1
|
Rados M, Landegger A, Schmutzler L, Rabidou K, Taschner-Mandl S, Fetahu IS. Natural killer cells in neuroblastoma: immunological insights and therapeutic perspectives. Cancer Metastasis Rev 2024; 43:1401-1417. [PMID: 39294470 PMCID: PMC11554946 DOI: 10.1007/s10555-024-10212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Natural killer (NK) cells have multifaceted roles within the complex tumor milieu. They are pivotal components of innate immunity and shape the dynamic landscape of tumor-immune cell interactions, and thus can be leveraged for use in therapeutic interventions. NK-based immunotherapies have had remarkable success in hematological malignancies, but these therapies are met with many challenges in solid tumors, including neuroblastoma (NB), a childhood tumor arising from the sympathetic nervous system. With a focus on NB, this review outlines the mechanisms employed by NK cells to recognize and eliminate malignant cells, delving into the dynamic relationship between ligand-receptor interactions, cytokines, and other molecules that facilitate the cross talk between NK and NB cells. We discuss the immunomodulatory functions of NK cells and the mechanisms that contribute to loss of this immunosurveillance in NB, with a focus on how this dynamic has been utilized in recent immunotherapy advancements for NB.
Collapse
Affiliation(s)
- Magdalena Rados
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | - Lukas Schmutzler
- Department of Otorhinolaryngology - Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Kimberlie Rabidou
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, USA
| | | | - Irfete S Fetahu
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Nagarajan D, Parracho RT, Corujo D, Xie M, Kutkaite G, Olsen TK, Rubies Bedos M, Salehi M, Baryawno N, Menden MP, Chen X, Buschbeck M, Mao Y. Epigenetic regulation of cell state by H2AFY governs immunogenicity in high-risk neuroblastoma. J Clin Invest 2024; 134:e175310. [PMID: 39255035 PMCID: PMC11527455 DOI: 10.1172/jci175310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/06/2024] [Indexed: 09/12/2024] Open
Abstract
Childhood neuroblastoma with MYCN amplification is classified as high risk and often relapses after intensive treatments. Immune checkpoint blockade therapy against the PD-1/L1 axis shows limited efficacy in patients with neuroblastoma, and the cancer intrinsic immune regulatory network is poorly understood. Here, we leverage genome-wide CRISPR/Cas9 screens and identify H2AFY as a resistance gene to the clinically approved PD-1 blocking antibody nivolumab. Analysis of single-cell RNA-Seq datasets reveals that H2AFY mRNA is enriched in adrenergic cancer cells and is associated with worse patient survival. Genetic deletion of H2afy in MYCN-driven neuroblastoma cells reverts in vivo resistance to PD-1 blockade by eliciting activation of the adaptive and innate immunity. Mapping of the epigenetic and translational landscape demonstrates that H2afy deletion promotes cell transition to a mesenchymal-like state. With a multiomics approach, we uncovered H2AFY-associated genes that are functionally relevant and prognostic in patients. Altogether, our study elucidates the role of H2AFY as an epigenetic gatekeeper for cell states and immunogenicity in high-risk neuroblastoma.
Collapse
Affiliation(s)
- Divya Nagarajan
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology and
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rebeca T. Parracho
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology and
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - David Corujo
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti Site, Badalona, Spain
| | - Minglu Xie
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ginte Kutkaite
- Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- Department of Biology, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Thale K. Olsen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Marta Rubies Bedos
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology and
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maede Salehi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Michael P. Menden
- Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia
| | - Xingqi Chen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marcus Buschbeck
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti Site, Badalona, Spain
| | - Yumeng Mao
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology and
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Yang L, Huang K, Cao L, Ma Y, Li S, Zhou J, Zhao Z, Wang S. Molecular profiling of core immune-escape genes highlights TNFAIP3 as an immune-related prognostic biomarker in neuroblastoma. Inflamm Res 2024; 73:1529-1545. [PMID: 39028490 DOI: 10.1007/s00011-024-01914-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most prevalent and deadliest pediatric solid tumor. With of over 50% of high-risk neuroblastoma cases relapse, the imperative for novel drug targets and therapeutic strategies is accentuated. In neuroblastoma, the existence of tumor-associated macrophages (TAMs) correlates with an unfavorable patient prognosis. However, the clinical relevance and prognostic implications of regulatory genes linked to TAMs infiltration in neuroblastoma remain unclear, and further study is required. METHODS We conducted a comprehensive analysis utilizing transcriptome expression profiles from three primary datasets associated with neuroblastoma (GSE45547, GSE49710, TARGET) to identify hub genes implicated in immune evasion within neuroblastoma. Subsequently, we utilized single-cell RNA sequencing analysis on 17 clinical neuroblastoma samples to investigate the expression and distribution of these hub genes, leading to the identification of TNFAIP3. The above three public databases were merged to allowed for the validation of TNFAIP3's molecular functions through GO and KEGG analysis. Furthermore, we assessed TNFAIP3's correlation with immune infiltration and its potential immunotherapeutic impact by multiple algorithms. Our single-cell transcriptome data revealed the role of TNFAIP3 in macrophage polarization. Finally, preliminary experimental verifications to confirm the biological functions of TNFAIP3-mediated TAMs in NB. RESULTS A total of 6 genes related to immune evasion were screened and we found that TNFAIP3 exhibited notably higher expression in macrophages than other immune cell types, based on the scRNA-sequencing data. GO and KEGG analysis showed that low expression of TNFAIP3 significantly correlated with the activation of multiple oncogenic pathways as well as immune-related pathways. Then validation affirmed that individuals within the TNFAIP3 high-expression cohort could potentially derive greater advantages from immunotherapeutic interventions, alongside exhibiting heightened immune responsiveness. Deciphering the pseudotime trajectory of macrophages, we revealed the potential of TNFAIP3 in inducing the polarization of macrophages towards the M1 phenotype. Finally, we confirmed that patients in the TNFAIP3 high expression group might benefit more from immunotherapy or chemotherapy as substantiated by RT-qPCR and immunofluorescence examinations. Moreover, the role of TNFAIP3 in macrophage polarization was validated. Preliminary experiment showed that TNFAIP3-mediated TAMs inhibit the proliferation, migration and invasion capabilities of NB cells. CONCLUSIONS Our results suggest that TNFAIP3 was first identified as a promising biomarker for immunotherapy and potential molecular target in NB. Besides, the presence of TNFAIP3 within TAMs may offer a novel therapeutic strategy for NB.
Collapse
Affiliation(s)
- Linyu Yang
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Huang
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lijian Cao
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Ma
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Suwen Li
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jianwu Zhou
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenzhen Zhao
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Wang
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Pascual-Pasto G, McIntyre B, Hines MG, Giudice AM, Garcia-Gerique L, Hoffmann J, Mishra P, Matlaga S, Lombardi S, Shraim R, Schürch PM, Yarmarkovich M, Hofmann TJ, Alikarami F, Martinez D, Tsang M, Gil-de-Gómez L, Spear TT, Bernt KM, Wolpaw AJ, Dimitrov DS, Li W, Bosse KR. CAR T-cell-mediated delivery of bispecific innate immune cell engagers for neuroblastoma. Nat Commun 2024; 15:7141. [PMID: 39164224 PMCID: PMC11336212 DOI: 10.1038/s41467-024-51337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
Novel chimeric antigen receptor (CAR) T-cell approaches are needed to improve therapeutic efficacy in solid tumors. High-risk neuroblastoma is an aggressive pediatric solid tumor that expresses cell-surface GPC2 and GD2 with a tumor microenvironment infiltrated by CD16a-expressing innate immune cells. Here we engineer T-cells to express a GPC2-directed CAR and simultaneously secrete a bispecific innate immune cell engager (BiCE) targeting both GD2 and CD16a. In vitro, GPC2.CAR-GD2.BiCE T-cells induce GPC2-dependent cytotoxicity and secrete GD2.BiCE that promotes GD2-dependent activation of antitumor innate immunity. In vivo, GPC2.CAR-GD2.BiCE T-cells locally deliver GD2.BiCE and increase intratumor retention of NK-cells. In mice bearing neuroblastoma patient-derived xenografts and reconstituted with human CD16a-expressing immune cells, GD2.BiCEs enhance GPC2.CAR antitumor efficacy. A CAR.BiCE strategy should be considered for tumor histologies where antigen escape limits CAR efficacy, especially for solid tumors like neuroblastoma that are infiltrated by innate immune cells.
Collapse
Affiliation(s)
- Guillem Pascual-Pasto
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Brendan McIntyre
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Margaret G Hines
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Anna M Giudice
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Laura Garcia-Gerique
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, 19104, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jennifer Hoffmann
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Pamela Mishra
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Stephanie Matlaga
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Simona Lombardi
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Rawan Shraim
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Patrick M Schürch
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Mark Yarmarkovich
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- New York University, Perlmutter Cancer Center, Grossman School of Medicine, New York, NY, 10016, USA
| | - Ted J Hofmann
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Fatemeh Alikarami
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Daniel Martinez
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Matthew Tsang
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Luis Gil-de-Gómez
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Molecular Biology, University of Cantabria School of Medicine, Santander, Cantabria, 39011, Spain
| | - Timothy T Spear
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kathrin M Bernt
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam J Wolpaw
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dimiter S Dimitrov
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Wei Li
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Kristopher R Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Rakhmilevich AL, Tsarovsky NW, Felder M, Zaborek J, Moram S, Erbe AK, Pieper AA, Spiegelman DV, Cheng EM, Witt CM, Overwijk WW, Morris ZS, Sondel PM. A combined radio-immunotherapy regimen eradicates late-stage tumors in mice. Front Immunol 2024; 15:1419773. [PMID: 39076988 PMCID: PMC11284032 DOI: 10.3389/fimmu.2024.1419773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Background The majority of experimental approaches for cancer immunotherapy are tested against relatively small tumors in tumor-bearing mice, because in most cases advanced cancers are resistant to the treatments. In this study, we asked if even late-stage mouse tumors can be eradicated by a rationally designed combined radio-immunotherapy (CRI) regimen. Methods CRI consisted of local radiotherapy, intratumoral IL-12, slow-release systemic IL-2 and anti- CTLA-4 antibody. Therapeutic effects of CRI against several weakly immunogenic and immunogenic mouse tumors including B78 melanoma, MC38 and CT26 colon carcinomas and 9464D neuroblastoma were evaluated. Immune cell depletion and flow cytometric analysis were performed to determine the mechanisms of the antitumor effects. Results Tumors with volumes of 2,000 mm3 or larger were eradicated by CRI. Flow analyses of the tumors revealed reduction of T regulatory (Treg) cells and increase of CD8/Treg ratios following CRI. Rapid shrinkage of the treated tumors did not require T cells, whereas T cells were involved in the systemic effect against the distant tumors. Cured mice developed immunological memory. Conclusions These findings underscore that rationally designed combination immunotherapy regimens can be effective even against large, late-stage tumors.
Collapse
Affiliation(s)
| | - Noah W. Tsarovsky
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Mildred Felder
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jen Zaborek
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Sritha Moram
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Amy K. Erbe
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Alexander A. Pieper
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Dan V. Spiegelman
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Emily M. Cheng
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Cole M. Witt
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
6
|
Chan C, Stip M, Nederend M, Jansen M, Passchier E, van den Ham F, Wienke J, van Tetering G, Leusen J. Enhancing IgA-mediated neutrophil cytotoxicity against neuroblastoma by CD47 blockade. J Immunother Cancer 2024; 12:e008478. [PMID: 38782540 PMCID: PMC11116899 DOI: 10.1136/jitc-2023-008478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Approximately half of the neuroblastoma patients develop high-risk neuroblastoma. Current treatment involves a multimodal strategy, including immunotherapy with dinutuximab (IgG ch14.18) targeting GD2. Despite achieving promising results, the recurrence rate remains high and poor survival persists. The therapeutic efficacy of dinutuximab is compromised by suboptimal activation of neutrophils and severe neuropathic pain, partially induced by complement activation. METHODS To enhance neutrophil cytotoxicity, IgG ch14.18 was converted to the IgA isotype, resulting in potent neutrophil-mediated antibody-dependent cell-mediated cytotoxicity (ADCC), without complement activation. However, myeloid checkpoint molecules hamper neutrophil cytotoxicity, for example through CD47 that is overexpressed on neuroblastomas and orchestrates an immunosuppressive environment upon ligation to signal regulatory protein alpha (SIRPα) expressed on neutrophils. In this study, we combined IgA therapy with CD47 blockade. RESULTS In vitro killing assays showed enhanced IgA-mediated ADCC by neutrophils targeting neuroblastoma cell lines and organoids in comparison to IgG. Notably, when combined with CD47 blockade, both IgG and IgA therapy were enhanced, though the combination with IgA resulted in the greatest improvement of ADCC. Furthermore, in a neuroblastoma xenograft model, we systemically blocked CD47 with a SIRPα fusion protein containing an ablated IgG1 Fc, and compared IgA therapy to IgG therapy. Only IgA therapy combined with CD47 blockade increased neutrophil influx to the tumor microenvironment. Moreover, the IgA combination strategy hampered tumor outgrowth most effectively and prolonged tumor-specific survival. CONCLUSION These promising results highlight the potential to enhance immunotherapy efficacy against high-risk neuroblastoma through improved neutrophil cytotoxicity by combining IgA therapy with CD47 blockade.
