1
|
Yao H, Cheng Y, Kong Q, Wang X, Rong Z, Quan Y, You X, Zheng H, Li Y. Variation in microbial communities and network ecological clusters driven by soil organic carbon in an inshore saline soil amended with hydrochar in Yellow River Delta, China. ENVIRONMENTAL RESEARCH 2025; 264:120369. [PMID: 39549908 DOI: 10.1016/j.envres.2024.120369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Char materials (e.g., hydrochar) can enhance carbon sequestration, improve soil quality and modulate soil microbial communities to recuperate soil health. However, little is known about the soil organic carbon (SOC) content, as well as the microbial communities and co-occurrence networks in response to hydrochar amendment in an inshore saline soil. Here, the effect of Sesbania cannabina (a halophyte) straw derived hydrochar (SHC) amendment on SOC and labile organic carbon (LOC) fractions and the potential associations among SOC content change, soil C-cycling enzyme activities and microbial communities were illustrated using a pot experiment. SHC effectively improved the contents of SOC and LOC, particularly particulate organic carbon (POC), and stimulated the activities of C-cycling enzymes. Furthermore, SHC induced shift in microbial community compositions and co-occurrence networks, result in decrease in relative abundance of Actinobacteriota and its corresponding ecological cluster, which may favor SOC accumulation. Functional annotation of prokaryotic taxa (FAPROTAX) analysis also revealed a decrease in microbial ecological function related to carbon degradation. These findings provided a deeper insight about the hydrochar-induced SOC enhancement and suggested an efficient approach to improve C sequestration and improve soil health in the coastal salt-affected soil.
Collapse
Affiliation(s)
- Hui Yao
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Technical Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Yadong Cheng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Technical Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Qingxian Kong
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Technical Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Ziguo Rong
- Yellow River Delta Agricultural High-Tech Industrial Demonstration Zone Salt-Alkaline Land Integrated Utilization Service Center, Dongying, 257300, China
| | - Yue Quan
- Department of Geography and Marine Sciences, Yanbian University, Hunchun, 133000, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Technical Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Technical Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| |
Collapse
|
2
|
Zhou N, Han X, Hu N, Han S, Yuan M, Li Z, Wang S, Li Y, Li H, Rengel Z, Jiang Y, Lou Y. The crop mined phosphorus nutrition via modifying root traits and rhizosphere micro-food web to meet the increased growth demand under elevated CO 2. IMETA 2024; 3:e245. [PMID: 39742301 PMCID: PMC11683460 DOI: 10.1002/imt2.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 01/03/2025]
Abstract
Elevated CO2 (eCO2) stimulates productivity and nutrient demand of crops. Thus, comprehensively understanding the crop phosphorus (P) acquisition strategy is critical for sustaining agriculture to combat climate changes. Here, wheat (Triticum aestivum L) was planted in field in the eCO2 (550 µmol mol-1) and ambient CO2 (aCO2, 415 µmol mol-1) environments. We assessed the soil P fractions, root morphological and physiological traits and multitrophic microbiota [including arbuscular mycorrhizal fungi (AMF), alkaline phosphomonoesterase (ALP)-producing bacteria, protozoa, and bacterivorous and fungivorous nematodes] in the rhizosphere and their trophic interactions at jointing stage of wheat. Compared with aCO2, significant 20.2% higher shoot biomass and 26.8% total P accumulation of wheat occurred under eCO2. The eCO2 promoted wheat root length and AMF hyphal biomass, and increased the concentration of organic acid anions and the ALP activity, which was accompanied by significant decreases in calcium-bound inorganic P (Ca-Pi) (by 16.7%) and moderately labile organic P (by 26.5%) and an increase in available P (by 14.4%) in the rhizosphere soil. The eCO2 also increased the growth of ALP-producing bacteria, protozoa, and bacterivorous and fungivorous nematodes in the rhizosphere, governed their diversity and community composition. In addition, the eCO2 strengthened the trophic interactions of microbiota in rhizosphere; specifically, the eCO2 promoted the associations between protozoa and ALP-producing bacteria, between protozoa and AMF, whereas decreased the associations between ALP-producing bacteria and nematodes. Our findings highlighted the important role of root traits and multitrophic interactions among microbiota in modulating crop P-acquisition strategies, which could advance our understanding about optimal P management in agriculture systems under global climate changes.
Collapse
Affiliation(s)
- Na Zhou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xue Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijingChina
| | - Ning Hu
- School of Food and Biological EngineeringHezhou UniversityHezhouChina
| | - Shuo Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijingChina
| | - Meng Yuan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhongfang Li
- School of Food and Biological EngineeringHezhou UniversityHezhouChina
| | - Sujuan Wang
- School of Food and Biological EngineeringHezhou UniversityHezhouChina
| | - Yingchun Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijingChina
| | - Hongbo Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijingChina
| | - Zed Rengel
- Soil Science & Plant Nutrition, UWA School of Agriculture and EnvironmentThe University of Western AustraliaPerthAustralia
| | - Yuji Jiang
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yilai Lou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
3
|
Chen J, Zhang Y, Xiao Q, Wang B, Li Z, Lin K, Geng X, Li X. Characterization of microbial structure and function in the rhizosphere of Boehmeria nivea L.: A comparative study of volcanic cone and crater. SOIL ECOLOGY LETTERS 2024; 6:240259. [DOI: 10.1007/s42832-024-0259-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 01/03/2025]
|
4
|
Qin L, Ni B, Zou Y, Freeman C, Peng X, Yang L, Wang G, Jiang M. Deciphering soil environmental regulation on reassembly of the soil bacterial community during wetland restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176586. [PMID: 39349191 DOI: 10.1016/j.scitotenv.2024.176586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Soil bacteria are vital to regulate biogeochemical processes in wetlands, however, little is known about the patterns and mechanisms of soil bacterial re-organization during wetland restoration. Here, we used a space-for-time substitution approach and examined the ecological processes that drive soil bacterial assembly from cultivated to restored to natural wetlands. Results showed a decrease of soil bacterial α diversity and increase of bacterial community similarity and bacterial interaction (cooperation vs. competition) with years of restoration, which was dominantly influenced by deterministic processes. Identified bacterial keystone taxa (e.g. Variibacter, Acidibacter) with nutrient metabolism capacity exerted strong positive effect on bacterial interaction. Furthermore, changes of soil water condition and nutrient status showed dominantly direct positive effects on soil bacterial reassembly, while falling soil pH significantly promoted bacterial reassembly by increasing keystone taxa and bacterial interaction during wetland restoration. Overall, findings highlighted the crucial role of environmental filtering and its pathway in influencing keystone bacterial taxa that promotes the reassembly of bacterial community during wetland restoration. Our work thus provides a new crucial and timely insight for improving the management of soil bacterial community assembly within the plethora of current and future wetland restoration projects.
Collapse
Affiliation(s)
- Lei Qin
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Bingbo Ni
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanchun Zou
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Chris Freeman
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - Xiaojun Peng
- Heilongjiang Provincial Hydrology and Water Resources Center, Jixi 158100, China
| | - Liang Yang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guodong Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Ming Jiang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
5
|
Lu S, Chen Y, Guo H, Liu Z, Du Y, Duan L. Differences in clinical manifestations and the fecal microbiome between irritable bowel syndrome and small intestinal bacterial overgrowth. Dig Liver Dis 2024; 56:2027-2037. [PMID: 39043536 DOI: 10.1016/j.dld.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) and small intestinal bacterial overgrowth (SIBO) share similar abdominal symptoms; however, their differentiation remains controversial. AIMS To illustrate the differences between the two conditions. METHODS Patients and healthy controls completed questionnaires and provided stool samples for analysis. RESULTS IBS presented with the most severe symptoms and was specifically characterized by intense abdominal pain and frequent episodes of diarrhea. Patients with IBS displayed more dysregulated taxonomy within the fecal microbiota than SIBO. Opportunistic pathogens, including Lachnoclostridium, Escherichia-Shigella, and Enterobacter were enriched in the IBS group which contributed to increased bacterial pathogenicity and positively correlated with abdominal pain and bloating, meanwhile, Lachnoclostridium and Escherichia-Shigella were found to be associated with metabolites affiliated to bile acids, alcohols and derivatives. Bacteria enriched in SIBO group correlated with constipation. The bacterial co-occurrence network within the SIBO group was the most intricate. Ruminococcaceae Group were defined as core bacteria in SIBO. Differential metabolites affiliated to androstane steroids and phenylacetic acids were associated with core bacteria. CONCLUSIONS Our study elucidates the differences between IBS and SIBO in terms of symptoms, microbiota and functions, which provides insights into a better understanding of both diseases and evidence for different treatment strategies.
Collapse
Affiliation(s)
- Siqi Lu
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Yuzhu Chen
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Huaizhu Guo
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Zuojing Liu
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Yanlin Du
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
6
|
Yang F, Wang W, Wu Z, Peng J, Xu H, Ge M, Lin S, Zeng Y, Sardans J, Wang C, Peñuelas J. Fertilizer reduction and biochar amendment promote soil mineral-associated organic carbon, bacterial activity, and enzyme activity in a jasmine garden in southeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176300. [PMID: 39293769 DOI: 10.1016/j.scitotenv.2024.176300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Reducing chemical fertilizers and biochar amendment is essential for achieving carbon neutrality, addressing global warming, and promoting sustainable agricultural development. Biochar amendment, a carbon rich soil additive produced through biomass pyrolysis, enhances soil fertility, increases crop yield, and improves soil carbon storage. However, research on the combined effect of fertilizer reduction and biochar amendment on soil mineral associated organic carbon (MAOC) in jasmine gardens is limited. This study aims to determine if biochar can reduce industrial fertilizer usage without compromising soil quality. This study focuses on jasmine cultivation in southeastern China, employing four treatments: conventional fertilization (CK), biochar amendment without fertilizer (BA), fertilizer reduction (FR), and fertilizer reduction with biochar amendment (FRBA). The effects on MAOC, microbial abundance, and enzyme activity were investigated. The FRBA treatment significantly increased MAOC content by 19.98 % compared to CK (P < 0.05). The BA and FRBA treatments enhanced the diversity of soil bacteria, including Lactobacillus, Azospirillum, and Cutibacterium, which are associated with soil organic carbon sequestration and nutrient decomposition. The RandomForest model identified β-N-acetyl-glucosaminidase (NAG), electric conductivity (EC), β-1, 4-Glucosidase (BG), soil potential of Hydrogen (pH), soil bulk density (BD), and β-D-cellobiosidase (CBH) as key soil traits promoting MAOC accumulation (P < 0.05). The results indicate that BA and FRBA improve soil bacterial community structure, enzyme activity, and MAOC content, promoting soil carbon accumulation through environmental factors and dominant bacteria. This study encourages future fertilization protocols that enhance fertilizer efficiency and carbon storage in crop soils.
Collapse
Affiliation(s)
- Fajun Yang
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Weiqi Wang
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350117, China.
| | - Ziwei Wu
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Jiahao Peng
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Hongda Xu
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Maoquan Ge
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Shaoying Lin
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Yu Zeng
- Minrong Tea Co., Ltd, Fuzhou 350015, China
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08913 Bellaterra, Catalonia, Spain; CREAF. 08913 Cerdanyola del Vallès, Catalonia, Spain.
| | - Chun Wang
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08913 Bellaterra, Catalonia, Spain; CREAF. 08913 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
7
|
Cui K, Xia X, Wang Y, Zhang Y, Zhang Y, Cao J, Xu J, Dong F, Liu X, Pan X, Zheng Y, Wu X. Thiophanate-methyl and its major metabolite carbendazim weaken rhizobacteria-mediated defense responses in cucumbers against Fusarium wilt. ABIOTECH 2024; 5:417-430. [PMID: 39650132 PMCID: PMC11624165 DOI: 10.1007/s42994-024-00181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/22/2024] [Indexed: 12/11/2024]
Abstract
The effect of fungicides on the plant-rhizosphere microbiome is a subject of ongoing debate, but whether any alteration in the rhizosphere microbiome could affect plant health is an issue that has not been thoroughly investigated. To address this deficiency, we analyzed the rhizosphere microbiome of wilt disease-resistant and disease-susceptible cucumber cultivars to determine whether (and which) plant-associated microorganisms have a role in disease resistance. We further assessed whether the fungicides thiophanate-methyl and carbendazim affect the rhizosphere microbiome, which may contribute to the plant's immune response. Based on results acquired with both radicle-inoculation and soil-inoculation methods, cultivars Longyuanxiuchun (LYXC) and Shuyan2 (SY2) were identified as being disease resistant, whereas Zhongnong6 (ZN6) and Zhongnong38 (ZN38) were susceptible. The microbiome structure differed substantially between the resistant and susceptible plants, with LYXC and SY2 each having a significantly greater Shannon index than Zhongnong38. These results revealed that the disease-resistant cucumber cultivars recruited more beneficial bacteria, i.e., Bacillus, in their rhizosphere soil; as such, Bacillus was identified as a keystone genus in the microbial co-occurrence network. Thus, the presence of Bacillus may help cucumbers defend against fungal pathogens within the rhizosphere. Bacillus subtilis strain LD15, which was isolated from LYXC rhizosphere soil, could suppress pathogen growth, in vitro, and reduce disease severity in pot assays. Moreover, evidence also confirmed the accumulation of LD1 in the rhizosphere soil of resistant cucumber cultivars. For LYXC, application of thiophanate-methyl or carbendazim altered the microbiome structure, decreased bacterial diversity, and reduced the abundance of Bacillus species. Finally, pot assays verified that fungicide application decreased the proportion of LD15 in rhizosphere soil. From a microbial perspective, thiophanate-methyl and carbendazim may weaken the rhizobacteria-mediated defense response of cucumbers against cucumber Fusarium wilt disease. Our findings reveal a role for the rhizosphere microbiome in protecting plants from pathogens and constitute a reference for assessing the ecotoxicological risk of pesticides to non-target soil microorganisms. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00181-5.
