1
|
Boo KJ, Kim DH, Cho E, Kim DH, Jeon SJ, Shin CY. Neonatal dysregulation of 2-arachidonoylglycerol induces impaired brain function in adult mice. Neuropharmacology 2024; 257:110045. [PMID: 38885736 DOI: 10.1016/j.neuropharm.2024.110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
The endocannabinoid system (ECS) regulates neurotransmission linked to synaptic plasticity, cognition, and emotion. While it has been demonstrated that dysregulation of the ECS in adulthood is relevant not only to central nervous system (CNS) disorders such as autism spectrum disorder, cognitive dysfunction, and depression but also to brain function, there are few studies on how dysregulation of the ECS in the neonatal period affects the manifestation and pathophysiology of CNS disorders later in life. In this study, DO34, a diacylglycerol lipase alpha (DAGLα) inhibitor affecting endocannabinoid 2-AG production, was injected into C57BL/6N male mice from postnatal day (PND) 7 to PND 10, inducing dysregulation of the ECS in the neonatal period. Subsequently, we examined whether it affects neuronal function in adulthood through electrophysiological and behavioral evaluation. DO34-injected mice showed significantly decreased cognitive functions, attributed to impairment of hippocampal synaptic plasticity. The findings suggest that regulation of ECS activity in the neonatal period may induce enduring effects on adult brain function.
Collapse
Affiliation(s)
- Kyung-Jun Boo
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dae Hyun Kim
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea
| | - Eunbi Cho
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Se Jin Jeon
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea.
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029, Republic of Korea; Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Institute of Biomedical Sciences & Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
2
|
Ibsen EWD, Thomsen PH. Cannabinoids as alleviating treatment for core symptoms of autism spectrum disorder in children and adolescents: a systematic review. Nord J Psychiatry 2024; 78:553-560. [PMID: 39037073 DOI: 10.1080/08039488.2024.2381541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder affecting about 1% of children. The disorder is characterized by difficulties within three core symptoms: social interactions, communication, and restricted or repetitive behavior. There is currently no approved psychopharmacological treatment; however, it is hypothesized that ASD symptoms might be ameliorated by manipulating the endocannabinoid (eCB) system.This study aims to review the existing research on cannabinoids as a potential effective treatment for the core symptoms of ASD in children and adolescents. METHODS A literature search was conducted on PubMed, Embase, APA PsychInfo, and Cochrane. The available literature was screened, and studies were included if: the study population consisted of children/adolescents, the treatment involved cannabinoids, and the outcome assessed was the impact on core ASD symptoms. RESULTS The search yielded five studies, two RCTs and three cohort studies. All the included studies reported an effect of the cannabinoid treatment; however, most of these effects were non-significant and not related to core symptoms. Only one study found a significant improvement on all three core symptoms. The risk of bias was rated as "high" or "very high" in four studies and as "low" in one study. DISCUSSION Although the included studies did not find substantial results regarding core ASD symptoms, they all reported that cannabinoid treatment had other positive effects. However, Long term outcome is unknown, and safety aspects are scarcely discussed. CONCLUSION Based on this review, the effect of cannabinoid treatment on ASD core symptoms is not clear; therefore, further studies are required.
Collapse
Affiliation(s)
- Emma Wen Dieperink Ibsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Child and Adolescent Psychiatry, Research Unit, Aarhus University Hospital, Psychiatry, Aarhus, Denmark
| | - Per Hove Thomsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Child and Adolescent Psychiatry, Research Unit, Aarhus University Hospital, Psychiatry, Aarhus, Denmark
| |
Collapse
|
3
|
Inamassu CH, Raspini E Silva L, Marchioni C. Recent advances in the chromatographic analysis of endocannabinoids and phytocannabinoids in biological samples. J Chromatogr A 2024; 1732:465225. [PMID: 39128236 DOI: 10.1016/j.chroma.2024.465225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Endocannabinoid system, including endocannabinoid neurotransmitters (eCBs), has gained much attention over the last years due to its involvement with the pathophysiology of diseases and the potential use of Cannabis sativa (marijuana). The identification of eCBs and phytocannabinoids in biological samples for forensic, clinical, or therapeutic drug monitoring purposes constitutes a still significant challenge. In this scoping review, the recent advantages, and limitations of the eCBs and phytocannabinoids quantification in biological samples are described. Published studies from 2018-2023 were searched in 8 databases, and after screening and exclusions, the selected 38 articles had their data tabulated, summarized, and analyzed. The main characteristics of the eCBs and phytocannabinoids analyzed and the potential use of each biological sample were described, indicating gaps in the literature that still need to be explored. Well-established and innovative sample preparation protocols, and chromatographic separations, such as GC, HPLC, and UHPLC, are reviewed highlighting their respective advantages, drawbacks, and challenges. Lastly, future approaches, challenges, and tendencies in the quantification analysis of cannabinoids are discussed.
Collapse
Affiliation(s)
- Carolina Henkes Inamassu
- Program on Pharmacology, Federal University of Santa Catarina, Campus Universitário, s/n, Sala 208, Bloco E, Prédio Administrativo - Córrego Grande, Florianópolis, SC 88040-900, Brazil
| | - Luisa Raspini E Silva
- Program on Pharmacology, Federal University of Santa Catarina, Campus Universitário, s/n, Sala 208, Bloco E, Prédio Administrativo - Córrego Grande, Florianópolis, SC 88040-900, Brazil
| | - Camila Marchioni
- Department of Pathology, Federal University of Santa Catarina, Rua Engenheiro Agronômico Andrei Cristian Ferreira, s/n - Trindade, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
4
|
Woodward TJ, Dimen D, Sizemore EF, Stockman S, Kazi F, Luquet S, Mackie K, Katona I, Hohmann AG. Genetic deletion of NAPE-PLD induces context-dependent dysregulation of anxiety-like behaviors, stress responsiveness, and HPA-axis functionality in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612324. [PMID: 39314440 PMCID: PMC11419048 DOI: 10.1101/2024.09.10.612324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The endocannabinoid (eCB) system regulates stress responsiveness and hypothalamic-pituitary-adrenal (HPA) axis activity. The enzyme N -acyl phosphatidylethanolamine phospholipase-D (NAPE-PLD) is primarily responsible for the synthesis of the endocannabinoid signaling molecule anandamide (AEA) and other structurally related lipid signaling molecules known as N -acylethanolamines (NAEs). However, little is known about how activity of this enzyme affects behavior. As AEA plays a regulatory role in stress adaptation, we hypothesized that reducing synthesis of AEA and other NAEs would dysregulate stress reactivity. To test this hypothesis, we evaluated wild type (WT) and NAPE-PLD knockout (KO) mice in behavioral assays that assess stress responsiveness and anxiety-like behavior. NAPE-PLD KO mice exhibited anxiety-like behaviors in the open field test and the light-dark box test after a period of single housing. NAPE-PLD KO mice exhibited a heightened freezing response to the testing environment that was further enhanced by exposure to 2,3,5-trimethyl-3-thiazoline (TMT) predator odor. NAPE-PLD KO mice exhibited an exaggerated freezing response at baseline but blunted response to TMT when compared to WT mice. NAPE-PLD KO mice also exhibited a context-dependent dysregulation of HPA axis in response to TMT in the paraventricular hypothalamic nucleus at a neuronal level, as measured by c-Fos immunohistochemstry. Male, but not female, NAPE-PLD knockout mice showed higher levels of circulating corticosterone relative to same-sex wildtype mice in response to TMT exposure, suggesting a sexually-dimorphic dysregulation of the HPA axis at the hormonal level. Together, these findings suggest the enzymatic activity of NAPE-PLD regulates emotional resilience and recovery from both acute and sustained stress. Significance Statement The endocannabinoid anandamide (AEA) regulates stress responsiveness and activity of the hypothalamic-pituitary-adrenal (HPA) axis. Currently, little is known about how an enzyme (i.e. N -acylphosphatidylethanolamine phospholipase-D (NAPE-PLD)) involved in the synthesis of AEA affects behavior. We hypothesized that genetic deletion of NAPE-PLD would dysregulate responsiveness to stress at a behavioral and neuronal level. Our studies provide insight into potential vulnerabilities to stress and anxiety that may result from dysregulation of the enzyme NAPE-PLD in people.
Collapse
|
5
|
Sannar EM, Winter JR, Franke RK, Werner E, Rochowiak R, Romani PW, Miller OS, Bainbridge JL, Enabulele O, Thompson T, Natvig C, Mikulich-Gilbertson SK, Tartaglia NR. Cannabidiol for treatment of Irritability and Aggressive Behavior in Children and Adolescents with ASD: Background and Methods of the CAnnabidiol Study in Children with Autism Spectrum DisordEr (CASCADE) Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.12.24311894. [PMID: 39211864 PMCID: PMC11361222 DOI: 10.1101/2024.08.12.24311894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Introduction Autism spectrum disorder (ASD) is a neurodevelopmental disorder commonly associated with behavioral challenges. There are few evidence based pharmacological interventions available for the treatment of behavioral symptoms associated with ASD. Cannabidiol (CBD), the non-psychoactive component of cannabis, has potential neuroprotective, antiepileptic, anxiolytic, and antipsychotic effects and may be useful in treating the behavioral symptoms of ASD. Methods We describe the research methods of a 27-week double-blind placebo-controlled cross-over trial of cannabidiol for the treatment of irritability and aggression associated with ASD, utilizing the irritability subscale of the Aberrant Behavior Checklist-2nd edition (ABC-2) as the primary outcome measure. Adverse effects and safety monitoring protocols are included. Several secondary and exploratory outcomes measures also include anxiety, communication, repetitive behaviors, attention, hyperactivity, autism family experience, and telehealth functional behavior assessment. Conclusion There is a significant need for clinical research exploring alternative medications for the treatment of behavioral symptoms of ASD. Cannabidiol (CBD) is being studied for the management of irritability, aggression, and other problem behaviors associated with ASD.
Collapse
|
6
|
Amir Hamzah K, Turner N, Nichols D, Ney LJ. Advances in targeted liquid chromatography-tandem mass spectrometry methods for endocannabinoid and N-acylethanolamine quantification in biological matrices: A systematic review. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38958096 DOI: 10.1002/mas.21897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024]
Abstract
Liquid chromatography paired with tandem mass spectrometry (LC-MS/MS) is the gold standard in measurement of endocannabinoid concentrations in biomatrices. We conducted a systematic review of literature to identify advances in targeted LC-MS/MS methods in the period 2017-2024. We found that LC-MS/MS methods for endocannabinoid quantification are relatively consistent both across time and across biomatrices. Recent advances have primarily been in three areas: (1) sample preparation techniques, specific to the chosen biomatrix; (2) the range of biomatrices tested, recently favoring blood matrices; and (3) the breadth of endocannabinoid and endocannabinoid-like analytes incorporated into assays. This review provides a summary of the recent literature and a guide for researchers looking to establish the best methods for quantifying endocannabinoids in a range of biomatrices.
Collapse
Affiliation(s)
- Khalisa Amir Hamzah
- School of Psychology and Counselling, Department of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Natalie Turner
- The Centre for Children's Health Research, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - David Nichols
- Central Science Laboratory, Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Luke J Ney
- School of Psychology and Counselling, Department of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| |
Collapse
|
7
|
Pedrazzi JFC, Hassib L, Ferreira FR, Hallak JC, Del-Bel E, Crippa JA. Therapeutic potential of CBD in Autism Spectrum Disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:149-203. [PMID: 39029984 DOI: 10.1016/bs.irn.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and interaction, as well as restricted and repetitive patterns of behavior. Despite extensive research, effective pharmacological interventions for ASD remain limited. Cannabidiol (CBD), a non-psychotomimetic compound of the Cannabis sativa plant, has potential therapeutic effects on several neurological and psychiatric disorders. CBD interacts with the endocannabinoid system, a complex cell-signaling system that plays a crucial role in regulating various physiological processes, maintaining homeostasis, participating in social and behavioral processing, and neuronal development and maturation with great relevance to ASD. Furthermore, preliminary findings from clinical trials indicate that CBD may have a modulatory effect on specific ASD symptoms and comorbidities in humans. Interestingly, emerging evidence suggests that CBD may influence the gut microbiota, with implications for the bidirectional communication between the gut and the central nervous system. CBD is a safe drug with low induction of side effects. As it has a multi-target pharmacological profile, it becomes a candidate compound for treating the central symptoms and comorbidities of ASD.
Collapse
Affiliation(s)
- João F C Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Lucas Hassib
- Department of Mental Health, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Jaime C Hallak
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Del-Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; National Institute for Science and Technology, Translational Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cannabinoid Research, Mental Health Building, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José A Crippa
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
8
|
Dallabrida KG, de Oliveira Bender JM, Chade ES, Rodrigues N, Sampaio TB. Endocannabinoid System Changes throughout Life: Implications and Therapeutic Potential for Autism, ADHD, and Alzheimer's Disease. Brain Sci 2024; 14:592. [PMID: 38928592 PMCID: PMC11202267 DOI: 10.3390/brainsci14060592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The endocannabinoid system has been linked to various physiological and pathological processes, because it plays a neuromodulator role in the central nervous system. In this sense, cannabinoids have been used off-label for neurodevelopmental disorders, such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHA), as well as in Alzheimer's disease (AD), a more prevalent neurodegenerative disease. Thus, this study aims, through a comprehensive literature review, to arrive at a better understanding of the impact of cannabinoids in the therapeutic treatment of patients with ASD, ADHD, and Alzheimer's disease (AD). Overall, cannabis products rich in CBD displayed a higher therapeutic potential for ASD children, while cannabis products rich in THC have been tested more for AD therapy. For ADHD, the clinical studies are incipient and inconclusive, but promising. In general, the main limitations of the clinical studies are the lack of standardization of the cannabis-based products consumed by the participants, a lack of scientific rigor, and the small number of participants.
