1
|
Su XS, Zhang YB, Jin WJ, Zhang ZJ, Xie ZK, Wang RY, Wang YJ, Qiu Y. Lily viruses regulate the viral community of the Lanzhou lily rhizosphere and indirectly affect rhizosphere carbon and nitrogen cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176808. [PMID: 39396785 DOI: 10.1016/j.scitotenv.2024.176808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
The rhizosphere, where plant roots interact intensely with the soil, is a crucial but understudied area in terms of the impact of virus infection. In this study, we investigated the effects of lily symptomless virus (LSV) and cucumber mosaic virus (CMV) on the Lanzhou lily (Lilium davidii var. unicolor) rhizosphere using metagenomics and bioinformatics analysis. We found that virus infection significantly altered soil pH, inorganic carbon, nitrate nitrogen, and total sulfur. Co-infection with LSV and CMV had a greater influence than single infections on the α- and β-diversity of the rhizosphere viral community in which the absolute abundance of certain virus families (Siphoviridae, Podoviridae, and Myoviridae) increased significantly, whereas bacteria, fungi, and archaea remained relatively unaffected. These altered virus populations influenced the rhizosphere microbial carbon and nitrogen cycles by exerting top-down control on bacteria. Co-infection potentially weakened rhizosphere carbon fixation and promoted processes such as methane oxidation, nitrification, and denitrification. In addition, the co-occurrence network of bacteria and viruses in the rhizosphere revealed substantial changes in microbial community composition under co-infection. Our partial-least-squares path model confirmed that the diversity of the rhizosphere viral community indirectly regulated the carbon and nitrogen cycling functions of the microbial community, thus affecting the accumulation of carbon and nitrogen nutrients in the soil. Our results are the first report of the effects of virus infection on the lily rhizosphere, particularly for co-infection; they therefore complement research on the plant virus pathogenic mechanisms, and increase our understanding of the ecological role of rhizosphere soil viruses.
Collapse
Affiliation(s)
- Xue-Si Su
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China.
| | - Yu-Bao Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China.
| | - Wei-Jie Jin
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China.
| | - Zhan-Jun Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Zhong-Kui Xie
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China.
| | - Ruo-Yu Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China.
| | - Ya-Jun Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China
| | - Yang Qiu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou 730000, China.
| |
Collapse
|
2
|
Lu F, Huang T, Chen R, Yin H. Multi-omics analysis reveals the interplay between pulmonary microbiome and host in immunocompromised patients with sepsis-induced acute lung injury. Microbiol Spectr 2024:e0142424. [PMID: 39422492 DOI: 10.1128/spectrum.01424-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The mechanisms behind the high inflammatory state and immunocompromise in severe sepsis remain unclear. While microbiota's role in immune regulation is known, the impact of pulmonary microbiota on sepsis progression is not fully understood. This study aims to investigate pulmonary microbial characteristics in septic patients and their relationship with host immune-related genes and clinical features. Fifty-four sepsis patients were divided into the immunocompromised host (ICH) group (n = 18) and the control group (n = 36). Bronchoalveolar lavage fluid (BALF) was analyzed using metagenomic next-generation sequencing (mNGS) to assess the pulmonary microbiome, and transcriptomic sequencing evaluated host gene expression. The pulmonary microbiota network in the ICH group showed notable alterations. Symbiotic bacteria like Streptococcus salivarius and Streptococcus oralis were key taxa in the control group. In contrast, opportunistic pathogens such as Campylobacter concisus and Prevotella melaninogenica, typically linked to infections in various body sites, dominated in the ICH group. Transcriptomic analysis revealed differential genes between the two groups. The downregulated differential genes in the ICH group were primarily enriched in pathways related to T-cell activation and the Type I interferon signaling pathway, both crucial for the immune system. Further correlation analysis identified significant associations between certain microbes and host genes, as well as clinical indicators, particularly with species like Campylobacter concisus, Streptococcus salivarius, Streptococcus oralis, and several species of Veillonella. These findings suggest that alterations in the pulmonary microbiome, especially the presence of opportunistic pathogens, may contribute to immune dysregulation in immunocompromised septic patients, warranting further research to explore causal relationships. IMPORTANCE Recent research has substantiated the significant role of microbiota in immune regulation, which could influence high inflammatory state and immunocompromise in patients with severe sepsis, as well as provide new opportunities for acute lung injury induced by sepsis diagnosis and treatment. Our study identified some potential critical microbes (Campylobacter concisus and several species of Veillonella), which were correlated with immune-related genes and might be the novel target to regulate immunotherapy in sepsis.
Collapse
Affiliation(s)
- Fan Lu
- Department of Emergency, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ting Huang
- Department of Obstetrics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ruichang Chen
- Department of Emergency, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haiyan Yin
- Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Mo Y, Bier R, Li X, Daniels M, Smith A, Yu L, Kan J. Agricultural practices influence soil microbiome assembly and interactions at different depths identified by machine learning. Commun Biol 2024; 7:1349. [PMID: 39424928 PMCID: PMC11489707 DOI: 10.1038/s42003-024-07059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Agricultural practices affect soil microbes which are critical to soil health and sustainable agriculture. To understand prokaryotic and fungal assembly under agricultural practices, we use machine learning-based methods. We show that fertility source is the most pronounced factor for microbial assembly especially for fungi, and its effect decreases with soil depths. Fertility source also shapes microbial co-occurrence patterns revealed by machine learning, leading to fungi-dominated modules sensitive to fertility down to 30 cm depth. Tillage affects soil microbiomes at 0-20 cm depth, enhancing dispersal and stochastic processes but potentially jeopardizing microbial interactions. Cover crop effects are less pronounced and lack depth-dependent patterns. Machine learning reveals that the impact of agricultural practices on microbial communities is multifaceted and highlights the role of fertility source over the soil depth. Machine learning overcomes the linear limitations of traditional methods and offers enhanced insights into the mechanisms underlying microbial assembly and distributions in agriculture soils.
Collapse
Affiliation(s)
- Yujie Mo
- Sino-French Engineer School, Beihang University, Beijing, China
| | - Raven Bier
- Stroud Water Research Center, Avondale, PA, USA
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA
| | - Xiaolin Li
- Zibo Vocational Institute, Zibo, Shandong, China
| | | | | | - Lei Yu
- Sino-French Engineer School, Beihang University, Beijing, China.
| | - Jinjun Kan
- Stroud Water Research Center, Avondale, PA, USA.
| |
Collapse
|
4
|
Dang K, Ma Y, Liang H, Fan Z, Guo S, Li Z, Li H, Zhang S. Distinct planting patterns exert legacy effects on the networks and assembly of root-associated microbiomes in subsequent crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174276. [PMID: 38936715 DOI: 10.1016/j.scitotenv.2024.174276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Soil legacy effects from previous crops can significantly influence plant-soil interactions in crop rotations. However, the microbial mechanism underlying this effect in subsequent root-associated compartments remains unclear. We investigated the effects of planting patterns (four-year continuous maize [MM], three-year winter wheat and one-year maize rotation [WM], and three-year potato and one-year maize rotation [PM]) on the microbial composition and structure of root-associated compartments, the effect of distinct crops on subsequent microbial co-occurrence patterns, and the assembly mechanism by which the root-associated compartments (bulk soil, rhizosphere, and roots) in subsequent crops regulate the microbiome habitat. Compared with MM, the relative abundance of Acidobacteria in WM was 29.7 % lower, whereas that of Bacteroidota in PM was 37.9 % higher in all three compartments. The co-occurrence patterns of the microbial communities exhibited varied responses to different planting patterns. Indicator taxon analysis revealed less shared and specific species in the root bacterial and fungal networks. The planting pattern elicited specific responses from modules within bacterial and fungal co-occurrence networks in all three compartments. Moreover, the planting patterns and root-associated compartments collectively drove the assembly process of root-associated microorganisms. The neutral model showed that, compared with MM, the stochasticity of bacterial assembly decreased under WM and PM but increased for fungal assembly. WM and PM increased the relative effects of the homogenized dispersal of fungal assemblies in roots. We conclude that previous crops exhibit marked legacy effects in the root-associated microbiome. Therefore, soil heritage should not be ignored when discussing microbiome recruitment strategies and co-occurrence patterns in subsequent crops.
Collapse
Affiliation(s)
- Ke Dang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Ma
- Dryland Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China
| | - Haofeng Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zihan Fan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuqing Guo
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongbing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Suiqi Zhang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Ding J, Yang W, Liu X, Zhao J, Fu X, Zhang F, Liu H. Hydraulic conditions control the abundance of antibiotic resistance genes and their potential host microorganisms in a frequently regulated river-lake system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174143. [PMID: 38908594 DOI: 10.1016/j.scitotenv.2024.174143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Antibiotic resistance genes (ARGs) are a growing problem that is widespread in river-lake ecosystems, where they pose a threat to the aquatic environment's health and public safety. These systems serve as critical nodes in water management, as they facilitate the equitable allocation of water resources through long-term and frequent water diversions. However, hydrological disturbances associated with water-regulation practices can influence the dynamics of their potential host microorganisms and associated resistance genes. Consequently, identifying the key ARGs and their resistance mechanisms in heavily regulated waters is vital for safeguarding human health and that of river-lake ecosystems. In this study, we examined the impact of water-regulation factors on ARGs and their hosts within a river-lake continuum using 16S rRNA and metagenomic sequencing. We found that a significant increase in ARG abundance during regulation periods (p < 0.05), especially in the aquatic environment. Key resistance genes were macB, tetA, evgS, novA, and msbA, with increased efflux pinpointed as their principal resistance mechanism. Network analysis identified Flavobacteriales, Acinetobacter, Pseudomonas, Burkholderiaceae, and Erythrobacter as key potential host microorganisms, which showed increased abundance within the water column during regulation periods (p < 0.05). Flow velocity and water depth both drove the host microorganisms and critical ARGs. Our findings underscore the importance of monitoring and mitigating the antibiotic resistance risk during water transfers in river-lake systems, thereby supporting informed management and conservation strategies.
Collapse
Affiliation(s)
- Jiewei Ding
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xinyu Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jiayue Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xianting Fu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Fangfei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Haifei Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Maitra P, Hrynkiewicz K, Szuba A, Niestrawska A, Mucha J. The effects of Pinus sylvestris L. geographical origin on the community and co-occurrence of fungal and bacterial endophytes in a common garden experiment. Microbiol Spectr 2024; 12:e0080724. [PMID: 39248476 PMCID: PMC11448405 DOI: 10.1128/spectrum.00807-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Below-ground microorganisms, particularly endophytes, are pivotal for plant establishment and functioning through nutrient acquisition and enhancing resistance to abiotic and biotic stresses. The impact of host plant origin within a species on the composition and interaction networks of root endophytic fungi and bacteria has been less explored compared with plant phylogeny and biological distance. This study investigates the effect of geographic origin on the fungal and bacterial microbiomes of Pinus sylvestris L. root endophytes. Roots from plants grown in a common garden, originating from six locations, were harvested in two distinct seasons. Fungal and bacterial microbiomes were analyzed using Illumina MiSeq sequencing. The operational taxonomic unit (OTU) richness of endophytic fungi and bacteria showed no significant variation due to tree origin or season. However, the Shannon diversity index for endophytic fungi was seasonally influenced. The composition of endophytic fungal and bacterial communities was affected by both tree origin and season, correlating with host root biochemical parameters, such as starch, total non-structural carbohydrates, carbon, nitrogen, and climatic factors, such as mean annual precipitation and temperature. Moreover, the abundance of specific endophytic fungi and bacteria varied across different P. sylvestris origins, depending on the season. The complexity of the co-occurrence networks of fungal and bacterial endophytes within P. sylvestris also differed by geographical origin and season. This study highlights the significant role of biochemical and climatic factors associated with tree origin in shaping interactions with endophytic communities, potentially affecting plant health and adaptability across diverse environments. IMPORTANCE This study advances our understanding of how plant ecotype and seasonal changes influence root endophytic communities in Scots pine (Pinus sylvestris). By examining trees from various origins grown in a common garden, it highlights the role of tree origin and season in shaping fungal and bacterial community and co-occurrence networks. Importantly, this research demonstrates that tree origin impacts the composition and interaction networks of root endophytes and depends on the season. The study's findings suggest that root biochemical traits and climatic conditions (e.g., temperature, precipitation) associated with tree origin are crucial in determining the assembly of endophytic communities. This understanding could lead to innovative strategies for enhancing plant health and adaptability across different environments, contributing to forestry and conservation efforts. The research underscores the complexity of plant-microbe interactions and the need for a comprehensive approach to studying them, highlighting the interplay between tree origin and microbial ecology in forest ecosystems.
Collapse
Affiliation(s)
- Pulak Maitra
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Agnieszka Szuba
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | | | - Joanna Mucha
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| |
Collapse
|
7
|
Ducousso‐Détrez A, Morvan S, Fontaine J, Hijri M, Sahraoui AL. How do high phosphate concentrations affect soil microbial communities after a century of ecosystem self-reclamation? ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70003. [PMID: 39440691 PMCID: PMC11497093 DOI: 10.1111/1758-2229.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/27/2024] [Indexed: 10/25/2024]
Abstract
The use of rock phosphate (RP) instead of soluble phosphate fertilizers is preferred for the development of more sustainable agriculture. However, the impact of high concentrations in RP on bacterial and fungal communities remains poorly documented. Thus, next-generation sequencing was used to characterize bacterial and fungal communities in the soils and roots of four plant species growing naturally in a self-restored ecosystem, on former open-pit phosphate mines where past exploitation generated locally a substantial phosphate enrichment of the soil. Our results show that bacterial communities are dominated by Actinobacteria and Proteobacteria phyla, while the Ascomycota and Basidiomycota phyla predominate in the fungal community. The alpha and beta diversities of both bacterial and fungal communities differ significantly between the root and soil compartments but are not significantly affected by RP inputs. However, Amplicon Sequence Variants (ASVs) indicative of RP-enriched soils have been identified; among them are bacteria representative of Streptomyces, Bacillus, Mycobacterium or Agromyces. Implications of these results open new ways of reflection to understand the microbial response following RP-inputs and long-term soil restoration, as well as to formulate microbial-based bioinoculants for sustainable agriculture applications based on microorganisms better adapted to high concentrations of RP.
