1
|
Hayat M, Syed RA, Qaiser H, Uzair M, Al-Regaiey K, Khallaf R, Albassam LAM, Kaleem I, Wang X, Wang R, Bhatti MS, Bashir S. Decoding molecular mechanisms: brain aging and Alzheimer's disease. Neural Regen Res 2025; 20:2279-2299. [PMID: 39104174 DOI: 10.4103/nrr.nrr-d-23-01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
The complex morphological, anatomical, physiological, and chemical mechanisms within the aging brain have been the hot topic of research for centuries. The aging process alters the brain structure that affects functions and cognitions, but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease. Beyond these observable, mild morphological shifts, significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain. Understanding these changes is important for maintaining cognitive health, especially given the increasing prevalence of age-related conditions that affect cognition. This review aims to explore the age-induced changes in brain plasticity and molecular processes, differentiating normal aging from the pathogenesis of Alzheimer's disease, thereby providing insights into predicting the risk of dementia, particularly Alzheimer's disease.
Collapse
Affiliation(s)
- Mahnoor Hayat
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rafay Ali Syed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hammad Qaiser
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad (IIUI), Islamabad, Pakistan
| | - Mohammad Uzair
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Roaa Khallaf
- Department of Neurology, Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | | | - Imdad Kaleem
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South (COMSATS University), Islamabad, Pakistan
| | - Xueyi Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Mehwish S Bhatti
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Grujic N, Polania R, Burdakov D. Neurobehavioral meaning of pupil size. Neuron 2024; 112:3381-3395. [PMID: 38925124 DOI: 10.1016/j.neuron.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Pupil size is a widely used metric of brain state. It is one of the few signals originating from the brain that can be readily monitored with low-cost devices in basic science, clinical, and home settings. It is, therefore, important to investigate and generate well-defined theories related to specific interpretations of this metric. What exactly does it tell us about the brain? Pupils constrict in response to light and dilate during darkness, but the brain also controls pupil size irrespective of luminosity. Pupil size fluctuations resulting from ongoing "brain states" are used as a metric of arousal, but what is pupil-linked arousal and how should it be interpreted in neural, cognitive, and computational terms? Here, we discuss some recent findings related to these issues. We identify open questions and propose how to answer them through a combination of well-defined tasks, neurocomputational models, and neurophysiological probing of the interconnected loops of causes and consequences of pupil size.
Collapse
Affiliation(s)
- Nikola Grujic
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| | - Rafael Polania
- Decision Neuroscience Lab, ETH Zürich, Department of Health Sciences and Technology, Winterthurstrasse 190, 8057 Zürich, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| |
Collapse
|
3
|
Saggu S, Bai A, Aida M, Rehman H, Pless A, Ware D, Deak F, Jiao K, Wang Q. Monoamine alterations in Alzheimer's disease and their implications in comorbid neuropsychiatric symptoms. GeroScience 2024:10.1007/s11357-024-01359-x. [PMID: 39331291 DOI: 10.1007/s11357-024-01359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by relentless cognitive decline and the emergence of profoundly disruptive neuropsychiatric symptoms. As the disease progresses, it unveils a formidable array of neuropsychiatric manifestations, including debilitating depression, anxiety, agitation, and distressing episodes of psychosis. The intricate web of the monoaminergic system, governed by serotonin, dopamine, and norepinephrine, significantly influences our mood, cognition, and behavior. Emerging evidence suggests that dysregulation and degeneration of this system occur early in AD, leading to notable alterations in these critical neurotransmitters' levels, metabolism, and receptor function. However, how the degeneration of monoaminergic neurons and subsequent compensatory changes contribute to the presentation of neuropsychiatric symptoms observed in Alzheimer's disease remains elusive. This review synthesizes current findings on monoamine alterations in AD and explores how these changes contribute to the neuropsychiatric symptomatology of the disease. By elucidating the biological underpinnings of AD-related psychiatric symptoms, we aim to underscore the complexity and inform innovative approaches for treating neuropsychiatric symptoms in AD.
Collapse
Affiliation(s)
- Shalini Saggu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| | - Ava Bai
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Mae Aida
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hasibur Rehman
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Andrew Pless
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Destany Ware
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Ferenc Deak
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Kai Jiao
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
4
|
Galgani A, Scotto M, Giorgi FS. The Neuroanatomy of Induced Pluripotent Stem Cells: In Vitro Models of Subcortical Nuclei in Neurodegenerative Disorders. Curr Issues Mol Biol 2024; 46:10180-10199. [PMID: 39329959 PMCID: PMC11430477 DOI: 10.3390/cimb46090607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Neuromodulatory subcortical systems (NSSs) are monoaminergic and cholinergic neuronal groups that are markedly and precociously involved in the pathogenesis of many neurodegenerative disorders (NDDs), including Parkinson's and Alzheimer's diseases. In humans, although many tools have been developed to infer information on these nuclei, encompassing neuroimaging and neurophysiological methods, a detailed and specific direct evaluation of their cellular features in vivo has been difficult to obtain until recent years. The development of induced pluripotent stem cell (iPSC) models has allowed research to deeply delve into the cellular and molecular biology of NSS neurons. In fact, iPSCs can be produced easily and non-invasively from patients' fibroblasts or circulating blood monocytes, by de-differentiating those cells using specific protocols, and then be re-differentiated towards neural phenotypes, which may reproduce the specific features of the correspondent brain neurons (including NSS ones) from the same patient. In this review, we summarized findings obtained in the field of NDDs using iPSCs, with the aim to understand how reliably these might represent in vitro models of NSS. We found that most of the current literature in the field of iPSCs and NSSs in NDDs has focused on midbrain dopaminergic neurons in Parkinson's disease, providing interesting results on cellular pathophysiology and even leading to the first human autologous transplantation. Differentiation protocols for noradrenergic, cholinergic, and serotoninergic neurons have also been recently defined and published. Thus, it might be expected that in the near future, this approach could extend to other NSSs and other NDDs.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Marco Scotto
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Filippo S. Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
- IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| |
Collapse
|
5
|
Ichikawa-Kato T, Hara T, Yamada-Kubota C, Kuwahara M, Murakami A, Minagi S. Effects of intracerebral noradrenaline on cognitive decline associated with the loss of occlusal support. J Prosthodont Res 2024:JPR_D_23_00231. [PMID: 39198203 DOI: 10.2186/jpr.jpr_d_23_00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
PURPOSE The lack of occlusal support reportedly reduces cognitive function; however, the underlying mechanisms remain unclear. The locus coeruleus, which is located adjacent to the trigeminal mesencephalic nucleus, secretes noradrenaline throughout the brain. In this study, we evaluated the effects of noradrenaline in the hippocampus and cerebral cortex on cognitive decline following tooth extraction in rats. METHODS We performed passive avoidance experiments on male Wistar rats with extracted maxillary molars and determined the neuron density in the locus coeruleus and trigeminal mesencephalic nucleus using immunostaining and Nissl staining, respectively. We also assessed noradrenaline concentrations in the hippocampus and cerebral cortex using enzyme-linked immunosorbent assay. RESULTS In the passive avoidance experiment, the latency in the bright compartment was significantly shorter (P < 0.05) in the extraction group than in the control group. The numbers of cells in the locus coeruleus and trigeminal nucleus were significantly lower (P < 0.05) in the extraction group compared to those in the control group. The noradrenaline levels in the hippocampus and cerebral cortex were also significantly lower (P < 0.05) in the extraction group than those in the control group. CONCLUSIONS The lack of occlusal support associated with tooth extraction reduces the number of cells in the trigeminal mesencephalic nucleus and locus coeruleus, which may reduce the supply of noradrenaline to the cerebral cortex and hippocampus, leading to a decline in cognitive function.
Collapse
Affiliation(s)
- Tomoka Ichikawa-Kato
- Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tetsuya Hara
- Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chie Yamada-Kubota
- Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Miho Kuwahara
- Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Asuka Murakami
- Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shogo Minagi
- Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
6
|
Velázquez-Delgado C, Hernández-Ortiz E, Landa-Navarro L, Tapia-Rodríguez M, Moreno-Castilla P, Bermúdez-Rattoni F. Repeated exposure to novelty promotes resilience against the amyloid-beta effect through dopaminergic stimulation. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06650-5. [PMID: 39145803 DOI: 10.1007/s00213-024-06650-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/07/2024] [Indexed: 08/16/2024]
Abstract
RATIONALE The accumulation of beta-amyloid peptide (Aβ) in the forebrain leads to cognitive dysfunction and neurodegeneration in Alzheimer's disease. Studies have shown that individuals with a consistently cognitively active lifestyle are less vulnerable to Aβ toxicity. Recent research has demonstrated that intrahippocampal Aβ can impact catecholaminergic release and spatial memory. Interestingly, exposure to novelty stimuli has been found to stimulate the release of catecholamines in the hippocampus. However, it remains uncertain whether repeated enhancing catecholamine activity can effectively alleviate cognitive impairment in individuals with Alzheimer's disease. OBJECTIVES Our primary aim was to investigate whether repeated exposure to novelty could enable cognitive resilience against Aβ. This protection could be achieved by modulating catecholaminergic activity within the hippocampus. METHODS To investigate this hypothesis, we subjected mice to three different conditions-standard housing (SH), repeated novelty (Nov), or daily social interaction (Soc) for one month. We then infused saline solution (SS) or Aβ (Aβ1-42) oligomers intrahippocampally and measured spatial memory retrieval in a Morris Water Maze (MWM). Stereological analysis and extracellular baseline dopamine levels using in vivo microdialysis were assessed in independent groups of mice. RESULTS The mice that received Aβ1-42 intrahippocampal infusions and remained in SH or Soc conditions showed impaired spatial memory retrieval. In contrast, animals subjected to the Nov protocol demonstrated remarkable resilience, showing strong spatial memory expression even after Aβ1-42 intrahippocampal infusion. The stereological analysis indicated that the Aβ1-42 infusion reduced the tyrosine hydroxylase axonal length in SH or Soc mice compared to the Nov group. Accordingly, the hippocampal extracellular dopamine levels increased significantly in the Nov groups. CONCLUSIONS These compelling results demonstrate the potential for repeated novelty exposure to strengthen the dopaminergic system and mitigate the toxic effects of Aβ1-42. They also highlight new and promising therapeutic avenues for treating and preventing AD, especially in its early stages.
Collapse
Affiliation(s)
- Cintia Velázquez-Delgado
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Eduardo Hernández-Ortiz
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Lucia Landa-Navarro
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Miguel Tapia-Rodríguez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Perla Moreno-Castilla
- Laboratory of Cognitive Resilience, Center of Aging Research (CIE), Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV, Mexico City, Mexico.
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
7
|
Puckett OK, Fennema-Notestine C, Hagler DJ, Braskie MN, Chen JC, Finch CE, Kaufman JD, Petkus AJ, Reynolds CA, Salminen LE, Thompson PM, Wang X, Kremen WS, Franz CE, Elman JA. The Association between Exposure to Fine Particulate Matter and MRI-Assessed Locus Coeruleus Integrity in the Vietnam Era Twin Study of Aging (VETSA). ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:77006. [PMID: 39028627 PMCID: PMC11259243 DOI: 10.1289/ehp14344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/18/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Increased exposure to ambient air pollution, especially fine particulate matter ≤ 2.5 μ m (PM 2.5 ) is associated with poorer brain health and increased risk for Alzheimer's disease (AD) and related dementias. The locus coeruleus (LC), located in the brainstem, is one of the earliest regions affected by tau pathology seen in AD. Its diffuse projections throughout the brain include afferents to olfactory areas that are hypothesized conduits of cerebral particle deposition. Additionally, extensive contact of the LC with the cerebrovascular system may present an additional route of exposure to environmental toxicants. OBJECTIVE Our aim was to investigate if exposure to PM 2.5 was associated with LC integrity in a nationwide sample of men in early old age, potentially representing one pathway through which air pollution can contribute to increased risk for AD dementia. METHODS We examined the relationship between PM 2.5 and in vivo magnetic resonance imaging (MRI) estimates of LC structural integrity indexed by contrast to noise ratio (LC CNR ) in 381 men [mean age = 67.3 ; standard deviation ( SD ) = 2.6 ] from the Vietnam Era Twin Study of Aging (VETSA). Exposure to PM 2.5 was taken as a 3-year average over the most recent period for which data were available (average of 5.6 years prior to the MRI scan). We focused on LC CNR in the rostral-middle portion of LC due to its stronger associations with aging and AD than the caudal LC. Associations between PM 2.5 exposures and LC integrity were tested using linear mixed effects models adjusted for age, scanner, education, household income, and interval between exposure and MRI. A co-twin control analysis was also performed to investigate whether associations remained after controlling for genetic confounding and rearing environment. RESULTS Multiple linear regressions revealed a significant association between PM 2.5 and rostral-middle LC CNR (β = - 0.16 ; p = 0.02 ), whereby higher exposure to PM 2.5 was associated with lower LC CNR . A co-twin control analysis found that, within monozygotic pairs, individuals with higher PM 2.5 exposure showed lower LC CNR (β = - 0.11 ; p = 0.02 ), indicating associations were not driven by genetic or shared environmental confounds. There were no associations between PM 2.5 and caudal LC CNR or hippocampal volume, suggesting a degree of specificity to the rostral-middle portion of the LC. DISCUSSION Given previous findings that loss of LC integrity is associated with increased accumulation of AD-related amyloid and tau pathology, impacts on LC integrity may represent a potential pathway through which exposure to air pollution increases AD risk. https://doi.org/10.1289/EHP14344.