Collapse
Affiliation(s)
| | | | - Ellen Schavarski Chade
- Department of Pharmacy, State University of Centro Oeste, Guarapuava 85040-167, PR, Brazil
| | - Nathalia Rodrigues
- Department of Medicine, State University of Centro Oeste, Guarapuava 85040-167, PR, Brazil
| | | |
Collapse
|
9
|
Stasiłowicz-Krzemień A, Nogalska W, Maszewska Z, Maleszka M, Dobroń M, Szary A, Kępa A, Żarowski M, Hojan K, Lukowicz M, Cielecka-Piontek J. The Use of Compounds Derived from Cannabis sativa in the Treatment of Epilepsy, Painful Conditions, and Neuropsychiatric and Neurodegenerative Disorders. Int J Mol Sci 2024; 25:5749. [PMID: 38891938 PMCID: PMC11171823 DOI: 10.3390/ijms25115749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Neurological disorders present a wide range of symptoms and challenges in diagnosis and treatment. Cannabis sativa, with its diverse chemical composition, offers potential therapeutic benefits due to its anticonvulsive, analgesic, anti-inflammatory, and neuroprotective properties. Beyond cannabinoids, cannabis contains terpenes and polyphenols, which synergistically enhance its pharmacological effects. Various administration routes, including vaporization, oral ingestion, sublingual, and rectal, provide flexibility in treatment delivery. This review shows the therapeutic efficacy of cannabis in managing neurological disorders such as epilepsy, neurodegenerative diseases, neurodevelopmental disorders, psychiatric disorders, and painful pathologies. Drawing from surveys, patient studies, and clinical trials, it highlights the potential of cannabis in alleviating symptoms, slowing disease progression, and improving overall quality of life for patients. Understanding the diverse therapeutic mechanisms of cannabis can open up possibilities for using this plant for individual patient needs.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Wiktoria Nogalska
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Zofia Maszewska
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Mateusz Maleszka
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Maria Dobroń
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Agnieszka Szary
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Aleksandra Kępa
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
| | - Marcin Żarowski
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewski 49, 60-355 Poznan, Poland;
| | - Katarzyna Hojan
- Department of Occupational Therapy, Poznan University of Medical Sciences, Swięcickiego 6, 61-847 Poznan, Poland;
- Department of Rehabilitation, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Malgorzata Lukowicz
- Department of Rehabilitation, Centre of Postgraduate Medical Education, Konarskiego 13, 05-400 Otwock, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|
10
|
Dammann I, Rohleder C, Leweke FM. Cannabidiol and its Potential Evidence-Based Psychiatric Benefits - A Critical Review. PHARMACOPSYCHIATRY 2024; 57:115-132. [PMID: 38267003 DOI: 10.1055/a-2228-6118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The endocannabinoid system shows promise as a novel target for treating psychiatric conditions. Cannabidiol (CBD), a naturally occurring cannabinoid, has been investigated in several psychiatric conditions, with diverse effects and an excellent safety profile compared to standard treatments. Even though the body of evidence from randomised clinical trials is growing, it remains relatively limited in most indications. This review comprises a comprehensive literature search to identify clinical studies on the effects of CBD in psychiatric conditions. The literature search included case studies, case reports, observational studies, and RCTs published in English before July 27, 2023, excluding studies involving nabiximols or cannabis extracts containing CBD and ∆9-tetrahydrocannabinol. Completed studies were considered, and all authors independently assessed relevant publications.Of the 150 articles identified, 54 publications were included, covering the effects of CBD on healthy subjects and various psychiatric conditions, such as schizophrenia, substance use disorders (SUDs), anxiety, post-traumatic stress disorder (PTSD), and autism spectrum disorders. No clinical studies have been published for other potential indications, such as alcohol use disorder, borderline personality disorder, depression, dementia, and attention-deficit/hyperactivity disorder. This critical review highlights that CBD can potentially ameliorate certain psychiatric conditions, including schizophrenia, SUDs, and PTSD. However, more controlled studies and clinical trials, particularly investigating the mid- to long-term use of CBD, are required to conclusively establish its efficacy and safety in treating these conditions. The complex effects of CBD on neural activity patterns, likely by impacting the endocannabinoid system, warrant further research to reveal its therapeutic potential in psychiatry.
Collapse
Affiliation(s)
- Inga Dammann
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Endosane Pharmaceuticals GmbH, Berlin, Germany
| | - Cathrin Rohleder
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Endosane Pharmaceuticals GmbH, Berlin, Germany
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - F Markus Leweke
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
11
|
Manduca A, Buzzelli V, Rava A, Feo A, Carbone E, Schiavi S, Peruzzi B, D'Oria V, Pezzullo M, Pasquadibisceglie A, Polticelli F, Micale V, Kuchar M, Trezza V. Cannabidiol and positive effects on object recognition memory in an in vivo model of Fragile X Syndrome: Obligatory role of hippocampal GPR55 receptors. Pharmacol Res 2024; 203:107176. [PMID: 38583687 DOI: 10.1016/j.phrs.2024.107176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Cannabidiol (CBD), a non-psychotomimetic constituent of Cannabis sativa, has been recently approved for epileptic syndromes often associated with Autism spectrum disorder (ASD). However, the putative efficacy and mechanism of action of CBD in patients suffering from ASD and related comorbidities remain debated, especially because of the complex pharmacology of CBD. We used pharmacological, immunohistochemical and biochemical approaches to investigate the effects and mechanisms of action of CBD in the recently validated Fmr1-Δexon 8 rat model of ASD, that is also a model of Fragile X Syndrome (FXS), the leading monogenic cause of autism. CBD rescued the cognitive deficits displayed by juvenile Fmr1-Δexon 8 animals, without inducing tolerance after repeated administration. Blockade of CA1 hippocampal GPR55 receptors prevented the beneficial effect of both CBD and the fatty acid amide hydrolase (FAAH) inhibitor URB597 in the short-term recognition memory deficits displayed by Fmr1-Δexon 8 rats. Thus, CBD may exert its beneficial effects through CA1 hippocampal GPR55 receptors. Docking analysis further confirmed that the mechanism of action of CBD might involve competition for brain fatty acid binding proteins (FABPs) that deliver anandamide and related bioactive lipids to their catabolic enzyme FAAH. These findings demonstrate that CBD reduced cognitive deficits in a rat model of FXS and provide initial mechanistic insights into its therapeutic potential in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Antonia Manduca
- Dept. Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Dept. Science, Roma Tre University, Rome, Italy; Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | | | | | | | | | | | - Barbara Peruzzi
- Bone Physiopathology Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina D'Oria
- Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Pezzullo
- Histology Core Facility, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | - Vincenzo Micale
- Dept. Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Substances, Dept. Chemistry of Natural Compounds, University of Chemistry and Technologies, Prague, Czech Republic; Psychedelic Research Center, National Institute of Mental Health, Klecany, Czech Republic
| | - Viviana Trezza
- Dept. Science, Roma Tre University, Rome, Italy; Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
12
|
Aran A, Cayam Rand D. Cannabinoid treatment for the symptoms of autism spectrum disorder. Expert Opin Emerg Drugs 2024; 29:65-79. [PMID: 38226593 DOI: 10.1080/14728214.2024.2306290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting approximately 3% of school-age children. The core symptoms are deficits in social communication and restricted and repetitive patterns of behavior. Associated problems in cognition, language, behavior, sleep and mood are prevalent. Currently, no established pharmacological treatment exists for core ASD symptoms. Risperidone and aripiprazole are used to manage associated irritability, but their effectiveness is limited and adverse events are common. AREAS COVERED This mini-review summarizes existing scientific literature and ongoing clinical trials concerning cannabinoid treatment for ASD. Uncontrolled case series have documented improvements in both core ASD symptoms and related behavioral challenges in children treated with cannabis extracts rich in cannabidiol (CBD). Placebo-controlled studies involving CBD-rich cannabis extracts and/or pure CBD in children with ASD have demonstrated mixed efficacy results. A similar outcome was observed in a placebo-controlled study of pure CBD addressing social avoidance in Fragile X syndrome. Importantly, these studies have shown relatively high safety and tolerability. EXPERT OPINION While current clinical data suggest the potential of CBD and CBD-rich cannabis extract in managing core and behavioral deficits in ASD, it is prudent to await the results of ongoing placebo-controlled trials before considering CBD treatment for ASD.
Collapse
Affiliation(s)
- Adi Aran
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- Israel School of Medicine, Hebrew university of Jerusalem, Jerusalem, Israel
| | - Dalit Cayam Rand
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- Israel School of Medicine, Hebrew university of Jerusalem, Jerusalem, Israel
| |
Collapse
|
13
|
Cherry AL, Wheeler MJ, Mathisova K, Di Miceli M. In silico analyses of the involvement of GPR55, CB1R and TRPV1: response to THC, contribution to temporal lobe epilepsy, structural modeling and updated evolution. Front Neuroinform 2024; 18:1294939. [PMID: 38404644 PMCID: PMC10894036 DOI: 10.3389/fninf.2024.1294939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction The endocannabinoid (eCB) system is named after the discovery that endogenous cannabinoids bind to the same receptors as the phytochemical compounds found in Cannabis. While endogenous cannabinoids include anandamide (AEA) and 2-arachidonoylglycerol (2-AG), exogenous phytocannabinoids include Δ-9 tetrahydrocannabinol (THC) and cannabidiol (CBD). These compounds finely tune neurotransmission following synapse activation, via retrograde signaling that activates cannabinoid receptor 1 (CB1R) and/or transient receptor potential cation channel subfamily V member 1 (TRPV1). Recently, the eCB system has been linked to several neurological diseases, such as neuro-ocular abnormalities, pain insensitivity, migraine, epilepsy, addiction and neurodevelopmental disorders. In the current study, we aim to: (i) highlight a potential link between the eCB system and neurological disorders, (ii) assess if THC exposure alters the expression of eCB-related genes, and (iii) identify evolutionary-conserved residues in CB1R or TRPV1 in light of their function. Methods To address this, we used several bioinformatic approaches, such as transcriptomic (Gene Expression Omnibus), protein-protein (STRING), phylogenic (BLASTP, MEGA) and structural (Phyre2, AutoDock, Vina, PyMol) analyzes. Results Using RNA sequencing datasets, we did not observe any dysregulation of eCB-related transcripts in major depressive disorders, bipolar disorder or schizophrenia in the anterior cingulate cortex, nucleus accumbens or dorsolateral striatum. Following in vivo THC exposure in adolescent mice, GPR55 was significantly upregulated in neurons from the ventral tegmental area, while other transcripts involved in the eCB system were not affected by THC exposure. Our results also suggest that THC likely induces neuroinflammation following in vitro application on mice microglia. Significant downregulation of TPRV1 occurred in the hippocampi of mice in which a model of temporal lobe epilepsy was induced, confirming previous observations. In addition, several transcriptomic dysregulations were observed in neurons of both epileptic mice and humans, which included transcripts involved in neuronal death. When scanning known interactions for transcripts involved in the eCB system (n = 12), we observed branching between the eCB system and neurophysiology, including proteins involved in the dopaminergic system. Our protein phylogenic analyzes revealed that CB1R forms a clade with CB2R, which is distinct from related paralogues such as sphingosine-1-phosphate, receptors, lysophosphatidic acid receptors and melanocortin receptors. As expected, several conserved residues were identified, which are crucial for CB1R receptor function. The anandamide-binding pocket seems to have appeared later in evolution. Similar results were observed for TRPV1, with conserved residues involved in receptor activation. Conclusion The current study found that GPR55 is upregulated in neurons following THC exposure, while TRPV1 is downregulated in temporal lobe epilepsy. Caution is advised when interpreting the present results, as we have employed secondary analyzes. Common ancestors for CB1R and TRPV1 diverged from jawless vertebrates during the late Ordovician, 450 million years ago. Conserved residues are identified, which mediate crucial receptor functions.
Collapse
Affiliation(s)
- Amy L. Cherry
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Michael J. Wheeler
- Sustainable Environments Research Group, School of Science and the Environment University of Worcester, Worcester, United Kingdom
| | - Karolina Mathisova
- School of Science and the Environment University of Worcester, Worcester, United Kingdom
| | - Mathieu Di Miceli
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
14
|
Rice LJ, Cannon L, Dadlani N, Cheung MMY, Einfeld SL, Efron D, Dossetor DR, Elliott EJ. Efficacy of cannabinoids in neurodevelopmental and neuropsychiatric disorders among children and adolescents: a systematic review. Eur Child Adolesc Psychiatry 2024; 33:505-526. [PMID: 36864363 PMCID: PMC10869397 DOI: 10.1007/s00787-023-02169-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
A better understanding of the endocannabinoid system and a relaxation in regulatory control of cannabis globally has increased interest in the medicinal use of cannabinoid-based products (CBP). We provide a systematic review of the rationale and current clinical trial evidence for CBP in the treatment of neuropsychiatric and neurodevelopmental disorders in children and adolescents. A systematic search of MEDLINE, Embase, PsycINFO, and the Cochrane Central Register of Trials was performed to identify articles published after 1980 about CBP for medical purposes in individuals aged 18 years or younger with selected neuropsychiatric or neurodevelopmental conditions. Risk of bias and quality of evidence was assessed for each article. Of 4466 articles screened, 18 were eligible for inclusion, addressing eight conditions (anxiety disorders (n = 1); autism spectrum disorder (n = 5); foetal alcohol spectrum disorder (n = 1); fragile X syndrome (n = 2); intellectual disability (n = 1); mood disorders (n = 2); post-traumatic stress disorder (n = 3); and Tourette syndrome (n = 3)). Only one randomised controlled trial (RCT) was identified. The remaining seventeen articles included one open-label trial, three uncontrolled before-and-after trials, two case series and 11 case reports, thus the risk of bias was high. Despite growing community and scientific interest, our systematic review identified limited and generally poor-quality evidence for the efficacy of CBP in neuropsychiatric and neurodevelopmental disorders in children and adolescents. Large rigorous RCTs are required to inform clinical care. In the meantime, clinicians must balance patient expectations with the limited evidence available.