Collapse
Affiliation(s)
- Amandine Ducousso‐Détrez
- Université du Littoral Côte d'Opale, UR 4492Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV)Calais CedexFrance
- Institut de Recherche en Biologie Végétale (IRBV), Département de Sciences BiologiquesUniversité de MontréalMontréalQuebecCanada
| | - Simon Morvan
- Institut de Recherche en Biologie Végétale (IRBV), Département de Sciences BiologiquesUniversité de MontréalMontréalQuebecCanada
| | - Joël Fontaine
- Université du Littoral Côte d'Opale, UR 4492Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV)Calais CedexFrance
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale (IRBV), Département de Sciences BiologiquesUniversité de MontréalMontréalQuebecCanada
- African Genome CenterMohammed VI Polytechnic University (UM6P)Ben GuerirMorocco
| | - Anissa Lounès‐Hadj Sahraoui
- Université du Littoral Côte d'Opale, UR 4492Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV)Calais CedexFrance
| |
Collapse
|
8
|
Gao C, Bezemer TM, de Vries FT, van Bodegom PM. Trade-offs in soil microbial functions and soil health in agroecosystems. Trends Ecol Evol 2024; 39:895-903. [PMID: 38910081 DOI: 10.1016/j.tree.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024]
Abstract
Soil microbial communities play pivotal roles in maintaining soil health in agroecosystems. However, how the delivery of multiple microbial functions in agroecosystems is maintained remains poorly understood. This may put us at risk of incurring unexpected trade-offs between soil functions. We elucidate how interactions between soil microbes can lead to trade-offs in the functioning of agricultural soils. Interactions within soil microbial communities can result in not only positive but also neutral and negative relationships among soil functions. Altering soil conditions through soil health-improving agricultural management can alleviate these functional trade-offs by promoting the diversity and interrelationships of soil microbes, which can help to achieve more productive and sustainable agroecosystems.
Collapse
Affiliation(s)
- Chenguang Gao
- Environmental Biology, Institute of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands.
| | - Thiemo Martijn Bezemer
- Institute of Biology, Above-Belowground Interactions Group, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Franciska T de Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1090 GE Amsterdam, The Netherlands
| | - Peter M van Bodegom
- Environmental Biology, Institute of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| |
Collapse
|
9
|
Zheng W, Fan X, Chen H, Ye M, Yin C, Wu C, Liang Y. The response patterns of r- and K-strategist bacteria to long-term organic and inorganic fertilization regimes within the microbial food web are closely linked to rice production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173681. [PMID: 38844210 DOI: 10.1016/j.scitotenv.2024.173681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Soil microbial food web is crucial for maintaining crop production, while its community structure varies among fertilization regimes. Currently, the mechanistic understanding of the relationships between microbial food web and crop production under various nutrient fertilizations is poor. This knowledge gap limits our capacity to achieve precision agriculture for ensuring yield stability. In this study, we investigated the abiotic (i.e., soil chemical properties) and biotic factors (i.e., microbial food web, including bacteria, fungi, archaea and nematodes) that were closely associated with rice (Oryza sativa L.) production, using soils from seven fertilization regimes in distinct sampling locations (i.e., bulk vs rhizosphere soil) at a long-term experimental site. Organic manure alone fertilization (M) and integrated fertilization (NPKM) combining manure with inorganic fertilizers increased soil pH by 0.21-0.41 units and organic carbon content by 49.1 %-65.2 % relative to the non-fertilization (CK), which was distinct with inorganic fertilization. The principal coordinate analysis (PCoA) revealed that soil microbial and nematode communities were primarily shaped by fertilization rather than sampling locations. Organic fertilization (M, NPKM) increased the relative abundance of both r-strategist bacteria, specific taxa within the fungal (i.e., Pezizales) and nematode communities (i.e., omnivores-predators), whereas inorganic fertilization increased K-strategist bacteria abundances relative to the CK. Correspondingly, network analysis showed that the keystone taxa in the amplicon sequence variants (ASVs) enriched by organic manure and inorganic fertilization were mainly affiliated with r- and K-strategist bacteria, respectively. Structural equation modeling (SEM) analysis found that r- and K-strategist bacteria were positively correlated with rice production under organic and inorganic fertilization, respectively. Our results demonstrate that the response patterns of r/K-strategists to nutrient fertilization largely regulate rice yield, suggesting that the enhanced soil fertility and r-strategists contribute to the highest crop production in NPKM fertilization.
Collapse
Affiliation(s)
- Wanning Zheng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoping Fan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Chen
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mujun Ye
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chang Yin
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chunyan Wu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Ngumbi EN. Could flooding undermine progress in building climate-resilient crops? TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00214-0. [PMID: 39168786 DOI: 10.1016/j.tplants.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
Flooding threatens crop productivity, agricultural sustainability, and global food security. In this article I review the effects of flooding on plants and highlight three important gaps in our understanding: (i) effects of flooding on ecological interactions mediated by plants both below (changing root metabolites and exudates) and aboveground (changing plant quality and metabolites, and weakening the plant immune system), (ii) flooding impacts on soil health and microorganisms that underpin plant and ecosystems health, and (iii) the legacy impacts of flooding. Failure to address these overlooked aspects could derail and undermine the monumental progress made in building climate-resilient crops and soil-microbe-assisted plant resilience. Addressing the outlined knowledge gaps will enhance solutions developed to mitigate flooding and preserve gains made to date.
Collapse
Affiliation(s)
- Esther Ndumi Ngumbi
- Department of Entomology, University of Illinois Urbana Champaign, 417 Morrill Hall, Urbana, IL, 61801, USA.
| |
Collapse
|
11
|
Shan HW, Xia XJ, Feng YL, Wu W, Li HJ, Sun ZT, Li JM, Chen JP. The plant-sucking insect selects assembly of the gut microbiota from environment to enhance host reproduction. NPJ Biofilms Microbiomes 2024; 10:64. [PMID: 39080326 PMCID: PMC11289440 DOI: 10.1038/s41522-024-00539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Plant-sucking insects have intricate associations with a diverse array of microorganisms to facilitate their adaptation to specific ecological niches. The midgut of phytophagous true bugs is generally structured into four distinct compartments to accommodate their microbiota. Nevertheless, there is limited understanding regarding the origins of these gut microbiomes, the mechanisms behind microbial community assembly, and the interactions between gut microbiomes and their insect hosts. In this study, we conducted a comprehensive survey of microbial communities within the midgut compartments of a bean bug Riptortus pedestris, soybean plant, and bulk soil across 12 distinct geographical fields in China, utilizing high-throughput sequencing of the 16 S rRNA gene. Our findings illuminated that gut microbiota of the plant-sucking insects predominantly originated from the surrounding soil environment, and plants also play a subordinate role in mediating microbial acquisition for the insects. Furthermore, our investigation suggested that the composition of the insect gut microbiome was probably shaped by host selection and/or microbe-microbe interactions at the gut compartment level, with marginal influence from soil and geographical factors. Additionally, we had unveiled a noteworthy dynamic in the acquisition of core bacterial taxa, particularly Burkholderia, which were initially sourced from the environment and subsequently enriched within the insect midgut compartments. This bacterial enrichment played a significant role in enhancing insect host reproduction. These findings contribute to our evolving understanding of microbiomes within the insect-plant-soil ecosystem, shedding additional light on the intricate interactions between insects and their microbiomes that underpin the ecological significance of microbial partnerships in host adaptation.
Collapse
Affiliation(s)
- Hong-Wei Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Xie-Jiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yi-Lu Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Wei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hong-Jie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zong-Tao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
12
|
Qiu Z, He S, Lian CA, Qiao X, Zhang Q, Yao C, Mu R, Wang L, Cao XA, Yan Y, Yu K. Large scale exploration reveals rare taxa crucially shape microbial assembly in alkaline lake sediments. NPJ Biofilms Microbiomes 2024; 10:62. [PMID: 39069527 DOI: 10.1038/s41522-024-00537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Alkaline lakes are extreme environments inhabited by diverse microbial extremophiles. However, large-scale distribution patterns, environmental adaptations, community assembly, and evolutionary dynamics of microbial communities remain largely underexplored. This study investigated the characteristics of microbial communities on rare and abundant taxa in alkaline lake sediments in west and northwest China. We observed that abundant taxa varied significantly with geographical distance, while rare taxa remained unaffected by regional differences. The assembly process of abundant taxa was influenced by dispersal limitation, whilst rare taxa were predominantly driven by heterogeneous selection. Network analysis indicated that rare taxa as core species for community interactions and community stability. Rare taxa exhibited higher speciation and transition rate than abundant taxa, serving as a genetic reservoir and potential candidates to become abundance taxa, highlighting their crucial role in maintaining microbial diversity. These insights underscore the significant influence of rare taxa on ecosystem biodiversity and stability in alkaline lakes.
Collapse
Affiliation(s)
- Zhiguang Qiu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China
| | - Shuhang He
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Chun-Ang Lian
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China
| | - Xuejiao Qiao
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Qing Zhang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Ciqin Yao
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Rong Mu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Li Wang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Xiao-Ai Cao
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Yan Yan
- State Key Laboratory of Isotope Geochemistry, CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Ke Yu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
13
|
He L, Sun X, Li S, Zhou W, Yu J, Zhao G. Biogeographic and co-occurrence network differentiation of fungal communities in warm-temperate montane soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174911. [PMID: 39038676 DOI: 10.1016/j.scitotenv.2024.174911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Studying the biogeographic patterns of fungal communities across altitudinal and soil depth gradients is essential for understanding how environmental variations shape the diversity and functionality of these complex ecological assemblages. Here, we evaluated the response and assembly patterns of fungal communities to altitude and soil depth, and the co-occurrence patterns influencing soil fungal metabolic preferences on Dongling Mountain. We observed significant variations in fungal β-diversity, driven by elevation and soil depth, with climatic parameters (MAT and MAP) and nutrient concentrations (TOC, TP, and TN) serving as prominent influencers. Additionally, we found that the multiple substrate-induced respiration rate of fungi degrading various carbon substrates was diminished in high-altitude and subsurface soils compared to low-altitude and surface soils. Stochastic processes play a more important role in controlling fungal community assembly than deterministic processes, with dispersal limitation emerging as the main driver of community assembly. While greater network complexity was evident in the topsoil compared to the subsoil, both layers harbored altitude-sensitive OTUs (asOTUs) that belonging to distinct modules. Moreover, fungal groups sensitive to the same altitude exhibited similar metabolic preferences. The asOTUs designated for lower altitude areas favored unstable carbon substrates (glucose and sucrose), while those designated as higher altitude areas exhibited a preference for recalcitrant carbon (xylan and lignin). This evidence suggests that soil fungal communities respond to environmental changes by trading off their life strategies and metabolic characteristics.
Collapse
Affiliation(s)
- Libing He
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xiangyang Sun
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Suyan Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Wenzhi Zhou
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Jiantao Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Guanyu Zhao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
14
|
Kang Y, Shen L, Li C, Huang Y, Chen L. Effects of vegetation degradation on soil microbial communities and ecosystem multifunctionality in a karst region, southwest China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121395. [PMID: 38852407 DOI: 10.1016/j.jenvman.2024.121395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Vegetation degradation caused by intense human disturbances poses a significant challenge to the preservation and improvement of ecosystem functions and services in the karst region of southwest China. Soil microorganisms are major regulators of ecosystem multifunctionality (EMF). Currently, there is a dearth of knowledge regarding the effects of vegetation degradation on soil microbial communities and their corresponding multiple ecosystem functions in karst regions. In this study, we selected the vegetation degradation sequences of second natural forest (NF), agroforestry (AS) and cropland (CL) to investigate the diversity of bacterial, fungal and protistan communities, and their hierarchical co-occurrence network, and EMF to explore the relationships between them. Compared to the NF, the carbon cycling index, nitrogen cycling index, soil water regulation power, and the EMF were significantly decreased by 8.2%-50.6%, 48.7%-86.8%, 19.8%-24.5%, and 31.4%-69.5% in the AS and CL, respectively. The development of EMF can be explained by the fungal, protistan and microbial hierarchical β-diversity, as well as the complexity (e.g. degree) of microbial hierarchical interactions during the process of vegetation degradation. Notably, correlations between the abundances of sensitive amplicon sequence variants (sASVs) for different karst vegetation types and EMF varied in distinct network modules, being positive in module 1 and negative in module 2. Moreover, the relative abundance of keystone taxa in fungal and protistan communities provided greater contributions to EMF than the bacterial communities. Additionally, random forest modeling showed that carbon and nitrogen sources, and soil water content, and trace elements (e.g. exchangeable magnesium, iron, manganese, and zinc) were identified as key driving factors of the EMF. Collectively, our findings demonstrate that vegetation degradation obviously alters soil microbial diversities and hierarchical interactions, emphasizing their key role in maintaining ecosystem functions and health in karst regions.