Collapse
Affiliation(s)
- Chilam Chan
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Marjolein Stip
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Maaike Nederend
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Marco Jansen
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | | | - Femke van den Ham
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Judith Wienke
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Geert van Tetering
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Jeanette Leusen
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
7
|
Li Z, Xiong W, Liang Z, Wang J, Zeng Z, Kołat D, Li X, Zhou D, Xu X, Zhao L. Critical role of the gut microbiota in immune responses and cancer immunotherapy. J Hematol Oncol 2024; 17:33. [PMID: 38745196 PMCID: PMC11094969 DOI: 10.1186/s13045-024-01541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiota plays a critical role in the progression of human diseases, especially cancer. In recent decades, there has been accumulating evidence of the connections between the gut microbiota and cancer immunotherapy. Therefore, understanding the functional role of the gut microbiota in regulating immune responses to cancer immunotherapy is crucial for developing precision medicine. In this review, we extract insights from state-of-the-art research to decipher the complicated crosstalk among the gut microbiota, the systemic immune system, and immunotherapy in the context of cancer. Additionally, as the gut microbiota can account for immune-related adverse events, we discuss potential interventions to minimize these adverse effects and discuss the clinical application of five microbiota-targeted strategies that precisely increase the efficacy of cancer immunotherapy. Finally, as the gut microbiota holds promising potential as a target for precision cancer immunotherapeutics, we summarize current challenges and provide a general outlook on future directions in this field.
Collapse
Affiliation(s)
- Zehua Li
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Weixi Xiong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Zhu Liang
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
- Target Discovery Institute, Center for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Jinyu Wang
- Departments of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Ziyi Zeng
- Department of Neonatology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Xi Li
- Department of Urology, Churchill Hospital, Oxford University Hospitals NHS Foundation, Oxford, UK
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Xuewen Xu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Linyong Zhao
- Department of General Surgery and Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Zebertavage L, Schopf A, Nielsen M, Matthews J, Erbe AK, Aiken TJ, Katz S, Sun C, Witt CM, Rakhmilevich AL, Sondel PM. Evaluation of a Combinatorial Immunotherapy Regimen That Can Cure Mice Bearing MYCN-Driven High-Risk Neuroblastoma That Resists Current Clinical Therapy. J Clin Med 2024; 13:2561. [PMID: 38731089 PMCID: PMC11084214 DOI: 10.3390/jcm13092561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Incorporating GD2-targeting monoclonal antibody into post-consolidation maintenance therapy has improved survival for children with high-risk neuroblastoma. However, ~50% of patients do not respond to, or relapse following, initial treatment. Here, we evaluated additional anti-GD2-based immunotherapy to better treat high-risk neuroblastoma in mice to develop a regimen for patients with therapy-resistant neuroblastoma. Methods: We determined the components of a combined regimen needed to cure mice of established MYCN-amplified, GD2-expressing, murine 9464D-GD2 neuroblastomas. Results: First, we demonstrate that 9464D-GD2 is nonresponsive to a preferred salvage regimen: anti-GD2 with temozolomide and irinotecan. Second, we have previously shown that adding agonist anti-CD40 mAb and CpG to a regimen of radiotherapy, anti-GD2/IL2 immunocytokine and anti-CTLA-4, cured a substantial fraction of mice bearing small 9464D-GD2 tumors; here, we further characterize this regimen by showing that radiotherapy and hu14.18-IL2 are necessary components, while anti-CTLA-4, anti-CD40, or CpG can individually be removed, and CpG and anti-CTLA-4 can be removed together, while maintaining efficacy. Conclusions: We have developed and characterized a regimen that can cure mice of a high-risk neuroblastoma that is refractory to the current clinical regimen for relapsed/refractory disease. Ongoing preclinical work is directed towards ways to potentially translate these findings to a regimen appropriate for clinical testing.
Collapse
Affiliation(s)
- Lauren Zebertavage
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA (A.S.); (M.N.); (J.M.); (A.K.E.); (S.K.); (C.S.); (C.M.W.); (A.L.R.)
| | - Allison Schopf
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA (A.S.); (M.N.); (J.M.); (A.K.E.); (S.K.); (C.S.); (C.M.W.); (A.L.R.)
| | - Megan Nielsen
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA (A.S.); (M.N.); (J.M.); (A.K.E.); (S.K.); (C.S.); (C.M.W.); (A.L.R.)
| | - Joel Matthews
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA (A.S.); (M.N.); (J.M.); (A.K.E.); (S.K.); (C.S.); (C.M.W.); (A.L.R.)
| | - Amy K. Erbe
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA (A.S.); (M.N.); (J.M.); (A.K.E.); (S.K.); (C.S.); (C.M.W.); (A.L.R.)
| | - Taylor J. Aiken
- Department of Surgery, University of Wisconsin, Madison, WI 53705, USA;
| | - Sydney Katz
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA (A.S.); (M.N.); (J.M.); (A.K.E.); (S.K.); (C.S.); (C.M.W.); (A.L.R.)
| | - Claire Sun
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA (A.S.); (M.N.); (J.M.); (A.K.E.); (S.K.); (C.S.); (C.M.W.); (A.L.R.)
| | - Cole M. Witt
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA (A.S.); (M.N.); (J.M.); (A.K.E.); (S.K.); (C.S.); (C.M.W.); (A.L.R.)
| | - Alexander L. Rakhmilevich
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA (A.S.); (M.N.); (J.M.); (A.K.E.); (S.K.); (C.S.); (C.M.W.); (A.L.R.)
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA (A.S.); (M.N.); (J.M.); (A.K.E.); (S.K.); (C.S.); (C.M.W.); (A.L.R.)
- Department of Pediatrics, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
9
|
Currie D, Wong N, Zane I, Rix T, Vardakastanis M, Claxton A, Ong KKV, Macmorland W, Poivet A, Brooks A, Niola P, Huntley D, Montano X. A Potential Prognostic Gene Signature Associated with p53-Dependent NTRK1 Activation and Increased Survival of Neuroblastoma Patients. Cancers (Basel) 2024; 16:722. [PMID: 38398114 PMCID: PMC10886603 DOI: 10.3390/cancers16040722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Neuroblastoma is the most common extracranial solid tumour in children, comprising close to 10% of childhood cancer-related deaths. We have demonstrated that activation of NTRK1 by TP53 repression of PTPN6 expression is significantly associated with favourable survival in neuroblastoma. The molecular mechanisms by which this activation elicits cell molecular changes need to be determined. This is critical to identify dependable biomarkers for the early detection and prognosis of tumours, and for the development of personalised treatment. In this investigation we have identified and validated a gene signature for the prognosis of neuroblastoma using genes differentially expressed upon activation of the NTRK1-PTPN6-TP53 module. A random survival forest model was used to construct a gene signature, which was then assessed across validation datasets using Kaplan-Meier analysis and ROC curves. The analysis demonstrated that high BASP1, CD9, DLG2, FNBP1, FRMD3, IL11RA, ISGF10, IQCE, KCNQ3, and TOX2, and low BSG/CD147, CCDC125, GABRB3, GNB2L1/RACK1 HAPLN4, HEBP2, and HSD17B12 expression was significantly associated with favourable patient event-free survival (EFS). The gene signature was associated with favourable tumour histology and NTRK1-PTPN6-TP53 module activation. Importantly, all genes were significantly associated with favourable EFS in an independent manner. Six of the signature genes, BSG/CD147, GNB2L1/RACK1, TXNDC5, FNPB1, B3GAT1, and IGSF10, play a role in cell differentiation. Our findings strongly suggest that the identified gene signature is a potential prognostic biomarker and therapeutic target for neuroblastoma patients and that it is associated with neuroblastoma cell differentiation through the activation of the NTRK1-PTPN6-TP53 module.
Collapse
Affiliation(s)
- David Currie
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
| | - Nicole Wong
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
| | - Isabelle Zane
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
| | - Tom Rix
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
| | - Marios Vardakastanis
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
| | - Amelia Claxton
- Innovation Hub, Comprehensive Cancer Centre, King’s College London, Great Maze Pond, London SE1 9RT, UK; (A.C.); (K.K.V.O.)
| | - Karine K. V. Ong
- Innovation Hub, Comprehensive Cancer Centre, King’s College London, Great Maze Pond, London SE1 9RT, UK; (A.C.); (K.K.V.O.)
| | - William Macmorland
- Tumour Immunology Group, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 1UL, UK;
| | - Arthur Poivet
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
| | - Anthony Brooks
- Zayed Centre for Research into Rare Disease in Children, UCL Genomics, London WC1N 1DZ, UK;
| | | | - Derek Huntley
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
| | - Ximena Montano
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; (D.C.); (N.W.); (I.Z.); (T.R.); (M.V.); (A.P.); (D.H.)
- Innovation Hub, Comprehensive Cancer Centre, King’s College London, Great Maze Pond, London SE1 9RT, UK; (A.C.); (K.K.V.O.)
- School of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
10
|
Stip MC, Teeuwen L, Dierselhuis MP, Leusen JHW, Krijgsman D. Targeting the myeloid microenvironment in neuroblastoma. J Exp Clin Cancer Res 2023; 42:337. [PMID: 38087370 PMCID: PMC10716967 DOI: 10.1186/s13046-023-02913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Myeloid cells (granulocytes and monocytes/macrophages) play an important role in neuroblastoma. By inducing a complex immunosuppressive network, myeloid cells pose a challenge for the adaptive immune system to eliminate tumor cells, especially in high-risk neuroblastoma. This review first summarizes the pro- and anti-tumorigenic functions of myeloid cells, including granulocytes, monocytes, macrophages, and myeloid-derived suppressor cells (MDSC) during the development and progression of neuroblastoma. Secondly, we discuss how myeloid cells are engaged in the current treatment regimen and explore novel strategies to target these cells in neuroblastoma. These strategies include: (1) engaging myeloid cells as effector cells, (2) ablating myeloid cells or blocking the recruitment of myeloid cells to the tumor microenvironment and (3) reprogramming myeloid cells. Here we describe that despite their immunosuppressive traits, tumor-associated myeloid cells can still be engaged as effector cells, which is clear in anti-GD2 immunotherapy. However, their full potential is not yet reached, and myeloid cell engagement can be enhanced, for example by targeting the CD47/SIRPα axis. Though depletion of myeloid cells or blocking myeloid cell infiltration has been proven effective, this strategy also depletes possible effector cells for immunotherapy from the tumor microenvironment. Therefore, reprogramming of suppressive myeloid cells might be the optimal strategy, which reverses immunosuppressive traits, preserves myeloid cells as effectors of immunotherapy, and subsequently reactivates tumor-infiltrating T cells.
Collapse
Affiliation(s)
- Marjolein C Stip
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Loes Teeuwen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | | | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Daniëlle Krijgsman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands.
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
11
|
Kennedy PT, Zannoupa D, Son MH, Dahal LN, Woolley JF. Neuroblastoma: an ongoing cold front for cancer immunotherapy. J Immunother Cancer 2023; 11:e007798. [PMID: 37993280 PMCID: PMC10668262 DOI: 10.1136/jitc-2023-007798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/24/2023] Open
Abstract
Neuroblastoma is the most frequent extracranial childhood tumour but effective treatment with current immunotherapies is challenging due to its immunosuppressive microenvironment. Efforts to date have focused on using immunotherapy to increase tumour immunogenicity and enhance anticancer immune responses, including anti-GD2 antibodies; immune checkpoint inhibitors; drugs which enhance macrophage and natural killer T (NKT) cell function; modulation of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway; and engineering neuroblastoma-targeting chimeric-antigen receptor-T cells. Some of these strategies have strong preclinical foundation and are being tested clinically, although none have demonstrated notable success in treating paediatric neuroblastoma to date. Recently, approaches to overcome heterogeneity of neuroblastoma tumours and treatment resistance are being explored. These include rational combination strategies with the aim of achieving synergy, such as dual targeting of GD2 and tumour-associated macrophages or natural killer cells; GD2 and the B7-H3 immune checkpoint; GD2 and enhancer of zeste-2 methyltransferase inhibitors. Such combination strategies provide opportunities to overcome primary resistance to and maximize the benefits of immunotherapy in neuroblastoma.
Collapse
Affiliation(s)
- Paul T Kennedy
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - Demetra Zannoupa
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - Meong Hi Son
- Department of Pediatrics, Samsung Medical Center, Gangnam-gu, Seoul, Korea (the Republic of)
| | - Lekh N Dahal
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| | - John F Woolley
- Department of Pharmacology & Therapeutics, University of Liverpool, Liverpool, UK
| |
Collapse
|
12
|
Tan J, Wang C, Jin Y, Xia Y, Gong B, Zhao Q. Optimal combination of MYCN differential gene and cellular senescence gene predicts adverse outcomes in patients with neuroblastoma. Front Immunol 2023; 14:1309138. [PMID: 38035110 PMCID: PMC10687280 DOI: 10.3389/fimmu.2023.1309138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Neuroblastoma (NB) is a common extracranial tumor in children and is highly heterogeneous. The factors influencing the prognosis of NB are not simple. Methods To investigate the effect of cell senescence on the prognosis of NB and tumor immune microenvironment, 498 samples of NB patients and 307 cellular senescence-related genes were used to construct a prediction signature. Results A signature based on six optimal candidate genes (TP53, IL-7, PDGFRA, S100B, DLL3, and TP63) was successfully constructed and proved to have good prognostic ability. Through verification, the signature had more advantages than the gene expression level alone in evaluating prognosis was found. Further T cell phenotype analysis displayed that exhausted phenotype PD-1 and senescence-related phenotype CD244 were highly expressed in CD8+ T cell in MYCN-amplified group with higher risk-score. Conclusion A signature constructed the six MYCN-amplified differential genes and aging-related genes can be used to predict the prognosis of NB better than using each high-risk gene individually and to evaluate immunosuppressed and aging tumor microenvironment.