Collapse
Affiliation(s)
- Kai Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Xiaoming Xia
- College of Plant Protection, Shandong Agricultural University, Tai’an, 271018 China
| | - Youwei Wang
- College of Plant Protection, Shandong Agricultural University, Tai’an, 271018 China
| | - Yueli Zhang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Ying Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Junli Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
8
|
Sun P, Fan K, Jiang Y, Chu H, Chen Y, Wu Y. Accumulated temperature dictates the regional structural variation of prokaryotic periphyton at soil-water interface in paddy fields. WATER RESEARCH 2024; 265:122259. [PMID: 39154398 DOI: 10.1016/j.watres.2024.122259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
As a pervasive microbial aggregate found at the water-soil interface in paddy fields, periphyton plays crucial roles in modulating nutrient biogeochemical cycling. Consequently, it effectively mitigates non-point source pollution due to its diverse composition. Despite its significance, the mechanisms governing periphyton diversity across different rice planting regions remain poorly understood. To bridge this gap, we investigated periphyton grown in 200 paddy fields spanning 25° of latitude. Initially, we analyzed local diversity and latitudinal variations in prokaryotic communities within paddy field periphyton, identifying 7 abundant taxa, 42 moderate taxa, and 39 rare taxa as the fundamental prokaryotic framework. Subsequently, to elucidate the mechanisms governing periphyton diversity across large scales, we constructed interaction models illustrating triangular relationships among local richness, assembly, and regional variation of prokaryotic subcommunities. Our findings suggest that accumulated temperature-driven environmental filtering partially influences the assembly process of prokaryotes, thereby impacting local species richness and ultimately governing regional structural variations in periphyton. Furthermore, we determined that a latitude of 39° represents the critical threshold maximizing local species richness of periphyton in paddy fields. This study advances our understanding of the factors shaping periphyton geo-imprints and provides valuable insights into predicting their responses to environmental changes, potentially influencing rice production outcomes.
Collapse
Affiliation(s)
- Pengfei Sun
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing 211135, China; School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; University of Chinese Academy of Sciences, No.188, Tianquan Road, Nanjing 211135, China
| | - Kunkun Fan
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing 211135, China; University of Chinese Academy of Sciences, No.188, Tianquan Road, Nanjing 211135, China
| | - Yuji Jiang
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing 211135, China; University of Chinese Academy of Sciences, No.188, Tianquan Road, Nanjing 211135, China
| | - Haiyan Chu
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing 211135, China; University of Chinese Academy of Sciences, No.188, Tianquan Road, Nanjing 211135, China
| | - Yin Chen
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, UK.
| | - Yonghong Wu
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing 211135, China; University of Chinese Academy of Sciences, No.188, Tianquan Road, Nanjing 211135, China.
| |
Collapse
|
9
|
Quan L, Sun M, Qin C, Wang A, Wen Q, Liu H, Shi L, Hu F, Zhou J, Chen Y, Shen Z, Xia Y. Rice husk biochar is more effective in blocking the cadmium and lead accumulation in two Brassica vegetables grown on a contaminated field than sugarcane bagasse biochar. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:471. [PMID: 39387995 DOI: 10.1007/s10653-024-02245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
Heavy metal-contaminated soil has a great impact on yield reduction of vegetable crops and soil microbial community destruction. Biochar-derived waste biomass is one of the most commonly applied soil conditioners in heavy metal-contaminated soil. Different heavy metal-contaminated soil added with suitable biochars represent an intriguing way of the safe production of crops. This study investigated the effects of two types of biochar [rice husk biochar (RHB) and sugarcane bagasse biochar (SBB)] on Cd and Pb accumulation in Shanghaiqing (SHQ, a variety of Brassica campestris L.) and Fengyou 737 (FY, a variety of Brassica napus), as well as on the soil microbial community, through a field experiment. RHB and SBB were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and Brunauer-Emmet-Teller method. The results showed that RHB and SBB displayed the higher pH, cation exchange capacity and pore properties, and the addition of RHB and SBB enhanced soil pH and rhizosphere microorganisms promoting vegetables yield. RHB treatments were more effective than SBB in reducing upward transfer of Cd and Pb, blocking the accumulation of Cd and Pb in the edible parts of SHQ and FY, and decreasing soil Cd and Pb bioavailability. Additionally, RHB and SBB changed the composition of the rhizosphere soil microbial community. The application of biochar promoted the growth of ecologically beneficial bacteria (Nitrospira, Opitutus, and Gemmatimonas) and fungi (Mortierella and Holtermanniella), whereas reducing the enrichment of plant pathogenic fungi (Alternaria, Stagonosporopsis, Lectera, and Periconia) in rhizosphere soil. Our findings demonstrated that the application of RHB significantly reduces Cd and Pb accumulation in the edible parts by decreasing the soil Cd and Pb bioavailability and altering the rhizosphere microbial community composition in two Brassica vegetables grown on Cd/Pb-contaminated soils. Thus, the application of two biochar, especially RHB is a feasible strategy for the safe production of vegetable crops in Cd/Pb co-contaminated soils.
Collapse
Affiliation(s)
- Lingtong Quan
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengni Sun
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chun Qin
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiguo Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Qiucheng Wen
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - Huan Liu
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - Liang Shi
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yahua Chen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Xia
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Wang X, Wang H, Liang Y, McMinn A, Wang M. Community organization and network complexity and stability: contrasting strategies of prokaryotic versus eukaryotic microbiomes in the Bohai Sea and Yellow Sea. mSphere 2024; 9:e0039524. [PMID: 39136485 PMCID: PMC11423591 DOI: 10.1128/msphere.00395-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/08/2024] [Indexed: 09/26/2024] Open
Abstract
Unraveling the effects of spatial gradients on microbiome assembly and association is a challenging topic that remains understudied in the coastal ecosystem. Here, we aimed to investigate the effects of spatial variation on the network complexity and stability of plankton microbiomes in the Bohai Sea and Yellow Sea. These seas serve as spawning and nursery grounds for economically important fisheries valued at billions of dollars annually. Environmental heterogeneity structures microbial communities into distinct spatial patterns, leading to complex direct/indirect relationships and broader ecological niches of bacterioplankton compared to microeukaryotic communities. Interestingly, salinity gradients positively influenced the richness of rare subgroups of bacterioplankton, while the rare microeukaryotic subgroups showed an opposite trend. Abundant subgroups of prokaryotic/eukaryotic microbiomes exhibited greater environmental niche breadth and lower phylogenetic distance compared to the rare subgroups. Stochastic processes contributed greatly to microbiome dynamics, and deterministic processes governed the bacterioplankton organization with a lower phylogenetic turnover rate. Compared to microeukaryotes, bacterioplankton exhibit higher network modularity, complexity, and robustness and lower fragmentation, and vulnerability. These observations offer vital insights into the anti-interference ability and resistance of plankton microbiomes in response to environmental gradients in terms of organization and survival strategy as well as their adaptability to environmental disturbances.IMPORTANCEAn in-depth understanding of community organization and stability of coastal microbiomes is crucial to determining the sustainability of marine ecosystems, such as the Bohai Sea and Yellow Sea. Distinct responses between prokaryotic and eukaryotic microbiomes to spatial heterogeneity were observed in terms of geographical distribution, phylogenetic distance, niche breadth, and community assembly process. Environmental variations are significantly correlated with the dynamics of rare eukaryotic plankton subcommunities compared to prokaryotic plankton subcommunities. Deterministic processes shaped prokaryotic plankton community organization with a lower phylogenic turnover rate. Rare subgroups had noticeably higher phylogenetic distance and lower niche breadth than the corresponding abundant subgroups. Prokaryotic microbiomes had higher molecular network complexity and stability compared to microeukaryotes. Results presented here show how environmental gradients alter both the geographical characteristics of the microbial organization in coastal seas and also their co-occurrence network complexity and stability and thus have critical implications for nutrient and energy cycling.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
| | - Hualong Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, China
- UMT-OUC Joint Center for Marine Studies, Qingdao, China
| |
Collapse
|
11
|
Zhu X, Jia M, Zi D, Zhou P, Du Y, Wang N, Dai H, Wang G, Bai Y. Biochar regulates the functions of keystone taxa to reduce p-coumaric acid accumulation in soil. Front Microbiol 2024; 15:1458185. [PMID: 39328907 PMCID: PMC11425655 DOI: 10.3389/fmicb.2024.1458185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Applying biochar (BC) to reduce toxic substance accumulation in soil, either through direct adsorption or modulation of the microbial community, has received considerable attention. However, a knowledge gap exists regarding how BC regulates microbial community structure and functions to mitigate toxic substance accumulation. Methods We previously identified p-coumaric acid (p-CA) as a representative autotoxin in tobacco rhizosphere soil. On this basis, this study simulated a soil environment with p-CA accumulation to investigate the impacts of BC on p-CA, soil physicochemical properties, and microbial community structure and function. Results The results showed that p-CA could be directly adsorbed onto BC, which followed the pseudo-second-order kinetic model (R 2 = 0.996). A pot experiment revealed that BC significantly reduced soil p-CA, altered soil microbial composition, and enhanced bacterial community diversity. A weighted correlation network analysis showed a close association between taxon 1 in the microbial network and p-CA, suggesting a pivotal role for this taxon in reducing p-CA, with Devosia and Nocardioides identified as potential key contributors to this process. The prediction of possible keystone taxa functions showed that BC increased the relative abundances of aromatic compound degraders. Mantel tests indicated that soil organic matter exerted the greatest influence on keystone taxa functions and hub genera. Discussion These findings suggest that BC may either directly chemisorb p-CA or indirectly facilitate p-CA degradation by regulating the functioning of keystone taxa. The results of this study provide a novel perspective for further investigation of the mechanisms through which BC reduces the accumulation of toxic substances in soil.
Collapse
Affiliation(s)
- Xuanquan Zhu
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Meng Jia
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Dingchun Zi
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Peng Zhou
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Yu Du
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Na Wang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Huijuan Dai
- China Tobacco Hebei Industrial Co., Ltd., Shijiazhuang, China
| | - Ge Wang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| | - Yuxiang Bai
- College of Tobacco Science, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
12
|
Chen N, Huang D, Zeng Y, Wang J, Liu G, Liu X, Wu T, Gao Y, Fang G, Wang Y, Zhou D. Long-term Application of Agricultural Amendments Regulate Hydroxyl Radicals Production during Oxygenation of Paddy Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39023504 DOI: 10.1021/acs.est.4c03917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hydroxyl radicals (•OH) play a significant role in contaminant transformation and element cycling during redox fluctuations in paddy soil. However, these important processes might be affected by widely used agricultural amendments, such as urea, pig manure, and biochar, which have rarely been explored, especially regarding their impact on soil aggregates and associated biogeochemical processes. Herein, based on five years of fertilization experiments in the field, we found that agricultural amendments, especially coapplication of fertilizers and biochar, significantly increased soil organic carbon contents and the abundances of iron (Fe)-reducing bacteria. They also substantially altered the fraction of soil aggregates, which consequently enhanced the electron-donating capacity and the formation of active Fe(II) species (i.e., 0.5 M HCl-Fe(II)) in soil aggregates (0-2 mm), especially in small aggregates (0-3 μm). The highest contents of active Fe(II) species in small aggregates were mainly responsible for the highest •OH production (increased by 1.7-2.4-fold) and naphthalene attenuation in paddy soil with coapplication of fertilizers and biochar. Overall, this study offers new insights into the effects of agricultural amendments on regulating •OH formation in paddy soil and proposes feasible strategies for soil remediation in agricultural fields, especially in soils with frequent occurrences of redox fluctuations.
Collapse
Affiliation(s)
- Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Yu Zeng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Juan Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, P. R. China
| | - Guangxia Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, P. R. China
| | - Xiantang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Tongliang Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Yan Gao
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Guodong Fang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
13
|
Wang F, Liu H, Yao H, Zhang B, Li Y, Jin S, Cao H. Reducing Application of Nitrogen Fertilizer Increases Soil Bacterial Diversity and Drives Co-Occurrence Networks. Microorganisms 2024; 12:1434. [PMID: 39065202 PMCID: PMC11278655 DOI: 10.3390/microorganisms12071434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Reducing nitrogen fertilizer application highlights its role in optimizing soil bacterial communities to achieve sustainable agriculture. However, the specific mechanisms of bacterial community change under these conditions are not yet clear. In this study, we employed long-term field experiments and high-throughput sequencing to analyze how varying levels of nitrogen application influence the soil bacterial community structure and co-occurrence networks. The results show that reducing the nitrogen inputs significantly enhances the diversity and evenness of the soil bacterial communities, possibly due to the diminished dominance of nitrogen-sensitive taxa, which in turn liberates the ecological niches for less competitive species. Furthermore, changes in the complexity and stability of the bacterial co-occurrence networks suggest increased community resilience and a shift toward more mutualistic interactions. These findings underline the potential of reduced nitrogen application to alleviate competitive pressures among bacterial species, thereby promoting a more diverse and stable microbial ecosystem, highlighting the role of competitive release in fostering microbial diversity. This research contributes to our understanding of how nitrogen management can influence soil health and offers insights into sustainable agricultural practices.