Collapse
Affiliation(s)
- Olivia K. Puckett
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Donald J. Hagler
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Meredith N. Braskie
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, USA
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Caleb E. Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Joel D. Kaufman
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Andrew J. Petkus
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Chandra A. Reynolds
- Institute for Behavioral Genetics, University of Colorado, Boulder, Boulder, Colorado, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Boulder, Colorado, USA
| | - Lauren E. Salminen
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Paul M. Thompson
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Xinhui Wang
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - William S. Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California, USA
| | - Carol E. Franz
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California, USA
| | - Jeremy A. Elman
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Zide BS, Donovan NJ, Lee S, Nag S, Bennett DA, Jacobs HIL. Social activity mediates locus coeruleus tangle-related cognition in older adults. Mol Psychiatry 2024; 29:2001-2008. [PMID: 38355788 PMCID: PMC11408254 DOI: 10.1038/s41380-024-02467-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
The locus coeruleus-noradrenaline system regulates brain-wide neural activity involved in cognition and behavior. Integrity of this subcortical neuromodulatory system is proposed to be a substrate of cognitive reserve that may be strengthened by lifetime cognitive and social activity. Conversely, accumulation of tau tangles in the brainstem locus coeruleus nuclei is recently studied as a very early marker of Alzheimer's disease (AD) pathogenesis and cognitive vulnerability, even among older adults without cognitive impairment or significant cerebral AD pathologies. This clinical-pathologic study examined whether locus coeruleus tangle density was cross-sectionally associated with lower antemortem cognitive performance and social activity among 142 cognitively unimpaired and impaired older adults and whether social activity, a putative reserve factor, mediated the association of tangle density and cognition. We found that greater locus coeruleus tangle density was associated with lower social activity for the whole sample and in the cognitively unimpaired group alone and these associations were independent of age, sex, education, depressive symptoms, and burden of cerebral amyloid and tau. The association of locus coeruleus tangle density with lower cognitive performance was partially mediated by level of social activity. These findings implicate the locus coeruleus-noradrenaline system in late-life social function and support that locus coeruleus tangle pathology is associated with lower levels of social activity, independent of cerebral AD pathologies, and specifically among older adults who are cognitively unimpaired. Early brainstem pathology may impact social function, and level of social function, in turn, influences cognition, prior to canonical stages of AD.
Collapse
Affiliation(s)
- Benjamin S Zide
- Division of Geriatric Psychiatry, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nancy J Donovan
- Division of Geriatric Psychiatry, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Soyoung Lee
- Division of Geriatric Psychiatry, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sukriti Nag
- Rush Alzheimer's Disease Center and Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Heidi I L Jacobs
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- School for Mental Health and Neuroscience, Alzheimer Centre, Limburg, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
9
|
Li L, Rana AN, Li EM, Travis MO, Bruchas MR. Noradrenergic tuning of arousal is coupled to coordinated movements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599619. [PMID: 38948871 PMCID: PMC11212988 DOI: 10.1101/2024.06.18.599619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Matching arousal level to the motor activity of an animal is important for efficiently allocating cognitive resources and metabolic supply in response to behavioral demands, but how the brain coordinates changes in arousal and wakefulness in response to motor activity remains an unclear phenomenon. We hypothesized that the locus coeruleus (LC), as the primary source of cortical norepinephrine (NE) and promoter of cortical and sympathetic arousal, is well-positioned to mediate movement-arousal coupling. Here, using a combination of physiological recordings, fiber photometry, optogenetics, and behavioral tracking, we show that the LCNE activation is tightly coupled to the return of organized movements during waking from an anesthetized state. Moreover, in an awake animal, movement initiations are coupled to LCNE activation, while movement arrests, to LCNE deactivation. We also report that LCNE activity covaries with the depth of anesthesia and that LCNE photoactivation leads to sympathetic activation, consistent with its role in mediating increased arousal. Together, these studies reveal a more nuanced, modulatory role that LCNE plays in coordinating movement and arousal.
Collapse
Affiliation(s)
- Li Li
- Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Seattle Children's Research Institute" Seattle, WA 98101, USA
| | - Akshay N Rana
- Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Esther M Li
- Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle, WA 98105, USA
| | - Myesa O Travis
- Seattle Children's Research Institute" Seattle, WA 98101, USA
| | - Michael R Bruchas
- Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Li Z, Chen X, He W, Chen H, Chen D. The causal effect of Alzheimer's disease and family history of Alzheimer's disease on non-ischemic cardiomyopathy and left ventricular structure and function: a Mendelian randomization study. Front Genet 2024; 15:1379865. [PMID: 38903751 PMCID: PMC11188370 DOI: 10.3389/fgene.2024.1379865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Background Previous studies have shown that Alzheimer's disease (AD) can cause myocardial damage. However, whether there is a causal association between AD and non-ischemic cardiomyopathy (NICM) remains unclear. Using a comprehensive two-sample Mendelian randomization (MR) method, we aimed to determine whether AD and family history of AD (FHAD) affect left ventricular (LV) structure and function and lead to NICM, including hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Methods The summary statistics for exposures [AD, paternal history of AD (PH-AD), and maternal history of AD (MH-AD)] and outcomes (NICM, HCM, DCM, and LV traits) were obtained from the large European genome-wide association studies. The causal effects were estimated using inverse variance weighted, MR-Egger, and weighted median methods. Sensitivity analyses were conducted, including Cochran's Q test, MR-Egger intercept test, MR pleiotropy residual sum and outlier, MR Steiger test, leave-one-out analysis, and the funnel plot. Results Genetically predicted AD was associated with a lower risk of NICM [odds ratio (OR) 0.9306, 95% confidence interval (CI) 0.8825-0.9813, p = 0.0078], DCM (OR 0.8666, 95% CI 0.7752-0.9689, p = 0.0119), and LV remodeling index (OR 0.9969, 95% CI 0.9940-0.9998, p = 0.0337). Moreover, genetically predicted PH-AD was associated with a decreased risk of NICM (OR 0.8924, 95% CI 0.8332-0.9557, p = 0.0011). MH-AD was also strongly associated with a decreased risk of NICM (OR 0.8958, 95% CI 0.8449-0.9498, p = 0.0002). Different methods of sensitivity analysis demonstrated the robustness of the results. Conclusion Our study revealed that AD and FHAD were associated with a decreased risk of NICM, providing a new genetic perspective on the pathogenesis of NICM.
Collapse
Affiliation(s)
| | | | | | | | - Dehai Chen
- Department of Cardiovascular Surgery, The First People’s Hospital of Zhaoqing, The First Affiliated Hospital of Zhaoqing Medical College, Zhaoqing, China
| |
Collapse
|
11
|
Galgani A, Lombardo F, Frijia F, Martini N, Tognoni G, Pavese N, Giorgi FS. The degeneration of locus coeruleus occurring during Alzheimer's disease clinical progression: a neuroimaging follow-up investigation. Brain Struct Funct 2024; 229:1317-1325. [PMID: 38625557 PMCID: PMC11147916 DOI: 10.1007/s00429-024-02797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
The noradrenergic nucleus Locus Coeruleus (LC) is precociously involved in Alzheimer's Disease (AD) pathology, and its degeneration progresses during the course of the disease. Using Magnetic Resonance Imaging (MRI), researchers showed also in vivo in patients the disruption of LC, which can be observed both in Mild Cognitively Impaired individuals and AD demented patients. In this study, we report the results of a follow-up neuroradiological assessment, in which we evaluated the LC degeneration overtime in a group of cognitively impaired patients, submitted to MRI both at baseline and at the end of a 2.5-year follow-up. We found that a progressive LC disruption can be observed also in vivo, involving the entire nucleus and associated with clinical diagnosis. Our findings parallel neuropathological ones, which showed a continuous increase of neuronal death and volumetric atrophy within the LC with the progression of Braak's stages for neurofibrillary pathology. This supports the reliability of MRI as a tool for exploring the integrity of the central noradrenergic system in neurodegenerative disorders.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, Pisa, 56126, Italy
| | | | - Francesca Frijia
- Bioengineering Unit, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Nicola Martini
- Bioengineering Unit, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Gloria Tognoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, UK
- Institute of Clinical Medicine, PET Centre, Aarhus University, Aarhus, Denmark
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, Pisa, 56126, Italy.
| |
Collapse
|
12
|
Martin SC, Joyce KK, Lord JS, Harper KM, Nikolova VD, Cohen TJ, Moy SS, Diering GH. Sleep Disruption Precedes Forebrain Synaptic Tau Burden and Contributes to Cognitive Decline in a Sex-Dependent Manner in the P301S Tau Transgenic Mouse Model. eNeuro 2024; 11:ENEURO.0004-24.2024. [PMID: 38858068 PMCID: PMC11209651 DOI: 10.1523/eneuro.0004-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024] Open
Abstract
Sleep disruption and impaired synaptic processes are common features in neurodegenerative diseases, including Alzheimer's disease (AD). Hyperphosphorylated Tau is known to accumulate at neuronal synapses in AD, contributing to synapse dysfunction. However, it remains unclear how sleep disruption and synapse pathology interact to contribute to cognitive decline. Here, we examined sex-specific onset and consequences of sleep loss in AD/tauopathy model PS19 mice. Using a piezoelectric home-cage monitoring system, we showed PS19 mice exhibited early-onset and progressive hyperarousal, a selective dark-phase sleep disruption, apparent at 3 months in females and 6 months in males. Using the Morris water maze test, we report that chronic sleep disruption (CSD) accelerated the onset of decline of hippocampal spatial memory in PS19 males only. Hyperarousal occurs well in advance of robust forebrain synaptic Tau burden that becomes apparent at 6-9 months. To determine whether a causal link exists between sleep disruption and synaptic Tau hyperphosphorylation, we examined the correlation between sleep behavior and synaptic Tau, or exposed mice to acute or chronic sleep disruption at 6 months. While we confirm that sleep disruption is a driver of Tau hyperphosphorylation in neurons of the locus ceruleus, we were unable to show any causal link between sleep loss and Tau burden in forebrain synapses. Despite the finding that hyperarousal appears earlier in females, female cognition was resilient to the effects of sleep disruption. We conclude sleep disruption interacts with the synaptic Tau burden to accelerate the onset of cognitive decline with greater vulnerability in males.
Collapse
Affiliation(s)
- Shenée C Martin
- Departments of Cell Biology and Physiology, Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kathryn K Joyce
- Departments of Cell Biology and Physiology, Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Julia S Lord
- Departments of Cell Biology and Physiology, Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kathryn M Harper
- Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Viktoriya D Nikolova
- Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Todd J Cohen
- Neurology, Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Sheryl S Moy
- Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Carolina Institute for Developmental Disabilities, Carrboro, North Carolina 27510
| | - Graham H Diering
- Departments of Cell Biology and Physiology, Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Carolina Institute for Developmental Disabilities, Carrboro, North Carolina 27510
| |
Collapse
|
13
|
Ortiz C, Pearson A, McCartan R, Roche S, Carothers N, Browning M, Perez S, He B, Ginsberg SD, Mullan M, Mufson EJ, Crawford F, Ojo J. Overexpression of pathogenic tau in astrocytes causes a reduction in AQP4 and GLT1, an immunosuppressed phenotype and unique transcriptional responses to repetitive mild TBI without appreciable changes in tauopathy. J Neuroinflammation 2024; 21:130. [PMID: 38750510 PMCID: PMC11096096 DOI: 10.1186/s12974-024-03117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Epidemiological studies have unveiled a robust link between exposure to repetitive mild traumatic brain injury (r-mTBI) and elevated susceptibility to develop neurodegenerative disorders, notably chronic traumatic encephalopathy (CTE). The pathogenic lesion in CTE cases is characterized by the accumulation of hyperphosphorylated tau in neurons around small cerebral blood vessels which can be accompanied by astrocytes that contain phosphorylated tau, the latter termed tau astrogliopathy. However, the contribution of tau astrogliopathy to the pathobiology and functional consequences of r-mTBI/CTE or whether it is merely a consequence of aging remains unclear. We addressed these pivotal questions by utilizing a mouse model harboring tau-bearing astrocytes, GFAPP301L mice, subjected to our r-mTBI paradigm. Despite the fact that r-mTBI did not exacerbate tau astrogliopathy or general tauopathy, it increased phosphorylated tau in the area underneath the impact site. Additionally, gene ontology analysis of tau-bearing astrocytes following r-mTBI revealed profound alterations in key biological processes including immunological and mitochondrial bioenergetics. Moreover, gene array analysis of microdissected astrocytes accrued from stage IV CTE human brains revealed an immunosuppressed astroglial phenotype similar to tau-bearing astrocytes in the GFAPP301L model. Additionally, hippocampal reduction of proteins involved in water transport (AQP4) and glutamate homeostasis (GLT1) was found in the mouse model of tau astrogliopathy. Collectively, these findings reveal the importance of understanding tau astrogliopathy and its role in astroglial pathobiology under normal circumstances and following r-mTBI. The identified mechanisms using this GFAPP301L model may suggest targets for therapeutic interventions in r-mTBI pathogenesis in the context of CTE.
