1
|
Xiang Q, Yan X, Shi X, Huang Y, Li L, Zhong J, Xu T, Tang S, Shi W, Zhou K. Prolonged premature rupture of membranes with increased risk of infection is associated with gut accumulation of Pseudomonas from the environment. Comput Struct Biotechnol J 2024; 23:2851-2860. [PMID: 39100803 PMCID: PMC11296040 DOI: 10.1016/j.csbj.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Background Preterm premature rupture of membranes (PPROM) contributes to over one-third of preterm births, and PPROM infants are more susceptible to infections. However, the risk factors remain poorly understood. We here aim to investigate the association of duration of premature rupture of membranes (PROM) and environmental microbiota with the gut microbiota and infection in PPROM infants. Methods Forty-six premature infants were recruited from two hospitals, and infant fecal and environmental samples were collected. 16 s rRNA sequencing was performed to analyze the fecal and environmental microbiome. Human inflammatory cytokines in cord vein plasma were measured. Results The gut microbiota composition of PPROM infants was different from that of non-PPROM infants, and the microbiome phenotypes were predicted to be associated with a higher risk of infection, further evidenced by the significantly increased levels of IL-6 and IL-8 in cord vein plasma of PPROM infants. The diversity of the gut microbiota in PPROM infants increased significantly as the duration of PROM excessed 12 h, and Pseudomonas contributed significantly to the dynamic changes. The Pseudomonas species in the gut of PPROM infants were highly homologous to those detected in the ward environment, suggesting that prolonged PROM is associated with horizontal transmission of environmental pathogens, leading to a higher risk of infection. Conclusions This study highlights that the duration of PROM is associated with the accumulation of environmental pathogens in the gut of PPROM infants, which is a risk factor for nosocomial infections. Improving environmental hygiene could be effective in optimizing the clinical care of PPROM infants.
Collapse
Affiliation(s)
- Quanhang Xiang
- Shenzhen Institute of Respiratory Diseases, the Second Clinical Medical College (Shenzhen People's Hospital), Jinan University ; The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Xudong Yan
- Department of Neonatal Intensive Care Unit, the Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
| | - Xing Shi
- Shenzhen Institute of Respiratory Diseases, the Second Clinical Medical College (Shenzhen People's Hospital), Jinan University ; The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Yi’e Huang
- Department of Prevention and Healthcare, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen 518020, China
| | - Lingfeng Li
- Shenzhen Institute of Respiratory Diseases, the Second Clinical Medical College (Shenzhen People's Hospital), Jinan University ; The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Jiacheng Zhong
- Shenzhen Institute of Respiratory Diseases, the Second Clinical Medical College (Shenzhen People's Hospital), Jinan University ; The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Tingting Xu
- Shenzhen Institute of Respiratory Diseases, the Second Clinical Medical College (Shenzhen People's Hospital), Jinan University ; The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Shaohui Tang
- Department of Gastroenterology, the First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Wei Shi
- Department of Obstetrics, the Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, the Second Clinical Medical College (Shenzhen People's Hospital), Jinan University ; The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
- Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China
| |
Collapse
|
2
|
Garg PM, Riddick RA, Ansari MAY, Meilstrup AC, Zepponi D, Smith A, Mungan N, Shenberger J, Hillegass WB, Garg PP. Clinical and Growth Correlates of Retinopathy of Prematurity in Preterm Infants with Surgical Necrotizing Enterocolitis and Intestinal Perforation. Am J Perinatol 2024; 41:2152-2164. [PMID: 38565196 PMCID: PMC11496023 DOI: 10.1055/a-2297-8644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
OBJECTIVE This study aimed to identify the clinical and growth parameters associated with retinopathy of prematurity (ROP) in infants with necrotizing enterocolitis (NEC) and spontaneous ileal perforation (SIP). STUDY DESIGN We conducted a retrospective cohort study that compared clinical data before and after NEC/SIP onset in neonates, categorizing by any ROP and severe ROP (type 1/2) status. RESULTS The analysis included 109 infants with surgical NEC/SIP. Sixty infants (60/109, 55%) were diagnosed with any ROP, 32/109 (29.3%) infants (22% type 1 and 7.3% type 2) with severe ROP. On univariate analysis, those with severe ROP (32/109, 39.5%) were of lower median gestational age (GA, 23.8 weeks [23.4, 24.6] vs. 27.3 [26.3, 29.0], p < 0.001), lower median birth weight (625 g [512, 710] vs. 935 [700, 1,180], p < 0.001) and experienced higher exposure to clinical chorioamnionitis (22.6 vs. 2.13%, p < 0.006), and later median onset of ROP diagnosis (63.0 days [47.0, 77.2] vs. 29.0 [19.0, 41.0], p < 0.001), received Penrose drain placement more commonly (19 [59.4%] vs. 16 [34.0%], p = 0.04), retained less residual small bowel (70.0 cm [63.1, 90.8] vs. 90.8 [72.0, 101], p = 0.007) following surgery, were exposed to higher FiO2 7 days after birth (p = 0.001), received ventilation longer and exposed to higher FiO2 at 2 weeks (p < 0.05) following NEC and developed acute kidney injury (AKI) more often (25 [86.2%] vs. 20 [46.5%], p = 0.002) than those without ROP. Those with severe ROP had lower length, weight for length, and head circumference z scores. In an adjusted Firth's logistic regression, GA (adjusted odds ratio [aOR] = 0.51, 95% confidence interval [CI]: [0.35, 0.76]) and diagnosis at later age (aOR = 1.08, 95% CI: [1.03, 1.13]) was shown to be significantly associated with any ROP. CONCLUSION Infants who develop severe ROP following surgical NEC/SIP are likely to be younger, smaller, have been exposed to more O2, develop AKI, and grow poorly compared with those did not develop severe ROP. KEY POINTS · Thirty percent of infants with NEC/SIP had severe ROP.. · Those with severe ROP had poor growth parameters before and after NEC/SIP.. · Risk factors based ROP prevention strategies are needed to have improved ophthalmic outcomes..
Collapse
Affiliation(s)
- Parvesh M Garg
- Department of Pediatrics/Neonatology, Atrium Health Wake Forest Baptist, Wake Forest School of Medicine, Winston Salem, North Carolina
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Robin A Riddick
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Md A Y Ansari
- Department of Data Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Asha C Meilstrup
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - David Zepponi
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Andrea Smith
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Nils Mungan
- Department of Ophthalmology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jeffrey Shenberger
- Department of Pediatrics/Neonatology, Connecticut Children's, Hartford, Connecticut
| | - William B Hillegass
- Department of Data Sciences, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Padma P Garg
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
3
|
Chaaban H, Burge K, McElroy SJ. Evolutionary bridges: how factors present in amniotic fluid and human milk help mature the gut. J Perinatol 2024; 44:1552-1559. [PMID: 38844520 PMCID: PMC11521761 DOI: 10.1038/s41372-024-02026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 08/22/2024]
Abstract
Necrotizing enterocolitis (NEC) continues to be a leading cause of morbidity and mortality in preterm infants. As modern medicine significantly improves the survival of extremely premature infants, the persistence of NEC underscores our limited understanding of its pathogenesis. Due to early delivery, a preterm infant's exposure to amniotic fluid (AF) is abruptly truncated. Replete with bioactive molecules, AF plays an important role in fetal intestinal maturation and preparation for contact with the environment, thus its absence during development of the intestine may contribute to increased susceptibility to NEC. Human milk (HM), particularly during the initial phases of lactation, is a cornerstone of neonatal intestinal defense. The concentrations and activities of several bioactive factors in HM parallel those of AF, suggesting continuity of protection. In this review, we discuss the predominant overlapping bioactive components of HM and AF, with an emphasis on those associated with intestinal growth or reduction of NEC.
Collapse
Affiliation(s)
- Hala Chaaban
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Kathryn Burge
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Steven J McElroy
- Department of Pediatrics, Division of Neonatology, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
4
|
Dargenio VN, Cristofori F, Brindicci VF, Schettini F, Dargenio C, Castellaneta SP, Iannone A, Francavilla R. Impact of Bifidobacterium longum Subspecies infantis on Pediatric Gut Health and Nutrition: Current Evidence and Future Directions. Nutrients 2024; 16:3510. [PMID: 39458503 PMCID: PMC11510697 DOI: 10.3390/nu16203510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Background: the intestinal microbiota, a complex community vital to human health, is shaped by microbial competition and host-driven selective pressures. Among these microbes, Bifidobacterium plays a crucial role in early gut colonization during neonatal stages, where Bifidobacterium longum subspecies infantis (B. infantis) predominates and is particularly prevalent in healthy breastfed infants. Objectives: as we embark on a new era in nutrition of the pediatric population, this study seeks to examine the existing understanding regarding B. infantis, encompassing both preclinical insights and clinical evidence. Methods: through a narrative disceptation of the current literature, we focus on its genetic capacity to break down various substances that support its survival and dominance in the intestine. Results: using "omics" technologies, researchers have identified beneficial mechanisms of B. infantis, including the production of short-chain fatty acids, serine protease inhibitors, and polysaccharides. While B. infantis declines with age and in various diseases, it remains a widely used probiotic with documented benefits for infant and child health in numerous studies. Conclusions: the current scientific evidence underscores the importance for ongoing research and clinical trials for a deeper understanding of B. infantis's role in promoting long-term health.
Collapse
Affiliation(s)
- Vanessa Nadia Dargenio
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy; (V.N.D.); (F.C.); (V.F.B.); (C.D.); (S.P.C.)
| | - Fernanda Cristofori
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy; (V.N.D.); (F.C.); (V.F.B.); (C.D.); (S.P.C.)
| | - Viviana Fara Brindicci
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy; (V.N.D.); (F.C.); (V.F.B.); (C.D.); (S.P.C.)
| | - Federico Schettini
- Neonatology and Neonatal Intensive Care, Santissima Annunziata Hospital, 74123 Taranto, Italy;
| | - Costantino Dargenio
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy; (V.N.D.); (F.C.); (V.F.B.); (C.D.); (S.P.C.)
| | - Stefania Paola Castellaneta
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy; (V.N.D.); (F.C.); (V.F.B.); (C.D.); (S.P.C.)
| | - Andrea Iannone
- Gastroenterology Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| | - Ruggiero Francavilla
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy; (V.N.D.); (F.C.); (V.F.B.); (C.D.); (S.P.C.)
| |
Collapse
|
5
|
Qian J, Yeo EN, Olm MR. Hospitalization throws the preterm gut microbiome off-key. Cell Host Microbe 2024; 32:1651-1653. [PMID: 39389029 DOI: 10.1016/j.chom.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Environmental exposures substantially influence the infant gut microbiome. In this issue of Cell Host & Microbe, Thänert et al.1 characterize how medical interventions in the neonatal intensive care unit (NICU) shape gut microbiome dynamics in the first months of life by analyzing over 2,500 fecal samples with metagenomics and metatranscriptomics.
Collapse
Affiliation(s)
- Jing Qian
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Emily N Yeo
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew R Olm
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
6
|
Thänert R, Schwartz DJ, Keen EC, Hall-Moore C, Wang B, Shaikh N, Ning J, Rouggly-Nickless LC, Thänert A, Ferreiro A, Fishbein SRS, Sullivan JE, Radmacher P, Escobedo M, Warner BB, Tarr PI, Dantas G. Clinical sequelae of gut microbiome development and disruption in hospitalized preterm infants. Cell Host Microbe 2024; 32:1822-1837.e5. [PMID: 39197454 PMCID: PMC11466706 DOI: 10.1016/j.chom.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Aberrant preterm infant gut microbiota assembly predisposes to early-life disorders and persistent health problems. Here, we characterize gut microbiome dynamics over the first 3 months of life in 236 preterm infants hospitalized in three neonatal intensive care units using shotgun metagenomics of 2,512 stools and metatranscriptomics of 1,381 stools. Strain tracking, taxonomic and functional profiling, and comprehensive clinical metadata identify Enterobacteriaceae, enterococci, and staphylococci as primarily exploiting available niches to populate the gut microbiome. Clostridioides difficile lineages persist between individuals in single centers, and Staphylococcus epidermidis lineages persist within and, unexpectedly, between centers. Collectively, antibiotic and non-antibiotic medications influence gut microbiome composition to greater extents than maternal or baseline variables. Finally, we identify a persistent low-diversity gut microbiome in neonates who develop necrotizing enterocolitis after day of life 40. Overall, we comprehensively describe gut microbiome dynamics in response to medical interventions in preterm, hospitalized neonates.
