was downregulated. CCl4-induced inflammatory response was demonstrated through increased levels of TNF-α, IL-6 and mRNA levels of IL-17 while undetectable expression of IL-10. Conversely, Empa elicited immunosuppression, suppressed the expression of Hh markers, and reversed markers of ER stress. In conclusion, Empa suppressed CCl4-induced Hh signaling and proinflammatory response, meanwhile embraced ER stress in the hepatic tissues, altogether provided hepatoprotection.
Collapse
Affiliation(s)
- Nourihan Abdalla
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Mokattam, Cairo, 11585, Egypt
| | - Dina M Abo-ElMatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Sami Saleh
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Maivel H Ghattas
- Department of Medical Biochemistry, Faculty of Medicine, Port Said University, Port Said, Egypt.
| | - Nesreen Nabil Omar
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Mokattam, Cairo, 11585, Egypt
| |
Collapse
|
17
|
Soeda K, Sasako T, Enooku K, Kubota N, Kobayashi N, Ikushima YM, Awazawa M, Bouchi R, Toda G, Yamada T, Nakatsuka T, Tateishi R, Kakiuchi M, Yamamoto S, Tatsuno K, Atarashi K, Suda W, Honda K, Aburatani H, Yamauchi T, Fujishiro M, Noda T, Koike K, Kadowaki T, Ueki K. Gut insulin action protects from hepatocarcinogenesis in diabetic mice comorbid with nonalcoholic steatohepatitis. Nat Commun 2023; 14:6584. [PMID: 37852976 PMCID: PMC10584811 DOI: 10.1038/s41467-023-42334-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
Diabetes is known to increase the risk of nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). Here we treat male STAM (STelic Animal Model) mice, which develop diabetes, NASH and HCC associated with dysbiosis upon low-dose streptozotocin and high-fat diet (HFD), with insulin or phlorizin. Although both treatments ameliorate hyperglycemia and NASH, insulin treatment alone lead to suppression of HCC accompanied by improvement of dysbiosis and restoration of antimicrobial peptide production. There are some similarities in changes of microflora from insulin-treated patients comorbid with diabetes and NASH. Insulin treatment, however, fails to suppress HCC in the male STAM mice lacking insulin receptor specifically in intestinal epithelial cells (ieIRKO), which show dysbiosis and impaired gut barrier function. Furthermore, male ieIRKO mice are prone to develop HCC merely on HFD. These data suggest that impaired gut insulin signaling increases the risk of HCC, which can be countered by restoration of insulin action in diabetes.
Collapse
Affiliation(s)
- Kotaro Soeda
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takayoshi Sasako
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichiro Enooku
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoki Kobayashi
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshiko Matsumoto Ikushima
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Motoharu Awazawa
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ryotaro Bouchi
- Diabetes and Metabolism Information Center, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Gotaro Toda
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoharu Yamada
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Takuma Nakatsuka
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Miwako Kakiuchi
- Genome Science Division, The University of Tokyo, Tokyo, Japan
| | - Shogo Yamamoto
- Genome Science Division, The University of Tokyo, Tokyo, Japan
| | - Kenji Tatsuno
- Genome Science Division, The University of Tokyo, Tokyo, Japan
| | - Koji Atarashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Kenya Honda
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | | | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Tetsuo Noda
- Department of Cell Biology, Cancer Institute, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Toranomon Hospital, Tokyo, Japan
| | - Kohjiro Ueki
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
- Department of Molecular Diabetology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
| |
Collapse
|
18
|
Rinaldi L, Giorgione C, Mormone A, Esposito F, Rinaldi M, Berretta M, Marfella R, Romano C. Non-Invasive Measurement of Hepatic Fibrosis by Transient Elastography: A Narrative Review. Viruses 2023; 15:1730. [PMID: 37632072 PMCID: PMC10459581 DOI: 10.3390/v15081730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Transient elastography by FibroScan® (Echosens, Paris, France) is a non-invasive method that can provide a reliable measurement of liver fibrosis through the evaluation of liver stiffness. Despite its limitations and risks, liver biopsy has thus far been the only procedure able to provide data to quantify fibrosis. Scientific evidence and clinical practice have made it possible to use FibroScan® in the diagnostic work-up of several liver diseases to monitor patients' long-term treatment response and for complication prevention. For these reasons, this procedure is widely used in clinical practice and is still being investigated for further applications. The aim of this narrative review is to provide a comprehensive overview of the main applications of transient elastography in the current clinical practice.
Collapse
Affiliation(s)
- Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (L.R.); (R.M.)
| | - Chiara Giorgione
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (L.R.); (R.M.)
| | - Andrea Mormone
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (L.R.); (R.M.)
| | - Francesca Esposito
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (L.R.); (R.M.)
| | - Michele Rinaldi
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, “Federico II” University of Naples, 80131 Naples, Italy;
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (L.R.); (R.M.)
| | - Ciro Romano
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, 80131 Naples, Italy; (L.R.); (R.M.)
| |
Collapse
|
19
|
Amatya R, Lee D, Min KA, Shin MC. Pharmaceutical Strategies to Improve Druggability of Potential Drug Candidates in Nonalcoholic Fatty Liver Disease Therapy. Pharmaceutics 2023; 15:1963. [PMID: 37514148 PMCID: PMC10386216 DOI: 10.3390/pharmaceutics15071963] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become globally prevalent and is the leading cause of chronic liver disease. Although NAFLD is reversible without medical intervention in the early stage, the condition could be sequentially worsened to nonalcoholic steatohepatitis (NASH) and, eventually, cirrhosis and hepatic cancer. The progression of NAFLD is related to various factors such as genetics, pre-disposed metabolic disorders, and immunologic factors. Thankfully, to date, there have been accumulating research efforts and, as a result, different classes of potent drug candidates have been discovered. In addition, there have also been various attempts to explore pharmaceutical strategies to improve the druggability of drug candidates. In this review, we provided a brief overview of the drug candidates that have undergone clinical trials. In the latter part, strategies for developing better drugs are discussed.
Collapse
Affiliation(s)
- Reeju Amatya
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Republic of Korea
| | - Donghee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Republic of Korea
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae 50834, Republic of Korea
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Republic of Korea
| |
Collapse
|
20
|
Shen Y, Cheng L, Xu M, Wang W, Wan Z, Xiong H, Guo W, Cai M, Xu F. SGLT2 inhibitor empagliflozin downregulates miRNA-34a-5p and targets GREM2 to inactivate hepatic stellate cells and ameliorate non-alcoholic fatty liver disease-associated fibrosis. Metabolism 2023:155657. [PMID: 37422021 DOI: 10.1016/j.metabol.2023.155657] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND AND RATIONALE Activation of hepatic stellate cells (HSCs), the central event of fibrosis, indicates the severe stage of non-alcoholic fatty liver disease (NAFLD). MicroRNAs (miRNAs) participate in this process. Treatment with a sodium-glucose cotransporter 2 inhibitor (SGLT2i) alleviates liver fibrosis in patients with type 2 diabetes and NAFLD; however, the role of SGLT2i in ameliorating liver fibrosis in NAFLD by regulating miRNAs remains unclear. APPROACH AND RESULTS We monitored the expression of NAFLD-associated miRNAs in the livers of two NAFLD models and observed high expression of miR-34a-5p. miR-34a-5p was highly expressed in mouse primary liver non-parenchymal cells and LX-2 HSCs, and this miRNA was positively correlated with alanine transaminase levels in NAFLD models. Overexpression of miR-34a-5p enhanced LX-2 activation, whereas its inhibition prevented HSCs activation by regulating the TGFβ signaling pathway. The SGLT2i empagliflozin significantly downregulated miR-34a-5p, inhibited the TGFβ signaling pathway, and ameliorated hepatic fibrosis in NAFLD models. Subsequently, GREM2 was identified as a direct target of miR-34a-5p through database prediction and a dual-luciferase reporter assay. In LX-2 HSCs, the miR-34a-5p mimic and inhibitor directly downregulated and upregulated GREM2, respectively. Overexpressing GREM2 inactivated the TGFβ pathway whereas GREM2 knockdown activated it. Additionally, empagliflozin upregulated Grem2 expression in NAFLD models. In methionine- and choline-deficient diet-fed ob/ob mice, a fibrosis model, empagliflozin downregulated miR-34a-5p and upregulated Grem2 to improve liver fibrosis. CONCLUSIONS Empagliflozin ameliorates NAFLD-associated fibrosis by downregulating miR-34a-5p and targeting GREM2 to inhibit the TGFβ pathway in HSCs.
Collapse
Affiliation(s)
- Yunfeng Shen
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; Branch of National Clinical Research Center for Metabolic Diseases, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Lidan Cheng
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China; Department of Endocrinology and Metabolism, Jiujiang University Affiliated Hospital, Jiujiang 330300, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Wei Wang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China; Department of Gastroenterology, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
| | - Zhiping Wan
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China; Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Haixia Xiong
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; Branch of National Clinical Research Center for Metabolic Diseases, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Wanrong Guo
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Mengyin Cai
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China.
| | - Fen Xu
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China.
| |
Collapse
|
21
|
Chen X, Xu C, Hu K, Yang Y, Zhang YJ, Shi HZ, Gu Q, He SM, Zhang C, Wang DD. Quantitative effects of sodium-glucose cotransporter-2 inhibitors on liver functions in patients with nonalcoholic fatty liver disease. Expert Rev Clin Pharmacol 2023; 16:991-998. [PMID: 37669251 DOI: 10.1080/17512433.2023.2256224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/25/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND The present study aimed to explore the quantitative effects of sodium-glucose cotransporter-2 (SGLT-2) inhibitors on liver functions in patients with nonalcoholic fatty liver disease (NAFLD). RESEARCH DESIGN AND METHODS A total of 4771 patients with NAFLD were included for analysis by means of nonlinear mixed effect modeling, where the change rates of liver functions were taken as the evaluation indexes so as to eliminate the potential baseline effects. RESULTS For ALT and AST, the Emax of SGLT-2 inhibitors was -17.8% and -13.9%, respectively, and the ET50 was 6.86 weeks and 10 weeks, respectively. Furthermore, the duration time to achieve 25%, 50%, 75%, and 80% Emax were 2.3 weeks, 6.86 weeks, 20.6 weeks, 27.5 weeks in ALT, 3.4 weeks, 10 weeks, 30 weeks, 40 weeks in AST, respectively. Thus, to realize the plateau period (80% of Emax) of SGLT-2 inhibitors on ALT and AST in patients with NAFLD, 100 mg/day canagliflozin (or 10 mg/day dapagliflozin or 10 mg/day empagliflozin) needs to be taken for 20.6 weeks and 30 weeks, respectively. CONCLUSIONS The present study explored the quantitative effects of SGLT-2 inhibitors on liver functions and recommends a therapeutic regimen in patients with NAFLD.