Collapse
Affiliation(s)
- Camila Ortiz
- The Roskamp Institute, Sarasota, FL, USA.
- The Open University, Milton Keynes, UK.
| | - Andrew Pearson
- The Roskamp Institute, Sarasota, FL, USA
- The Open University, Milton Keynes, UK
| | | | | | | | | | | | - Bin He
- Barrow Neurological Institute, Phoenix, AZ, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Departments of Psychiatry, Neuroscience and Physiology, and NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | | | | | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, USA
- The Open University, Milton Keynes, UK
- James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Joseph Ojo
- The Roskamp Institute, Sarasota, FL, USA
- The Open University, Milton Keynes, UK
| |
Collapse
|
14
|
Lagarde J, Olivieri P, Tonietto M, Noiray C, Lehericy S, Valabrègue R, Caillé F, Gervais P, Moussion M, Bottlaender M, Sarazin M. Combined in vivo MRI assessment of locus coeruleus and nucleus basalis of Meynert integrity in amnestic Alzheimer's disease, suspected-LATE and frontotemporal dementia. Alzheimers Res Ther 2024; 16:97. [PMID: 38702802 PMCID: PMC11067144 DOI: 10.1186/s13195-024-01466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The locus coeruleus (LC) and the nucleus basalis of Meynert (NBM) are altered in early stages of Alzheimer's disease (AD). Little is known about LC and NBM alteration in limbic-predominant age-related TDP-43 encephalopathy (LATE) and frontotemporal dementia (FTD). The aim of the present study is to investigate in vivo LC and NBM integrity in patients with suspected-LATE, early-amnestic AD and FTD in comparison with controls. METHODS Seventy-two participants (23 early amnestic-AD patients, 17 suspected-LATE, 17 FTD patients, defined by a clinical-biological diagnosis reinforced by amyloid and tau PET imaging, and 15 controls) underwent neuropsychological assessment and 3T brain MRI. We analyzed the locus coeruleus signal intensity (LC-I) and the NBM volume as well as their relation with cognition and with medial temporal/cortical atrophy. RESULTS We found significantly lower LC-I and NBM volume in amnestic-AD and suspected-LATE in comparison with controls. In FTD, we also observed lower NBM volume but a slightly less marked alteration of the LC-I, independently of the temporal or frontal phenotype. NBM volume was correlated with the global cognitive efficiency in AD patients. Strong correlations were found between NBM volume and that of medial temporal structures, particularly the amygdala in both AD and FTD patients. CONCLUSIONS The alteration of LC and NBM in amnestic-AD, presumed-LATE and FTD suggests a common vulnerability of these structures to different proteinopathies. Targeting the noradrenergic and cholinergic systems could be effective therapeutic strategies in LATE and FTD.
Collapse
Affiliation(s)
- Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, Paris, France.
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France.
- Université Paris-Cité, Paris, France.
| | - Pauline Olivieri
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Matteo Tonietto
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France
| | - Camille Noiray
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Stéphane Lehericy
- Centre de NeuroImagerie de Recherche - CENIR, Institut du Cerveau et de la Moelle épinière - ICM, Paris, F-75013, France
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, Paris, F-75013, France
| | - Romain Valabrègue
- Centre de NeuroImagerie de Recherche - CENIR, Institut du Cerveau et de la Moelle épinière - ICM, Paris, F-75013, France
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, Paris, F-75013, France
| | - Fabien Caillé
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France
| | - Philippe Gervais
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France
| | - Martin Moussion
- Centre d'Evaluation Troubles Psychiques et Vieillissement, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, Paris, F-75014, France
| | - Michel Bottlaender
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France
- UNIACT, Neurospin, Gif-sur-Yvette, CEA, F-91191, France
| | - Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatry and Neurosciences, Hôpital Sainte Anne, Paris, France
- Université Paris-Saclay, Service Hospitalier Frédéric Joliot CEA, CNRS, Inserm, BioMaps, Orsay, F- 91401, France
- Université Paris-Cité, Paris, France
| |
Collapse
|
15
|
Bueichekú E, Diez I, Kim CM, Becker JA, Koops EA, Kwong K, Papp KV, Salat DH, Bennett DA, Rentz DM, Sperling RA, Johnson KA, Sepulcre J, Jacobs HIL. Spatiotemporal patterns of locus coeruleus integrity predict cortical tau and cognition. NATURE AGING 2024; 4:625-637. [PMID: 38664576 PMCID: PMC11108787 DOI: 10.1038/s43587-024-00626-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Autopsy studies indicated that the locus coeruleus (LC) accumulates hyperphosphorylated tau before allocortical regions in Alzheimer's disease. By combining in vivo longitudinal magnetic resonance imaging measures of LC integrity, tau positron emission tomography imaging and cognition with autopsy data and transcriptomic information, we examined whether LC changes precede allocortical tau deposition and whether specific genetic features underlie LC's selective vulnerability to tau. We found that LC integrity changes preceded medial temporal lobe tau accumulation, and together these processes were associated with lower cognitive performance. Common gene expression profiles between LC-medial temporal lobe-limbic regions map to biological functions in protein transport regulation. These findings advance our understanding of the spatiotemporal patterns of initial tau spreading from the LC and LC's selective vulnerability to Alzheimer's disease pathology. LC integrity measures can be a promising indicator for identifying the time window when individuals are at risk of disease progression and underscore the importance of interventions mitigating initial tau spread.
Collapse
Affiliation(s)
- Elisenda Bueichekú
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ibai Diez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Chan-Mi Kim
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - John Alex Becker
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Kenneth Kwong
- Harvard Medical School, Boston, MA, USA
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Kathryn V Papp
- Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - David H Salat
- Harvard Medical School, Boston, MA, USA
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Dorene M Rentz
- Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Reisa A Sperling
- Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Keith A Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Radiology, Yale PET Center, Yale Medical School, Yale University, New Haven, CT, USA.
| | - Heidi I L Jacobs
- Harvard Medical School, Boston, MA, USA.
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
16
|
Evans AK, Saw NL, Woods CE, Vidano LM, Blumenfeld SE, Lam RK, Chu EK, Reading C, Shamloo M. Impact of high-fat diet on cognitive behavior and central and systemic inflammation with aging and sex differences in mice. Brain Behav Immun 2024; 118:334-354. [PMID: 38408498 PMCID: PMC11019935 DOI: 10.1016/j.bbi.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
Aging and age-related diseases are associated with cellular stress, metabolic imbalance, oxidative stress, and neuroinflammation, accompanied by cognitive impairment. Lifestyle factors such as diet, sleep fragmentation, and stress can potentiate damaging cellular cascades and lead to an acceleration of brain aging and cognitive impairment. High-fat diet (HFD) has been associated with obesity, metabolic disorders like diabetes, and cardiovascular disease. HFD also induces neuroinflammation, impairs learning and memory, and may increase anxiety-like behavior. Effects of a HFD may also vary between sexes. The interaction between Age- and Sex- and Diet-related changes in neuroinflammation and cognitive function is an important and poorly understood area of research. This study was designed to examine the effects of HFD on neuroinflammation, behavior, and neurodegeneration in mice in the context of aging or sex differences. In a series of studies, young (2-3 months) or old (12-13 months) C57BL/6J male mice or young male and female C57Bl/6J mice were fed either a standard diet (SD) or a HFD for 5-6 months. Behavior was assessed in Activity Chamber, Y-maze, Novel Place Recognition, Novel Object Recognition, Elevated Plus Maze, Open Field, Morris Water Maze, and Fear Conditioning. Post-mortem analyses assessed a panel of inflammatory markers in the plasma and hippocampus. Additionally, proteomic analysis of the hypothalamus, neurodegeneration, neuroinflammation in the locus coeruleus, and neuroinflammation in the hippocampus were assessed in a subset of young and aged male mice. We show that HFD increased body weight and decreased locomotor activity across groups compared to control mice fed a SD. HFD altered anxiety-related exploratory behavior. HFD impaired spatial learning and recall in young male mice and impaired recall in cued fear conditioning in young and aged male mice, with no effects on spatial learning or fear conditioning in young female mice. Effects of Age and Sex were observed on neuroinflammatory cytokines, with only limited effects of HFD. HFD had a more significant impact on systemic inflammation in plasma across age and sex. Aged male mice had induction of microglial immunoreactivity in both the locus coeruleus (LC) and hippocampus an effect that HFD exacerbated in the hippocampal CA1 region. Proteomic analysis of the hypothalamus revealed changes in pathways related to metabolism and neurodegeneration with both aging and HFD in male mice. Our findings suggest that HFD induces widespread systemic inflammation and limited neuroinflammation. In addition, HFD alters exploratory behavior in male and female mice, and impairs learning and memory in male mice. These results provide valuable insight into the impact of diet on cognition and aging pathophysiology.
Collapse
Affiliation(s)
- Andrew K Evans
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304
| | - Nay L Saw
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304
| | - Claire E Woods
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304
| | - Laura M Vidano
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304
| | - Sarah E Blumenfeld
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304
| | - Rachel K Lam
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304
| | - Emily K Chu
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304
| | | | - Mehrdad Shamloo
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304.
| |
Collapse
|
17
|
Slutsky I. Linking activity dyshomeostasis and sleep disturbances in Alzheimer disease. Nat Rev Neurosci 2024; 25:272-284. [PMID: 38374463 DOI: 10.1038/s41583-024-00797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
The presymptomatic phase of Alzheimer disease (AD) starts with the deposition of amyloid-β in the cortex and begins a decade or more before the emergence of cognitive decline. The trajectory towards dementia and neurodegeneration is shaped by the pathological load and the resilience of neural circuits to the effects of this pathology. In this Perspective, I focus on recent advances that have uncovered the vulnerability of neural circuits at early stages of AD to hyperexcitability, particularly when the brain is in a low-arousal states (such as sleep and anaesthesia). Notably, this hyperexcitability manifests before overt symptoms such as sleep and memory deficits. Using the principles of control theory, I analyse the bidirectional relationship between homeostasis of neuronal activity and sleep and propose that impaired activity homeostasis during sleep leads to hyperexcitability and subsequent sleep disturbances, whereas sleep disturbances mitigate hyperexcitability via negative feedback. Understanding the interplay among activity homeostasis, neuronal excitability and sleep is crucial for elucidating the mechanisms of vulnerability to and resilience against AD pathology and for identifying new therapeutic avenues.