Collapse
Affiliation(s)
- Lauren J Rice
- The University of Sydney, Faculty of Medicine and Health, Specialty of Child and Adolescent Health, Sydney, NSW, Australia.
- Sydney Children's Hospitals Network, Kids Research, Sydney, Australia.
- The University of Sydney, Faculty of Medicine and Health, Brain and Mind Centre, Sydney, NSW, Australia.
| | - Lisa Cannon
- The University of Sydney, Faculty of Medicine and Health, Specialty of Child and Adolescent Health, Sydney, NSW, Australia
- Telethon Kids Institute, Perth Children's Hospital, Perth, WA, Australia
| | - Navin Dadlani
- The University of Sydney, Faculty of Medicine and Health, Brain and Mind Centre, Sydney, NSW, Australia
| | - Melissa Mei Yin Cheung
- The University of Sydney, Faculty of Medicine and Health, Specialty of Child and Adolescent Health, Sydney, NSW, Australia
- Sydney Children's Hospitals Network, Kids Research, Sydney, Australia
| | - Stewart L Einfeld
- The University of Sydney, Faculty of Medicine and Health, Brain and Mind Centre, Sydney, NSW, Australia
| | - Daryl Efron
- Department of General Paediatrics, Health Services, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - David R Dossetor
- Sydney Children's Hospitals Network, Kids Research, Sydney, Australia
| | - Elizabeth J Elliott
- The University of Sydney, Faculty of Medicine and Health, Specialty of Child and Adolescent Health, Sydney, NSW, Australia
- Sydney Children's Hospitals Network, Kids Research, Sydney, Australia
| |
Collapse
|
15
|
Hill MN, Haney M, Hillard CJ, Karhson DS, Vecchiarelli HA. The endocannabinoid system as a putative target for the development of novel drugs for the treatment of psychiatric illnesses. Psychol Med 2023; 53:7006-7024. [PMID: 37671673 PMCID: PMC10719691 DOI: 10.1017/s0033291723002465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023]
Abstract
Cannabis is well established to impact affective states, emotion and perceptual processing, primarily through its interactions with the endocannabinoid system. While cannabis use is quite prevalent in many individuals afflicted with psychiatric illnesses, there is considerable controversy as to whether cannabis may worsen these conditions or provide some form of therapeutic benefit. The development of pharmacological agents which interact with components of the endocannabinoid system in more localized and discrete ways then via phytocannabinoids found in cannabis, has allowed the investigation if direct targeting of the endocannabinoid system itself may represent a novel approach to treat psychiatric illness without the potential untoward side effects associated with cannabis. Herein we review the current body of literature regarding the various pharmacological tools that have been developed to target the endocannabinoid system, their impact in preclinical models of psychiatric illness and the recent data emerging of their utilization in clinical trials for psychiatric illnesses, with a specific focus on substance use disorders, trauma-related disorders, and autism. We highlight several candidate drugs which target endocannabinoid function, particularly inhibitors of endocannabinoid metabolism or modulators of cannabinoid receptor signaling, which have emerged as potential candidates for the treatment of psychiatric conditions, particularly substance use disorder, anxiety and trauma-related disorders and autism spectrum disorders. Although there needs to be ongoing clinical work to establish the potential utility of endocannabinoid-based drugs for the treatment of psychiatric illnesses, the current data available is quite promising and shows indications of several potential candidate diseases which may benefit from this approach.
Collapse
Affiliation(s)
- Matthew N. Hill
- Departments of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, Hotchkiss Brain Institute and The Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada
| | - Margaret Haney
- Department of Psychiatry, New York State Psychiatric Institute and Columbia University Irving Medical Center, New York, USA
| | - Cecilia J. Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, USA
| | - Debra S. Karhson
- Department of Psychology, University of New Orleans, New Orleans, USA
| | | |
Collapse
|
16
|
Coelho MP, Duarte P, Calado M, Almeida AJ, Reis CP, Gaspar MM. The current role of cannabis and cannabinoids in health: A comprehensive review of their therapeutic potential. Life Sci 2023; 329:121838. [PMID: 37290668 DOI: 10.1016/j.lfs.2023.121838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
There has been an increased interest of the scientific community in cannabis and its constituents for therapeutic purposes. Although it is believed that cannabinoids can be effective for a few different conditions and syndromes, there are little objective data that clearly support the use of cannabis, cannabis extracts or even cannabidiol (CBD) oil. This review aims to explore the therapeutic potential of phytocannabinoids and synthetic cannabinoids for the treatment of several diseases. A broad search covering the past five years, was performed in PubMed and ClinicalTrial.gov databases, to identify papers focusing on the use of medical phytocannabinoids in terms of tolerability, efficacy and safety. Accordingly, there are preclinical data supporting the use of phytocannabinoids and synthetic cannabinoids for the management of neurological pathologies, acute and chronical pain, cancer, psychiatric disorders and chemotherapy-induced emetic symptoms. However, regarding the clinical trials, most of the collected data do not fully support the use of cannabinoids in the treatment of such conditions. Consequently, more studies are still needed to clarify ascertain if the use of these compounds is useful in the management of different pathologies.
Collapse
Affiliation(s)
- Mariana Pinto Coelho
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Patrícia Duarte
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marta Calado
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - António J Almeida
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Catarina Pinto Reis
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal; IBEB, Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1649-016 Lisboa, Portugal.
| | - M Manuela Gaspar
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
17
|
Parrella NF, Hill AT, Enticott PG, Barhoun P, Bower IS, Ford TC. A systematic review of cannabidiol trials in neurodevelopmental disorders. Pharmacol Biochem Behav 2023; 230:173607. [PMID: 37543051 DOI: 10.1016/j.pbb.2023.173607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Cannabis-derived compounds, such as cannabidiol (CBD) and delta-9-trans-tetrahydrocannabinol (THC), are increasingly prescribed for a range of clinical indications. These phyto-cannabinoids have multiple biological targets, including the body's endocannabinoid system. There is growing scientific interest in the use of CBD, a non-intoxicating compound, to ameliorate symptoms associated with neurodevelopmental disorders. However, its suitability as a pharmaceutical intervention has not been reliably established in these clinical populations. This systematic review examines the nine published randomised controlled trials (RCTs) that have probed the safety and efficacy of CBD in individuals diagnosed with attention deficit hyperactivity disorder, autism spectrum disorder, intellectual disability, Tourette Syndrome, and complex motor disorders. Studies were identified systematically through searching four databases: Medline, CINAHL complete, PsycINFO, and EMBASE. Inclusion criteria were randomised controlled trials involving CBD and participants with neurodevelopmental disorders. No publication year or language restrictions were applied. Relevant data were extracted from the identified list of eligible articles. After extraction, data were cross-checked between the authors to ensure consistency. Several trials indicate potential efficacy, although this possibility is currently too inconsistent across RCTs to confidently guide clinical usage. Study characteristics, treatment properties, and outcomes varied greatly across the included trials. The material lack of comparable RCTs leaves CBD's suitability as a pharmacological treatment for neurodevelopmental disorders largely undetermined. A stronger evidence base is urgently required to establish safety and efficacy profiles and guide the ever-expanding clinical uptake of cannabis-derived compounds in neurodevelopmental disorders. Prospero registration number: CRD42021267839.
Collapse
Affiliation(s)
- Nina-Francecsa Parrella
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria 3125, Australia.
| | - Aron Thomas Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria 3125, Australia; Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Victoria 3145, Australia
| | - Peter Gregory Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria 3125, Australia; Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Victoria 3145, Australia
| | - Pamela Barhoun
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria 3125, Australia
| | - Isabella Simone Bower
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria 3125, Australia; Behaviour, Brain, and Body Research Centre: Justice and Society, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Talitha Caitlyn Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria 3125, Australia; Centre for Human Psychopharmacology, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| |
Collapse
|
18
|
Montagner PSS, Medeiros W, da Silva LCR, Borges CN, Brasil-Neto J, de Deus Silva Barbosa V, Caixeta FV, Malcher-Lopes R. Individually tailored dosage regimen of full-spectrum Cannabis extracts for autistic core and comorbid symptoms: a real-life report of multi-symptomatic benefits. Front Psychiatry 2023; 14:1210155. [PMID: 37671290 PMCID: PMC10475955 DOI: 10.3389/fpsyt.2023.1210155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023] Open
Abstract
Autism Spectrum Disorders (ASD) may significantly impact the well-being of patients and their families. The therapeutic use of cannabis for ASD has gained interest due to its promising results and low side effects, but a consensus on treatment guidelines is lacking. In this study, we conducted a retrospective analysis of 20 patients with autistic symptoms who were treated with full-spectrum cannabis extracts (FCEs) in a response-based, individually-tailored dosage regimen. The daily dosage and relative proportions of cannabidiol (CBD) and tetrahydrocannabinol (THC) were adjusted based on treatment results following periodic clinical evaluation. Most patients (80%) were treated for a minimum of 6 months. We have used a novel, detailed online patient- or caregiver-reported outcome survey that inquired about core and comorbid symptoms, and quality of life. We also reviewed patients' clinical files, and no individual condition within the autistic spectrum was excluded. This real-life approach enabled us to gain a clearer appraisal of the ample scope of benefits that FCEs can provide for ASD patients and their families. Eighteen patients started with a CBD-rich FCE titrating protocol, and in three of them, the CBD-rich (CBD-dominant) FCE was gradually complemented with low doses of a THC-rich (THC-dominant) FCE based on observed effects. Two other patients have used throughout treatment a blend of two FCEs, one CBD-rich and the other THC-rich. The outcomes were mainly positive for most symptoms, and only one patient from each of the two above-mentioned situations displayed important side effects one who has used only CBD-rich FCE throughout the treatment, and another who has used a blend of CBD-Rich and THC-rich FCEs. Therefore, after FCE treatment, 18 out of 20 patients showed improvement in most core and comorbid symptoms of autism, and in quality of life for patients and their families. For them, side effects were mild and infrequent. Additionally, we show, for the first time, that allotriophagy (Pica) can be treated by FCEs. Other medications were reduced or completely discontinued in most cases. Based on our findings, we propose guidelines for individually tailored dosage regimens that may be adapted to locally available qualified FCEs and guide further clinical trials.
Collapse
Affiliation(s)
| | - Wesley Medeiros
- Laboratory of Neuroscience and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Leandro Cruz Ramires da Silva
- Clinical Hospital, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Brazilian Association of Medical Cannabis Patients, Ama-Me, Belo Horizonte, Brazil
| | - Clarissa Nogueira Borges
- Specialized Educational Care Division for Gifted Students of the Department of Education of the Federal District, Brasília, Brazil
| | | | - Vinícius de Deus Silva Barbosa
- Medical Cannabis Center–Syrian-Lebanese Hospital, São Paulo, Brazil
- National Association for Inclusion of the Autistic People, São Paulo, Brazil
| | - Fabio V. Caixeta
- Laboratory of Neuroscience and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Renato Malcher-Lopes
- Laboratory of Neuroscience and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| |
Collapse
|
19
|
Staben J, Koch M, Reid K, Muckerheide J, Gilman L, McGuinness F, Kiesser S, Oswald IWH, Koby KA, Martin TJ, Kaplan JS. Cannabidiol and cannabis-inspired terpene blends have acute prosocial effects in the BTBR mouse model of autism spectrum disorder. Front Neurosci 2023; 17:1185737. [PMID: 37397463 PMCID: PMC10311644 DOI: 10.3389/fnins.2023.1185737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Cannabidiol (CBD) is a non-intoxicating phytocannabinoid with increasing popularity due to its purported therapeutic efficacy for numerous off-label conditions including anxiety and autism spectrum disorder (ASD). Those with ASD are commonly deficient in endogenous cannabinoid signaling and GABAergic tone. CBD has a complex pharmacodynamic profile that includes enhancing GABA and endocannabinoid signaling. Thus, there is mechanistic justification for investigating CBD's potential to improve social interaction and related symptoms in ASD. Recent clinical trials in children with ASD support CBD's beneficial effects in numerous comorbid symptoms, but its impact on social behavior is understudied. Methods Here, we tested the prosocial and general anxiolytic efficacy of a commercially available CBD-rich broad spectrum hemp oil delivered by repeated puff vaporization and consumed via passive inhalation in the female cohort of the BTBR strain, a common inbred mouse line for preclinical assessment of ASD-like behaviors. Results We observed that CBD enhanced prosocial behaviors using the 3-Chamber Test with a different vapor dose-response relationship between prosocial behavior and anxiety-related behavior on the elevated plus maze. We also identified that inhalation of a vaporized terpene blend from the popular OG Kush cannabis strain increased prosocial behavior independently of CBD and acted together with CBD to promote a robust prosocial effect. We observed similar prosocial effects with two additional cannabis terpene blends from the Do-Si-Dos and Blue Dream strains, and further reveal that these prosocial benefits rely on the combination of multiple terpenes that comprise the blends. Discussion Our results illustrate the added benefit of cannabis terpene blends for CBD-based treatment of ASD.