Collapse
Affiliation(s)
- Xiao Chen
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chang Xu
- Department of Pharmacy, The Affiliated Jiangyin Clinical College of Xuzhou Medical University, Wuxi, Jiangsu, China
| | - Ke Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Yang
- Department of Pharmacy, The Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, Jiangsu, China
| | - Yi-Jia Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao-Zhe Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Su-Mei He
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Cun Zhang
- Department of Pharmacy, Xuzhou Oriental Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dong-Dong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy & School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
22
|
Piccirillo F, Mastroberardino S, Nusca A, Frau L, Guarino L, Napoli N, Ussia GP, Grigioni F. Novel Antidiabetic Agents and Their Effects on Lipid Profile: A Single Shot for Several Cardiovascular Targets. Int J Mol Sci 2023; 24:10164. [PMID: 37373310 PMCID: PMC10299555 DOI: 10.3390/ijms241210164] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Type-2 diabetes mellitus (DM) represents one of the most important risk factors for cardiovascular diseases (CVD). Hyperglycemia and glycemic variability are not the only determinant of the increased cardiovascular (CV) risk in diabetic patients, as a frequent metabolic disorder associated with DM is dyslipidemia, characterized by hypertriglyceridemia, decreased high-density lipoprotein (HDL) cholesterol levels and a shift towards small dense low-density lipoprotein (LDL) cholesterol. This pathological alteration, also called diabetic dyslipidemia, represents a relevant factor which could promotes atherosclerosis and subsequently an increased CV morbidity and mortality. Recently, the introduction of novel antidiabetic agents, such as sodium glucose transporter-2 inhibitors (SGLT2i), dipeptidyl peptidase-4 inhibitors (DPP4i) and glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs), has been associated with a significant improvement in CV outcomes. Beyond their known action on glycemia, their positive effects on the CV system also seems to be related to an ameliorated lipidic profile. In this context, this narrative review summarizes the current knowledge regarding these novel anti-diabetic drugs and their effects on diabetic dyslipidemia, which could explain the provided global benefit to the cardiovascular system.
Collapse
Affiliation(s)
- Francesco Piccirillo
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (S.M.); (L.F.); (L.G.); (N.N.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Sara Mastroberardino
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (S.M.); (L.F.); (L.G.); (N.N.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Annunziata Nusca
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (S.M.); (L.F.); (L.G.); (N.N.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Lorenzo Frau
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (S.M.); (L.F.); (L.G.); (N.N.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Lorenzo Guarino
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (S.M.); (L.F.); (L.G.); (N.N.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Nicola Napoli
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (S.M.); (L.F.); (L.G.); (N.N.); (G.P.U.); (F.G.)
- Research Unit of Endocrinology and Diabetes Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Gian Paolo Ussia
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (S.M.); (L.F.); (L.G.); (N.N.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Francesco Grigioni
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (F.P.); (S.M.); (L.F.); (L.G.); (N.N.); (G.P.U.); (F.G.)
- Research Unit of Cardiovascular Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| |
Collapse
|
23
|
Wang X, Wu N, Sun C, Jin D, Lu H. Effects of SGLT-2 inhibitors on adipose tissue distribution in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Diabetol Metab Syndr 2023; 15:113. [PMID: 37254186 DOI: 10.1186/s13098-023-01085-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
OBJECTIVE Sodium-glucose cotransporter-2 (SGLT-2) inhibitors therapies were reported to affect adipose tissue distribution. However, the available evidence about the effect of SGLT-2 inhibitor on adipose tissue is contradictory. We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) to evaluate the effect of SGLT-2 inhibitors on adipose tissue distribution in patients with type 2 diabetes mellitus (T2DM). METHODS RCTs on SGLT-2 inhibitors on adipose distribution affect in patients with T2DM published in full-text journal databases such as PubMed, Embase, Cochrane Library, and ClinicalTrials.gov databases were searched. The fixed or random effect model was used for meta-analysis, the I2 test was used to evaluate the heterogeneity between studies, and the sensitivity analysis and subgroup analysis were used to explore the source of heterogeneity. Funnel chart and Begg's test were used to estimate publication bias. RESULTS Overall, 18 RCTs involving 1063 subjects were evaluated. Compared with placebo or other hypoglycemic drugs, SGLT-2 inhibitors significantly reduced visceral adipose tissue (standard mean deviation [SMD] = - 1.42, 95% confidence interval [CI] [- 2.02, - 0.82], I2 = 94%, p < 0.0001), subcutaneous adipose tissue (SMD = - 1.21, 95% CI [- 1.99, - 0.42], I2 = 93%, p = 0.003), ectopic liver adipose tissue (SMD = - 0.70, 95% CI [- 1.20, - 0.20], I2 = 73%, p = 0.006). In addition, body weight (mean deviation [MD] = - 2.60, 95% CI [- 3.30, - 1.89], I2 = 95%, p < 0.0001), waist circumference (MD = - 3.65, 95% CI [- 4.10, - 3.21], I2 = 0%, p < 0.0001), and body mass index (BMI) (MD = - 0.81, 95% CI [- 0.91, - 0.71], I2 = 23%, p < 0.0001) were significantly decreased. However, epicardial fat tissue showed an insignificant reduction (SMD = 0.03, 95% CI [- 0.52, 0.58], I2 = 69%, p = 0.71). Subgroup analysis revealed that appropriate treatment duration (16 - 40 weeks) or young patients with nonalcoholic fatty liver disease (NAFLD) and obesity were the decisive factors for SGLT-2 inhibitors to effectively reduce visceral and subcutaneous adipose tissues. CONCLUSIONS Our meta-analysis provides evidence that in patients with T2DM, SGLT-2 inhibitors significantly reduce visceral adipose tissue, subcutaneous adipose tissue, and ectopic liver fat, especially in young T2DM patients with NAFLD and high BMI. Appropriate dosing time (16-40 weeks) may have a more significant and stable beneficial effect on VAT and SAT reduction.
Collapse
Affiliation(s)
- Xianghong Wang
- Department of Endocrinology and Metabolism, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, China
| | - Niujian Wu
- Department of Endocrinology and Metabolism, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, China
| | - Chuanchuan Sun
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Donghua Jin
- Department of Intensive Care Unit, The Third People's Hospital of Zhengzhou, Henan, China
| | - Hongyun Lu
- Department of Endocrinology and Metabolism, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, China.
| |
Collapse
|
24
|
Kawarasaki S, Sawazaki H, Iijima H, Takahashi H, Nomura W, Inoue K, Kawada T, Goto T. Combined treatment with teneligliptin and canagliflozin additively suppresses high-fat diet-induced body weight gain in mice with modulation of lipid metabolism-related gene expression. Eur J Pharmacol 2023; 947:175682. [PMID: 36965744 DOI: 10.1016/j.ejphar.2023.175682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
In the treatment of type 2 diabetes mellitus (T2DM), comprehensive management of multiple risk factors, such as blood glucose, body weight, and lipids, is important to prevent disease progression. Although the combination of dipeptidyl peptidase-4 (DPP-4) inhibitor and sodium-glucose co-transporter 2 (SGLT2) inhibitor is often used clinically, the effects of this combination, other than glucose metabolism, have yet to be thoroughly investigated. In this study, we evaluated the effects of combined treatment with a DPP-4 inhibitor, teneligliptin, and an SGLT2 inhibitor, canagliflozin, on the body weight and lipid metabolism in high-fat diet (HFD)-induced obese mice. We found that monotherapy with teneligliptin or canagliflozin showed suppressive effects on high-fat diet-induced body weight gain and reduced inguinal white adipose tissue (iWAT) mass, and combined treatment additively reduced body weight gain and iWAT mass. Teneligliptin significantly increased oxygen consumption during the light phase, and this effect was preserved in the combined treatment. The combined treatment did not alter the mRNA expression levels of thermogenesis-related genes in adipose tissue but showed the tendency to additively induce mRNA of fatty acid oxidation-related genes in brown adipose tissue and tended to additively decrease mRNA of fatty acid synthesis-related genes in iWAT and liver tissues. These results suggest that combined treatment with teneligliptin and canagliflozin additively suppresses HFD-induced body weight gain with increasing oxygen consumption and modulating the expression of lipid metabolism-related genes. This combination therapy may provide effective body weight management for patients with T2DM and obesity.
Collapse
Affiliation(s)
- Satoko Kawarasaki
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Honami Sawazaki
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Hiroaki Iijima
- Medical Affairs Department, Ikuyaku. Integrated Value Development Division, Mitsubishi Tanabe Pharma Corporation, Tokyo, Japan
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan
| | - Wataru Nomura
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8317, Japan
| | - Kazuo Inoue
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8317, Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8317, Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, 611-0011, Japan; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8317, Japan.
| |
Collapse
|
25
|
Licata A, Russo GT, Giandalia A, Cammilleri M, Asero C, Cacciola I. Impact of Sex and Gender on Clinical Management of Patients with Advanced Chronic Liver Disease and Type 2 Diabetes. J Pers Med 2023; 13:jpm13030558. [PMID: 36983739 PMCID: PMC10051396 DOI: 10.3390/jpm13030558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Gender differences in the epidemiology, pathophysiological mechanisms and clinical features in chronic liver diseases that may be associated with type 2 diabetes (T2D) have been increasingly reported in recent years. This sexual dimorphism is due to a complex interaction between sex- and gender-related factors, including biological, hormonal, psychological and socio-cultural variables. However, the impact of sex and gender on the management of T2D subjects with liver disease is still unclear. In this regard, sex-related differences deserve careful consideration in pharmacology, aimed at improving drug safety and optimising medical therapy, both in men and women with T2D; moreover, low adherence to and persistence of long-term drug treatment is more common among women. A better understanding of sex- and gender-related differences in this field would provide an opportunity for a tailored diagnostic and therapeutic approach to the management of T2D subjects with chronic liver disease. In this narrative review, we summarized available data on sex- and gender-related differences in chronic liver disease, including metabolic, autoimmune, alcoholic and virus-related forms and their potential evolution towards cirrhosis and/or hepatocarcinoma in T2D subjects, to support their appropriate and personalized clinical management.