Collapse
Affiliation(s)
- Robert Thänert
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Drew J Schwartz
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Women's Infectious Diseases Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric C Keen
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla Hall-Moore
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nurmohammad Shaikh
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jie Ning
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Anna Thänert
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aura Ferreiro
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Skye R S Fishbein
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Janice E Sullivan
- Department of Pediatrics, University of Louisville School of Medicine, Norton Children's Hospital, Louisville, KY 40202, USA
| | - Paula Radmacher
- Department of Pediatrics, University of Louisville School of Medicine, Norton Children's Hospital, Louisville, KY 40202, USA
| | - Marilyn Escobedo
- Department of Pediatrics, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Phillip I Tarr
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
7
|
Yang J, Qu H, Liu Q, Wang Y, Cao J, Jiang F, Wang Q, Shu J. Global Insights and Key Trends in Gut Microbiota Research for Premature Infants: A Bibliometric and Visualization Study. J Multidiscip Healthc 2024; 17:4611-4626. [PMID: 39381419 PMCID: PMC11460277 DOI: 10.2147/jmdh.s483332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Background Premature infants, defined as those born before 37 weeks of gestation, face numerous health challenges due to their underdeveloped systems. One critical aspect of their health is the gut microbiota, which plays a vital role in their immune function and overall development. This study provides a comprehensive bibliometric analysis of research trends, influential contributors, and evolving themes in the study of gut microbiota in premature infants over the past two decades. Methods We conducted a bibliometric analysis using the Web of Science Core Collection database, covering publications from January 1, 2004, to June 17, 2024. We employed VOSviewer, the R package "bibliometrix", and Citespace for data visualization and analysis, focusing on co-authorship, co-citation, and keyword co-occurrence networks. Results The temporal analysis revealed a significant increase in research output on gut microbiota in premature infants, particularly in the last decade. Early research primarily focused on characterizing the gut microbiota of premature infants, identifying less diversity and a higher prevalence of pathogenic bacteria compared to full-term infants. Key research themes identified include probiotics, necrotizing enterocolitis (NEC), and breastfeeding. Probiotic studies highlighted the potential of strains like Bifidobacterium and Lactobacillus in reducing NEC and sepsis incidences. Breastfeeding research consistently showed the benefits of human milk in fostering a healthier gut microbiota profile. Co-authorship and co-citation analyses identified key contributors and influential studies, emphasizing strong international collaborations, particularly among researchers from the United States, China, and European countries. Conclusion This bibliometric analysis underscores the growing recognition of the gut microbiota's crucial role in the health of premature infants. The field has seen significant advancements, particularly in understanding how interventions like probiotics and breastfeeding can modulate gut microbiota to improve health outcomes. Continued research and international collaboration are essential to further unravel the complexities of gut microbiota in premature infants and develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Juanzhi Yang
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Huanxia Qu
- Department of Blood Transfusion, Zhenjiang First People’s Hospital, Zhenjiang, People’s Republic of China
| | - Qi Liu
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Yixing Wang
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Jiaxin Cao
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Qian Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jin Shu
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People’s Republic of China
| |
Collapse
|
8
|
Offersen SM, Henriksen NL, Brunse A. A weighted and cumulative point system for accurate scoring of intestinal pathology in a piglet model of necrotizing enterocolitis. Exp Mol Pathol 2024; 140:104936. [PMID: 39366159 DOI: 10.1016/j.yexmp.2024.104936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Necrotizing enterocolitis (NEC) is a serious condition in premature infants, in which a portion of the intestine undergoes inflammation and necrosis. The preterm pig develops NEC spontaneously, making it a suitable model for exploring novel NEC treatments. We aimed to revise the intestinal scoring system to more accurately describe the diversity of NEC lesions in the preterm piglet model. We included 333 preterm piglets from four experiments, each delivered via cesarean section. The piglets were fed either a gently processed (GP) or harshly processed (HP) milk formula for 96 h before euthanasia. At necropsy, the gastrointestinal tract was assessed with 1) an established 6-grade score and 2) a descriptive approach focusing on the distribution and severity of hyperemia, hemorrhage, pneumatosis intestinalis (intramural gas), and necrosis. Subsequently, the descriptive registrations were converted into a weighted and cumulative point (WCP) score. Compared to the 6-grade score, the WCP score enabled a greater segregation of severity levels, especially among organs with more prominent NEC lesions. IL-1β in small intestinal lesions and both IL-8 and IL-1β in colon lesions correlated positively with the WCP scale. A histopathological grade system (0-8) was established and revealed mucosal pathology in lesion biopsies, which were not recognized macroscopically. Finally, the WCP score showed a higher NEC-promoting effect of the HP formula compared to the GP formula. The descriptive registrations and extended score range of this revised intestinal scoring system enhance the accuracy of describing NEC lesions in preterm pigs. This approach may increase the efficiency of preclinical NEC experiments.
Collapse
Affiliation(s)
- Simone Margaard Offersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Nicole Lind Henriksen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anders Brunse
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
9
|
Tian Y, Huang Q, Ren YT, Jiang X, Jiang B. Visceral adipose tissue predicts severity and prognosis of acute pancreatitis in obese patients. Hepatobiliary Pancreat Dis Int 2024; 23:458-462. [PMID: 37648552 DOI: 10.1016/j.hbpd.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Acute pancreatitis is a common systemic inflammatory disease, manifested by a spectrum of severity, ranging from mild in the majority of patients to severe acute pancreatitis. Patients with severe acute pancreatitis suffer from severe local and systemic complications and organ failure, leading to a poor prognosis. The early recognition of the severe condition is important to improve prognosis. Obesity has risen in tandem with an increase in the severity of acute pancreatitis in recent years. Studies have revealed that adipose tissue, particularly visceral adipose tissue is associated with the prognosis of acute pancreatitis. This review discussed the role of visceral adipose tissue in obese patients with acute pancreatitis and explored the possible mechanism involved.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Qing Huang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yu-Tang Ren
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Xuan Jiang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Bo Jiang
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.
| |
Collapse
|
10
|
Butzer SK, Faust K, Oberthuer A, Kleindiek C, Kuehne B, Haertel C, Mehler K. Wide use of broad-spectrum antibiotics in very low birth weight infants with spontaneous focal intestinal perforation-is it really justified? Infection 2024; 52:1901-1910. [PMID: 38634989 PMCID: PMC11499452 DOI: 10.1007/s15010-024-02257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Very low birth weight (VLBW) infants are at a risk of spontaneous focal intestinal perforation (FIP). Treatment includes supportive care, antibiotics, and drainage with/without surgery. Broad-spectrum antibiotic agents like carbapenems are applied frequently, although their use is not well-supported by the limited evidence of causal pathogens. We hypothesize that the use of carbapenems may not be necessary in VLBW infants with FIP. Our primary objective was to evaluate the antimicrobial use in VLBW infants with FIP in a cohort of the German Neonatal Network (GNN). The secondary objective was to characterize a subset in detail as a benchmark for future targets of stewardship. METHODS Data on VLBW infants with FIP was collected prospectively within the GNN, a collaboration of 68 neonatal intensive care units (NICU). With regards to the primary objective, patient characteristics and antimicrobial treatment were extracted from the predefined GNN database. To address our secondary objective, an additional on-site assessment of laboratory and microbiological culture results were performed. RESULTS In the GNN cohort, 613/21,646 enrolled infants (2.8%) developed FIP requiring surgery. They were frequently treated with carbapenems (500/613 (81.6%)) and vancomycin (497/613 (81.1%)). In a subset of 124 VLBW infants, 77 (72.6%) had proof of gram-positive bacteria in the abdominal cavity, coagulase-negative staphylococci (CoNS) predominantly. Despite the low prevalence of gram-negative bacteria (n = 6 (4.8%)), the combination of meropenem and vancomycin was prescribed most frequently (n = 96 (78.0%)). CONCLUSION The use of carbapenems as broad-spectrum antimicrobials agents might not be justified in most VLBW infants with FIP. Knowledge on the development of the neonatal gut microbiota, local resistance patterns and individual microbiological findings should be taken into consideration when implementing antimicrobial stewardship programs (ASPs).
Collapse
Affiliation(s)
- Sarina K Butzer
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, University of Cologne, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany.
| | - Kirstin Faust
- Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - André Oberthuer
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, University of Cologne, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | | | - Benjamin Kuehne
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Christoph Haertel
- Department of Pediatrics, University of Würzburg, Würzburg, Germany
- German Neonatal Network (GNN), Lübeck, Germany
| | - Katrin Mehler
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, University of Cologne, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany.
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
11
|
Malamitsi-Puchner A, Briana DD, Di Renzo GC. The microbiome in pregnancy and early life-Highlights from the 11th Maria Delivoria-Papadopoulos Perinatal Symposium. Acta Paediatr 2024; 113:2189-2196. [PMID: 38895845 DOI: 10.1111/apa.17328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
This review was based on a symposium that examined novel aspects of the microbiome during pregnancy and early life and explored papers published by the lecturers. For example, it showed that bacterial extracellular vesicles derived from the microbiome harboured in various maternal niches, carried bacterial deoxyribonucleic acid, were isolated from the placenta and may have confounded placental microbiome studies. Maternal diet was responsible for the composition and diversity of breast milk microbiota, and may have shaped the offspring's microbiome and influenced their immune components. Probiotics and antibiotics administered perinatally may have had beneficial but also long-lasting adverse effects on offspring.
Collapse
Affiliation(s)
- Ariadne Malamitsi-Puchner
- Neonatal Intensive Care Unit, 3rd Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina D Briana
- Neonatal Intensive Care Unit, 3rd Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Gian Carlo Di Renzo
- PREIS School, International and European School of Perinatal, Neonatal and Reproductive Medicine, Florence, Italy
- Department of Obstetrics, Gynecology and Perinatology, I.M. Sechenov First State University of Moscow, Moscow, Russia
| |
Collapse
|
12
|
Cuna A, Kumar N, Sampath V. Understanding necrotizing enterocolitis endotypes and acquired intestinal injury phenotypes from a historical and artificial intelligence perspective. Front Pediatr 2024; 12:1432808. [PMID: 39398415 PMCID: PMC11466774 DOI: 10.3389/fped.2024.1432808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Necrotizing enterocolitis (NEC) remains a devastating disease in preterm and term neonates. Despite significant progress made in understanding NEC pathogenesis over the last 50 years, the inability of current definitions to discriminate the various pathophysiological processes underlying NEC has led to an umbrella term that limits clinical and research progress. In this mini review, we provide a historical perspective on how NEC definitions and pathogenesis have evolved to our current understanding of NEC endotypes. We also discuss how artificial intelligence-based approaches are influencing our knowledge of risk-factors, classification and prognosis of NEC and other neonatal intestinal injury phenotypes.
Collapse
Affiliation(s)
- Alain Cuna
- Division of Neonatology, Children’s Mercy Kansas City, Kansas City, MO, United States
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Navin Kumar
- Division of Neonatology, Hurley Medical Center, Flint, MI, United States
| | - Venkatesh Sampath
- Division of Neonatology, Children’s Mercy Kansas City, Kansas City, MO, United States
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
13
|
Sarafidis K, Agakidou E, Kontou A, Agakidis C, Neu J. Struggling to Understand the NEC Spectrum-Could the Integration of Metabolomics, Clinical-Laboratory Data, and Other Emerging Technologies Help Diagnosis? Metabolites 2024; 14:521. [PMID: 39452903 PMCID: PMC11509608 DOI: 10.3390/metabo14100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is the most prevalent and potentially fatal intestinal injury mainly affecting premature infants, with significant long-term consequences for those who survive. This review explores the scale of the problem, highlighting advancements in epidemiology, the understanding of pathophysiology, and improvements in the prediction and diagnosis of this complex, multifactorial, and multifaced disease. Additionally, we focus on the potential role of metabolomics in distinguishing NEC from other conditions, which could allow for an earlier and more accurate classification of intestinal injuries in infants. By integrating metabolomic data with other diagnostic approaches, it is hoped to enhance our ability to predict outcomes and tailor treatments, ultimately improving care for affected infants.
Collapse
Affiliation(s)
- Kosmas Sarafidis
- 1st Department of Neonatology, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.A.); (A.K.)
| | - Eleni Agakidou
- 1st Department of Neonatology, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.A.); (A.K.)
| | - Angeliki Kontou
- 1st Department of Neonatology, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.A.); (A.K.)
| | - Charalampos Agakidis
- 1st Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Josef Neu
- Department of Pediatrics, Division of Neonatology, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
14
|
Brandibur TE, Kundnani NR, Ramakrishna K, Mederle A, Manea AM, Boia M, Popoiu MC. Comparison of One-Year Post-Operative Evolution of Children Born of COVID-19-Positive Mothers vs. COVID-19-Negative Pregnancies Having Congenital Gastrointestinal Malformation and Having Received Proper Parenteral Nutrition during Their Hospital Stay. Pediatr Rep 2024; 16:823-832. [PMID: 39449397 PMCID: PMC11503270 DOI: 10.3390/pediatric16040070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Background: The long-term effects on neonates born of COVID-19-positive pregnancies are still unclear. Congenital gastrointestinal malformations (CGIMs) often require urgent surgical intervention and antibiotic coverage. We aim to compare the health status at one-year post-surgical follow-up of cases of CGIM born of COVID-19-positive pregnancies to those of non-COVID-19 pregnancies. Methods: We conducted a comparative, observational study of 41 patients who underwent surgery at our hospital for congenital gastrointestinal malformations in 2022. They were initially treated with antibiotics and parenteral nutrition, which was later replaced with enteral nutrition gradually after the surgery. We then analyzed the data related to their growth and development during their 12-month follow-up visit at our outpatient clinic. We classified the children born of COVID-19-positive mothers as Group 1 (n = 14) and those born of mothers without COVID-19 symptoms or with unconfirmed status as Group 2 (n = 33). Results: Forty-one patients showed up for a one-year follow-up (between 11 and 13 months of life). Hence, the final Group 1 comprised 12 and Group 2 comprised 29 children. The patients were categorized based on their anatomical location. Of the cohort, 56.09% were preemies, and 43.91% were full-term newborns. We used seven parameters to evaluate both groups based on growth and developmental milestones: verbal skills, cognitive development, weight gain, height achieved, fine motor movements, gross motor movements, and social/emotional behavior. Group 1 children showed a significant decrease in height and weight compared to Group 2 children. In Group 1, 83.33% of patients were prescribed antibiotics, while only 10.34% in Group 2 were in the same situation. There were no cases of malabsorption syndrome in Group 2, but 16.66% of patients in Group 1 had it, with patients being operated on for duodenal malformations. None of the infants had necrotizing enterocolitis, post-surgical complications, or sepsis. All the children received antibiotics to prevent infection before and after surgery. No mortality was noted. Conclusions: In our one-year follow-up study, it was seen that even after surgical correction of congenital gastrointestinal malformations, children born of COVID-19-positive pregnancies can suffer serious growth and developmental delays, and gastrointestinal health issues might be more common. Since the long-term effects of COVID-19-positive pregnancies are not yet clear, larger cohort-based studies are required in this domain. Antibiotics destroy gut microbiota, especially in cases of gastrointestinal malformations and surgical resections. Growth and developmental milestones can not only be affected by CGIMs but also be further delayed by COVID-19 infections.