Collapse
Affiliation(s)
- Jenika Staben
- Department of Psychology, Behavioral Neuroscience Program, Western Washington University, Bellingham, WA, United States
| | - Megan Koch
- Department of Psychology, Behavioral Neuroscience Program, Western Washington University, Bellingham, WA, United States
| | - Keelee Reid
- Department of Psychology, Behavioral Neuroscience Program, Western Washington University, Bellingham, WA, United States
| | - Jessica Muckerheide
- Department of Psychology, Behavioral Neuroscience Program, Western Washington University, Bellingham, WA, United States
| | - Lauren Gilman
- Department of Psychology, Behavioral Neuroscience Program, Western Washington University, Bellingham, WA, United States
| | - Finn McGuinness
- Department of Psychology, Behavioral Neuroscience Program, Western Washington University, Bellingham, WA, United States
| | - Sarina Kiesser
- Scientific Technical Services, Western Washington University, Bellingham, WA, United States
| | - Iain W. H. Oswald
- Department of Research and Development, Abstrax Tech, Inc., Tustin, CA, United States
| | - Kevin A. Koby
- Department of Research and Development, Abstrax Tech, Inc., Tustin, CA, United States
| | - Thomas J. Martin
- Department of Research and Development, Abstrax Tech, Inc., Tustin, CA, United States
| | - Joshua S. Kaplan
- Department of Psychology, Behavioral Neuroscience Program, Western Washington University, Bellingham, WA, United States
| |
Collapse
|
20
|
Schiavi S, Manduca A, Carbone E, Buzzelli V, Rava A, Feo A, Ascone F, Morena M, Campolongo P, Hill MN, Trezza V. Anandamide and 2-arachidonoylglycerol differentially modulate autistic-like traits in a genetic model of autism based on FMR1 deletion in rats. Neuropsychopharmacology 2023; 48:897-907. [PMID: 36114286 PMCID: PMC10156791 DOI: 10.1038/s41386-022-01454-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorder (ASD) has a multifactorial etiology. Major efforts are underway to understand the neurobiological bases of ASD and to develop efficacious treatment strategies. Recently, the use of cannabinoid compounds in children with neurodevelopmental disorders including ASD has received increasing attention. Beyond anecdotal reports of efficacy, however, there is limited current evidence supporting such an intervention and the clinical studies currently available have intrinsic limitations that make the interpretation of the findings challenging. Furthermore, as the mechanisms underlying the beneficial effects of cannabinoid compounds in neurodevelopmental disorders are still largely unknown, the use of drugs targeting the endocannabinoid system remains controversial. Here, we studied the role of endocannabinoid neurotransmission in the autistic-like traits displayed by the recently validated Fmr1-Δexon 8 rat model of autism. Fmr1-Δexon 8 rats showed reduced anandamide levels in the hippocampus and increased 2-arachidonoylglycerol (2-AG) content in the amygdala. Systemic and intra-hippocampal potentiation of anandamide tone through administration of the anandamide hydrolysis inhibitor URB597 ameliorated the cognitive deficits displayed by Fmr1-Δexon 8 rats along development, as assessed through the novel object and social discrimination tasks. Moreover, blockade of amygdalar 2-AG signaling through intra-amygdala administration of the CB1 receptor antagonist SR141716A prevented the altered sociability displayed by Fmr1-Δexon 8 rats. These findings demonstrate that anandamide and 2-AG differentially modulate specific autistic-like traits in Fmr1-Δexon 8 rats in a brain region-specific manner, suggesting that fine changes in endocannabinoid mechanisms contribute to ASD-related behavioral phenotypes.
Collapse
Affiliation(s)
- Sara Schiavi
- Department of Science, Roma Tre University, Rome, Italy
| | - Antonia Manduca
- Department of Science, Roma Tre University, Rome, Italy
- Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | | | | | | | | | | | - Maria Morena
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Neuropsychopharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
- Departments of Cell Biology and Anatomy & Psychiatry, Hotchkiss Brain Institute and Mathison Center for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Neuropsychopharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Matthew N Hill
- Departments of Cell Biology and Anatomy & Psychiatry, Hotchkiss Brain Institute and Mathison Center for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Viviana Trezza
- Department of Science, Roma Tre University, Rome, Italy.
| |
Collapse
|
21
|
Vandana P, Simkin DR, Hendren RL, Arnold LE. Autism Spectrum Disorder and Complementary-Integrative Medicine. Child Adolesc Psychiatr Clin N Am 2023; 32:469-494. [PMID: 37147047 DOI: 10.1016/j.chc.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects 0.6%-1.7% of children. The etiology of autism is hypothesized to include both biological and environmental factors (Watts, 2008). In addition to the core symptoms of social-communication delay and restricted, repetitive interests, co-occurring irritability/aggression, hyperactivity, and insomnia negatively impact adaptive functioning and quality of life of patients and families. Despite years of effort, no pharmacologic agent has been found that targets the core symptoms of ASD. The only FDA-approved agents are risperidone and aripiprazole for agitation and irritability in ASD, not for core symptoms. Though they effectively reduce irritability/violence, they do so at the expense of problematic side effects: metabolic syndrome, elevated liver enzymes, and extrapyramidal side effects. Thus, it is not surprising that many families of children with ASD turn to nonallopathic treatment, including dietary interventions, vitamins, and immunomodulatory agents subsumed under complementary-integrative medicine (CIM). Per recent studies, 27% to 88% of families report using a CIM treatment. In an extensive population-based survey of CIM, families of children with more severe ASD, comorbid irritability, GI symptoms, food allergies, seizures, and higher parental education tend to use CIM at higher rates. The perceived safety of CIM treatments as "natural treatment" over allopathic medication increases parental comfort in using these agents. The most frequently used CIM treatments include multivitamins, an elimination diet, and Methyl B12 injections. Those perceived most effective are sensory integration, melatonin, and antifungals. Practitioners working with these families should improve their knowledge about CIM as parents currently perceive little interest in and poor knowledge of CIM by physicians. This article reviews the most popular complementary treatments preferred by families with children with autism. With many of them having limited or poor quality data, clinical recommendations about the efficacy and safety of each treatment are discussed using the SECS versus RUDE criteria.
Collapse
Affiliation(s)
- Pankhuree Vandana
- Division of Child & Adolescent Psychiatry, Columbia University Valegos College of Physicians and Surgeons, Center for Autism and the Developing Brain, 21 Bloomingdale Road, White Plains, NY 10605, USA.
| | | | - Robert L Hendren
- University of California San Francisco, Pritzker Building, 675 18th Street, San Francisco, CA 94143-3132, USA
| | - L Eugene Arnold
- Department of Psychiatry and Behavioral Health, Ohio State University, McCampbell 395E, 1581 Dodd Drive, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Dargenio VN, Dargenio C, Castellaneta S, De Giacomo A, Laguardia M, Schettini F, Francavilla R, Cristofori F. Intestinal Barrier Dysfunction and Microbiota–Gut–Brain Axis: Possible Implications in the Pathogenesis and Treatment of Autism Spectrum Disorder. Nutrients 2023; 15:nu15071620. [PMID: 37049461 PMCID: PMC10096948 DOI: 10.3390/nu15071620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with multifactorial etiology, characterized by impairment in two main functional areas: (1) communication and social interactions, and (2) skills, interests and activities. ASD patients often suffer from gastrointestinal symptoms associated with dysbiotic states and a “leaky gut.” A key role in the pathogenesis of ASD has been attributed to the gut microbiota, as it influences central nervous system development and neuropsychological and gastrointestinal homeostasis through the microbiota–gut–brain axis. A state of dysbiosis with a reduction in the Bacteroidetes/Firmicutes ratio and Bacteroidetes level and other imbalances is common in ASD. In recent decades, many authors have tried to study and identify the microbial signature of ASD through in vivo and ex vivo studies. In this regard, the advent of metabolomics has also been of great help. Based on these data, several therapeutic strategies, primarily the use of probiotics, are investigated to improve the symptoms of ASD through the modulation of the microbiota. However, although the results are promising, the heterogeneity of the studies precludes concrete evidence. The aim of this review is to explore the role of intestinal barrier dysfunction, the gut–brain axis and microbiota alterations in ASD and the possible role of probiotic supplementation in these patients.
Collapse
|
23
|
Pérez R, Glaser T, Villegas C, Burgos V, Ulrich H, Paz C. Therapeutic Effects of Cannabinoids and Their Applications in COVID-19 Treatment. Life (Basel) 2022; 12:2117. [PMID: 36556483 PMCID: PMC9784976 DOI: 10.3390/life12122117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Cannabis sativa is one of the first medicinal plants used by humans. Its medical use remains controversial because it is a psychotropic drug whose use has been banned. Recently, however, some countries have approved its use, including for recreational and medical purposes, and have allowed the scientific study of its compounds. Cannabis is characterized by the production of special types of natural products called phytocannabinoids that are synthesized exclusively by this genus. Phytocannabinoids and endocannabinoids are chemically different, but both pharmacologically modulate CB1, CB2, GRP55, GRP119 and TRPV1 receptor activities, involving activities such as memory, sleep, mood, appetite and motor regulation, pain sensation, neuroinflammation, neurogenesis and apoptosis. Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are phytocannabinoids with greater pharmacological potential, including anti-inflammatory, neuroprotective and anticonvulsant activities. Cannabidiol is showing promising results for the treatment of COVID-19, due to its capability of acting on the unleashed cytokine storm, on the proteins necessary for both virus entry and replication and on the neurological consequences of patients who have been infected by the virus. Here, we summarize the latest knowledge regarding the advantages of using cannabinoids in the treatment of COVID-19.
Collapse
Affiliation(s)
- Rebeca Pérez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| | - Talita Glaser
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, SP, Brazil
| | - Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| | - Viviana Burgos
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Temuco 4780000, Chile
| | - Henning Ulrich
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, SP, Brazil
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
24
|
de Camargo RW, de Novais Júnior LR, da Silva LM, Meneguzzo V, Daros GC, da Silva MG, de Bitencourt RM. Implications of the endocannabinoid system and the therapeutic action of cannabinoids in autism spectrum disorder: A literature review. Pharmacol Biochem Behav 2022; 221:173492. [PMID: 36379443 DOI: 10.1016/j.pbb.2022.173492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, onset in early childhood and associated with cognitive, social, behavioral, and sensory impairments. The pathophysiology is still unclear, and it is believed that genetic and environmental factors are fully capable of influencing ASD, especially cell signaling and microglial functions. Furthermore, the endocannabinoid system (ECS) participates in the modulation of various brain processes and is also involved in the pathophysiological mechanisms of this condition. Due to the health and quality of life impacts of autism for the patient and his/her family and the lack of effective medications, the literature has elucidated the possibility that Cannabis phytocannabinoids act favorably on ASD symptoms, probably through the modulation of neurotransmitters, in addition to endogenous ligands derived from arachidonic acid, metabolizing enzymes and even transporters of the membrane. These findings support the notion that there are links between key features of ASD and ECS due to the favorable actions of cannabidiol (CBD) and other cannabinoids on symptoms related to behavioral and cognitive disorders, as well as deficits in communication and social interaction, hyperactivity, anxiety and sleep disorders. Thus, phytocannabinoids emerge as therapeutic alternatives for ASD.
Collapse
Affiliation(s)
- Rick Wilhiam de Camargo
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil.
| | | | - Larissa Mendes da Silva
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Vicente Meneguzzo
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Guilherme Cabreira Daros
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Marina Goulart da Silva
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | | |
Collapse
|
25
|
Raz N, Heller I, Lombardi T, Marino G, Davidson EM, Eyal AM. Terpene-Enriched CBD oil for treating autism-derived symptoms unresponsive to pure CBD: Case report. Front Pharmacol 2022; 13:979403. [PMID: 36386202 PMCID: PMC9649447 DOI: 10.3389/fphar.2022.979403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/17/2022] [Indexed: 09/07/2023] Open
Abstract
Cannabidiol (CBD) rich products are successfully used in some countries for treating symptoms associated with autism spectrum disorder (ASD). Yet, CBD provides insufficient intervention in some individuals, or for some characterizing symptoms of ASD, raising the need for improved compositions. The current study presents a case wherein pure CBD was sufficient for treating ASD during childhood and early adolescence. However, it became insufficient during puberty accompanied by increased hyperactivity, agitation, and frequent severe aggressive behavior. Increasing the CBD dose did not result in significant improvement. Enriching the pure CBD with a carefully selected blend of anxiolytic and calming terpenes, resulted in gradual elimination of those aggressive events. Importantly, this was achieved with a significantly reduced CBD dose, being less than one-half the amount used when treating with pure CBD. This case demonstrates a strong improvement in efficacy due to terpene enrichment, where pure CBD was not sufficient. Combined with terpenes' high safety index and the ease with which they can be incorporated into cannabinoid-containing products, terpene-enriched CBD products may provide a preferred approach for treating ASD and related conditions. The careful selection of terpenes to be added enables maximizing the efficacy and tailoring the composition to particular and changing needs of ASD subjects, e.g., at different times of the day (daytime vs nighttime products).