Collapse
Affiliation(s)
- Jiaxiong Tan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Chaoyu Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yan Jin
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yuren Xia
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Baocheng Gong
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qiang Zhao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
13
|
Dhamdhere MR, Spiegelman DV, Schneper L, Erbe AK, Sondel PM, Spiegelman VS. Generation of Novel Immunocompetent Mouse Cell Lines to Model Experimental Metastasis of High-Risk Neuroblastoma. Cancers (Basel) 2023; 15:4693. [PMID: 37835389 PMCID: PMC10571844 DOI: 10.3390/cancers15194693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
NB, being a highly metastatic cancer, is one of the leading causes of cancer-related deaths in children. Increased disease recurrence and clinical resistance in patients with metastatic high-risk NBs (HR-NBs) result in poor outcomes and lower overall survival. However, the paucity of appropriate in vivo models for HR-NB metastasis has limited investigations into the underlying biology of HR-NB metastasis. This study was designed to address this limitation and develop suitable immunocompetent models for HR-NB metastasis. Here, we developed several highly metastatic immunocompetent murine HR-NB cell lines. Our newly developed cell lines show 100% efficiency in modeling experimental metastasis in C57BL6 mice and feature metastasis to the sites frequently observed in humans with HR-NB (liver and bone). In vivo validation demonstrated their specifically gained metastatic phenotype. The in vitro characterization of the cell lines showed increased cell invasion, acquired anchorage-independent growth ability, and resistance to MHC-I induction upon IFN-γ treatment. Furthermore, RNA-seq analysis of the newly developed cells identified a differentially regulated gene signature and an enrichment of processes consistent with their acquired metastatic phenotype, including extracellular matrix remodeling, angiogenesis, cell migration, and chemotaxis. The presented newly developed cell lines are, thus, suitable and promising tools for HR-NB metastasis and microenvironment studies in an immunocompetent system.
Collapse
Affiliation(s)
- Mayura R. Dhamdhere
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Dan V. Spiegelman
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA; (D.V.S.); (P.M.S.)
| | - Lisa Schneper
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Amy K. Erbe
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA; (D.V.S.); (P.M.S.)
| | - Paul M. Sondel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA; (D.V.S.); (P.M.S.)
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
14
|
Rahavi SM, Aletaha M, Farrokhi A, Lorentzian A, Lange PF, Maxwell CA, Lim CJ, Reid GSD. Adaptation of the Th-MYCN Mouse Model of Neuroblastoma for Evaluation of Disseminated Disease. Int J Mol Sci 2023; 24:12071. [PMID: 37569447 PMCID: PMC10419036 DOI: 10.3390/ijms241512071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
High-risk neuroblastoma remains a profound clinical challenge that requires eradication of neuroblastoma cells from a variety of organ sites, including bone marrow, liver, and CNS, to achieve a cure. While preclinical modeling is a powerful tool for the development of novel cancer therapies, the lack of widely available models of metastatic neuroblastoma represents a significant barrier to the development of effective treatment strategies. To address this need, we report a novel luciferase-expressing derivative of the widely used Th-MYCN mouse. While our model recapitulates the non-metastatic neuroblastoma development seen in the parental transgenic strain, transplantation of primary tumor cells from disease-bearing mice enables longitudinal monitoring of neuroblastoma growth at distinct sites in immune-deficient or immune-competent recipients. The transplanted tumors retain GD2 expression through many rounds of serial transplantation and are sensitive to GD2-targeted immune therapy. With more diverse tissue localization than is seen with human cell line-derived xenografts, this novel model for high-risk neuroblastoma could contribute to the optimization of immune-based treatments for this deadly disease.
Collapse
Affiliation(s)
- Seyed M. Rahavi
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Maryam Aletaha
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Ali Farrokhi
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Pediatrics, University of British Columbia, 950 W28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Amanda Lorentzian
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Philipp F. Lange
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Pathology, University of British Columbia, 950 W28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Christopher A. Maxwell
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Pediatrics, University of British Columbia, 950 W28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Chinten James Lim
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Pediatrics, University of British Columbia, 950 W28th Avenue, Vancouver, BC V5Z 4H4, Canada
| | - Gregor S. D. Reid
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Pediatrics, University of British Columbia, 950 W28th Avenue, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
15
|
Zeki J, Yavuz B, Wood L, Shimada H, Kaplan DL, Chiu B. Concurrent application of interferon-gamma and vincristine inhibits tumor growth in an orthotopic neuroblastoma mouse model. Pediatr Surg Int 2023; 39:241. [PMID: 37500800 DOI: 10.1007/s00383-023-05523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
PURPOSE Tumor-associated macrophages are present within neuroblastoma, and interferon-gamma (IFN-γ) can polarize macrophages into cancer-inhibiting M1 type. We hypothesize that treating neuroblastoma with interferon-gamma (IFN-γ) can suppress tumor growth, and the concurrent treatment with IFN-γ and vincristine can lead to enhanced tumor killing as compared to vincristine alone. METHODS We loaded IFN-γ or vincristine into silk biomaterials and recorded the amount released over time. Orthotopic, syngeneic neuroblastoma xenografts were generated by injecting 9464D cells into adrenal gland of C57BL/6 mice, and IFN-γ-loaded and/or vincristine-loaded silk biomaterials were implanted into the tumor once the tumors reached 100 mm3. Drug release at different timepoints was measured and tumor growth after different treatments were compared. RESULTS 1-2% of IFN-γ and 70% of vincristine were released from the biomaterials by the fifth day. Combining IFN-γ and vincristine significantly slowed tumor growth as compared to the controls (12.2 ± 2.7 days to reach 800 mm3 versus 5.7 ± 1.2 days, p = 0.01), and IFN-γ alone also delayed tumor growth as compared to the controls (10.9 ± 1.5 days versus 5.7 ± 1.2 days, p = 0.001). Hematoxylin and eosin staining demonstrated tumor necrosis adjacent to the drug-loaded silk biomaterials. CONCLUSION Local delivery of sustained release IFN-γ can inhibit neuroblastoma tumor growth by itself and in combination with vincristine.
Collapse
Affiliation(s)
- Jasmine Zeki
- Department of Surgery, Stanford University, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | - Burcin Yavuz
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Lauren Wood
- Department of Surgery, Stanford University, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | | | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA.
| | - Bill Chiu
- Department of Surgery, Stanford University, 453 Quarry Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
16
|
Vonderhaar EP, Dwinell MB, Craig BT. Targeted immune activation in pediatric solid tumors: opportunities to complement local control approaches. Front Immunol 2023; 14:1202169. [PMID: 37426669 PMCID: PMC10325564 DOI: 10.3389/fimmu.2023.1202169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Surgery or radiation therapy is nearly universally applied for pediatric solid tumors. In many cases, in diverse tumor types, distant metastatic disease is present and evades surgery or radiation. The systemic host response to these local control modalities may lead to a suppression of antitumor immunity, with potential negative impact on the clinical outcomes for patients in this scenario. Emerging evidence suggests that the perioperative immune responses to surgery or radiation can be modulated therapeutically to preserve anti-tumor immunity, with the added benefit of preventing these local control approaches from serving as pro-tumorigenic stimuli. To realize the potential benefit of therapeutic modulation of the systemic response to surgery or radiation on distant disease that evades these modalities, a detailed knowledge of the tumor-specific immunology as well as the immune responses to surgery and radiation is imperative. In this Review we highlight the current understanding of the tumor immune microenvironment for the most common peripheral pediatric solid tumors, the immune responses to surgery and radiation, and current evidence that supports the potential use of immune activating agents in the perioperative window. Finally, we define existing knowledge gaps that limit the current translational potential of modulating perioperative immunity to achieve effective anti-tumor outcomes.
Collapse
Affiliation(s)
- Emily P. Vonderhaar
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael B. Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian T. Craig
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
17
|
Rohila D, Park IH, Pham TV, Jones R, Tapia E, Liu KX, Tamayo P, Yu A, Sharabi AB, Joshi S. Targeting macrophage Syk enhances responses to immune checkpoint blockade and radiotherapy in high-risk neuroblastoma. Front Immunol 2023; 14:1148317. [PMID: 37350973 PMCID: PMC10283071 DOI: 10.3389/fimmu.2023.1148317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/02/2023] [Indexed: 06/24/2023] Open
Abstract
Background Neuroblastoma (NB) is considered an immunologically cold tumor and is usually less responsive to immune checkpoint blockade (ICB). Tumor-associated macrophages (TAMs) are highly infiltrated in NB tumors and promote immune escape and resistance to ICB. Hence therapeutic strategies targeting immunosuppressive TAMs can improve responses to ICB in NB. We recently discovered that spleen tyrosine kinase (Syk) reprograms TAMs toward an immunostimulatory phenotype and enhances T-cell responses in the lung adenocarcinoma model. Here we investigated if Syk is an immune-oncology target in NB and tested whether a novel immunotherapeutic approach utilizing Syk inhibitor together with radiation and ICB could provide a durable anti-tumor immune response in an MYCN amplified murine model of NB. Methods Myeloid Syk KO mice and syngeneic MYCN-amplified cell lines were used to elucidate the effect of myeloid Syk on the NB tumor microenvironment (TME). In addition, the effect of Syk inhibitor, R788, on anti-tumor immunity alone or in combination with anti-PDL1 mAb and radiation was also determined in murine NB models. The underlying mechanism of action of this novel therapeutic combination was also investigated. Results Herein, we report that Syk is a marker of NB-associated macrophages and plays a crucial role in promoting immunosuppression in the NB TME. We found that the blockade of Syk in NB-bearing mice markedly impairs tumor growth. This effect is facilitated by macrophages that become immunogenic in the absence of Syk, skewing the suppressive TME towards immunostimulation and activating anti-tumor immune responses. Moreover, combining FDA-approved Syk inhibitor, R788 (fostamatinib) along with anti-PDL1 mAb provides a synergistic effect leading to complete tumor regression and durable anti-tumor immunity in mice bearing small tumors (50 mm3) but not larger tumors (250 mm3). However, combining radiation to R788 and anti-PDL1 mAb prolongs the survival of mice bearing large NB9464 tumors. Conclusion Collectively, our findings demonstrate the central role of macrophage Syk in NB progression and demonstrate that Syk blockade can "reeducate" TAMs towards immunostimulatory phenotype, leading to enhanced T cell responses. These findings further support the clinical evaluation of fostamatinib alone or with radiation and ICB, as a novel therapeutic intervention in neuroblastoma.
Collapse
Affiliation(s)
- Deepak Rohila
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - In Hwan Park
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Timothy V. Pham
- Office of Cancer Genomics, University of California San Diego, San Diego, CA, United States
| | - Riley Jones
- Department of Radiation Medicine and Applied Sciences, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Elisabette Tapia
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Kevin X. Liu
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, MA, United States
| | - Pablo Tamayo
- Office of Cancer Genomics, University of California San Diego, San Diego, CA, United States
| | - Alice Yu
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Andrew B. Sharabi
- Department of Radiation Medicine and Applied Sciences, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Shweta Joshi
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
18
|
Rivera Z, Escutia C, Madonna MB, Gupta KH. Biological Insight and Recent Advancement in the Treatment of Neuroblastoma. Int J Mol Sci 2023; 24:ijms24108470. [PMID: 37239815 DOI: 10.3390/ijms24108470] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
One of the most frequent solid tumors in children is neuroblastoma, which has a variety of clinical behaviors that are mostly influenced by the biology of the tumor. Unique characteristics of neuroblastoma includes its early age of onset, its propensity for spontaneous tumor regression in newborns, and its high prevalence of metastatic disease at diagnosis in individuals older than 1 year of age. Immunotherapeutic techniques have been added to the previously enlisted chemotherapeutic treatments as therapeutic choices. A groundbreaking new treatment for hematological malignancies is adoptive cell therapy, specifically chimeric antigen receptor (CAR) T cell therapy. However, due to the immunosuppressive nature of the tumor microenvironment (TME) of neuroblastoma tumor, this treatment approach faces difficulties. Numerous tumor-associated genes and antigens, including the MYCN proto-oncogene (MYCN) and disialoganglioside (GD2) surface antigen, have been found by the molecular analysis of neuroblastoma cells. The MYCN gene and GD2 are two of the most useful immunotherapy findings for neuroblastoma. The tumor cells devise numerous methods to evade immune identification or modify the activity of immune cells. In addition to addressing the difficulties and potential advancements of immunotherapies for neuroblastoma, this review attempts to identify important immunological actors and biological pathways involved in the dynamic interaction between the TME and immune system.