Collapse
Affiliation(s)
- Inna Slutsky
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
18
|
Crossley CA, Omoluabi T, Torraville SE, Duraid S, Maziar A, Hasan Z, Rajani V, Ando K, Hell JW, Yuan Q. Hippocampal hyperphosphorylated tau-induced deficiency is rescued by L-type calcium channel blockade. Brain Commun 2024; 6:fcae096. [PMID: 38562310 PMCID: PMC10984573 DOI: 10.1093/braincomms/fcae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/07/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Aging and Alzheimer's disease are associated with chronic elevations in neuronal calcium influx via L-type calcium channels. The hippocampus, a primary memory encoding structure in the brain, is more vulnerable to calcium dysregulation in Alzheimer's disease. Recent research has suggested a link between L-type calcium channels and tau hyperphosphorylation. However, the precise mechanism of L-type calcium channel-mediated tau toxicity is not understood. In this study, we seeded a human tau pseudophosphorylated at 14 amino acid sites in rat hippocampal cornu ammonis 1 region to mimic soluble pretangle tau. Impaired spatial learning was observed in human tau pseudophosphorylated at 14 amino acid sites-infused rats as early as 1-3 months and worsened at 9-10 months post-infusion. Rats infused with wild-type human tau exhibited milder behavioural deficiency only at 9-10 months post-infusion. No tangles or plaques were observed in all time points examined in both human tau pseudophosphorylated at 14 amino acid sites and human tau-infused brains. However, human tau pseudophosphorylated at 14 amino acid sites-infused hippocampus exhibited a higher amount of tau phosphorylation at S262 and S356 than the human tau-infused rats at 3 months post-infusion, paralleling the behavioural deficiency observed in human tau pseudophosphorylated at 14 amino acid sites-infused rats. Neuroinflammation indexed by increased Iba1 in the cornu ammonis 1 was observed in human tau pseudophosphorylated at 14 amino acid sites-infused rats at 1-3 but not 9 months post-infusion. Spatial learning deficiency in human tau pseudophosphorylated at 14 amino acid sites-infused rats at 1-3 months post-infusion was paralleled by decreased neuronal excitability, impaired NMDA receptor-dependent long-term potentiation and augmented L-type calcium channel-dependent long-term potentiation at the cornu ammonis 1 synapses. L-type calcium channel expression was elevated in the soma of the cornu ammonis 1 neurons in human tau pseudophosphorylated at 14 amino acid sites-infused rats. Chronic L-type calcium channel blockade with nimodipine injections for 6 weeks normalized neuronal excitability and synaptic plasticity and rescued spatial learning deficiency in human tau pseudophosphorylated at 14 amino acid sites-infused rats. The early onset of L-type calcium channel-mediated pretangle tau pathology and rectification by nimodipine in our model have significant implications for preclinical Alzheimer's disease prevention and intervention.
Collapse
Affiliation(s)
- Chelsea A Crossley
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - Tamunotonye Omoluabi
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - Sarah E Torraville
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - Sarah Duraid
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - Aida Maziar
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - Zia Hasan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - Vishaal Rajani
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - Kanae Ando
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Johannes W Hell
- Department of Pharmacology, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| |
Collapse
|
19
|
Kelley CM, Maloney B, Beck JS, Ginsberg SD, Liang W, Lahiri DK, Mufson EJ, Counts SE. Micro-RNA profiles of pathology and resilience in posterior cingulate cortex of cognitively intact elders. Brain Commun 2024; 6:fcae082. [PMID: 38572270 PMCID: PMC10988646 DOI: 10.1093/braincomms/fcae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/22/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
The posterior cingulate cortex (PCC) is a key hub of the default mode network underlying autobiographical memory retrieval, which falters early in the progression of Alzheimer's disease (AD). We recently performed RNA sequencing of post-mortem PCC tissue samples from 26 elderly Rush Religious Orders Study participants who came to autopsy with an ante-mortem diagnosis of no cognitive impairment but who collectively displayed a range of Braak I-IV neurofibrillary tangle stages. Notably, cognitively unimpaired subjects displaying high Braak stages may represent cognitive resilience to AD pathology. Transcriptomic data revealed elevated synaptic and ATP-related gene expression in Braak Stages III/IV compared with Stages I/II, suggesting these pathways may be related to PCC resilience. We also mined expression profiles for small non-coding micro-RNAs (miRNAs), which regulate mRNA stability and may represent an underexplored potential mechanism of resilience through the fine-tuning of gene expression within complex cellular networks. Twelve miRNAs were identified as differentially expressed between Braak Stages I/II and III/IV. However, the extent to which the levels of all identified miRNAs were associated with subject demographics, neuropsychological test performance and/or neuropathological diagnostic criteria within this cohort was not explored. Here, we report that a total of 667 miRNAs are significantly associated (rho > 0.38, P < 0.05) with subject variables. There were significant positive correlations between miRNA expression levels and age, perceptual orientation and perceptual speed. By contrast, higher miRNA levels correlated negatively with semantic and episodic memory. Higher expression of 15 miRNAs associated with lower Braak Stages I-II and 47 miRNAs were associated with higher Braak Stages III-IV, suggesting additional mechanistic influences of PCC miRNA expression with resilience. Pathway analysis showed enrichment for miRNAs operating in pathways related to lysine degradation and fatty acid synthesis and metabolism. Finally, we demonstrated that the 12 resilience-related miRNAs differentially expressed in Braak Stages I/II versus Braak Stages III/IV were predicted to regulate mRNAs related to amyloid processing, tau and inflammation. In summary, we demonstrate a dynamic state wherein differential PCC miRNA levels are associated with cognitive performance and post-mortem neuropathological AD diagnostic criteria in cognitively intact elders. We posit these relationships may inform miRNA transcriptional alterations within the PCC relevant to potential early protective (resilience) or pathogenic (pre-clinical or prodromal) responses to disease pathogenesis and thus may be therapeutic targets.
Collapse
Affiliation(s)
- Christy M Kelley
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Bryan Maloney
- Departments of Psychiatry and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John S Beck
- Departments of Translational Neuroscience and Family Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Departments of Psychiatry, Neuroscience & Physiology, and the NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Winnie Liang
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Debomoy K Lahiri
- Departments of Psychiatry and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Scott E Counts
- Departments of Translational Neuroscience and Family Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| |
Collapse
|
20
|
Maturana-Quijada P, Chavarría-Elizondo P, Del Cerro I, Martínez-Zalacaín I, Juaneda-Seguí A, Guinea-Izquierdo A, Gascón-Bayarri J, Reñé R, Urretavizcaya M, Menchón JM, Ferrer I, Soria V, Soriano-Mas C. Effective connectivity of the locus coeruleus in patients with late-life Major Depressive Disorder or mild cognitive impairment. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2024:S2950-2853(24)00015-2. [PMID: 38453029 DOI: 10.1016/j.sjpmh.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
INTRODUCTION We compared effective connectivity from the locus coeruleus (LC) during the resting-state in patients with late-life Major Depressive Disorder (MDD), individuals with amnestic Mild Cognitive Impairment (aMCI), and Healthy Controls (HCs). PARTICIPANTS 23 patients with late-life MDD, 22 patients with aMCI, and 28 HCs. MATERIAL AND METHODS Participants were assessed in two time-points, 2 years apart. They underwent a resting-state functional magnetic resonance imaging and a high-resolution anatomical acquisition, as well as clinical assessments. Functional imaging data were analyzed with dynamic causal modeling, and parametric empirical Bayes model was used to map effective connectivity between 7 distinct nodes: 4 from the locus coeruleus and 3 regions displaying gray matter decreases during the two-year follow-up period. RESULTS Longitudinal analysis of structural data identified three clusters of larger over-time gray matter volume reduction in patients (MDD+aMCI vs. HCs): the right precuneus, and the visual association and parahippocampal cortices. aMCI patients showed decreased effective connectivity from the left rostral to caudal portions of the LC, while connectivity from the left rostral LC to the parahippocampal cortex increased. In MDD, there was a decline in effective connectivity across LC caudal seeds, and increased connectivity from the left rostral to the left caudal LC seed over time. Connectivity alterations with cortical regions involved cross-hemisphere increases and same-hemisphere decreases. CONCLUSIONS Our discoveries provide insight into the dynamic changes in effective connectivity in individuals with late-life MDD and aMCI, also shedding light on the mechanisms potentially contributing to the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Pablo Maturana-Quijada
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Pamela Chavarría-Elizondo
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain
| | - Inés Del Cerro
- Department of Psychology, Medical School, Catholic University of Murcia, Murcia, Spain
| | - Ignacio Martínez-Zalacaín
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Asier Juaneda-Seguí
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Andrés Guinea-Izquierdo
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Jordi Gascón-Bayarri
- Dementia Diagnostic and Treatment Unit, Department of Neurology, Bellvitge University Hospital, Barcelona, Spain
| | - Ramón Reñé
- Dementia Diagnostic and Treatment Unit, Department of Neurology, Bellvitge University Hospital, Barcelona, Spain
| | - Mikel Urretavizcaya
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain
| | - José M Menchón
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Bellvitge Biomedical Research Institute-IDIBELL, Department of Pathologic Anatomy, Bellvitge University Hospital, Barcelona, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Virginia Soria
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain; Department of Mental Health, Parc Taulí Hospital Universitari, Sabadell, Barcelona, Spain
| | - Carles Soriano-Mas
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain; Department of Social Psychology and Quantitative Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
21
|
Ochi S, Yamada K, Saito T, Saido TC, Iinuma M, Azuma K, Kubo KY. Effects of early tooth loss on chronic stress and progression of neuropathogenesis of Alzheimer's disease in adult Alzheimer's model AppNL-G-F mice. Front Aging Neurosci 2024; 16:1361847. [PMID: 38469162 PMCID: PMC10925668 DOI: 10.3389/fnagi.2024.1361847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Alzheimer's disease (AD), the most common neurodegenerative disease, is characterized by accumulated amyloid-β (Aβ) plaques, aggregated phosphorylated tau protein, gliosis-associated neuroinflammation, synaptic dysfunction, and cognitive impairment. Many cohort studies indicate that tooth loss is a risk factor for AD. The detailed mechanisms underlying the association between AD and tooth loss, however, are not yet fully understood. Methods We explored the involvement of early tooth loss in the neuropathogenesis of the adult AppNL-G-F mouse AD model. The maxillary molars were extracted bilaterally in 1-month-old male mice soon after tooth eruption. Results Plasma corticosterone levels were increased and spatial learning memory was impaired in these mice at 6 months of age. The cerebral cortex and hippocampus of AD mice with extracted teeth showed an increased accumulation of Aβ plaques and phosphorylated tau proteins, and increased secretion of the proinflammatory cytokines, including interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α), accompanied by an increased number of microglia and astrocytes, and decreased synaptophysin expression. AD mice with extracted teeth also had a shorter lifespan than the control mice. Discussion These findings revealed that long-term tooth loss is a chronic stressor, activating the recruitment of microglia and astrocytes; exacerbating neuroinflammation, Aβ deposition, phosphorylated tau accumulation, and synaptic dysfunction; and leading to spatial learning and memory impairments in AD model mice.
Collapse
Affiliation(s)
- Suzuko Ochi
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho, Japan
| | - Kumiko Yamada
- Department of Health and Nutrition, Faculty of Health Science, Nagoya Women's University, Nagoya, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Mitsuo Iinuma
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Mizuho, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kin-Ya Kubo
- Graduate School of Human Life Science, Nagoya Women's University, Nagoya, Japan
| |
Collapse
|
22
|
Liu R, Guo Z, Li M, Liu S, Zhi Y, Jiang Z, Liang X, Hu H, Zhu J. Lower fractional dimension in Alzheimer's disease correlates with reduced locus coeruleus signal intensity. Magn Reson Imaging 2024; 106:24-30. [PMID: 37541457 DOI: 10.1016/j.mri.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
This study aimed to determine the pattern of fractional dimension (FD) in Alzheimer's disease (AD) patients, and investigate the relationship between FD and the locus coeruleus (LC) signal intensity.A total of 27 patients with AD and 25 healthy controls (HC) were collected to estimate the pattern of fractional dimension (FD) and cortical thickness (CT) using the Computational Anatomy Toolbox (CAT12), and statistically analyze between groups on a vertex level using statistical parametric mapping 12. In addition, they were examined by neuromelanin sensitive MRI(NM-MRI) technique to calculate the locus coeruleus signal contrast ratios (LC-CRs). Additionally, correlations between the pattern of FD and LC-CRs were further examined.Compared to HC, AD patients showed widespread lower CT and FD Furthermore, significant positive correlation was found between local fractional dimension (LFD) of the left rostral middle frontal cortex and LC-CRs. Results suggest lower cortical LFD is associated with LCCRs that may reflect a reduction due to broader neurodegenerative processes. This finding may highlight the potential utility for advanced measures of cortical complexity in assessing brain health and early identification of neurodegenerative processes.