Collapse
Affiliation(s)
- Timea Elisabeta Brandibur
- Neonatology and Puericulture Department, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
- Neonatology and Preterm Department, “Louis Ţurcanu” Children Emergency Hospital, 300011 Timisoara, Romania
| | - Nilima Rajpal Kundnani
- Discipline of Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, Department of Cardiology, Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Kakarla Ramakrishna
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur 522302, Andhra Pradesh, India
| | - Alexandra Mederle
- Faculty of General Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| | - Aniko Maria Manea
- Neonatology and Puericulture Department, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
- Neonatology and Preterm Department, “Louis Ţurcanu” Children Emergency Hospital, 300011 Timisoara, Romania
| | - Marioara Boia
- Neonatology and Puericulture Department, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
- Neonatology and Preterm Department, “Louis Ţurcanu” Children Emergency Hospital, 300011 Timisoara, Romania
| | - Marius Calin Popoiu
- Department XI of Pediatric Surgery, “Victor Babes” University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| |
Collapse
|
15
|
Latkowska M, Cai CL, Mitrou M, Marcelino M, Aranda JV, Beharry KD. Gut microbiome and inflammation in response to increasing intermittent hypoxia in the neonatal rat. Pediatr Res 2024:10.1038/s41390-024-03569-7. [PMID: 39300277 DOI: 10.1038/s41390-024-03569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Intermittent hypoxia (IH) and oxidative stress play key roles in gut dysbiosis and inflammation. We tested the hypothesis that increasing numbers of daily IH episodes cause microbiome dysbiosis and severe gut injury. METHODS Neonatal rats were exposed to hyperoxia (Hx), growth restriction, and IH. For IH, pups were exposed to 2-12 daily episodes from birth (P0) to postnatal day 7 (7D) or P0-P14 (14D), with or without recovery in room air (RA) until P21. Animals raised in RA from P0 to P21 served as normoxia controls. Stool was expressed from the large intestines for microbiome analysis, and tissue samples were assessed for histopathology and biomarkers of inflammation. RESULTS Hx and IH caused a significant reduction in the number and diversity of organisms. The severity of gut injury and levels of inflammatory cytokines and TLR4 increased, while total glutathione (tGSH) declined, with increasing daily IH episodes. The number of organisms correlated with the villi number (p < 0.05) and tGSH depletion (p < 0.001). CONCLUSIONS The critical number of daily IH episodes that the newborn gut may sustain is 6, beyond which irreversible damage occurs. The immature gut is highly susceptible to IH-induced injury, and IH may contribute to pathological outcomes in the immature gut. IMPACT STATEMENT 1. The neonatal gut at birth is highly susceptible to intermittent hypoxia (IH) injury. 2. IH causes gut dysbiosis, inflammation, and glutathione depletion. 3. The severity of gut injury worsens as a function of increasing daily IH episodes. 4. The critical number of daily IH episodes that the newborn gut may sustain is 6, beyond which irreversible damage occurs.
Collapse
Affiliation(s)
- Magdalena Latkowska
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
| | - Marina Mitrou
- Department of Pediatrics, Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | | | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA
- SUNY Eye Institute, Brooklyn, NY, USA
- Department of Ophthalmology, Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA.
- SUNY Eye Institute, Brooklyn, NY, USA.
- Department of Ophthalmology, Downstate Medical Center, State University of New York, Brooklyn, NY, USA.
| |
Collapse
|
16
|
Shama S, Asbury MR, Kiss A, Bando N, Butcher J, Comelli EM, Copeland JK, Greco A, Kothari A, Sherman PM, Stintzi A, Taibi A, Tomlinson C, Unger S, Wang PW, O'Connor DL. Mother's milk microbiota is associated with the developing gut microbial consortia in very-low-birth-weight infants. Cell Rep Med 2024; 5:101729. [PMID: 39243753 DOI: 10.1016/j.xcrm.2024.101729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
Mother's milk contains diverse bacterial communities, although their impact on microbial colonization in very-low-birth-weight (VLBW, <1,500 g) infants remains unknown. Here, we examine relationships between the microbiota in preterm mother's milk and the VLBW infant gut across initial hospitalization (n = 94 mother-infant dyads, 422 milk-stool pairs). Shared zero-radius operational taxonomic units (zOTUs) between milk-stool pairs account for ∼30%-40% of zOTUs in the VLBW infant's gut. We show dose-response relationships between intakes of several genera from milk and their concentrations in the infant's gut. These relationships and those related to microbial sharing change temporally and are modified by in-hospital feeding practices (especially direct breastfeeding) and maternal-infant antibiotic use. Correlations also exist between milk and stool microbial consortia, suggesting that multiple milk microbes may influence overall gut communities together. These results highlight that the mother's milk microbiota may shape the gut colonization of VLBW infants by delivering specific bacteria and through intricate microbial interactions.
Collapse
Affiliation(s)
- Sara Shama
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michelle R Asbury
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Departments of Physiology & Pharmacology, and Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Alex Kiss
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada; Evaluative and Clinical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nicole Bando
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - James Butcher
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Elena M Comelli
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto, Toronto, ON, Canada
| | - Julia K Copeland
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Adrianna Greco
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Akash Kothari
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Philip M Sherman
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Cell Biology Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada; Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Amel Taibi
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Christopher Tomlinson
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada; Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto, Toronto, ON, Canada; Department of Paediatrics, University of Toronto, Toronto, ON, Canada; Division of Neonatology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sharon Unger
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Department of Paediatrics, University of Toronto, Toronto, ON, Canada; Division of Neonatology, Izaak Walton Killam Hospital, Halifax, NS, Canada; Department of Pediatrics, Sinai Health, Toronto, ON, Canada; Rogers Hixon Ontario Human Milk Bank, Toronto, ON, Canada
| | - Pauline W Wang
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Deborah L O'Connor
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada; Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto, Toronto, ON, Canada; Department of Pediatrics, Sinai Health, Toronto, ON, Canada; Rogers Hixon Ontario Human Milk Bank, Toronto, ON, Canada.
| |
Collapse
|
17
|
Anderson CJ, Boeckaerts L, Chin P, Cardas JB, Xie W, Gonçalves A, Blancke G, Benson S, Rogatti S, Simpson MS, Davey A, Choi SM, Desmet S, Bushman SD, Goeminne G, Vandenabeele P, Desai MS, Vereecke L, Ravichandran KS. Metabolite-based inter-kingdom communication controls intestinal tissue recovery following chemotherapeutic injury. Cell Host Microbe 2024; 32:1469-1487.e9. [PMID: 39197455 DOI: 10.1016/j.chom.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Cytotoxic chemotherapies have devastating side effects, particularly within the gastrointestinal tract. Gastrointestinal toxicity includes the death and damage of the epithelium and an imbalance in the intestinal microbiota, otherwise known as dysbiosis. Whether dysbiosis is a direct contributor to tissue toxicity is a key area of focus. Here, from both mammalian and bacterial perspectives, we uncover an intestinal epithelial cell death-Enterobacteriaceae signaling axis that fuels dysbiosis. Specifically, our data demonstrate that chemotherapy-induced epithelial cell apoptosis and the purine-containing metabolites released from dying cells drive the inter-kingdom transcriptional re-wiring of the Enterobacteriaceae, including fundamental shifts in bacterial respiration and promotion of purine utilization-dependent expansion, which in turn delays the recovery of the intestinal tract. Inhibition of epithelial cell death or restriction of the Enterobacteriaceae to homeostatic levels reverses dysbiosis and improves intestinal recovery. These findings suggest that supportive therapies that maintain homeostatic levels of Enterobacteriaceae may be useful in resolving intestinal disease.
Collapse
Affiliation(s)
- Christopher J Anderson
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | - Laura Boeckaerts
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Priscilla Chin
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Javier Burgoa Cardas
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wei Xie
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Amanda Gonçalves
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; VIB BioImaging Core, Ghent, Belgium
| | - Gillian Blancke
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sam Benson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Sebastian Rogatti
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Mariska S Simpson
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anna Davey
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Sze Men Choi
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Summer D Bushman
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | | | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Lars Vereecke
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kodi S Ravichandran
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
18
|
Dera N, Żeber-Lubecka N, Ciebiera M, Kosińska-Kaczyńska K, Szymusik I, Massalska D, Dera K, Bubień K. Intrauterine Shaping of Fetal Microbiota. J Clin Med 2024; 13:5331. [PMID: 39274545 PMCID: PMC11396688 DOI: 10.3390/jcm13175331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Mechanisms resulting from the physiological immaturity of the digestive system in children delivered before 32 weeks of gestation and, in particular, different interactions between the microbiome and the body have not been fully elucidated yet. Next-generation sequencing methods demonstrated the presence of bacterial DNA in the placenta and amniotic fluid, which may reflect bacterial populations that initiate intestinal colonization in utero. Numerous studies confirmed the hypothesis stating that intestinal bacteria played an important role in the pathogenesis of necrotizing enterocolitis (NEC) early- and late-onset neonatal sepsis (EONS and LONS). The model and scale of disorders within the intestinal microbiome are the subject of active research in premature infants. Neonatal meconium was primarily used as an indicator defining the environment in utero, as it is formed before birth. Metagenomic results and previous data from microbiological bacterial cultures showed a correlation between the time from birth to sample collection and the detection of bacteria in the neonatal meconium. Therefore, it may be determined that the colonization of the newborn's intestines is influenced by numerous factors, which may be divided into prenatal, perinatal, and postnatal, with particular emphasis put on the mode of delivery and contact with the parent immediately after birth. Background: The aim of this review was to collect available data on the intrauterine shaping of the fetal microbiota. Methods: On 13 March 2024, the available literature in the PubMed National Library of Medicine search engine was reviewed using the following selected keywords: "placental microbiome", "intestinal bacteria in newborns and premature infants", and "intrauterine microbiota". Results: After reviewing the available articles and abstracts and an in-depth analysis of their content, over 100 articles were selected for detailed elaboration. We focused on the origin of microorganisms shaping the microbiota of newborns. We also described the types of bacteria that made up the intrauterine microbiota and the intestinal microbiota of newborns. Conclusions: The data presented in the review on the microbiome of both term newborns and those with a body weight below 1200 g indicate a possible intrauterine colonization of the fetus depending on the duration of pregnancy. The colonization occurs both via the vaginal and intestinal route (hematogenous route). However, there are differences in the demonstrated representatives of various types of bacteria, phyla Firmicutes and Actinobacteria in particular, taking account of the distribution in their abundance in the individual groups of pregnancy duration. Simultaneously, the distribution of the phyla Actinobacteria and Proteobacteria is consistent. Considering the duration of pregnancy, it may also be concluded that the bacterial flora of vaginal origin dominates in preterm newborns, while the flora of intestinal origin dominates in term newborns. This might explain the role of bacterial and infectious factors in inducing premature birth with the rupture of fetal membranes.