Collapse
Affiliation(s)
- Anna Licata
- Internal Medicine & Hepatology Unit, University Hospital of Palermo, PROMISE, University of Palermo, 90127 Palermo, Italy
| | - Giuseppina T Russo
- Internal Medicine and Diabetology Unit, University of Messina, 98125 Messina, Italy
| | - Annalisa Giandalia
- Internal Medicine and Hepatology Unit, University Hospital of Messina, 98124 Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Marcella Cammilleri
- Internal Medicine & Hepatology Unit, University Hospital of Palermo, PROMISE, University of Palermo, 90127 Palermo, Italy
| | - Clelia Asero
- Internal Medicine and Hepatology Unit, University Hospital of Messina, 98124 Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Irene Cacciola
- Internal Medicine and Hepatology Unit, University Hospital of Messina, 98124 Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| |
Collapse
|
26
|
Kim DY, Chung KS, Park JY, Gee HY. Preventive effect of empagliflozin and ezetimibe on hepatic steatosis in adults and murine models. Biomed Pharmacother 2023; 161:114445. [PMID: 36842353 DOI: 10.1016/j.biopha.2023.114445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Even though many oral glucose-lowering or lipid-lowering agents have already been reported to improve hepatic steatosis to some degree, which drug had a more beneficial effect on hepatic steatosis among those drugs has not been precisely explored. We analysed the effect of empagliflozi, a selective sodium-glucose cotransporter 2 inhibitor, and ezetimibe on developing hepatic steatosis. METHODS AND RESULTS Using 4005,779 patients with type 2 diabetes mellitus (T2DM) or dyslipidemia provided by the Korean National Health Insurance Service (NHIS) between January 2015 and December 2015, we analyzed the odds ratio (OR) of fatty liver development (fatty liver index [FLI] >60). Additionally, we examined the metabolic effects of ezetimibe and empagliflozin in mice fed with a choline-deficient high-fat diet, mimicking the features of human NAFLD. The experiment for agents was performed for the non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH) mouse models independently. In the NHIS data, ORs for the development of fatty liver were significantly lower in all treatment groups than in the reference group, which did not receive ezetimibe or empagliflozin. (Ezetimibe therapy; OR=0.962, empagliflozin therapy; OR=0.527, ezetimibe plus empagliflozin; OR=0.509 compared to reference therapy). Unlike non-alcoholic steatohepatitis mouse model, ezetimibe, empagliflozin, and combination therapy also reduced liver steatosis in the non-alcoholic fatty liver mouse model. CONCLUSIONS Compared with other agents, empagliflozin and/or ezetimibe treatment reduced the risk of developing hepatic steatosis. Our data suggest that empagliflozin or ezetimibe can be primarily considered in type 2 DM or dyslipidemia patients to prevent hepatic steatosis.
Collapse
Affiliation(s)
- Dong Yun Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea; Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea
| | - Kyu Sik Chung
- Department of Medicine, Yonsei University Graduate School of Medicine, Seoul, Republic of Korea
| | - Jun Yong Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea.
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Zhou P, Tan Y, Hao Z, Xu W, Zhou X, Yu J. Effects of SGLT2 inhibitors on hepatic fibrosis and steatosis: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1144838. [PMID: 36936142 PMCID: PMC10014961 DOI: 10.3389/fendo.2023.1144838] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
OBJECTIVE Clinical trials have shown that sodium-glucose cotransporter 2 inhibitors (SGLT2i) are closely associated with hepatic fibrosis and steatosis by FibroScan. This paper aimed at evaluating the effects of SGLT2i on hepatic fibrosis and steatosis, which are presented as liver stiffness measurement (LSM) and controlled attenuation parameter (CAP). METHODS PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure Database, China Science and Technology Journal Database, and Wanfang Database were searched for randomized clinical trials from database establishment to 30 November 2022 with no language restrictions. The risk of bias was evaluated by Collaboration Handbook. Software Stata 17 and Review Manager (version 5.3) were used for meta-analysis. RESULTS A total of eight articles including 686 patients were included. Compared with the control group, our results showed that SGLT2i could lower levels of LSM [MD = -0.82, 95%CI (-1.38, -0.25), p = 0.005] and CAP [MD = -12.80, 95%CI (-20.57, -5.03), p = 0.001]. Further subgroup analyses indicated that SGLT2i presented more advantages on longer treatment duration and more serious steatosis in decreasing LSM. For CAP, SGLT2i exhibited a clear advantage in subgroup analyses of longer treatment duration, younger people, dapagliflozin, worse fibrosis, and steatosis. CONCLUSION SGLT2i could reduce LSM and CAP in contrast to other antihyperglycemic drugs. However, the included studies are not definitive, and well-designed, more multi-centered, blinded randomized clinical trials are warranted to definitively establish reliable evidence.
Collapse
Affiliation(s)
- Peipei Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Tan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenning Hao
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weilong Xu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Jiangyi Yu, ; Xiqiao Zhou,
| | - Jiangyi Yu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Jiangyi Yu, ; Xiqiao Zhou,
| |
Collapse
|
28
|
Zhou Y, Li Z, Xu M, Zhang D, Ling J, Yu P, Shen Y. O-GlycNacylation Remission Retards the Progression of Non-Alcoholic Fatty Liver Disease. Cells 2022; 11:cells11223637. [PMID: 36429065 PMCID: PMC9688300 DOI: 10.3390/cells11223637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease spectrum associated with insulin resistance (IR), from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC). O-GlcNAcylation is a posttranslational modification, regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Abnormal O-GlcNAcylation plays a key role in IR, fat deposition, inflammatory injury, fibrosis, and tumorigenesis. However, the specific mechanisms and clinical treatments of O-GlcNAcylation and NAFLD are yet to be elucidated. The modification contributes to understanding the pathogenesis and development of NAFLD, thus clarifying the protective effect of O-GlcNAcylation inhibition on liver injury. In this review, the crucial role of O-GlcNAcylation in NAFLD (from NAFL to HCC) is discussed, and the effect of therapeutics on O-GlcNAcylation and its potential mechanisms on NAFLD have been highlighted. These inferences present novel insights into the pathogenesis and treatments of NAFLD.
Collapse
Affiliation(s)
- Yicheng Zhou
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, Nanchang 330031, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Jitao Ling
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
- Correspondence: (P.Y.); (Y.S.)
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
- Correspondence: (P.Y.); (Y.S.)
| |
Collapse
|
29
|
Yaribeygi H, Maleki M, Reiner Ž, Jamialahmadi T, Sahebkar A. Mechanistic View on the Effects of SGLT2 Inhibitors on Lipid Metabolism in Diabetic Milieu. J Clin Med 2022; 11:6544. [PMID: 36362772 PMCID: PMC9653639 DOI: 10.3390/jcm11216544] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Abstract
Chronic hyperglycemia induces pathophysiologic pathways with negative effects on the metabolism of most substrates as well as lipids and lipoproteins, and thereby induces dyslipidemia. Thus, the diabetic milieu is commonly accompanied by different levels of atherogenic dyslipidemia, which is per se a major risk factor for subsequent complications such as atherosclerosis, coronary heart disease, acute myocardial infarction, ischemic stroke, and nephropathy. Therefore, readjusting lipid metabolism in the diabetic milieu is a major goal for preventing dyslipidemia-induced complications. Sodium-glucose cotransporter-2 (SGLT2) inhibitors are a class of relatively newly introduced antidiabetes drugs (including empagliflozin, canagliflozin, dapagliflozin, etc.) with potent hypoglycemic effects and can reduce blood glucose by inducing glycosuria. However, recent evidence suggests that they could also provide extra-glycemic benefits in lipid metabolism. It seems that they can increase fat burning and lipolysis, normalizing the lipid metabolism and preventing or improving dyslipidemia. Nevertheless, the exact mechanisms involved in this process are not well-understood. In this review, we tried to explain how these drugs could regulate lipid homeostasis and we presented the possible involved cellular pathways supported by clinical evidence.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, 1000 Zagreb, Croatia
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Arai T, Atsukawa M, Tsubota A, Mikami S, Haruki U, Yoshikata K, Ono H, Kawano T, Yoshida Y, Tanabe T, Okubo T, Hayama K, Nakagawa‐Iwashita A, Itokawa N, Kondo C, Kaneko K, Nagao M, Inagaki K, Fukuda I, Sugihara H, Iwakiri K. Antifibrotic effect and long-term outcome of SGLT2 inhibitors in patients with NAFLD complicated by diabetes mellitus. Hepatol Commun 2022; 6:3073-3082. [PMID: 36039537 PMCID: PMC9592771 DOI: 10.1002/hep4.2069] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this retrospective multicenter study was to clarify the antifibrotic effect and long-term outcome of sodium glucose cotransporter 2 inhibitors (SGLT2-Is) in patients with nonalcoholic fatty liver disease (NAFLD) complicated by type 2 diabetes mellitus (T2DM). Of the 1262 consecutive patients with T2DM who recently received SGLT2-Is, 202 patients with NAFLD had been receiving SGLT2-Is for more than 48 weeks and were subjected to this analysis. Furthermore, 109 patients who had been on SGLT2-I therapy for more than 3 years at the time of analysis were assessed for the long-term effects of SGLT2-Is. Significant decreases in body weight, liver transaminases, plasma glucose, hemoglobin A1c, and Fibrosis-4 (FIB-4) index were found at week 48. Overall, the median value of FIB-4 index decreased from 1.42 at baseline to 1.25 at week 48 (p < 0.001). In the low-risk group (FIB-4 index < 1.3), there was no significant change in the FIB-4 index. In the intermediate-risk (≥1.3 and <2.67) and high-risk (≥2.67) groups, the median levels significantly decreased from 1.77 and 3.33 at baseline to 1.58 and 2.75 at week 48, respectively (p < 0.001 for both). Improvements in body weight, glucose control, liver transaminases, and FIB-4 index were found at 3 years of SGLT2-I treatment. In the intermediate-risk and high-risk groups (≥1.3 FIB-4 index), the FIB-4 index maintained a significant reduction from baseline throughout the 3 years of treatment. Conclusion: This study showed that SGLT2-Is offered a favorable effect on improvement in FIB-4 index as a surrogate marker of liver fibrosis in patient with NAFLD complicated by T2DM, especially those with intermediate and high risks of advanced fibrosis, and this antifibrotic effect is sustained for the long term.