Collapse
Affiliation(s)
- Rong Liu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Zhiwen Guo
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Meng Li
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Shanwen Liu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Yuqi Zhi
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Zhen Jiang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Xiaoyun Liang
- Institute of Artificial Intelligence and Clinical Innovation, Neusoft Medical Systems Co., Ltd., Shanghai 200241, China; Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3084, Australia
| | - Hua Hu
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China.
| | - Jiangtao Zhu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China.
| |
Collapse
|
23
|
Saternos H, Hamlett ED, Guzman S, Head E, Granholm AC, Ledreux A. Unique Pathology in the Locus Coeruleus of Individuals with Down Syndrome. J Alzheimers Dis 2024; 101:541-561. [PMID: 39213062 DOI: 10.3233/jad-240043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Down syndrome (DS) is one of the most commonly occurring chromosomal conditions. Most individuals with DS develop Alzheimer's disease (AD) by 50 years of age. Recent evidence suggests that AD pathology in the locus coeruleus (LC) is an early event in sporadic AD. It is likely that the widespread axonal network of LC neurons contributes to the spread of tau pathology in the AD brain, although this has not been investigated in DS-AD. Objective The main purpose of this study was to profile AD pathology and neuroinflammation in the LC, comparing AD and DS-AD in postmortem human tissues. Methods We utilized immunofluorescence and semi-quantitative analyses of pTau (4 different forms), amyloid-β (Aβ), glial, and neuronal markers in the LC across 36 cases (control, DS-AD, and AD) to compare the different pathological profiles. Results Oligomeric tau was highly elevated in DS-AD cases compared to LOAD or EOAD cases. The distribution of staining for pT231 was elevated in DS-AD and EOAD compared to the LOAD group. The DS-AD group exhibited increased Aβ immunostaining compared to AD cases. The number of tau-bearing neurons was also significantly different between the EOAD and DS-AD cases compared to the LOAD cases. Conclusions While inflammation, pTau, and Aβ are all involved in AD pathology, their contribution to disease progression may differ depending on the diagnosis. Our results suggest that DS-AD and EOAD may be more similar in pathology than LOAD. Our study highlights unique avenues to further our understanding of the mechanisms governing AD neuropathology.
Collapse
Affiliation(s)
- Hannah Saternos
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Samuel Guzman
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California at Irvine, Irvine, CA, USA
| | - Ann-Charlotte Granholm
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aurélie Ledreux
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
24
|
Kostenko A, Prezzavento O, de Leo G, D'Arco D, Gulino R, Caccamo A, Leanza G. Cognitive and Histopathological Alterations in Rat Models of Early- and Late-Phase Memory Dysfunction: Effects of Sigma-1 Receptor Activation. J Alzheimers Dis 2024; 101:797-811. [PMID: 39240642 DOI: 10.3233/jad-240618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Background Sigma-1 receptors are highly expressed in brain areas related to cognitive function and are a promising target for anti-amnesic treatments. We previously showed that activation of sigma-1 receptors by the selective agonist compound methyl(1 R,2 S/1 S,2 R)-2-[4-hydroxy-4-phenylpiperidin-1-yl)methyl]-1-(4-methylphenyl) cyclopropane carboxylate [(±)-PPCC] promotes a remarkable recovery in rat models of memory loss associated to cholinergic dysfunction. Objective In this study, we sought to assess the role of (±)-PPCC on working memory deficits caused by noradrenergic depletion. Methods Animals with a mild or severe working memory deficits associated to varying degrees of noradrenergic neuronal depletion were treated with the sigma-1 agonist just prior to the beginning of each behavioral testing session. Results While (±)-PPCC alone at a dose of 1 mg/kg/day failed to affect working memory in lesioned animals, its association with the α2 adrenergic receptor agonist clonidine, completely blocked noradrenaline release, significantly improving rat performance. This effect, distinct from noradrenaline activity, is likely to result from a direct action of the (±)-PPCC compound onto sigma-1 receptors, as pre-treatment with the selective sigma-1 receptor antagonist BD-1047 reversed the improved working memory performance. Despite such clear functional effects, the treatment did not affect noradrenergic neuron survival or terminal fiber proliferation. Conclusions Future studies are thus necessary to address the effects of long-lasting (±)-PPCC treatment, with or without clonidine, on cognitive abilities and Alzheimer's disease-like histopathology. Considering the already established involvement of sigma-1 receptors in endogenous cell plasticity mechanisms, their activation by selective agonist compounds holds promises as possibly positive contributor to disease-modifying events in neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Kostenko
- Department of Life Sciences, B.R.A.I.N. (Basic Research and Integrative Neuroscience), Laboratory for Neurogenesis and Repair, University of Trieste, Trieste, Italy
| | - Orazio Prezzavento
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Gioacchino de Leo
- Department of Life Sciences, B.R.A.I.N. (Basic Research and Integrative Neuroscience), Laboratory for Neurogenesis and Repair, University of Trieste, Trieste, Italy
- SISSA, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - David D'Arco
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giampiero Leanza
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Molecular Preclinical and Translational Imaging Research Centre-IMPRonTE, University of Catania, Catania, Italy
| |
Collapse
|
25
|
Bolshakov AP, Gerasimov K, Dobryakova YV. Alzheimer's Disease: An Attempt of Total Recall. J Alzheimers Dis 2024; 101:1043-1061. [PMID: 39269841 DOI: 10.3233/jad-240620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
This review is an attempt to compile existing hypotheses on the mechanisms underlying the initiation and progression of Alzheimer's disease (AD), starting from sensory impairments observed in AD and concluding with molecular events that are typically associated with the disease. These events include spreading of amyloid plaques and tangles of hyperphosphorylated tau and formation of Hirano and Biondi bodies as well as the development of oxidative stress. We have detailed the degenerative changes that occur in several neuronal populations, including the cholinergic neurons in the nucleus basalis of Meynert, the histaminergic neurons in the tuberomammillary nucleus, the serotonergic neurons in the raphe nuclei, and the noradrenergic neurons in the locus coeruleus. Furthermore, we discuss the potential role of iron accumulation in the brains of subjects with AD in the disease progression which served as a basis for the idea that iron chelation in the brain may mitigate oxidative stress and decelerate disease development. We also draw attention to possible role of sympathetic system and, more specifically, noradrenergic neurons of the superior cervical ganglion in triggering of the disease. We also explore the alternative possibility of compensatory protective changes that may occur in these neurons to support cholinergic function in the forebrain of subjects with AD.
Collapse
Affiliation(s)
- Alexey P Bolshakov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Gerasimov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
- Russian National Research Medical University, Moscow, Russia
| | - Yulia V Dobryakova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
26
|
Quattrini G, Pini L, Boscolo Galazzo I, Jelescu IO, Jovicich J, Manenti R, Frisoni GB, Marizzoni M, Pizzini FB, Pievani M. Microstructural alterations in the locus coeruleus-entorhinal cortex pathway in Alzheimer's disease and frontotemporal dementia. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12513. [PMID: 38213948 PMCID: PMC10781651 DOI: 10.1002/dad2.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024]
Abstract
INTRODUCTION We investigated in vivo the microstructural integrity of the pathway connecting the locus coeruleus to the transentorhinal cortex (LC-TEC) in patients with Alzheimer's disease (AD) and frontotemporal dementia (FTD). METHODS Diffusion-weighted MRI scans were collected for 21 AD, 20 behavioral variants of FTD (bvFTD), and 20 controls. Fractional anisotropy (FA), mean, axial, and radial diffusivities (MD, AxD, RD) were computed in the LC-TEC pathway using a normative atlas. Atrophy was assessed using cortical thickness and correlated with microstructural measures. RESULTS We found (i) higher RD in AD than controls; (ii) higher MD, RD, and AxD, and lower FA in bvFTD than controls and AD; and (iii) a negative association between LC-TEC MD, RD, and AxD, and entorhinal cortex (EC) thickness in bvFTD (all p < 0.050). DISCUSSION LC-TEC microstructural alterations are more pronounced in bvFTD than AD, possibly reflecting neurodegeneration secondary to EC atrophy. Highlights Microstructural integrity of LC-TEC pathway is understudied in AD and bvFTD.LC-TEC microstructural alterations are present in both AD and bvFTD.Greater LC-TEC microstructural alterations in bvFTD than AD.LC-TEC microstructural alterations in bvFTD are associated to EC neurodegeneration.
Collapse
Affiliation(s)
- Giulia Quattrini
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE)IRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Lorenzo Pini
- Padova Neuroscience CenterUniversity of PadovaPadovaItaly
| | | | - Ileana O. Jelescu
- Department of RadiologyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Jorge Jovicich
- Center of Mind/Brain SciencesUniversity of TrentoRoveretoItaly
| | - Rosa Manenti
- Neuropsychology UnitIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Giovanni B. Frisoni
- Memory Center and LANVIE ‐ Laboratory of Neuroimaging of AgingUniversity Hospitals and University of GenevaGenevaSwitzerland
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE)IRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
- Laboratory of Biological PsychiatryIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Francesca B. Pizzini
- Department of Engineering for Innovation MedicineUniversity of VeronaVeronaItaly
| | - Michela Pievani
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE)IRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| |
Collapse
|
27
|
Matt RA, Martin RS, Evans AK, Gever JR, Vargas GA, Shamloo M, Ford AP. Locus Coeruleus and Noradrenergic Pharmacology in Neurodegenerative Disease. Handb Exp Pharmacol 2024; 285:555-616. [PMID: 37495851 DOI: 10.1007/164_2023_677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Adrenoceptors (ARs) throughout the brain are stimulated by noradrenaline originating mostly from neurons of the locus coeruleus, a brainstem nucleus that is ostensibly the earliest to show detectable pathology in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The α1-AR, α2-AR, and β-AR subtypes expressed in target brain regions and on a range of cell populations define the physiological responses to noradrenaline, which includes activation of cognitive function in addition to modulation of neurometabolism, cerebral blood flow, and neuroinflammation. As these heterocellular functions are critical for maintaining brain homeostasis and neuronal health, combating the loss of noradrenergic tone from locus coeruleus degeneration may therefore be an effective treatment for both cognitive symptoms and disease modification in neurodegenerative indications. Two pharmacologic approaches are receiving attention in recent clinical studies: preserving noradrenaline levels (e.g., via reuptake inhibition) and direct activation of target adrenoceptors. Here, we review the expression and role of adrenoceptors in the brain, the preclinical studies which demonstrate that adrenergic stimulation can support cognitive function and cerebral health by reversing the effects of noradrenaline depletion, and the human data provided by pharmacoepidemiologic analyses and clinical trials which together identify adrenoceptors as promising targets for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
| | | | - Andrew K Evans
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | |
Collapse
|
28
|
LoBue C, McClintock SM, Chiang HS, Helphrey J, Thakkar VJ, Hart J. A Critical Review of Noninvasive Brain Stimulation Technologies in Alzheimer's Dementia and Primary Progressive Aphasia. J Alzheimers Dis 2024; 100:743-760. [PMID: 38905047 DOI: 10.3233/jad-240230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Multiple pharmacologic agents now have been approved in the United States and other countries as treatment to slow disease and clinical progression for Alzheimer's disease. Given these treatments have not been proven to lessen the cognitive deficits already manifested in the Alzheimer's Clinical Syndrome (ACS), and none are aimed for another debilitating dementia syndrome identified as primary progressive aphasia (PPA), there is an urgent need for new, safe, tolerable, and efficacious treatments to mitigate the cognitive deficits experienced in ACS and PPA. Noninvasive brain stimulation has shown promise for enhancing cognitive functioning, and there has been interest in its potential therapeutic value in ACS and PPA. This review critically examines the evidence of five technologies in ACS and PPA: transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), transcranial random noise stimulation (tRNS), repetitive transcranial magnetic stimulation (rTMS), and noninvasive vagus nerve stimulation (nVNS). Many randomized controlled trials of tDCS and rTMS report positive treatment effects on cognition in ACS and PPA that persist out to at least 8 weeks, whereas there are few trials for tACS and none for tRNS and nVNS. However, most positive trials did not identify clinically meaningful changes, underscoring that clinical efficacy has yet to be established in ACS and PPA. Much is still to be learned about noninvasive brain stimulation in ACS and PPA, and shifting the focus to prioritize clinical significance in addition to statistical significance in trials could yield greater success in understanding its potential cognitive effects and optimal parameters.