Collapse
Affiliation(s)
- Zoriamin Rivera
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Carlos Escutia
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Mary Beth Madonna
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kajal H Gupta
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
19
|
Ivasko SM, Anders K, Grunewald L, Launspach M, Klaus A, Schwiebert S, Ruf P, Lindhofer H, Lode HN, Andersch L, Schulte JH, Eggert A, Hundsdoerfer P, Künkele A, Zirngibl F. Combination of GD2-directed bispecific trifunctional antibody therapy with Pd-1 immune checkpoint blockade induces anti-neuroblastoma immunity in a syngeneic mouse model. Front Immunol 2023; 13:1023206. [PMID: 36700232 PMCID: PMC9869131 DOI: 10.3389/fimmu.2022.1023206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Despite advances in treating high-risk neuroblastoma, 50-60% of patients still suffer relapse, necessitating new treatment options. Bispecific trifunctional antibodies (trAbs) are a promising new class of immunotherapy. TrAbs are heterodimeric IgG-like molecules that bind CD3 and a tumor-associated antigen simultaneously, whereby inducing a TCR-independent anti-cancer T cell response. Moreover, via their functional Fc region they recruit and activate cells of the innate immune system like antigen-presenting cells potentially enhancing induction of adaptive tumor-specific immune responses. Methods We used the SUREK trAb, which is bispecific for GD2 and murine Cd3. Tumor-blind trAb and the monoclonal ch14.18 antibody were used as controls. A co-culture model of murine dendritic cells (DCs), T cells and a neuroblastoma cell line was established to evaluate the cytotoxic effect and the T cell effector function in vitro. Expression of immune checkpoint molecules on tumor-infiltrating T cells and the induction of an anti-neuroblastoma immune response using a combination of whole cell vaccination and trAb therapy was investigated in a syngeneic immunocompetent neuroblastoma mouse model (NXS2 in A/J background). Finally, vaccinated mice were assessed for the presence of neuroblastoma-directed antibodies. We show that SUREK trAb-mediated effective killing of NXS2 cells in vitro was strictly dependent on the combined presence of DCs and T cells. Results Using a syngeneic neuroblastoma mouse model, we showed that vaccination with irradiated tumor cells combined with SUREK trAb treatment significantly prolonged survival of tumor challenged mice and partially prevent tumor outgrowth compared to tumor vaccination alone. Treatment led to upregulation of programmed cell death protein 1 (Pd-1) on tumor infiltrating T cells and combination with anti-Pd-1 checkpoint inhibition enhanced the NXS2-directed humoral immune response. Conclusion Here, we provide first preclinical evidence that a tumor vaccination combined with SUREK trAb therapy induces an endogenous anti-neuroblastoma immune response reducing tumor recurrence. Furthermore, a combination with anti-Pd-1 immune checkpoint blockade might even further improve this promising immunotherapeutic concept in order to prevent relapse in high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- Sara Marie Ivasko
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,Berlin Institute of Health (BIH), Berlin, Germany
| | - Kathleen Anders
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,German Cancer Consortium (DKTK), Berlin, Germany
| | - Laura Grunewald
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michael Launspach
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,Berlin Institute of Health (BIH), Berlin, Germany
| | - Anika Klaus
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Silke Schwiebert
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Peter Ruf
- Trion Research, Martinsried, Germany
| | | | - Holger N. Lode
- Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Lena Andersch
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Johannes H. Schulte
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,German Cancer Consortium (DKTK), Berlin, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,German Cancer Consortium (DKTK), Berlin, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Hundsdoerfer
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,Department of Pediatrics, HELIOS Klinikum Berlin Buch, Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,Berlin Institute of Health (BIH), Berlin, Germany,German Cancer Consortium (DKTK), Berlin, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Zirngibl
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,Berlin Institute of Health (BIH), Berlin, Germany,*Correspondence: Felix Zirngibl,
| |
Collapse
|
20
|
Pascual-Pasto G, McIntyre B, Shraim R, Buongervino SN, Erbe AK, Zhelev DV, Sadirova S, Giudice AM, Martinez D, Garcia-Gerique L, Dimitrov DS, Sondel PM, Bosse KR. GPC2 antibody-drug conjugate reprograms the neuroblastoma immune milieu to enhance macrophage-driven therapies. J Immunother Cancer 2022; 10:jitc-2022-004704. [PMID: 36460335 PMCID: PMC9723962 DOI: 10.1136/jitc-2022-004704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) that deliver cytotoxic drugs to tumor cells have emerged as an effective and safe anticancer therapy. ADCs may induce immunogenic cell death (ICD) to promote additional endogenous antitumor immune responses. Here, we characterized the immunomodulatory properties of D3-GPC2-PBD, a pyrrolobenzodiazepine (PBD) dimer-bearing ADC that targets glypican 2 (GPC2), a cell surface oncoprotein highly differentially expressed in neuroblastoma. METHODS ADC-mediated induction of ICD was studied in GPC2-expressing murine neuroblastomas in vitro and in vivo. ADC reprogramming of the neuroblastoma tumor microenvironment was profiled by RNA sequencing, cytokine arrays, cytometry by time of flight and flow cytometry. ADC efficacy was tested in combination with macrophage-driven immunoregulators in neuroblastoma syngeneic allografts and human patient-derived xenografts. RESULTS The D3-GPC2-PBD ADC induced biomarkers of ICD, including neuroblastoma cell membrane translocation of calreticulin and heat shock proteins (HSP70/90) and release of high-mobility group box 1 and ATP. Vaccination of immunocompetent mice with ADC-treated murine neuroblastoma cells promoted T cell-mediated immune responses that protected animals against tumor rechallenge. ADC treatment also reprogrammed the tumor immune microenvironment to a proinflammatory state in these syngeneic neuroblastoma models, with increased tumor trafficking of activated macrophages and T cells. In turn, macrophage or T-cell inhibition impaired ADC efficacy in vivo, which was alternatively enhanced by both CD40 agonist and CD47 antagonist antibodies. In human neuroblastomas, the D3-GPC2-PBD ADC also induced ICD and promoted tumor phagocytosis by macrophages, which was further enhanced when blocking CD47 signaling in vitro and in vivo. CONCLUSIONS We elucidated the immunoregulatory properties of a GPC2-targeted ADC and showed robust efficacy of combination immunotherapies in diverse neuroblastoma preclinical models.
Collapse
Affiliation(s)
- Guillem Pascual-Pasto
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Brendan McIntyre
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rawan Shraim
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Samantha N Buongervino
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amy K Erbe
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Doncho V Zhelev
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shakhnozakhon Sadirova
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anna M Giudice
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daniel Martinez
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Laura Garcia-Gerique
- Immunology, Microenvironment and Metastasis Program, Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Dimiter S Dimitrov
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA,Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kristopher R Bosse
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Dongye Z, Li J, Wu Y. Toll-like receptor 9 agonists and combination therapies: strategies to modulate the tumour immune microenvironment for systemic anti-tumour immunity. Br J Cancer 2022; 127:1584-1594. [PMID: 35902641 PMCID: PMC9333350 DOI: 10.1038/s41416-022-01876-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/11/2022] [Accepted: 05/31/2022] [Indexed: 02/08/2023] Open
Abstract
Over the past decade, tremendous progress has taken place in tumour immunotherapy, relying on the fast development of combination therapy strategies that target multiple immunosuppressive signaling pathways in the immune system of cancer patients to achieve a high response rate in clinical practice. Toll-like receptor 9 (TLR9) agonists have been extensively investigated as therapeutics in monotherapy or combination therapies for the treatment of cancer, infectious diseases and allergies. TLR9 agonists monotherapy shows limited efficacy in cancer patients; whereas, in combination with other therapies including antigen vaccines, radiotherapies, chemotherapies and immunotherapies exhibit great potential. Synthetic unmethylated CpG oligodeoxynucleotide (ODN), a commonly used agonist for TLR9, stimulate various antigen-presenting cells in the tumour microenvironment, which can initiate innate and adaptive immune responses. Novel combination therapy approaches, which co-deliver immunostimulatory CpG-ODN with other therapeutics, have been tested in animal models and early human clinical trials to induce anti-tumour immune responses. In this review, we describe the basic understanding of TLR9 signaling pathway; the delivery methods in most studies; discuss the key challenges of each of the above mentioned TLR9 agonist-based combination immunotherapies and provide an overview of the ongoing clinical trial results from CpG-ODN based combination therapies in cancer patients.
Collapse
Affiliation(s)
- Zhangchi Dongye
- grid.410645.20000 0001 0455 0905Department of Immunology, Medical College of Qingdao University, 266071 Qingdao, Shandong PR China ,grid.410570.70000 0004 1760 6682Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- grid.410570.70000 0004 1760 6682Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuzhang Wu
- grid.410570.70000 0004 1760 6682Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
22
|
Sengupta S, Das S, Crespo AC, Cornel AM, Patel AG, Mahadevan NR, Campisi M, Ali AK, Sharma B, Rowe JH, Huang H, Debruyne DN, Cerda ED, Krajewska M, Dries R, Chen M, Zhang S, Soriano L, Cohen MA, Versteeg R, Jaenisch R, Spranger S, Romee R, Miller BC, Barbie DA, Nierkens S, Dyer MA, Lieberman J, George RE. Mesenchymal and adrenergic cell lineage states in neuroblastoma possess distinct immunogenic phenotypes. NATURE CANCER 2022; 3:1228-1246. [PMID: 36138189 PMCID: PMC10171398 DOI: 10.1038/s43018-022-00427-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/20/2022] [Indexed: 11/08/2022]
Abstract
Apart from the anti-GD2 antibody, immunotherapy for neuroblastoma has had limited success due to immune evasion mechanisms, coupled with an incomplete understanding of predictors of response. Here, from bulk and single-cell transcriptomic analyses, we identify a subset of neuroblastomas enriched for transcripts associated with immune activation and inhibition and show that these are predominantly characterized by gene expression signatures of the mesenchymal lineage state. By contrast, tumors expressing adrenergic lineage signatures are less immunogenic. The inherent presence or induction of the mesenchymal state through transcriptional reprogramming or therapy resistance is accompanied by innate and adaptive immune gene activation through epigenetic remodeling. Mesenchymal lineage cells promote T cell infiltration by secreting inflammatory cytokines, are efficiently targeted by cytotoxic T and natural killer cells and respond to immune checkpoint blockade. Together, we demonstrate that distinct immunogenic phenotypes define the divergent lineage states of neuroblastoma and highlight the immunogenic potential of the mesenchymal lineage.
Collapse
Affiliation(s)
- Satyaki Sengupta
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sanjukta Das
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Angela C Crespo
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Annelisa M Cornel
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht University, Utrecht, The Netherlands
| | - Anand G Patel
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Navin R Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alaa K Ali
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cellular Therapy and Stem Cell Transplant Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bandana Sharma
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jared H Rowe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hao Huang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - David N Debruyne
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Esther D Cerda
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Malgorzata Krajewska
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ruben Dries
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Minyue Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shupei Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Luigi Soriano
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Malkiel A Cohen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Rogier Versteeg
- Department of Oncogenomics, University Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stefani Spranger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Cellular Therapy and Stem Cell Transplant Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Brian C Miller
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stefan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht University, Utrecht, The Netherlands
| | - Michael A Dyer
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Judy Lieberman
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Rani E George
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Anderson J, Majzner RG, Sondel PM. Immunotherapy of Neuroblastoma: Facts and Hopes. Clin Cancer Res 2022; 28:3196-3206. [PMID: 35435953 PMCID: PMC9344822 DOI: 10.1158/1078-0432.ccr-21-1356] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/21/2022] [Accepted: 04/06/2022] [Indexed: 01/09/2023]
Abstract
While the adoption of multimodal therapy including surgery, radiation, and aggressive combination chemotherapy has improved outcomes for many children with high-risk neuroblastoma, we appear to have reached a plateau in what can be achieved with cytotoxic therapies alone. Most children with cancer, including high-risk neuroblastoma, do not benefit from treatment with immune checkpoint inhibitors (ICI) that have revolutionized the treatment of many highly immunogenic adult solid tumors. This likely reflects the low tumor mutation burden as well as the downregulated MHC-I that characterizes most high-risk neuroblastomas. For these reasons, neuroblastoma represents an immunotherapeutic challenge that may be a model for the creation of effective immunotherapy for other "cold" tumors in children and adults that do not respond to ICI. The identification of strong expression of the disialoganglioside GD2 on the surface of nearly all neuroblastoma cells provided a target for immune recognition by anti-GD2 mAbs that recruit Fc receptor-expressing innate immune cells that mediate cytotoxicity or phagocytosis. Adoption of anti-GD2 antibodies into both upfront and relapse treatment protocols has dramatically increased survival rates and altered the landscape for children with high-risk neuroblastoma. This review describes how these approaches have been expanded to additional combinations and forms of immunotherapy that have already demonstrated clear clinical benefit. We also describe the efforts to identify additional immune targets for neuroblastoma. Finally, we summarize newer approaches being pursued that may well help both innate and adaptive immune cells, endogenous or genetically engineered, to more effectively destroy neuroblastoma cells, to better induce complete remission and prevent recurrence.
Collapse
Affiliation(s)
- John Anderson
- Developmental Biology and Cancer Programme, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Robbie G. Majzner
- Department of Pediatrics, Stanford University, Stanford, California
- Stanford Cancer Institute, Stanford University, Stanford, California
| | - Paul M. Sondel
- Departments of Pediatrics, Human Oncology and Genetics, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
24
|
Pathania AS, Prathipati P, Murakonda SP, Murakonda AB, Srivastava A, Avadhesh A, Byrareddy SN, Coulter DW, Gupta SC, Challagundla KB. Immune checkpoint molecules in neuroblastoma: A clinical perspective. Semin Cancer Biol 2022; 86:247-258. [PMID: 35787940 DOI: 10.1016/j.semcancer.2022.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 10/31/2022]
Abstract
High-risk neuroblastoma (NB) is challenging to treat with 5-year long-term survival in patients remaining below 50% and low chances of survival after tumor relapse or recurrence. Different strategies are being tested or under evaluation to destroy resistant tumors and improve survival outcomes in NB patients. Immunotherapy, which uses certain parts of a person's immune system to recognize or kill tumor cells, effectively improves patient outcomes in several types of cancer, including NB. One of the immunotherapy strategies is to block immune checkpoint signaling in tumors to increase tumor immunogenicity and anti-tumor immunity. Immune checkpoint proteins put brakes on immune cell functions to regulate immune activation, but this activity is exploited in tumors to evade immune surveillance and attack. Immune checkpoint proteins play an essential role in NB biology and immune escape mechanisms, which makes these tumors immunologically cold. Therapeutic strategies to block immune checkpoint signaling have shown promising outcomes in NB but only in a subset of patients. However, combining immune checkpoint blockade with other therapies, including conjugated antibody-based immunotherapy, radioimmunotherapy, tumor vaccines, or cellular therapies like modified T or natural killer (NK) cells, has shown encouraging results in enhancing anti-tumor immunity in the preclinical setting. An analysis of publicly available dataset using computational tools has unraveled the complexity of multiple cancer including NB. This review comprehensively summarizes the current information on immune checkpoint molecules, their biology, role in immune suppression and tumor development, and novel therapeutic approaches combining immune checkpoint inhibitors with other therapies to combat high-risk NB.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Philip Prathipati
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
| | - Swati P Murakonda
- Sri Rajiv Gandhi College of Dental Sciences & Hospital, Bengaluru, Karnataka 560032, India
| | - Ajay B Murakonda
- Sree Sai Dental College & Research Institute, Srikakulam, Andhra Pradesh 532001, India
| | - Ankit Srivastava
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Avadhesh Avadhesh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Don W Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, Assam, India.