Collapse
Affiliation(s)
- Taeang Arai
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Masanori Atsukawa
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Akihito Tsubota
- Core Research Facilities for Basic Science, Research Center for Medical SciencesThe Jikei University School of MedicineTokyoJapan
| | - Shigeru Mikami
- Division of Gastroenterology, Department of Internal MedicineKikkoman General HospitalMiyazaki NodaJapan
| | - Uojima Haruki
- Department of Gastroenterology, Internal MedicineKitasato University School of MedicineSagamiharaJapan
| | | | - Hiroki Ono
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Tadamichi Kawano
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Yuji Yoshida
- Division of GastroenterologyNippon Medical School Chiba Hokusoh HospitalChibaJapan
| | - Tomohide Tanabe
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Tomomi Okubo
- Division of GastroenterologyNippon Medical School Chiba Hokusoh HospitalChibaJapan
| | - Korenobu Hayama
- Division of GastroenterologyNippon Medical School Chiba Hokusoh HospitalChibaJapan
| | | | - Norio Itokawa
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Chisa Kondo
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Keiko Kaneko
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| | - Mototsugu Nagao
- Division of Endocrinology, Diabetes and MetabolismNippon Medical SchoolTokyoJapan
| | - Kyoko Inagaki
- Division of Endocrinology, Diabetes and MetabolismNippon Medical SchoolTokyoJapan
| | - Izumi Fukuda
- Division of Endocrinology, Diabetes and MetabolismNippon Medical SchoolTokyoJapan
| | - Hitoshi Sugihara
- Division of Endocrinology, Diabetes and MetabolismNippon Medical SchoolTokyoJapan
| | - Katsuhiko Iwakiri
- Division of Gastroenterology and HepatologyNippon Medical SchoolTokyoJapan
| |
Collapse
|
31
|
Shakerinasab N, Azizi M, Mansourian M, Sadeghi H, Salaminia S, Abbasi R, Shahaboddin ME, Doustimotlagh AH. Empagliflozin Exhibits Hepatoprotective Effects Against Bile Duct Ligation-induced Liver Injury in Rats: A Combined Molecular Docking Approach to In Vivo Studies. Curr Pharm Des 2022; 28:3313-3323. [PMID: 36305136 DOI: 10.2174/1381612829666221027112239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/22/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Cholestatic liver damage is a chronic disease caused by dysfunction of the hepaticbiliary system. Oxidative stress and inflammation are essential factors in the pathogenesis of cholestasis. Thus, the current study was designed to examine the effect of empagliflozin on bile duct ligation-induced liver damage in rats. METHODS This study was done on male Wistar rats, which were randomly assigned to the four experimental groups: sham control (SC), bile duct ligation (BDL), SC plus empagliflozin (SC+EMPA) (receiving 10 mg of EMPA orally for 7 days), BDL plus empagliflozin 10 mg/kg (BDL+ EMPA). At the end of the study, the rats were sacrificed, and serum and tissue samples were collected to analyze biochemical parameters, biomarkers of oxidative stress, inflammatory markers, and histopathological changes. The molecular docking technique was performed to elucidate the interaction of EMPA and Cu/Zn-superoxide dismutase (SOD1). RESULTS The results showed that BDL elevated the serum activity of ALT, AST, ALP, and levels of TBIL and TPro. BDL also intensifies the oxidative stress state in rats, which was confirmed by augmenting lipid peroxidation (MDA), protein oxidation (PCO), and altering antioxidant defense parameters through decreased SOD, catalase (CAT), and glutathione peroxidase (GPX) levels. Furthermore, the histopathological changes in the liver demonstrated the aggravation of inflammation and oxidative stress. In contrast, treatment with EMPA has shown anti-inflammatory and anti-oxidant effects by reducing TNF-α and IL-6 pro-inflammatory marker proteins, restoring the antioxidant status (increased SOD and GPX), reducing ALT, AST, ALP, TBIL levels, and protein oxidation, and improving the histopathological alterations through reducing bile duct proliferation, fibrosis, focal and portal inflammation. According to the attained findings, the SOD1 activity can be regulated by the EMPA. Our documentation presents direct evidence at the molecular level related to the ability of EMPA to exert its antioxidant performance through certain measures in a particular molecular route. CONCLUSION The results showed EMPA to have hepatic protective effects in rats against cholestatic liver injury, an effect mediated by its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Nasrin Shakerinasab
- Department of Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahdokht Azizi
- Department of Pharmacology, Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahboubeh Mansourian
- Department of Pharmacology, Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hossein Sadeghi
- Department of Pharmacology, Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Shirvan Salaminia
- Department of Cardiac Surgery, Yasuj University of Medical Science, Yasuj, Iran
| | - Reza Abbasi
- Department of Pediatrics, Yasuj University of Medical Science, Yasuj, Iran
| | | | - Amir Hossein Doustimotlagh
- Department of Pharmacology, Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
32
|
ElBaset MA, Salem RS, Ayman F, Ayman N, Shaban N, Afifi SM, Esatbeyoglu T, Abdelaziz M, Elalfy ZS. Effect of Empagliflozin on Thioacetamide-Induced Liver Injury in Rats: Role of AMPK/SIRT-1/HIF-1α Pathway in Halting Liver Fibrosis. Antioxidants (Basel) 2022; 11:2152. [PMID: 36358524 PMCID: PMC9686640 DOI: 10.3390/antiox11112152] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Hepatic fibrosis causes severe morbidity and death. No viable treatment can repair fibrosis and protect the liver until now. We intended to discover the empagliflozin's (EMPA) hepatoprotective efficacy in thioacetamide (TAA)-induced hepatotoxicity by targeting AMPK/SIRT-1 activity and reducing HIF-1α. Rats were treated orally with EMPA (3 or 6 mg/kg) with TAA (100 mg/kg, IP) thrice weekly for 6 weeks. EMPA in both doses retracted the serum GGT, ALT, AST, ammonia, triglycerides, total cholesterol, and increased serum albumin. At the same time, EMPA (3 or 6 mg/kg) replenished the hepatic content of GSH, ATP, AMP, AMPK, or SIRT-1 and mitigated the hepatic content of MDA, TNF-α, IL-6, NF-κB, or HIF-1α in a dose-dependent manner. Likewise, hepatic photomicrograph stained with hematoxylin and eosin or Masson trichrome stain of EMPA (3 or 6 mg/kg) revealed marked regression of the hepatotoxic effect of TAA with minimal injury. Similarly, in rats given EMPA (3 or 6 mg/kg), the immunohistochemically of hepatic photomicrograph revealed minimal stain of either α-SMA or caspase-3 compared to the TAA group. Therefore, we concluded that EMPA possessed an antifibrotic effect by targeting AMPK/SIRT-1 activity and inhibiting HIF-1α. The present study provided new insight into a novel treatment of liver fibrosis.
Collapse
Affiliation(s)
- Marwan A. ElBaset
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo P.O. Box 12622, Egypt
| | - Rana S. Salem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October University for Modern Science and Arts, Cairo 12451, Egypt
| | - Fairouz Ayman
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October University for Modern Science and Arts, Cairo 12451, Egypt
| | - Nadeen Ayman
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October University for Modern Science and Arts, Cairo 12451, Egypt
| | - Nooran Shaban
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October University for Modern Science and Arts, Cairo 12451, Egypt
| | - Sherif M. Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Mahmoud Abdelaziz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October University for Modern Science and Arts, Cairo 12451, Egypt
| | - Zahraa S. Elalfy
- Pathology Department Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo P.O. Box 12622, Egypt
| |
Collapse
|
33
|
Hsu SJ, Huang HC, Pun CK, Chang CC, Chuang CL, Huang YH, Hou MC, Lee FY. Sodium-Glucose Cotransporter-2 Inhibition Exacerbates Hepatic Encephalopathy in Biliary Cirrhotic Rats. J Pharmacol Exp Ther 2022; 383:25-31. [PMID: 35926870 DOI: 10.1124/jpet.122.001289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
Abstract
In liver cirrhosis, hepatic inflammation and abundant portal-systemic collaterals are indicated for the development of hepatic encephalopathy. Sodium-glucose cotransporter-2 (SGLT-2) inhibitors are a type of anti-diabetic agent which exert pleiotropic and anti-inflammatory effects. Diabetes and chronic liver disease often coexist, but the influence of SGLT-2 inhibition on liver cirrhosis and hepatic encephalopathy remains unknown. This study investigated the effect of SGLT-2 inhibition on cirrhotic rats. Biliary cirrhosis was induced in Sprague-Dawley rats via common bile duct ligation. A total of two weeks of treatment with the SGLT-2 inhibitor, empagliflozin 30 mg/kg/d, was applied. The motor activities, hemodynamics, biochemistry parameters, plasma levels of vascular endothelial growth factor (VEGF), and the severity of portal-systemic collateral shunts were measured. The hepatic histopathology and protein expressions were examined. We found that empagliflozin treatment did not affect hemodynamics, liver biochemistry, or blood glucose levels in cirrhotic rats. Empagliflozin did not affect hepatic inflammation and fibrosis. The protein expression of factors related to liver injury were not influenced by empagliflozin. However, empagliflozin decreased motor activities in cirrhotic rats and increased portal-systemic collateral shunts and VEGF plasma levels. In summary, SGLT-2 inhibition by empagliflozin did not ameliorate portal hypertension and hepatic inflammation in cirrhotic rats. In contrast, it exacerbated hepatic encephalopathy, which was evidenced by a decrease in motor activity. A possible mechanism could be an increase of portal-systemic shunts related to VEGF upregulation. Therefore, empagliflozin use should be cautious in cirrhotic patients regarding the development of hepatic encephalopathy. SIGNIFICANCE STATEMENT: Sodium-glucose cotransporter-2 inhibition by empagliflozin did not ameliorate portal hypertension and hepatic inflammation in cirrhotic rats. In contrast, it exacerbated hepatic encephalopathy through increased portal-systemic shunts related to VEGF up-regulation.