Collapse
Affiliation(s)
- Norbert Dera
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, 01-809 Warsaw, Poland
- Warsaw Institute of Women's Health, 00-189 Warsaw, Poland
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michał Ciebiera
- Warsaw Institute of Women's Health, 00-189 Warsaw, Poland
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland
| | - Katarzyna Kosińska-Kaczyńska
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, 01-809 Warsaw, Poland
| | - Iwona Szymusik
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, 01-809 Warsaw, Poland
| | - Diana Massalska
- Warsaw Institute of Women's Health, 00-189 Warsaw, Poland
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland
| | - Kacper Dera
- Provincial Specialist Hospital in Olsztyn, 10-561 Olsztyn, Poland
| | - Katarzyna Bubień
- Department of Obstetrics, Perinatology and Neonatology, Center of Postgraduate Medical Education, 01-809 Warsaw, Poland
| |
Collapse
|
19
|
Lai MY, Chang YH, Lee CC. The impact of gut microbiota on morbidities in preterm infants. Kaohsiung J Med Sci 2024; 40:780-788. [PMID: 39073226 DOI: 10.1002/kjm2.12878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
The gut microbiota undergoes substantial development from birth, and its development in the initial years of life has a potentially lifelong effect on the health of the individual. However, various factors can disrupt the development of the gut microbiota, leading to a condition known as dysbiosis, particularly in preterm infants. Current studies involving adults have suggested that the gut microbiota not only influences the gut but also has multidimensional effects on remote organs; these pathways are often referred to as the gut-organ axis. Imbalance of the gut microbiota may lead to the development of multiple diseases. Recent studies have revealed that gut dysbiosis in preterm infants may cause several acute morbidities-such as necrotizing enterocolitis, late-onset sepsis, bronchopulmonary dysplasia, and retinopathy of prematurity-and it may also influence long-term outcomes including neurodevelopment and somatic growth. This review mainly presents the existing evidence regarding the relationships between the gut microbiota and these morbidities in preterm infants and explores the role of the gut-organ axis in these morbidities. This paper thus offers insights into the future perspectives on microbiota interventions for promoting the health of preterm infants.
Collapse
Affiliation(s)
- Mei-Yin Lai
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yin-Hsi Chang
- Department of Ophthalmology, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Chung Lee
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
20
|
Melki R, Litvak Y. From vacant to vivid: The nutritional landscape drives infant gut microbiota establishment. Mol Microbiol 2024; 122:347-356. [PMID: 39044538 DOI: 10.1111/mmi.15296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
From the moment of birth, the newborn gastrointestinal tract is infiltrated by various bacteria originating from both maternal and environmental sources. These colonizing bacteria form a complex microbiota community that undergoes continuous changes until adulthood and plays an important role in infant health. The maturation of the infant gut microbiota is driven by many factors and follows a distinct patterned trajectory, with specific bacterial taxa establish in the intestine in accordance with developmental milestones as the infant grows. In this review, we highlight how elements such as diet and host physiology select for specific microbial functions and shape the composition of the bacterial community in the large intestine.
Collapse
Affiliation(s)
- Reut Melki
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Litvak
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
21
|
Drenckpohl DC, Christifano DN, Carlson SE. Is choline deficiency an unrecognized factor in necrotizing enterocolitis of preterm infants? Pediatr Res 2024; 96:875-883. [PMID: 38658665 DOI: 10.1038/s41390-024-03212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
We undertook this review to determine if it is plausible that choline or phosphatidylcholine (PC) deficiency is a factor in necrotizing enterocolitis (NEC) after two clinical trials found a dramatic and unexpected reduction in NEC in an experimental group provided higher PC compared to a control group. Sources and amounts of choline/PC for preterm infants are compared to the choline status of preterm infants at birth and following conventional nutritional management. The roles of choline/PC in intestinal structure, mucus, mesenteric blood flow, and the cholinergic anti-inflammatory system are summarized. Low choline/PC status is linked to prematurity/immaturity, parenteral and enteral feeding, microbial dysbiosis and hypoxia/ischemia, factors long associated with the risk of developing NEC. We conclude that low choline status exists in preterm infants provided conventional parenteral and enteral nutritional management, and that it is plausible low choline/PC status adversely affects intestinal function to set up the vicious cycle of inflammation, loss of intestinal barrier function and worsening tissue hypoxia that occurs with NEC. In conclusion, this review supports the need for randomized clinical trials to test the hypothesis that additional choline or PC provided parenterally or enterally can reduce the incidence of NEC in preterm infants. IMPACT STATEMENT: Low choline status in preterm infants who are managed by conventional nutrition is plausibly linked to the risk of developing necrotizing enterocolitis.
Collapse
Affiliation(s)
- Douglas C Drenckpohl
- Department of Food & Nutrition, OSF Healthcare Saint Francis Medical Center, Peoria, IL, 61637, USA
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, 66106, USA
| | - Danielle N Christifano
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, 66106, USA
| | - Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, 66106, USA.
| |
Collapse
|
22
|
Davis EC, Monaco CL, Insel R, Järvinen KM. Gut microbiome in the first 1000 days and risk for childhood food allergy. Ann Allergy Asthma Immunol 2024; 133:252-261. [PMID: 38494114 PMCID: PMC11344696 DOI: 10.1016/j.anai.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVE To summarize recent data on the association between gut microbiome composition and food allergy (FA) in early childhood and highlight potential host-microbiome interactions that reinforce or abrogate oral tolerance. DATA SOURCES PubMed search of English-language articles related to FA, other atopic disease, and the gut microbiome in pregnancy and early childhood. STUDY SELECTIONS Human studies published after 2015 assessing the relationship between the gut bacteriome and virome in the first 2 years of life and FA or food sensitization development in early childhood were prioritized. Additional human studies conducted on the prenatal gut microbiome or other atopic diseases and preclinical studies are also discussed. RESULTS Children who developed FA harbored lower abundances of Bifidobacterium and Clostridia species and had a less mature microbiome during infancy. The early bacterial microbiome protects against FA through production of anti-inflammatory metabolites and induction of T regulatory cells and may also affect FA risk through a role in trained immunity. Infant enteric phage communities are related to childhood asthma development, though no data are available for FA. Maternal gut microbiome during pregnancy is associated with childhood FA risk, potentially through transplacental delivery of maternal bacterial metabolites, though human studies are lacking. CONCLUSION The maternal and infant microbiomes throughout the first 1000 days of life influence FA risk through a number of proposed mechanisms. Further large, longitudinal cohort studies using taxonomic, functional, and metabolomic analysis of the bacterial and viral microbiomes are needed to provide further insight on the host-microbe interactions underlying FA pathogenesis in childhood.
Collapse
Affiliation(s)
- Erin C Davis
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York
| | - Cynthia L Monaco
- Division of Infectious Disease, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Richard Insel
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York
| | - Kirsi M Järvinen
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, New York; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York; Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York.
| |
Collapse
|
23
|
Zemanick ET, Rosas-Salazar C. The Role of the Microbiome in Pediatric Respiratory Diseases. Clin Chest Med 2024; 45:587-597. [PMID: 39069323 DOI: 10.1016/j.ccm.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Numerous studies have examined the role of the microbiome and microbiome-based therapeutics in many childhood airway and lung diseases. In this narrative review, the authors first give a brief overview of the current methods used in microbiome research. The authors then review the literature linking the microbiome with (1) early-life acute respiratory infections due to respiratory syncytial virus, (2) childhood asthma onset, (3) cystic fibrosis, and (4) bronchopulmonary dysplasia, focusing on recent studies that have used culture-independent methods to characterize the respiratory or gut microbiome in the pediatric population.
Collapse
Affiliation(s)
- Edith T Zemanick
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, 13123 East 16th Avenue, B-395, Aurora, CO 80045, USA
| | - Christian Rosas-Salazar
- Department of Pediatrics, Vanderbilt University Medical Center and Monroe Carell Jr. Children's Hospital at Vanderbilt, 2200 Children's Way, Doctors' Office Tower, Suite 11215, Nashville, TN 37232, USA.
| |
Collapse
|
24
|
Li X, Jiang B, Gao T, Nian Y, Bai X, Zhong J, Qin L, Gao Z, Wang H, Ma X. Effects of inulin on intestinal flora and metabolism-related indicators in obese polycystic ovary syndrome patients. Eur J Med Res 2024; 29:443. [PMID: 39217395 PMCID: PMC11365155 DOI: 10.1186/s40001-024-02034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
CONTEXT Polycystic ovary syndrome (PCOS), a common endocrine disorder in women of reproductive age, is closely associated with chronic low-grade inflammation and metabolic disturbances. In PCOS mice, dietary inulin has been demonstrated to regulate intestinal flora and inflammation. However, the efficacy of dietary inulin in clinical PCOS remains unclear. OBJECTIVE The intestinal flora and related metabolic indexes of obese patients with polycystic ovary syndrome (PCOS) after 3 months of inulin treatment were analyzed. SETTING AND DESIGN To analyze the intestinal flora and related metabolic indexes in healthy controls and obese patients with polycystic ovary syndrome after 3 months of inulin treatment. RESULTS The results showed that dietary inulin improved sex hormone disorders, reduced BMI and WHR levels in obese women with PCOS. In addition, the inulin intervention reduced plasma TNF-α, IL-1β, IL-6, and MCP-1levels. Inulin intervention increased the abundance of Actinobacteria, Fusobacteria, Lachnospira, and Bifidobacterium, as well as decreased the ratio of F/B and the abundance of proteobacteria, Sutterella, and Enterobacter. Correlation analyses showed a strong relationship among plasma inflammatory factors, sex steroid hormones, and the intestinal flora of patients. CONCLUSIONS Dietary inulin may improve obese PCOS women disease through the gut flora-inflammation-steroid hormone pathway. THE CLINICAL TRIAL REGISTRATION NUMBER ChiCTR-IOR-17012281.
Collapse
Affiliation(s)
- Xiaorong Li
- Center for Reproductive Medicine, General Hospital of Ningxia Medical University, 164, Zhiping Road, Yinchuan, 750004, Ningxia, China
- Key Laboratory of Fertility Maintenance, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
- College of Traditional Chinese Medicine, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
| | - Bo Jiang
- Key Laboratory of Fertility Maintenance, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
- Key Laboratory of Modernization of Hui Medicine, Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
- College of Traditional Chinese Medicine, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
| | - Ting Gao
- Chengdu Integrated, TCM&Western Medicine Hospital, 18, Wanxiang North Road, Chengdu, 610095, Sichuan, China
| | - Yan Nian
- Center for Reproductive Medicine, General Hospital of Ningxia Medical University, 164, Zhiping Road, Yinchuan, 750004, Ningxia, China
| | - Xing Bai
- Key Laboratory of Modernization of Hui Medicine, Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
- College of Traditional Chinese Medicine, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
| | - Jiawen Zhong
- Key Laboratory of Fertility Maintenance, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
- Key Laboratory of Modernization of Hui Medicine, Ministry of Education, School of Traditional Chinese Medicine, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
- College of Traditional Chinese Medicine, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
| | - Ling Qin
- College of Traditional Chinese Medicine, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
| | - Zhengzheng Gao
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
| | - Hao Wang
- Department of Pathogenic Biology and Medical Immunology, School of Basic Medical Sciences, Ningxia Medical University, 1160, Shengli Street, Yinchuan, 750004, Ningxia, China
| | - Xiaohong Ma
- Center for Reproductive Medicine, General Hospital of Ningxia Medical University, 164, Zhiping Road, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
25
|
Di Chiara M, Lazzaro A, Scribano D, Trancassini M, Pietropaolo V, Sonnessa M, De Luca C, Prota R, Onestà E, Laccetta G, Terrin G. Reduced Gut Bacterial Diversity in Early Life Predicts Feeding Intolerance in Preterm Neonates. Trop Med Infect Dis 2024; 9:174. [PMID: 39195612 PMCID: PMC11359060 DOI: 10.3390/tropicalmed9080174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Microbiota plays a crucial role in intestinal maturation in preterm newborns. The clinical manifestation of the immaturity of the gastro-intestinal tract is called feeding intolerance (FI). This condition may resolve spontaneously or dramatically evolve into necrotizing enterocolitis. One of the most challenging tasks for the neonatologist is to identify those neonates that will develop the disease early in order to adequately provide nutrition to these patients, from the very first hours of life. A close interplay between the maturity of the gastro-intestinal tract and gut microbiota has been described; however, in preterm neonates, this relationship is still undefined. We analyzed the bacterial composition of stool samples, collected early in life, from 30 preterm newborns classified as intolerant or tolerant according to the degree of readiness of the gastro-intestinal tract to receive enteral nutrition. The Pielou evenness index was significantly increased in intolerant compared with tolerant newborns. Data corrected for confounding variables confirmed that the occurrence of gut maturation was independently influenced by Pielou evenness at birth. A lower bacterial diversity very early in life is associated with improved feeding tolerance in preterm newborns. The abundance analysis showed that neonates not ready to receive enteral nutrition for feeding intolerance show, after birth, an increased abundance of Proteobacteria, Lachnospiracae, Enterobacter and Acinetobacter. We can argue that those are the taxa that prevent the establishment of pioneer bacteria. A lower alpha-diversity, in the first days of life, may facilitate the seeding of beneficial pioneer bacteria that, in turn, drive healthy microbial colonization during neonatal life.
Collapse
Affiliation(s)
- Maria Di Chiara
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy (G.L.)
| | - Alessandro Lazzaro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.L.); (D.S.); (M.T.)
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.L.); (D.S.); (M.T.)
| | - Maria Trancassini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.L.); (D.S.); (M.T.)