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
25
|
Iori F, Bruni A, Cozzi S, Ciammella P, Di Pressa F, Boldrini L, Greco C, Nardone V, Salvestrini V, Desideri I, De Felice F, Iotti C. Can Radiotherapy Empower the Host Immune System to Counterattack Neoplastic Cells? A Systematic Review on Tumor Microenvironment Radiomodulation. Curr Oncol 2022; 29:4612-4624. [PMID: 35877226 PMCID: PMC9319790 DOI: 10.3390/curroncol29070366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the rising evidence in favor of immunotherapy (IT), the treatment of oncological patients affected by so-called "cold tumors" still represents an open issue. Cold tumors are characterized by an immunosuppressive (so-called cold) tumor microenvironment (TME), which favors host immune system suppression, cancer immune-escape, and a worse response to IT. However, the TME is not a static element, but dynamically mutates and can be changed. Radiotherapy (RT) can modulate a cold microenvironment, rendering it better at tumor killing by priming the quiescent host immune system, with a consequent increase in immunotherapy response. The combination of TME radiomodulation and IT could therefore be a strategy for those patients affected by cold tumors, with limited or no response to IT. Thus, this review aims to provide an easy, rapid, and practical overview of how RT could convert the cold TME and why cold tumor radiomodulation could represent an interesting strategy in combination with IT.
Collapse
Affiliation(s)
- Federico Iori
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42124 Reggio Emilia, Italy; (S.C.); (P.C.); (C.I.)
| | - Alessio Bruni
- Radiotherapy Unit, Oncology and Hematology Department, University Hospital of Modena, 41121 Modena, Italy; (A.B.); (F.D.P.)
| | - Salvatore Cozzi
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42124 Reggio Emilia, Italy; (S.C.); (P.C.); (C.I.)
| | - Patrizia Ciammella
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42124 Reggio Emilia, Italy; (S.C.); (P.C.); (C.I.)
| | - Francesca Di Pressa
- Radiotherapy Unit, Oncology and Hematology Department, University Hospital of Modena, 41121 Modena, Italy; (A.B.); (F.D.P.)
| | - Luca Boldrini
- Radiation Oncology Unit, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Carlo Greco
- Radiation Oncology, Campus Bio-Medico University, 00128 Rome, Italy;
| | | | - Viola Salvestrini
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, 50134 Florence, Italy; (V.S.); (I.D.)
| | - Isacco Desideri
- Radiation Oncology, Azienda Ospedaliero-Universitaria Careggi, University of Florence, 50134 Florence, Italy; (V.S.); (I.D.)
| | - Francesca De Felice
- Department of Radiotherapy, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy;
| | - Cinzia Iotti
- Radiation Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42124 Reggio Emilia, Italy; (S.C.); (P.C.); (C.I.)
| |
Collapse
|
26
|
Qian B, Sun J, Zuo P, Da M, Mo X, Fang Y. Verification of genetic differences and immune cell infiltration subtypes in the neuroblastoma tumour microenvironment during immunotherapy. World J Surg Oncol 2022; 20:169. [PMID: 35643506 PMCID: PMC9145414 DOI: 10.1186/s12957-022-02641-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background Improved understanding of the tumour microenvironment (TME) has enabled remarkable advancements in research on cancer progression in the past few years. It is crucial to understand the nature and function of the TME because precise treatment strategies, including immunotherapy, for managing specific cancers have received widespread attention. The immune infiltrative profiles of neuroblastoma (NB) have not yet been completely illustrated. The purpose of this research was to analyse tumour immune cell infiltration (ICI) in the microenvironment of NB. Methods We applied the CIBERSORT and ESTIMATE algorithms to evaluate the ICI status of 438 NB samples. Three ICI models were selected, and ICI scores were acquired. Subgroups with high ICI scores determined based on the presence of immune activation signalling pathways had better overall survival. Results Genes involved in the immunosuppressive heparan sulphate glycosaminoglycan biosynthesis signalling pathway were markedly enriched in the low ICI score subgroup. It was inferred that patients with high ICI NB subtypes were more likely to respond to immunotherapy and have a better prognosis than those of patients with low ICI NB subtypes. Conclusion Notably, our ICI data not only provide a new clinical and theoretical basis for mining NB prognostic markers related to the microenvironment but also offer new ideas for the development of NB precision immunotherapy methods.
Collapse
|
27
|
Abstract
Neuroblastomas are tumours of sympathetic origin, with a heterogeneous clinical course ranging from localized or spontaneously regressing to widely metastatic disease. Neuroblastomas recapitulate many of the features of sympathoadrenal development, which have been directly targeted to improve the survival outcomes in patients with high-risk disease. Over the past few decades, improvements in the 5-year survival of patients with metastatic neuroblastomas, from <20% to >50%, have resulted from clinical trials incorporating high-dose chemotherapy with autologous stem cell transplantation, differentiating agents and immunotherapy with anti-GD2 monoclonal antibodies. The next generation of trials are designed to improve the initial response rates in patients with high-risk neuroblastomas via the addition of immunotherapies, targeted therapies (such as ALK inhibitors) and radiopharmaceuticals to standard induction regimens. Other trials are focused on testing precision medicine strategies for patients with relapsed and/or refractory disease, enhancing the antitumour immune response and improving the effectiveness of maintenance regimens, in order to prolong disease remission. In this Review, we describe advances in delineating the pathogenesis of neuroblastoma and in identifying the drivers of high-risk disease. We then discuss how this knowledge has informed improvements in risk stratification, risk-adapted therapy and the development of novel therapies.
Collapse
|
28
|
McNerney KO, Karageorgos S, Ferry GM, Wolpaw AJ, Burudpakdee C, Khurana P, Toland CN, Vemu R, Vu A, Hogarty MD, Bassiri H. TH-MYCN tumors, but not tumor-derived cell lines, are adrenergic lineage, GD2+, and responsive to anti-GD2 antibody therapy. Oncoimmunology 2022; 11:2075204. [PMID: 35646475 PMCID: PMC9132414 DOI: 10.1080/2162402x.2022.2075204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Neuroblastoma is a commonly lethal solid tumor of childhood and intensive chemoradiotherapy treatment cures ~50% of children with high-risk disease. The addition of immunotherapy using dinutuximab, a monoclonal antibody directed against the GD2 disialoganglioside expressed on neuroblasts, improves survival when incorporated into front-line therapy and shows robust activity in regressing relapsed disease when combined with chemotherapy. Still, many children succumb to neuroblastoma progression despite receiving dinutuximab-based immunotherapy, and efforts to counteract the immune suppressive signals responsible are warranted. Animal models of human cancers provide useful platforms to study immunotherapies. TH-MYCN transgenic mice are immunocompetent and develop neuroblastomas at autochthonous sites due to enforced MYCN expression in developing neural crest tissues. However, GD2-directed immunotherapy in this model has been underutilized due to the prevailing notion that TH-MYCN neuroblasts express insufficient GD2 to be targeted. We demonstrate that neuroblasts in TH-MYCN-driven tumors express GD2 at levels comparable to human neuroblastomas but rapidly lose GD2 expression when explanted ex vivo to establish tumor cell lines. This occurs in association with a transition from an adrenergic to mesenchymal differentiation state. Importantly, not only is GD2 expression retained on tumors in situ, treatment with a murine anti-GD2 antibody, 14G2a, markedly extends survival in such mice, including durable complete responses. Tumors in 14G2a-treated mice have fewer macrophage and myeloid-derived suppressor cells in their tumor microenvironment. Our findings support the utility of this model to inform immunotherapy approaches for neuroblastoma and potential opportunities to investigate drivers of adrenergic to mesenchymal fate decisions.
Collapse
Affiliation(s)
- KO McNerney
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - S Karageorgos
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - GM Ferry
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - AJ Wolpaw
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- The Wistar Institute, Philadelphia, PA
| | - C Burudpakdee
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - P Khurana
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - CN Toland
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - R Vemu
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - A Vu
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - MD Hogarty
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - H Bassiri
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
29
|
Aiken TJ, Erbe AK, Zebertavage L, Komjathy D, Feils AS, Rodriguez M, Stuckwisch A, Gillies SD, Morris ZS, Birstler J, Rakhmilevich AL, Sondel PM. Mechanism of effective combination radio-immunotherapy against 9464D-GD2, an immunologically cold murine neuroblastoma. J Immunother Cancer 2022; 10:e004834. [PMID: 35618290 PMCID: PMC9125770 DOI: 10.1136/jitc-2022-004834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Most pediatric cancers are considered immunologically cold with relatively few responding to immune checkpoint inhibition. We recently described an effective combination radio-immunotherapy treatment regimen ( c ombination a daptive- i nnate immunotherapy r egimen (CAIR)) targeting adaptive and innate immunity in 9464D-GD2, an immunologically cold model of neuroblastoma. Here, we characterize the mechanism of CAIR and the role of major histocompatibility complex class I (MHC-I) in the treatment response. METHODS Mice bearing GD2-expressing 9464D-GD2 tumors were treated with CAIR (external beam radiotherapy, hu14.18-IL2 immunocytokine, CpG, anti-CD40, and anti-CTLA4) and tumor growth and survival were tracked. Depletion of specific immune cell lineages, as well as testing in immunodeficient R2G2 mice, were used to determine the populations necessary for treatment efficacy. Induction of MHC-I expression in 9464D-GD2 cells in response to interferon-γ (IFN-γ) and CAIR was measured in vitro and in vivo, respectively, by flow cytometry and quantitative real-time PCR. A cell line with IFN-γ-inducible MHC-I expression (9464D-GD2-I) was generated by transfecting a subclone of the parental cell line capable of expressing MHC-I with GD2 synthase and was used in vivo to assess the impact of MHC-I expression on responsiveness to CAIR. RESULTS CAIR cures some mice bearing small (50 mm3) but not larger (100 mm3) 9464D-GD2 tumors and these cured mice develop weak memory responses against tumor rechallenge. Early suppression of 9464D-GD2 tumors by CAIR does not require T or natural killer (NK) cells, but eventual tumor cures are NK cell dependent. Unlike the parental 9464D cell line, 9464D-GD2 cells have uniformly very low MHC-I expression at baseline and fail to upregulate expression in response to IFN-γ. In contrast, 9464D-GD2-I upregulates MHC-I in response to IFN-γ and is less responsive to CAIR. CONCLUSION Treatment with CAIR cures 9464D-GD2 tumors in a NK cell dependent manner and induction of MHC-I by tumors cells was associated with decreased efficacy. These results demonstrate that the early tumor response to this regimen is T and NK cell independent, but that NK cells have a role in generating lasting cures in the absence of MHC-I expression by tumor cells. Further strategies to better inhibit tumor outgrowth in this setting may require further NK activation or the ability to engage alternative immune effector cells.