Collapse
Affiliation(s)
- Noa Raz
- Bazelet Medical Cannabis Group, Or Akiva, Israel
| | - Iso Heller
- Bazelet Medical Cannabis Group, Or Akiva, Israel
| | | | - Giorgio Marino
- Neurology and Psychiatry Private Clinic, SIPI, Naples–Campania, Italy
| | - Elyad M. Davidson
- Department of Anesthesiology, CCM and Pain Relief, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | | |
Collapse
|
26
|
Hacohen M, Stolar OE, Berkovitch M, Elkana O, Kohn E, Hazan A, Heyman E, Sobol Y, Waissengreen D, Gal E, Dinstein I. Children and adolescents with ASD treated with CBD-rich cannabis exhibit significant improvements particularly in social symptoms: an open label study. Transl Psychiatry 2022; 12:375. [PMID: 36085294 PMCID: PMC9461457 DOI: 10.1038/s41398-022-02104-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/15/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
In recent years there has been growing interest in the potential benefits of CBD-rich cannabis treatment for children with ASD. Several open label studies and one double-blind placebo-controlled study have reported that CBD-rich cannabis is safe and potentially effective in reducing disruptive behaviors and improving social communication. However, previous studies have mostly based their conclusions on parental reports without the use of standardized clinical assessments. Here, we conducted an open label study to examine the efficacy of 6 months of CBD-rich cannabis treatment in children and adolescents with ASD. Longitudinal changes in social communication abilities and restricted and repetitive behaviors (RRB) were quantified using parent report with the Social Responsiveness Scale and clinical assessment with the Autism Diagnostic Observation Schedule (ADOS). We also quantified changes in adaptive behaviors using the Vineland, and cognitive abilities using an age-appropriate Wechsler test. Eighty-two of the 110 recruited participants completed the 6-month treatment protocol. While some participants did not exhibit any improvement in symptoms, there were overall significant improvements in social communication abilities as quantified by the ADOS, SRS, and Vineland with larger improvements in participants who had more severe initial symptoms. Significant improvements in RRB were noted only with parent-reported SRS scores and there were no significant changes in cognitive scores. These findings suggest that treatment with CBD-rich cannabis can yield improvements, particularly in social communication abilities, which were visible even when using standardized clinical assessments. Additional double-blind placebo-controlled studies utilizing standardized assessments are highly warranted for substantiating these findings.
Collapse
Affiliation(s)
- Micha Hacohen
- grid.7489.20000 0004 1937 0511Azrieli National Centre for Autism and Neurodevelopment Research, Ben Gurion University, Beer Sheva, Israel ,grid.7489.20000 0004 1937 0511Cognitive and Brain Sciences Department, Ben Gurion University, Beer Sheva, Israel ,grid.430432.20000 0004 0604 7651The Academic College of Tel Aviv Yaffo, Tel Aviv, Israel
| | - Orit E. Stolar
- ALUT Autism Center, Shamir Medical Center, Zerifin, Israel
| | - Matitiahu Berkovitch
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center, Zerifin, Israel ,grid.12136.370000 0004 1937 0546Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Odelia Elkana
- grid.430432.20000 0004 0604 7651The Academic College of Tel Aviv Yaffo, Tel Aviv, Israel
| | - Elkana Kohn
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center, Zerifin, Israel ,grid.12136.370000 0004 1937 0546Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ariela Hazan
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center, Zerifin, Israel
| | - Eli Heyman
- grid.413990.60000 0004 1772 817XDepartment of Pediatric Neurology, Shamir (Assaf Harofeh) Medical Center, Be’er Ya’akov, Israel
| | - Yael Sobol
- grid.412686.f0000 0004 0470 8989Preschool Psychiatry Unit, Soroka Medical Center, Be’er Sheva, Israel
| | - Danel Waissengreen
- grid.7489.20000 0004 1937 0511Azrieli National Centre for Autism and Neurodevelopment Research, Ben Gurion University, Beer Sheva, Israel
| | - Eynat Gal
- grid.18098.380000 0004 1937 0562Occupational Therapy Department, University of Haifa, Haifa, Israel
| | - Ilan Dinstein
- grid.7489.20000 0004 1937 0511Azrieli National Centre for Autism and Neurodevelopment Research, Ben Gurion University, Beer Sheva, Israel ,grid.7489.20000 0004 1937 0511Cognitive and Brain Sciences Department, Ben Gurion University, Beer Sheva, Israel
| |
Collapse
|
27
|
Pedrazzi JFC, Ferreira FR, Silva-Amaral D, Lima DA, Hallak JEC, Zuardi AW, Del-Bel EA, Guimarães FS, Costa KCM, Campos AC, Crippa ACS, Crippa JAS. Cannabidiol for the treatment of autism spectrum disorder: hope or hype? Psychopharmacology (Berl) 2022; 239:2713-2734. [PMID: 35904579 DOI: 10.1007/s00213-022-06196-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
RATIONALE Autism spectrum disorder (ASD) is defined as a group of neurodevelopmental disorders whose symptoms include impaired communication and social interaction, restricted and repetitive patterns of behavior, and varying levels of intellectual disability. ASD is observed in early childhood and is one of the most severe chronic childhood disorders in prevalence, morbidity, and impact on society. It is usually accompanied by attention deficit hyperactivity disorder, anxiety, depression, sleep disorders, and epilepsy. The treatment of ASD has low efficacy, possibly because it has a heterogeneous nature, and its neurobiological basis is not clearly understood. Drugs such as risperidone and aripiprazole are the only two drugs available that are recognized by the Food and Drug Administration, primarily for treating the behavioral symptoms of this disorder. These drugs have limited efficacy and a high potential for inducing undesirable effects, compromising treatment adherence. Therefore, there is great interest in exploring the endocannabinoid system, which modulates the activity of other neurotransmitters, has actions in social behavior and seems to be altered in patients with ASD. Thus, cannabidiol (CBD) emerges as a possible strategy for treating ASD symptoms since it has relevant pharmacological actions on the endocannabinoid system and shows promising results in studies related to disorders in the central nervous system. OBJECTIVES Review the preclinical and clinical data supporting CBD's potential as a treatment for the symptoms and comorbidities associated with ASD, as well as discuss and provide information with the purpose of not trivializing the use of this drug.
Collapse
Affiliation(s)
- João F C Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Frederico R Ferreira
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-900, Brazil
| | - Danyelle Silva-Amaral
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel A Lima
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jaime E C Hallak
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antônio W Zuardi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine A Del-Bel
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Morphology, Physiology, and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karla C M Costa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alline C Campos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana C S Crippa
- Graduate Program in Child and Adolescent Health, Neuropediatric Center of the Hospital of Clinics (CENEP), Federal University of Paraná, Curitiba, Paraná, Brazil
| | - José A S Crippa
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
28
|
Wei D, Tsheringla S, McPartland JC, Allsop AZASA. Combinatorial approaches for treating neuropsychiatric social impairment. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210051. [PMID: 35858103 PMCID: PMC9274330 DOI: 10.1098/rstb.2021.0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/13/2022] [Indexed: 01/30/2023] Open
Abstract
Social behaviour is an essential component of human life and deficits in social function are seen across multiple psychiatric conditions with high morbidity. However, there are currently no FDA-approved treatments for social dysfunction. Since social cognition and behaviour rely on multiple signalling processes acting in concert across various neural networks, treatments aimed at social function may inherently require a combinatorial approach. Here, we describe the social neurobiology of the oxytocin and endocannabinoid signalling systems as well as translational evidence for their use in treating symptoms in the social domain. We leverage this systems neurobiology to propose a network-based framework that involves pharmacology, psychotherapy, non-invasive brain stimulation and social skills training to combinatorially target trans-diagnostic social impairment. Lastly, we discuss the combined use of oxytocin and endocannabinoids within our proposed framework as an illustrative strategy to treat specific aspects of social function. Using this framework provides a roadmap for actionable treatment strategies for neuropsychiatric social impairment. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Don Wei
- Department of Psychiatry, UCLA, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
29
|
Holdman R, Vigil D, Robinson K, Shah P, Contreras AE. Safety and Efficacy of Medical Cannabis in Autism Spectrum Disorder Compared with Commonly Used Medications. Cannabis Cannabinoid Res 2022; 7:451-463. [PMID: 34432543 PMCID: PMC9418362 DOI: 10.1089/can.2020.0154] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: The objective of this study was to evaluate the safety and efficacy of medications commonly used in autism spectrum disorder (ASD) and compare this to what current research has shown regarding medical cannabis use in this population. Methods: Searches were performed to collect information surrounding currently used medications and their safety and efficacy profiles, biologic plausibility of cannabis use for symptoms of ASD, and studies detailing cannabis' safety and efficacy profile for use in the ASD population. Results were used to compare medications to cannabis as a proposed treatment. Results: The heterogeneity of ASD produces great difficulties in finding appropriate treatment, leading to many medication changes or treatment trials throughout a patient's life. Commonly prescribed medications display varying levels of efficacy, safety, and tolerability between patients and symptoms targeted. Some of the most common side effects cited are also considered the most troubling symptoms associated with ASD; aggression, anxiety, irritability, and a negative effect on cognition, leading many patients to discontinue use as the side effects outweigh benefits. Recent case reports and retrospective studies have displayed the potential efficacy, safety, and tolerability of cannabidiol (CBD)-rich medical cannabis use for treating both core symptoms of ASD and many comorbid symptoms such as irritability and sleep problems. Studies have also identified circulating endocannabinoids as a possible biomarker for ASD, providing another possible method of diagnosis. Conclusions: Currently, there are no approved medications for the core symptoms of ASD and only two medications Food and Drug Administration approved for associated irritability. Prescribed medications for symptoms associated with ASD display varying levels of efficacy, safety, and tolerability among the heterogeneous ASD population. At the time of this study there are no published placebo-controlled trials of medical cannabis for ASD and the observational studies have limitations. CBD-rich medical cannabis seems to be an effective, tolerable, and relatively safe option for many symptoms associated with ASD, however, the long-term safety is unknown at this time.
Collapse
Affiliation(s)
- Richard Holdman
- Colorado Department of Public Health and Environment, Marijuana Health Monitoring and Research, Denver, Colorado, USA
| | - Daniel Vigil
- Colorado Department of Public Health and Environment, Marijuana Health Monitoring and Research, Denver, Colorado, USA
| | - Kelsey Robinson
- Colorado Department of Public Health and Environment, Marijuana Health Monitoring and Research, Denver, Colorado, USA
| | - Puja Shah
- Colorado Department of Public Health and Environment, Marijuana Health Monitoring and Research, Denver, Colorado, USA
| | - Alexandra Elyse Contreras
- Colorado Department of Public Health and Environment, Marijuana Health Monitoring and Research, Denver, Colorado, USA
| |
Collapse
|
30
|
Schnapp A, Harel M, Cayam-Rand D, Cassuto H, Polyansky L, Aran A. A Placebo-Controlled Trial of Cannabinoid Treatment for Disruptive Behavior in Children and Adolescents with Autism Spectrum Disorder: Effects on Sleep Parameters as Measured by the CSHQ. Biomedicines 2022; 10:biomedicines10071685. [PMID: 35884990 PMCID: PMC9312464 DOI: 10.3390/biomedicines10071685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is often associated with debilitating sleep disturbances. While anecdotal evidence suggests the positive effect of cannabinoids, randomized studies are lacking. Here, we report the effects of cannabinoid treatment on the sleep of 150 children and adolescents with ASD, as part of a double-blind, placebo-controlled study that assessed the impact of cannabinoid treatment on behavior (NCT02956226). Participants were randomly assigned to one of the following three treatments: (1) whole-plant cannabis extract, containing cannabidiol (CBD) and Δ9-Tetrahydrocannabinol (THC) in a 20:1 ratio, (2) purified CBD and THC extract in the same ratio, and (3) an oral placebo. After 12 weeks of treatment (Period 1) and a 4-week washout period, participants crossed over to a predetermined, second 12-week treatment (Period 2). Sleep disturbances were assessed using the Children’s Sleep-Habit Questionnaire (CSHQ). We found that the CBD-rich cannabinoid treatment was not superior to the placebo treatment in all aspects of sleep measured by the CSHQ, including bedtime resistance, sleep-onset delay, and sleep duration. Notably, regardless of the treatment (cannabinoids or placebo), improvements in the CSHQ total score were associated with improvements in the autistic core symptoms, as indicated by the Social Responsiveness Scale total scores (Period 1: r = 0.266, p = 0.008; Period 2: r = 0.309, p = 0.004). While this study failed to demonstrate that sleep improvements were higher with cannabinoids than they were with the placebo treatment, further studies are required.