Collapse
Affiliation(s)
- Feng Wang
- Ningbo Key Laboratory of Testing and Control for Characteristic Agro-Product Quality and Safety, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China; (F.W.); (H.Y.); (S.J.)
- Institute of Farmland Water Conservancy and Soil-Fertilizer, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China
| | - Hao Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (H.L.); (B.Z.); (Y.L.)
| | - Hongyan Yao
- Ningbo Key Laboratory of Testing and Control for Characteristic Agro-Product Quality and Safety, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China; (F.W.); (H.Y.); (S.J.)
| | - Bo Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (H.L.); (B.Z.); (Y.L.)
| | - Yue Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (H.L.); (B.Z.); (Y.L.)
| | - Shuquan Jin
- Ningbo Key Laboratory of Testing and Control for Characteristic Agro-Product Quality and Safety, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China; (F.W.); (H.Y.); (S.J.)
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (H.L.); (B.Z.); (Y.L.)
| |
Collapse
|
14
|
Mao J, Zheng Z, Ma L, Wang H, Wang X, Zhu F, Xue S, Srivastava P, Sapsford DJ. Polymetallic contamination drives indigenous microbial community assembly dominated by stochastic processes at Pb-Zn smelting sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174575. [PMID: 38977087 DOI: 10.1016/j.scitotenv.2024.174575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Indigenous microbial communities in smelting areas are crucial for maintaining fragile ecosystem functions. However, the community assembly process and their responses to polymetallic pollution are poorly understood, especially the taxa in each bin from the amplicons that contributed to the assembly process. Herein, microbial diversity, co-occurrence patterns, assembly process and the intrinsic mechanisms across contamination gradients at a typical PbZn smelting site were systematically unravelled by high-throughput sequencing. The results showed a consistent compositional profile among the indigenous communities across sampling sites, wherein genera KD4-96 from Chloroflexi and Sphingomonas from Proteobacteria emerged as the most abundant taxa. Network modularity of the high- and middle-contaminated communities at Pb and Zn smelting sites was >0.44, indicating that community populations were clustered into modules to resist high heavy metal stress. Stochastic processes dominated the community assembly, with the greatest contribution from drift (DR), which was significantly correlated with Pb, Zn, Cr and Cu contents. What's particular was that the DR-controlled bins were dominated by Proteobacteria (typical r-strategists), while the HoS-controlled bins were by Chloroflexi (typical K-strategists). Furthermore, the proportion of DR in the bins dominated by Sphingomonadaceae (phylum Proteobacteria) increased gradually with the increase of heavy metal contents. These discoveries provide essential insights for community control in restoring and mitigating soil degradation at PbZn smelting sites.
Collapse
Affiliation(s)
- Jialing Mao
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Zikui Zheng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Liyuan Ma
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, Hubei, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom.
| | - Hongmei Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xingjie Wang
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, Hubei, China; School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | | | - Devin J Sapsford
- School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom
| |
Collapse
|
15
|
Dan H, Song X, Xiang G, Song C, Dai H, Shao Y, Huang D, Luo H. The response pattern of the microbial community structure and metabolic profile of jiupei to Bacillus subtilis JP1 addition during baijiu fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5021-5030. [PMID: 38296914 DOI: 10.1002/jsfa.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Baijiu brewing is a complex and multifaceted multimicrobial co-fermentation process, in which various microorganisms interact to form an interdependent micro-ecosystem, subsequently influencing metabolic activities and compound production. Among these microorganisms, Bacillus, an important bacterial genus in the liquor brewing process, remains unclear in its role in shaping the brewing microbial community and its functional metabolism. RESULTS A baijiu fermentation system was constructed using B. subtilis JP1 isolated from native jiupei (grain mixture) combined with daqu (a saccharifying agent) and huangshui (a fermentation byproduct). Based on high-throughput amplicon sequencing analysis, it was evident that B. subtilis JP1 significantly influences bacterial microbial diversity and fungal community structure in baijiu fermentation. Of these, Aspergillus and Monascus emerge as the most markedly altered microbial genera in the jiupei community. Based on co-occurrence networks and bidirectional orthogonal partial least squares discriminant analysis models, it was demonstrated that the addition of B. subtilis JP1 intensified microbial interactions in jiupei fermentation, consequently enhancing the production of volatile flavor compounds such as heptanoic acid, butyl hexanoate and 3-methylthiopropanol in jiupei. CONCLUSION B. subtilis JP1 significantly alters the microbial community structure of jiupei, enhancing aroma formation during fermentation. These findings will contribute to a broader application in solid-state fermentation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hulin Dan
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xuemiao Song
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
| | - Gangxing Xiang
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
| | | | | | - Yan Shao
- Luzhou Laojiao Co. Ltd, Luzhou, China
| | - Dan Huang
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin, China
| | - Huibo Luo
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin, China
| |
Collapse
|
16
|
Jia P, Tian M, Zhang B, Wu X, He X, Zhang W. Habitat changes due to glacial freezing and melting reshape microbial networks. ENVIRONMENT INTERNATIONAL 2024; 189:108788. [PMID: 38838490 DOI: 10.1016/j.envint.2024.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
The phenomenon of glacial freezing and thawing involves microbial sequestration, release, and colonization, which has the potential to impact ecosystem functioning through changes in microbial diversity and interactions. In this study, we examined the structural features of microbial communities of the Dongkemadi glacier, including bacteria, fungi, and archaea, in four distinct glacial environments (snow, ice, meltwater, and frontier soil). The sequestration, release, and colonization of glacial microbes have been found to significantly impact the diversity and structure of glacial microbial communities, as well as the complexity of microbial networks. Specifically, the complexity of bacterial networks has been observed to increase in a sequential manner during these processes. Utilizing the Inter-Domain Ecological Network approach, researchers have further explored the cross-trophic interactions among bacteria, fungi, and archaea. The complexity of the bacteria-fungi-archaea network exhibited a sequential increase due to the processes of sequestration, release, and colonization of glacial microbes. The release and colonization of glacial microbes led to a shift in the role of archaea as key species within the network. Additionally, our findings suggest that the hierarchical interactions among various microorganisms contributed to the heightened complexity of the bacteria-fungi-archaea network. The primary constituents of the glacial microbial ecosystem are unclassified species associated with the Polaromonas. It is noteworthy that various key species in glacial ecosystems are influenced by the distinct environmental factors. Moreover, our findings suggest that key species are not significantly depleted in response to abrupt alterations in individual environmental factors, shedding light on the dynamics of microbial cross-trophic interactions within glacial ecosystems.
Collapse
Affiliation(s)
- Puchao Jia
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mao Tian
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Cryospheric Sciences and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Cryospheric Sciences and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiukun Wu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaobo He
- Key Laboratory of Cryospheric Sciences and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Tanggula Mountain Cryosphere and Environment Observation and Research Station of Tibet Autonomous Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
17
|
Yu L, Li D, Zhang Y, Wang Y, Yao Q, Yang K. An optimal combined slow-release nitrogen fertilizer and urea can enhance the decomposition rate of straw and the yield of maize by improving soil bacterial community and structure under full straw returning system. Front Microbiol 2024; 15:1358582. [PMID: 38962118 PMCID: PMC11219627 DOI: 10.3389/fmicb.2024.1358582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/06/2024] [Indexed: 07/05/2024] Open
Abstract
Under a full straw returning system, the relationship between soil bacterial community diversity and straw decomposition, yield, and the combined application of slow-release nitrogen and urea remains unclear. To evaluate these effects and provide an effective strategy for sustainable agricultural production, a 2-year field positioning trial was conducted using maize as the research object. Six experimental treatments were set up: straw returning + no nitrogen fertilizer (S1N0), straw returning + slow-release nitrogen fertilizer:urea = 0:100% (S1N1), straw returning + slow-release nitrogen fertilizer:urea = 30%:70% (S1N2), straw returning + slow-release nitrogen fertilizer:urea = 60%:40% (S1N3), straw returning + slow-release nitrogen fertilizer:urea = 90%:10% (S1N4), and straw removal + slow-release nitrogen fertilizer:urea = 30%:70% (S0N2). Significant differences (p < 0.05) were observed between treatments for Proteobacteria, Acidobacteriota, Myxococcota, and Actinobacteriota at the jointing stage; Proteobacteria, Acidobacteriota, Myxococcota, Bacteroidota, and Gemmatimonadota at the tasseling stage; and Bacteroidota, Firmicutes, Myxococcota, Methylomirabilota, and Proteobacteria at the maturity stage. The alpha diversity analysis of the soil bacterial community showed that the number of operational taxonomic units (OTUs) and the Chao1 index were higher in S1N2, S1N3, and S1N4 compared with S0N2 at each growth stage. Additionally, the alpha diversity measures were higher in S1N3 and S1N4 compared with S1N2. The beta diversity analysis of the soil bacterial community showed that the bacterial communities in S1N3 and S1N4 were more similar or closely clustered together, while S0N2 was further from all treatments across the three growth stages. The cumulative straw decomposition rate was tested for each treatment, and data showed that S1N3 (90.58%) had the highest decomposition rate. At the phylum level, straw decomposition was positively correlated with Proteobacteria, Actinobacteriota, Myxococcota, and Bacteroidota but significantly negatively correlated with Acidobacteriota. PICRUSt2 function prediction results show that the relative abundance of bacteria in soil samples from each treatment differed significantly. The maize yield of S1N3 was 15597.85 ± 1477.17 kg/hm2, which was 12.80 and 4.18% higher than that of S1N1 and S0N2, respectively. In conclusion, a combination of slow-release nitrogen fertilizer and urea can enhance the straw decomposition rate and maize yield by improving the soil bacterial community and structure within a full straw returning system.
Collapse
Affiliation(s)
- Lihong Yu
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Duo Li
- Daqing Agricultural Technology Extension Center, Daqing, China
| | - Yifei Zhang
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yufeng Wang
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qin Yao
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Kejun Yang
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
18
|
Shi G, Hou R, Fu Q, Li T, Chen Q. Effects of biochar and compost on microbial community assembly and metabolic processes in glyphosate, imidacloprid and pyraclostrobin polluted soil under freezethaw cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134397. [PMID: 38677114 DOI: 10.1016/j.jhazmat.2024.134397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Biochar and organic compost are widely used in agricultural soil remediation as soil immobilization agents. However, the effects of biochar and compost on microbial community assembly processes in polluted soil under freezingthawing need to be further clarified. Therefore, a freezethaw cycle experiment was conducted with glyphosate (herbicide), imidacloprid (insecticide) and pyraclostrobin (fungicide) polluted to understand the effect of biochar and compost on microbial community assembly and metabolic behavior. We found that biochar and compost could significantly promote the degradation of glyphosate, imidacloprid and pyraclostrobin in freezethaw soil decrease the half-life of the three pesticides. The addition of immobilization agents improved soil bacterial and fungal communities and promoted the transformation from homogeneous dispersal to homogeneous selection. For soil metabolism, the combined addition of biochar and compost alleviated the pollution of glyphosate, imidacloprid and imidacloprid to soil through up-regulation of metabolites (DEMs) in amino acid metabolism pathway and down-regulation of DEMs in fatty acid metabolism pathway. The structural equation modeling (SEM) results showed that soil pH and DOC were the main driving factors affecting microbial community assembly and metabolites. In summary, the combined addition of biochar and compost reduced the adverse effects of pesticides residues.
Collapse
Affiliation(s)
- Guoxin Shi
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
19
|
Zhang H, Ma T, Wang L, Yu X, Zhao X, Gao W, Van Zwieten L, Singh BP, Li G, Lin Q, Chadwick DR, Lu S, Xu J, Luo Y, Jones DL, Jeewani PH. Distinct biophysical and chemical mechanisms governing sucrose mineralization and soil organic carbon priming in biochar amended soils: evidence from 10 years of field studies. BIOCHAR 2024; 6:52. [PMID: 38799721 PMCID: PMC11111575 DOI: 10.1007/s42773-024-00327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 05/29/2024]
Abstract
While many studies have examined the role of biochar in carbon (C) accrual in short-term scale, few have explored the decadal scale influences of biochar on non-biochar C, e.g., native soil organic C (SOC) and added substrate. To address this knowledge gap, soils were collected from decade-old biochar field trials located in the United Kingdom (Cambisol) and China (Fluvisol), with each site having had three application rates (25-30, 50-60 and 75-100 Mg ha-1) of biochar plus an unamended Control, applied once in 2009. We assessed physicochemical and microbial properties associated with sucrose (representing the rhizodeposits) mineralization and the priming effect (PE) on native SOC. Here, we showed both soils amended with biochar at the middle application rate (50 Mg ha-1 biochar in Cambisol and 60 Mg ha-1 biochar in Fluvisol) resulted in greater substrate mineralization. The enhanced accessibility and availability of sucrose to microorganisms, particularly fast-growing bacterial genera like Arenimonas, Spingomonas, and Paenibacillus (r-strategists belonging to the Proteobacteria and Firmicutes phyla, respectively), can be attributed to the improved physicochemical properties of the soil, including pH, porosity, and pore connectivity, as revealed by synchrotron-based micro-CT. Random forest analysis also confirmed the contribution of the microbial diversity and physical properties such as porosity on sucrose mineralization. Biochar at the middle application rate, however, resulted in the lowest PE (0.3 and 0.4 mg of CO2-C g soil-1 in Cambisol and Fluvisol, respectively) after 53 days of incubation. This result might be associated with the fact that the biochar promoted large aggregates formation, which enclosed native SOC in soil macro-aggregates (2-0.25 mm). Our study revealed a diverging pattern between substrate mineralization and SOC priming linked to the biochar application rate. This suggests distinct mechanisms, biophysical and physicochemical, driving the mineralization of non-biochar carbon in a field where biochar was applied a decade before. Supplementary Information The online version contains supplementary material available at 10.1007/s42773-024-00327-0.