Collapse
Affiliation(s)
- Shao-Jung Hsu
- Division of General Medicine (H.C.H., C.C.C., C.L.C.) and Division of Gastroenterology and Hepatology (S.J.H., Y.H.H.), Department of Medicine (C.K.P., M.C.H., F.Y.L.), Taipei Veterans General Hospital, Taipei, Taiwan and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (S.J.H., H.C.H., C.C.C., Y.H.H., M.C.H., F.Y.L.)
| | - Hui-Chun Huang
- Division of General Medicine (H.C.H., C.C.C., C.L.C.) and Division of Gastroenterology and Hepatology (S.J.H., Y.H.H.), Department of Medicine (C.K.P., M.C.H., F.Y.L.), Taipei Veterans General Hospital, Taipei, Taiwan and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (S.J.H., H.C.H., C.C.C., Y.H.H., M.C.H., F.Y.L.)
| | - Chon Kit Pun
- Division of General Medicine (H.C.H., C.C.C., C.L.C.) and Division of Gastroenterology and Hepatology (S.J.H., Y.H.H.), Department of Medicine (C.K.P., M.C.H., F.Y.L.), Taipei Veterans General Hospital, Taipei, Taiwan and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (S.J.H., H.C.H., C.C.C., Y.H.H., M.C.H., F.Y.L.)
| | - Ching-Chih Chang
- Division of General Medicine (H.C.H., C.C.C., C.L.C.) and Division of Gastroenterology and Hepatology (S.J.H., Y.H.H.), Department of Medicine (C.K.P., M.C.H., F.Y.L.), Taipei Veterans General Hospital, Taipei, Taiwan and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (S.J.H., H.C.H., C.C.C., Y.H.H., M.C.H., F.Y.L.)
| | - Chiao-Lin Chuang
- Division of General Medicine (H.C.H., C.C.C., C.L.C.) and Division of Gastroenterology and Hepatology (S.J.H., Y.H.H.), Department of Medicine (C.K.P., M.C.H., F.Y.L.), Taipei Veterans General Hospital, Taipei, Taiwan and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (S.J.H., H.C.H., C.C.C., Y.H.H., M.C.H., F.Y.L.)
| | - Yi-Hsiang Huang
- Division of General Medicine (H.C.H., C.C.C., C.L.C.) and Division of Gastroenterology and Hepatology (S.J.H., Y.H.H.), Department of Medicine (C.K.P., M.C.H., F.Y.L.), Taipei Veterans General Hospital, Taipei, Taiwan and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (S.J.H., H.C.H., C.C.C., Y.H.H., M.C.H., F.Y.L.)
| | - Ming-Chih Hou
- Division of General Medicine (H.C.H., C.C.C., C.L.C.) and Division of Gastroenterology and Hepatology (S.J.H., Y.H.H.), Department of Medicine (C.K.P., M.C.H., F.Y.L.), Taipei Veterans General Hospital, Taipei, Taiwan and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (S.J.H., H.C.H., C.C.C., Y.H.H., M.C.H., F.Y.L.)
| | - Fa-Yauh Lee
- Division of General Medicine (H.C.H., C.C.C., C.L.C.) and Division of Gastroenterology and Hepatology (S.J.H., Y.H.H.), Department of Medicine (C.K.P., M.C.H., F.Y.L.), Taipei Veterans General Hospital, Taipei, Taiwan and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (S.J.H., H.C.H., C.C.C., Y.H.H., M.C.H., F.Y.L.)
| |
Collapse
|
34
|
Shaaban HH, Alzaim I, El-Mallah A, Aly RG, El-Yazbi AF, Wahid A. Metformin, pioglitazone, dapagliflozin and their combinations ameliorate manifestations associated with NAFLD in rats via anti-inflammatory, anti-fibrotic, anti-oxidant and anti-apoptotic mechanisms. Life Sci 2022; 308:120956. [PMID: 36103959 DOI: 10.1016/j.lfs.2022.120956] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an important health threat that is strongly linked to components of metabolic syndrome, particularly the low-grade inflammatory changes. Significantly, several of the available anti-diabetic drug classes demonstrate a considerable anti-inflammatory effect, and hence might be of benefit for NAFLD patients. In this study, we used a rat model of diet-induced NAFLD to examine the potential effect of metformin, pioglitazone, dapagliflozin and their combinations on NAFLD manifestations. Rats were fed an atherogenic diet containing 1.25 % cholesterol, 0.5 % cholic acid and 60 % cocoa butter for 6 weeks causing a number of metabolic and hepatic alterations including insulin resistance, dyslipidemia, systemic inflammation, increased hepatic oxidative stress and lipid peroxidation, hepatic steatosis, lobular inflammation, as well as increased markers of liver inflammation and hepatocyte apoptosis. Drug treatment, which started at the third week of NAFLD induction and continued for three weeks, not only ameliorated the observed metabolic impairment, but also functional and structural manifestations of NAFLD. Specifically, anti-diabetic drug treatment reversed markers of systemic and hepatic inflammation, oxidative stress, hepatic fibrosis, and hepatocyte apoptosis. Our findings propose that anti-diabetic drugs with a potential anti-inflammatory effect can ameliorate the manifestations of NAFLD, and thus may provide a therapeutic option for such a condition that is closely associated with metabolic diseases. The detailed pharmacology of these classes in aspects linked to the observed impact on NAFLD requires to be further investigated and translated into clinical studies for tailored therapy specifically targeting NAFLD.
Collapse
Affiliation(s)
- Hager H Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Ibrahim Alzaim
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine the American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ahmed El-Mallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt
| | - Rania G Aly
- Department of Pathology, Faculty of Medicine, Alexandria University, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt; Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Faculty of Pharmacy, Al-Alamein International University, Alamein, Egypt.
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
35
|
Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways. Clin Sci (Lond) 2022; 136:1347-1366. [PMID: 36148775 PMCID: PMC9508552 DOI: 10.1042/cs20220572] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 01/30/2023]
Abstract
The metabolic-associated fatty liver disease (MAFLD) is a condition of fat accumulation in the liver in combination with metabolic dysfunction in the form of overweight or obesity and insulin resistance. It is also associated with an increased cardiovascular disease risk, including hypertension and atherosclerosis. Hepatic lipid metabolism is regulated by a combination of the uptake and export of fatty acids, de novo lipogenesis, and fat utilization by β-oxidation. When the balance between these pathways is altered, hepatic lipid accumulation commences, and long-term activation of inflammatory and fibrotic pathways can progress to worsen the liver disease. This review discusses the details of the molecular mechanisms regulating hepatic lipids and the emerging therapies targeting these pathways as potential future treatments for MAFLD.
Collapse
|
36
|
Moon JS, Hong JH, Jung YJ, Ferrannini E, Nauck MA, Lim S. SGLT-2 inhibitors and GLP-1 receptor agonists in metabolic dysfunction-associated fatty liver disease. Trends Endocrinol Metab 2022; 33:424-442. [PMID: 35491295 DOI: 10.1016/j.tem.2022.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a chronic condition that affects nearly one billion people globally, characterized by triacylglycerol accumulation in the liver as a consequence of metabolic abnormalities (obesity and impaired glucose regulation). Low-grade inflammation, oxidative stress, mitochondrial dysfunction, and dysbiosis in gut microbiota are involved in the etiology of MAFLD, and both cardiovascular events and hepatic complications are the long-term consequences. In the absence of approved therapies for this condition, sodium-glucose cotransporter 2 inhibitors (SGLT-2 Is) and glucagon-like peptide 1 receptor agonists (GLP-1 RAs) have the specific advantage of lowering body weight and providing cardiovascular benefits. Here, we discuss potential roles for SGLT-2 Is and GLP-1 RAs in the prevention and treatment of intrahepatic triacylglycerol accumulation and associated inflammation and/or fibrosis.
Collapse
Affiliation(s)
- Jun Sung Moon
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jun Hwa Hong
- Department of Internal Medicine, Eulji University Hospital, School of Medicine, Daejeon, Republic of Korea
| | - Yong Jin Jung
- Department of Internal Medicine, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St Josef Hospital (Ruhr-University, Bochum), Bochum, Germany.
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| |
Collapse
|
37
|
Pinheiro I, Barberá A, Raurell I, Estrella F, de Leeuw M, Bolca S, Gottardi D, Horscroft N, Possemiers S, Salcedo MT, Genescà J, Martell M, Augustin S. A Nine-Strain Bacterial Consortium Improves Portal Hypertension and Insulin Signaling and Delays NAFLD Progression In Vivo. Biomedicines 2022; 10:biomedicines10051191. [PMID: 35625927 PMCID: PMC9175091 DOI: 10.3390/biomedicines10051191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
The gut microbiome has a recognized role in Non-alcoholic fatty liver disease (NAFLD) and associated comorbidities such as Type-2 diabetes and obesity. Stool transplantation has been shown to improve disease by restoring endothelial function and insulin signaling. However, more patient-friendly treatments are required. The present study aimed to test the effect of a defined bacterial consortium of nine gut commensal strains in two in vivo rodent models of Non-alcoholic steatohepatitis (NASH): a rat model of NASH and portal hypertension (PHT), and the Stelic animal (mouse) model (STAM™). In both studies the consortium was administered orally q.d. after disease induction. In the NASH rats, the consortium was administered for 2 weeks and compared to stool transplant. In the STAM™ study administration was performed for 4 weeks, and the effects compared to vehicle or Telmisartan at the stage of NASH/early fibrosis. A second group of animals was followed for another 3 weeks to assess later-stage fibrosis. In the NASH rats, an improvement in PHT and endothelial function was observed. Gut microbial compositional changes also revealed that the consortium achieved a more defined and richer replacement of the gut microbiome than stool transplantation. Moreover, liver transcriptomics suggested a beneficial modulation of pro-fibrogenic pathways. An improvement in liver fibrosis was then confirmed in the STAM™ study. In this study, the bacterial consortium improved the NAFLD activity score, consistent with a decrease in steatosis and ballooning. Serum cytokeratin-18 levels were also reduced. Therefore, administration of a specific bacterial consortium of defined composition can ameliorate NASH, PHT, and fibrosis, and delay disease progression.
Collapse
Affiliation(s)
- Iris Pinheiro
- MRM Health NV, 9052 Ghent, Belgium; (M.d.L.); (S.B.); (D.G.); (N.H.); (S.P.)