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.L.); (D.S.); (M.T.)
| | | | - Chiara De Luca
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy (G.L.)
| | - Rita Prota
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy (G.L.)
| | - Elisa Onestà
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy (G.L.)
| | - Gianluigi Laccetta
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy (G.L.)
| | - Gianluca Terrin
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy (G.L.)
| |
Collapse
|
26
|
Younge NE, Parris DJ, Hatch D, Barnes A, Brandon DH. The skin microbiota of preterm infants and impact of diaper change frequency. PLoS One 2024; 19:e0306333. [PMID: 39088446 PMCID: PMC11293746 DOI: 10.1371/journal.pone.0306333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 06/12/2024] [Indexed: 08/03/2024] Open
Abstract
OBJECTIVE To evaluate the impact of diaper change frequency, clinical characteristics, and skin health metrics on development of the skin microbiota in preterm infants. DESIGN A randomized controlled parallel design was used. METHODS Medically stable preterm infants born <33 weeks' gestation were randomized to receive diaper changes at a frequency of every 3-hours or every 6-hours. Skin swabs were collected longitudinally from the diapered skin (buttocks) and chest. Skin pH and transepidermal water loss were measured with each sample collection. Stool samples were collected from the diaper. The microbiome at each site was characterized by 16S rRNA gene sequencing. Associations between microbiome features, diaper change frequency, and other covariates were examined using mixed effect models and redundancy analysis. RESULTS A total of 1179 samples were collected from 46 preterm infants, beginning at a median postnatal age of 44 days and continuing through hospital discharge. Alpha-diversity of the skin microbiota increased over time, but did not differ significantly between 3-hour (n = 20) and 6-hour (n = 26) diaper change groups. Alpha-diversity of the skin microbiota was inversely correlated with skin pH, but not transepidermal water loss. Microbiota community structure differed significantly between body sites (buttocks, chest, and stool) and between individuals. Among samples collected from the diapered skin, diaper change frequency, infant diet, antibiotic exposure, and delivery mode accounted for minor proportions of the variation in microbiota community structure between samples. Relative abundances of multiple genera differed between 3- and 6-hour diaper change groups over time. DISCUSSION/CONCLUSION The diversity and composition of the diapered skin microbiota is dynamic over time and differs from other body sites. Multiple factors including interindividual effects, diaper change frequency, diet, and antibiotics contribute to variation in the diapered skin microbiota.
Collapse
Affiliation(s)
- Noelle E. Younge
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States of America
| | - D. Joshua Parris
- Kimberly-Clark Corporation, Neenah, WI, United States of America
| | - Daniel Hatch
- Duke University School of Nursing, Durham, NC, United States of America
| | - Angel Barnes
- Duke University School of Nursing, Durham, NC, United States of America
| | - Debra H. Brandon
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States of America
- Duke University School of Nursing, Durham, NC, United States of America
| |
Collapse
|
27
|
Melnik BC, Weiskirchen R, Stremmel W, John SM, Schmitz G. Risk of Fat Mass- and Obesity-Associated Gene-Dependent Obesogenic Programming by Formula Feeding Compared to Breastfeeding. Nutrients 2024; 16:2451. [PMID: 39125332 PMCID: PMC11314333 DOI: 10.3390/nu16152451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
It is the purpose of this review to compare differences in postnatal epigenetic programming at the level of DNA and RNA methylation and later obesity risk between infants receiving artificial formula feeding (FF) in contrast to natural breastfeeding (BF). FF bears the risk of aberrant epigenetic programming at the level of DNA methylation and enhances the expression of the RNA demethylase fat mass- and obesity-associated gene (FTO), pointing to further deviations in the RNA methylome. Based on a literature search through Web of Science, Google Scholar, and PubMed databases concerning the dietary and epigenetic factors influencing FTO gene and FTO protein expression and FTO activity, FTO's impact on postnatal adipogenic programming was investigated. Accumulated translational evidence underscores that total protein intake as well as tryptophan, kynurenine, branched-chain amino acids, milk exosomal miRNAs, NADP, and NADPH are crucial regulators modifying FTO gene expression and FTO activity. Increased FTO-mTORC1-S6K1 signaling may epigenetically suppress the WNT/β-catenin pathway, enhancing adipocyte precursor cell proliferation and adipogenesis. Formula-induced FTO-dependent alterations of the N6-methyladenosine (m6A) RNA methylome may represent novel unfavorable molecular events in the postnatal development of adipogenesis and obesity, necessitating further investigations. BF provides physiological epigenetic DNA and RNA regulation, a compelling reason to rely on BF.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Wolfgang Stremmel
- Praxis for Internal Medicine, Beethovenstrasse 2, D-76530 Baden-Baden, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany;
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
28
|
Eckert JV, Moshal KS, Burge K, Wilson A, Chaaban H. Endogenous Hyaluronan Promotes Intestinal Homeostasis and Protects against Murine Necrotizing Enterocolitis. Cells 2024; 13:1179. [PMID: 39056761 PMCID: PMC11274784 DOI: 10.3390/cells13141179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a complex, multifactorial gastrointestinal disorder predominantly affecting preterm infants. The pathogenesis of this condition involves a complex interplay between intestinal barrier dysfunction, microbial dysbiosis, and an altered immune response. This study investigates the potential role of endogenous hyaluronan (HA) in both the early phases of intestinal development and in the context of NEC-like intestinal injury. We treated neonatal CD-1 mouse pups with PEP1, a peptide inhibiting HA receptor interactions, from postnatal days 8 to 12. We evaluated postnatal intestinal developmental indicators, such as villi length, crypt depth, epithelial cell proliferation, crypt fission, and differentiation of goblet and Paneth cells, in PEP1-treated animals compared with those treated with scrambled peptide. PEP1 treatment significantly impaired intestinal development, as evidenced by reductions in villi length, crypt depth, and epithelial cell proliferation, along with a decrease in crypt fission activity. These deficits in PEP1-treated animals correlated with increased susceptibility to NEC-like injuries, including higher mortality rates, and worsened histological intestinal injury. These findings highlight the role of endogenous HA in supporting intestinal development and protecting against NEC.
Collapse
Affiliation(s)
| | | | | | | | - Hala Chaaban
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.V.E.); (K.S.M.); (K.B.); (A.W.)
| |
Collapse
|
29
|
Goldfarb M, Gollin G. The Impact of Antibiotic Strategy on Outcomes in Surgically Managed Necrotizing Enterocolitis. J Pediatr Surg 2024; 59:1266-1270. [PMID: 38561306 DOI: 10.1016/j.jpedsurg.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND We sought to evaluate postoperative antibiotic practices in a large population of patients with necrotizing enterocolitis (NEC) and determine whether any regimens were associated with better outcomes. METHODS The Pediatric Health Information Systems (PHIS) database was queried to identify patients who underwent an intestinal resection for acute NEC between July, 2016 and June, 2021. Data regarding post-resection antibiotic therapy, cutaneous or intraabdominal infection, and fungal or antibiotic-resistant infection were collected. RESULTS 130 infants at 38 children's hospitals met inclusion criteria. Postoperative antibiotics were administered for a median of 13 days. The most frequently used antibiotics were vancomycin and piperacillin/tazobactam. Antibiotic duration greater than five days was not associated with a lower incidence of infection. No antibiotic was associated with a lower incidence of any of the complications assessed, although ampicillin was associated with more infections, overall. The incidence of fungal infection and treatment with a parenteral anti-fungal medication was greater with vancomycin. No antibiotic combination was used enough to be assessed. CONCLUSIONS Administration of antibiotics for more than five days after resection for NEC was not associated with better infectious outcomes and no single antibiotic demonstrated superior efficacy. Consistent with prior studies, fungal infections were more frequent with vancomycin. TYPE OF STUDY Retrospective database study, level 3B. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Madeline Goldfarb
- Texas Tech Health Sciences Center El Paso, Paul L. Foster School of Medicine, El Paso, TX, USA
| | - Gerald Gollin
- Rady Children's Hospital, San Diego and University of California San Diego School of Medicine, San Diego, CA, USA.
| |
Collapse
|
30
|
Gipson DR, Chang AL, Lure AC, Mehta SA, Gowen T, Shumans E, Stevenson D, de la Cruz D, Aghaeepour N, Neu J. Reassessing acquired neonatal intestinal diseases using unsupervised machine learning. Pediatr Res 2024; 96:165-171. [PMID: 38413766 DOI: 10.1038/s41390-024-03074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Acquired neonatal intestinal diseases have an array of overlapping presentations and are often labeled under the dichotomous classification of necrotizing enterocolitis (which is poorly defined) or spontaneous intestinal perforation, hindering more precise diagnosis and research. The objective of this study was to take a fresh look at neonatal intestinal disease classification using unsupervised machine learning. METHODS Patients admitted to the University of Florida Shands Neonatal Intensive Care Unit January 2013-September 2019 diagnosed with an intestinal injury, or had imaging findings of portal venous gas, pneumatosis, abdominal free air, or had an abdominal drain placed or exploratory laparotomy during admission were included. Congenital gastroschisis, omphalocele, intestinal atresia, malrotation were excluded. Data was collected via retrospective chart review with subsequent hierarchal, unsupervised clustering analysis. RESULTS Five clusters of intestinal injury were identified: Cluster 1 deemed the "Low Mortality" cluster, Cluster 2 deemed the "Mature with Inflammation" cluster, Cluster 3 deemed the "Immature with High Mortality" cluster, Cluster 4 deemed the "Late Injury at Full Feeds" cluster, and Cluster 5 deemed the "Late Injury with High Rate of Intestinal Necrosis" cluster. CONCLUSION Unsupervised machine learning can be used to cluster acquired neonatal intestinal injuries. Future study with larger multicenter datasets is needed to further refine and classify types of intestinal diseases. IMPACT Unsupervised machine learning can be used to cluster types of acquired neonatal intestinal injury. Five major clusters of acquired neonatal intestinal injury are described, each with unique features. The clusters herein described deserve future, multicenter study to determine more specific early biomarkers and tailored therapeutic interventions to improve outcomes of often devastating neonatal acquired intestinal injuries.
Collapse
Affiliation(s)
- Daniel R Gipson
- University of Florida College of Medicine, Department of Pediatrics, Division of Neonatology, Gainesville, FL, USA.
| | - Alan L Chang
- Stanford University School of Medicine, Department of Anesthesiology, Pain, and Perioperative Medicine, Department of Pediatrics, and Department of Biomedical Data Science, Stanford, CA, USA
| | - Allison C Lure
- Nationwide Children's Hospital, The Ohio State University College of Medicine, Department of Pediatrics, Division of Neonatology, Columbus, OH, USA
- University of Florida College of Medicine, Department of Pediatrics, Gainesville, FL, USA
| | - Sonia A Mehta
- University of Florida College of Medicine, Department of Pediatrics, Gainesville, FL, USA
- University of California, Irvine Medical Center, Department of Pediatrics, Division of Neonatology, Irvine, CA, USA
| | - Taylor Gowen
- University of Florida College of Medicine, Department of Pediatrics, Gainesville, FL, USA
- University of Florida College of Medicine, Department of Anesthesiology, Gainesville, FL, USA
| | - Erin Shumans
- University of Florida College of Medicine, Department of Pediatrics, Gainesville, FL, USA
| | - David Stevenson
- Stanford University School of Medicine, Department of Pediatrics, Division of Neonatology, Stanford, CA, USA
| | - Diomel de la Cruz
- University of Florida College of Medicine, Department of Pediatrics, Division of Neonatology, Gainesville, FL, USA
| | - Nima Aghaeepour
- Stanford University School of Medicine, Department of Anesthesiology, Pain, and Perioperative Medicine, Department of Pediatrics, and Department of Biomedical Data Science, Stanford, CA, USA
| | - Josef Neu
- University of Florida College of Medicine, Department of Pediatrics, Division of Neonatology, Gainesville, FL, USA
| |
Collapse
|
31
|
Lyu Y, Kim BJ, Patel JS, Dallas DC, Chen Y. Human Milk Protein-Derived Bioactive Peptides from In Vitro-Digested Colostrum Exert Antimicrobial Activities against Common Neonatal Pathogens. Nutrients 2024; 16:2040. [PMID: 38999788 PMCID: PMC11243250 DOI: 10.3390/nu16132040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Human milk reduces risk for necrotizing enterocolitis in preterm infants. Necrotizing enterocolitis occurs in the ileocecal region where thousands of milk protein-derived peptides have been released from digestion. Digestion-released peptides may exert bioactivity, such as antimicrobial and immunomodulatory activities, in the gut. In this study, we applied mass spectrometry-based peptidomics to characterize peptides present in colostrum before and after in vitro digestion. Sequence-based computational modeling was applied to predict peptides with antimicrobial activity. We identified more peptides in undigested samples, yet the abundances were much higher in the digested samples. Heatmapping demonstrated highly different peptide profiles between undigested and digested samples. Four peptides (αS1-casein [157-163], αS1-casein [157-165], β-casein [153-159] and plasminogen [591-597]) were selected, synthesized and tested against common pathogenic bacteria associated with necrotizing enterocolitis. All four exhibited bacteriostatic, though not bactericidal, activities against Klebsiella aerogenes, Citrobacter freundii and Serratia marcescens, but not Escherichia coli.