Collapse
Affiliation(s)
- Haoli Zhang
- College of Land Science and Technology, China Agriculture University, Yuanmingyuan West Road, Beijing, 100193 China
| | - Tao Ma
- Crop Research Institute, Guangxi Agricultural Vocational University, Guangxi, China
| | - Lili Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191 China
| | - Xiuling Yu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058 China
| | - Xiaorong Zhao
- College of Land Science and Technology, China Agriculture University, Yuanmingyuan West Road, Beijing, 100193 China
| | - Weida Gao
- College of Land Science and Technology, China Agriculture University, Yuanmingyuan West Road, Beijing, 100193 China
| | - Lukas Van Zwieten
- NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, NSW 2477 Australia
| | - Bhupinder Pal Singh
- Soils West, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia
| | - Guitong Li
- College of Land Science and Technology, China Agriculture University, Yuanmingyuan West Road, Beijing, 100193 China
| | - Qimei Lin
- College of Land Science and Technology, China Agriculture University, Yuanmingyuan West Road, Beijing, 100193 China
| | - David R. Chadwick
- School of Environmental and Natural Sciences, Environment Centre Wales, Bangor University, Gwynedd, LL57 2UW UK
| | - Shenggao Lu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058 China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058 China
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058 China
| | - David L. Jones
- School of Environmental and Natural Sciences, Environment Centre Wales, Bangor University, Gwynedd, LL57 2UW UK
- Soils West, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6150 Australia
| | - Peduruhewa H. Jeewani
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058 China
- School of Environmental and Natural Sciences, Environment Centre Wales, Bangor University, Gwynedd, LL57 2UW UK
| |
Collapse
|
20
|
Geng H, Wang F, Wu H, Qin Q, Ma S, Chen H, Zhou B, Yuan R, Luo S, Sun K. Biochar and nano-hydroxyapatite combined remediation of soil surrounding tailings area: Multi-metal(loid)s fixation and soybean rhizosphere soil microbial improvement. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133817. [PMID: 38422730 DOI: 10.1016/j.jhazmat.2024.133817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
The soil near tailings areas is relatively barren and contaminated by multi-metal(loid)s, seriously threatening the safety of crop production. Here, biochar and nano-hydroxyapatite (nHAP) were combined to improve the sterilized and unsterilized polymetallic contaminated soil, and soil incubation and soybean pot experiments were designed. Results showed that biochar and nHAP not only increased soil C, N, and P but also effectively reduced multi-metal bioavailability, wherein the combined application of the two amendments had the best effect on metal immobilization. The synergistic effect of the two amendments decreased the acid-soluble contents of Co, Cu, Fe, and Pb in rhizosphere soils up to 86.75%, 80.69%, 89.09%, and 96.70%, respectively. The ameliorant reduced the accumulation of metal(loid)s in soybean plants, and rhizosphere microorganisms inhibited the migration of soil metals to plants. Additionally, biochar and nHAP regulated the rhizosphere soil microbial community. The rhizosphere soil of the sterilization group tended to prioritize the restoration of the original dominant bacteria. As, Pb, Fe, Urease, OM, TN, and TP were the critical environmental variables affecting rhizosphere soil bacterial communities. Therefore, combining biochar and nHAP is an environmentally friendly strategy to reduce polymetallic mobility in tailings soil and crops and improve soil microbial community structure.
Collapse
Affiliation(s)
- Huanhuan Geng
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing 100875, PR China; School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Fei Wang
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing 100875, PR China.
| | - Haoming Wu
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing 100875, PR China
| | - Qizheng Qin
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), D11 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Shuai Ma
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing 100875, PR China
| | - Huilun Chen
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Beihai Zhou
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Shuai Luo
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Ke Sun
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing 100875, PR China
| |
Collapse
|
21
|
Xiao S, Gao J, Wang Q, Huang Z, Zhuang G. SOC bioavailability significantly correlated with the microbial activity mediated by size fractionation and soil morphology in agricultural ecosystems. ENVIRONMENT INTERNATIONAL 2024; 186:108588. [PMID: 38527397 DOI: 10.1016/j.envint.2024.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
Despite the fact that physical and chemical processes have been widely proposed to explicate the stabilization mechanisms of soil organic carbon (SOC), thebioavailability of SOC linked to soil physical structure, microbial community structure, and functional genes remains poorly understood. This study aims to investigate the SOC division based on bioavailability differences formed by physical isolation, and to clarify the relationships of SOC bioavailability with soil elements, pore characteristics, and microbial activity. Results revealed that soil element abundances such as SOC, TN, and DOC ranked in the same order as the soil porosity as clay > silt ≥ coarse sand > fine sand in both top and sub soil. In contrast to silt and clay, which had reduced SOC bioavailability, fine sand and coarse sand had dramatically enhanced SOC bioavailability compared to the bulk soil. The bacterial and fungal community structure was significantly influenced by particle size, porosity, and soil elements. Copiotrophic bacteria and functional genes were more prevalent in fine sand than clay, which also contained more oligotrophic bacteria. The SOC bioavailability was positively correlated with abundances of functional genes, C degradation genes, and copiotrophic bacteria, but negatively correlated with abundances of soil elements, porosity, oligotrophic bacteria, and microbial biomass (p < 0.05). This indicated that the soil physical structure divided SOC into pools with varying levels of bioavailability, with sand fractions having more bioavailable organic carbon than finer fractions. Copiotrophic Proteobacteria and oligotrophic Acidobacteria, Firmicutes, and Gemmatimonadetes made up the majority of the bacteria linked to SOC mineralization. Additionally, the fungi Mortierellomycota and Mucoromycota, which are mostly involved in SOC mineralization, may have the potential for oligotrophic metabolism. Our results indicated that particle-size fractionation could influence the SOC bioavailability by restricting SOC accessibility and microbial activity, thus having a significant impact on sustaining soil organic carbon reserves in temperate agricultural ecosystems, and provided a new research direction for organic carbon stability.
Collapse
Affiliation(s)
- Shujie Xiao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiuying Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixuan Huang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101400, China; Sino-Danish Center for Education and Research, Beijing 101400, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Xia F, Zhang Z, Zhang Q, Huang H, Zhao X. Life cycle assessment of greenhouse gas emissions for various feedstocks-based biochars as soil amendment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168734. [PMID: 38007117 DOI: 10.1016/j.scitotenv.2023.168734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/19/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Anthropogenic greenhouse gas (GHG) emissions are a major factor influencing climate change. The application of biochar as a soil amendment may be an effective way to reduce GHG emissions. Life cycle assessment (LCA) is widely used to assess the impact of biochar as a soil amendment on GHG emissions. The methodology is effective in assessing the impacts of the various stages of the biochar life cycle on GHG emissions. However, because of the diversity of biochar types, it is difficult to summarize the regularity of biochar life cycle impacts on GHG emissions. This paper summarizes the pathways of biochar's effect on GHG emissions and in-depth analyzes the mechanism of biochar's influence on GHG emissions from the perspective of biochar properties. Finally, the review comprehensively analyzes the effects of different types of biochar feedstock on GHG emissions at the stages of feedstock pretreatment, preparation, and application of the life cycle. The conclusions are as follows: (1) Biochar affects GHG emissions in three ways: feedstock supply, pyrolysis process, and application process. (2) The impact of biochar on GHG emissions is influenced by a combination of the physicochemical properties of biochar. (3) Biochar has a positive impact (feedstock pretreatment stage and preparation stage) or a negative impact (application stage) on life cycle GHG emissions. (4) The carbon sequestration capacity of biochar varies by feedstock type. The ranking of carbon sequestration capacity is waste wood biochar (WWB) > crop straw biochar (CSB) > livestock manure biochar (LMB) > sewage sludge biochar (SSB).
Collapse
Affiliation(s)
- Fang Xia
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhuo Zhang
- School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China; Key Laboratory of Land Consolidation and Rehabilitation, Ministry of Natural Resources, Beijing 100035, China.
| | - Qian Zhang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Haochong Huang
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xiaohui Zhao
- Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
23
|
Zhu L, Luan L, Chen Y, Wang X, Zhou S, Zou W, Han X, Duan Y, Zhu B, Li Y, Liu W, Zhou J, Zhang J, Jiang Y, Sun B. Community assembly of organisms regulates soil microbial functional potential through dual mechanisms. GLOBAL CHANGE BIOLOGY 2024; 30:e17160. [PMID: 38379454 DOI: 10.1111/gcb.17160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/22/2024]
Abstract
Unraveling the influence of community assembly processes on soil ecosystem functioning presents a major challenge in the field of theoretical ecology, as it has received limited attention. Here, we used a series of long-term experiments spanning over 25 years to explore the assembly processes of bacterial, fungal, protist, and nematode communities using high-throughput sequencing. We characterized the soil microbial functional potential by the abundance of microbial genes associated with carbon, nitrogen, phosphorus, and sulfur cycling using GeoChip-based functional gene profiling, and determined how the assembly processes of organism groups regulate soil microbial functional potential through community diversity and network stability. Our results indicated that balanced fertilization (NPK) treatment improved the stochastic assembly of bacterial, fungal, and protist communities compared to phosphorus-deficient fertilization (NK) treatment. However, there was a nonsignificant increase in the normalized stochasticity ratio of the nematode community in response to fertilization across sites. Our findings emphasized that soil environmental factors influenced the assembly processes of the biotic community, which regulated soil microbial functional potential through dual mechanisms. One mechanism indicated that the high phosphorus levels and low soil nutrient stoichiometry may increase the stochasticity of bacterial, fungal, and protist communities and the determinism of the nematode community under NPK treatment, ultimately enhancing soil microbial functional potential by reinforcing the network stability of the biotic community. The other mechanism indicated that the low phosphorus levels and high soil nutrient stoichiometry may increase the stochastic process of the bacterial community and the determinism of the fungal, protist, and nematode communities under NK treatment, thereby enhancing soil microbial functional potential by improving the β-diversity of the biotic community. Taken together, these results provide valuable insights into the mechanisms underlying the assembly processes of the biotic community that regulate ecosystem functioning.
Collapse
Affiliation(s)
- Lingyue Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Lu Luan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yan Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiu Zou
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiaori Han
- College of Land and Environment, Shenyang Agricultural University, Shengyang, China
| | - Yinghua Duan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Yan Li
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wenzhao Liu
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma, USA
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
24
|
Zhang X, Zheng S, Yu M, Xu C, Li Y, Sun L, Hu G, Yang J, Qiu X. Evaluation of Resistance Resources and Analysis of Resistance Mechanisms of Maize to Stalk Rot Caused by Fusarium graminearum. PLANT DISEASE 2024; 108:348-358. [PMID: 37443398 DOI: 10.1094/pdis-04-23-0825-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Stalk rot is one of the most destructive and widely distributed diseases in maize plants worldwide. Research on the performance and resistance mechanisms of maize against stem rot is constantly improving. In this study, among 120 inbred maize lines infected by Fusarium graminearum using the injection method, 4 lines (3.33%) were highly resistant to stalk rot, 28 lines (23.33%) were resistant, 57 lines (47.50%) were susceptible, and 31 lines (25.84%) were highly susceptible. The inbred lines 18N10118 and 18N10370 were the most resistant and susceptible with disease indices of 7.5 and 75.6, respectively. Treatment of resistant and susceptible maize inbred seedlings with F. graminearum showed that root hair growth of the susceptible inbred lines was significantly inhibited, and a large number of hyphae attached and adsorbed multiple conidia near the root system. However, the resistant inbred lines were delayed and inconspicuous, with only a few hyphae and spores appearing near the root system. Compared with susceptible inbred lines, resistant maize inbred line seedlings treated with F. graminearum exhibited elevated activities of catalase, phenylalanine ammonia-lyase, polyphenol oxidase, and superoxide dismutase. We identified 153 genes related to disease resistance by transcriptome analysis. The mitogen-activated protein kinase signaling and peroxisome pathways mainly regulated the resistance mechanism of maize inbred lines to F. graminearum infection. These two pathways might play an important role in the disease resistance mechanism, and the function of genes in the two pathways must be further studied, which might provide a theoretical basis for further understanding the molecular resistance mechanism of stalk rot and resistance gene mining.