Collapse
Affiliation(s)
- Christian LoBue
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shawn M McClintock
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hsueh-Sheng Chiang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Jessica Helphrey
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vishal J Thakkar
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John Hart
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
29
|
Barrientos-Bonilla AA, Pensado-Guevara PB, Nadella R, Sánchez-García ADC, Zavala-Flores LM, Hernandez-Baltazar D. Gliosis induction on locus coeruleus in a living liver donor experimental model: A brief review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:12-15. [PMID: 38164479 PMCID: PMC10722488 DOI: 10.22038/ijbms.2023.70847.15389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/15/2023] [Indexed: 01/03/2024]
Abstract
Living Donor Liver Transplantation (LDLT) is a promising approach to treating end-stage liver diseases, however, some post-operatory complications such as pneumonia, bacteremia, urinary tract infections, and hepatic dysfunction have been reported. In murine models using partial hepatectomy (PHx), a model that emulates LDLT, it has been determined that the synthesis of hepatic cell proliferation factors that are associated with noradrenaline synthesis are produced in locus coeruleus (LC). In addition, studies have shown that PHx decreases GABA and 5-HT2A receptors, promotes loss of dendritic spines, and favors microgliosis in rat hippocampus. The GABA and serotonin-altered circuits suggest that catecholaminergic neurons such as dopamine and noradrenaline neurons, which are highly susceptible to cellular stress, can also be damaged. To understand post-transplant affections and to perform well-controlled studies it is necessary to know the potential causes that explain as a liver surgical procedure can produce brain damage. In this paper, we review several cellular processes that could induce gliosis in LC after rat PHx.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel Hernandez-Baltazar
- Investigadores por México CONAHCyT-Instituto de Neuroetología. Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|
30
|
Galgani A, Giorgi FS. Exploring the Role of Locus Coeruleus in Alzheimer's Disease: a Comprehensive Update on MRI Studies and Implications. Curr Neurol Neurosci Rep 2023; 23:925-936. [PMID: 38064152 PMCID: PMC10724305 DOI: 10.1007/s11910-023-01324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2023] [Indexed: 12/18/2023]
Abstract
PURPOSE OF REVIEW Performing a thorough review of magnetic resonance imaging (MRI) studies assessing locus coeruleus (LC) integrity in ageing and Alzheimer's disease (AD), and contextualizing them with current preclinical and neuropathological literature. RECENT FINDINGS MRI successfully detected LC alterations in ageing and AD, identifying degenerative phenomena involving this nucleus even in the prodromal stages of the disorder. The degree of LC disruption was also associated with the severity of AD cortical pathology, cognitive and behavioral impairment, and the risk of clinical progression. Locus coeruleus-MRI has proved to be a useful tool to assess the integrity of the central noradrenergic system in vivo in humans. It allowed to test in patients preclinical and experimental hypothesis, thus confirming the specific and marked involvement of the LC in AD and its key pathogenetic role. Locus coeruleus-MRI-related data might represent the theoretical basis on which to start developing noradrenergic drugs to target AD.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies School of Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies School of Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| |
Collapse
|
31
|
Freeze WM, van Veluw SJ, Jansen WJ, Bennett DA, Jacobs HIL. Locus coeruleus pathology is associated with cerebral microangiopathy at autopsy. Alzheimers Dement 2023; 19:5023-5035. [PMID: 37095709 PMCID: PMC10593911 DOI: 10.1002/alz.13096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
INTRODUCTION We investigated the link between locus coeruleus (LC) pathology and cerebral microangiopathy in two large neuropathology datasets. METHODS We included data from the National Alzheimer's Coordinating Center (NACC) database (n = 2197) and Religious Orders Study and Rush Memory and Aging Project (ROSMAP; n = 1637). Generalized estimating equations and logistic regression were used to examine associations between LC hypopigmentation and presence of cerebral amyloid angiopathy (CAA) or arteriolosclerosis, correcting for age at death, sex, cortical Alzheimer's disease (AD) pathology, ante mortem cognitive status, and presence of vascular and genetic risk factors. RESULTS LC hypopigmentation was associated with higher odds of overall CAA in the NACC dataset, leptomeningeal CAA in the ROSMAP dataset, and arteriolosclerosis in both datasets. DISCUSSION LC pathology is associated with cerebral microangiopathy, independent of cortical AD pathology. LC degeneration could potentially contribute to the pathways relating vascular pathology to AD. Future studies of the LC-norepinephrine system on cerebrovascular health are warranted. HIGHLIGHTS We associated locus coeruleus (LC) pathology and cerebral microangiopathy in two large autopsy datasets. LC hypopigmentation was consistently related to arteriolosclerosis in both datasets. LC hypopigmentation was related to cerebral amyloid angiopathy (CAA) presence in the National Alzheimer's Coordinating Center dataset. LC hypopigmentation was related to leptomeningeal CAA in the Religious Orders Study and Rush Memory and Aging Project dataset. LC degeneration may play a role in the pathways relating vascular pathology to Alzheimer's disease.
Collapse
Affiliation(s)
- WM Freeze
- Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, 6229 ET, Maastricht, the Netherlands
| | - SJ van Veluw
- Department of Radiology, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
- Department of Neurology, J. Philip Kistler Stroke Research Center, MGH, Boston, MA 02114, USA
| | - WJ Jansen
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, 6229 ET, Maastricht, the Netherlands
- Banner Alzheimer’s Institute, Phoenix, AZ 85006, USA
| | - DA Bennett
- Department of Neurological Sciences, Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL 60612, USA
| | - HIL Jacobs
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, 6229 ET, Maastricht, the Netherlands
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
32
|
Torso M, Ridgway GR, Valotti M, Hardingham I, Chance SA. In vivo cortical diffusion imaging relates to Alzheimer's disease neuropathology. Alzheimers Res Ther 2023; 15:165. [PMID: 37794477 PMCID: PMC10548768 DOI: 10.1186/s13195-023-01309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/17/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND There has been increasing interest in cortical microstructure as a complementary and earlier measure of neurodegeneration than macrostructural atrophy, but few papers have related cortical diffusion imaging to post-mortem neuropathology. This study aimed to characterise the associations between the main Alzheimer's disease (AD) neuropathological hallmarks and multiple cortical microstructural measures from in vivo diffusion MRI. Comorbidities and co-pathologies were also investigated. METHODS Forty-three autopsy cases (8 cognitively normal, 9 mild cognitive impairment, 26 AD) from the National Alzheimer's Coordinating Center and Alzheimer's Disease Neuroimaging Initiative databases were included. Structural and diffusion MRI scans were analysed to calculate cortical minicolumn-related measures (AngleR, PerpPD+, and ParlPD) and mean diffusivity (MD). Neuropathological hallmarks comprised Thal phase, Braak stage, neuritic plaques, and combined AD neuropathological changes (ADNC-the "ABC score" from NIA-AA recommendations). Regarding comorbidities, relationships between cortical microstructure and severity of white matter rarefaction (WMr), cerebral amyloid angiopathy (CAA), atherosclerosis of the circle of Willis (ACW), and locus coeruleus hypopigmentation (LCh) were investigated. Finally, the effect of coexistent pathologies-Lewy body disease and TAR DNA-binding protein 43 (TDP-43)-on cortical microstructure was assessed. RESULTS Cortical diffusivity measures were significantly associated with Thal phase, Braak stage, ADNC, and LCh. Thal phase was associated with AngleR in temporal areas, while Braak stage was associated with PerpPD+ in a wide cortical pattern, involving mainly temporal and limbic areas. A similar association was found between ADNC (ABC score) and PerpPD+. LCh was associated with PerpPD+, ParlPD, and MD. Co-existent neuropathologies of Lewy body disease and TDP-43 exhibited significantly reduced AngleR and MD compared to ADNC cases without co-pathology. CONCLUSIONS Cortical microstructural diffusion MRI is sensitive to AD neuropathology. The associations with the LCh suggest that cortical diffusion measures may indirectly reflect the severity of locus coeruleus neuron loss, perhaps mediated by the severity of microglial activation and tau spreading across the brain. Recognizing the impact of co-pathologies is important for diagnostic and therapeutic decision-making. Microstructural markers of neurodegeneration, sensitive to the range of histopathological features of amyloid, tau, and monoamine pathology, offer a more complete picture of cortical changes across AD than conventional structural atrophy.
Collapse
|
33
|
Dahl MJ, Kulesza A, Werkle-Bergner M, Mather M. Declining locus coeruleus-dopaminergic and noradrenergic modulation of long-term memory in aging and Alzheimer's disease. Neurosci Biobehav Rev 2023; 153:105358. [PMID: 37597700 PMCID: PMC10591841 DOI: 10.1016/j.neubiorev.2023.105358] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Memory is essential in defining our identity by guiding behavior based on past experiences. However, aging leads to declining memory, disrupting older adult's lives. Memories are encoded through experience-dependent modifications of synaptic strength, which are regulated by the catecholamines dopamine and noradrenaline. While cognitive aging research demonstrates how dopaminergic neuromodulation from the substantia nigra-ventral tegmental area regulates hippocampal synaptic plasticity and memory, recent findings indicate that the noradrenergic locus coeruleus sends denser inputs to the hippocampus. The locus coeruleus produces dopamine as biosynthetic precursor of noradrenaline, and releases both to modulate hippocampal plasticity and memory. Crucially, the locus coeruleus is also the first site to accumulate Alzheimer's-related abnormal tau and severely degenerates with disease development. New in-vivo assessments of locus coeruleus integrity reveal associations with Alzheimer's markers and late-life memory impairments, which likely stem from impaired dopaminergic and noradrenergic neurotransmission. Bridging research across species, the reviewed findings suggest that degeneration of the locus coeruleus results in deficient dopaminergic and noradrenergic modulation of hippocampal plasticity and thus memory decline.
Collapse
Affiliation(s)
- Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany; Leonard Davis School of Gerontology, University of Southern California, 90089 Los Angeles, CA, USA.
| | - Agnieszka Kulesza
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, 90089 Los Angeles, CA, USA; Department of Psychology, University of Southern California, Los Angeles, California, USA; Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
34
|
Prinzi C, Kostenko A, de Leo G, Gulino R, Leanza G, Caccamo A. Selective Noradrenaline Depletion in the Neocortex and Hippocampus Induces Working Memory Deficits and Regional Occurrence of Pathological Proteins. BIOLOGY 2023; 12:1264. [PMID: 37759663 PMCID: PMC10526041 DOI: 10.3390/biology12091264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Noradrenaline (NA) depletion occurs in Alzheimer's disease (AD); however, its relationship with the pathological expression of Tau and transactive response DNA-binding protein 43 (TDP-43), two major hallmarks of AD, remains elusive. Here, increasing doses of a selective noradrenergic immunotoxin were injected into developing rats to generate a model of mild or severe NA loss. At about 12 weeks post-lesion, dose-dependent working memory deficits were detected in these animals, associated with a marked increase in cortical and hippocampal levels of TDP-43 phosphorylated at Ser 409/410 and Tau phosphorylated at Thr 217. Notably, the total levels of both proteins were largely unaffected, suggesting a direct relationship between neocortical/hippocampal NA depletion and the phosphorylation of pathological Tau and TDP-43 proteins. As pTD43 is present in 23% of AD cases and pTau Thr217 has been detected in patients with mild cognitive impairment that eventually would develop into AD, improvement of noradrenergic function in AD might represent a viable therapeutic approach with disease-modifying potential.
Collapse
Affiliation(s)
- Chiara Prinzi
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy;
| | - Anna Kostenko
- B.R.A.I.N. (Basic Research and Integrative Neuroscience) Laboratory for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, 34100 Trieste, Italy;
| | - Gioacchino de Leo
- SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Triste, Italy;
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy;
| | - Giampiero Leanza
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy;
- Molecular Preclinical and Translational Imaging Research Centre-IMPRonTE, University of Catania, 95125 Catania, Italy
| | - Antonella Caccamo
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy;
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
35
|
Prokopiou PC, Engels-Domínguez N, Schultz AP, Sepulcre J, Koops EA, Papp KV, Marshall GA, Normandin MD, El Fakhri G, Rentz D, Sperling RA, Johnson KA, Jacobs HIL. Association of Novelty-Related Locus Coeruleus Function With Entorhinal Tau Deposition and Memory Decline in Preclinical Alzheimer Disease. Neurology 2023; 101:e1206-e1217. [PMID: 37491329 PMCID: PMC10516269 DOI: 10.1212/wnl.0000000000207646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/31/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The predictable Braak staging scheme suggests that cortical tau progression may be related to synaptically connected neurons. Animal and human neuroimaging studies demonstrated that changes in neuronal activity contribute to tau spreading. Whether similar mechanisms explain tau progression from the locus coeruleus (LC), a tiny noradrenergic brainstem nucleus involved in novelty, learning, and memory and among the earliest regions to accumulate tau, has not yet been established. We aimed to investigate whether novelty-related LC activity was associated with the accumulation of cortical tau and its implications for cognitive decline. METHODS We combined functional MRI data of a novel vs repeated face-name learning paradigm, [18F]-FTP-PET, [11C]-PiB-PET, and longitudinal cognitive data from 92 well-characterized older individuals in the Harvard Aging Brain Study. We related novelty vs repetition LC activity to cortical tau deposition and to longitudinal decline in memory, executive function, and the Preclinical Alzheimer Disease Cognitive Composite (version 5; PACC5). Structural equation modeling was used to examine whether entorhinal cortical (EC) tau mediated the relationship between LC activity and cognitive decline and whether this depended on beta-amyloid deposition. RESULTS The participants' average age at baseline was 69.67 ± 10.14 years. Fifty-one participants were female. Ninety-one participants were cognitively normal (CDR global = 0), and one participant had mild cognitive impairment (CDR global = 0.5) at baseline. Lower novelty-related LC activity was specifically related to greater tau deposition in the medial-lateral temporal cortex and steeper memory decline. LC activity during novelty vs repetition was not related to executive dysfunction or decline on the PACC5. The relationship between LC activity and memory decline was partially mediated by EC tau, particularly in individuals with elevated beta-amyloid deposition. DISCUSSION Our results suggested that lower novelty-related LC activity is associated with the emergence of EC tau and that the downstream effects of this LC-EC pathway on memory decline also require the presence of elevated beta-amyloid. Longitudinal studies are required to investigate whether optimal LC activity has the potential to delay tau spread and memory decline, which may have implications for designing targeted interventions promoting resilience.