Collapse
Affiliation(s)
- Aviad Schnapp
- Department of Pediatrics, Hadassah Medical Center, Jerusalem 91120, Israel;
| | - Moria Harel
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel; (M.H.); (D.C.-R.); (L.P.)
| | - Dalit Cayam-Rand
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel; (M.H.); (D.C.-R.); (L.P.)
| | - Hanoch Cassuto
- Child Development Centers, Leumit Health Services, Jerusalem 9439221, Israel;
| | - Lola Polyansky
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel; (M.H.); (D.C.-R.); (L.P.)
| | - Adi Aran
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel; (M.H.); (D.C.-R.); (L.P.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Correspondence:
| |
Collapse
|
31
|
Coccurello R, Marrone MC, Maccarrone M. The Endocannabinoids-Microbiota Partnership in Gut-Brain Axis Homeostasis: Implications for Autism Spectrum Disorders. Front Pharmacol 2022; 13:869606. [PMID: 35721203 PMCID: PMC9204215 DOI: 10.3389/fphar.2022.869606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The latest years have witnessed a growing interest towards the relationship between neuropsychiatric disease in children with autism spectrum disorders (ASD) and severe alterations in gut microbiota composition. In parallel, an increasing literature has focused the attention towards the association between derangement of the endocannabinoids machinery and some mechanisms and symptoms identified in ASD pathophysiology, such as alteration of neural development, immune system dysfunction, defective social interaction and stereotypic behavior. In this narrative review, we put together the vast ground of endocannabinoids and their partnership with gut microbiota, pursuing the hypothesis that the crosstalk between these two complex homeostatic systems (bioactive lipid mediators, receptors, biosynthetic and hydrolytic enzymes and the entire bacterial gut ecosystem, signaling molecules, metabolites and short chain fatty acids) may disclose new ideas and functional connections for the development of synergic treatments combining “gut-therapy,” nutritional intervention and pharmacological approaches. The two separate domains of the literature have been examined looking for all the plausible (and so far known) overlapping points, describing the mutual changes induced by acting either on the endocannabinoid system or on gut bacteria population and their relevance for the understanding of ASD pathophysiology. Both human pathology and symptoms relief in ASD subjects, as well as multiple ASD-like animal models, have been taken into consideration in order to provide evidence of the relevance of the endocannabinoids-microbiota crosstalk in this major neurodevelopmental disorder.
Collapse
Affiliation(s)
- Roberto Coccurello
- Institute for Complex Systems (ISC), National Council of Research (CNR), Rome, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- *Correspondence: Roberto Coccurello, ; Mauro Maccarrone,
| | - Maria Cristina Marrone
- Ministry of University and Research, Mission Unity for Recovery and Resilience Plan, Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical and Sciences, University of L’Aquila, L’Aquila, Italy
- *Correspondence: Roberto Coccurello, ; Mauro Maccarrone,
| |
Collapse
|
32
|
Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094764. [PMID: 35563156 PMCID: PMC9104141 DOI: 10.3390/ijms23094764] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
The therapeutic benefits of the current medications for patients with psychiatric disorders contrast with a great variety of adverse effects. The endocannabinoid system (ECS) components have gained high interest as potential new targets for treating psychiatry diseases because of their neuromodulator role, which is essential to understanding the regulation of many brain functions. This article reviewed the molecular alterations in ECS occurring in different psychiatric conditions. The methods used to identify alterations in the ECS were also described. We used a translational approach. The animal models reproducing some behavioral and/or neurochemical aspects of psychiatric disorders and the molecular alterations in clinical studies in post-mortem brain tissue or peripheral tissues were analyzed. This article reviewed the most relevant ECS changes in prevalent psychiatric diseases such as mood disorders, schizophrenia, autism, attentional deficit, eating disorders (ED), and addiction. The review concludes that clinical research studies are urgently needed for two different purposes: (1) To identify alterations of the ECS components potentially useful as new biomarkers relating to a specific disease or condition, and (2) to design new therapeutic targets based on the specific alterations found to improve the pharmacological treatment in psychiatry.
Collapse
|
33
|
Carreira LD, Matias FC, Campos MG. Clinical Data on Canabinoids: Translational Research in the Treatment of Autism Spectrum Disorders. Biomedicines 2022; 10:biomedicines10040796. [PMID: 35453548 PMCID: PMC9024565 DOI: 10.3390/biomedicines10040796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Translational research made with Cannabis sativa L. and its biocompounds provides data for some targeted diseases, as also symptoms associated with Autism Spectrum Disorders (ASDs). The main compounds ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD), are capable of modulating the endocannabinoid system since its dysregulation interferes with the pathophysiology of ASDs there are clinical evidence for its potential use in the treatment of the disease. Conventional therapy still has limitations, as it does not always treat the central symptoms, and there are many patients who do not respond to treatment, which demands more research on new therapies. Through the analysis of published literature on this topic, it is verified that cannabinoids, in particular CBD, improves symptoms associated with common comorbidities in ASDs. Some studies also demonstrate the therapeutic potential of these compounds in the treatment of central symptoms of autism. In addition, cannabinoid therapy to ASDs is associated with low adverse effects and a reduction in concomitant medication. Although it appears to be promising, it is essential to do the translation of this data into clinical research and some of its potential and critical gaps are discussed in this review pointing to large-scale and long-term clinical trials that should include more patients and homogeneous samples.
Collapse
Affiliation(s)
- Laura D. Carreira
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Francisca C. Matias
- Coimbra Institute for Biomedical Imaging and Translational Research, Institute of Nuclear Sciences Applied to Health (ICNAS), Health Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-488-400
| |
Collapse
|
34
|
Fletcher S, Pawliuk C, Ip A, Huh L, Rassekh SR, Oberlander TF, Siden H. Medicinal cannabis in children and adolescents with autism spectrum disorder: A scoping review. Child Care Health Dev 2022; 48:33-44. [PMID: 34403168 DOI: 10.1111/cch.12909] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental condition estimated to affect 1 in 66 children in Canada and 1 in 270 individuals worldwide. As effective therapies for the management of ASD core and associated symptoms are limited, parents are increasingly turning to clinicians for advice regarding the use of medicinal cannabis to manage behavioural disturbances. OBJECTIVE The objective of this scoping review was to identify and map symptoms, outcomes and adverse events related to medicinal cannabis treatment for ASD-related behaviours. METHODS Ovid MEDLINE, Embase, CINAHL, PsycInfo, Web of Science Core Collection, Google Scholar and grey literature sources were searched up to 5 January 2020 for studies. Included studies met the following criteria: (1) investigate the use of medicinal cannabis, (2) at least 50% participants had ASD, (3) at least 50% of the study population was 0-18 years old and (4) any study design (published or unpublished). RESULTS We identified eight completed and five ongoing studies meeting the inclusion criteria. All studies reported substantial behaviour and symptom improvement on medicinal cannabis, with 61% to 93% of subjects showing benefit. In the three studies reporting on concomitant psychotropic medication usage and with cannabis use, up to 80% of participants observed a reduction in concurrent medication use. Adverse events related to cannabis use were reported in up to 27% of participants related, and two participants had psychotic events. CONCLUSIONS Early reports regarding medicinal cannabis in paediatric ASD symptom management are presented as positive; the evidence, however, is limited to very few retrospective cohort and observational studies. Evidence of safety and efficacy from prospective clinical trials is needed.
Collapse
Affiliation(s)
- Sarah Fletcher
- MD Undergraduate Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colleen Pawliuk
- Department of Paediatrics, BC Children's Hospital/University of British Columbia, Vancouver, British Columbia, Canada
| | - Angie Ip
- Department of Paediatrics, BC Children's Hospital/University of British Columbia, Vancouver, British Columbia, Canada.,School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Linda Huh
- Department of Paediatrics, BC Children's Hospital/University of British Columbia, Vancouver, British Columbia, Canada
| | - S Rod Rassekh
- Department of Paediatrics, BC Children's Hospital/University of British Columbia, Vancouver, British Columbia, Canada
| | - Tim F Oberlander
- Department of Paediatrics, BC Children's Hospital/University of British Columbia, Vancouver, British Columbia, Canada.,School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Harold Siden
- Department of Paediatrics, BC Children's Hospital/University of British Columbia, Vancouver, British Columbia, Canada.,Canuck Place Children's Hospice, Vancouver, British Columbia, Canada
| |
Collapse
|
35
|
Endocannabinoid markers in autism spectrum disorder: A scoping review of human studies. Psychiatry Res 2021; 306:114256. [PMID: 34775294 DOI: 10.1016/j.psychres.2021.114256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication deficits and patterns of restrictive and repetitive behavior. Although the neurological underpinnings of ASD remain elusive, the endocannabinoid system (ECS) may play a role in modulating social behavior in ASD. Preclinical studies have suggested that alterations in the ECS result in ASD-like phenotypes, but currently no reviews have examined ECS abnormalities in human studies. This scoping review investigated any evidence of ECS alterations in humans with ASD. A comprehensive literature search was conducted and five studies were eligible for review. Three studies reported a significant reduction of anandamide in ASD compared to controls. Other alterations included decreased 2-arachidonoylglycerol, oleoylethanolamide, and palmitoylethanolamide and elevated diacylglycerol lipase and monoacylglycerol lipase. Some discrepant findings were also noted, which included elevated or reduced CB2 receptor in three studies and elevated or reduced N-acyl phosphatidylethanolamine phospholipase D and fatty acid amide hydrolase in two studies. We conclude from this preliminary investigation that the ECS may be altered in humans with ASD. Potential limitations of the reviewed studies include medication use and psychiatric comorbidities. Further research, such as positron emission tomography studies, are necessary to fully understand the relationship between ECS markers and ASD.
Collapse
|
36
|
Pietropaolo S, Marsicano G. The role of the endocannabinoid system as a therapeutic target for autism spectrum disorder: Lessons from behavioral studies on mouse models. Neurosci Biobehav Rev 2021; 132:664-678. [PMID: 34813825 DOI: 10.1016/j.neubiorev.2021.11.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022]
Abstract
Recent years have seen an impressive amount of research devoted to understanding the etiopathology of Autism Spectrum Disorder (ASD) and developing therapies for this syndrome. Because of the lack of biomarkers of ASD, this work has been largely based on the behavioral characterization of rodent models, based on a multitude of genetic and environmental manipulations. Here we highlight how the endocannabinoid system (ECS) has recently emerged within this context of mouse behavioral studies as an etiopathological factor in ASD and a valid potential therapeutic target. We summarize the most recent results showing alterations of the ECS in rodent models of ASD, and demonstrating ASD-like behaviors in mice with altered ECS, induced either by genetic or pharmacological manipulations. We also give a critical overview of the most relevant advances in designing treatments and novel mouse models for ASD targeting the ECS, highlighting the relevance of thorough and innovative behavioral approaches to investigate the mechanisms acting underneath the complex features of ASD.
Collapse
Affiliation(s)
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, 146 rue Léo Saignat, 33077, Bordeaux Cedex, France
| |
Collapse
|
37
|
Pirbhoy PS, Jonak CR, Syed R, Argueta DA, Perez PA, Wiley MB, Hessamian K, Lovelace JW, Razak KA, DiPatrizio NV, Ethell IM, Binder DK. Increased 2-arachidonoyl-sn-glycerol levels normalize cortical responses to sound and improve behaviors in Fmr1 KO mice. J Neurodev Disord 2021; 13:47. [PMID: 34645383 PMCID: PMC8513313 DOI: 10.1186/s11689-021-09394-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/20/2021] [Indexed: 01/08/2023] Open
Abstract
Background Individuals with Fragile X syndrome (FXS) and autism spectrum disorder (ASD) exhibit an array of symptoms, including sociability deficits, increased anxiety, hyperactivity, and sensory hyperexcitability. It is unclear how endocannabinoid (eCB) modulation can be targeted to alleviate neurophysiological abnormalities in FXS as behavioral research reveals benefits to inhibiting cannabinoid (CB) receptor activation and increasing endocannabinoid ligand levels. Here, we hypothesize that enhancement of 2-arachidonoyl-sn-glycerol (2-AG) in Fragile X mental retardation 1 gene knock-out (Fmr1 KO) mice may reduce cortical hyperexcitability and behavioral abnormalities observed in FXS. Methods To test whether an increase in 2-AG levels normalized cortical responses in a mouse model of FXS, animals were subjected to electroencephalography (EEG) recording and behavioral assessment following treatment with JZL-184, an irreversible inhibitor of monoacylglycerol lipase (MAGL). Assessment of 2-AG was performed using lipidomic analysis in conjunction with various doses and time points post-administration of JZL-184. Baseline electrocortical activity and evoked responses to sound stimuli were measured using a 30-channel multielectrode array (MEA) in adult male mice before, 4 h, and 1 day post-intraperitoneal injection of JZL-184 or vehicle. Behavior assessment was done using the open field and elevated plus maze 4 h post-treatment. Results Lipidomic analysis showed that 8 mg/kg JZL-184 significantly increased the levels of 2-AG in the auditory cortex of both Fmr1 KO and WT mice 4 h post-treatment compared to vehicle controls. EEG recordings revealed a reduction in the abnormally enhanced baseline gamma-band power in Fmr1 KO mice and significantly improved evoked synchronization to auditory stimuli in the gamma-band range post-JZL-184 treatment. JZL-184 treatment also ameliorated anxiety-like and hyperactivity phenotypes in Fmr1 KO mice. Conclusions Overall, these results indicate that increasing 2-AG levels may serve as a potential therapeutic approach to normalize cortical responses and improve behavioral outcomes in FXS and possibly other ASDs. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-021-09394-x.
Collapse
Affiliation(s)
- Patricia S Pirbhoy
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Rashid Syed
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Pedro A Perez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Mark B Wiley
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Keon Hessamian
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Jonathan W Lovelace
- Department of Psychology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Khaleel A Razak
- Department of Psychology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
38
|
Fyke W, Velinov M. FMR1 and Autism, an Intriguing Connection Revisited. Genes (Basel) 2021; 12:genes12081218. [PMID: 34440392 PMCID: PMC8394635 DOI: 10.3390/genes12081218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/27/2022] Open
Abstract
Autism Spectrum Disorder (ASD) represents a distinct phenotype of behavioral dysfunction that includes deficiencies in communication and stereotypic behaviors. ASD affects about 2% of the US population. It is a highly heritable spectrum of conditions with substantial genetic heterogeneity. To date, mutations in over 100 genes have been reported in association with ASD phenotypes. Fragile X syndrome (FXS) is the most common single-gene disorder associated with ASD. The gene associated with FXS, FMR1 is located on chromosome X. Accordingly, the condition has more severe manifestations in males. FXS results from the loss of function of FMR1 due to the expansion of an unstable CGG repeat located in the 5'' untranslated region of the gene. About 50% of the FXS males and 20% of the FXS females meet the Diagnostic Statistical Manual 5 (DSM-5) criteria for ASD. Among the individuals with ASD, about 3% test positive for FXS. FMRP, the protein product of FMR1, is a major gene regulator in the central nervous system. Multiple pathways regulated by FMRP are found to be dysfunctional in ASD patients who do not have FXS. Thus, FXS presents the opportunity to study cellular phenomena that may have wider applications in the management of ASD and to develop new strategies for ASD therapy.