Collapse
Affiliation(s)
- Yalong Kang
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China; Ministry of Education Key Laboratory for Transboundary Eco-Security of Southwest, Kuming, China
| | - Linjun Shen
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China; Ministry of Education Key Laboratory for Transboundary Eco-Security of Southwest, Kuming, China
| | - Canfeng Li
- Kunming Natural Resources Comprehensive Survey Center of China Geological Survey/Technology Innovation Center for Natural Ecosystem Carbon Sink, Ministry of Natural Resources, 650100: Kunming, China
| | - Yong Huang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China.
| | - Liding Chen
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, China; Ministry of Education Key Laboratory for Transboundary Eco-Security of Southwest, Kuming, China
| |
Collapse
|
15
|
Dang P, Lu C, Huang T, Zhang M, Yang N, Han X, Xu C, Wang S, Wan C, Qin X, Siddique KHM. Enhancing intercropping sustainability: Manipulating soybean rhizosphere microbiome through cropping patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172714. [PMID: 38679108 DOI: 10.1016/j.scitotenv.2024.172714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
Understanding the responses of soybean rhizosphere and functional microbiomes in intercropping scenarios holds promise for optimizing nitrogen utilization in legume-based intercropping systems. This study investigated three cropping layouts under film mulching: sole soybean (S), soybean-maize intercropping in one row (IS), and soybean-maize intercropping in two rows (IIS), each subjected to two nitrogen levels: 110 kg N ha-1 (N110) and 180 kg N ha-1 (N180). Our findings reveal that cropping patterns alter bacterial and nifh communities, with approximately 5 % of soybean rhizosphere bacterial amplicon sequence variants (ASVs) and 42 % of rhizosphere nifh ASVs exhibiting altered abundances (termed sensitive ASVs). Root traits and soil properties shape these communities, with root traits exerting greater influence. Sensitive ASVs drive microbial co-occurrence networks and deterministic processes, predicting 85 % of yield variance and 78 % of partial factor productivity of nitrogen, respectively. These alterations impact bacterial and nifh diversity, complexity, stability, and deterministic processes in legume-based intercropping systems, enhancing performance in terms of yield, nitrogen utilization efficiency, land equivalent ratio, root nodule count, and nodule dry weight under IIS patterns with N110 compared to other treatments. Our findings underscore the importance of field management practices in shaping rhizosphere-sensitive ASVs, thereby altering microbial functions and ultimately impacting the productivity of legume-based intercropping systems. This mechanistic understanding of soybean rhizosphere microbial responses to intercropping patterns offers insights for sustainable intercropping enhancements through microbial manipulation.
Collapse
Affiliation(s)
- Pengfei Dang
- College of Agronomy/State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Lu
- Yangling Vocational and Technical College, Yangling, Shaanxi, 712100, China
| | - Tiantian Huang
- College of Agronomy/State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Miaomiao Zhang
- College of Agronomy/State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ning Yang
- College of Agronomy/State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoqing Han
- College of Agronomy/State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunhong Xu
- College of Agronomy/State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shiguang Wang
- College of Agronomy/State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chenxi Wan
- College of Agronomy/State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoliang Qin
- College of Agronomy/State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
16
|
Ding LJ, Ren XY, Zhou ZZ, Zhu D, Zhu YG. Forest-to-Cropland Conversion Reshapes Microbial Hierarchical Interactions and Degrades Ecosystem Multifunctionality at a National Scale. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11027-11040. [PMID: 38857061 DOI: 10.1021/acs.est.4c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Conversion from natural lands to cropland, primarily driven by agricultural expansion, could significantly alter soil microbiome worldwide; however, influences of forest-to-cropland conversion on microbial hierarchical interactions and ecosystem multifunctionality have not been fully understood. Here, we examined the effects of forest-to-cropland conversion on intratrophic and cross-trophic microbial interactions and soil ecosystem multifunctionality and further disclosed their underlying drivers at a national scale, using Illumina sequencing combined with high-throughput quantitative PCR techniques. The forest-to-cropland conversion significantly changed the structure of soil microbiome (including prokaryotic, fungal, and protistan communities) while it did not affect its alpha diversity. Both intrakingdom and interkingdom microbial networks revealed that the intratrophic and cross-trophic microbial interaction patterns generally tended to be more modular to resist environmental disturbance introduced from forest-to-cropland conversion, but this was insufficient for the cross-trophic interactions to maintain stability; hence, the protistan predation behaviors were still disturbed under such conversion. Moreover, key soil microbial clusters were declined during the forest-to-cropland conversion mainly because of the increased soil total phosphorus level, and this drove a great degradation of the ecosystem multifunctionality (by 207%) in cropland soils. Overall, these findings comprehensively implied the negative effects of forest-to-cropland conversion on the agroecosystem, from microbial hierarchical interactions to ecosystem multifunctionality.
Collapse
Affiliation(s)
- Long-Jun Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xin-Yue Ren
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zhi-Zi Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
17
|
Jalloh AA, Mutyambai DM, Yusuf AA, Subramanian S, Khamis F. Maize edible-legumes intercropping systems for enhancing agrobiodiversity and belowground ecosystem services. Sci Rep 2024; 14:14355. [PMID: 38906908 PMCID: PMC11192945 DOI: 10.1038/s41598-024-64138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/05/2024] [Indexed: 06/23/2024] Open
Abstract
Intensification of staple crops through conventional agricultural practices with chemical synthetic inputs has yielded positive outcomes in food security but with negative environmental impacts. Ecological intensification using cropping systems such as maize edible-legume intercropping (MLI) systems has the potential to enhance soil health, agrobiodiversity and significantly influence crop productivity. However, mechanisms underlying enhancement of biological soil health have not been well studied. This study investigated the shifts in rhizospheric soil and maize-root microbiomes and associated soil physico-chemical parameters in MLI systems of smallholder farms in comparison to maize-monoculture cropping systems (MMC). Maize-root and rhizospheric soil samples were collected from twenty-five farms each conditioned by MLI and MMC systems in eastern Kenya. Soil characteristics were assessed using Black oxidation and Walkley methods. High-throughput amplicon sequencing was employed to analyze fungal and bacterial communities, predicting their functional roles and diversity. The different MLI systems significantly impacted soil and maize-root microbial communities, resulting in distinct microbe sets. Specific fungal and bacterial genera and species were mainly influenced and enriched in the MLI systems (e.g., Bionectria solani, Sarocladium zeae, Fusarium algeriense, and Acremonium persicinum for fungi, and Bradyrhizobium elkanii, Enterobacter roggenkampii, Pantoea dispersa and Mitsuaria chitosanitabida for bacteria), which contribute to nutrient solubilization, decomposition, carbon utilization, plant protection, bio-insecticides/fertilizer production, and nitrogen fixation. Conversely, the MMC systems enriched phytopathogenic microbial species like Sphingomonas leidyi and Alternaria argroxiphii. Each MLI system exhibited a unique composition of fungal and bacterial communities that shape belowground biodiversity, notably affecting soil attributes, plant well-being, disease control, and agroecological services. Indeed, soil physico-chemical properties, including pH, nitrogen, organic carbon, phosphorus, and potassium were enriched in MLI compared to MMC cropping systems. Thus, diversification of agroecosystems with MLI systems enhances soil properties and shifts rhizosphere and maize-root microbiome in favor of ecologically important microbial communities.
Collapse
Affiliation(s)
- Abdul A Jalloh
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Private Bag x20 , Hatfield, Pretoria, South Africa
| | - Daniel Munyao Mutyambai
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
- Department of Life Sciences, South Eastern Kenya University, P.O Box 170-90200, Kitui, Kenya.
| | - Abdullahi Ahmed Yusuf
- Department of Zoology and Entomology, University of Pretoria, Private Bag x20 , Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag x20, Hatfield, Pretoria, South Africa
| | - Sevgan Subramanian
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Fathiya Khamis
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
18
|
Li L, Zheng R, Wang Z, Li H, Shi Y, Pan Z, Liu M. Leaf Health Status Regulates Endophytic Microbial Community Structure, Network Complexity, and Assembly Processes in the Leaves of the Rare and Endangered Plant Species Abies fanjingshanensis. Microorganisms 2024; 12:1254. [PMID: 39065023 PMCID: PMC11279022 DOI: 10.3390/microorganisms12071254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
The rare and endangered plant species Abies fanjingshanensis, which has a limited habitat, a limited distribution area, and a small population, is under severe threat, particularly due to poor leaf health. The plant endophytic microbiome is an integral part of the host, and increasing evidence indicates that the interplay between plants and endophytic microbes is a key determinant for sustaining plant fitness. However, little attention has been given to the differences in the endophytic microbial community structure, network complexity, and assembly processes in leaves with different leaf health statuses. Here, we investigated the endophytic bacterial and fungal communities in healthy leaves (HLs) and non-healthy leaves (NLs) of A. fanjingshanensis using 16S rRNA gene and internal transcribed spacer sequencing and evaluated how leaf health status affects the co-occurrence patterns and assembly processes of leaf endophytic microbial communities based on the co-occurrence networks, the niche breadth index, a neutral community model, and C-score metrics. HLs had significantly greater endophytic bacterial and fungal abundance and diversity than NLs, and there were significant differences in the endophytic microbial communities between HLs and NLs. Leaf-health-sensitive endophytic microbes were taxonomically diverse and were mainly grouped into four ecological clusters according to leaf health status. Poor leaf health reduced the complexity of the endophytic bacterial and fungal community networks, as reflected by a decrease in network nodes and edges and an increase in degrees of betweenness and assortativity. The stochastic processes of endophytic bacterial and fungal community assembly were weakened, and the deterministic processes became more important with declining leaf health. These results have important implications for understanding the ecological patterns and interactions of endophytic microbial communities in response to changing leaf health status and provide opportunities for further studies on exploiting plant endophytic microbes to conserve this endangered Abies species.
Collapse
Affiliation(s)
- Long Li
- School of Data Science, Tongren University, Tongren 554300, China;
| | - Rong Zheng
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China;
| | - Zuhua Wang
- College of A&F Engineering and Planning, Tongren University, Tongren 554300, China; (Z.W.); (Y.S.); (Z.P.)
| | - Haibo Li
- National Nature Reserve Administration of Fanjing Mountain, Tongren 554400, China;
| | - Yongjia Shi
- College of A&F Engineering and Planning, Tongren University, Tongren 554300, China; (Z.W.); (Y.S.); (Z.P.)
| | - Zhongjie Pan
- College of A&F Engineering and Planning, Tongren University, Tongren 554300, China; (Z.W.); (Y.S.); (Z.P.)
| | - Min Liu
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China;
| |
Collapse
|
19
|
Gai X, Xing W, Chen G. Divergent responses of rhizosphere soil phosphorus fractions and biological features of Salix psammophila to fertilization strategies under cadmium contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172554. [PMID: 38657824 DOI: 10.1016/j.scitotenv.2024.172554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Soil oligotrophy in areas heavily contaminated with heavy metals poses a significant challenge to vegetation establishment and phytoremediation processes. Phosphorus (P) cycling plays a critical role in global biogeochemical cycles, but there is limited understanding of its response to varying fertilization strategies and its correlation with phytoremediation effectiveness. This study primarily investigated the effects of various fertilization strategies, including nitrogen (N, 300 mg·kg-1), P (100 mg·kg-1), NP (combined N and P at 300 mg·kg-1 and 100 mg·kg-1, respectively), and HP (high P, 300 mg·kg-1) application, on rhizosphere soil P fractions and P-solubilizing microbial community (harboring phoD and phoC genes, respectively) of Salix psammophila under cadmium contamination. Application of NP significantly enhanced plant growth and cadmium accumulation, whereas HP inhibited cadmium bioaccumulation but promoted its translocation. Compared to untreated soil, N application promoted P cycling, leading to increases of 141.9 %, 60.4 %, and 10.3 % in Resin-Pi, diluted HCl-Pi, and conc.HCl-Pi, respectively. P application decreased organic phosphorus (Po) fractions by 24.4 % - 225.8 %, but N incorporation mitigated the declining trend in Po and augmented alkaline phosphatase activity. Fertilization strategies significantly regulated phoC- or phoD-harboring bacterial community structure, but their differential nutrient demands resulted in distinct responses. The phoD-harboring bacteria exhibited higher diversity and network complexity, with numerous biomarkers and fertilizer-sensitive OTUs discovered across treatments. Structural equation modeling (SEM) analysis indicated that phytoremediation efficiency was directly affected by Pi fractions, and phoD-harboring bacteria exhibited stronger associations with Pi fractions than phoC-harboring bacteria. In conclusion, our results reveal potential pathways through which fertilization strategies influence phytoremediation by affecting the structure of P-solubilizing microbial community. Furthermore, our study emphasizes the importance of combined N and P application in promoting Cd accumulation in plants, with high P levels appearing as an ideal fertilization strategy for phytoremediation targeting the harvest of aboveground biomass.