- Correspondence: (I.P.); (S.A.); Tel.: +32-92770864 (I.P.)
| | - Aurora Barberá
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.B.); (I.R.); (F.E.); (J.G.); (M.M.)
| | - Imma Raurell
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.B.); (I.R.); (F.E.); (J.G.); (M.M.)
- Centro De Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto De Salud Carlos III, 28029 Madrid, Spain
| | - Federico Estrella
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.B.); (I.R.); (F.E.); (J.G.); (M.M.)
| | - Marcel de Leeuw
- MRM Health NV, 9052 Ghent, Belgium; (M.d.L.); (S.B.); (D.G.); (N.H.); (S.P.)
| | - Selin Bolca
- MRM Health NV, 9052 Ghent, Belgium; (M.d.L.); (S.B.); (D.G.); (N.H.); (S.P.)
| | - Davide Gottardi
- MRM Health NV, 9052 Ghent, Belgium; (M.d.L.); (S.B.); (D.G.); (N.H.); (S.P.)
| | - Nigel Horscroft
- MRM Health NV, 9052 Ghent, Belgium; (M.d.L.); (S.B.); (D.G.); (N.H.); (S.P.)
| | - Sam Possemiers
- MRM Health NV, 9052 Ghent, Belgium; (M.d.L.); (S.B.); (D.G.); (N.H.); (S.P.)
| | - María Teresa Salcedo
- Pathology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Joan Genescà
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.B.); (I.R.); (F.E.); (J.G.); (M.M.)
- Centro De Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto De Salud Carlos III, 28029 Madrid, Spain
| | - María Martell
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.B.); (I.R.); (F.E.); (J.G.); (M.M.)
- Centro De Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto De Salud Carlos III, 28029 Madrid, Spain
| | - Salvador Augustin
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, Institut de Recerca Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.B.); (I.R.); (F.E.); (J.G.); (M.M.)
- Centro De Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto De Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (I.P.); (S.A.); Tel.: +32-92770864 (I.P.)
| |
Collapse
|
38
|
Role of Sodium-Glucose Co-Transporter 2 Inhibitors in the Regulation of Inflammatory Processes in Animal Models. Int J Mol Sci 2022; 23:ijms23105634. [PMID: 35628443 PMCID: PMC9144929 DOI: 10.3390/ijms23105634] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Sodium-glucose co-transporter 2 inhibitors, also known as gliflozins, were developed as a novel class of anti-diabetic agents that promote glycosuria through the prevention of glucose reabsorption in the proximal tubule by sodium-glucose co-transporter 2. Beyond the regulation of glucose homeostasis, they resulted as being effective in different clinical trials in patients with heart failure, showing a strong cardio-renal protective effect in diabetic, but also in non-diabetic patients, which highlights the possible existence of other mechanisms through which gliflozins could be exerting their action. So far, different gliflozins have been approved for their therapeutic use in T2DM, heart failure, and diabetic kidney disease in different countries, all of them being diseases that have in common a deregulation of the inflammatory process associated with the pathology, which perpetuates and worsens the disease. This inflammatory deregulation has been observed in many other diseases, which led the scientific community to have a growing interest in the understanding of the biological processes that lead to or control inflammation deregulation in order to be able to identify potential therapeutic targets that could revert this situation and contribute to the amelioration of the disease. In this line, recent studies showed that gliflozins also act as an anti-inflammatory drug, and have been proposed as a useful strategy to treat other diseases linked to inflammation in addition to cardio-renal diseases, such as diabetes, obesity, atherosclerosis, or non-alcoholic fatty liver disease. In this work, we will review recent studies regarding the role of the main sodium-glucose co-transporter 2 inhibitors in the control of inflammation.
Collapse
|
39
|
Wang Y, Ding Y, Sun P, Zhang W, Xin Q, Wang N, Niu Y, Chen Y, Luo J, Lu J, Zhou J, Xu N, Zhang Y, Xie W. Empagliflozin-Enhanced Antioxidant Defense Attenuates Lipotoxicity and Protects Hepatocytes by Promoting FoxO3a- and Nrf2-Mediated Nuclear Translocation via the CAMKK2/AMPK Pathway. Antioxidants (Basel) 2022; 11:799. [PMID: 35624663 PMCID: PMC9137911 DOI: 10.3390/antiox11050799] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023] Open
Abstract
Lipotoxicity is an important factor in the development and progression of nonalcoholic steatohepatitis. Excessive accumulation of saturated fatty acids can increase the substrates of the mitochondrial electron transport chain in hepatocytes and cause the generation of reactive oxygen species, resulting in oxidative stress, mitochondrial dysfunction, loss of mitochondrial membrane potential, impaired triphosphate (ATP) production, and fracture and fragmentation of mitochondria, which ultimately leads to hepatocellular inflammatory injuries, apoptosis, and necrosis. In this study, we systematically investigated the effects and molecular mechanisms of empagliflozin on lipotoxicity in palmitic acid-treated LO2 cell lines. We found that empagliflozin protected hepatocytes and inhibited palmitic acid-induced lipotoxicity by reducing oxidative stress, improving mitochondrial functions, and attenuating apoptosis and inflammation responses. The mechanistic study indicated that empagliflozin significantly activated adenosine 5'-monophosphate (AMP)-activated protein kinase alpha (AMPKα) through Calcium/Calmodulin dependent protein kinase kinase beta (CAMKK2) instead of liver kinase B1 (LKB1) or TGF-beta activated kinase (TAK1). The activation of empagliflozin on AMPKα not only promoted FoxO3a phosphorylation and thus forkhead box O 3a (FoxO3a) nuclear translocation, but also promoted Nrf2 nuclear translocation. Furthermore, empagliflozin significantly upregulated the expressions of antioxidant enzymes superoxide dismutase (SOD) and HO-1. In addition, empagliflozin did not attenuate lipid accumulation at all. These results indicated that empagliflozin mitigated lipotoxicity in saturated fatty acid-induced hepatocytes, likely by promoting antioxidant defense instead of attenuating lipid accumulation through enhanced FoxO3a and Nrf2 nuclear translocation dependent on the CAMKK2/AMPKα pathway. The CAMKK2/AMPKα pathway might serve as a promising target in treatment of lipotoxicity in nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Yangyang Wang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yipei Ding
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Pengbo Sun
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wanqiu Zhang
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qilei Xin
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ningchao Wang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yaoyun Niu
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yang Chen
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jingyi Luo
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jinghua Lu
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Naihan Xu
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yaou Zhang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
40
|
Sun L, Deng C, Gu Y, He Y, Yang L, Shi J. Effects of dapagliflozin in patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. Clin Res Hepatol Gastroenterol 2022; 46:101876. [PMID: 35321843 DOI: 10.1016/j.clinre.2022.101876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Dapagliflozin as a treatment option in patients with nonalcoholic fatty liver disease (NAFLD) has received increasing attention, however, the efficacy and safety of dapagliflozin for NAFLD has not been well assessed. This meta-analysis aimed to summarize these RCTs and evaluate the efficacy of dapagliflozin for patients with NAFLD. METHODS The PubMed, Embase, Web of Science, and Cochrane Library databases were searched for RCTs comparing dapagliflozin with placebo or active comparator in patients with NAFLD from inception to Oct 2021. RESULTS We included seven trials with 390 randomized participants in total. Compared to the placebo or control group, dapagliflozin could reduce the levels of alanine aminotransferase(ALT) (WMD: -6.62U/L; 95%CI: -12.66,-0.58; p = 0.03) and aspartate aminotransaminase(AST) (WMD: -4.20U/L; 95%CI: -7.92,-0.47; p = 0.03). However, dapagliflozin produced a non-significant decrease in gamma-glutamyl transferase (GGT) levels (WMD: -7.28U/L; 95%CI: -16.26,1.71; p = 0.11). Additionally, we showed that dapagliflozin significantly affect Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) (WMD: -0.88; 95%CI: -1.43,-0.33; p = 0.002). Metabolic outcomes, such as bodyweight (WMD: -3.79 Kg; 95%CI: -4.63,-2.95; p < 0.00001), body mass index (BMI) (WMD: -1.33 Kg/m2; 95%CI: -2.37,-0.28; p = 0.01), low-density lipoprotein cholesterol (LDL-C) (WMD: -2.66 mg/dL; 95%CI: -3.99,-1.32; p < 0.00001) and triglycerides (TG) (WMD: -16.77 mg/dL; 95%CI: -31.93,-1.61; p = 0.03) were also reduced. Meanwhile, we found that dapagliflozin increased total cholesterol (TC) (WMD: 9.77 mg/dL; 95%CI: 1.58,17.97; p = 0.02). There was no significant difference in the incidence of total adverse events between the dapagliflozin group and the control group (RR = 0.96; 95%CI: 0.60,1.54; p = 0.86). CONCLUSION Our results suggest that dapagliflozin effectively improves liver function parameters and metabolic outcomes among patients with NAFLD. At the same time, treatment with dapagliflozin may increase total cholesterol.