Collapse
Affiliation(s)
- Yang Lyu
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Bum Jin Kim
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR 97331, USA; (B.J.K.); (D.C.D.)
| | - Jagdish Suresh Patel
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844, USA;
| | - David C. Dallas
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR 97331, USA; (B.J.K.); (D.C.D.)
| | - Yimin Chen
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
32
|
Vievermanns K, Dierikx TH, Oldenburger NJ, Jamaludin FS, Niemarkt HJ, de Meij TGJ. Effect of probiotic supplementation on the gut microbiota in very preterm infants: a systematic review. Arch Dis Child Fetal Neonatal Ed 2024:fetalneonatal-2023-326691. [PMID: 38925919 DOI: 10.1136/archdischild-2023-326691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE There is increasing evidence that probiotic supplementation in very preterm infants decreases the risk of necrotising enterocolitis (NEC), sepsis and mortality. The underlying mechanisms, including effects on the gut microbiota, are largely unknown. We aimed to systematically review the available literature on the effects of probiotic supplementation in very preterm infants on gut microbiota development. DESIGN A systematic review in Medline, Embase, Cochrane Library, CINAHL and Web of Science. SETTING Neonatal intensive care unit. PATIENTS Premature infants. INTERVENTION Probiotic supplementation. MAIN OUTCOME MEASURES Gut microbiota. RESULTS A total of 1046 articles were screened, of which 29 were included. There was a large heterogeneity in study design, dose and type of probiotic strains, timepoints of sample collection and analysing techniques. Bifidobacteria and lactobacilli were the most used probiotic strains. The effects of probiotics on alpha diversity were conflicting; however, beta diversity was significantly different between probiotic-supplemented infants and controls in the vast majority of studies. In most studies, probiotic supplementation led to increased relative abundance of the supplemented strains and decreased abundance of genera such as Clostridium, Streptococcus, Klebsiella and Escherichia. CONCLUSIONS Probiotic supplementation to preterm infants seems to increase the relative abundance of the supplemented strains with a concurrent decrease of potentially pathogenic species. These probiotic-induced microbial alterations may contribute to the decreased risk of health complications such as NEC. Future trials, including omics technologies to analyse both microbiota composition and function linked to health outcomes, are warranted to identify the optimal mixture and dosing of probiotic strains. PROSPERO REGISTRATION NUMBER CRD42023385204.
Collapse
Affiliation(s)
- Kayleigh Vievermanns
- Pediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Thomas H Dierikx
- Pediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Microbiology, Maastricht UMC+, Maastricht, The Netherlands
| | | | - Faridi S Jamaludin
- Medical Library AMC, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Hendrik J Niemarkt
- Neonatology, Maxima Medisch Centrum locatie Veldhoven, Veldhoven, The Netherlands
- Electrical Engineering, TU Eindhoven, Eindhoven, The Netherlands
| | - Tim G J de Meij
- Pediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Pediatric Gastroenterology, Emma children's hospital amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Chen W, Guo K, Huang X, Zhang X, Li X, Chen Z, Wang Y, Wang Z, Liu R, Qiu H, Wang M, Zeng S. The Association of Neonatal Gut Microbiota Community State Types with Birth Weight. CHILDREN (BASEL, SWITZERLAND) 2024; 11:770. [PMID: 39062221 PMCID: PMC11276374 DOI: 10.3390/children11070770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND while most gut microbiota research has focused on term infants, the health outcomes of preterm infants are equally important. Very-low-birth-weight (VLBW) or extremely-low-birth-weight (ELBW) preterm infants have a unique gut microbiota structure, and probiotics have been reported to somewhat accelerate the maturation of the gut microbiota and reduce intestinal inflammation in very-low preterm infants, thereby improving their long-term outcomes. The aim of this study was to investigate the structure of gut microbiota in ELBW neonates to facilitate the early identification of different types of low-birth-weight (LBW) preterm infants. METHODS a total of 98 fecal samples from 39 low-birth-weight preterm infants were included in this study. Three groups were categorized according to different birth weights: ELBW (n = 39), VLBW (n = 39), and LBW (n = 20). The gut microbiota structure of neonates was obtained by 16S rRNA gene sequencing, and microbiome analysis was conducted. The community state type (CST) of the microbiota was predicted, and correlation analysis was conducted with clinical indicators. Differences in the gut microbiota composition among ELBW, VLBW, and LBW were compared. The value of gut microbiota composition in the diagnosis of extremely low birth weight was assessed via a random forest-machine learning approach. RESULTS we briefly analyzed the structure of the gut microbiota of preterm infants with low birth weight and found that the ELBW, VLBW, and LBW groups exhibited gut microbiota with heterogeneous compositions. Low-birth-weight preterm infants showed five CSTs dominated by Enterococcus, Staphylococcus, Klebsiella, Streptococcus, Pseudescherichia, and Acinetobacter. The birth weight and clinical indicators related to prematurity were associated with the CST. We found the composition of the gut microbiota was specific to the different types of low-birth-weight premature infants, namely, ELBW, VLBW, and LBW. The ELBW group exhibited significantly more of the potentially harmful intestinal bacteria Acinetobacter relative to the VLBW and LBW groups, as well as a significantly lower abundance of the intestinal probiotic Bifidobacterium. Based on the gut microbiota's composition and its correlation with low weight, we constructed random forest model classifiers to distinguish ELBW and VLBW/LBW infants. The area under the curve of the classifiers constructed with Enterococcus, Klebsiella, and Acinetobacter was found to reach 0.836 by machine learning evaluation, suggesting that gut microbiota composition may be a potential biomarker for ELBW preterm infants. CONCLUSIONS the gut bacteria of preterm infants showed a CST with Enterococcus, Klebsiella, and Acinetobacter as the dominant genera. ELBW preterm infants exhibit an increase in the abundance of potentially harmful bacteria in the gut and a decrease in beneficial bacteria. These potentially harmful bacteria may be potential biomarkers for ELBW preterm infants.
Collapse
Affiliation(s)
- Wanling Chen
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen 518116, China
- Microbiome Therapy Center, South China Hospital, Medical School, Shenzhen University, Shenzhen 518111, China
| | - Kaiping Guo
- Division of Pediatrics, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Xunbin Huang
- Division of Neonatology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Xueli Zhang
- Division of Neonatology, Shenzhen Longhua People’s Hospital, Shenzhen 518109, China
| | - Xiaoxia Li
- Division of Neonatology, Shenzhen Longhua People’s Hospital, Shenzhen 518109, China
| | - Zimiao Chen
- Department of Burn Plastic Surgery, South China Hospital, Shenzhen University, Shenzhen 518111, China
| | - Yanli Wang
- Department of Pediatrics, South China Hospital, Shenzhen University, Shenzhen 518111, China
| | - Zhangxing Wang
- Division of Neonatology, Shenzhen Longhua People’s Hospital, Shenzhen 518109, China
| | - Rongtian Liu
- Department of Pediatrics, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Huixian Qiu
- Division of Neonatology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Mingbang Wang
- Microbiome Therapy Center, South China Hospital, Medical School, Shenzhen University, Shenzhen 518111, China
- Department of Neonatology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen 518172, China
| | - Shujuan Zeng
- Division of Neonatology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| |
Collapse
|
34
|
Jara J, Alba C, Del Campo R, Fernández L, Sáenz de Pipaón M, Rodríguez JM, Orgaz B. Linking preterm infant gut microbiota to nasograstric enteral feeding tubes: exploring potential interactions and microbial strain transmission. Front Pediatr 2024; 12:1397398. [PMID: 38952433 PMCID: PMC11215057 DOI: 10.3389/fped.2024.1397398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Preterm birth is a growing problem worldwide. Staying at a neonatal intensive care unit (NICU) after birth is critical for the survival of preterm infants whose feeding often requires the use of nasogastric enteral feeding tubes (NEFT). These can be colonized by hospital-associated pathobionts that can access the gut of the preterm infants through this route. Since the gut microbiota is the most impactful factor on maturation of the immune system, any disturbance in this may condition their health. Therefore, the aim of this study is to assess the impact of NEFT-associated microbial communities on the establishment of the gut microbiota in preterm infants. Material and methods A metataxonomic analysis of fecal and NEFT-related samples obtained during the first 2 weeks of life of preterm infants was performed. The potential sharing of strains isolated from the same set of samples of bacterial species involved in NICU's outbreaks, was assessed by Random Amplification of Polymorphic DNA (RAPD) genotyping. Results In the samples taken 48 h after birth (NEFT-1 and Me/F1), Staphylococcus spp. was the most abundant genera (62% and 14%, respectively) and it was latter displaced to 5.5% and 0.45%, respectively by Enterobacteriaceae. Significant differences in beta diversity were detected in NEFT and fecal samples taken at day 17 after birth (NEFT-3 and F3) (p = 0.003 and p = 0.024, respectively). Significant positive correlations were found between the most relevant genera detected in NEFT-3 and F3. 28% of the patients shared at least one RAPD-PCR profile in fecal and NEFT samples and 11% of the total profiles were found at least once simultaneously in NEFT and fecal samples from the same patient. Conclusion The results indicate a parallel bacterial colonization of the gut of preterm neonates and the NEFTs used for feeding, potentially involving strain sharing between these niches. Moreover, the same bacterial RAPD profiles were found in neonates hospitalized in different boxes, suggesting a microbial transference within the NICU environment. This study may assist clinical staff in implementing best practices to mitigate the spread of pathogens that could threaten the health of preterm infants.
Collapse
Affiliation(s)
- J. Jara
- Department of Galenic Pharmacy and Food Science, School of Veterinary Sciences, University Complutense of Madrid (UCM), Madrid, Spain
| | - C. Alba
- Department of Nutrition and Food Science, School of Veterinary Sciences, University Complutense of Madrid (UCM), Madrid, Spain
| | - R. Del Campo
- Department of Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | - L. Fernández
- Department of Galenic Pharmacy and Food Science, School of Veterinary Sciences, University Complutense of Madrid (UCM), Madrid, Spain
| | - M. Sáenz de Pipaón
- Department of Neonatology, La Paz University Hospital of Madrid, Madrid, Spain
- Department of Pediatrics, Autonoma University of Madrid, Madrid, Spain
| | - J. M. Rodríguez
- Department of Nutrition and Food Science, School of Veterinary Sciences, University Complutense of Madrid (UCM), Madrid, Spain
| | - B. Orgaz
- Department of Galenic Pharmacy and Food Science, School of Veterinary Sciences, University Complutense of Madrid (UCM), Madrid, Spain
| |
Collapse
|
35
|
Deng ZY, Xu FD, He XG, Li N. [Research progress on the relationship between anemia and neonatal necrotizing enterocolitis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:646-651. [PMID: 38926383 DOI: 10.7499/j.issn.1008-8830.2312089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Neonatal necrotizing enterocolitis (NEC) is the most common inflammatory intestinal disease in preterm infants, with a high incidence and mortality rate. The etiology and mechanisms of NEC are not yet fully understood, and multiple factors contribute to its occurrence and development. Recent studies have found that anemia is a risk factor for NEC in neonates, but the specific pathogenic mechanism remains unclear. This article reviews recent research on the relationship between anemia and NEC, providing a reference for further understanding the impact of anemia on intestinal injury and its association with NEC.
Collapse
Affiliation(s)
- Zhi-Yue Deng
- Department of Neonatology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, Guangdong 523325, China
| | - Feng-Dan Xu
- Department of Neonatology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, Guangdong 523325, China
| | - Xiao-Guang He
- Department of Neonatology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, Guangdong 523325, China
| | - Ning Li
- Department of Neonatology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, Guangdong 523325, China
| |
Collapse
|
36
|
Zhang L, Lu W. Necrotizing enterocolitis in a term newborn after spontaneous cerebral parenchymal hemorrhage: a case report. BMC Pediatr 2024; 24:387. [PMID: 38851677 PMCID: PMC11162010 DOI: 10.1186/s12887-024-04866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) and intracranial hemorrhage are severe emergencies in the neonatal period. The two do not appear to be correlated. However, our report suggests that parenchymal brain hemorrhage in full-term newborns may put patients at risk for NEC by altering intestinal function through the brain-gut axis. CASE PRESENTATION We present a case of spontaneous parenchymal cerebral hemorrhage in a full-term newborn who developed early-stage NEC on Day 15. CONCLUSIONS It is possible to consider brain parenchymal hemorrhage as a risk factor for the appearance of NEC. Clinicians should be highly cautious about NEC in infants who have experienced parenchymal hemorrhage. This article is the first to discuss the relationship between parenchymal hemorrhage and NEC in full-term newborns.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Surgical Intensive Care Unit, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu Province, 210008, China
| | - Weifeng Lu
- Department of Surgical Intensive Care Unit, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu Province, 210008, China.
| |
Collapse
|
37
|
Thatrimontrichai A, Surachat K, Singkhamanan K, Thongsuksai P. Differential Abundances of Bdellovibrio and Rheinheimera in the Oral Microbiota of Neonates With and Without Clinical Sepsis. Pediatr Infect Dis J 2024; 43:e195-e200. [PMID: 38295225 DOI: 10.1097/inf.0000000000004259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
BACKGROUND Neonatal sepsis is associated with high rates of morbidity and mortality, long hospital stays and high cost of care, thereby inflicting a burden on health care systems. Oral care with breast milk has been shown to modify the intestinal tract microbiota and immune system. Herein, we attempted to identify probiotics that may be beneficial to prevent or treat neonatal sepsis. METHODS This was a secondary analysis comparing the microbiota during oropharyngeal care in very-low-birth-weight infants with and without clinical sepsis. Oral samples were collected before oral feeding was initiated. The primary outcome was oral microbiota composition including diversity, relative abundance and linear discriminant analysis effect size. RESULTS Sixty-three neonates, including 39 and 24 with and without clinical sepsis, respectively, were enrolled. The medians gestational age and birth weight were 29 (27-30) weeks and 1010 (808-1263) g. Neonates with clinical sepsis had lower gestational age, birth weight (both P < 0.001) and lower rate of oral care with breast milk ( P = 0.03), but higher doses and days of antibiotic exposure (both P < 0.001) compared to neonates without clinical sepsis. No differences in alpha and beta diversities were found between groups and Streptococcus agalactiae was the most common bacteria in both groups. Linear discriminant analysis effect size analysis revealed that neonates without clinical sepsis had significantly higher abundances of order Bdellovibrionales, family Bdellovibrionaceae, genus Bdellovibrio and genus Rheinheimera . CONCLUSIONS Neonates without clinical sepsis had a significantly greater abundance of the Bdellovibrio and Rheinheimera genera.