Collapse
Affiliation(s)
- Xu Gai
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, PR China
| | - Wenli Xing
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, PR China
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, PR China.
| |
Collapse
|
20
|
Wang X, Wang S, Huang M, He Y, Guo S, Yang K, Wang N, Sun T, Yang H, Yang T, Xu Y, Shen Q, Friman VP, Wei Z. Phages enhance both phytopathogen density control and rhizosphere microbiome suppressiveness. mBio 2024; 15:e0301623. [PMID: 38780276 PMCID: PMC11237578 DOI: 10.1128/mbio.03016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/21/2024] [Indexed: 05/25/2024] Open
Abstract
Bacteriophages, viruses that specifically target plant pathogenic bacteria, have emerged as a promising alternative to traditional agrochemicals. However, it remains unclear how phages should be applied to achieve efficient pathogen biocontrol and to what extent their efficacy is shaped by indirect interactions with the resident microbiota. Here, we tested if the phage biocontrol efficacy of Ralstonia solanacearum phytopathogenic bacterium can be improved by increasing the phage cocktail application frequency and if the phage efficacy is affected by pathogen-suppressing bacteria already present in the rhizosphere. We find that increasing phage application frequency improves R. solanacearum density control, leading to a clear reduction in bacterial wilt disease in both greenhouse and field experiments with tomato. The high phage application frequency also increased the diversity of resident rhizosphere microbiota and enriched several bacterial taxa that were associated with the reduction in pathogen densities. Interestingly, these taxa often belonged to Actinobacteria known for antibiotics production and soil suppressiveness. To test if they could have had secondary effects on R. solanacearum biocontrol, we isolated Actinobacteria from Nocardia and Streptomyces genera and tested their suppressiveness to the pathogen in vitro and in planta. We found that these taxa could clearly inhibit R. solanacearum growth and constrain bacterial wilt disease, especially when combined with the phage cocktail. Together, our findings unravel an undiscovered benefit of phage therapy, where phages trigger a second line of defense by the pathogen-suppressing bacteria that already exist in resident microbial communities. IMPORTANCE Ralstonia solanacearum is a highly destructive plant-pathogenic bacterium with the ability to cause bacterial wilt in several crucial crop plants. Given the limitations of conventional chemical control methods, the use of bacterial viruses (phages) has been explored as an alternative biological control strategy. In this study, we show that increasing the phage application frequency can improve the density control of R. solanacearum, leading to a significant reduction in bacterial wilt disease. Furthermore, we found that repeated phage application increased the diversity of rhizosphere microbiota and specifically enriched Actinobacterial taxa that showed synergistic pathogen suppression when combined with phages due to resource and interference competition. Together, our study unravels an undiscovered benefit of phages, where phages trigger a second line of defense by the pathogen-suppressing bacteria present in resident microbial communities. Phage therapies could, hence, potentially be tailored according to host microbiota composition to unlock the pre-existing benefits provided by resident microbiota.
Collapse
Affiliation(s)
- Xiaofang Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Shuo Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Mingcong Huang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yilin He
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Saisai Guo
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Keming Yang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ningqi Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Tianyu Sun
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Hongwu Yang
- China National Tobacco Corporation Hunan Company, Changsha, Hunan, China
| | - Tianjie Yang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Yangchun Xu
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Ville-Petri Friman
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Zhong Wei
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Xun W, Liu Y, Ma A, Yan H, Miao Y, Shao J, Zhang N, Xu Z, Shen Q, Zhang R. Dissection of rhizosphere microbiome and exploiting strategies for sustainable agriculture. THE NEW PHYTOLOGIST 2024; 242:2401-2410. [PMID: 38494698 DOI: 10.1111/nph.19697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
The rhizosphere microbiome plays critical roles in plant growth and provides promising solutions for sustainable agriculture. While the rhizosphere microbiome frequently fluctuates with the soil environment, recent studies have demonstrated that a small proportion of the microbiome is consistently assembled in the rhizosphere of a specific plant genotype regardless of the soil condition, which is determined by host genetics. Based on these breakthroughs, which involved exploiting the plant-beneficial function of the rhizosphere microbiome, we propose to divide the rhizosphere microbiome into environment-dominated and plant genetic-dominated components based on their different assembly mechanisms. Subsequently, two strategies to explore the different rhizosphere microbiome components for agricultural production are suggested, that is, the precise management of the environment-dominated rhizosphere microbiome by agronomic practices, and the elucidation of the plant genetic basis of the plant genetic-dominated rhizosphere microbiome for breeding microbiome-assisted crop varieties. We finally present the major challenges that need to be overcome to implement strategies for modulating these two components of the rhizosphere microbiome.
Collapse
Affiliation(s)
- Weibing Xun
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Aiyuan Ma
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - He Yan
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
22
|
Gholizadeh S, Nemati I, Vestergård M, Barnes CJ, Kudjordjie EN, Nicolaisen M. Harnessing root-soil-microbiota interactions for drought-resilient cereals. Microbiol Res 2024; 283:127698. [PMID: 38537330 DOI: 10.1016/j.micres.2024.127698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/17/2024]
Abstract
Cereal plants form complex networks with their associated microbiome in the soil environment. A complex system including variations of numerous parameters of soil properties and host traits shapes the dynamics of cereal microbiota under drought. These multifaceted interactions can greatly affect carbon and nutrient cycling in soil and offer the potential to increase plant growth and fitness under drought conditions. Despite growing recognition of the importance of plant microbiota to agroecosystem functioning, harnessing the cereal root microbiota remains a significant challenge due to interacting and synergistic effects between root traits, soil properties, agricultural practices, and drought-related features. A better mechanistic understanding of root-soil-microbiota associations could lead to the development of novel strategies to improve cereal production under drought. In this review, we discuss the root-soil-microbiota interactions for improving the soil environment and host fitness under drought and suggest a roadmap for harnessing the benefits of these interactions for drought-resilient cereals. These methods include conservative trait-based approaches for the selection and breeding of plant genetic resources and manipulation of the soil environments.
Collapse
Affiliation(s)
- Somayeh Gholizadeh
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Iman Nemati
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mette Vestergård
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Christopher James Barnes
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Enoch Narh Kudjordjie
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Mogens Nicolaisen
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark.
| |
Collapse
|
23
|
Cunha IDCMD, Silva AVRD, Boleta EHM, Pellegrinetti TA, Zagatto LFG, Zagatto SDSS, Chaves MGD, Mendes R, Patreze CM, Tsai SM, Mendes LW. The interplay between the inoculation of plant growth-promoting rhizobacteria and the rhizosphere microbiome and their impact on plant phenotype. Microbiol Res 2024; 283:127706. [PMID: 38574431 DOI: 10.1016/j.micres.2024.127706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Microbial inoculation stands as a pivotal strategy, fostering symbiotic relationships between beneficial microorganisms and plants, thereby enhancing nutrient uptake, bolstering resilience against environmental stressors, and ultimately promoting healthier and more productive plant growth. However, while the advantageous roles of inoculants are widely acknowledged, the precise and nuanced impacts of inoculation on the intricate interactions of the rhizosphere microbiome remain significantly underexplored. This study explores the impact of bacterial inoculation on soil properties, plant growth, and the rhizosphere microbiome. By employing various bacterial strains and a synthetic community (SynCom) as inoculants in common bean plants, the bacterial and fungal communities in the rhizosphere were assessed through 16 S rRNA and ITS gene sequencing. Concurrently, soil chemical parameters, plant traits, and gene expression were evaluated. The findings revealed that bacterial inoculation generally decreased pH and V%, while increasing H+Al and m% in the rhizosphere. It also decreased gene expression in plants related to detoxification, photosynthesis, and defense mechanisms, while enhancing bacterial diversity in the rhizosphere, potentially benefiting plant health. Specific bacterial strains showed varied impacts on rhizosphere microbiome assembly, predominantly affecting rhizospheric bacteria more than fungi, indirectly influencing soil conditions and plants. Notably, Paenibacillus polymyxa inoculation improved plant nitrogen (by 5.2%) and iron levels (by 28.1%), whereas Bacillus cereus boosted mycorrhization rates (by 70%). Additionally, inoculation led to increased complexity in network interactions within the rhizosphere (∼15%), potentially impacting plant health. Overall, the findings highlight the significant impact of introducing bacteria to the rhizosphere, enhancing nutrient availability, microbial diversity, and fostering beneficial plant-microbe interactions.
Collapse
Affiliation(s)
- Izadora de Cássia Mesquita da Cunha
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil; Luiz de Queiroz College of Agriculture ESALQ, University of São Paulo USP, Piracicaba, SP 13418-900, Brazil
| | - Ana Vitória Reina da Silva
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil
| | - Eduardo Henrique Marcandalli Boleta
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil
| | - Thierry Alexandre Pellegrinetti
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil
| | - Luis Felipe Guandalin Zagatto
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil; Department of Terrestrial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen NL-6700 AB, the Netherlands
| | - Solange Dos Santos Silva Zagatto
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil
| | - Miriam Gonçalves de Chaves
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Embrapa Environment, Jaguariuna 18020-000, Brazil
| | - Camila Maistro Patreze
- Institute of Biosciences, Federal University of the State of Rio de Janeiro, Rio de Janeiro, RJ 22290-240, Brazil
| | - Siu Mui Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil
| | - Lucas William Mendes
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture CENA, University of Sao Paulo USP, Piracicaba, SP 13416-000, Brazil.
| |
Collapse
|
24
|
Chen M, Acharya SM, Yee MO, Cabugao KGM, Chakraborty R. Developing stable, simplified, functional consortia from Brachypodium rhizosphere for microbial application in sustainable agriculture. Front Microbiol 2024; 15:1401794. [PMID: 38846575 PMCID: PMC11153752 DOI: 10.3389/fmicb.2024.1401794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
The rhizosphere microbiome plays a crucial role in supporting plant productivity and ecosystem functioning by regulating nutrient cycling, soil integrity, and carbon storage. However, deciphering the intricate interplay between microbial relationships within the rhizosphere is challenging due to the overwhelming taxonomic and functional diversity. Here we present our systematic design framework built on microbial colocalization and microbial interaction, toward successful assembly of multiple rhizosphere-derived Reduced Complexity Consortia (RCC). We enriched co-localized microbes from Brachypodium roots grown in field soil with carbon substrates mimicking Brachypodium root exudates, generating 768 enrichments. By transferring the enrichments every 3 or 7 days for 10 generations, we developed both fast and slow-growing reduced complexity microbial communities. Most carbon substrates led to highly stable RCC just after a few transfers. 16S rRNA gene amplicon analysis revealed distinct community compositions based on inoculum and carbon source, with complex carbon enriching slow growing yet functionally important soil taxa like Acidobacteria and Verrucomicrobia. Network analysis showed that microbial consortia, whether differentiated by growth rate (fast vs. slow) or by succession (across generations), had significantly different network centralities. Besides, the keystone taxa identified within these networks belong to genera with plant growth-promoting traits, underscoring their critical function in shaping rhizospheric microbiome networks. Furthermore, tested consortia demonstrated high stability and reproducibility, assuring successful revival from glycerol stocks for long-term viability and use. Our study represents a significant step toward developing a framework for assembling rhizosphere consortia based on microbial colocalization and interaction, with future implications for sustainable agriculture and environmental management.
Collapse
Affiliation(s)
| | | | | | | | - Romy Chakraborty
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
25
|
Jia W, Huang P, Zhu K, Gao X, Chen Q, Chen J, Ran Y, Chen S, Ma M, Wu S. Zonation of bulk and rhizosphere soil bacterial communities and their covariation patterns along the elevation gradient in riparian zones of three Gorges reservoir, China. ENVIRONMENTAL RESEARCH 2024; 249:118383. [PMID: 38331152 DOI: 10.1016/j.envres.2024.118383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Zonation is a typical pattern of soil distribution and species assembly across riparian habitats. Microorganisms are essential members of riparian ecosystems and whether soil microbial communities demonstrate similar zonation patterns and how bulk and rhizosphere soil microorganisms interact along the elevation (submergence stress) gradient remain largely unknown. In this study, bulk and rhizosphere (dominant plant) soil samples were collected and investigated across riparian zones where the submergence stress intensity increased as the elevation decreased. Results showed that the richness of bacterial communities in bulk and rhizosphere soil samples was significantly different and presented a zonation pattern along with the submergence stress gradient. Bulk soil at medium elevation that underwent moderate submergence stress had the most abundant bacterial communities, while the species richness of rhizobacteria at low elevation that experienced serious submergence stress was the highest. Additionally, principal coordinate analysis (PCoA) and significance tests showed that bulk and rhizosphere soil samples were distinguished according to the structure of bacterial communities, and so were bulk or rhizosphere soil samples from different elevations. Redundancy analysis (RDA) and Mantel test suggested that bacterial communities of bulk soil mainly relied on the contents of soil organic matter, total carbon (TC), total nitrogen (TN), sodium (Na), calcium (Ca) and magnesium (Mg). Contrastingly, the contents of Na and Mg were the main factors explaining the variation in rhizobacterial community composition. Correlation and microbial source tracking analyses showed thatthe relationship of bulk and rhizosphere soil bacteria became much stronger, and the rhizosphere soil may get more bacterial communities from bulk soil with the increase in submergence severity. Our results suggest that the abiotic and biotic components of the riparian ecosystem are closely covariant along the submergence stress gradient and imply that the bacterial community may be a key node linking soil physiochemical properties and vegetation communities.
Collapse
Affiliation(s)
- Weitao Jia
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Ping Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Kai Zhu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Xin Gao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Qiao Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Jilong Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Yiguo Ran
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Shanshan Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Maohua Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Shengjun Wu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China.
| |
Collapse
|
26
|
Jin Z, Jiang F, Wang L, Declerck S, Feng G, Zhang L. Arbuscular mycorrhizal fungi and Streptomyces: brothers in arms to shape the structure and function of the hyphosphere microbiome in the early stage of interaction. MICROBIOME 2024; 12:83. [PMID: 38725008 PMCID: PMC11080229 DOI: 10.1186/s40168-024-01811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/07/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Fungi and bacteria coexist in a wide variety of environments, and their interactions are now recognized as the norm in most agroecosystems. These microbial communities harbor keystone taxa, which facilitate connectivity between fungal and bacterial communities, influencing their composition and functions. The roots of most plants are associated with arbuscular mycorrhizal (AM) fungi, which develop dense networks of hyphae in the soil. The surface of these hyphae (called the hyphosphere) is the region where multiple interactions with microbial communities can occur, e.g., exchanging or responding to each other's metabolites. However, the presence and importance of keystone taxa in the AM fungal hyphosphere remain largely unknown. RESULTS Here, we used in vitro and pot cultivation systems of AM fungi to investigate whether certain keystone bacteria were able to shape the microbial communities growing in the hyphosphere and potentially improved the fitness of the AM fungal host. Based on various AM fungi, soil leachates, and synthetic microbial communities, we found that under organic phosphorus (P) conditions, AM fungi could selectively recruit bacteria that enhanced their P nutrition and competed with less P-mobilizing bacteria. Specifically, we observed a privileged interaction between the isolate Streptomyces sp. D1 and AM fungi of the genus Rhizophagus, where (1) the carbon compounds exuded by the fungus were acquired by the bacterium which could mineralize organic P and (2) the in vitro culturable bacterial community residing on the surface of hyphae was in part regulated by Streptomyces sp. D1, primarily by inhibiting the bacteria with weak P-mineralizing ability, thereby enhancing AM fungi to acquire P. CONCLUSIONS This work highlights the multi-functionality of the keystone bacteria Streptomyces sp. D1 in fungal-bacteria and bacterial-bacterial interactions at the hyphal surface of AM fungi. Video Abstract.