Collapse
Affiliation(s)
- Lei Sun
- Medical School, Hangzhou Normal University, Zhejiang, China
| | - Chaohua Deng
- Medical School, Hangzhou Normal University, Zhejiang, China
| | - Yunpeng Gu
- School of Public Health, Hangzhou Normal University, Zhejiang, China
| | - Yining He
- Medical School, Hangzhou Normal University, Zhejiang, China
| | - Luping Yang
- Medical School, Zhejiang Chinese Medical University, Zhejiang, China
| | - Junping Shi
- The Department of Hepatology, The Affiliated Hospital & Institute of Hepatology and Metabolic Disease of Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
41
|
Kinaneh S, Hijaze W, Mansour-Wattad L, Hammoud R, Zaidani H, Kabala A, Hamoud S. Heparanase Inhibition Prevents Liver Steatosis in E 0 Mice. J Clin Med 2022; 11:jcm11061672. [PMID: 35329997 PMCID: PMC8954723 DOI: 10.3390/jcm11061672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/22/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease affects up to 30% of adults in the USA, and is associated with a higher incidence of chronic liver morbidity and mortality. Several molecular pathways are involved in the pathology of liver steatosis, including lipid uptake, lipogenesis, lipolysis, and beta-oxidation. The enzyme heparanase has been implicated in liver steatosis. Herein, we investigated the effect of heparanase inhibition on liver steatosis in E0 mice. Methods: In vivo experiments: Male wild-type mice fed with either chow diet (n = 4) or high-fat diet (n = 6), and male E0 mice fed with chow diet (n = 8) or high-fat diet (n = 33) were included. Mice on a high-fat diet were treated for 12 weeks with PG545 at low dose (6.4 mg/kg/week, ip, n = 6) or high dose (13.3 mg/kg/week, ip, n = 7), SST0001 (1.2 mg/mouse/day, ip, n = 6), or normal saline (control, n = 14). Animals were sacrificed two days after inducing peritonitis. Serum was analyzed for biochemical parameters. Mouse peritoneal macrophages (MPMs) were harvested and analyzed for lipid content. Livers were harvested for histopathological analysis of steatosis, lipid content, and the expression of steatosis-related factors at the mRNA level. In vitro experiments: MPMs were isolated from untreated E0 mice aged 8–10 weeks and were cultured and treated with either PG545 or SST0001, both at 50 µg/mL for 24 h, followed by assessment of mRNA expression of steatosis related factors. Results: Heparanase inhibition significantly attenuated the development of liver steatosis, as was evident by liver histology and lipid content. Serum analysis indicated lowering of cholesterol and triglycerides levels in mice treated with heparanase inhibitors. In liver tissue, assessment of mRNA expression of key factors in lipid uptake, lipolysis, lipogenesis, and beta-oxidation exhibited significant downregulation following PG545 treatment and to a lesser extent when SST0001 was applied. However, in vitro treatment of MPMs with PG545, but not SST0001, resulted in increased lipid content in these cells, which is opposed to their effect on MPMs of treated mice. This may indicate distinct regulatory pathways in the system or isolated macrophages following heparanase inhibition. Conclusion: Heparanase inhibition significantly attenuates the development of liver steatosis by decreasing tissue lipid content and by affecting the mRNA expression of key lipid metabolism regulators.
Collapse
Affiliation(s)
- Safa Kinaneh
- Department of Physiology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (S.K.); (A.K.)
| | - Walaa Hijaze
- Department of Emergency Medicine, Rambam Health Care Campus, Haifa 3109601, Israel; (W.H.); (H.Z.)
| | - Lana Mansour-Wattad
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Rawan Hammoud
- Faculty of Biotechnology, Hadassah Academic College, Jerusalem 9101001, Israel;
| | - Hisam Zaidani
- Department of Emergency Medicine, Rambam Health Care Campus, Haifa 3109601, Israel; (W.H.); (H.Z.)
| | - Aviva Kabala
- Department of Physiology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (S.K.); (A.K.)
| | - Shadi Hamoud
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa 3109601, Israel;
- Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3200003, Israel
- Correspondence: ; Tel.: +972-4-7772300; Fax: +972-4-7771691
| |
Collapse
|
42
|
SGLT-2 Inhibitors in NAFLD: Expanding Their Role beyond Diabetes and Cardioprotection. Int J Mol Sci 2022; 23:ijms23063107. [PMID: 35328527 PMCID: PMC8953901 DOI: 10.3390/ijms23063107] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an ‘umbrella’ term, comprising a spectrum ranging from benign, liver steatosis to non-alcoholic steatohepatitis, liver fibrosis and eventually cirrhosis and hepatocellular carcinoma. NAFLD has evolved as a major health problem in recent years. Discovering ways to prevent or delay the progression of NAFLD has become a global focus. Lifestyle modifications remain the cornerstone of NAFLD treatment, even though various pharmaceutical interventions are currently under clinical trial. Among them, sodium-glucose co-transporter type-2 inhibitors (SGLT-2i) are emerging as promising agents. Processes regulated by SGLT-2i, such as endoplasmic reticulum (ER) and oxidative stress, low-grade inflammation, autophagy and apoptosis are all implicated in NAFLD pathogenesis. In this review, we summarize the current understanding of the NAFLD pathophysiology, and specifically focus on the potential impact of SGLT-2i in NAFLD development and progression, providing current evidence from in vitro, animal and human studies. Given this evidence, further mechanistic studies would advance our understanding of the exact mechanisms underlying the pathogenesis of NAFLD and the potential beneficial actions of SGLT-2i in the context of NAFLD treatment.
Collapse
|
43
|
Ahmed S, El-Sayed MM, Kandeil MA, Khalaf MM. Empagliflozin attenuates Neurodegeneration through Antioxidant, Anti-inflammatory, and Modulation of α-synuclein and Parkin Levels in Rotenone-Induced Parkinson’s Disease in Rats. Saudi Pharm J 2022; 30:863-873. [PMID: 35812142 PMCID: PMC9257853 DOI: 10.1016/j.jsps.2022.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/10/2022] [Indexed: 10/26/2022] Open
|
44
|
He K, Li J, Xi W, Ge J, Sun J, Jing Z. Dapagliflozin for nonalcoholic fatty liver disease: A systematic review and meta-analysis. Diabetes Res Clin Pract 2022; 185:109791. [PMID: 35202771 DOI: 10.1016/j.diabres.2022.109791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES A few randomized controlled trials (RCTs) have assessed the use of dapagliflozin for the treatment of nonalcoholic fatty liver disease (NAFLD). A systematic review and meta-analysis was performed to investigate the efficacy and safety of dapagliflozin in adults with NAFLD. METHODS We performed a comprehensive literature search of PubMed, Embase, Cochrane Library, CNKI and ClinicalTrials.gov for RCTs that assessed the use of dapagliflozin in patients with NAFLD. Risk ratios and mean differences with 95% confidence intervals were used to synthesize the results. Two authors independently extracted the data, evaluated the study quality and calculated pooled estimates. RESULTS Eleven studies involving 839 patients were included. Compared with the control conditions, dapagliflozin led to a greater decrease in alanine transaminase, aspartate transaminase, gamma-glutamyl transferase, triglyceride, body weight, body mass index, HbA1c, and fasting plasma glucose. No difference was found between the dapagliflozin and control groups in terms of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, fibrosis 4 index, type IV collagen 7S, homeostatic model assessment of insulin resistance, or adverse events. CONCLUSIONS Dapagliflozin can markedly reduce hepatic enzymes and metabolic indicators and improve body composition, indicating its potential therapeutic efficacy.
Collapse
Affiliation(s)
- Ke He
- Department of Pharmacy, The Fourth Hospital of Shijiazhuang/Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China.
| | - Jingxin Li
- Department of Chinese Pharmacy, Hebei Maternity Hospital, Shijiazhuang, China
| | - Wang Xi
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jun Ge
- Department of Pharmacy, The Fourth Hospital of Shijiazhuang/Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| | - Jingna Sun
- Department of Clinical Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Zeng Jing
- Department of Pharmacy, The Fourth Hospital of Shijiazhuang/Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| |
Collapse
|
45
|
Aragón-Herrera A, Otero-Santiago M, Anido-Varela L, Moraña-Fernández S, Campos-Toimil M, García-Caballero T, Barral L, Tarazón E, Roselló-Lletí E, Portolés M, Gualillo O, Moscoso I, Lage R, González-Juanatey JR, Feijóo-Bandín S, Lago F. The Treatment With the SGLT2 Inhibitor Empagliflozin Modifies the Hepatic Metabolome of Male Zucker Diabetic Fatty Rats Towards a Protective Profile. Front Pharmacol 2022; 13:827033. [PMID: 35185578 PMCID: PMC8847595 DOI: 10.3389/fphar.2022.827033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022] Open
Abstract
The EMPA-REG OUTCOME (Empagliflozin, Cardiovascular Outcome Event Trial in patients with Type 2 Diabetes Mellitus (T2DM)) trial evidenced the potential of sodium-glucose cotransporter 2 (SGLT2) inhibitors for the treatment of patients with diabetes and cardiovascular disease. Recent evidences have shown the benefits of the SGLT2 inhibitor empagliflozin on improving liver steatosis and fibrosis in patients with T2DM. Metabolomic studies have been shown to be very useful to improve the understanding of liver pathophysiology during the development and progression of metabolic hepatic diseases, and because the effects of empagliflozin and of other SGLT2 inhibitors on the complete metabolic profile of the liver has never been analysed before, we decided to study the impact on the liver of male Zucker diabetic fatty (ZDF) rats of a treatment for 6 weeks with empagliflozin using an untargeted metabolomics approach, with the purpose to help to clarify the benefits of the use of empagliflozin at hepatic level. We found that empagliflozin is able to change the hepatic lipidome towards a protective profile, through an increase of monounsaturated and polyunsaturated glycerides, phosphatidylcholines, phosphatidylethanolamines, lysophosphatidylinositols and lysophosphatidylcholines. Empagliflozin also induces a decrease in the levels of the markers of inflammation IL-6, chemerin and chemerin receptor in the liver. Our results provide new evidences regarding the molecular pathways through which empagliflozin could exert hepatoprotector beneficial effects in T2DM.