Collapse
Affiliation(s)
- Taylor J Aiken
- Department of General Surgery, University of Wisconsin Hospitals and Clinics, Madison, Wisconsin, USA
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy K Erbe
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren Zebertavage
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David Komjathy
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Arika S Feils
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew Rodriguez
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ashley Stuckwisch
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jen Birstler
- Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
30
|
Liu X, Wills CA, Chen L, Zhang J, Zhao Y, Zhou M, Sundstrom JM, Schell T, Spiegelman VS, Young MM, Wang HG. Small extracellular vesicles induce resistance to anti-GD2 immunotherapy unveiling tipifarnib as an adjunct to neuroblastoma immunotherapy. J Immunother Cancer 2022; 10:jitc-2021-004399. [PMID: 35483745 PMCID: PMC9052051 DOI: 10.1136/jitc-2021-004399] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/21/2022] Open
Abstract
Background Anti-GD2 monoclonal antibody immunotherapy has significantly improved the overall survival rate for high-risk neuroblastoma patients. However, 40% of patients fail to respond or develop resistance to treatment, and the molecular mechanisms by which this occurs remain poorly understood. Tumor-derived small extracellular vesicles (sEVs) have emerged as critical regulators in modulating the response to immunotherapy. In this study, we investigated the role of neuroblastoma-derived sEVs in promoting resistance to the anti-GD2 monoclonal antibody dinutuximab. Moreover, to determine whether pharmacologic inhibition of sEV secretion sensitizes tumors to dinutuximab treatment, we combined dinutuximab with tipifarnib, a farnesyltransferase inhibitor that inhibits sEV secretion. Methods We investigated the role of neuroblastoma-derived sEVs in modulating the response to dinutuximab by utilizing the syngeneic 9464D-GD2 mouse model. The effect of neuroblastoma-derived sEVs in modulating the tumor microenvironment (TME) and host immune system were evaluated by RNA-sequencing and flow cytometry. Importantly, we used this mouse model to investigate the efficacy of tipifarnib in sensitizing neuroblastoma tumors to dinutuximab. The effect of tipifarnib on both the TME and host immune system were assessed by flow cytometry. Results We demonstrated that neuroblastoma-derived sEVs significantly attenuated the efficacy of dinutuximab in vivo and modulated tumor immune cell infiltration upon dinutuximab treatment to create an immunosuppressive TME that contains more tumor-associated macrophages and fewer tumor-infiltrating NK cells. In addition, we demonstrated that neuroblastoma-derived sEVs suppress splenic NK cell maturation in vivo and dinutuximab-induced NK cell-mediated antibody-dependent cellular cytotoxicity in vitro. Importantly, tipifarnib drastically enhanced the efficacy of dinutuximab-mediated inhibition of tumor growth and prevented the immunosuppressive effects of neuroblastoma-derived sEVs in vivo. Conclusions These preclinical findings uncover a novel mechanism by which neuroblastoma-derived sEVs modulate the immune system to promote resistance to dinutuximab and suggest that tipifarnib-mediated inhibition of sEV secretion may serve as a viable treatment strategy to enhance the antitumor efficacy of anti-GD2 immunotherapy in high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Carson A Wills
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Longgui Chen
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jiawen Zhang
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Yuanjun Zhao
- Department of Ophthalmology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Mi Zhou
- Department of Ophthalmology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jeffrey M Sundstrom
- Department of Ophthalmology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Todd Schell
- Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Vladimir S Spiegelman
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Megan M Young
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Hong-Gang Wang
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
31
|
Abstract
The association of gut microbiota with gastrointestinal carcinogenesis has been heavily investigated since the recent advance in sequencing technology. Accumulating evidence has revealed the critical roles of commensal microbes in cancer progression. Given by its importance, emerging studies have focussed on targeting microbiota to ameliorate therapeutic effectiveness. It is now clear that the microbial community is closely related to the efficacy of chemotherapy, while the correlation of microbiota with immunotherapy is much less studied. Herein, we review the up-to-date findings on the influence of gut microbiota on three common immunotherapies including adoptive cell transfer, immune checkpoint blockade, and CpG-oligodeoxynucleotide therapy. We then explore three microbiota-targeted strategies that may improve treatment efficacy, involving dietary intervention, probiotics supplementation, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Harry Cheuk Hay Lau
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, the Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Joseph Jao-Yiu Sung
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, the Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, the Chinese University of Hong Kong, Sha Tin, Hong Kong,CONTACT Jun Yu Institute of Digestive Disease, Department of Medicine and Therapeutics, Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
32
|
Moreno-Vicente J, Willoughby JE, Taylor MC, Booth SG, English VL, Williams EL, Penfold CA, Mockridge CI, Inzhelevskaya T, Kim J, Chan HTC, Cragg MS, Gray JC, Beers SA. Fc-null anti-PD-1 monoclonal antibodies deliver optimal checkpoint blockade in diverse immune environments. J Immunother Cancer 2022; 10:e003735. [PMID: 35017153 PMCID: PMC8753441 DOI: 10.1136/jitc-2021-003735] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Despite extensive clinical use, the mechanisms that lead to therapeutic resistance to anti-programmed cell-death (PD)-1 monoclonal antibodies (mAbs) remain elusive. Here, we sought to determine how interactions between the Fc region of anti-PD-1 mAbs and Fcγ receptors (FcγRs) affect therapeutic activity and how these are impacted by the immune environment. METHODS Mouse and human anti-PD-1 mAbs with different Fc binding profiles were generated and characterized in vitro. The ability of these mAbs to elicit T-cell responses in vivo was first assessed in a vaccination setting using the model antigen ovalbumin. The antitumor activity of anti-PD-1 mAbs was investigated in the context of immune 'hot' MC38 versus 'cold' neuroblastoma tumor models, and flow cytometry performed to assess immune infiltration. RESULTS Engagement of activating FcγRs by anti-PD-1 mAbs led to depletion of activated CD8 T cells in vitro and in vivo, abrogating therapeutic activity. Importantly, the extent of this Fc-mediated modulation was determined by the surrounding immune environment. Low FcγR-engaging mouse anti-PD-1 isotypes, which are frequently used as surrogates for human mAbs, were unable to expand ovalbumin-reactive CD8 T cells, in contrast to Fc-null mAbs. These results were recapitulated in mice expressing human FcγRs, in which clinically relevant hIgG4 anti-PD-1 led to reduced endogenous expansion of CD8 T cells compared with its engineered Fc-null counterpart. In the context of an immunologically 'hot' tumor however, both low-engaging and Fc-null mAbs induced long-term antitumor immunity in MC38-bearing mice. Finally, a similar anti-PD-1 isotype hierarchy was demonstrated in the less responsive 'cold' 9464D neuroblastoma model, where the most effective mAbs were able to delay tumor growth but could not induce long-term protection. CONCLUSIONS Our data collectively support a critical role for Fc:FcγR interactions in inhibiting immune responses to both mouse and human anti-PD-1 mAbs, and highlight the context-dependent effect that anti-PD-1 mAb isotypes can have on T-cell responses. We propose that engineering of Fc-null anti-PD-1 mAbs would prevent FcγR-mediated resistance in vivo and allow maximal T-cell stimulation independent of the immunological environment.
Collapse
Affiliation(s)
- Julia Moreno-Vicente
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Jane E Willoughby
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - Martin C Taylor
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - Steven G Booth
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - Vikki L English
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - Emily L Williams
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - Christine A Penfold
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - C Ian Mockridge
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - Tatyana Inzhelevskaya
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - Jinny Kim
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - H T Claude Chan
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - Juliet C Gray
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, Cancer Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
33
|
Zeng Y, Xiang Y, Sheng R, Tomás H, Rodrigues J, Gu Z, Zhang H, Gong Q, Luo K. Polysaccharide-based nanomedicines for cancer immunotherapy: A review. Bioact Mater 2021; 6:3358-3382. [PMID: 33817416 PMCID: PMC8005658 DOI: 10.1016/j.bioactmat.2021.03.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapy is an effective antitumor approach through activating immune systems to eradicate tumors by immunotherapeutics. However, direct administration of "naked" immunotherapeutic agents (such as nucleic acids, cytokines, adjuvants or antigens without delivery vehicles) often results in: (1) an unsatisfactory efficacy due to suboptimal pharmacokinetics; (2) strong toxic and side effects due to low targeting (or off-target) efficiency. To overcome these shortcomings, a series of polysaccharide-based nanoparticles have been developed to carry immunotherapeutics to enhance antitumor immune responses with reduced toxicity and side effects. Polysaccharides are a family of natural polymers that hold unique physicochemical and biological properties, as they could interact with immune system to stimulate an enhanced immune response. Their structures offer versatility in synthesizing multifunctional nanocomposites, which could be chemically modified to achieve high stability and bioavailability for delivering therapeutics into tumor tissues. This review aims to highlight recent advances in polysaccharide-based nanomedicines for cancer immunotherapy and propose new perspectives on the use of polysaccharide-based immunotherapeutics.
Collapse
Affiliation(s)
- Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Department of Neurosurgery, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yufan Xiang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Department of Neurosurgery, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruilong Sheng
- CQM-Centro de Quimica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Madeira, Portugal
| | - Helena Tomás
- CQM-Centro de Quimica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Madeira, Portugal
| | - João Rodrigues
- CQM-Centro de Quimica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Madeira, Portugal
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Department of Neurosurgery, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Department of Neurosurgery, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Department of Neurosurgery, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
34
|
Zeng Y, Xiang Y, Sheng R, Tomás H, Rodrigues J, Gu Z, Zhang H, Gong Q, Luo K. Polysaccharide-based nanomedicines for cancer immunotherapy: A review. Bioact Mater 2021. [DOI: https://doi.org/10.1016/j.bioactmat.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
35
|
Yu Y, Zeng Y, Xia X, Zhou JG, Cao F. Establishment and Validation of a Prognostic Immune Signature in Neuroblastoma. Cancer Control 2021; 28:10732748211033751. [PMID: 34569303 PMCID: PMC8477712 DOI: 10.1177/10732748211033751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Neuroblastoma (NBL) is the most common extracranial solid tumor in childhood, and patients with high-risk neuroblastoma had a relatively poor prognosis despite multimodal treatment. To improve immunotherapy efficacy in neuroblastoma, systematic profiling of the immune landscape in neuroblastoma is an urgent need. METHODS RNA-seq and according clinical information of neuroblastoma were downloaded from the TARGET database and GEO database (GSE62564). With an immune-related-gene set obtained from the ImmPort database, Immune-related Prognostic Gene Pairs for Neuroblastoma (IPGPN) for overall survival (OS) were established with the TARGET-NBL cohort and then verified with the GEO-NBL cohort. Immune cell infiltration analysis was subsequently performed. The integrated model was established with IPGPN and clinicopathological parameters. Immune cell infiltration was analyzed with the XCELL algorithm. Functional enrichment analysis was performed with clusterProfiler package in R. RESULTS Immune-related Prognostic Gene Pairs for Neuroblastoma was successfully established with seven immune-related gene pairs (IGPs) involving 13 unique genes in the training cohort. In the training cohort, IPGPN successfully stratified neuroblastoma patients into a high and low immune-risk groups with different OS (HR=3.92, P = 2 × 10-8) and event-free survival (HR=3.66, P=2 × 10-8). ROC curve analysis confirmed its predictive power. Consistently, high IPGPN also predicted worse OS (HR=1.84, P = .002) and EFS in validation cohort (HR=1.38, P = .06) Moreover, higher activated dendritic cells, M1 macrophage, Th1 CD4+, and Th2 CD4+ T cell enrichment were evident in low immune-risk group. Further integrating IPGPN with age and stage demonstrated improved predictive performance than IPGPN alone. CONCLUSION Herein, we presented an immune landscape with IPGPN for prognosis prediction in neuroblastoma, which complements the present understanding of the immune signature in neuroblastoma.
Collapse
Affiliation(s)
- Yunhu Yu
- Department of Neurosurgery, the Third Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Clinical Research Center for Neurological Disease, the People's Hospital of HongHuaGang District of ZunYi, Zunyi, China
| | - Yu Zeng
- Department of Cell Biology, School of Basic Medical Science, 70570Southern Medical University, Guangzhou, China
| | - Xiangping Xia
- Department of Cerebrovascular Disease, 66367Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jian-Guo Zhou
- Department of Oncology, 66367Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Fang Cao
- Department of Cerebrovascular Disease, 66367Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
36
|
Melero I, Castanon E, Alvarez M, Champiat S, Marabelle A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat Rev Clin Oncol 2021; 18:558-576. [PMID: 34006998 PMCID: PMC8130796 DOI: 10.1038/s41571-021-00507-y] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 02/04/2023]
Abstract
Immune-checkpoint inhibitors and chimeric antigen receptor (CAR) T cells are revolutionizing oncology and haematology practice. With these and other immunotherapies, however, systemic biodistribution raises safety issues, potentially requiring the use of suboptimal doses or even precluding their clinical development. Delivering or attracting immune cells or immunomodulatory factors directly to the tumour and/or draining lymph nodes might overcome these problems. Hence, intratumoural delivery and tumour tissue-targeted compounds are attractive options to increase the in situ bioavailability and, thus, the efficacy of immunotherapies. In mouse models, intratumoural administration of immunostimulatory monoclonal antibodies, pattern recognition receptor agonists, genetically engineered viruses, bacteria, cytokines or immune cells can exert powerful effects not only against the injected tumours but also often against uninjected lesions (abscopal or anenestic effects). Alternatively, or additionally, biotechnology strategies are being used to achieve higher functional concentrations of immune mediators in tumour tissues, either by targeting locally overexpressed moieties or engineering 'unmaskable' agents to be activated by elements enriched within tumour tissues. Clinical trials evaluating these strategies are ongoing, but their development faces issues relating to the administration methodology, pharmacokinetic parameters, pharmacodynamic end points, and immunobiological and clinical response assessments. Herein, we discuss these approaches in the context of their historical development and describe the current landscape of intratumoural or tumour tissue-targeted immunotherapies.
Collapse
Affiliation(s)
- Ignacio Melero
- Department of Immunology, Clínica Universidad de Navarra, Pamplona, Spain.
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
- Program for Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Eduardo Castanon
- Department of Immunology, Clínica Universidad de Navarra, Pamplona, Spain
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Stephane Champiat
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Université Paris Saclay, Gustave Roussy, Villejuif, France
- INSERM U1015, Gustave Roussy, Villejuif, France
- Biotherapies for In Situ Antitumor Immunization (BIOTHERIS), Centre d'Investigation Clinique INSERM CICBT1428, Villejuif, France
| | - Aurelien Marabelle
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Université Paris Saclay, Gustave Roussy, Villejuif, France.
- INSERM U1015, Gustave Roussy, Villejuif, France.
- Biotherapies for In Situ Antitumor Immunization (BIOTHERIS), Centre d'Investigation Clinique INSERM CICBT1428, Villejuif, France.
| |
Collapse
|
37
|
Shukla A, Cano-Mejia J, Andricovich J, Burga RA, Sweeney EE, Fernandes R. An Engineered Prussian Blue Nanoparticles-based Nanoimmunotherapy Elicits Robust and Persistent Immunological Memory in a TH-MYCN Neuroblastoma Model. ADVANCED NANOBIOMED RESEARCH 2021; 1. [PMID: 34435194 DOI: 10.1002/anbr.202100021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A combination therapy using Prussian blue nanoparticles (PBNP) as photothermal therapy (PTT) agents coated with CpG oligodeoxynucleotides, an immunologic adjuvant, as a nanoimmunotherapy (CpG-PBNP-PTT) for neuroblastoma (NB) is described. NB driven by MYCN amplification confers high risk and correlates with a dismal prognosis, accounting for the majority of NB-related mortality. The efficacy of the CpG-PBNP-PTT nanoimmunotherapy in a clinically relevant, TH-MYCN murine NB model (9464D) overexpressing MYCN is tested. When administered to 9464D NB cells in vitro, CpG-PBNP-PTT triggers thermal dose-dependent immunogenic cell death and tumor cell priming for immune recognition in vitro, measured by the expression of specific costimulatory and antigen-presenting molecules. In vivo, intratumorally administered CpG-PBNP-PTT generates complete tumor regression and significantly higher long-term survival compared to controls. Furthermore, CpG-PBNP-PTT-treated mice reject tumor rechallenge. Ex vivo studies confirm these therapeutic responses result from the generation of robust T cell-mediated immunological memory. Consequently, in a synchronous 9464D tumor model, CpG-PBNP-PTT induces complete tumor regression on the treated flank and significantly slows tumor progression on the untreated flank, improving animal survival. These findings demonstrate that localized administration of the CpG-PBNP-PTT nanoimmunotherapy drives potent systemic T cell responses in solid tumors such as NB and therefore has therapeutic implications for NB.