Collapse
Affiliation(s)
- Zexing Jin
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Feiyan Jiang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Letian Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Stéphane Declerck
- Applied Microbiology, Mycology, Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 2, Bte L7.05.06, Louvain-La-Neuve, B-1348, Belgium
| | - Gu Feng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Lin Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
27
|
Liu S, Liu R, Zhang S, Shen Q, Chen J, Ma H, Ge C, Hao L, Zhang J, Shi S, Pang C. The Contributions of Sub-Communities to the Assembly Process and Ecological Mechanisms of Bacterial Communities along the Cotton Soil-Root Continuum Niche Gradient. Microorganisms 2024; 12:869. [PMID: 38792699 PMCID: PMC11123189 DOI: 10.3390/microorganisms12050869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
Soil microbes are crucial in shaping the root-associated microbial communities. In this study, we analyzed the effect of the soil-root niche gradient on the diversity, composition, and assembly of the bacterial community and co-occurrence network of two cotton varieties. The results revealed that the bacterial communities in cotton soil-root compartment niches exhibited a skewed species abundance distribution, dominated by abundant taxa showing a strong spatial specificity. The assembly processes of the rhizosphere bacterial communities were mainly driven by stochastic processes, dominated by the enrichment pattern and supplemented by the depletion pattern to recruit bacteria from the bulk soil, resulting in a more stable bacterial community. The assembly processes of the endosphere bacterial communities were determined by processes dominated by the depletion pattern and supplemented by the enrichment pattern to recruit species from the rhizosphere, resulting in a decrease in the stability and complexity of the community co-occurrence network. The compartment niche shaped the diversity of the bacterial communities, and the cotton variety genotype was an important source of diversity in bacterial communities within the compartment niche. We suggest that the moderate taxa contribute to significantly more changes in the diversity of the bacterial community than the rare and abundant taxa during the succession of bacterial communities in the cotton root-soil continuum.
Collapse
Affiliation(s)
- Shaodong Liu
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Ruihua Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Siping Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Shen
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Chen
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Huijuan Ma
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Changwei Ge
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Lidong Hao
- Postdoctoral Mobile Station, Lanzhou University, Lanzhou 730000, China
| | - Jinshan Zhang
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shubing Shi
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Chaoyou Pang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
28
|
Fujita H, Yoshida S, Suzuki K, Toju H. Soil prokaryotic and fungal biome structures associated with crop disease status across the Japan Archipelago. mSphere 2024; 9:e0080323. [PMID: 38567970 PMCID: PMC11036807 DOI: 10.1128/msphere.00803-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/29/2024] [Indexed: 04/24/2024] Open
Abstract
Archaea, bacteria, and fungi in the soil are increasingly recognized as determinants of agricultural productivity and sustainability. A crucial step for exploring soil microbiomes with important ecosystem functions is to perform statistical analyses on the potential relationship between microbiome structure and functions based on comparisons of hundreds or thousands of environmental samples collected across broad geographic ranges. In this study, we integrated agricultural field metadata with microbial community analyses by targeting 2,903 bulk soil samples collected along a latitudinal gradient from cool-temperate to subtropical regions in Japan (26.1-42.8 °N). The data involving 632 archaeal, 26,868 bacterial, and 4,889 fungal operational taxonomic units detected across the fields of 19 crop plant species allowed us to conduct statistical analyses (permutational analyses of variance, generalized linear mixed models, randomization analyses, and network analyses) on the relationship among edaphic factors, microbiome compositions, and crop disease prevalence. We then examined whether the diverse microbes form species sets varying in potential ecological impacts on crop plants. A network analysis suggested that the observed prokaryotes and fungi were classified into several species sets (network modules), which differed substantially in association with crop disease prevalence. Within the network of microbe-to-microbe coexistence, ecologically diverse microbes, such as an ammonium-oxidizing archaeon, an antibiotics-producing bacterium, and a potentially mycoparasitic fungus, were inferred to play key roles in shifts between crop-disease-promotive and crop-disease-suppressive states of soil microbiomes. The bird's-eye view of soil microbiome structure will provide a basis for designing and managing agroecosystems with high disease-suppressive functions.IMPORTANCEUnderstanding how microbiome structure and functions are organized in soil ecosystems is one of the major challenges in both basic ecology and applied microbiology. Given the ongoing worldwide degradation of agroecosystems, building frameworks for exploring structural diversity and functional profiles of soil microbiomes is an essential task. Our study provides an overview of cropland microbiome states in light of potential crop-disease-suppressive functions. The large data set allowed us to explore highly functional species sets that may be stably managed in agroecosystems. Furthermore, an analysis of network architecture highlighted species that are potentially used to cause shifts from disease-prevalent states of agroecosystems to disease-suppressive states. By extending the approach of comparative analyses toward broader geographic ranges and diverse agricultural practices, agroecosystem with maximized biological functions will be further explored.
Collapse
Affiliation(s)
- Hiroaki Fujita
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Shigenobu Yoshida
- Institute for Plant Protection, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kenta Suzuki
- Integrated Bioresource Information Division, BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
- Center for Living Systems Information Science (CeLiSIS), Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
29
|
Wang M, Lin M, Liu Q, Li C, Pang X. Fungal, but not bacterial, diversity and network complexity promote network stability during roadside slope restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171007. [PMID: 38401731 DOI: 10.1016/j.scitotenv.2024.171007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
To restore degraded roadside ecosystems, conventional methods such as revegetation and soil amendment are frequently employed. However, our understanding of the long-term effects of these restoration approaches on soil microbial diversity and network complexity across different vegetation types remains poor, which contributes to poor restoration outcomes. In this study, we explored the effects of roadside slope restoration on microbial communities across different vegetation types at varying stages of restoration. We found that restoration time had a more pronounced impact on microbial diversity than specific vegetation type. As restoration progressed, microbial network complexity and fungal diversity increased, but bacterial diversity declined, suggesting that keystone taxa may contribute to network complexity. Interestingly, bacterial network complexity increased concomitant with decreasing network modularity and robustness, which may compromise system stability. Distinct vegetation types were associated with restoration-sensitive microbial communities at different restoration stages. Leguminouse and nitrogen-fixing plants, such as Albiziak alkora, Ginkgo biloba, Rhus chinensis, Rhapis excels, and Rubia cordifolia exhibited such associations after five years of restoration. These keystone taxa included Proteobacteria, Actinobacteria, Chloroflexi, Gemmatimonadota, and Myxococcota. We also found that bacterial alpha diversity was significantly correlated with restoration time, soil pH, moisture, available phosphate, nitrate nitrogen, and plant height, while fungal diversity was primarily shaped by restoration time. Together, our findings suggest that soil properties, environmental factors, vegetation type, and dominant species can be manipulated to guide the trajectory of ecological recovery by regulating the abundance of certain microbial taxa.
Collapse
Affiliation(s)
- Min Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, China; School of Ecology and Environment, Hainan University, China
| | - Mao Lin
- College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Qinghua Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, China
| | - Cheng Li
- School of Ecology and Environment, Hainan University, China
| | - Xueyong Pang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, China.
| |
Collapse
|
30
|
Muwawa EM, Makonde HM, Obieze CC, de Oliveira IG, Jefwa JM, Kahindi JHP, Khasa DP. Diversity and assembly patterns of mangrove rhizosphere mycobiome along the Coast of Gazi Bay and Mida Creek in Kenya. PLoS One 2024; 19:e0298237. [PMID: 38635689 PMCID: PMC11025898 DOI: 10.1371/journal.pone.0298237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/19/2024] [Indexed: 04/20/2024] Open
Abstract
Fungi are among key actors in the biogeochemical processes occurring in mangrove ecosystems. In this study, we investigated the changes of fungal communities in selected mangrove species by exploring differences in diversity, structure and the degree of ecological rearrangement occurring within the rhizospheres of four mangrove species (Sonneratia alba, Rhizophora mucronata, Ceriops tagal and Avicennia marina) at Gazi Bay and Mida Creek in Kenya. Alpha diversity investigation revealed that there were no significant differences in species diversity between the same mangrove species in the different sites. Rather, significant differences were observed in fungal richness for some of the mangrove species. Chemical parameters of the mangrove sediment significantly correlated with fungal alpha diversity and inversely with richness. The fungal community structure was significantly differentiated by mangrove species, geographical location and chemical parameters. Taxonomic analysis revealed that 96% of the amplicon sequence variants belonged to the Phylum Ascomycota, followed by Basidiomycota (3%). Predictive FUNGuild and co-occurrence network analysis revealed that the fungal communities in Gazi Bay were metabolically more diverse compared to those of Mida Creek. Overall, our results demonstrate that anthropogenic activities influenced fungal richness, community assembly and their potential ecological functions in the mangrove ecosystems investigated.
Collapse
Affiliation(s)
- Edith M. Muwawa
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
- Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| | - Huxley M. Makonde
- Department of Pure & Applied Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Chinedu C. Obieze
- Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| | - Isabelle G. de Oliveira
- Laboratory of Mycorrhizal Associations, Department of Microbiology/BIOAGRO, Universidade Federal de Vicosa, Vicosa-MG, Brazil
| | - Joyce M. Jefwa
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | | | - Damase P. Khasa
- Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| |
Collapse
|
31
|
Guidinelle RB, Burak DL, Rangel OJP, Peçanha AL, Passos RR, Rocha LOD, Olivares FL, Mendonça EDS. Impact of historical soil management on the interaction of plant-growth-promoting bacteria with maize (Zea mays L.). Heliyon 2024; 10:e28754. [PMID: 38596071 PMCID: PMC11002591 DOI: 10.1016/j.heliyon.2024.e28754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/03/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024] Open
Abstract
Edaphic factors can modulate the effects of microbial inoculants on crop yield promotion. Given the potential complexity of microbial inoculant responses to diverse soil management practices, we hypothesize that sustainable management of soil and water irrigation may improve soil quality and enhance the effects of plant growth-promoting bacteria (PGPB). Consequently, the primary objective was to assess the effectiveness of microbial inoculants formulated with Herbaspirillum seropedicae (Hs) and Azospirillum brasilense (Ab) on maize growth in soils impacted by different historical conservation management systems. We evaluated two soil management systems, two irrigation conditions, and four treatments: T0 - without bioinoculant and 100% doses of NPK fertilization; T1 - Hs + humic substances and 40% of NPK fertilization; T2 - Ab and 40% of NPK fertilization; T3 - co-inoculation (Hs + Ab) and 40% of NPK fertilization. Using a reduced fertilization dose (40% NPK) associated with microbial inoculants proved efficient in increasing maize shoot dry mass : on average, there was a 16% reduction compared to the treatment with 100% fertilization. In co-inoculation (Hs + Ab), the microbial inoculants showed a mutualistic effect on plant response, higher than isolate ones, especially increasing the nitrogen content in no-tillage systems irrigated by swine wastewater. Under lower nutrient availability and higher biological soil quality, the microbial bioinputs positively influenced root development, instantaneous water use efficiency, stomatal conductance, and nitrogen contents.
Collapse
Affiliation(s)
- Rebyson Bissaco Guidinelle
- Federal University of Espírito Santo, Department of Agronomy, Alto Universitário, s/n, Guararema, 29.500-000, Alegre, ES, Brazil
- Post Graduate Programme in Agronomy, Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, 12 29.500-000, Alegre, ES, Brazil
| | - Diego Lang Burak
- Federal University of Espírito Santo, Department of Agronomy, Alto Universitário, s/n, Guararema, 29.500-000, Alegre, ES, Brazil
| | - Otacilio José Passos Rangel
- Federal Institute of Espírito Santo/IFES, Campus Alegre, BR 482, Km 7, 29500-00, Alegre/Rive, Espírito Santo, Brazil
| | - Anderson Lopes Peçanha
- Federal University of Espírito Santo, Department of Biology, Alto Universitário, s/n, Guararema, 29.500-000, Alegre, ES, Brazil
| | - Renato Ribeiro Passos
- Federal University of Espírito Santo, Department of Agronomy, Alto Universitário, s/n, Guararema, 29.500-000, Alegre, ES, Brazil
| | - Letícia Oliveira da Rocha
- Laboratory of Cell and Tissue Biology and Center for Development of Biological Inputs for Agriculture, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Fábio Lopes Olivares
- Laboratory of Cell and Tissue Biology and Center for Development of Biological Inputs for Agriculture, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Eduardo de Sá Mendonça
- Federal University of Espírito Santo, Department of Agronomy, Alto Universitário, s/n, Guararema, 29.500-000, Alegre, ES, Brazil
| |
Collapse
|
32
|
Batool M, Carvalhais LC, Fu B, Schenk PM. Customized plant microbiome engineering for food security. TRENDS IN PLANT SCIENCE 2024; 29:482-494. [PMID: 37977879 DOI: 10.1016/j.tplants.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Plant microbiomes play a vital role in promoting plant growth and resilience to cope with environmental stresses. Plant microbiome engineering holds significant promise to increase crop yields, but there is uncertainty about how this can best be achieved. We propose a step-by-step approach involving customized direct and indirect methods to condition soils and to match plants and microbiomes. Although three approaches, namely the development of (i) 'plant- and microbe-friendly' soils, (ii) 'microbe-friendly' plants, and (iii) 'plant-friendly' microbiomes, have been successfully tested in isolation, we propose that the combination of all three may lead to a step-change towards higher and more stable crop yields. This review aims to provide knowledge, future directions, and practical guidance to achieve this goal via customized plant microbiome engineering.