Collapse
Affiliation(s)
- Alana Aragón-Herrera
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Manuel Otero-Santiago
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Laura Anido-Varela
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Sandra Moraña-Fernández
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Manuel Campos-Toimil
- Group of Pharmacology of Chronic Diseases (CD Pharma), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomás García-Caballero
- Department of Morphological Sciences, University of Santiago de Compostela and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Luis Barral
- Group of Polymers, Department of Physics and Earth Sciences, University of La Coruña, La Coruña, Spain
| | - Estefanía Tarazón
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain.,Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Esther Roselló-Lletí
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain.,Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Manuel Portolés
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain.,Cardiocirculatory Unit, Health Research Institute of La Fe University Hospital, Valencia, Spain
| | - Oreste Gualillo
- Laboratory of Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Isabel Moscoso
- Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) and Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ricardo Lage
- Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) and Institute of Biomedical Research of Santiago de Compostela (IDIS-SERGAS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
46
|
Synthesis and Spectroscopic Characterization of Dapagliflozin/Zn (II), Cr (III) and Se (IV) Novel Complexes That Ameliorate Hepatic Damage, Hyperglycemia and Oxidative Injury Induced by Streptozotocin-Induced Diabetic Male Rats and Their Antibacterial Activity. CRYSTALS 2022. [DOI: 10.3390/cryst12030304] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes mellitus (DM) causes an imbalance in the oxidative status of the human body. Three novel Dapagliflozin (Dapg) Zn (II), Cr (III) and Se (IV) complexes were prepared and characterized by elemental analysis, IR, electronic spectra, magnetic susceptibility, scanning electron microscopy (SEM) and X-ray diffraction. The molar conductance values confirmed the non-electrolytic nature of the Dapg complexes. According to spectral data, Dapg acts as a bidentate ligand. The thermal analyses of the complexes were studied using the DSC technique. The surface morphology and particle sizes of the Dapg complexes were investigated using SEM and XRD. XRD confirmed the crystalline structure for the complexity. This study investigated the effect of novel metal complexes of Dapg with the metals Zn (II), Cr (III) and Se (IV) on oxidative injury and tissue damage in the hepatic tissue of streptozotocin (STZ)-induced diabetic male rats. DM was experimentally induced in male rats. The diabetic rats received Dapg, Dapg/Zn, Dapg/Cr and Dapg/Se orally for 30 successive days. Male rats exposed to STZ showed multi-histopathological alterations in their hepatic tissue, including inflammatory and structural changes. STZ elevated oxidative stress markers in the hepatic tissue and lowered the antioxidant defense enzymes. Supplementation of Dapg with Zn, Cr or Se novel complexes significantly prevented hepatic injury and suppressed the generation of reactive oxygen species. The Dapg/Zn complex was highly effective against Bacillus subtilis and Streptococcus penumonia, while Dapg/Cr was highly effective against Escherichia coli and Pseudomonas aeruginosa, and Dapg/Se was highly effective against Staphylococcus aureas. In conclusion, Dapg novel metal complexes with Zn, Cr or Se protect against oxidative injury and the pathophysiological and bacterial complications of DM and hepatic tissue injury. The Dapg novel metal complexes improved hepatic functions, reduced blood glucose levels and enhanced the levels of antioxidant defense enzymes in diabetic male rats.
Collapse
|
47
|
Linagliptin ameliorates acetic acid-induced colitis via modulating AMPK/SIRT1/PGC-1α and JAK2/STAT3 signaling pathway in rats. Toxicol Appl Pharmacol 2022; 438:115906. [PMID: 35122774 DOI: 10.1016/j.taap.2022.115906] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Ulcerative colitis is a chronic inflammatory disease, profoundly affecting the patient's quality of life and is associated with various complications. Linagliptin, a potent DPP- IV inhibitor, shows favorable anti-inflammatory effects in several animal model pathologies. To this end, the present study aimed to investigate the anti-inflammatory effect of linagliptin in a rat model of acetic acid-induced colitis. Moreover, the molecular mechanisms behind this effect were addressed. Accordingly, colitis was established by the administration of a 2 ml 6% acetic acid intrarectally and treatment with linagliptin (5 mg/kg) started 24 h after colitis induction and continued for 7 days. On one hand, the DPP-IV inhibitor alleviated the severity of colitis as evidenced by a decrease of disease activity index (DAI) scores, colon weight/length ratio, macroscopic damage, and histopathological deteriorations. Additionally, linagliptin diminished colon inflammation via attenuation of TNF-α, IL-6, and NF-κB p65 besides restoration of anti-inflammatory cytokine IL-10. On the other hand, linagliptin increased levels of p-AMPK, SIRT1, and PGC-1α while abolishing the increment in p-JAK2 and p-STAT3. In parallel linagliptin reduced mTOR levels and upregulated expression levels of SHP and MKP-1 which is postulated to mediate AMPK-driven JAK2/STAT3 inhibition. Based on these findings, linagliptin showed promising anti-inflammatory activity against acetic acid-induced colitis that is mainly attributed to the activation of the AMPK-SIRT1-PGC-1α pathway as well as suppression of the JAK2/STAT3 signaling pathway that might be partly mediated through AMPK activation.
Collapse
|
48
|
Hazem RM, Ibrahim AZ, Ali DA, Moustafa YM. Dapagliflozin improves steatohepatitis in diabetic rats via inhibition of oxidative stress and inflammation. Int Immunopharmacol 2022; 104:108503. [PMID: 34998036 DOI: 10.1016/j.intimp.2021.108503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/19/2021] [Accepted: 12/26/2021] [Indexed: 12/11/2022]
Abstract
Type-2 diabetes mellitus and NAFLD are considered as one of the greatest worldwide metabolic disorders with growing incidence. It was found that patients with T2DM have two-fold increase to develop NAFLD. Evidence that some antidiabetic agents improve NAFLD/NASH in patients with T2DM is evolving. However, there are no certain pharmacologic therapies. The current study aimed to investigate the underlying mechanisms for the hepatoprotective effect of dapagliflozin against steatohepatitis in diabetic rats. Type-2 diabetes was induced by HFD followed by a single dose of STZ (30 mg/kg I.P). Fifty rats were randomly divided into 5 groups: Group1; normal control, Group 2; diabetic control, Groups (3-5); diabetic rats received daily dapagliflozin (0.75, 1.5, 3 mg/kg, p.o.) respectively for 6 weeks. At the end of the experiment, blood glucose level and serum insulin were measured. Hepatic tissue homogenization was performed for measuring inflammatory and oxidative stress markers. In addition, histopathological investigation of the hepatic tissue was done. Diabetic rats exhibited remarkable increase in liver weight and liver enzymes, along with histopathological changes, significant elevation in MDA, IL-1 β, TGFβ levels and, NF-κB, alpha-SMA expressions. Dapagliflozin treatment decreased liver weight, liver enzymes, together with marked improvement in histopathological changes. Furthermore, dapagliflozin increased antioxidant enzymes, GSH levels. Interestingly, Dapagliflozin reduced IL-1 β, TGFβ levels and, NF-κB, alpha-SMA expressions. Present data show that dapagliflozin represent a viable approach to protect the liver against diabetes-encouraged steatohepatitis through inhibiting oxidative stress, inflammation and fibrosis progression thus conserving liver function.
Collapse
Affiliation(s)
- Reem M Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed Z Ibrahim
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Dina A Ali
- Department of clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Yasser M Moustafa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University, Cairo 11829, Egypt
| |
Collapse
|
49
|
SantaCruz-Calvo S, Bharath L, Pugh G, SantaCruz-Calvo L, Lenin RR, Lutshumba J, Liu R, Bachstetter AD, Zhu B, Nikolajczyk BS. Adaptive immune cells shape obesity-associated type 2 diabetes mellitus and less prominent comorbidities. Nat Rev Endocrinol 2022; 18:23-42. [PMID: 34703027 PMCID: PMC11005058 DOI: 10.1038/s41574-021-00575-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are increasing in prevalence owing to decreases in physical activity levels and a shift to diets that include addictive and/or high-calorie foods. These changes are associated with the adoption of modern lifestyles and the presence of an obesogenic environment, which have resulted in alterations to metabolism, adaptive immunity and endocrine regulation. The size and quality of adipose tissue depots in obesity, including the adipose tissue immune compartment, are critical determinants of overall health. In obesity, chronic low-grade inflammation can occur in adipose tissue that can progress to systemic inflammation; this inflammation contributes to the development of insulin resistance, T2DM and other comorbidities. An improved understanding of adaptive immune cell dysregulation that occurs during obesity and its associated metabolic comorbidities, with an appreciation of sex differences, will be critical for repurposing or developing immunomodulatory therapies to treat obesity and/or T2DM-associated inflammation. This Review critically discusses how activation and metabolic reprogramming of lymphocytes, that is, T cells and B cells, triggers the onset, development and progression of obesity and T2DM. We also consider the role of immunity in under-appreciated comorbidities of obesity and/or T2DM, such as oral cavity inflammation, neuroinflammation in Alzheimer disease and gut microbiome dysbiosis. Finally, we discuss previous clinical trials of anti-inflammatory medications in T2DM and consider the path forward.
Collapse
Affiliation(s)
- Sara SantaCruz-Calvo
- Department of Pharmacology and Nutritional Sciences and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA.
| | - Leena Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA, USA
| | - Gabriella Pugh
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Lucia SantaCruz-Calvo
- Department of Chemistry and Food Technology, Technical University of Madrid, Madrid, Spain
| | - Raji Rajesh Lenin
- Department of Pharmacology and Nutritional Sciences and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA
| | - Jenny Lutshumba
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Rui Liu
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Beibei Zhu
- Department of Pharmacology and Nutritional Sciences and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA
| | - Barbara S Nikolajczyk
- Department of Pharmacology and Nutritional Sciences and the Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
50
|
Santos-Laso A, Gutiérrez-Larrañaga M, Alonso-Peña M, Medina JM, Iruzubieta P, Arias-Loste MT, López-Hoyos M, Crespo J. Pathophysiological Mechanisms in Non-Alcoholic Fatty Liver Disease: From Drivers to Targets. Biomedicines 2021; 10:biomedicines10010046. [PMID: 35052726 PMCID: PMC8773141 DOI: 10.3390/biomedicines10010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by the excessive and detrimental accumulation of liver fat as a result of high-caloric intake and/or cellular and molecular abnormalities. The prevalence of this pathological event is increasing worldwide, and is intimately associated with obesity and type 2 diabetes mellitus, among other comorbidities. To date, only therapeutic strategies based on lifestyle changes have exhibited a beneficial impact on patients with NAFLD, but unfortunately this approach is often difficult to implement, and shows poor long-term adherence. For this reason, great efforts are being made to elucidate and integrate the underlying pathological molecular mechanism, and to identify novel and promising druggable targets for therapy. In this regard, a large number of clinical trials testing different potential compounds have been performed, albeit with no conclusive results yet. Importantly, many other clinical trials are currently underway with results expected in the near future. Here, we summarize the key aspects of NAFLD pathogenesis and therapeutic targets in this frequent disorder, highlighting the most recent advances in the field and future research directions.
Collapse
Affiliation(s)
- Alvaro Santos-Laso
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
- Correspondence: (A.S.-L.); (J.C.)
| | - María Gutiérrez-Larrañaga
- Department of Immunology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.G.-L.); (M.L.-H.)
| | - Marta Alonso-Peña
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
| | - Juan M. Medina
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
| | - Paula Iruzubieta
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - María Teresa Arias-Loste
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - Marcos López-Hoyos
- Department of Immunology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.G.-L.); (M.L.-H.)
| | - Javier Crespo
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), 28029 Madrid, Spain
- Correspondence: (A.S.-L.); (J.C.)
| |
Collapse
|