Collapse
Affiliation(s)
- Xue Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Suli Zheng
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Miao Yu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Chuzhen Xu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yonggang Li
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Lei Sun
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin 150086, China
| | - Guanghi Hu
- Institute of Maize Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Jianfei Yang
- Institute of Maize Research, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiaojing Qiu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| |
Collapse
|
25
|
Lei S, Wang X, Wang J, Zhang L, Liao L, Liu G, Wang G, Song Z, Zhang C. Effect of aridity on the β-diversity of alpine soil potential diazotrophs: insights into community assembly and co-occurrence patterns. mSystems 2024; 9:e0104223. [PMID: 38059620 PMCID: PMC10804954 DOI: 10.1128/msystems.01042-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/23/2023] [Indexed: 12/08/2023] Open
Abstract
Microbial diversity plays a vital role in the maintenance of ecosystem functions. However, the current understanding of mechanisms that shape microbial diversity along environmental gradients at broad spatial scales is relatively limited, especially for specific functional groups, such as potential diazotrophs. Here, we conducted an aridity-gradient transect survey from 60 sites across the Tibetan Plateau, the largest alpine ecosystem of the planet, to investigate the ecological processes (e.g., local species pools, community assembly processes, and co-occurrence patterns) that underlie the β-diversity of alpine soil potential diazotrophic communities. We found that aridity strongly and negatively affected the abundance, richness, and β-diversity of soil diazotrophs. Diazotrophs displayed a distance-decay pattern along the aridity gradient, with organisms living in lower aridity habitats having a stronger distance-decay pattern. Arid habitats had lower co-occurrence complexity, including the number of edges and vertices, the average degree, and the number of keystone taxa, as compared with humid habitats. Local species pools explained limited variations in potential diazotrophic β-diversity. In contrast, co-occurrence patterns and stochastic processes (e.g., dispersal limitation and ecological drift) played a significant role in regulating potential diazotrophic β-diversity. The relative importance of stochastic processes and co-occurrence patterns changed with increasing aridity, with stochastic processes weakening whereas that of co-occurrence patterns enhancing. The genera Geobacter and Paenibacillus were identified as keystone taxa of co-occurrence patterns that are associated with β-diversity. In summary, aridity affects the co-occurrence patterns and community assembly by regulating soil and vegetation characteristics and ultimately shapes the β-diversity of potential diazotrophs. These findings highlight the importance of co-occurrence patterns in structuring microbial diversity and advance the current understanding of mechanisms that drive belowground communities.IMPORTANCERecent studies have shown that community assembly processes and species pools are the main drivers of β-diversity in grassland microbial communities. However, co-occurrence patterns can also drive β-diversity formation by influencing the dispersal and migration of species, the importance of which has not been reported in previous studies. Assessing the impact of co-occurrence patterns on β-diversity is important for understanding the mechanisms of diversity formation. Our study highlights the influence of microbial co-occurrence patterns on β-diversity and combines the drivers of community β-diversity with drought variation, revealing that drought indirectly affects β-diversity by influencing diazotrophic co-occurrence patterns and community assembly.
Collapse
Affiliation(s)
- Shilong Lei
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangtao Wang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
| | - Jie Wang
- College of Forestry, Guizhou University, Guiyang, China
| | - Lu Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Lirong Liao
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guobin Liu
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoliang Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Science, Yangling, Shaanxi, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Zhang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
26
|
Wu H, Cui H, Fu C, Li R, Qi F, Liu Z, Yang G, Xiao K, Qiao M. Unveiling the crucial role of soil microorganisms in carbon cycling: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168627. [PMID: 37977383 DOI: 10.1016/j.scitotenv.2023.168627] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Soil microorganisms, by actively participating in the decomposition and transformation of organic matter through diverse metabolic pathways, play a pivotal role in carbon cycling within soil systems and contribute to the stabilization of organic carbon, thereby influencing soil carbon storage and turnover. Investigating the processes, mechanisms, and driving factors of soil microbial carbon cycling is crucial for understanding the functionality of terrestrial carbon sinks and effectively addressing climate change. This review comprehensively discusses the role of soil microorganisms in soil carbon cycling from three perspectives: metabolic pathways, microbial communities, and environmental influences. It elucidates the roles of different microbial species in carbon cycling and highlights the impact of microbial interactions and environmental factors on carbon cycling. Through the synthesis of 2171 relevant papers in the Web of Science Core database, we elucidated the ecological community structure, activity, and assembly mechanisms of soil microorganisms crucial to the soil carbon cycle that have been widely analyzed. The integration of soil microbial carbon cycle and its driving factors are vital for accurately predicting and modeling biogeochemical cycles and effectively addressing the challenges posed by global climate change. Such integration is vital for accurately predicting and modeling biogeochemical cycles and effectively addressing the challenges posed by global climate change.
Collapse
Affiliation(s)
- Haowei Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Huiling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Chenxi Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ran Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Fengyuan Qi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Zhelun Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Guang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Keqing Xiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
27
|
Qin L, Tian W, Freeman C, Jia Z, Yin X, Gao C, Zou Y, Jiang M. Changes in bacterial communities during rice cultivation remove phenolic constraints on peatland carbon preservation. ISME COMMUNICATIONS 2024; 4:ycae022. [PMID: 38500699 PMCID: PMC10945358 DOI: 10.1093/ismeco/ycae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/30/2023] [Accepted: 01/30/2024] [Indexed: 03/20/2024]
Abstract
Northern peatlands contain ~30% of terrestrial carbon (C) stores, but in recent decades, 14% to 20% of the stored C has been lost because of conversion of the peatland to cropland. Microorganisms are widely acknowledged as primary decomposers, but the keystone taxa within the bacterial community regulating C loss from cultivated peatlands remain largely unknown. In this study, we investigated the bacterial taxa driving peat C mineralization during rice cultivation. Cultivation significantly decreased concentrations of soil organic C, dissolved organic C (DOC), carbohydrates, and phenolics but increased C mineralization rate (CMR). Consistent with the classic theory that phenolic inhibition creates a "latch" that reduces peat C decomposition, phenolics were highly negatively correlated with CMR in cultivated peatlands, indicating that elimination of inhibitory phenolics can accelerate soil C mineralization. Bacterial communities were significantly different following peatland cultivation, and co-occurrence diagnosis analysis revealed substantial changes in network clusters of closely connected nodes (modules) and bacterial keystone taxa. Specifically, in cultivated peatlands, bacterial modules were significantly negatively correlated with phenolics, carbohydrates, and DOC. While keystone taxa Xanthomonadales, Arthrobacter, and Bacteroidetes_vadinHA17 can regulate bacterial modules and promote carbon mineralization. Those observations indicated that changes in bacterial modules can promote phenolic decomposition and eliminate phenolic inhibition of labile C decomposition, thus accelerating soil organic C loss during rice cultivation. Overall, the study provides deeper insights into microbe-driven peat C loss during rice cultivation and highlights the crucial role of keystone bacterial taxa in the removal of phenolic constraints on peat C preservation.
Collapse
Affiliation(s)
- Lei Qin
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Wei Tian
- College of Forestry and Grassland, Jilin Agriculture University, Changchun 130118, China
| | - Chris Freeman
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, United Kingdom
| | - Zhongjun Jia
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiaolei Yin
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Chuanyu Gao
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yuanchun Zou
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Ming Jiang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
28
|
Yang H, Chen N, Wang Z, Liu J, Qin J, Zhu K, Jia H. Biochar-Associated Free Radicals Reduce Soil Bacterial Diversity: New Insight into Ecoenzymatic Stoichiometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20238-20248. [PMID: 37976412 DOI: 10.1021/acs.est.3c06864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The toxicity of environmentally persistent free radicals (EPFRs), often generated during biochar production, on soil bacteria is still not truly reflected when considering the conditions in real soil. Herein, the influence of free radicals within biochar on soil bacteria was investigated from the perspectives of enzyme activity, community structure, and ecoenzymatic stoichiometry. Biochar addition enhanced the contents of EPFRs and derived hydroxyl radicals (•OH) in the soil, while it reduced bacterial alpha diversity by 5.06-35.44%. The results of redundancy analysis and inhibition experiments collectively demonstrated the key role of EPFRs and •OH in reducing the bacterial alpha diversity. Specifically, EPFRs and •OH increased the stoichiometric imbalance by promoting the release of dissolved organic carbon and ammonium N, thus aggravating the P limitation in soil. This was further confirmed by increased alkaline phosphatase activity from 702 to 874 nmol g-1 h-1. The P limitation induced by EPFRs and •OH decreased the bacterial alpha diversity, as evidenced by the negative correlation between P limitation and bacterial alpha diversity (r2 = -0.931 to -0.979, P < 0.01) and the structural equation model. The obtained results demonstrate a ubiquitous but previously overlooked mechanism for bacterial toxicity of biochar-associated free radicals, providing scientific guidance for safe utilization of biochar.
Collapse
Affiliation(s)
- Huiqiang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Na Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Zhiqiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Jinbo Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Jianjun Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Kecheng Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| |
Collapse
|
29
|
Zhou G, Chen L, Zhang C, Ma D, Zhang J. Bacteria-Virus Interactions Are More Crucial in Soil Organic Carbon Storage than Iron Protection in Biochar-Amended Paddy Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19713-19722. [PMID: 37983953 DOI: 10.1021/acs.est.3c04398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Iron oxides supposedly provide physicochemical protection for soil organic carbon (SOC) under anoxic conditions. Likewise, biochar can modulate the composition of soil microbial communities. However, how Fe oxides and microbial communities influence the fate of SOC with biochar amendment remains unresolved, especially the effect of the bacteria-virus interaction on SOC dynamics. Here, we performed a four-month pot experiment using rice seedlings with a biochar amendment under waterlogged conditions. Then, soil aggregate sizes were examined to explore the factors influencing the SOC patterns and the underlying mechanisms. We found that biochar altered soil enzyme activities, especially in macroaggregates. Fe oxides and necromass exhibited significant negative relationships with SOC. Bacterial communities were notably associated with viral communities. Here, the keystone ecological cluster (module 1) and keystone taxa in the bacteria-virus network showed significant negative correlations with SOC. However, Fe oxides exhibited substantial positive relationships with module 1. In contrast to the prevailing view, the SOC increase was not primarily driven by Fe oxides but strongly influenced by bacteria-virus interactions and keystone taxa. These findings indicate that biochar governs microbial-mediated SOC accumulation in paddy soil and ascertains the role of viruses in regulating the bacterial community, thus predicting SOC stock.
Collapse
Affiliation(s)
- Guixiang Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lin Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Congzhi Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Donghao Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
30
|
Li G, Niu W, Ma L, Du Y, Zhang Q, Sun J, Siddique KHM. Legacy effects of wheat season organic fertilizer addition on microbial co-occurrence networks, soil function, and yield of the subsequent maize season in a wheat-maize rotation system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119160. [PMID: 37812905 DOI: 10.1016/j.jenvman.2023.119160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023]
Abstract
Organic fertilizer can alleviate soil degradation. While numerous studies have explored the immediate impacts of organic fertilizer on soil properties and crop production, the legacy effects of organic fertilizer addition remain less understood. This research investigated the subsequent effects of organic fertilizer addition during the winter wheat season on soil microbial community structure, co-occurrence networks, soil function, and summer maize yield from 2018 to 2020. Six fertilization treatments were implemented as chemical nitrogen fertilizer (N) alone or combined sheep manure and nitrogen fertilizer (SMN) at low, medium, and high fertilization levels during the winter wheat season, with only N fertilizer applied during the maize season. The findings revealed significant variations in bacterial and fungal community structures between the SMN and N treatments. The SMN treatments increased the relative abundance of Proteobacteria, Actinobacteria, and Bacteroidetes and decreased the relative abundance of Rokubacteria, Acidobacteria, Gemmatimonadetes, Chloroflexi, and Nitrospirae compared to the N treatment. The SMN treatments had higher fungal network connectivity and lower mean path distance and modularity than the N treatment, resulting in heightened sensitivity of fungi to environmental changes. The legacy effects of organic fertilizer changed the functional potential of the N and C cycles, with keystone taxa such as Proteobacteria, Actinomycetes, Acidobacteria, Gemmatimonadetes, Bacteroides, and Ascomycota significantly correlating with functional genes related to the C and N cycles. Surprisingly, no significant differences in summer maize yield occurred between the SMN and N treatments. However, the random forest model revealed that the SMN treatments had significantly higher explanatory power of soil microbial community structure for maize yield (74.31%) than the N treatment (13.07%). These results were corroborated in subsequent studies and underscore the legacy effects of organic fertilizer addition on soil microbial communities. This research offers valuable insights into organic fertilizer use for enhancing soil quality and sustaining agricultural productivity.
Collapse
Affiliation(s)
- Guochun Li
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenquan Niu
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Li Ma
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China
| | - Yadan Du
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qian Zhang
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Sun
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| |
Collapse
|
31
|
Tang X, Li Y, Jin R, Yin G, Hou L, Liu M, Ju F, Han P. Community pattern of potential phenanthrene (PHE) degrading bacteria in PHE contaminated soil revealed by 13C-DNA stable isotope probing. CHEMOSPHERE 2023; 344:140377. [PMID: 37806323 DOI: 10.1016/j.chemosphere.2023.140377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Quantification of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and identification of potential PAH degraders are essential for comprehending their environmental fate and conducting bioremediation. However, the microbial population responsible for the breakdown of phenanthrene (PHE) in polluted soil environments is frequently disregarded. In this study, via DNA-stable-isotope probing (DNA-SIP), we found that soil microbiota likely plays a crucial part in the PHE degradation. The PHE removal rates were 98% and 99%, in 13C-PHE and 12C-PHE microcosmic incubations, respectively. 13CO2 was produced along with the degradation of 13C-PHE. According to the analysis of 16S rRNA gene, there was a relatively higher presence of unidentified bacteria in the 'heavy' DNA fractions treated with 13C-PHE. Genus of Enterobacteriales, Acidobacteria, Alphaproteobacteria, Paenibacillaceae, Flavobacteriia, Chloroflexi, Cyanobacteria, Caldilineae, Latescibacteria, Armatimonadetes and Blastocatellia were succseesfully labeled during the degradation of 13C-PHE, indicating their capacity of utilizing PHE. Co-occurrence network of 13C-heavy fractions exhibited greater complexity compared with that of 12C-heavy fractions, revealling an enhancement of bacterial interspecies interactions. Collectivley, this study eluidated the soil microbes involed in the PHE degradation and offered fresh perspectives on the community pattern of potential PHE degrading bacteria.