Collapse
Affiliation(s)
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering
| | | | - Paramee Thongsuksai
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
38
|
Wieser NV, Ghiboub M, Verseijden C, van Goudoever JB, Schoonderwoerd A, de Meij TGJ, Niemarkt HJ, Davids M, Lefèvre A, Emond P, Derikx JPM, de Jonge WJ, Sovran B. Exploring the Immunomodulatory Potential of Human Milk: Aryl Hydrocarbon Receptor Activation and Its Impact on Neonatal Gut Health. Nutrients 2024; 16:1531. [PMID: 38794769 PMCID: PMC11124328 DOI: 10.3390/nu16101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Several metabolites of the essential amino acid tryptophan have emerged as key players in gut homeostasis through different cellular pathways, particularly through metabolites which can activate the aryl hydrocarbon receptor (AHR). This study aimed to map the metabolism of tryptophan in early life and investigate the effects of specific metabolites on epithelial cells and barrier integrity. Twenty-one tryptophan metabolites were measured in the feces of full-term and preterm neonates as well as in human milk and formula. The ability of specific AHR metabolites to regulate cytokine-induced IL8 expression and maintain barrier integrity was assessed in Caco2 cells and human fetal organoids (HFOs). Overall, higher concentrations of tryptophan metabolites were measured in the feces of full-term neonates compared to those of preterm ones. Within AHR metabolites, indole-3-lactic acid (ILA) was significantly higher in the feces of full-term neonates. Human milk contained different levels of several tryptophan metabolites compared to formula. Particularly, within the AHR metabolites, indole-3-sulfate (I3S) and indole-3-acetic acid (IAA) were significantly higher compared to formula. Fecal-derived ILA and milk-derived IAA were capable of reducing TNFα-induced IL8 expression in Caco2 cells and HFOs in an AHR-dependent manner. Furthermore, fecal-derived ILA and milk-derived IAA significantly reduced TNFα-induced barrier disruption in HFOs.
Collapse
Affiliation(s)
- Naomi V. Wieser
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.G.); (C.V.); (W.J.d.J.)
| | - Mohammed Ghiboub
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.G.); (C.V.); (W.J.d.J.)
- Amsterdam Gastroenterology, Endocrinology, Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands;
- Department of Pediatric Surgery, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Caroline Verseijden
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.G.); (C.V.); (W.J.d.J.)
- Amsterdam Gastroenterology, Endocrinology, Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands;
| | - Johannes B. van Goudoever
- Department of Pediatrics, Emma Children’s Hospital, Dutch National Human Milk Bank, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.B.v.G.); (A.S.)
| | - Anne Schoonderwoerd
- Department of Pediatrics, Emma Children’s Hospital, Dutch National Human Milk Bank, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (J.B.v.G.); (A.S.)
| | - Tim G. J. de Meij
- Amsterdam Gastroenterology, Endocrinology, Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands;
- Department of Pediatric Gastroenterology, Vrije Universiteit University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Hendrik J. Niemarkt
- Department of Neonatology, Maxima Medical Center, De Run 4600, 5504 DB Veldhoven, The Netherlands;
- Department of Electrical Engineering, Technical University Eindhoven, Groene Loper 3, 5612 AE Eindhoven, The Netherlands
| | - Mark Davids
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Antoine Lefèvre
- UMR 1253, iBrain, University of Tours, Inserm, 37044 Tours, France; (A.L.); (P.E.)
| | - Patrick Emond
- UMR 1253, iBrain, University of Tours, Inserm, 37044 Tours, France; (A.L.); (P.E.)
- In Vitro Nuclear Medicine Laboratory, Regional University Hospital Center of Tours University, 37044 Tours, France
| | - Joep P. M. Derikx
- Department of Pediatric Surgery, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.G.); (C.V.); (W.J.d.J.)
- Amsterdam Gastroenterology, Endocrinology, Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands;
- Department of Surgery, University Hospital Bonn, 53113 Bonn, Germany
| | - Bruno Sovran
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, 1105 BK Amsterdam, The Netherlands; (M.G.); (C.V.); (W.J.d.J.)
- Department of Pediatric Surgery, Emma Children’s Hospital, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Emma Center for Personalized Medicine, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
39
|
Yi C, Chen J, She X. The emerging role of the gut virome in necrotizing enterocolitis. Heliyon 2024; 10:e30496. [PMID: 38711648 PMCID: PMC11070903 DOI: 10.1016/j.heliyon.2024.e30496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in neonates, particularly preterm infants. Many factors can lead to NEC, but microbial dysbiosis is one of the most important risk factors that can induce this disease. Given the major role of the gut virome in shaping bacterial homeostasis, virome research is a fledgling but rapidly evolving area in the field of microbiome that is increasingly connected to human diseases, including NEC. This review provides an overview of the development of the gut virome in newborns, discusses its emerging role in NEC, and explores promising therapeutic applications, including phage therapy and fecal virome transplantation.
Collapse
Affiliation(s)
- Cong Yi
- Department of Pediatrics, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Jia Chen
- Department of Pediatrics, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Xiang She
- Department of Pediatrics, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| |
Collapse
|
40
|
Zulu EM, Herlihy JM, Duffy CR, Mwananyanda L, Chilengi R, Forman L, Heeren T, Gill CJ, Chavuma R, Payne-Lohman B, Thea DM. Single-test syphilis serology: A case of not seeing the forest for the trees. PLoS One 2024; 19:e0303253. [PMID: 38723103 PMCID: PMC11081208 DOI: 10.1371/journal.pone.0303253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
INTRODUCTION There have been few empirical studies for diagnostic test accuracy of syphilis using a sequence of rapid tests in populations with low prevalence of syphilis such as pregnant women. This analysis describes syphilis test positivity frequency among pregnant women at an antenatal clinic in Zambia using a reverse-sequence testing algorithm for antenatal syphilis screening. METHODS Between August 2019 and May 2023, we recruited 1510 pregnant women from a peri-urban hospital in Lusaka, Zambia. HIV positive and HIV negative women were enrolled in a 1:1 ratio. Blood collected at recruitment from the pregnant mothers was tested on-site for syphilis using a rapid treponemal test. Samples that tested positive were further tested at a different laboratory, with rapid plasma reagin using archived plasma. RESULTS Of the total 1,421 sera samples which were screened with a rapid treponemal test, 127 (8.9%) were positive and 1,294 (91.1%) were negative. Sufficient additional samples were available to perform RPR testing on 114 of the 127 (89.8%) RDT positive specimens. Thirty-one (27.2%) of these 114 were reactive by RPR and 83 (72.8%) were negative, resulting in a syphilis overtreatment rate of 3 fold (i.e, 84/114). Insufficient sample or test kit availability prevented any testing for the remaining 89 (5.9%) participants. CONCLUSION Use of only treponemal tests in low prevalence populations, like pregnant women, subjects individuals with non-active syphilis to the costs and possible risks of overtreatment. The use of the dual treponemal and non-treponemal tests would minimize this risk at some additional cost.
Collapse
Affiliation(s)
| | - Julie M. Herlihy
- Department of Pediatrics, Boston Medical Center, Boston University, Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Cassandra R. Duffy
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lawrence Mwananyanda
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Roma Chilengi
- Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Leah Forman
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Tim Heeren
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Christopher J. Gill
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | | | - Barbara Payne-Lohman
- Institute for Immunology and Informatics, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Donald M. Thea
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
41
|
Younge N. Influence of infant microbiome on health and development. Clin Exp Pediatr 2024; 67:224-231. [PMID: 37605538 PMCID: PMC11065641 DOI: 10.3345/cep.2023.00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/08/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023] Open
Abstract
The microbiome is a complex ecosystem comprising microbes, their genomes, and the surrounding environment. The microbiome plays a critical role in early human development, including maturation of the host immune system and gastrointestinal tract. Multiple factors, including diet, anti-biotic use, and other environmental exposures, influence the establishment of the microbiome during infancy. Numerous studies have identified associations between the microbiome and neonatal diseases, including necrotizing enterocolitis, sepsis, and malnutrition. Furthermore, there is compelling evidence that perturbation of the microbiome in early life can have lasting developmental effects that increase an individual's risk for immune and metabolic diseases in later life. Supplementation of the microbiome with probiotics reduces the risk of necrotizing enterocolitis and sepsis in at-risk infants. This review focuses on the structure and function of the infant microbiome, the environmental and clinical factors that influence its assembly, and its impact on infant health and development.
Collapse
|
42
|
Roberts AG, Younge N, Greenberg RG. Neonatal Necrotizing Enterocolitis: An Update on Pathophysiology, Treatment, and Prevention. Paediatr Drugs 2024; 26:259-275. [PMID: 38564081 DOI: 10.1007/s40272-024-00626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Necrotizing enterocolitis (NEC) is a life-threatening disease predominantly affecting premature and very low birth weight infants resulting in inflammation and necrosis of the small bowel and colon and potentially leading to sepsis, peritonitis, perforation, and death. Numerous research efforts have been made to better understand, treat, and prevent NEC. This review explores a variety of factors involved in the pathogenesis of NEC (prematurity, low birth weight, lack of human breast milk exposure, alterations to the microbiota, maternal and environmental factors, and intestinal ischemia) and reports treatment modalities surrounding NEC, including pain medications and common antibiotic combinations, the rationale for these combinations, and recent antibiotic stewardship approaches surrounding NEC treatment. This review also highlights the effect of early antibiotic exposure, infections, proton pump inhibitors (PPIs), and H2 receptor antagonists on the microbiota and how these risk factors can increase the chances of NEC. Finally, modern prevention strategies including the use of human breast milk and standardized feeding regimens are discussed, as well as promising new preventative and treatment options for NEC including probiotics and stem cell therapy.
Collapse
|
43
|
Zhao Z, Li C, Huang J, Yuan X, Cui Y, Liu Y, Zhou Y, Zhu Z, Zhang Z. Phlorizin Limits Bovine Viral Diarrhea Virus Infection in Mice via Regulating Gut Microbiota Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9906-9914. [PMID: 38625103 DOI: 10.1021/acs.jafc.4c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Phlorizin (PHZ) is one of the main pharmacologically active ingredients in Lithocarpus polystachyus. We have previously shown that PHZ inhibits the replication of bovine viral diarrhea virus (BVDV), but the exact antiviral mechanism, especially in vivo, is still unknown. Here, we further confirm that PHZ has good protective effects in BVDV-infected mice. We analyzed BVDV-induced CD3+, CD4+, and CD8+ T cells among peripheral blood lymphocytes and found that PHZ significantly restored their percentage. Metagenomic analyses revealed that PHZ markedly improved the richness and diversity of intestinal microbiota and increased the abundance of potentially health-related microbes (families Lachnosipiraceae, Ruminococcaceae, and Oscillospiraceae). Specifically, the relative abundance of short chain fatty acid (SCFA)-producing bacteria, including Lachnospiraceae_UCG-006, unclassified_f_Ruminococcaceae, Oscillibacter, Intestinimonas, Blautia, and Lachnoclostridium increased significantly after PHZ treatment. Interestingly, BVDV-infected mice that received fecal microbiota from PHZ-treated mice (PHZ-FMT) had a significantly lower viral load in the duodenum and jejunum than untreated mice. Pathological lesions of duodenum and jejunum were also greatly reduced in the PHZ-FMT group, confirming a significant antiviral effect. These findings show that gut microbiota play an important role in PHZ's antiviral activity and suggest that their targeted intervention might be a promising endogenous strategy to prevent and control BVDV.