Collapse
Affiliation(s)
- Maria Batool
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lilia C Carvalhais
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brendan Fu
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peer M Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, QLD, 4072, Australia; Sustainable Solutions Hub, Global Sustainable Solutions Pty Ltd, Brisbane, QLD 4105, Australia.
| |
Collapse
|
33
|
Du YC, Yuan CS, Song YQ, Yang Y, Zheng QS, Hou Q, Wang D, Wang L. Enhancing soil health and strawberry disease resistance: the impact of calcium cyanamide treatment on soil microbiota and physicochemical properties. Front Microbiol 2024; 15:1366814. [PMID: 38577678 PMCID: PMC10991749 DOI: 10.3389/fmicb.2024.1366814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/23/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Continuous strawberry cropping often causes soil-borne diseases, with 20 calcium cyanamide being an effective soil fumigant, pig manure can often be used as soil organic fertilizer. Its impact on soil microorganisms structure, however, remains unclear. Methods This study investigated the effectiveness of calcium cyanamide and pig manure in treating strawberry soil, specifically against strawberry anthracnose. We examined the physical and chemical properties of the soil and the rhizosphere microbiome and performed a network analysis. Results Results showed that calcium cyanamide treatment significantly reduces the mortality rate of strawberry in seedling stage by reducing pathogen abundance, while increasing actinomycetes and Alphaproteobacteria during the harvest period. This treatment also enhanced bacterial network connectivity, measured by the average connectivity of each Operational Taxonomic Unit (OTU), surpassing other treatments. Moreover, calcium cyanamide notably raised the levels of organic matter, available potassium, and phosphorus in the soil-key factors for strawberry disease resistance and yield. Discussion Overall, applying calcium cyanamide to soil used for continuous strawberry cultivation can effectively decrease anthracnose incidence. It may be by changing soil physical and chemical properties and enhancing bacterial network stability, thereby reducing the copy of anthracnose. This study highlights the dual benefit of calcium cyanamide in both disease control and soil nutrient enhancement, suggesting its potential as a valuable tool in sustainable strawberry farming.
Collapse
Affiliation(s)
- Ying-chun Du
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| | - Can-sheng Yuan
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| | - Yu-qi Song
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| | - Ying Yang
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| | - Qing-song Zheng
- Sanya Research Institute, Nanjing Agricultural University, Sanya, Hainan, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qiong Hou
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| | - Di Wang
- Sanya Research Institute, Nanjing Agricultural University, Sanya, Hainan, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lin Wang
- College of Rural Revitalization, Jiangsu Open University, Nanjing, China
| |
Collapse
|
34
|
Cui X, Yuan J, Yang X, Wei C, Bi Y, Sun Q, Meng J, Han X. Biochar application alters soil metabolites and nitrogen cycle-related microorganisms in a soybean continuous cropping system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170522. [PMID: 38309356 DOI: 10.1016/j.scitotenv.2024.170522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Biochar application is a promising practice to enhance soil fertility. However, it is unclear how field-aged biochar affects the soil metabolites and microbial communities in soybean fields. Here, the rhizosphere soil performance after amending with biochar addition rates at 0 (CK), 20 (B20), 40 (B40), and 60 t ha-1 (B60) was examined via a five-year in-situ field experiment based on a soybean continuous cropping system. Untargeted metabolomics and metagenomics analysis techniques were applied to study the regulatory mechanism of biochar on soybean growth from metabolomics and N cycle microbiology perspectives. We found that the contents of soil total N (TN), available N (Ava N), NH4+-N, and NO3--N were significantly increased with biochar addition amounts by 20.0-65.7 %, 3.6-10.7 %, 29.5-57.1 %, and 24.4-46.7 %, respectively. The B20, B40, and B60 triggered 259 (236 were up-regulated and 23 were down-regulated), 236 (220 were up-regulated and 16 were down-regulated), and 299 (264 were up-regulated and 35 were down-regulated) differential metabolites, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and topology analysis demonstrated that differential metabolites were highly enriched in seven metabolic pathways such as Oxidative phosphorylation and Benzoxazinoid biosynthesis. Moreover, ten differential metabolites were up-regulated in all three treatments with biochar. Biochar treatments decreased the Nitrospira abundance in soybean rhizosphere soil while increasing Bradyrhizobium abundance significantly in B60. Mantel test revealed that as the biochar addition rate grows, the correlation between Nitrospira and soil properties other than NO3--N became stronger. In conclusion, the co-application of biochar with fertilizers is a feasible and effective way to improve soil N supply, even though biochar has undergone field aging. This work offers new insights into the variations in soil metabolites and microbial communities associated with N metabolism processes under biochar addition in soybean continuous cropping soils.
Collapse
Affiliation(s)
- Xin Cui
- Key Laboratory of Biochar and Soil Improvement of Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Jun Yuan
- Liaodong University, Dandong 118001, China
| | - Xu Yang
- Key Laboratory of Biochar and Soil Improvement of Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China.
| | - Chaoqun Wei
- Key Laboratory of Biochar and Soil Improvement of Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Yinghui Bi
- Key Laboratory of Biochar and Soil Improvement of Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiang Sun
- Key Laboratory of Biochar and Soil Improvement of Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Jun Meng
- Key Laboratory of Biochar and Soil Improvement of Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaori Han
- Key Laboratory of Biochar and Soil Improvement of Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
35
|
Jalloh AA, Khamis FM, Yusuf AA, Subramanian S, Mutyambai DM. Long-term push-pull cropping system shifts soil and maize-root microbiome diversity paving way to resilient farming system. BMC Microbiol 2024; 24:92. [PMID: 38500045 PMCID: PMC10946131 DOI: 10.1186/s12866-024-03238-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The soil biota consists of a complex assembly of microbial communities and other organisms that vary significantly across farming systems, impacting soil health and plant productivity. Despite its importance, there has been limited exploration of how different cropping systems influence soil and plant root microbiomes. In this study, we investigated soil physicochemical properties, along with soil and maize-root microbiomes, in an agroecological cereal-legume companion cropping system known as push-pull technology (PPT). This system has been used in agriculture for over two decades for insect-pest management, soil health improvement, and weed control in sub-Saharan Africa. We compared the results with those obtained from maize-monoculture (Mono) cropping system. RESULTS The PPT cropping system changed the composition and diversity of soil and maize-root microbial communities, and led to notable improvements in soil physicochemical characteristics compared to that of the Mono cropping system. Distinct bacterial and fungal genera played a crucial role in influencing the variation in microbial diversity within these cropping systems. The relative abundance of fungal genera Trichoderma, Mortierella, and Bionectria and bacterial genera Streptomyces, RB41, and Nitrospira were more enriched in PPT. These microbial communities are associated with essential ecosystem services such as plant protection, decomposition, carbon utilization, bioinsecticides production, nitrogen fixation, nematode suppression, phytohormone production, and bioremediation. Conversely, pathogenic associated bacterial genus including Bryobacter were more enriched in Mono-root. Additionally, the Mono system exhibited a high relative abundance of fungal genera such as Gibberella, Neocosmospora, and Aspergillus, which are linked to plant diseases and food contamination. Significant differences were observed in the relative abundance of the inferred metabiome functional protein pathways including syringate degradation, L-methionine biosynthesis I, and inosine 5'-phosphate degradation. CONCLUSION Push-pull cropping system positively influences soil and maize-root microbiomes and enhances soil physicochemical properties. This highlights its potential for agricultural and environmental sustainability. These findings contribute to our understanding of the diverse ecosystem services offered by this cropping system where it is practiced regarding the system's resilience and functional redundancy. Future research should focus on whether PPT affects the soil and maize-root microbial communities through the release of plant metabolites from the intercrop root exudates or through the alteration of the soil's nutritional status, which affects microbial enzymatic activities.
Collapse
Affiliation(s)
- Abdul A Jalloh
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Private Bag x20 Hatfield, Pretoria, South Africa
| | - Fathiya Mbarak Khamis
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Abdullahi Ahmed Yusuf
- Department of Zoology and Entomology, University of Pretoria, Private Bag x20 Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag x20 Hatfield, Pretoria, South Africa
| | - Sevgan Subramanian
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Daniel Munyao Mutyambai
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
- Department of Life Sciences, South Eastern Kenya University, P.O. Box 170-90200, Kitui, Kenya.
| |
Collapse
|
36
|
Ren XY, Zheng YL, Liu ZL, Duan GL, Zhu D, Ding LJ. Exploring ecological effects of arsenic and cadmium combined exposure on cropland soil: from multilevel organisms to soil functioning by multi-omics coupled with high-throughput quantitative PCR. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133567. [PMID: 38271874 DOI: 10.1016/j.jhazmat.2024.133567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Arsenic (As) and cadmium (Cd) pose potential ecological threats to cropland soils; however, few studies have investigated their combined effects on multilevel organisms and soil functioning. Here, we used collembolans and soil microbiota as test organisms to examine their responses to soil As and Cd co-contamination at the gene, individual, and community levels, respectively, and further uncovered ecological relationships between pollutants, multilevel organisms, and soil functioning. At the gene level, collembolan transcriptome revealed that elevated As concentrations stimulated As-detoxifying genes AS3MT and GST, whereas the concurrent Cd restrained GST gene expression. At the individual level, collembolan reproduction was sensitive to pollutants while collembolan survival wasn't. At the community level, significant but inconsistent correlations were observed between the biodiversity of different soil keystone microbial clusters and soil As levels. Moreover, soil functioning related to nutrient (e.g., carbon, nitrogen, phosphorus, and sulfur) cycles was inhibited under As and Cd co-exposure only through the mediation of plant pathogens. Overall, these findings suggested multilevel bioindicators (i.e., AS3MT gene expression in collembolans, collembolan reproduction, and biodiversity of soil keystone microbial clusters) in cropland soils co-contaminated with As and Cd, thus improving the understanding of the ecotoxicological impact of heavy metal co-contamination on soil ecosystems.
Collapse
Affiliation(s)
- Xin-Yue Ren
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yu-Ling Zheng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zhe-Lun Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Gui-Lan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Long-Jun Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
37
|
Matteoli FP, Silva AMM, de Araújo VLVP, Feiler HP, Cardoso EJBN. Organic farming promotes the abundance of fungi keystone taxa in bacteria-fungi interkingdom networks. World J Microbiol Biotechnol 2024; 40:119. [PMID: 38429532 DOI: 10.1007/s11274-024-03926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
Soil bacteria-fungi interactions are essential in the biogeochemical cycles of several nutrients, making these microbes major players in agroecosystems. While the impact of the farming system on microbial community composition has been extensively reported in the literature, whether sustainable farming approaches can promote associations between bacteria and fungi is still unclear. To study this, we employed 16S, ITS, and 18S DNA sequencing to uncover how microbial interactions were affected by conventional and organic farming systems on maize crops. The Bray-Curtis index revealed that bacterial, fungal, and arbuscular mycorrhizal fungi communities were significantly different between the two farming systems. Several taxa known to thrive in healthy soils, such as Nitrosophaerales, Orbiliales, and Glomus were more abundant in the organic farming system. Constrained ordination revealed that the organic farming system microbial community was significantly correlated with the β-glucosidase activity, whereas the conventional farming system microbial community significantly correlated with soil pH. Both conventional and organic co-occurrence interkingdom networks exhibited a parallel node count, however, the former had a higher number of edges, thus being denser than the latter. Despite the similar amount of fungal nodes in the co-occurrence networks, the organic farming system co-occurrence network exhibited more than 3-fold the proportion of fungal taxa as keystone nodes than the conventional co-occurrence network. The genera Bionectria, Cercophora, Geastrum, Penicillium, Preussia, Metarhizium, Myceliophthora, and Rhizophlyctis were among the fungal keystone nodes of the organic farming system network. Altogether, our results uncover that beyond differences in microbial community composition between the two farming systems, fungal keystone nodes are far more relevant in the organic farming system, thus suggesting that bacteria-fungi interactions are more frequent in organic farming systems, promoting a more functional microbial community.