Collapse
Affiliation(s)
- Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Ye Li
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Ruihe Jin
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310030, China.
| | - Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
32
|
Deshoux M, Sadet-Bourgeteau S, Gentil S, Prévost-Bouré NC. Effects of biochar on soil microbial communities: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166079. [PMID: 37553053 DOI: 10.1016/j.scitotenv.2023.166079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Changes in soil microbial communities may impact soil fertility and stability because microbial communities are key to soil functioning by supporting soil ecological quality and agricultural production. The effects of soil amendment with biochar on soil microbial communities are widely documented but studies highlighted a high degree of variability in their responses following biochar application. The multiple conditions under which they were conducted (experimental designs, application rates, soil types, biochar properties) make it difficult to identify general trends. This supports the need to better determine the conditions of biochar production and application that promote soil microbial communities. In this context, we performed the first ever meta-analysis of the biochar effects on soil microbial biomass and diversity (prokaryotes and fungi) based on high-throughput sequencing data. The majority of the 181 selected publications were conducted in China and evaluated the short-term impact (<3 months) of biochar. We demonstrated that a large panel of variables corresponding to biochar properties, soil characteristics, farming practices or experimental conditions, can affect the effects of biochar on soil microbial characteristics. Using a variance partitioning approach, we showed that responses of soil microbial biomass and prokaryotic diversity were highly dependent on biochar properties. They were influenced by pyrolysis temperature, biochar pH, application rate and feedstock type, as wood-derived biochars have particular physico-chemical properties (high C:N ratio, low nutrient content, large pores size) compared to non-wood-derived biochars. Fungal community data was more heterogenous and scarcer than prokaryote data (30 publications). Fungal diversity indices were rather dependent on soil properties: they were higher in medium-textured soils, with low pH but high soil organic carbon. Altogether, this meta-analysis illustrates the need for long-term field studies in European agricultural context for documenting responses of soil microbial communities to biochar application under diverse conditions combining biochar types, soil properties and conditions of use.
Collapse
Affiliation(s)
- Maëlle Deshoux
- INRAE UMR Agroécologie, Institut Agro, University Bourgogne, University Bourgogne Franche-Comté, F-21000 Dijon, France; Groupe Bordet, Froidvent, F-21290 Leuglay, France.
| | - Sophie Sadet-Bourgeteau
- INRAE UMR Agroécologie, Institut Agro, University Bourgogne, University Bourgogne Franche-Comté, F-21000 Dijon, France
| | | | | |
Collapse
|
33
|
Zhang H, Hu W, Liu R, Bartlam M, Wang Y. Low and high nucleic acid content bacteria play discrepant roles in response to various carbon supply modes. Environ Microbiol 2023; 25:3703-3718. [PMID: 37964717 DOI: 10.1111/1462-2920.16539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Planktonic bacteria can be grouped into 'high nucleic acid content (HNA) bacteria' and 'low nucleic acid content (LNA) bacteria.' Nutrient input modes vary in environments, causing nutrient availability heterogeneity. We incubated them with equal amounts of total glucose added in a continuous/pulsed mode. The pulse-treated LNA bacteria exhibited twice the cell abundance and four times the viability of the continuous-treated LNA, while HNA did not show an adaptation to pulsed treatment. In structural equation modelling, LNA bacteria had higher path coefficients than HNA, between growth and carbon-saving metabolic pathways, intracellular ATP and the inorganic energy storage polymer, polyphosphate, indicating their low-cost growth, and flexible energy storage and utilisation. After incubation, the pulse-treated LNA bacteria contained more proteins and polysaccharides (0.00064, 0.0012 ng cell-1 ) than the continuous-treated LNA (0.00014, 0.00014 ng cell-1 ), conferring endurance and rapid response to pulses. Compared to LNA, HNA keystone taxa had stronger correlations with the primary glucose metabolism step, glycolysis, and occupied leading positions to explain the random forest model. They are essential to introduce glucose into the element cycling of the whole community under both treatments. Our work outlines a systematic bacterial response to carbon input.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Wei Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Ruidan Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Mark Bartlam
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| |
Collapse
|
34
|
Chen J, Xiao Q, Xu D, Li Z, Chao L, Li X, Liu H, Wang P, Zheng Y, Liu X, Qu H, Bao Y. Soil microbial community composition and co-occurrence network responses to mild and severe disturbances in volcanic areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165889. [PMID: 37524180 DOI: 10.1016/j.scitotenv.2023.165889] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Soil physicochemical properties and vegetation types are the main factors affecting soil microorganisms, but there are few studies on the effects of the disturbance following volcanic eruption. To make up for this lack of knowledge, we used Illumina Miseq high-throughput sequencing to study the characteristics of soil microorganisms on both shores of a volcanically disturbed lake. Soil microorganisms in the two sites were subjected to different degrees of volcanic disturbance and showed significant heterogeneity. Mild volcanic disturbance area had higher enrichment of prokaryotic community. Co-occurrence network analysis showed that a total of 12 keystone taxa (9 prokaryotes and 3 fungi) were identified, suggesting that soil prokaryote may play a more significant role than fungi in overall community structure and function. Compared with severe volcanic disturbance area, the soil microbial community in mild volcanic disturbance area had the higher modular network (0.327 vs 0.291). The competition was stronger (positive/negative link ratio, P/N: 1.422 vs 1.159). Random forest analysis showed that soil superoxide dismutase was the most significant variable associated with soil microbial community. Structural equation model (SEM) results showed that keystone had a directly positive effect on prokaryotic (λ = 0.867, P < 0.001) and fungal (λ = 0.990, P < 0.001) multifunctionality while had also a directly positive effect on fungal diversity (λ = 0.553, P < 0.001), suggesting that keystone taxa played a key role in maintaining ecosystem stability. These results were important for understanding the effects of different levels of volcanic disturbance on soil ecosystems.
Collapse
Affiliation(s)
- Jin Chen
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Qingchen Xiao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Daolong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zishan Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Lumeng Chao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Haijing Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Pengfei Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Yaxin Zheng
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Xinyan Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Hanting Qu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Yuying Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China.
| |
Collapse
|
35
|
Qi JQ, Yuan HY, Zhuang QL, Zama EF, Tian XF, Tao BX, Zhang BH. Effect of different types of biochar on soil properties and functional microbial communities in rhizosphere and bulk soils and their relationship with CH 4 and N 2O emissions. Front Microbiol 2023; 14:1292959. [PMID: 38029118 PMCID: PMC10656817 DOI: 10.3389/fmicb.2023.1292959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Biochar as an agricultural soil amendment plays vital roles in mediating methane (CH4) and nitrous oxide (N2O) emissions in soils. The link between different types of biochar, bulk soil, and rhizosphere microbial communities in relation to CH4 and N2O emissions is being investigated in this study. The rice pot experiment was conducted using biochar at two temperatures (300°C and 500°C) in combination with three biochar levels (0, 2, 10% w/w). Soil properties and the abundance of genes associated with CH4 and N2O emissions from both rhizosphere and bulk soils were investigated. The study also aimed to examine the structure of microbial communities (pmoA, nosZ) in rhizosphere and bulk soils whereas CH4 and N2O emissions were monitored while growing rice. Results showed that biochar at 300°C and 10% incorporation significantly increased the CH4 emissions by up to 59% rise compared to the control group. Random Forest analysis revealed that the ratio of mcrA/pmoA along with the abundance of mcrA from both rhizosphere and bulk soils, the abundance of AOA, TN, DOC, and the community composition of pmoA-harboring microorganisms from both bulk and rhizosphere soils were important predictors of CH4 emissions. Therefore, the ratio of mcrA/pmoA in rhizosphere soil and the abundance of AOA in bulk soil were the main factors influencing CH4 emissions. Variation Partitioning Analysis (VPA) results indicated that the effects of these factors on bulk soil were 9% of CH4 emissions variations in different treatments, which contributed more than rhizosphere soils' factors. Moreover, random forest analysis results indicated that the abundance of AOB in bulk soil was the most important predictor influencing N2O emissions. The VPA result revealed that the factors in rhizosphere soil could explain more than 28% of the variations in N2O emissions. Our study highlights that rhizosphere soil has a more significant effect than bulk soil on N2O production. Our findings further the understanding of the link between bulk and rhizosphere attributes, and their impact on CH4 and N2O emissions in paddy soils. In summary, we recommend the application of biochar at 500°C and 2% incorporation rate for agricultural production in the area.
Collapse
Affiliation(s)
- Jian-Qing Qi
- School of Geography and Environment, Liaocheng University, Liaocheng, China
| | - Hai-Yan Yuan
- School of Geography and Environment, Liaocheng University, Liaocheng, China
| | - Qi-Lu Zhuang
- School of Geography and Environment, Liaocheng University, Liaocheng, China
| | - Eric-Fru Zama
- Department of Agricultural and Environmental Engineering, College of Technology, University of Bamenda, Bambili, Cameroon
| | - Xiao-Fei Tian
- School of Geography and Environment, Liaocheng University, Liaocheng, China
| | - Bao-Xian Tao
- School of Geography and Environment, Liaocheng University, Liaocheng, China
| | - Bao-Hua Zhang
- School of Geography and Environment, Liaocheng University, Liaocheng, China
| |
Collapse
|
36
|
Ren B, Meng M, Yu J, Ma X, Li D, Li J, Yang J, Bai L, Feng Y. Invasion by Cenchrus spinifex changes the soil microbial community structure in a sandy grassland ecosystem. Heliyon 2023; 9:e20860. [PMID: 37920531 PMCID: PMC10618509 DOI: 10.1016/j.heliyon.2023.e20860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Continuous nitrogen deposition increases the nitrogen content of terrestrial ecosystems and alters the soil nitrogen cycling process. Invasive plants have strong environmental adaptability, which can not only affect the composition and diversity of soil microbial community but also significantly affect the transformation process of soil nitrogen, leading to successful invasion. Currently, research on invasive plant soil ecosystems mainly focused on changes in soil nutrients and soil microorganisms. As an invasive annual grass weed with strong ecological adaptability, the impact of Cenchrus spinifex at different growth periods on soil environment and soil microbial structure composition and diversity in sandy grassland ecosystems is still unclear. In this study, soil samples were collected from four habitats with different degrees of invasion in situ during the vegetation and reproductive growth periods of Cenchrus spinifex. High-throughput sequencing and qPCR technology were used to analyze the changes in the composition, structure and diversity characteristics of the soil microbial communities during Cenchrus spinifex invasion. The results indicated that Cenchrus spinifex invasion had different effects on the soil environment at different growth periods, and Cenchrus spinifex had a preference for the utilization of ammonium nitrogen during vegetation growth period. Moreover, Cenchrus spinifex invasion significantly changed the composition and structure of soil bacterial communities, and the response of soil bacterial and fungal communities to the invasion was inconsistent. Additionally, the bacterial network was more stable than the fungal network. At different growth periods, Cenchrus spinifex had a significant impact on the key microbial communities of soil nitrogen cycling. The invasion increased the abundance of nifH and AOA-amoA, while decreased the abundance of AOA-amoB. Alkaline hydrolyzed nitrogen, total nitrogen and total phosphorus content were key factors that affect vegetation growth period and change the key microbial communities of nitrogen cycling. Alkaline hydrolyzed nitrogen, total phosphorus and organic carbon were key factors in reproductive growth period that alter the nitrogen cycling of key microbial communities.
Collapse
Affiliation(s)
- Baihui Ren
- Corresponding author. No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning, 110866, China.
| | | | - Jianxin Yu
- Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Xinwei Ma
- Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Daiyan Li
- Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Jiahuan Li
- Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Jiyun Yang
- Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Long Bai
- Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Yulong Feng
- Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| |
Collapse
|
37
|
Qi X, Zhu M, Yuan Y, Dang Z, Yin H. Bioremediation of PBDEs and heavy metals co-contaminated soil in e-waste dismantling sites by Pseudomonas plecoglossicida assisted with biochar. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132408. [PMID: 37647661 DOI: 10.1016/j.jhazmat.2023.132408] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/05/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Biochar-assisted microbial remediation has been proposed as a promising strategy to eliminate environmental pollutants. However, studies on this strategy used in the remediation of persistent organic pollutants and heavy metals co-contaminated soil are lacking, and the effect of the combined incorporation of biochar and inoculant on the assembly, functions, and microbial interactions of soil microbiomes are unclear. Here, we studied 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) degradation and heavy metal immobilization by and biochar-based bacterial inoculant (BC/PP) in an e-waste contaminated soil, and corresponding microbial regulation mechanisms. Results showed that BC/PP addition was more effective in reducing Cu and Pb availability and degrading BDE-47 than inoculant alone. Notably, BC/PP facilitated bound-residue formation of BDE-47, reducing the ecological risk of residual BDE-47. Meanwhile, microbial carbon metabolism and enzyme activities (related to C-, N-, and P- cycles) were enhanced in soil amended with BC/PP. Importantly, biochar played a crucial role in inoculant colonization, community assembly processes, and microbiome multifunction. In the presence of biochar, positive interactions in co-occurrence networks of the bacterial community were more frequent, and higher network stability and more keystone taxa were observed (including potential degraders). These findings provide a promising strategy for decontaminating complex-polluted environments and recovering soil ecological functions.