Collapse
Affiliation(s)
- Prokopis C Prokopiou
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Nina Engels-Domínguez
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Aaron P Schultz
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jorge Sepulcre
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Elouise A Koops
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Kathryn V Papp
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Gad A Marshall
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Marc D Normandin
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Georges El Fakhri
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Dorene Rentz
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Reisa A Sperling
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Keith A Johnson
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Heidi I L Jacobs
- From the Gordon Center for Medical Imaging (P.C.P., N.E.-D., J.S., E.A.K., M.D.N., G.E.F., K.A.J., H.I.L.J.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston; Faculty of Health (N.E.-D., H.I.L.J.), Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, The Netherlands; Department of Neurology (A.P.S., K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Massachusetts General Hospital, Harvard Medical School; The Athinoula A. Martinos Center for Biomedical Imaging (A.P.S.), Department of Radiology, Massachusetts General Hospital, Harvard Medical School; and Center for Alzheimer Research and Treatment (K.V.P., G.A.M., D.R., R.A.S., K.A.J.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
36
|
Torrillas-de la Cal A, Torres-Sanchez S, Bravo L, Llorca-Torralba M, Garcia-Partida JA, Arroba AI, Berrocoso E. Chemogenetic activation of locus coeruleus neurons ameliorates the severity of multiple sclerosis. J Neuroinflammation 2023; 20:198. [PMID: 37658434 PMCID: PMC10474779 DOI: 10.1186/s12974-023-02865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/30/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Most current disease-modifying therapies approved for multiple sclerosis (MS) are immunomodulatory drugs that counteract the aberrant activity of the immune system. Hence, new pharmacological interventions that drive anti-inflammatory activity and neuroprotection would represent interesting alternative therapeutic approaches or complementary strategies to treat progressive forms of MS. There is evidence of reduced noradrenaline levels and alterations to locus coeruleus (LC) noradrenergic neurons in MS patients, as well as in animal models of this disease, potentially factors contributing to the pathophysiology. Drugs that enhance noradrenaline appear to have some beneficial effects in MS, suggesting their potential to dampen the underlying pathology and disease progression. METHODS Therefore, we explored the consequences of chronic LC noradrenergic neurons activation by chemogenetics in experimental autoimmune encephalomyelitis (EAE) mice, the most widely used experimental model of MS. LC activation from the onset or the peak of motor symptoms was explored as two different therapeutic approaches, assessing the motor and non-motor behavioral changes as EAE progresses, and studying demyelination, inflammation and glial activation in the spinal cord and cerebral cortex during the chronic phase of EAE. RESULTS LC activation from the onset of motor symptoms markedly alleviated the motor deficits in EAE mice, as well as their anxiety-like behavior and sickness, in conjunction with reduced demyelination and perivascular infiltration in the spinal cord and glial activation in the spinal cord and prefrontal cortex (PFC). When animals exhibited severe paralysis, LC activation produced a modest alleviation of EAE motor symptoms and it enhanced animal well-being, in association with an improvement of the EAE pathology at the spinal cord and PFC level. Interestingly, the reduced dopamine beta-hydroxylase expression associated with EAE in the spinal cord and PFC was reversed through chemogenetic LC activation. CONCLUSION Therefore, clear anti-inflammatory and neuroprotective effects were produced by the selective activation of LC noradrenergic neurons in EAE mice, having greater benefits when LC activation commenced earlier. Overall, these data suggest noradrenergic LC neurons may be targets to potentially alleviate some of the motor and non-motor symptoms in MS.
Collapse
Grants
- #FPU20-03072 "Agencia Estatal de Investigación-Ministerio de Ciencia, Innovación y Universidades"; FPU fellowship
- PID2022-1427850B-I00 "Fondo Europeo de Desarrollo Regional" (FEDER)-UE "A way to build Europe" from the "Ministerio de Economía y Competitividad
- PDC2022-133987-I00 "Fondo Europeo de Desarrollo Regional" (FEDER)-UE "A way to build Europe" from the "Ministerio de Economía y Competitividad
- PY20_00958 "Consejería de Transformación Económica, Industria, Conocimiento y Universidad, Junta de Andalucía"
- CTS-510 "Consejería de Transformación Económica, Industria, Conocimiento y Universidad, Junta de Andalucía"
- CEIJ-003 CEIMAR
- “CIBERSAM”: CIBER-Consorcio Centro de Investigación Biomédica en Red (CB07/09/0033), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación
- “Agencia Estatal de Investigación-Ministerio de Ciencia, Innovación y Universidades”; FPU fellowship
- “Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz-INiBICA” (IN-CO9)
- "Fondo Europeo de Desarrollo Regional” (FEDER)-UE “A way to build Europe” from the “Ministerio de Economía y Competitividad
- Universidad de Cadiz
Collapse
Affiliation(s)
- Alejandro Torrillas-de la Cal
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Sonia Torres-Sanchez
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Meritxell Llorca-Torralba
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Department of Cell Biology and Histology, University of Cádiz, 11003, Cádiz, Spain
| | - Jose Antonio Garcia-Partida
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Ana I Arroba
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
- Department of Biomedicine, Biotechnology and Public Health (Immunology Area), University of Cádiz, 11003, Cádiz, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain.
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain.
| |
Collapse
|
37
|
Iannitelli AF, Weinshenker D. Riddles in the dark: Decoding the relationship between neuromelanin and neurodegeneration in locus coeruleus neurons. Neurosci Biobehav Rev 2023; 152:105287. [PMID: 37327835 PMCID: PMC10523397 DOI: 10.1016/j.neubiorev.2023.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
The noradrenergic locus coeruleus (LC) is among the first regions of the brain affected by pathology in both Alzheimer's disease (AD) and Parkinson's disease (PD), but the reasons for this selective vulnerability are not completely understood. Several features of LC neurons have been proposed as contributing factors to this dysfunction and degeneration, and this review will focus on the presence of neuromelanin (NM). NM is a dark pigment unique to catecholaminergic cells that is formed of norepinephrine (NE) and dopamine (DA) metabolites, heavy metals, protein aggregates, and oxidated lipids. We cover what is currently known about NM and the limitations of historical approaches, then discuss the new human tyrosinase (hTyr) model of NM production in rodent catecholamine cells in vivo that offers unique opportunities for studying its neurobiology, neurotoxicity, and potential of NM-based therapeutics for treating neurodegenerative disease.
Collapse
Affiliation(s)
- Alexa F Iannitelli
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
38
|
MohanKumar SMJ, Murugan A, Palaniyappan A, MohanKumar PS. Role of cytokines and reactive oxygen species in brain aging. Mech Ageing Dev 2023; 214:111855. [PMID: 37541628 PMCID: PMC10528856 DOI: 10.1016/j.mad.2023.111855] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Aging is a complex process that produces profound effects on the brain. Although a number of external factors can promote the initiation and progression of brain aging, peripheral and central changes in the immune cells with time, also play an important role. Immunosenescence, which is an age-associated decline in immune function and Inflammaging, a low-grade inflammatory state in the aging brain contribute to an elevation in cytokine and reactive oxygen species production. In this review, we focus on the pro-inflammatory state that is established in the brain as a consequence of these two phenomena and the resulting detrimental changes in brain structure, function and repair that lead to a decline in central and neuroendocrine function.
Collapse
Affiliation(s)
- Sheba M J MohanKumar
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Abarna Murugan
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Arunkumar Palaniyappan
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Puliyur S MohanKumar
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
39
|
Pilski A, Graves SM. Repeated Methamphetamine Administration Results in Axon Loss Prior to Somatic Loss of Substantia Nigra Pars Compacta and Locus Coeruleus Neurons in Male but Not Female Mice. Int J Mol Sci 2023; 24:13039. [PMID: 37685846 PMCID: PMC10487759 DOI: 10.3390/ijms241713039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Methamphetamine (meth) is a neurotoxic psychostimulant that increases monoamine oxidase (MAO)-dependent mitochondrial oxidant stress in axonal but not somatic compartments of substantia nigra pars compacta (SNc) and locus coeruleus (LC) neurons. Chronic meth administration results in the degeneration of SNc and LC neurons in male mice, and MAO inhibition is neuroprotective, suggesting that the deleterious effects of chronic meth begin in axons before advancing to the soma of SNc and LC neurons. To test this hypothesis, mice were administered meth (5 mg/kg) for 14, 21, or 28 days, and SNc and LC axonal lengths and numbers of neurons were quantified. In male mice, the SNc and LC axon lengths decreased with 14, 21, and 28 days of meth, whereas somatic loss was only observed after 28 days of meth; MAO inhibition (phenelzine; 20 mg/kg) prevented axonal and somatic loss of SNc and LC neurons. In contrast, chronic (28-day) meth had no effect on the axon length or numbers of SNc or LC neurons in female mice. The results demonstrate that repeated exposure to meth produces SNc and LC axonal deficits prior to somatic loss in male subjects, consistent with a dying-back pattern of degeneration, whereas female mice are resistant to chronic meth-induced degeneration.
Collapse
Affiliation(s)
| | - Steven M. Graves
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
40
|
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc 2023; 98:1424-1458. [PMID: 37068798 DOI: 10.1111/brv.12959] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Little France, Edinburgh, EH16 4SB, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
41
|
Martin SC, Joyce KK, Harper KM, Nikolova VD, Cohen TJ, Moy SS, Diering GH. Sleep disruption precedes forebrain synaptic Tau burden and contributes to cognitive decline in a sex-dependent manner in the P301S Tau transgenic mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544101. [PMID: 37333395 PMCID: PMC10274785 DOI: 10.1101/2023.06.07.544101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Sleep is an essential process that supports brain health and cognitive function in part through the modification of neuronal synapses. Sleep disruption, and impaired synaptic processes, are common features in neurodegenerative diseases, including Alzheimer's disease (AD). However, the casual role of sleep disruption in disease progression is not clear. Neurofibrillary tangles, made from hyperphosphorylated and aggregated Tau protein, form one of the major hallmark pathologies seen in AD and contribute to cognitive decline, synapse loss and neuronal death.Tau has been shown to aggregate in synapses which may impair restorative synapse processes occurring during sleep. However, it remains unclear how sleep disruption and synaptic Tau pathology interact to drive cognitive decline. It is also unclear whether the sexes show differential vulnerability to the effects of sleep loss in the context of neurodegeneration. Methods We used a piezoelectric home-cage monitoring system to measure sleep behavior in 3-11month-old transgenic hTau P301S Tauopathy model mice (PS19) and littermate controls of both sexes. Subcellular fractionation and Western blot was used to examine Tau pathology in mouse forebrain synapse fractions. To examine the role of sleep disruption in disease progression, mice were exposed to acute or chronic sleep disruption. The Morris water maze test was used to measure spatial learning and memory performance. Results PS19 mice exhibited a selective loss of sleep during the dark phase, referred to as hyperarousal, as an early symptom with an onset of 3months in females and 6months in males. At 6months, forebrain synaptic Tau burden did not correlate with sleep measures and was not affected by acute or chronic sleep disruption. Chronic sleep disruption accelerated the onset of decline of hippocampal spatial memory in PS19 males, but not females. Conclusions Dark phase hyperarousal is an early symptom in PS19 mice that precedes robust Tau aggregation. We find no evidence that sleep disruption is a direct driver of Tau pathology in the forebrain synapse. However, sleep disruption synergized with Tau pathology to accelerate the onset of cognitive decline in males. Despite the finding that hyperarousal appears earlier in females, female cognition was resilient to the effects of sleep disruption.