Collapse
Affiliation(s)
- Anshi Shukla
- The George Washington Cancer Center, The George Washington University, 800 22nd St NW, Science and Engineering Hall 8 Floor, Washington, DC 20052, USA
| | - Juliana Cano-Mejia
- The George Washington Cancer Center, The George Washington University, 800 22nd St NW, Science and Engineering Hall 8 Floor, Washington, DC 20052, USA
| | - Jaclyn Andricovich
- The George Washington Cancer Center, The George Washington University, 800 22nd St NW, Science and Engineering Hall 8 Floor, Washington, DC 20052, USA.,The Institute for Biomedical Sciences, The George Washington University,2300 Eye Street NW, Ross Hall Room 561, Washington, DC 20037, USA
| | - Rachel A Burga
- The George Washington Cancer Center, The George Washington University, 800 22nd St NW, Science and Engineering Hall 8 Floor, Washington, DC 20052, USA.,The Institute for Biomedical Sciences, The George Washington University,2300 Eye Street NW, Ross Hall Room 561, Washington, DC 20037, USA
| | - Elizabeth E Sweeney
- The George Washington Cancer Center, The George Washington University, 800 22nd St NW, Science and Engineering Hall 8 Floor, Washington, DC 20052, USA
| | - Rohan Fernandes
- The George Washington Cancer Center, The George Washington University, 800 22nd St NW, Science and Engineering Hall 8 Floor, Washington, DC 20052, USA
| |
Collapse
|
38
|
Zirngibl F, Ivasko SM, Grunewald L, Klaus A, Schwiebert S, Ruf P, Lindhofer H, Astrahantseff K, Andersch L, Schulte JH, Lode HN, Eggert A, Anders K, Hundsdoerfer P, Künkele A. GD2-directed bispecific trifunctional antibody outperforms dinutuximab beta in a murine model for aggressive metastasized neuroblastoma. J Immunother Cancer 2021; 9:jitc-2021-002923. [PMID: 34285106 PMCID: PMC8292814 DOI: 10.1136/jitc-2021-002923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background Neuroblastoma is the most common extracranial solid tumor of childhood. Patients with high-risk disease undergo extremely aggressive therapy and nonetheless have cure rates below 50%. Treatment with the ch14.18 monoclonal antibody (dinutuximab beta), directed against the GD2 disialoganglioside, improved 5-year event-free survival in high-risk patients when administered in postconsolidation therapy and was recently implemented in standard therapy. Relapse still occurred in 57% of these patients, necessitating new therapeutic options. Bispecific trifunctional antibodies (trAbs) are IgG-like molecules directed against T cells and cancer surface antigens, redirecting T cells (via their CD3 specificity) and accessory immune cells (via their functioning Fc-fragment) toward tumor cells. We sought proof-of-concept for GD2/CD3-directed trAb efficacy against neuroblastoma. Methods We used two GD2-specific trAbs differing only in their CD3-binding specificity: EKTOMUN (GD2/human CD3) and SUREK (GD2/mouse Cd3). This allowed trAb evaluation in human and murine experimental settings. Tumor-blind trAb and the ch14.18 antibody were used as controls. A coculture model of human peripheral blood mononuclear cells (PBMCs) and neuroblastoma cell lines was established to evaluate trAb antitumor efficacy by assessing expression of T-cell surface markers for activation, proinflammatory cytokine release and cytotoxicity assays. Characteristics of tumor-infiltrating T cells and response of neuroblastoma metastases to SUREK treatment were investigated in a syngeneic immunocompetent neuroblastoma mouse model mimicking minimal residual disease. Results We show that EKTOMUN treatment caused effector cell activation and release of proinflammatory cytokines in coculture with neuroblastoma cell lines. Furthermore, EKTOMUN mediated GD2-dependent cytotoxic effects in human neuroblastoma cell lines in coculture with PBMCs, irrespective of the level of target antigen expression. This effect was dependent on the presence of accessory immune cells. Treatment with SUREK reduced the intratumor Cd4/Cd8 ratio and activated tumor infiltrating T cells in vivo. In a minimal residual disease model for neuroblastoma, we demonstrated that single-agent treatment with SUREK strongly reduced or eliminated neuroblastoma metastases in vivo. SUREK as well as EKTOMUN demonstrated superior tumor control compared with the anti-GD2 antibody, ch14.18. Conclusions Here we provide proof-of-concept for EKTOMUN preclinical efficacy against neuroblastoma, presenting this bispecific trAb as a promising new agent to fight neuroblastoma.
Collapse
Affiliation(s)
- Felix Zirngibl
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany .,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sara M Ivasko
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Laura Grunewald
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anika Klaus
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Silke Schwiebert
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peter Ruf
- Trion Research, Martinsried, Germany
| | | | - Kathy Astrahantseff
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lena Andersch
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Partner Site Berlin CCCC, German Cancer Consortium, Berlin, Berlin, Germany
| | - Holger N Lode
- Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Partner Site Berlin CCCC, German Cancer Consortium, Berlin, Berlin, Germany
| | - Kathleen Anders
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Partner Site Berlin CCCC, German Cancer Consortium, Berlin, Berlin, Germany
| | - Patrick Hundsdoerfer
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Pediatrics, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Partner Site Berlin CCCC, German Cancer Consortium, Berlin, Berlin, Germany
| |
Collapse
|
39
|
van den Bijgaart RJE, Schuurmans F, Fütterer JJ, Verheij M, Cornelissen LAM, Adema GJ. Immune Modulation Plus Tumor Ablation: Adjuvants and Antibodies to Prime and Boost Anti-Tumor Immunity In Situ. Front Immunol 2021; 12:617365. [PMID: 33936033 PMCID: PMC8079760 DOI: 10.3389/fimmu.2021.617365] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
In situ tumor ablation techniques, like radiotherapy, cryo- and heat-based thermal ablation are successfully applied in oncology for local destruction of tumor masses. Although diverse in technology and mechanism of inducing cell death, ablative techniques share one key feature: they generate tumor debris which remains in situ. This tumor debris functions as an unbiased source of tumor antigens available to the immune system and has led to the concept of in situ cancer vaccination. Most studies, however, report generally modest tumor-directed immune responses following local tumor ablation as stand-alone treatment. Tumors have evolved mechanisms to create an immunosuppressive tumor microenvironment (TME), parts of which may admix with the antigen depot. Provision of immune stimuli, as well as approaches that counteract the immunosuppressive TME, have shown to be key to boost ablation-induced anti-tumor immunity. Recent advances in protein engineering have yielded novel multifunctional antibody formats. These multifunctional antibodies can provide a combination of distinct effector functions or allow for delivery of immunomodulators specifically to the relevant locations, thereby mitigating potential toxic side effects. This review provides an update on immune activation strategies that have been tested to act in concert with tumor debris to achieve in situ cancer vaccination. We further provide a rationale for multifunctional antibody formats to be applied together with in situ ablation to boost anti-tumor immunity for local and systemic tumor control.
Collapse
Affiliation(s)
- Renske J E van den Bijgaart
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Fabian Schuurmans
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jurgen J Fütterer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Robotics and Mechatronics, University of Twente, Enschede, Netherlands
| | - Marcel Verheij
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lenneke A M Cornelissen
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
40
|
Frosch J, Leontari I, Anderson J. Combined Effects of Myeloid Cells in the Neuroblastoma Tumor Microenvironment. Cancers (Basel) 2021; 13:1743. [PMID: 33917501 PMCID: PMC8038814 DOI: 10.3390/cancers13071743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Despite multimodal treatment, survival chances for high-risk neuroblastoma patients remain poor. Immunotherapeutic approaches focusing on the activation and/or modification of host immunity for eliminating tumor cells, such as chimeric antigen receptor (CAR) T cells, are currently in development, however clinical trials have failed to reproduce the preclinical results. The tumor microenvironment is emerging as a major contributor to immune suppression and tumor evasion in solid cancers and thus has to be overcome for therapies relying on a functional immune response. Among the cellular components of the neuroblastoma tumor microenvironment, suppressive myeloid cells have been described as key players in inhibition of antitumor immune responses and have been shown to positively correlate with more aggressive disease, resistance to treatments, and overall poor prognosis. This review article summarizes how neuroblastoma-driven inflammation induces suppressive myeloid cells in the tumor microenvironment and how they in turn sustain the tumor niche through suppressor functions, such as nutrient depletion and generation of oxidative stress. Numerous preclinical studies have suggested a range of drug and cellular therapy approaches to overcome myeloid-derived suppression in neuroblastoma that warrant evaluation in future clinical studies.
Collapse
Affiliation(s)
| | | | - John Anderson
- UCL Institute of Child Health, Developmental Biology and Cancer Section, University College London, London WC1N 1EH, UK; (J.F.); (I.L.)
| |
Collapse
|
41
|
Zhang J, An L, Zhou X, Shi R, Wang H. Analysis of tumor mutation burden combined with immune infiltrates in endometrial cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:551. [PMID: 33987249 PMCID: PMC8105813 DOI: 10.21037/atm-20-6049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/03/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Tumor mutational burden (TMB) is widely regarded as a predictor of response to immunotherapy. Few researchers have focused on the activity and prognosis of TMB in endometrial cancer (EC) and immune cells. Our study aimed to identify the prognostic role of TMB in EC. METHODS We downloaded transcriptome data from The Cancer Genome Atlas (TCGA) database. Kaplan-Meier analysis with log-rank test was conducted to assess the difference in overall survival (OS) between the high and low TMB groups. The "CIBERSORT" scripts were performed to evaluate the immune compositions of EC patients. Cox regression analysis and survival analysis were used to verify the prognostic value prognosis of TMB. RESULTS We obtained the single nucleotide mutation data for 529 EC patients. A missense mutation was the most common mutation type. TMB was associated with survival outcome, tumor grades, and pathological types. We identified 10 hub TMB-related signature and found that elevated T-cell subsets infiltrating density in the high TMB group revealed improved survival outcomes. According to Kaplan-Meier analysis, T cells gamma delta and T cells regulatory were prognostic immune cells in EC samples. Moreover, many top gene set enrichment analysis (GSEA) results, including amino sugar and nucleotide sugar metabolism, nucleotide excision repair, or p53 signaling pathway, were enriched significantly with TMB level as phenotype. CONCLUSIONS TMB is an important prognostic factor for EC, and TMB-related genes may be potential therapeutic targets for EC.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lanfen An
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Carlson PM, Mohan M, Rodriguez M, Subbotin V, Sun CX, Patel RB, Birstler J, Hank JA, Rakhmilevich AL, Morris ZS, Erbe AK, Sondel PM. Depth of tumor implantation affects response to in situ vaccination in a syngeneic murine melanoma model. J Immunother Cancer 2021; 9:e002107. [PMID: 33858849 PMCID: PMC8055108 DOI: 10.1136/jitc-2020-002107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 01/15/2023] Open
Abstract
An important component of research using animal models is ensuring rigor and reproducibility. This study was prompted after two experimenters performing virtually identical studies obtained different results when syngeneic B78 murine melanoma cells were implanted into the skin overlying the flank and treated with an in situ vaccine (ISV) immunotherapy. Although both experimenters thought they were using identical technique, we determined that one was implanting the tumors intradermally (ID) and the other was implanting them subcutaneously (SC). Though the baseline in vivo immunogenicity of tumors can depend on depth of their implantation, the response to immunotherapy as a function of tumor depth, particularly in immunologically 'cold' tumors, has not been well studied. The goal of this study was to evaluate the difference in growth kinetics and response to immunotherapy between identically sized melanoma tumors following ID versus SC implantation. We injected C57BL/6 mice with syngeneic B78 melanoma cells either ID or SC in the flank. When tumors reached 190-230 mm3, they were grouped into a 'wave' and treated with our previously published ISV regimen (12 Gy local external beam radiation and intratumoral hu14.18-IL2 immunocytokine). Physical examination demonstrated that ID-implanted tumors were mobile on palpation, while SC-implanted tumors became fixed to the underlying fascia. Histologic examination identified a critical fascial layer, the panniculus carnosus, which separated ID and SC tumors. SC tumors reached the target tumor volume significantly faster compared with ID tumors. Most ID tumors exhibited either partial or complete response to this immunotherapy, whereas most SC tumors did not. Further, the 'mobile' or 'fixed' phenotype of tumors predicted response to therapy, regardless of intended implantation depth. These findings were then extended to additional immunotherapy regimens in four separate tumor models. These data indicate that the physical 'fixed' versus 'mobile' characterization of the tumors may be one simple method of ensuring homogeneity among implanted tumors prior to initiation of treatment. Overall, this short report demonstrates that small differences in depth of tumor implantation can translate to differences in response to immunotherapy, and proposes a simple physical examination technique to ensure consistent tumor depth when conducting implantable tumor immunotherapy experiments.
Collapse
Affiliation(s)
- Peter M Carlson
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Manasi Mohan
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew Rodriguez
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vladimir Subbotin
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Claire X Sun
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ravi B Patel
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Jen Birstler
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jacquelyn A Hank
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy K Erbe
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
43
|
Marcus D, Lieverse RIY, Klein C, Abdollahi A, Lambin P, Dubois LJ, Yaromina A. Charged Particle and Conventional Radiotherapy: Current Implications as Partner for Immunotherapy. Cancers (Basel) 2021; 13:1468. [PMID: 33806808 PMCID: PMC8005048 DOI: 10.3390/cancers13061468] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) has been shown to interfere with inflammatory signals and to enhance tumor immunogenicity via, e.g., immunogenic cell death, thereby potentially augmenting the therapeutic efficacy of immunotherapy. Conventional RT consists predominantly of high energy photon beams. Hypofractionated RT regimens administered, e.g., by stereotactic body radiation therapy (SBRT), are increasingly investigated in combination with cancer immunotherapy within clinical trials. Despite intensive preclinical studies, the optimal dose per fraction and dose schemes for elaboration of RT induced immunogenic potential remain inconclusive. Compared to the scenario of combined immune checkpoint inhibition (ICI) and RT, multimodal therapies utilizing other immunotherapy principles such as adoptive transfer of immune cells, vaccination strategies, targeted immune-cytokines and agonists are underrepresented in both preclinical and clinical settings. Despite the clinical success of ICI and RT combination, e.g., prolonging overall survival in locally advanced lung cancer, curative outcomes are still not achieved for most cancer entities studied. Charged particle RT (PRT) has gained interest as it may enhance tumor immunogenicity compared to conventional RT due to its unique biological and physical properties. However, whether PRT in combination with immune therapy will elicit superior antitumor effects both locally and systemically needs to be further investigated. In this review, the immunological effects of RT in the tumor microenvironment are summarized to understand their implications for immunotherapy combinations. Attention will be given to the various immunotherapeutic interventions that have been co-administered with RT so far. Furthermore, the theoretical basis and first evidences supporting a favorable immunogenicity profile of PRT will be examined.