Collapse
Affiliation(s)
- William Fyke
- SUNY Downstate Medical Center, SUNY Downstate College of Medicine, Brooklyn, NY 11203, USA;
- Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Milen Velinov
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
- Correspondence:
| |
Collapse
|
39
|
Fyke W, Premoli M, Echeverry Alzate V, López-Moreno JA, Lemaire-Mayo V, Crusio WE, Marsicano G, Wöhr M, Pietropaolo S. Communication and social interaction in the cannabinoid-type 1 receptor null mouse: Implications for autism spectrum disorder. Autism Res 2021; 14:1854-1872. [PMID: 34173729 DOI: 10.1002/aur.2562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/04/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
Clinical and preclinical findings have suggested a role of the endocannabinoid system (ECS) in the etiopathology of autism spectrum disorder (ASD). Previous mouse studies have investigated the role of ECS in several behavioral domains; however, none of them has performed an extensive assessment of social and communication behaviors, that is, the main core features of ASD. This study employed a mouse line lacking the primary endocannabinoid receptor (CB1r) and characterized ultrasonic communication and social interaction in CB1-/- , CB1+/- , and CB1+/+ males and females. Quantitative and qualitative alterations in ultrasonic vocalizations (USVs) were observed in CB1 null mice both during early development (i.e., between postnatal days 4 and 10), and at adulthood (i.e., at 3 months of age). Adult mutants also showed marked deficits in social interest in the three-chamber test and social investigation in the direct social interaction test. These behavioral alterations were mostly observed in both sexes and appeared more marked in CB1-/- than CB1+/- mutant mice. Importantly, the adult USV alterations could not be attributed to differences in anxiety or sensorimotor abilities, as assessed by the elevated plus maze and auditory startle tests. Our findings demonstrate the role of CB1r in social communication and behavior, supporting the use of the CB1 full knockout mouse in preclinical research on these ASD-relevant core domains. LAY SUMMARY: The endocannabinoid system (ECS) is important for brain development and neural function and is therefore likely to be involved in neurodevelopmental disorders such as Autism Spectrum Disorder (ASD). Here we investigated changes in social behavior and communication, which are core features of ASD, in male and female mice lacking the chief receptor of this system. Our results show that loss of this receptor results in several changes in social behavior and communication both during early development and in adulthood, thus supporting the role of the ECS in these ASD-core behavioral domains.
Collapse
Affiliation(s)
- William Fyke
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France.,Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Victor Echeverry Alzate
- Department of Psychobiology and Methodology on Behavioral Sciences, Faculty of Psychology, Madrid Complutense University, Spain.,Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Malaga University, Spain
| | - José A López-Moreno
- Department of Psychobiology and Methodology on Behavioral Sciences, Faculty of Psychology, Madrid Complutense University, Spain
| | | | - Wim E Crusio
- University of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France
| | - Giovanni Marsicano
- University of Bordeaux, INSERM, U862 NeuroCentre Magendie, Group Endocannabinoids and Neuroadaptation, Bordeaux, France
| | - Markus Wöhr
- KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Leuven, Belgium.,KU Leuven, Leuven Brain Institute, Leuven, Belgium.,Faculty of Psychology, Experimental and Biological Psychology, Behavioral Neuroscience, Philipps-University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, Philipps-University of Marburg, Marburg, Germany
| | | |
Collapse
|
40
|
da Silva EA, Medeiros WMB, Torro N, de Sousa JMM, de Almeida IBCM, da Costa FB, Pontes KM, Nunes ELG, da Rosa MD, de Albuquerque KLGD. Cannabis and cannabinoid use in autism spectrum disorder: a systematic review. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2021; 44:e20200149. [PMID: 34043900 PMCID: PMC9887656 DOI: 10.47626/2237-6089-2020-0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/13/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent deficits in social communication and social interaction, associated with the presence of restricted and repetitive patterns of behavior, interests, or activities. Cannabis has been used to alleviate symptoms associated with ASD. METHOD We carried out a systematic review of studies that investigated the clinical effects of cannabis and cannabinoid use on ASD, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA checklist). The search was carried out in four databases: MEDLINE/PubMed, Scientific Electronic Library Online (SciELO), Scopus, and Web of Science. No limits were established for language during the selection process. Nine studies were selected and analyzed. RESULTS Some studies showed that cannabis products reduced the number and/or intensity of different symptoms, including hyperactivity, attacks of self-mutilation and anger, sleep problems, anxiety, restlessness, psychomotor agitation, irritability, aggressiveness perseverance, and depression. Moreover, they found an improvement in cognition, sensory sensitivity, attention, social interaction, and language. The most common adverse effects were sleep disorders, restlessness, nervousness and change in appetite. CONCLUSION Cannabis and cannabinoids may have promising effects in the treatment of symptoms related to ASD, and can be used as a therapeutic alternative in the relief of those symptoms. However, randomized, blind, placebo-controlled clinical trials are necessary to clarify findings on the effects of cannabis and its cannabinoids in individuals with ASD. SYSTEMATIC REVIEW REGISTRATION International Prospective Register of Systematic Reviews (PROSPERO), code 164161.
Collapse
Affiliation(s)
- Estácio Amaro da Silva
- Departamento de PsicologiaUniversidade Federal da ParaíbaJoão PessoaPBBrazil Departamento de Psicologia, Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil.
| | - Wandersonia Moreira Brito Medeiros
- Departamento de PsicologiaUniversidade Federal da ParaíbaJoão PessoaPBBrazil Departamento de Psicologia, Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil.
| | - Nelson Torro
- Departamento de PsicologiaUniversidade Federal da ParaíbaJoão PessoaPBBrazil Departamento de Psicologia, Universidade Federal da Paraíba (UFPB), João Pessoa, PB, Brazil.
| | | | | | | | | | - Eliane Lima Guerra Nunes
- Sociedade Brasileira de Estudo da Cannabis Sativa Sociedade Brasileira de Estudo da Cannabis Sativa.
| | - Marine Diniz da Rosa
- Departamento de FonoaudiologiaUFPBJoão PessoaPBBrazil Departamento de Fonoaudiologia, UFPB, João Pessoa, PB, Brazil.
| | | |
Collapse
|
41
|
Vitale RM, Iannotti FA, Amodeo P. The (Poly)Pharmacology of Cannabidiol in Neurological and Neuropsychiatric Disorders: Molecular Mechanisms and Targets. Int J Mol Sci 2021; 22:4876. [PMID: 34062987 PMCID: PMC8124847 DOI: 10.3390/ijms22094876] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Cannabidiol (CBD), the major nonpsychoactive Cannabis constituent, has been proposed for the treatment of a wide panel of neurological and neuropsychiatric disorders, including anxiety, schizophrenia, epilepsy and drug addiction due to the ability of its versatile scaffold to interact with diverse molecular targets that are not restricted to the endocannabinoid system. Albeit the molecular mechanisms responsible for the therapeutic effects of CBD have yet to be fully elucidated, many efforts have been devoted in the last decades to shed light on its complex pharmacological profile. In particular, an ever-increasing number of molecular targets linked to those disorders have been identified for this phytocannabinoid, along with the modulatory effects of CBD on their cascade signaling. In this view, here we will try to provide a comprehensive and up-to-date overview of the molecular basis underlying the therapeutic effects of CBD involved in the treatment of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rosa Maria Vitale
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; (F.A.I.); (P.A.)
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; (F.A.I.); (P.A.)
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy; (F.A.I.); (P.A.)
| |
Collapse
|
42
|
Nezgovorova V, Ferretti CJ, Taylor BP, Shanahan E, Uzunova G, Hong K, Devinsky O, Hollander E. Potential of cannabinoids as treatments for autism spectrum disorders. J Psychiatr Res 2021; 137:194-201. [PMID: 33689997 DOI: 10.1016/j.jpsychires.2021.02.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Current treatments for autism spectrum disorders (ASD) are limited in efficacy and are often associated with substantial side effects. These medications typically ameliorate problem behaviors associated with ASD, but do not target core symptom domains. As a result, there is a significant amount of research underway for development of novel experimental therapeutics. Endocannabinoids are arachidonic acid-derived lipid neuromodulators, which, in combination with their receptors and associated metabolic enzymes, constitute the endocannabinoid (EC) system. Cannabinoid signaling may be involved in the social impairment and repetitive behaviors observed in those with ASD. In this review, we discuss a possible role of the EC system in excitatory-inhibitory (E-I) imbalance and immune dysregulation in ASD. Novel treatments for the core symptom domains of ASD are needed and phytocannabinoids could be useful experimental therapeutics for core symptoms and associated domains.
Collapse
Affiliation(s)
- V Nezgovorova
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - C J Ferretti
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - B P Taylor
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - E Shanahan
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - G Uzunova
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - K Hong
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA
| | - O Devinsky
- New York University Comprehensive Epilepsy Center, New York, NY, USA
| | - E Hollander
- Autism and Obsessive-Compulsive Spectrum Program, Psychiatry Research Institute at Montefiore- Einstein (PRIME), Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
43
|
Fyke W, Alarcon JM, Velinov M, Chadman KK. Pharmacological inhibition of the primary endocannabinoid producing enzyme, DGL-α, induces autism spectrum disorder-like and co-morbid phenotypes in adult C57BL/J mice. Autism Res 2021; 14:1375-1389. [PMID: 33886158 DOI: 10.1002/aur.2520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/12/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Accumulating evidence links dysfunction in the endocannabinoid system (ECS) with the pathology of neurodevelopmental disorders, particularly autism spectrum disorder (ASD). Variants in ECS genes CNR1 and DAGLA are associated with neurological phenotypes in humans. The endocannabinoids (eCBs), 2-AG and AEA, which act at the primary cannabinoid receptor (CB1), mediate behaviors relevant to neurodevelopmental disorders. The overlap between these eCBs is poorly understood. Most ECS studies have focused on stress responses, anxiety, and epilepsy, however, its role in social behavior and communication has only recently come under investigation. This represents a critical gap in our understanding of the ECS and its relationship to ASD. Furthermore, the increasing prevalence of ASD and a lack of therapeutics emphasize a crucial need for novel therapeutic targets. To this aim, we used an inhibitor of the eCB producing enzyme DGL-α, DO34, and the CB1 inverse agonist, rimonabant, to evaluate the role of the primary eCB, 2-AG, in ASD. Adult male C57BL/6J mice were used in a series of behavioral paradigms which assessed social behavior, social communication, repetitive behaviors, anxiety and locomotor activity. DO34 and rimonabant increased anxiety-like behavior, while only DO34 induced hyperactivity, social deficits, and repetitive self-grooming behavior. These data indicate that reduced 2-AG bioavailability, or CB1 inhibition, each induce unique respective behavioral phenotypes relevant to neurodevelopmental disorders, particularly ASD. This suggests fundamental differences in CB1 signaling via 2-AG and the CB1 receptor itself, particularly for social behaviors, and that 2-AG signaling may represent a target for the development of novel therapeutics. LAY SUMMARY: Endocannabinoids play a critical role in the developing nervous system. Alterations in the endocannabinoid system are linked to neurodevelopmental disorders. Studies suggest these variants may play a critical role in the core symptoms of autism spectrum disorder. In this study, pharmacological inhibition of the primary endocannabinoid producing enzyme, DGL-α, induced a constellation of deficits in behavioral domains associated with autism.