Collapse
Affiliation(s)
- Xin Qi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yibo Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| |
Collapse
|
38
|
Fudjoe SK, Li L, Anwar S, Shi S, Xie J, Wang L, Xie L, Yongjie Z. Nitrogen fertilization promoted microbial growth and N 2O emissions by increasing the abundance of nirS and nosZ denitrifiers in semiarid maize field. Front Microbiol 2023; 14:1265562. [PMID: 37720157 PMCID: PMC10501401 DOI: 10.3389/fmicb.2023.1265562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Nitrous oxide (N2O) emissions are a major source of gaseous nitrogen loss, causing environmental pollution. The low organic content in the Loess Plateau region, coupled with the high fertilizer demand of maize, further exacerbates these N losses. N fertilizers play a primary role in N2O emissions by influencing soil denitrifying bacteria, however, the underlying microbial mechanisms that contribute to N2O emissions have not been fully explored. Therefore, the research aimed to gain insights into the intricate relationships between N fertilization, soil denitrification, N2O emissions, potential denitrification activity (PDA), and maize nitrogen use efficiency (NUE) in semi-arid regions. Four nitrogen (N) fertilizer rates, namely N0, N1, N2, and N3 (representing 0, 100, 200, and 300 kg ha-1 yr.-1, respectively) were applied to maize field. The cumulative N2O emissions were 32 and 33% higher under N2 and 37 and 39% higher under N3 in the 2020 and 2021, respectively, than the N0 treatment. N fertilization rates impacted the abundance, composition, and network of soil denitrifying communities (nirS and nosZ) in the bulk and rhizosphere soil. Additionally, within the nirS community, the genera Cupriavidus and Rhodanobacter were associated with N2O emissions. Conversely, in the nosZ denitrifier, the genera Azospirillum, Mesorhizobium, and Microvirga in the bulk and rhizosphere soil reduced N2O emissions. Further analysis using both random forest and structural equation model (SEM) revealed that specific soil properties (pH, NO3--N, SOC, SWC, and DON), and the presence of nirS-harboring denitrification, were positively associated with PDA activities, respectively, and exhibited a significant association to N2O emissions and PDA activities but expressed a negative effect on maize NUE. However, nosZ-harboring denitrification showed an opposite trend, suggesting different effects on these variables. Our findings suggest that N fertilization promoted microbial growth and N2O emissions by increasing the abundance of nirS and nosZ denitrifiers and altering the composition of their communities. This study provides new insights into the relationships among soil microbiome, maize productivity, NUE, and soil N2O emissions in semi-arid regions.
Collapse
Affiliation(s)
- Setor Kwami Fudjoe
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lingling Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Sumera Anwar
- Department of Botany, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Shangli Shi
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Junhong Xie
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Linlin Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lihua Xie
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zhou Yongjie
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
39
|
Cheng K, Wang X, Fu L, Wang W, Liu M, Sun B. Interaction between dissolved organic carbon and fungal network governs carbon mineralization in paddy soil under co-incorporation of green manure and biochar. Front Microbiol 2023; 14:1233465. [PMID: 37675431 PMCID: PMC10477716 DOI: 10.3389/fmicb.2023.1233465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Legume crops in rice cultivation are typically rotated and incorporated into the soil as green manure to improve soil fertility. Biochar has recently been co-incorporated with green manure to simultaneously stimulate soil organic carbon (SOC) mineralization and increase carbon (C) sequestration. However, few studies examine the effects of the co-incorporation of biochar and green manure on C cycling and the underlying microbial mechanisms in paddy fields. In this study, the effects of the co-incorporation of green manure and biochar on C mineralization, dissolved organic carbon (DOC) characteristics, and microbial community structures were investigated. A pot study was conducted with three treatments: inorganic NPK (NPK), inorganic NPK + green manure (GM), and inorganic NPK + green manure + biochar (GMC). Organic amendments significantly increased cumulative C mineralization, with amounts in the order GMC (3,434 mg·kg-1) > GM (2,934 mg·kg-1) > NPK (2,592 mg·kg-1). Fertilizer treatments had similar effects on DOC concentrations, with amounts in the order GMC (279 mg·kg-1) > GM (255 mg·kg-1) > NPK (193 mg·kg-1). According to fluorescence spectra, the highest microbial humic acid-like fraction and biological index were also in GMC. Co-incorporation of green manure and biochar shifted the composition of bacterial and fungal communities but more importantly, increased fungal network complexity and decreased bacterial network complexity. The increase in fungal network complexity with the increase in DOC concentrations and microbially derived components was the dominant factor in promoting C mineralization. Overall, this study reveals the underlying biochemical mechanism, the interaction between DOC and fungal network of C cycling in paddy soil under the co-incorporation of green manure and biochar management, and provides fundamental knowledge for exploring effective approaches to improve soil fertility and health in the future.
Collapse
Affiliation(s)
- Kun Cheng
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xiaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Libo Fu
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Wei Wang
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ming Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
40
|
Liu S, Gao Y, Chen J, Li J, Zhang H. Responses of soil bacterial community structure to different artificially restored forests in open-pit coal mine dumps on the loess plateau, China. Front Microbiol 2023; 14:1198313. [PMID: 37577417 PMCID: PMC10416249 DOI: 10.3389/fmicb.2023.1198313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Artificial vegetation restoration is an effective method for improving soil quality. In areas experiencing coal mine subsidence, the microbial community is essential for reconstructing the ecological balance of the soil. Studies are needed to examine how soil microbial community structure respond to different artificial forest restoration types and ages, especially over long-term periods. Therefore, in this study, 10, 20, and 30-year trials were chosen with two restoration types: Pinus tabuliformis (PT) and Ulmus pumila (UP). The objective was to determine how various types and ages of forest restoration affect the structure of soil bacterial communities, as well as the soil environmental factors driving these changes. The results showed that artificial 30-year restoration for both PT and UP can improve soil physical and chemical properties more than restoration after 10 and 20 years. The soil bacterial community structure remarkably differed among the different forest types and restoration ages. The bacterial diversity was higher in UP than in PT; the alpha diversity at longer restoration years (30 and 20) was significantly higher than at 10 years for both PT and UP. Moreover, soil nutrients and pH were the primary soil environmental factors driving bacterial community structure in the PT and UP. Finally, the integrated fertility index (IFI) at 30 years of restoration was considerably higher for PT and UP, and thus, is more beneficial to the restoration of soil after coal mining. Our findings are useful for studying improvement in soil quality and the restoration of the ecological environment in mining areas.
Collapse
Affiliation(s)
- Shuang Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Yuru Gao
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Jianwen Chen
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Junjian Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Hong Zhang
- College of Environment and Resources, Shanxi University, Taiyuan, China
| |
Collapse
|
41
|
Zhu Z, Zhu Q. Differences in metabolic transport and resistance mechanisms of Abemaciclib, Palbociclib, and Ribociclib. Front Pharmacol 2023; 14:1212986. [PMID: 37475713 PMCID: PMC10354263 DOI: 10.3389/fphar.2023.1212986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023] Open
Abstract
Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) play a crucial role in cancer treatment, particularly in breast cancer, and their mechanism of drug resistance is a topic of global interest in research. Hence, it is vital to comprehend the distinctions between various CDK4/6i, including their mechanisms of action and resistance mechanisms. This article aims to summarize the metabolic and transport variations as well as the differences in resistance among the three FDA-approved CDK4/6 inhibitors: Abemaciclib, Palbociclib, and Ribociclib. It also aims to discuss how these differences impact the effectiveness and safety of anticancer drugs. It was conducted in March 2023 to search PubMed, Embase, and Web of Science for literature related to this topic. Despite all being CDK4/6i, differences in their metabolism and transport were found, which are related to their chemical structure. Moreover, there are variations in preclinical pharmacology, pharmacokinetics, and clinical safety and efficacy of the different inhibitors. Genetic mutations, drug tolerance, and other factors may influence CDK4/6 resistance mechanisms. Currently, the resistance mechanisms differences of the three drugs remain largely unknown, and there are differences in the resistance mechanisms among them, necessitating further exploration and research.
Collapse
Affiliation(s)
- Zhimin Zhu
- Department of Pharmaceutics, Shanghai Eighth People’s Hospital, Shanghai, China
| | - Qiongni Zhu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Zhang Z, Duan C, Liu Y, Li A, Hu X, Chen J, Zhang S, Li X, Che R, Li S, Ekelund F, Cui X. Green waste and sewage sludge feeding ratio alters co-composting performance: Emphasis on the role of bacterial community during humification. BIORESOURCE TECHNOLOGY 2023; 380:129014. [PMID: 37028527 DOI: 10.1016/j.biortech.2023.129014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/14/2023]
Abstract
Composting with five levels of green waste and sewage sludge was compared to examine how feeding ratios affected composting performance with special focus on humification, and the underlying mechanisms. The results showed that the raw material ratio persistently affected compost nutrients and stability. Humification and mineralization were promoted by higher proportion of sewage sludge. Bacterial community composition and within-community relationships were also significantly affected by the raw material feeding ratio. Network analysis indicated that clusters 1 and 4 which dominated by Bacteroidetes, Proteobacteria, and Acidobacteria shown significantly positive correlation with humic acid concentration. Notably, the structural equational model and variance partitioning analysis demonstrated that bacterial community structure (explained 47.82% of the variation) mediated the effect of raw material feeding ratio on humification, and exceeded the effect of environmental factors (explained 19.30% of the variation) on humic acid formation. Accordingly, optimizing the composting raw material improves the composting performance.
Collapse
Affiliation(s)
- Zejin Zhang
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biology, University of Copenhagen, Copenhagen Ø DK-2100, Denmark
| | - Changqun Duan
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China
| | - Yuxian Liu
- Yuxi Experimental Senior High School, Yuxi 653100, China
| | - Anning Li
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China
| | - Xi Hu
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China
| | - Jingkun Chen
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Song Zhang
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Xin Li
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Rongxiao Che
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Shiyu Li
- School of Ecology and Environmental Science & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China.
| | - Flemming Ekelund
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China; Department of Biology, University of Copenhagen, Copenhagen Ø DK-2100, Denmark
| | - Xiaoyong Cui
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Chen M, Xu J, Li Z, Li D, Wang Q, Zhou Y, Guo W, Ma D, Zhang J, Zhao B. Long-term nitrogen fertilization-induced enhancements of acid hydrolyzable nitrogen are mainly regulated by the most vital microbial taxa of keystone species and enzyme activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162463. [PMID: 36842593 DOI: 10.1016/j.scitotenv.2023.162463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
It is well known that nitrogen (N) fertilizer input is required to improve crop productivity, but we lack a comprehensive understanding of how elevated N input changes the formation of soil acid hydrolyzable nitrogen (AHN) by adjusting the most vital microbial taxa of keystone species of microbial communities and enzyme activities. A 15-year field experiment comprising four levels of inorganic N fertilization was conducted to identify the most important bacterial and fungal taxa of the keystone species derived from cooccurrence networks as well as the vital enzyme activities at the bell mouth and maturity stages. Long-term N fertilization significantly increased the levels of AHN along with its four fractions, including amino acid N (AAN), ammonium N (AN), amino sugar N (ASN), and hydrolysable unidentified N (HUN), by 30.1-118.6 %, regardless of growth stage. Some most vital microbial taxa of keystone species and enzyme activities, which changed in response to N fertilization, mainly regulated each ANH fraction, that is, AHN and AN were mainly controlled by the enrichment of Nocardioides and β-1,4-N-acetyl-glucosaminidase (NAG), as well as by the reduction of Anaerolinea and urease (UR), AAN was determined by the enrichment of Hannaella and depletion of Penicillium, ASN was regulated by the enrichment of Hannaella and Arthrobacter, and HUN was influenced by the reduction of Penicillium and enrichment of Nitrosospira. These microbial genera have been found to be involved in dissimilatory nitrate reduction to ammonium (DNRA) and nitrification/denitrification processes and the two enzyme activities involved in organic N degradation and N-releasing processes, suggesting that the formation of AHN fractions was closely associated with specific functional microbial taxa and enzyme activities induced by N fertilization. Our results provide new insights into the associations among increased N input, altered formation of soil organic N, and shifts in microbial communities and enzyme activities.