Collapse
Affiliation(s)
- Damiënne Marcus
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Relinde I. Y. Lieverse
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Carmen Klein
- German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Clinical Cooperation Unit Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (C.K.); (A.A.)
- Heidelberg Ion-Beam Therapy Center (HIT), Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, 69120 Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Clinical Cooperation Unit Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (C.K.); (A.A.)
- Heidelberg Ion-Beam Therapy Center (HIT), Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, 69120 Heidelberg, Germany
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| |
Collapse
|
44
|
Runbeck E, Crescioli S, Karagiannis SN, Papa S. Utilizing Immunocytokines for Cancer Therapy. Antibodies (Basel) 2021; 10:antib10010010. [PMID: 33803078 PMCID: PMC8006145 DOI: 10.3390/antib10010010] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Cytokine therapy for cancer has indicated efficacy in certain diseases but is generally accompanied by severe toxicity. The field of antibody-cytokine fusion proteins (immunocytokines) arose to target these effector molecules to the tumor environment in order to expand the therapeutic window of cytokine therapy. Pre-clinical evidence has shown the increased efficacy and decreased toxicity of various immunocytokines when compared to their cognate unconjugated cytokine. These anti-tumor properties are markedly enhanced when combined with other treatments such as chemotherapy, radiotherapy, and checkpoint inhibitor antibodies. Clinical trials that have continued to explore the potential of these biologics for cancer therapy have been conducted. This review covers the in vitro, in vivo, and clinical evidence for the application of immunocytokines in immuno-oncology.
Collapse
Affiliation(s)
- Erin Runbeck
- ImmunoEngineering Group, School of Cancer and Pharmaceutical Studies, King’s College London, London SE19RT, UK;
| | - Silvia Crescioli
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London SE1 9RT, UK; (S.C.); (S.N.K.)
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, London SE1 9RT, UK; (S.C.); (S.N.K.)
| | - Sophie Papa
- ImmunoEngineering Group, School of Cancer and Pharmaceutical Studies, King’s College London, London SE19RT, UK;
- Correspondence:
| |
Collapse
|
45
|
Gozlan EC, Chobrutskiy BI, Zaman S, Yeagley M, Blanck G. Systemic Adaptive Immune Parameters Associated with Neuroblastoma Outcomes: the Significance of Gamma-Delta T Cells. J Mol Neurosci 2021; 71:2393-2404. [DOI: 10.1007/s12031-021-01813-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
|
46
|
Ishfaq M, Pham T, Beaman C, Tamayo P, Yu AL, Joshi S. BTK Inhibition Reverses MDSC-Mediated Immunosuppression and Enhances Response to Anti-PDL1 Therapy in Neuroblastoma. Cancers (Basel) 2021; 13:817. [PMID: 33669187 PMCID: PMC7919651 DOI: 10.3390/cancers13040817] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 01/10/2023] Open
Abstract
MDSCs are immune cells of myeloid lineage that plays a key role in promoting tumor growth. The expansion of MDSCs in tumor-bearing hosts reduces the efficacy of checkpoint inhibitors and CAR-T therapies, and hence strategies that deplete or block the recruitment of MDSCs have shown benefit in improving responses to immunotherapy in various cancers, including NB. Ibrutinib, an irreversible molecular inhibitor of BTK, has been widely studied in B cell malignancies, and recently, this drug is repurposed for the treatment of solid tumors. Herein we report that BTK is highly expressed in both granulocytic and monocytic murine MDSCs isolated from mice bearing NB tumors, and its increased expression correlates with a poor relapse-free survival probability of NB patients. Moreover, in vitro treatment of murine MDSCs with ibrutinib altered NO production, decreased mRNA expression of Ido, Arg, Tgfβ, and displayed defects in T-cell suppression. Consistent with these findings, in vivo inhibition of BTK with ibrutinib resulted in reduced MDSC-mediated immune suppression, increased CD8+ T cell infiltration, decreased tumor growth, and improved response to anti-PDL1 checkpoint inhibitor therapy in a murine model of NB. These results demonstrate that ibrutinib modulates immunosuppressive functions of MDSC and can be used either alone or in combination with immunotherapy for augmenting antitumor immune responses in NB.
Collapse
Affiliation(s)
- Mehreen Ishfaq
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, CA 92093-0815, USA; (M.I.); (C.B.)
| | - Timothy Pham
- Office of Cancer Genomics, University of California, San Diego, CA 92093-0815, USA; (T.P.); (P.T.)
| | - Cooper Beaman
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, CA 92093-0815, USA; (M.I.); (C.B.)
| | - Pablo Tamayo
- Office of Cancer Genomics, University of California, San Diego, CA 92093-0815, USA; (T.P.); (P.T.)
| | - Alice L. Yu
- Department of Pediatrics, University of California, San Diego, CA 92093-0815, USA;
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 131, Taiwan
| | - Shweta Joshi
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, CA 92093-0815, USA; (M.I.); (C.B.)
| |
Collapse
|
47
|
Aldridge MD, Peet C, Wan S, Shankar A, Gains JE, Bomanji JB, Gaze MN. Paediatric Molecular Radiotherapy: Challenges and Opportunities. Clin Oncol (R Coll Radiol) 2021; 33:80-91. [PMID: 33246658 DOI: 10.1016/j.clon.2020.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022]
Abstract
The common contemporary indications for paediatric molecular radiotherapy (pMRT) are differentiated thyroid cancer and neuroblastoma. It may also have value in neuroendocrine cancers, and it is being investigated in clinical trials for other diseases. pMRT is the prototypical biomarker-driven, precision therapy, with a unique mode of delivery and mechanism of action. It is safe and well tolerated, compared with other treatments. However, its full potential has not yet been achieved, and its wider use faces a number of challenges and obstacles. Paradoxically, the success of radioactive iodine as a curative treatment for metastatic thyroid cancer has led to a 'one size fits all' approach and limited academic enquiry into optimisation of the conventional treatment regimen, until very recently. Second, the specialised requirements for the delivery of pMRT are available in only a very limited number of centres. This limited capacity and geographical coverage results in reduced accessibility. With few enthusiastic advocates for this treatment modality, investment in research to improve treatments and broaden indications from both industry and national and charitable research funders has historically been suboptimal. Nonetheless, there is now an increasing interest in the opportunities offered by pMRT. Increased research funding has been allocated, and technical developments that will permit innovative approaches in pMRT are available for exploration. A new portfolio of clinical trials is being assembled. These studies should help to move at least some paediatric treatments from simply palliative use into potentially curative protocols. Therapeutic strategies require modification and optimisation to achieve this. The delivery should be personalised and tailored appropriately, with a comprehensive evaluation of tumour and organ-at-risk dosimetry, in alignment with the external beam model of radiotherapy. This article gives an overview of the current status of pMRT, indicating the barriers to progress and identifying ways in which these may be overcome.
Collapse
Affiliation(s)
- M D Aldridge
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK; Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - C Peet
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - S Wan
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - A Shankar
- Department of Paediatric and Adolescent Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - J E Gains
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - J B Bomanji
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - M N Gaze
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
48
|
Wienke J, Dierselhuis MP, Tytgat GAM, Künkele A, Nierkens S, Molenaar JJ. The immune landscape of neuroblastoma: Challenges and opportunities for novel therapeutic strategies in pediatric oncology. Eur J Cancer 2020; 144:123-150. [PMID: 33341446 DOI: 10.1016/j.ejca.2020.11.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Immunotherapy holds great promise for the treatment of pediatric cancers. In neuroblastoma, the recent implementation of anti-GD2 antibody Dinutuximab into the standard of care has improved patient outcomes substantially. However, 5-year survival rates are still below 50% in patients with high-risk neuroblastoma, which has sparked investigations into novel immunotherapeutic approaches. T cell-engaging therapies such as immune checkpoint blockade, antibody-mediated therapy and adoptive T cell therapy have proven remarkably successful in a range of adult cancers but still meet challenges in pediatric oncology. In neuroblastoma, their limited success may be due to several factors. Neuroblastoma displays low immunogenicity due to its low mutational load and lack of MHC-I expression. Tumour infiltration by T and NK cells is especially low in high-risk neuroblastoma and is prognostic for survival. Only a small fraction of tumour-infiltrating lymphocytes shows tumour reactivity. Moreover, neuroblastoma tumours employ a variety of immune evasion strategies, including expression of immune checkpoint molecules, induction of immunosuppressive myeloid and stromal cells, as well as secretion of immunoregulatory mediators, which reduce infiltration and reactivity of immune cells. Overcoming these challenges will be key to the successful implementation of novel immunotherapeutic interventions. Combining different immunotherapies, as well as personalised strategies, may be promising approaches. We will discuss the composition, function and prognostic value of tumour-infiltrating lymphocytes (TIL) in neuroblastoma, reflect on challenges for immunotherapy, including a lack of TIL reactivity and tumour immune evasion strategies, and highlight opportunities for immunotherapy and future perspectives with regard to state-of-the-art developments in the tumour immunology space.
Collapse
Affiliation(s)
- Judith Wienke
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | | | | | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
49
|
Webb ER, Lanati S, Wareham C, Easton A, Dunn SN, Inzhelevskaya T, Sadler FM, James S, Ashton-Key M, Cragg MS, Beers SA, Gray JC. Immune characterization of pre-clinical murine models of neuroblastoma. Sci Rep 2020; 10:16695. [PMID: 33028899 PMCID: PMC7541480 DOI: 10.1038/s41598-020-73695-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Immunotherapy offers a potentially less toxic, more tumor-specific treatment for neuroblastoma than conventional cytotoxic therapies. Accurate and reproducible immune competent preclinical models are key to understanding mechanisms of action, interactions with other therapies and mechanisms of resistance to immunotherapy. Here we characterized the tumor and splenic microenvironment of two syngeneic subcutaneous (NXS2 and 9464D), and a spontaneous transgenic (TH-MYCN) murine model of neuroblastoma, comparing histological features and immune infiltrates to previously published data on human neuroblastoma. Histological sections of frozen tissues were stained by immunohistochemistry and immunofluorescence for immune cell markers and tumor architecture. Tissues were dissociated by enzymatic digestion, stained with panels of antibodies to detect and quantify cancer cells, along with lymphocytic and myeloid infiltration by flow cytometry. Finally, we tested TH-MYCN mice as a feasible model for immunotherapy, using prior treatment with cyclophosphamide to create a therapeutic window of minimal residual disease to favor host immune development. Immune infiltration differed significantly between all the models. TH-MYCN tumors were found to resemble immune infiltration in human tumors more closely than the subcutaneous models, alongside similar GD2 and MHC class I expression. Finally, TH-MYCN transgenic mice were administered cyclophosphamide alone or in combination with an anti-GD2 or anti-4-1BB monoclonal antibody, which resulted in increase in survival in both combination therapies. The TH-MYCN transgenic mouse is a promising in vivo model for testing immunotherapy compounds and combination therapy in a preclinical setting.
Collapse
Affiliation(s)
- Emily R Webb
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK.,Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Silvia Lanati
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK
| | - Carol Wareham
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK
| | - Alistair Easton
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK.,Cellular Pathology, University Hospitals Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK.,Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Stuart N Dunn
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK
| | - Tatyana Inzhelevskaya
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK
| | - Freja M Sadler
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK
| | - Sonya James
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK
| | - Margaret Ashton-Key
- Cellular Pathology, University Hospitals Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK
| | - Stephen A Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK
| | - Juliet C Gray
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton Faculty of Medicine, Southampton General Hospital (MP127), Tremona Road, Southampton, Hampshire, SO16 6YD, UK.
| |
Collapse
|
50
|
Liu KX, Joshi S. "Re-educating" Tumor Associated Macrophages as a Novel Immunotherapy Strategy for Neuroblastoma. Front Immunol 2020; 11:1947. [PMID: 32983125 PMCID: PMC7493646 DOI: 10.3389/fimmu.2020.01947] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma is the most common extracranial pediatric tumor and often presents with metastatic disease, and patients with high-risk neuroblastoma have survival rates of ~50%. Neuroblastoma tumorigenesis is associated with the infiltration of various types of immune cells, including myeloid derived suppressor cells, tumor associated macrophages (TAMs), and regulatory T cells, which foster tumor growth and harbor immunosuppressive functions. In particular, TAMs predict poor clinical outcomes in neuroblastoma, and among these immune cells, TAMs with an M2 phenotype comprise an immune cell population that promotes tumor metastasis, contributes to immunosuppression, and leads to failure of radiation or checkpoint inhibitor therapy. This review article summarizes the role of macrophages in tumor angiogenesis, metastasis, and immunosuppression in neuroblastoma and discusses the recent advances in "macrophage-targeting strategies" in neuroblastoma with a focus on three aspects: (1) inhibition of macrophage recruitment, (2) targeting macrophage survival, and (3) reprogramming of macrophages into an immunostimulatory phenotype.
Collapse
Affiliation(s)
- Kevin X. Liu
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Shweta Joshi
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, UCSD Rady's Children's Hospital, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|