Collapse
Affiliation(s)
- William Fyke
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, New York, New York, USA.,Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, New York, USA.,George A. Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York, USA
| | - Juan Marcos Alarcon
- Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, New York, USA.,Department of Pathology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Milen Velinov
- George A. Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, New York, USA
| | - Kathryn K Chadman
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, New York, New York, USA
| |
Collapse
|
44
|
Bitencourt RM, Takahashi RN, Carlini EA. From an Alternative Medicine to a New Treatment for Refractory Epilepsies: Can Cannabidiol Follow the Same Path to Treat Neuropsychiatric Disorders? Front Psychiatry 2021; 12:638032. [PMID: 33643100 PMCID: PMC7905048 DOI: 10.3389/fpsyt.2021.638032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022] Open
Abstract
Although cannabis has been known for ages as an "alternative medicine" to provide relief from seizures, pain, anxiety, and inflammation, there had always been a limited scientific review to prove and establish its use in clinics. Early studies carried out by Carlini's group in Brazil suggested that cannabidiol (CBD), a non-psychotropic phytocannabinoid present in Cannabis sativa, has anticonvulsant properties in animal models and reduced seizure frequency in limited human trials. Over the past few years, the potential use of cannabis extract in refractory epilepsy, including childhood epilepsies such as Dravet's syndrome and Lennox-Gastaut Syndrome, has opened a new era of treating epileptic patients. Thus, a considerable number of pre-clinical and clinical studies have provided strong evidence that phytocannabinoids has anticonvulsant properties, as well as being promising in the treatment of different neuropsychiatric disorders, such as depression, anxiety, post-traumatic stress disorder (PTSD), addiction, neurodegenerative disorders and autism spectrum disorder (ASD). Given the advances of cannabinoids, especially CBD, in the treatment of epilepsy, would the same expectation regarding the treatment of other neuropsychiatric disorders be possible? The present review highlights some contributions from Brazilian researchers and other studies reported elsewhere on the history, pre-clinical and clinical data underlying the use of cannabinoids for the already widespread treatment of refractory epilepsies and the possibility of use in the treatment of some neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rafael M. Bitencourt
- Laboratory of Behavioral Neuroscience, Graduate Program in Health Sciences, University of Southern Santa Catarina, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Reinaldo N. Takahashi
- Post Graduate Program in Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Elisaldo A. Carlini
- Centro Brasileiro de Informações Sobre Drogas Psicotrópicas (CEBRID), Department of Preventive Medicine, Federal University of São Paulo, UNIFESP, São Paulo, Brazil
| |
Collapse
|
45
|
Loss CM, Teodoro L, Rodrigues GD, Moreira LR, Peres FF, Zuardi AW, Crippa JA, Hallak JEC, Abílio VC. Is Cannabidiol During Neurodevelopment a Promising Therapy for Schizophrenia and Autism Spectrum Disorders? Front Pharmacol 2021; 11:635763. [PMID: 33613289 PMCID: PMC7890086 DOI: 10.3389/fphar.2020.635763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/24/2020] [Indexed: 01/22/2023] Open
Abstract
Schizophrenia and autism spectrum disorders (ASD) are psychiatric neurodevelopmental disorders that cause high levels of functional disabilities. Also, the currently available therapies for these disorders are limited. Therefore, the search for treatments that could be beneficial for the altered course of the neurodevelopment associated with these disorders is paramount. Preclinical and clinical evidence points to cannabidiol (CBD) as a promising strategy. In this review, we discuss clinical and preclinical studies on schizophrenia and ASD investigating the behavioral, molecular, and functional effects of chronic treatment with CBD (and with cannabidivarin for ASD) during neurodevelopment. In summary, the results point to CBD's beneficial potential for the progression of these disorders supporting further investigations to strengthen its use.
Collapse
Affiliation(s)
- Cássio Morais Loss
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| | - Lucas Teodoro
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriela Doná Rodrigues
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lucas Roberto Moreira
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Fiel Peres
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| | - Antonio Waldo Zuardi
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - José Alexandre Crippa
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Jaime Eduardo Cecilio Hallak
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Costhek Abílio
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| |
Collapse
|
46
|
Aran A, Harel M, Cassuto H, Polyansky L, Schnapp A, Wattad N, Shmueli D, Golan D, Castellanos FX. Cannabinoid treatment for autism: a proof-of-concept randomized trial. Mol Autism 2021; 12:6. [PMID: 33536055 PMCID: PMC7860205 DOI: 10.1186/s13229-021-00420-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/27/2021] [Indexed: 12/27/2022] Open
Abstract
Background Endocannabinoid dysfunction in animal models of autism spectrum disorder (ASD) and accumulating, albeit anecdotal, evidence for efficacy in humans motivated this placebo-controlled double-blind comparison of two oral cannabinoid solutions in 150 participants (age 5–21 years) with ASD. Methods We tested (1) BOL-DP-O-01-W, a whole-plant cannabis extract containing cannabidiol and Δ9-tetrahydrocannabinol at a 20:1 ratio and (2) BOL-DP-O-01, purified cannabidiol and Δ9-tetrahydrocannabinol at the same ratio. Participants (N = 150) received either placebo or cannabinoids for 12-weeks (testing efficacy) followed by a 4-week washout and predetermined cross-over for another 12 weeks to further assess tolerability. Registered primary efficacy outcome measures were improvement in behavioral problems (differences between whole-plant extract and placebo) on the Home Situation Questionnaire-ASD (HSQ-ASD) and the Clinical Global Impression-Improvement scale with disruptive behavior anchor points (CGI-I). Secondary measures were Social Responsiveness Scale (SRS-2) and Autism Parenting Stress Index (APSI). Results Changes in Total Scores of HSQ-ASD (primary-outcome) and APSI (secondary-outcome) did not differ among groups. Disruptive behavior on the CGI-I (co-primary outcome) was either much or very much improved in 49% on whole-plant extract (n = 45) versus 21% on placebo (n = 47; p = 0.005). Median SRS Total Score (secondary-outcome) improved by 14.9 on whole-plant extract (n = 34) versus 3.6 points after placebo (n = 36); p = 0.009). There were no treatment-related serious adverse events. Common adverse events included somnolence and decreased appetite, reported for 28% and 25% on whole-plant extract, respectively (n = 95); 23% and 21% on pure-cannabinoids (n = 93), and 8% and 15% on placebo (n = 94). Limitations Lack of pharmacokinetic data and a wide range of ages and functional levels among participants warrant caution when interpreting the results. Conclusions This interventional study provides evidence that BOL-DP-O-01-W and BOL-DP-O-01, administrated for 3 months, are well tolerated. Evidence for efficacy of these interventions are mixed and insufficient. Further testing of cannabinoids in ASD is recommended. Trial registration ClinicalTrials.gov: NCT02956226. Registered 06 November 2016, https://clinicaltrials.gov/ct2/show/NCT02956226
Collapse
Affiliation(s)
- Adi Aran
- Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031, Jerusalem, Israel.
| | - Moria Harel
- Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031, Jerusalem, Israel
| | - Hanoch Cassuto
- Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031, Jerusalem, Israel
| | - Lola Polyansky
- Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031, Jerusalem, Israel
| | - Aviad Schnapp
- Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031, Jerusalem, Israel
| | - Nadia Wattad
- Neuropediatric Unit, Shaare Zedek Medical Center, 12 Bayit Street, 91031, Jerusalem, Israel
| | - Dorit Shmueli
- Child Development Centers, Clalit Health Services, Tel Aviv-Yafo, Israel
| | - Daphna Golan
- Child Development Centers, Maccabi Health Services, Jerusalem, Israel
| | - F Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
47
|
Zou M, Liu Y, Xie S, Wang L, Li D, Li L, Wang F, Zhang Y, Xia W, Sun C, Wu L. Alterations of the endocannabinoid system and its therapeutic potential in autism spectrum disorder. Open Biol 2021; 11:200306. [PMID: 33529552 PMCID: PMC8061688 DOI: 10.1098/rsob.200306] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of developmental disabilities, the aetiology of which remains elusive. The endocannabinoid (eCB) system modulates neurotransmission and neuronal plasticity. Evidence points to the involvement of this neuromodulatory system in the pathophysiology of ASD. We investigated whether there is a disruption to the eCB system in ASD and whether pharmacological modulation of the eCB system might offer therapeutic potential. We examined three major components of the eCB system—endogenous cannabinoids, their receptors and associated enzymes—in ASD children as well as in the valproic acid (VPA) induced animal model in autism. Furthermore, we specifically increased 2-arachidonoylglycerol (2-AG) levels by administering JZL184, a selective inhibitor of monoacylglycerol lipase which is the hydrolytic enzyme for 2-AG, to examine ASD-like behaviours in VPA-induced rats. Results showed that autistic children and VPA-induced rats exhibited reduced eCB content, increased degradation of enzymes and upregulation of CBRs. We found that repetitive and stereotypical behaviours, hyperactivity, sociability, social preference and cognitive functioning improved after acute and chronic JZL184 treatment. The major efficacy of JZL184 was observed after administration of a dosage regimen of 3 mg kg−1, which affected both the eCB system and ASD-like behaviours. In conclusion, a reduced eCB signalling was observed in autistic children and in the ASD animal model, and boosting 2-AG could ameliorate ASD-like phenotypes in animals. Collectively, the results suggested a novel approach to ASD treatment.
Collapse
Affiliation(s)
- Mingyang Zou
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Yu Liu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Shu Xie
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Luxi Wang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Dexin Li
- Department of Children Psychology, Zhuhai Maternal and Child Health Care Hospital, Zhuhai 519001, People's Republic of China
| | - Ling Li
- Office of Leading Group for Control and Prevention of Major Diseases and Infectious diseases, Dezhou Center for Disease Control and Prevention, Dezhou 253011, People's Republic of China
| | - Feng Wang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Yujue Zhang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Wei Xia
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Caihong Sun
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, People's Republic of China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150081, People's Republic of China
| |
Collapse
|
48
|
Mesleh AG, Abdulla SA, El-Agnaf O. Paving the Way toward Personalized Medicine: Current Advances and Challenges in Multi-OMICS Approach in Autism Spectrum Disorder for Biomarkers Discovery and Patient Stratification. J Pers Med 2021; 11:jpm11010041. [PMID: 33450950 PMCID: PMC7828397 DOI: 10.3390/jpm11010041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental disorder characterized by impairments in two main areas: social/communication skills and repetitive behavioral patterns. The prevalence of ASD has increased in the past two decades, however, it is not known whether the evident rise in ASD prevalence is due to changes in diagnostic criteria or an actual increase in ASD cases. Due to the complexity and heterogeneity of ASD, symptoms vary in severity and may be accompanied by comorbidities such as epilepsy, attention deficit hyperactivity disorder (ADHD), and gastrointestinal (GI) disorders. Identifying biomarkers of ASD is not only crucial to understanding the biological characteristics of the disorder, but also as a detection tool for its early screening. Hence, this review gives an insight into the main areas of ASD biomarker research that show promising findings. Finally, it covers success stories that highlight the importance of precision medicine and the current challenges in ASD biomarker discovery studies.
Collapse
Affiliation(s)
- Areej G. Mesleh
- Division of Genomics and Precision Medicine (GPM), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar;
| | - Sara A. Abdulla
- Neurological Disorder Center, Qatar Biomedical Research Institute (QBRI), HBKU, Doha 34110, Qatar
- Correspondence: (S.A.A.); (O.E.-A.)
| | - Omar El-Agnaf
- Division of Genomics and Precision Medicine (GPM), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar;
- Neurological Disorder Center, Qatar Biomedical Research Institute (QBRI), HBKU, Doha 34110, Qatar
- Correspondence: (S.A.A.); (O.E.-A.)
| |
Collapse
|
49
|
Kwan Cheung KA, Mitchell MD, Heussler HS. Cannabidiol and Neurodevelopmental Disorders in Children. Front Psychiatry 2021; 12:643442. [PMID: 34093265 PMCID: PMC8175856 DOI: 10.3389/fpsyt.2021.643442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental and neuropsychiatric disorders (such as autism spectrum disorder) have broad health implications for children, with no definitive cure for the vast majority of them. However, recently medicinal cannabis has been successfully trialled as a treatment to manage many of the patients' symptoms and improve quality of life. The cannabinoid cannabidiol, in particular, has been reported to be safe and well-tolerated with a plethora of anticonvulsant, anxiolytic and anti-inflammatory properties. Lately, the current consensus is that the endocannabinoid system is a crucial factor in neural development and health; research has found evidence that there are a multitude of signalling pathways involving neurotransmitters and the endocannabinoid system by which cannabinoids could potentially exert their therapeutic effects. A better understanding of the cannabinoids' mechanisms of action should lead to improved treatments for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Keith A Kwan Cheung
- Centre for Children's Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Murray D Mitchell
- Centre for Children's Health Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Helen S Heussler
- Centre for Clinical Trials in Rare Neurodevelopmental Disorders, Child Development Program, Children's Health Queensland, Brisbane, QLD, Australia.,Centre for Children's Health Research, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
50
|
Su T, Yan Y, Li Q, Ye J, Pei L. Endocannabinoid System Unlocks the Puzzle of Autism Treatment via Microglia. Front Psychiatry 2021; 12:734837. [PMID: 34744824 PMCID: PMC8568770 DOI: 10.3389/fpsyt.2021.734837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/27/2021] [Indexed: 01/15/2023] Open
Abstract
Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder and characterized by early childhood-onset impairments in social interaction and communication, restricted and repetitive patterns of behavior or interests. So far there is no effective treatment for ASD, and the pathogenesis of ASD remains unclear. Genetic and epigenetic factors have been considered to be the main cause of ASD. It is known that endocannabinoid and its receptors are widely distributed in the central nervous system, and provide a positive and irreversible change toward a more physiological neurodevelopment. Recently, the endocannabinoid system (ECS) has been found to participate in the regulation of social reward behavior, which has attracted considerable attention from neuroscientists and neurologists. Both animal models and clinical studies have shown that the ECS is a potential target for the treatment of autism, but the mechanism is still unknown. In the brain, microglia express a complete ECS signaling system. Studies also have shown that modulating ECS signaling can regulate the functions of microglia. By comprehensively reviewing previous studies and combining with our recent work, this review addresses the effects of targeting ECS on microglia, and how this can contribute to maintain the positivity of the central nervous system, and thus improve the symptoms of autism. This will provide insights for revealing the mechanism and developing new treatment strategies for autism.
Collapse
Affiliation(s)
- Tangfeng Su
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Yan
- Department of Neurology, People's Hospital of Dongxihu District, Wuhan, China
| | - Qiang Li
- Exchange, Development and Service Center for Science and Technology Talents, The Ministry of Science and Technology, Beijing, China
| | - Jiacai Ye
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Lei Pei
- Collaborative Innovation Center for Brain Science, The Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology, Washington University in Saint Louis School of Medicine, Saint Louis, MO, United States
| |
Collapse
|