Collapse
Affiliation(s)
- Filipe Pereira Matteoli
- Laboratory of Microbial Bioinformatics, Department of Biological Sciences, Faculty of Sciences, São Paulo State University, Bauru, Brazil.
| | - Antonio M M Silva
- Department of Soil Sciences, University of São Paulo, "Luiz de Queiroz" College of Agriculture, Piracicaba, Brazil
| | - Victor L V P de Araújo
- Department of Soil Sciences, University of São Paulo, "Luiz de Queiroz" College of Agriculture, Piracicaba, Brazil
| | - Henrique P Feiler
- Department of Soil Sciences, University of São Paulo, "Luiz de Queiroz" College of Agriculture, Piracicaba, Brazil
| | - Elke J B N Cardoso
- Department of Soil Sciences, University of São Paulo, "Luiz de Queiroz" College of Agriculture, Piracicaba, Brazil
| |
Collapse
|
38
|
Li Z, Feng C, Lei J, He X, Wang Q, Zhao Y, Qian Y, Zhan X, Shen Z. Farmland Microhabitat Mediated by a Residual Microplastic Film: Microbial Communities and Function. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3654-3664. [PMID: 38318812 DOI: 10.1021/acs.est.3c07717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
How the plastisphere mediated by the residual microplastic film in farmlands affects microhabitat systems is unclear. Here, microbial structure, assembly, and biogeochemical cycling in the plastisphere and soil in 33 typical farmland sites were analyzed by amplicon sequencing of 16S rRNA genes and ITS and metagenome analysis. The results indicated that residual microplastic film was colonized by microbes, forming a unique niche called the plastisphere. Notable differences in the microbial community structure and function were observed between soil and plastisphere. Residual microplastic film altered the microbial symbiosis and assembly processes. Stochastic processes significantly dominated the assembly of the bacterial community in the plastisphere and soil but only in the plastisphere for the fungal community. Deterministic processes significantly dominated the assembly of fungal communities only in soil. Moreover, the plastisphere mediated by the residual microplastic film acted as a preferred vector for pathogens and microorganisms associated with plastic degradation and the nitrogen and sulfur cycle. The abundance of genes associated with denitrification and sulfate reduction activity in the plastisphere was pronouncedly higher than that of soil, which increase the potential risk of nitrogen and sulfur loss. The results will offer a scientific understanding of the harm caused by the residual microplastic film in farmlands.
Collapse
Affiliation(s)
- Zhenling Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P. R. China
- The Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P. R. China
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, P. R. China
| | - Jinming Lei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiaokang He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, P. R. China
| | - Qixuan Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, P. R. China
| | - Yue Zhao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, P. R. China
| | - Yibin Qian
- National Plot Zone for Ecological Conservation (Hainan) Research Center, Hainan Research Academy of Environmental Sciences, Haikou 571127, P. R. China
| | - Xinmin Zhan
- Civil Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Zhenyao Shen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P. R. China
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
39
|
Zhang C, de Pasquale S, Hartman K, Stanley CE, Berendsen RL, van der Heijden MGA. The microbial contribution to litter decomposition and plant growth. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13205. [PMID: 38018445 PMCID: PMC10866077 DOI: 10.1111/1758-2229.13205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/06/2023] [Indexed: 11/30/2023]
Abstract
Soil and plant roots are colonized by highly complex and diverse communities of microbes. It has been proposed that bacteria and fungi have synergistic effects on litter decomposition, but experimental evidence supporting this claim is weak. In this study, we manipulated the composition of two microbial kingdoms (Bacteria and Fungi) in experimental microcosms. In microcosms that were inoculated with fungi, litter loss was 47% higher than in microcosms that were not inoculated or only inoculated with bacteria. Combined inoculation with both bacteria and fungi did not significantly enhance decomposition compared with the fungi-only treatments, and, as such, we found no evidence for complementary effects using our experimental setup. Inoculation with fungi also had a positive impact on plant growth after 4 and 8 weeks (480% and 710% growth stimulation, respectively). After 16 weeks, plant biomass was highest in microcosms where both bacteria and fungi were present pointing to fungal-bacterial complementarity in stimulating plant growth. Overall, this study suggests that fungi are the main decomposers of plant litter and that the inoculated fungi contribute to plant growth in our experimental system.
Collapse
Affiliation(s)
- Changfeng Zhang
- Plant‐Microbe Interactions, Department of Biology, Faculty of ScienceUtrecht UniversityUtrechtthe Netherlands
- Plant Soil InteractionsDivision Agroecology and Environment, AgroscopeZürichSwitzerland
| | - Simone de Pasquale
- Plant Soil InteractionsDivision Agroecology and Environment, AgroscopeZürichSwitzerland
| | - Kyle Hartman
- Plant Soil InteractionsDivision Agroecology and Environment, AgroscopeZürichSwitzerland
| | - Claire E. Stanley
- Plant Soil InteractionsDivision Agroecology and Environment, AgroscopeZürichSwitzerland
| | - Roeland L. Berendsen
- Plant‐Microbe Interactions, Department of Biology, Faculty of ScienceUtrecht UniversityUtrechtthe Netherlands
| | - Marcel G. A. van der Heijden
- Plant‐Microbe Interactions, Department of Biology, Faculty of ScienceUtrecht UniversityUtrechtthe Netherlands
- Plant Soil InteractionsDivision Agroecology and Environment, AgroscopeZürichSwitzerland
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
40
|
Zhang C, van der Heijden MGA, Dodds BK, Nguyen TB, Spooren J, Valzano-Held A, Cosme M, Berendsen RL. A tripartite bacterial-fungal-plant symbiosis in the mycorrhiza-shaped microbiome drives plant growth and mycorrhization. MICROBIOME 2024; 12:13. [PMID: 38243337 PMCID: PMC10799531 DOI: 10.1186/s40168-023-01726-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/18/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Plant microbiomes play crucial roles in nutrient cycling and plant growth, and are shaped by a complex interplay between plants, microbes, and the environment. The role of bacteria as mediators of the 400-million-year-old partnership between the majority of land plants and, arbuscular mycorrhizal (AM) fungi is still poorly understood. Here, we test whether AM hyphae-associated bacteria influence the success of the AM symbiosis. RESULTS Using partitioned microcosms containing field soil, we discovered that AM hyphae and roots selectively assemble their own microbiome from the surrounding soil. In two independent experiments, we identified several bacterial genera, including Devosia, that are consistently enriched on AM hyphae. Subsequently, we isolated 144 pure bacterial isolates from a mycorrhiza-rich sample of extraradical hyphae and isolated Devosia sp. ZB163 as root and hyphal colonizer. We show that this AM-associated bacterium synergistically acts with mycorrhiza on the plant root to strongly promote plant growth, nitrogen uptake, and mycorrhization. CONCLUSIONS Our results highlight that AM fungi do not function in isolation and that the plant-mycorrhiza symbiont can recruit beneficial bacteria that support the symbiosis. Video Abstract.
Collapse
Affiliation(s)
- Changfeng Zhang
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
- Plant Soil Interactions, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
| | - Marcel G A van der Heijden
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
- Plant Soil Interactions, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Bethany K Dodds
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Thi Bich Nguyen
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Jelle Spooren
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Alain Valzano-Held
- Plant Soil Interactions, Division Agroecology and Environment, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
| | - Marco Cosme
- Mycology, Earth and Life Institute, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
- Plants and Ecosystems, Biology Department, University of Antwerp, Antwerp, Belgium
| | - Roeland L Berendsen
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| |
Collapse
|
41
|
Chen CN, Liao CS, Tzou YM, Lin YT, Chang EH, Jien SH. Soil quality and microbial communities in subtropical slope lands under different agricultural management practices. Front Microbiol 2024; 14:1242217. [PMID: 38260898 PMCID: PMC10800392 DOI: 10.3389/fmicb.2023.1242217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Land degradation is a major threat to ecosystem. Long-term conventional farming practices can lead to severe soil degradation and a decline in crop productivity, which are challenging for both local and global communities. This study was conducted to clarify the responses on soil physicochemical properties and microbial communities to changes in farming practices. Slope land orchards under three agricultural management practices-conventional farming (CF), organic farming (OF), and ecofriendly farming (EFF)-were included in this study. We found that soil carbon stock increased by 3.6 and 5.1 times in surface soils (0-30 cm) under EFF and OF treatments, respectively. EFF and OF significantly increased the contents of total nitrogen by 0.33-0.46 g/kg, ammonia-N by 3.0-7.3 g/kg, and microbial biomass carbon by 0.56-1.04 g/kg but reduced those of pH by 0.6 units at least, and available phosphorous by 104-114 mg/kg. The application of phosphorous-containing herbicides and chemical fertilizers might increase the contents of phosphorous and nitrate in CF soil. High abundances of Acidobacteria and Actinobacteria were observed in EFF and OF soils, likely because of phosphorous deficiency in these soils. The abundance of fungi in OF soil indicated that plants' demand for available soil phosphorous induced the fungus-mediated mineralization of organic phosphorous. High abundances of Gammaproteobacteria, Planctomycetes, Firmicutes, and Nitrospirae were observed in CF soil, possibly because of the regular use of herbicides containing phosphorous and chemical fertilizers containing high total nitrogen contents.
Collapse
Affiliation(s)
- Ching-Nuo Chen
- Department of Civil Engineering, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Chien-Sen Liao
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Min Tzou
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Te Lin
- Department of Soil and Water Conservation, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Ed-Haun Chang
- MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Shih-Hao Jien
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Soil and Water Conservation, National Pingtung University of Science and Technology, Neipu, Taiwan
| |
Collapse
|
42
|
Chu K, Liu Y, Hua Z, Lu Y, Ye F. Spatio-temporal distribution and dynamics of antibiotic resistance genes in a water-diversion lake, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119232. [PMID: 37832298 DOI: 10.1016/j.jenvman.2023.119232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/04/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
The distribution and dynamics of antibiotic resistance genes (ARGs) in water-diversion lakes are poorly understood. In this study, two comparative in situ investigations of ARG profiles targeting water diversion (DP) and non-diversion periods (NDP) were conducted in Luoma Lake, a vital transfer node for the eastern route of the South-to-North Water Diversion Project in China. The results demonstrated significant spatiotemporal variations in ARG contamination and notable differences in the co-occurrence patterns of ARGs and bacterial communities between DP and NDP. Correlations among ARGs with the 16 S rRNA, and mobile genetic elements indicate that horizontal gene transfer (HGT) and vertical gene transfer (VGT) in NDP, but only HGT in DP, were the primary mechanisms of ARG proliferation and spread, implying that water diversion could be an essential control of the transfer pattern of ARGs in a lake environment. The null model analysis indicated that stochastic processes, with predominant driver of ecological drift in the lake mainly drove the assembly of ARGs. Partial least squares structural equation modeling was developed to analyze the causal effects of the factors in shaping ARG dynamics and identify the major driving forces in the DP and NDP.
Collapse
Affiliation(s)
- Kejian Chu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China
| | - Yuanyuan Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China.
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China
| | - Ying Lu
- Institute for Smart City of Chongqing University in Liyang, Liyang, 213300, PR China
| | - Fuzhu Ye
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
43
|
Andargie YE, Lee G, Jeong M, Tagele SB, Shin JH. Deciphering key factors in pathogen-suppressive microbiome assembly in the rhizosphere. FRONTIERS IN PLANT SCIENCE 2023; 14:1301698. [PMID: 38116158 PMCID: PMC10728675 DOI: 10.3389/fpls.2023.1301698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
In a plant-microbe symbiosis, the host plant plays a key role in promoting the association of beneficial microbes and maintaining microbiome homeostasis through microbe-associated molecular patterns (MAMPs). The associated microbes provide an additional layer of protection for plant immunity and help in nutrient acquisition. Despite identical MAMPs in pathogens and commensals, the plant distinguishes between them and promotes the enrichment of beneficial ones while defending against the pathogens. The rhizosphere is a narrow zone of soil surrounding living plant roots. Hence, various biotic and abiotic factors are involved in shaping the rhizosphere microbiome responsible for pathogen suppression. Efforts have been devoted to modifying the composition and structure of the rhizosphere microbiome. Nevertheless, systemic manipulation of the rhizosphere microbiome has been challenging, and predicting the resultant microbiome structure after an introduced change is difficult. This is due to the involvement of various factors that determine microbiome assembly and result in an increased complexity of microbial networks. Thus, a comprehensive analysis of critical factors that influence microbiome assembly in the rhizosphere will enable scientists to design intervention techniques to reshape the rhizosphere microbiome structure and functions systematically. In this review, we give highlights on fundamental concepts in soil suppressiveness and concisely explore studies on how plants monitor microbiome assembly and homeostasis. We then emphasize key factors that govern pathogen-suppressive microbiome assembly. We discuss how pathogen infection enhances plant immunity by employing a cry-for-help strategy and examine how domestication wipes out defensive genes in plants experiencing domestication syndrome. Additionally, we provide insights into how nutrient availability and pH determine pathogen suppression in the rhizosphere. We finally highlight up-to-date endeavors in rhizosphere microbiome manipulation to gain valuable insights into potential strategies by which microbiome structure could be reshaped to promote pathogen-suppressive soil development.
Collapse
Affiliation(s)
- Yohannes Ebabuye Andargie
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Plant Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Setu Bazie Tagele
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
- Next Generation Sequencing (NGS) Core Facility, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
44
|
Zhou ZC, Shuai XY, Lin ZJ, Zheng J, Chen H. Comprehensive profiling and risk assessment of antibiotic resistance genes in a drinking water watershed by integrated analysis of air-water-soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119092. [PMID: 37742410 DOI: 10.1016/j.jenvman.2023.119092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/04/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023]
Abstract
The prevalence of antibiotic resistance genes (ARGs) in diverse habitats threatens public health. Watersheds represent critical freshwater ecosystems that interact with both the soil and atmosphere. However, a holistic understanding of ARGs distribution across these environmental media is currently inadequate. We profiled ARGs and bacterial communities in air-water-soil in the same watershed area during four seasons using high-throughput qPCR and 16S rRNA gene sequencing. Our findings demonstrated that aminoglycoside resistance genes (58.5%) were dominant in water, and multidrug resistance genes (55.2% and 54.2%) were dominant in soil and air. Five ARGs and nineteen bacterial genera were consistently detected in all samples, were named as shared genes or bacteria. Co-occurrence Network analysis revealed the co-occurrence module of resistance genes, mobile genetic elements (MGEs), and potential bacterial hosts, indicating that shared genes and bacteria may persist and co-spread across different environmental media. The risk assessment framework, based on ARGs' abundance, detection rate, and mobility, identified 33 high-risk ARGs. This is essential to evaluate the health risks of ARGs and to develop strategies to limit the threat of antibiotic resistance. Our study offers new insights into the risks associated with ARGs in the environment and suggests that ARGs may depend on specific bacterial cohabitants that co-exist with MGEs to facilitate their spread across environmental interfaces.