Collapse
Affiliation(s)
- Meiqi Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jisheng Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zengqiang Li
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Dandan Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingxia Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunpeng Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Guo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Donghao Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Bingzi Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
44
|
Xu M, Xiang Q, Xu F, Guo L, Carter LJ, Du W, Zhu C, Yin Y, Ji R, Wang X, Guo H. Elevated CO 2 alleviated the dissemination of antibiotic resistance genes in sulfadiazine-contaminated soil: A free-air CO 2 enrichment study. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131079. [PMID: 36857828 DOI: 10.1016/j.jhazmat.2023.131079] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Climate change affects soil microbial communities and their genetic exchange, and subsequently modifies the transfer of antibiotic resistance genes (ARGs) among bacteria. However, how elevated CO2 impacts soil antibiotic resistome remains poorly characterized. Here, a free-air CO2 enrichment system was used in the field to investigate the responses of ARGs profiles and bacterial communities to elevated CO2 (+200 ppm) in soils amended with sulfadiazine (SDZ) at 0, 0.5 and 5 mg kg-1. Results showed that SDZ exposure induced the co-occurrence of beta-lactamase and tetracycline resistance genes, and SDZ at 5 mg kg-1 enhanced the abundance of aminoglycoside, sulfonamide and multidrug resistance genes. However, elevated CO2 weakened the effects of SDZ at 0.5 mg kg-1 following an observed reduction in the total abundance of ARGs and mobile genetic elements. Additionally, elevated CO2 significantly decreased the abundance of vancomycin resistance genes and alleviated the stimulation of SDZ on the dissemination of aminoglycoside resistance genes. Correlation analysis and structural equation models revealed that elevated CO2 could directly influence the spread of ARGs or impose indirect effects on ARGs by affecting soil properties and bacterial communities. Overall, our results furthered the knowledge of the dissemination risks of ARGs under future climate scenarios.
Collapse
Affiliation(s)
- Meiling Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Fen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lei Guo
- Department of Cadre Ward, Eastern Theater General Hospital of Chinese People's Liberation Army, Nanjing 210002, China
| | - Laura J Carter
- School of Geography, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Chunwu Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
45
|
Shi G, Luan L, Zhu G, Zeng Z, Zheng J, Shi Y, Sun B, Jiang Y. Interaction between nematodes and bacteria enhances soil carbon sequestration under organic material amendments. Front Microbiol 2023; 14:1155088. [PMID: 37250034 PMCID: PMC10213412 DOI: 10.3389/fmicb.2023.1155088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
The process of carbon (C) sequestration plays an important role in soil fertility and productivity, yet most studies have focused on the individual role of the bacterial community. However, an in-depth mechanistic understanding of how soil nematodes interact with the bacterial community to regulate soil C accumulation is still lacking. We conducted a 10-year field experiment to explore the nematode and bacterial communities and determine the influence of nematode-bacteria interactions on C mineralization, microbial metabolic quotient (qCO2), and carbon use efficiency (CUE) under the organic material amendments, including chemical fertilizers with straw (NS), chemical fertilizers with straw and pig manure (NSM), and chemical fertilizer with straw biochar (NB). Here, our results showed the abundance of bacterial and nematode communities was significantly higher under NS, NSM, and NB treatments than under chemical fertilizers (N) treatment, with the highest abundance under the NSM treatment. The enrichment index and functional dispersion index were significantly higher under NSM treatment than under N, NS, and NB treatments, while the channel index followed the opposite pattern. Structural equation modeling indicated that the potential predation pressure induced by nematodes may improve bacterial abundance, with positive cascading effects on C sequestration. Collectively, our study highlights the functional importance of nematode-microorganism interactions in mediating C dynamics under organic material amendments.
Collapse
Affiliation(s)
- Guangping Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Luan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan, China
| | - Guofan Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoyang Zeng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan, China
| | - Yue Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, China
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan, China
| |
Collapse
|
46
|
Zhu K, Jia W, Mei Y, Wu S, Huang P. Shift from flooding to drying enhances the respiration of soil aggregates by changing microbial community composition and keystone taxa. Front Microbiol 2023; 14:1167353. [PMID: 37250047 PMCID: PMC10214030 DOI: 10.3389/fmicb.2023.1167353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Changes in the water regime are among the crucial factors controlling soil carbon dynamics. However, at the aggregate scale, the microbial mechanisms that regulate soil respiration under flooding and drying conditions are obscure. In this research, we investigated how the shift from flooding to drying changes the microbial respiration of soil aggregates by affecting microbial community composition and their co-occurrence patterns. Soils collected from a riparian zone of the Three Gorges Reservoir, China, were subjected to a wet-and-dry incubation experiment. Our data illustrated that the shift from flooding to drying substantially enhanced soil respiration for all sizes of aggregate fractions. Moreover, soil respiration declined with aggregate size in both flooding and drying treatments. The keystone taxa in bacterial networks were found to be Acidobacteriales, Gemmatimonadales, Anaerolineales, and Cytophagales during the flooding treatment, and Rhizobiales, Gemmatimonadales, Sphingomonadales, and Solirubrobacterales during the drying treatment. For fungal networks, Hypocreales and Agaricalesin were the keystone taxa in the flooding and drying treatments, respectively. Furthermore, the shift from flooding to drying enhanced the microbial respiration of soil aggregates by changing keystone taxa. Notably, fungal community composition and network properties dominated the changes in the microbial respiration of soil aggregates during the shift from flooding to drying. Thus, our study highlighted that the shift from flooding to drying changes keystone taxa, hence increasing aggregate-scale soil respiration.
Collapse
|
47
|
He H, Huang J, Zhao Z, Xu H, Zheng X, Zhang C, Du P. Fungal network composition and stability in two soils impacted by trifluralin. Front Microbiol 2023; 14:1128853. [PMID: 37234547 PMCID: PMC10206129 DOI: 10.3389/fmicb.2023.1128853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/10/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction The composition and stability of soil fungal network are important for soil function, but the effect of trifluralin on network complexity and stability is not well understood. Methods In this study, two agricultural soils were used to test the impact of trifluralin on a fungal network. The two soils were treated with trifluralin (0, 0.84, 8.4, and 84 mg kg-1) and kept in artificial weather boxes. Results and discussion Under the impact of trifluralin, the fungal network nodes, edges, and average degrees were increased by 6-45, 134-392, and 0.169-1.468 in the two soils, respectively; however, the average path length was decreased by 0.304-0.70 in both soils. The keystone nodes were also changed in trifluralin treatments in the two soils. In the two soils, trifluralin treatments shared 219-285 nodes and 16-27 links with control treatments, and the network dissimilarity was 0.98-0.99. These results indicated that fungal network composition was significantly influenced. After trifluralin treatment, fungal network stability was increased. Specifically, the network robustness was increased by trifluralin with 0.002-0.009, and vulnerability was decreased by trifluralin with 0.0001-0.00032 in the two soils. Fungal network community functions were also impacted by trifluralin in both soils. Trifluralin significantly impacts the fungal network.
Collapse
Affiliation(s)
- Hairong He
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiarui Huang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenzhu Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Huifang Xu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Pengqiang Du
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
48
|
Tao C, Wang Z, Liu S, Lv N, Deng X, Xiong W, Shen Z, Zhang N, Geisen S, Li R, Shen Q, Kowalchuk GA. Additive fungal interactions drive biocontrol of Fusarium wilt disease. THE NEW PHYTOLOGIST 2023; 238:1198-1214. [PMID: 36740577 DOI: 10.1111/nph.18793] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Host-associated fungi can help protect plants from pathogens, and empirical evidence suggests that such microorganisms can be manipulated by introducing probiotic to increase disease suppression. However, we still generally lack the mechanistic knowledge of what determines the success of probiotic application, hampering the development of reliable disease suppression strategies. We conducted a three-season consecutive microcosm experiment in which we amended banana Fusarium wilt disease-conducive soil with Trichoderma-amended biofertilizer or lacking this inoculum. High-throughput sequencing was complemented with cultivation-based methods to follow changes in fungal microbiome and explore potential links with plant health. Trichoderma application increased banana biomass by decreasing disease incidence by up to 72%, and this effect was attributed to changes in fungal microbiome, including the reduction in Fusarium oxysporum density and enrichment of pathogen-suppressing fungi (Humicola). These changes were accompanied by an expansion in microbial carbon resource utilization potential, features that contribute to disease suppression. We further demonstrated the disease suppression actions of Trichoderma-Humicola consortia, and results suggest niche overlap with pathogen and induction of plant systemic resistance may be mechanisms driving the observed biocontrol effects. Together, we demonstrate that fungal inoculants can modify the composition and functioning of the resident soil fungal microbiome to suppress soilborne disease.
Collapse
Affiliation(s)
- Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China
| | - Zhe Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China
| | - Shanshan Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Nana Lv
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute for Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
- Laboratory of Nematology, Wageningen University, Wageningen, 6700 AA, the Netherlands
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, The Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, the Netherlands
| |
Collapse
|
49
|
Zhang M, Wang K, Shi C, Li X, Qiu Z, Shi F. Responses of Fungal Assembly and Co-Occurrence Network of Rhizosphere Soil to Amaranthus palmeri Invasion in Northern China. J Fungi (Basel) 2023; 9:509. [PMID: 37233220 PMCID: PMC10219470 DOI: 10.3390/jof9050509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
The interaction between invasive plants and soil microbial communities is critical for plant establishment. However, little is known about the assembly and co-occurrence patterns of fungal communities in the rhizosphere soil of Amaranthus palmeri. The soil fungal communities and co-occurrence networks were investigated in 22 invaded patches and 22 native patches using high-throughput Illumina sequencing. Despite having little effect on alpha diversity, plant invasion significantly altered the composition of the soil fungal community (ANOSIM, p < 0.05). Fungal taxa associated with plant invasion were identified using linear discriminant analysis effect size (LEfSe). In the rhizosphere soil of A. palmeri, Basidiomycota was significantly enriched, while Ascomycota and Glomeromycota were significantly reduced when compared to native plants. At the genus level, the invasion of A. palmeri dramatically increased the abundance of beneficial fungi and potential antagonists such as Dioszegia, Tilletiopsis, Colacogloea, and Chaetomium, while it significantly decreased the abundance of pathogenic fungi such as Alternaria and Phaeosphaeria. Plant invasion reduced the average degree and average path length, and increased the modularity value, resulting in a less complex but more effective and stable network. Our findings improved the knowledge of the soil fungal communities, network co-occurrence patterns, and keystone taxa in A. palmeri-invaded ecosystems.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Kefan Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Cong Shi
- School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China;
| | - Xueying Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Zhenlu Qiu
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| | - Fuchen Shi
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China; (M.Z.); (K.W.); (X.L.); (Z.Q.)
| |
Collapse
|
50
|
Hu Y, Cong M, Yan H, Sun X, Yang Z, Tang G, Xu W, Zhu X, Jia H. Effects of biochar addition on aeolian soil microbial community assembly and structure. Appl Microbiol Biotechnol 2023; 107:3829-3845. [PMID: 37083970 DOI: 10.1007/s00253-023-12519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/15/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023]
Abstract
The effects of biochar on soil improvement have been widely confirmed, but its influence on soil microorganisms is still unclear. Elucidating the complex relationship and the community assembly processes of microorganisms under biochar addition is important to understand the ecological effects of this substance. We performed a one-time addition of biochar on aeolian soils and planted maize (Zea mays L.) continuously for 7 years. Afterwards, soil samples were collected, and the 16S/ITS rRNA gene sequencing technology was used to study changes in microbial community structure, network characteristics, and community assembly processes in the aeolian soils. We found that biochar addition significantly increased the maize yield and changed the soil microbial community composition (β-diversity), but had no significant effect on the microbial α-diversity. The addition of 31.5-126.0 Mg ha-1 of biochar led to a reduction of the rhizosphere bacterial network's edge number, average degree, and robustness, but had no significant effect on the fungal network properties. The bacterial community was controlled by deterministic processes, while fungi were mainly controlled by stochastic processes. The addition of 126.0 Mg ha-1 of biochar led to a transformation of the bacterial community's assembly processes from deterministic to stochastic. These results indicate that the stability of the rhizosphere bacterial community's complex network in aeolian soils diminishes under biochar addition, together changed the bacterial community's assembly processes. Fungi can instead effectively resist the environmental changes brought by biochar addition, and their network remains unchanged. These findings help clarify the effect of biochar addition on microbial interaction and assembly processes in aeolian soils characteristic of arid regions. KEY POINTS: • Biochar addition led to changes in the microbial community composition • Biochar addition reduced the network's stability of rhizosphere bacteria • Biochar addition changed the processes of the bacterial community assembly.
Collapse
Affiliation(s)
- Yang Hu
- College of Resources and Environment, Xinjiang Agricultural University, No. 311 East Nongda Road, Urumqi, 830052, China
| | - Mengfei Cong
- College of Resources and Environment, Xinjiang Agricultural University, No. 311 East Nongda Road, Urumqi, 830052, China
| | - Han Yan
- College of Resources and Environment, Xinjiang Agricultural University, No. 311 East Nongda Road, Urumqi, 830052, China
| | - Xia Sun
- College of Resources and Environment, Xinjiang Agricultural University, No. 311 East Nongda Road, Urumqi, 830052, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, 830052, China
| | - Zailei Yang
- College of Resources and Environment, Xinjiang Agricultural University, No. 311 East Nongda Road, Urumqi, 830052, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, 830052, China
| | - Guangmu Tang
- Institute of Soil and Fertilizer and Agricultural Sparing Water, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
- Key Laboratory of Saline-alkali Soil Improvement and Utilization (Saline-Alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Wanli Xu
- Institute of Soil and Fertilizer and Agricultural Sparing Water, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
- Key Laboratory of Saline-alkali Soil Improvement and Utilization (Saline-Alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Xinping Zhu
- College of Resources and Environment, Xinjiang Agricultural University, No. 311 East Nongda Road, Urumqi, 830052, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, 830052, China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, No. 311 East Nongda Road, Urumqi, 830052, China.
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, 830052, China.
- Key Laboratory of Saline-alkali Soil Improvement and Utilization (Saline-Alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China.
| |
Collapse
|