Collapse
Affiliation(s)
- Zhicheng Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing 163319, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing 163319, Heilongjiang Province, China
| | - Chuang Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing 163319, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing 163319, Heilongjiang Province, China
| | - Jiang Huang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Agriculture and Rural Bureau of Sinan County, Sinan 565100, Guizhou Province, China
| | - Xueying Yuan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing 163319, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing 163319, Heilongjiang Province, China
| | - Yueqi Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing 163319, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing 163319, Heilongjiang Province, China
| | - Yu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing 163319, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing 163319, Heilongjiang Province, China
| | - Yulong Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing 163319, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing 163319, Heilongjiang Province, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing 163319, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing 163319, Heilongjiang Province, China
| | - Zecai Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs, Daqing 163319, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing 163319, Heilongjiang Province, China
| |
Collapse
|
44
|
Lenfestey MW, Li N, Gauthier J, Winglee K, Fodor A, Zeng K, Jobin C, Neu J, Parker LA. Effect of Routine Gastric Residual Aspiration on the Preterm Infant Fecal Microbiome. Am J Perinatol 2024; 41:e212-e220. [PMID: 35709728 DOI: 10.1055/a-1877-6306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Enteral feeding tubes are used in neonatal intensive care units (NICUs) to assess feeding tolerance by utilizing preprandial gastric residual aspiration. This study evaluates the effect of gastric residual aspiration on the preterm infant fecal microbiome and gastrointestinal inflammation. STUDY DESIGN Fifty-one very low birth weight (VLBW) infants (≤32 weeks' gestational age and ≤1,250 g) enrolled in a larger single-center randomized controlled trial evaluating the effects of routine and nonroutine gastric residual aspiration were selected for further analysis. Of those infants, 30 had microbiome analysis performed on stools collected at 6 weeks by sequencing the bacterial V1 to V3 variable regions of the genes encoding for 16S rRNA. In an additional 21 infants, stool samples collected at 3 and 6 weeks were analyzed for intestinal inflammation using a cytokine multiplex panel. RESULTS Microbial communities between groups were not distinct from each other and there was no difference in intestinal inflammation between groups. Analyses using gene expression packages DESeq2 and edgeR produced statistically significant differences in several taxa, possibly indicating a more commensal intestinal microbiome in infants not undergoing gastric residual aspiration. CONCLUSION Omission of routine gastric residual aspiration was not associated with intestinal dysbiosis or inflammation, providing additional evidence that monitors preprandial gastric residuals is unnecessary. KEY POINTS · Omission of routine gastric residual aspiration was not associated with intestinal dysbiosis or inflammation.. · Existing literature indicates preprandial gastric aspiration does not reliably correlate with development of necrotizing enterocolitis but does correlate with delayed enteral nutrition.. · Further study is required but this data that suggest monitoring preprandial gastric residuals are unnecessary..
Collapse
Affiliation(s)
- Mary W Lenfestey
- Department of Pediatrics, Pediatric Gastroenterology, East Carolina University, Greenville, North Carolina
| | - Nan Li
- Department of Pediatrics, Division of Neonatology, University of Florida, Gainesville, Florida
| | - Josee Gauthier
- Division of Gastroenterology, Department of Medicine, University of Florida, Gainesville, Florida
| | - Kathryn Winglee
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Anthony Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Ke Zeng
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Christian Jobin
- Department of Medicine, Gastroenterology, University of Florida, Gainesville, Florida
| | - Josef Neu
- Department of Pediatrics, Neonatology, University of Florida, Gainesville, Florida
| | - Leslie A Parker
- College of Nursing, University of Florida, Gainesville, Florida
| |
Collapse
|
45
|
Wala SJ, Ragan MV, Pryor E, Canvasser J, Diefenbach KA, Besner GE. Contemporary use of prophylactic probiotics in NICUs in the United States: a survey update. J Perinatol 2024; 44:739-744. [PMID: 38553600 DOI: 10.1038/s41372-024-01952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 05/15/2024]
Abstract
OBJECTIVE In 2015, 14.0% of US NICUs administered probiotics to very low birth weight infants. Current probiotic use prior to and after the Fall of 2023 (when FDA warnings were issued) remains unknown. STUDY DESIGN A survey was distributed to the American Academy of Pediatrics Section on Neonatal and Perinatal Medicine (August-November/2022) and Neonatology Solutions' Level III/IV NICUs (January-April/2023). Probiotic administration practices were investigated. RESULTS In total, 289 unique NICUs and 406 providers responded to the survey. Of those, 29.1% of NICUs administered prophylactic probiotics to premature neonates, however, this decreased considerably after FDA warnings were issued. Additionally, 71.4% of providers stated willingness to administer probiotics to premature infants if there was an FDA-approved formulation. CONCLUSIONS Probiotic use in US NICUs increased between 2015 and the Fall of 2023 and then dropped dramatically following warning letters from the FDA. The introduction of an FDA-approved probiotic may further expand administration.
Collapse
Affiliation(s)
- Samantha J Wala
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Mecklin V Ragan
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | - Karen A Diefenbach
- Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Gail E Besner
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
46
|
Hilliard MA, Sela DA. Transmission and Persistence of Infant Gut-Associated Bifidobacteria. Microorganisms 2024; 12:879. [PMID: 38792709 PMCID: PMC11124121 DOI: 10.3390/microorganisms12050879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Bifidobacterium infantis are the primary colonizers of the infant gut, yet scientific research addressing the transmission of the genus Bifidobacterium to infants remains incomplete. This review examines microbial reservoirs of infant-type Bifidobacterium that potentially contribute to infant gut colonization. Accordingly, strain inheritance from mother to infant via the fecal-oral route is likely contingent on the bifidobacterial strain and phenotype, whereas transmission via the vaginal microbiota may be restricted to Bifidobacterium breve. Additional reservoirs include breastmilk, horizontal transfer from the environment, and potentially in utero transfer. Given that diet is a strong predictor of Bifidobacterium colonization in early life and the absence of Bifidobacterium is observed regardless of breastfeeding, it is likely that additional factors are responsible for bifidobacterial colonization early in life.
Collapse
Affiliation(s)
- Margaret A. Hilliard
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA;
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - David A. Sela
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA;
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
- Department of Nutrition, University of Massachusetts, Amherst, MA 01003, USA
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
- Department of Microbiology & Physiological Systems and Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
47
|
Calvo LN, Greenberg RG, Gray KD. Safety and Effectiveness of Probiotics in Preterm Infants with Necrotizing Enterocolitis. Neoreviews 2024; 25:e193-e206. [PMID: 38556491 DOI: 10.1542/neo.25-3-e193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Although necrotizing enterocolitis is a leading cause of morbidity and mortality among preterm infants, its underlying pathophysiology is not fully understood. Gut dysbiosis, an imbalance between commensal and pathogenic microbes, in the preterm infant is likely a major contributor to the development of necrotizing enterocolitis. In this review, we will discuss the increasing use of probiotics in the NICU, an intervention aimed to mitigate alterations in the gut microbiome. We will review the existing evidence regarding the safety and effectiveness of probiotics, and their potential to reduce rates of necrotizing enterocolitis in preterm infants.
Collapse
Affiliation(s)
- Laura N Calvo
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Rachel G Greenberg
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
- Duke Clinical Research Institute, Durham, NC
| | - Keyaria D Gray
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| |
Collapse
|
48
|
Calvo LN, Greenberg RG, Gray KD. Safety and Effectiveness of Probiotics in Preterm Infants with Necrotizing Enterocolitis. Neoreviews 2024; 25:e193-e206. [PMID: 38556499 DOI: 10.1542/neo.25-4-e193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Although necrotizing enterocolitis is a leading cause of morbidity and mortality among preterm infants, its underlying pathophysiology is not fully understood. Gut dysbiosis, an imbalance between commensal and pathogenic microbes, in the preterm infant is likely a major contributor to the development of necrotizing enterocolitis. In this review, we will discuss the increasing use of probiotics in the NICU, an intervention aimed to mitigate alterations in the gut microbiome. We will review the existing evidence regarding the safety and effectiveness of probiotics, and their potential to reduce rates of necrotizing enterocolitis in preterm infants.
Collapse
Affiliation(s)
- Laura N Calvo
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Rachel G Greenberg
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
- Duke Clinical Research Institute, Durham, NC
| | - Keyaria D Gray
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| |
Collapse
|
49
|
Yang S, He J, Shi J, Xie L, Liu Y, Xiong Y, Liu H. Characteristics of intestinal microbiota in preterm infants and the effects of probiotic supplementation on the microbiota. Front Microbiol 2024; 15:1339422. [PMID: 38516015 PMCID: PMC10956575 DOI: 10.3389/fmicb.2024.1339422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Objective In this study, we investigated the characteristics of the intestinal microbiota of preterm infants, and then analyzed the effects of probiotics supplementation on intestinal microbiota in preterm infants. Methods This study enrolled 64 infants born between 26 and 32 weeks gestational age (GA) and 22 full-term infants. 34 premature infants received oral probiotic supplementation for 28 days. Stool samples were obtained on the first day (D1) and the 28th day (D28) after birth for each infant. Total bacterial DNA was extracted and sequenced using the Illumina MiSeq Sequencing System, specifically targeting the V3-V4 hyper-variable regions of the 16S rDNA gene. The sequencing results were then used to compare and analyze the composition and diversity index of the intestinal microbiota. Results There was no significant difference in meconium bacterial colonization rate between premature and full-term infants after birth (p > 0.05). At D1, the relative abundance of Bifidobacterium, Bacteroides, and Lactobacillus in the stool of preterm infants was lower than that of full-term infants, and the relative abundance of Acinetobacter was higher than that of full-term infants. The Shannon index and Chao1 index of intestinal microbiota in preterm infants are lower than those in full-term infants (p < 0.05). Supplementation of probiotics can increase the relative abundance of Enterococcus and Enterobacter, and reduce the relative abundance of Escherichia and Clostridium in premature infants. The Chao1 index of intestinal microbiota decreased in preterm infants after probiotic supplementation (p < 0.05). Conclusion The characteristics of intestinal microbiota in preterm infants differ from those in full-term infants. Probiotic supplementation can reduce the relative abundance of potential pathogenic bacteria and increase the abundance of beneficial microbiota in premature infants.
Collapse
Affiliation(s)
- Sen Yang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pediatrics, The Fifth Peoples Hospital of Chengdu, Chengdu, China
| | - Jing He
- Department of Pediatrics, The Fifth Peoples Hospital of Chengdu, Chengdu, China
| | - Jing Shi
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liang Xie
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yang Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ying Xiong
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Moreno-Sanz B, Lázaro-Perona F, Escribano E, Cabrera Lafuente M, Montes MT, Amorós R, Arboleya S, Gueimonde M, Mingorance J, Saenz de Pipaon M. Assessment trial of the effect of enteral insulin on the preterm infant intestinal microbiota. Pediatr Res 2024; 95:1117-1123. [PMID: 38086952 DOI: 10.1038/s41390-023-02917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Insulin might be associated with changes in infant gastrointestinal microbiota. The objective of this randomized controlled trial was to assess the efficacy of two doses of recombinant human(rh) enteral insulin administration compared to placebo in intestinal microbiota. METHODS 19 preterm patients were recruited at the NICU of La Paz University Hospital (Madrid, Spain). Subjects received 2000 µIU of rh enteral insulin/ml(n = 8), 400 µIU of rh enteral insulin/ml(n = 6) or placebo(n = 5) for 28 days administered once per day. Extracted DNA from fecal samples collected at the beginning and end of treatment were analyzed. The 16S rRNA V4 region was amplified and sequenced in a Miseq(Illumina®) sequencer using 2 × 250 bp paired end. Resulting reads were filtered and analyzed using Qiime2 software. Metabolic activity was assessed by GC. RESULTS Gestational age and birth weight did not differ between groups. At the phylum level, both insulin treated groups increased the relative abundance of Bacillota, while Pseudomonadota decreased. No change was observed in infants receiving placebo. At the genus level, insulin at both doses showed enriching effects on Clostridium. We found a significant increase in concentrations of fecal propionate in both rh insulin treated groups. CONCLUSION Rh insulin may modify neonatal intestinal microbiota and SCFAs in preterm infants. IMPACT STATEMENT Decrease of Pseudomonadota (former Proteobacteria phylum) and increase of Bacillota (former Firmicutes phylum) obtained in this study are the changes observed previously in low-risk infants for NEC. The administration of recombinant enteral insulin may modify the microbiota of preterm new-borns and SCFAs. Modulation of the microbiota may be a mechanism whereby insulin contributes to neonatal intestinal maturation and/or protection.
Collapse
Affiliation(s)
- Bárbara Moreno-Sanz
- Department of Neonatology, La Paz University Hospital Health Research Institute, Madrid, Spain
| | - Fernando Lázaro-Perona
- Department of Microbiology, La Paz University Hospital Health Research Institute, Madrid, Spain
| | - Esperanza Escribano
- Department of Neonatology, La Paz University Hospital Health Research Institute, Madrid, Spain
| | - Marta Cabrera Lafuente
- Department of Neonatology, La Paz University Hospital Health Research Institute, Madrid, Spain
| | - María Teresa Montes
- Department of Neonatology, La Paz University Hospital Health Research Institute, Madrid, Spain
| | - Rocío Amorós
- Department of Neonatology, La Paz University Hospital Health Research Institute, Madrid, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, Villaviciosa, Spain
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, Villaviciosa, Spain
| | - Jesús Mingorance
- Department of Microbiology, La Paz University Hospital Health Research Institute, Madrid, Spain
| | - Miguel Saenz de Pipaon
- Department of Neonatology, La Paz University Hospital Health Research Institute, Madrid, Spain.
- Universidad Autonoma de Madrid Madrid, Madrid, Spain.
| |
Collapse
|