Collapse
Affiliation(s)
- Zhen-Chao Zhou
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Yi Shuai
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ze-Jun Lin
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ji Zheng
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo, 315012, China
| | - Hong Chen
- Institute of Environmental Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
45
|
Cheng M, Song J, Li W, Zhao Y, Zhang G, Chen Y, Gao H. Potentilla parvifolia strongly influenced soil microbial community and environmental effect along an altitudinal gradient in central Qilian Mountains in western China. Ecol Evol 2023; 13:e10685. [PMID: 38020704 PMCID: PMC10645544 DOI: 10.1002/ece3.10685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The Qilian Mountains (QLMs) form an important ecological security barrier in western China and a priority area for biodiversity conservation. Potentilla parvifolia is a widespread species in the mid-high altitudes of the QLMs and has continuously migrated to higher altitudes in recent years. Understanding the effects of P. parvifolia on microbial community characteristics is important for exploring future changes in soil biogeochemical processes in the QLMs. This study found that P. parvifolia has profound effects on the community structure and ecological functions of soil microorganisms. The stability and complexity of the root zone microbial co-occurrence network were significantly higher than those of bare soils. There was a distinct altitudinal gradient in the effect of P. parvifolia on soil microbial community characteristics. At an elevation of 3204 m, P. parvifolia promoted the accumulation of carbon, nitrogen, and phosphorus and increased sucrase activity and soil C/N while significantly improving the community richness index of fungi (p < .05) compared with that of bacteria and the relative abundance of Ascomycota. The alpha diversity of fungi in the root zone soil of P. parvifolia was also significantly increased at 3550 m altitude. Furthermore, the community similarity distance matrix of fungi showed an evident separation at 3204 m. However, at an altitude of 3750 m, P. parvifolia mainly affected the bacterial community. Potentilla parvifolia increased the bacterial community richness. This is in agreement with the findings based on the functional prediction that P. parvifolia favors the growth and enrichment of denitrifying communities at 3550 and 3750 m. The results provide a scientific basis for predicting the evolutionary trends of the effects of P. parvifolia on soil microbial communities and functions and have important implications for ecological governance in the QLMs.
Collapse
Affiliation(s)
- Miaomiao Cheng
- College of Life Sciences and Engineering, Hexi University, Key Laboratory of the Hexi Corridor Resources Utilization of GansuZhangyeChina
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Jinge Song
- School of StomatologyLanzhou UniversityLanzhouChina
| | - Weikun Li
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Yiming Zhao
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and EngineeringLanzhouChina
| | - Yong Chen
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Haining Gao
- College of Life Sciences and Engineering, Hexi University, Key Laboratory of the Hexi Corridor Resources Utilization of GansuZhangyeChina
| |
Collapse
|
46
|
Chen S, Wang Y, Gao J, Chen X, Qi J, Peng Z, Chen B, Pan H, Liang C, Liu J, Wang Y, Wei G, Jiao S. Agricultural tillage practice and rhizosphere selection interactively drive the improvement of soybean plant biomass. PLANT, CELL & ENVIRONMENT 2023; 46:3542-3557. [PMID: 37564021 DOI: 10.1111/pce.14694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Rhizosphere microbes play key roles in plant growth and productivity in agricultural systems. One of the critical issues is revealing the interaction of agricultural management (M) and rhizosphere selection effects (R) on soil microbial communities, root exudates and plant productivity. Through a field management experiment, we found that bacteria were more sensitive to the M × R interaction effect than fungi, and the positive effect of rhizosphere bacterial diversity on plant biomass existed in the bacterial three two-tillage system. In addition, inoculation experiments demonstrated that the nitrogen cycle-related isolate Stenotrophomonas could promote plant growth and alter the activities of extracellular enzymes N-acetyl- d-glucosaminidase and leucine aminopeptidase in rhizosphere soil. Microbe-metabolites network analysis revealed that hubnodes Burkholderia-Caballeronia-Paraburkholderia and Pseudomonas were recruited by specific root metabolites under the M × R interaction effect, and the inoculation of 10 rhizosphere-matched isolates further proved that these microbes could promote the growth of soybean seedlings. Kyoto Encyclopaedia of Genes and Genomes pathway analysis indicated that the growth-promoting mechanisms of these beneficial genera were closely related to metabolic pathways such as amino acid metabolism, melatonin biosynthesis, aerobactin biosynthesis and so on. This study provides field observation and experimental evidence to reveal the close relationship between beneficial rhizosphere microbes and plant productivity under the M × R interaction effect.
Collapse
Affiliation(s)
- Shi Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiamin Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xingyu Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiejun Qi
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Ziheng Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Beibei Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haibo Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Chunling Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jiai Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yihe Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
47
|
Yu T, Nie J, Zang H, Zeng Z, Yang Y. Peanut-based Rotation Stabilized Diazotrophic Communities and Increased Subsequent Wheat Yield. MICROBIAL ECOLOGY 2023; 86:2447-2460. [PMID: 37296336 DOI: 10.1007/s00248-023-02254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
The introduction of legumes into rotations can improve nitrogen use efficiency and crop yield; however, its microbial mechanism involved remains unclear. This study aimed to explore the temporal impact of peanut introduction on microorganisms related to nitrogen metabolism in rotation systems. In this study, the dynamics of diazotrophic communities in two crop seasons and wheat yields of two rotation systems: winter wheat - summer maize (WM) and spring peanut → winter wheat - summer maize (PWM) in the North China Plain were investigated. Our results showed that peanut introduction increased wheat yield and biomass by 11.6% (p < 0.05) and 8.9%, respectively. Lower Chao1 and Shannon indexes of the diazotrophic communities were detected in soils that sampling in June compared with those sampling in September, although no difference was found between WM and PWM. Principal co-ordinates analysis (PCoA) showed that rotation system significantly changed the diazotrophic community structures (PERMANOVA; p < 0.05). Compared with WM, the genera of Azotobacter, Skermanella, Azohydromonas, Rhodomicrobium, Azospirillum, Unclassified_f_Opitutaceae, and Unclassified_f_Rhodospirillaceae were significantly enriched (p < 0.05) in PWM. Furthermore, rotation system and sampling time significantly influenced soil properties, which significantly correlated with the top 15 genera in relative abundance. Partial least squares path modeling (PLS-PM) analysis further showed that the diazotrophic community diversity (alpha- and beta-diversity) and soil properties (pH, SOC and TN) significantly affected wheat yield. In conclusion, legume inclusion has the potential to stabilize diazotrophic community structure at the temporal scales and increase subsequent crop yield.
Collapse
Affiliation(s)
- Taobing Yu
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Jiangwen Nie
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Huadong Zang
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Zhaohai Zeng
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yadong Yang
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
48
|
Lu M, Luo X, Jiao JJ, Li H, Kuang X, Wang X, Feng Y, Zheng C. Uncovering the processes of microbial community assembly in the near-surface sediments of a climate-sensitive glacier-fed lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118714. [PMID: 37542806 DOI: 10.1016/j.jenvman.2023.118714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/09/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
Glacier-fed lakes are characterized by cold temperatures, high altitudes, and nutrient-poor conditions. Despite these challenging conditions, near-surface sediments of glacier-fed lakes harbor rich microbial communities that are critical for ecosystem functioning and serve as a bridge between aquatic ecology and the deep subsurface biosphere. However, there is limited knowledge regarding the microbial communities and their assembly processes in these sediments, which are highly vulnerable to climate change. To fill this knowledge gap, this study systematically analyzed environmental variables, microbial communities, diversity, co-occurrence relationships, and community assembly processes in the near-surface sediments of a glacier-fed lake in the Tibetan Plateau. The results revealed distinct vertical gradients in microbial diversity and subcommunities, highlighting the significant influence of selection processes and adaptive abilities on microbial communities. Specifically, specialists played a crucial role within the overall microbial communities. Microbial assembly was primarily driven by homogeneous selection, but its influence declined with increasing depth. In contrast, homogenizing dispersal showed an opposite pattern, and the bottom layer exhibited heterogeneous selection and undominated processes. These patterns of microbial assembly were primarily driven by environmental gradients, with significant contributions from processes associated to ammonium and organic matter deposition, as well as chemical precipitation in response to a warming climate. This study enhances our understanding of the microbial communities and assembly processes in the near-surface sediments of glacier-fed lakes and sheds light on geo-microbiological processes in climate-sensitive lacustrine sediments.
Collapse
Affiliation(s)
- Meiqing Lu
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Luo
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Jiu Jimmy Jiao
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China.
| | - Hailong Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xingxing Kuang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xuejing Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuqing Feng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chunmiao Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
49
|
Zhang Y, Zhao Q, Uroz S, Gao T, Li J, He F, Rosazlina R, Martin F, Xu L. The cultivation regimes of Morchella sextelata trigger shifts in the community assemblage and ecological traits of soil bacteria. Front Microbiol 2023; 14:1257905. [PMID: 37808313 PMCID: PMC10552182 DOI: 10.3389/fmicb.2023.1257905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The successful large-scale cultivation of morel mushrooms (Morchella sextelata) requires a comprehensive understanding of the soil bacterial communities associated with morel-farming beds, as the interactions between fungi and bacteria play a crucial role in shaping the soil microbiome. In this study, we investigated the temporal distribution and ecological characteristics of soil bacteria associated with morel fruiting bodies at different stages, specifically the conidial and primordial stages, under two cropping regimes, non-continuous cropping (NCC) and continuous cropping (CC). Our findings revealed a significant reduction in the yield of morel primordia during the third year following 2 years of CC (0.29 ± 0.25 primordia/grid), in comparison to the NCC regime (12.39 ± 6.09 primordia/grid). Furthermore, inoculation with morel mycelia had a notable impact on soil bacterial diversity, decreasing it in the NCC regime and increasing the number of generalist bacterial members in the CC regime. The latter regime also led to the accumulation of nutrients in the soil beds, resulting in a shift from a stochastic to a deterministic process in the composition of the bacterial community, which differed from the NCC regime. Additionally, mycelial inoculation had a positive effect on the abundance of potential copiotrophic/denitrifying and N-fixing bacteria while decreasing the abundance of oligotrophic/nitrifying bacteria. Interestingly, this effect was more pronounced in the NCC regime than in the CC regime. These results suggest that the increase in potential copiotrophic/denitrifying and N-fixing bacteria facilitated the decomposition of nutrients in exogenous nutrient bags by morel mushrooms, thereby maintaining nitrogen balance in the soil. Overall, our study provides valuable insights into the interactions between morel mycelia and the associated soil bacteriome as well as the influence of different cultivation regimes on these interactions. These findings contribute to our understanding of the complex dynamics of the soil microbiome and can inform strategies for optimizing morel mushroom cultivation.
Collapse
Affiliation(s)
- Yan Zhang
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Xi'an Key Laboratory of Plant Stress Physiology and Ecological Restoration Technology, Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, School of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, China
| | - Qi Zhao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Stéphane Uroz
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France
| | - Tianpeng Gao
- Xi'an Key Laboratory of Plant Stress Physiology and Ecological Restoration Technology, Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, School of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, China
- The Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Lanzhou City University, Lanzhou, China
| | - Jing Li
- Xi'an Key Laboratory of Plant Stress Physiology and Ecological Restoration Technology, Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, School of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, China
| | - Fengqin He
- Xi'an Key Laboratory of Plant Stress Physiology and Ecological Restoration Technology, Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, School of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, China
| | - Rusly Rosazlina
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Francis Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France
| | - Lingling Xu
- Xi'an Key Laboratory of Plant Stress Physiology and Ecological Restoration Technology, Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, School of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, China
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France
| |
Collapse
|
50
|
Liu H, Li F, Tang H, Chen B, Geng Y, Chen D, Ouyang P, Li L, Huang X. Eucommia ulmoides Oliver repairs the disorder of intestinal microflora caused by high starch in Micropterus salmoides and improves resistance to pathogens. Front Microbiol 2023; 14:1223723. [PMID: 37808277 PMCID: PMC10552156 DOI: 10.3389/fmicb.2023.1223723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Eucommia ulmoides Oliver (EuO) is a natural medicine that can improve the composition of intestinal flora in fish, but more experiments and data are needed to support whether it can effectively improve the changes of intestinal flora and intestinal damage caused by high starch. This study examined the changes in intestinal structure as well as intestinal flora before and after the addition of EuO to high-starch diets and analyzed the effects of such changes on immune and digestive functions. The results showed that EuO reduces mortality during Nocardia seriolae attack and can reduce starch-induced intestinal inflammation. Eucommia ulmoides Oliver supplementation was able to alter the changes of intestinal flora in fatty acid degradation, bacterial chemotaxis, porphyrin metabolism and flagella assembly caused by high starch. By analyzing the abundance and correlation of bacterial communities, three bacterial communities that were significantly related to the intervention effect of EuO were screened. Further analysis revealed that EuO supplementation reduced the increase in abundance of Limnochordaceae, Nitrolancea, Lysinibacillus, and Hydrogenispora induced by high starch, which were negatively correlated with levels of the immunoreactive substance LZM in fish. This study reveals the regulatory effects of EuO on the intestinal flora of Micropterus salmoides fed on high starch diets, and provides a theoretical basis for reducing starch damage to fish in production.
Collapse
Affiliation(s)
- Hongli Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fulong Li
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hong Tang
- Fisheries Research Institute, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, China
| | - Baipeng Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liangyu Li
- Fisheries Research Institute, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|