Collapse
|
42
|
Wu L, Zhang T, Zhang S. Comparative study of magnetic resonance imaging-based neuroimaging methods in older adults with depression. Psychiatry Res Neuroimaging 2023; 331:111637. [PMID: 37028173 DOI: 10.1016/j.pscychresns.2023.111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Older patients with depression often have accompanying physical diseases, thus, their disease situation is more complex than that of younger people. The medical community has aimed for earlier diagnosis of senile depression due to ineffective treatment and eventual cognitive impairment. METHOD Neuroimaging markers of senile depression were identified through the systematic analysis of multimodal data including resting-state functional MRI (rs-fMRI) and structural MRI (sMRI), and compared with clinical neural scales between older participants with and without depression. RESULTS Morphological analysis of gray matter by MRI showed significantly enlarged volumes in the left inferior temporal gyrus and right talus fissure, and reduced volumes in the left parahippocampal gyrus and lentiform globus pallidus in the older depression group compared with those in the control group. Comparison of fractional amplitude of low-frequency fluctuation between the groups showed increased partial brain activity in the left posterior central gyrus and right anterior central gyrus in the depression group compared with those in the control group. CONCLUSION Older patients with depression showed significant organic changes and significantly increased local brain activity. There was a positive correlation between the intensity of local brain activity in the superior occipital gyrus and the Hamilton Depression Rating Scale scores. GUIDING SIGNIFICANCE It is important to assess the organic changes and the degree of brain activity in specific brain regions in the clinical diagnosis of depression in the older adults, to adjust treatment plans early according to the incidence.
Collapse
Affiliation(s)
- Lin Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; High Field Magnetic Resonance Brain Imaging Laboratory of Sichuan, University of Electronic Science and Technology of China, Chengdu, China; Shanghai Electric Group Company Limited, Shanghai, China
| | - Tao Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; High Field Magnetic Resonance Brain Imaging Laboratory of Sichuan, University of Electronic Science and Technology of China, Chengdu, China; Shanghai Electric Group Company Limited, Shanghai, China; The Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu China.
| | - Shuang Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; College of computer science, Neijiang Normal University, Neijiang, Sichuan, China; High Field Magnetic Resonance Brain Imaging Laboratory of Sichuan, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
43
|
Kelberman MA, Rorabaugh JM, Anderson CR, Marriott A, DePuy SD, Rasmussen K, McCann KE, Weiss JM, Weinshenker D. Age-dependent dysregulation of locus coeruleus firing in a transgenic rat model of Alzheimer's disease. Neurobiol Aging 2023; 125:98-108. [PMID: 36889122 PMCID: PMC10038926 DOI: 10.1016/j.neurobiolaging.2023.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Hyperphosphorylated tau in the locus coeruleus (LC) is ubiquitous in prodromal Alzheimer's disease (AD), and LC neurons degenerate as AD progresses. Hyperphosphorylated tau alters firing rates in other brain regions, but its effects on LC neurons are unknown. We assessed single unit LC activity in anesthetized wild-type (WT) and TgF344-AD rats at 6 months, which represents a prodromal stage when LC neurons are the only cells containing hyperphosphorylated tau in TgF344-AD animals, and at 15 months when amyloid-β (Aβ) and tau pathology are both abundant in the forebrain. At baseline, LC neurons from TgF344-AD rats were hypoactive at both ages compared to WT littermates but showed elevated spontaneous bursting properties. Differences in footshock-evoked LC firing depended on age, with 6-month TgF344-AD rats demonstrating aspects of hyperactivity, and 15-month transgenic rats showing hypoactivity. Early LC hyperactivity is consistent with appearance of prodromal neuropsychiatric symptoms and is followed by LC hypoactivity which contributes to cognitive impairment. These results support further investigation into disease stage-dependent noradrenergic interventions for AD.
Collapse
Affiliation(s)
| | | | | | - Alexia Marriott
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | | | | | | | - Jay M Weiss
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
44
|
Yi YJ, Lüsebrink F, Ludwig M, Maaß A, Ziegler G, Yakupov R, Kreißl MC, Betts M, Speck O, Düzel E, Hämmerer D. It is the locus coeruleus! Or… is it?: a proposition for analyses and reporting standards for structural and functional magnetic resonance imaging of the noradrenergic locus coeruleus. Neurobiol Aging 2023; 129:137-148. [PMID: 37329853 DOI: 10.1016/j.neurobiolaging.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 06/19/2023]
Abstract
The noradrenergic locus coeruleus (LC) is one of the protein pathology epicenters in neurodegenerative diseases. In contrast to PET (positron emission tomography), MRI (magnetic resonance imaging) offers the spatial resolution necessary to investigate the 3-4 mm wide and 1.5 cm long LC. However, standard data postprocessing is often too spatially imprecise to allow investigating the structure and function of the LC at the group level. Our analysis pipeline uses a combination of existing toolboxes (SPM12, ANTs, FSL, FreeSurfer), and is tailored towards achieving suitable spatial precision in the brainstem area. Its effectiveness is demonstrated using 2 datasets comprising both younger and older adults. We also suggest quality assessment procedures which allow to quantify the spatial precision obtained. Spatial deviations below 2.5 mm in the LC area are achieved, which is superior to current standard approaches. Relevant for ageing and clinical researchers interested in brainstem imaging, we provide a tool for more reliable analyses of structural and functional LC imaging data which can be also adapted for investigating other nuclei of the brainstem.
Collapse
Affiliation(s)
- Yeo-Jin Yi
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Falk Lüsebrink
- Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto-von-Guericke University, Magdeburg, Germany; Medicine and Digitalization, Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Mareike Ludwig
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Anne Maaß
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Gabriel Ziegler
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Renat Yakupov
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Michael C Kreißl
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Division of Nuclear Medicine, Department of Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Matthew Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Oliver Speck
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, UK
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, UK; Department of Psychology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
45
|
Lancini E, Haag L, Bartl F, Rühling M, Ashton NJ, Zetterberg H, Düzel E, Hämmerer D, Betts MJ. Cerebrospinal fluid and positron-emission tomography biomarkers for noradrenergic dysfunction in neurodegenerative diseases: a systematic review and meta-analysis. Brain Commun 2023; 5:fcad085. [PMID: 37151227 PMCID: PMC10154713 DOI: 10.1093/braincomms/fcad085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/13/2022] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
The noradrenergic system shows pathological modifications in aging and neurodegenerative diseases and undergoes substantial neuronal loss in Alzheimer's disease and Parkinson's disease. While a coherent picture of structural decline in post-mortem and in vivo MRI measures seems to emerge, whether this translates into a consistent decline in available noradrenaline levels is unclear. We conducted a meta-analysis of noradrenergic differences in Alzheimer's disease dementia and Parkinson's disease using CSF and PET biomarkers. CSF noradrenaline and 3-methoxy-4-hydroxyphenylglycol levels as well as noradrenaline transporters availability, measured with PET, were summarized from 26 articles using a random-effects model meta-analysis. Compared to controls, individuals with Parkinson's disease showed significantly decreased levels of CSF noradrenaline and 3-methoxy-4-hydroxyphenylglycol, as well as noradrenaline transporters availability in the hypothalamus. In Alzheimer's disease dementia, 3-methoxy-4-hydroxyphenylglycol but not noradrenaline levels were increased compared to controls. Both CSF and PET biomarkers of noradrenergic dysfunction reveal significant alterations in Parkinson's disease and Alzheimer's disease dementia. However, further studies are required to understand how these biomarkers are associated to the clinical symptoms and pathology.
Collapse
Affiliation(s)
- Elisa Lancini
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Faculty of Medicine, Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lena Haag
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Faculty of Medicine, Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Franziska Bartl
- Faculty of Medicine, Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Maren Rühling
- Faculty of Medicine, Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Nicholas J Ashton
- Institute of Psychiatry, Department of Old Age Psychiatry, King’s College London, London, UK
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Faculty of Medicine, Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Dorothea Hämmerer
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Faculty of Medicine, Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Matthew J Betts
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Faculty of Medicine, Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
46
|
Wang RPH, Huang J, Chan KWY, Leung WK, Goto T, Ho YS, Chang RCC. IL-1β and TNF-α play an important role in modulating the risk of periodontitis and Alzheimer's disease. J Neuroinflammation 2023; 20:71. [PMID: 36915108 PMCID: PMC10012546 DOI: 10.1186/s12974-023-02747-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Systemic activation of the immune system can exert detrimental effects on the central nervous system. Periodontitis, a chronic disease of the oral cavity, is a common source of systemic inflammation. Neuroinflammation might be a result of this to accelerate progressive deterioration of neuronal functions during aging or exacerbate pre-existing neurodegenerative diseases, such as Alzheimer's disease. With advancing age, the progressive increase in the body's pro-inflammatory status favors the state of vulnerability to both periodontitis and Alzheimer's disease. In the present study, we sought to delineate the roles of cytokines in the pathogenesis of both diseases. METHODS To examine the impacts of periodontitis on the onset and progression of Alzheimer's disease, 6-month-old female 3 × Tg-AD mice and their age-matched non-transgenic mice were employed. Periodontitis was induced using two different experimental models: heat-killed bacterial-induced periodontitis and ligature-induced periodontitis. To delineate the roles of pro-inflammatory cytokines in the pathogenesis of periodontitis and Alzheimer's disease, interleukin 1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) were also injected into the buccal mandibular vestibule of mice. RESULTS Here, we show that IL-1β and TNF-α were two of the most important and earliest cytokines upregulated upon periodontal infection. The systemic upregulation of these two cytokines promoted a pro-inflammatory environment in the brain contributing to the development of Alzheimer's disease-like pathology and cognitive dysfunctions. Periodontitis-induced systemic inflammation also enhanced brain inflammatory responses and subsequently exacerbated Alzheimer's disease pathology and cognitive impairment in 3 × Tg-AD mice. The role of inflammation in connecting periodontitis to Alzheimer's disease was further affirmed in the conventional magnetization transfer experiment in which increased glial responses resulting from periodontitis led to decreased magnetization transfer ratios in the brain of 3 × Tg-AD mice. CONCLUSIONS Systemic inflammation resulting from periodontitis contributed to the development of Alzheimer's disease tau pathology and subsequently led to cognitive decline in non-transgenic mice. It also potentiated Alzheimer's disease pathological features and exacerbated impairment of cognitive function in 3 × Tg-AD mice. Taken together, this study provides convincing evidence that systemic inflammation serves as a connecting link between periodontitis and Alzheimer's disease.
Collapse
Affiliation(s)
- Rachel Pei-Hsuan Wang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Laboratory Block, Rm. L4-49, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Kannie Wai Yan Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Wai Keung Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Tetsuya Goto
- Division of Oral Anatomy and Histology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong SAR, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Laboratory Block, Rm. L4-49, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
47
|
Schwab K, Coronel L, Riege K, Sacramento EK, Rahnis N, Häckes D, Cirri E, Groth M, Hoffmann S, Fischer M. Multi-omics analysis identifies RFX7 targets involved in tumor suppression and neuronal processes. Cell Death Discov 2023; 9:80. [PMID: 36864036 PMCID: PMC9981735 DOI: 10.1038/s41420-023-01378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Recurrently mutated in lymphoid neoplasms, the transcription factor RFX7 is emerging as a tumor suppressor. Previous reports suggested that RFX7 may also have a role in neurological and metabolic disorders. We recently reported that RFX7 responds to p53 signaling and cellular stress. Furthermore, we found RFX7 target genes to be dysregulated in numerous cancer types also beyond the hematological system. However, our understanding of RFX7's target gene network and its role in health and disease remains limited. Here, we generated RFX7 knock-out cells and employed a multi-omics approach integrating transcriptome, cistrome, and proteome data to obtain a more comprehensive picture of RFX7 targets. We identify novel target genes linked to RFX7's tumor suppressor function and underscoring its potential role in neurological disorders. Importantly, our data reveal RFX7 as a mechanistic link that enables the activation of these genes in response to p53 signaling.
Collapse
Affiliation(s)
- Katjana Schwab
- grid.418245.e0000 0000 9999 5706Computational Biology Group, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Luis Coronel
- grid.418245.e0000 0000 9999 5706Computational Biology Group, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Konstantin Riege
- grid.418245.e0000 0000 9999 5706Computational Biology Group, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Erika K. Sacramento
- grid.418245.e0000 0000 9999 5706Core Facility for Proteomics, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Norman Rahnis
- grid.418245.e0000 0000 9999 5706Core Facility for Proteomics, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - David Häckes
- grid.418245.e0000 0000 9999 5706Computational Biology Group, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Emilio Cirri
- grid.418245.e0000 0000 9999 5706Core Facility for Proteomics, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Marco Groth
- grid.418245.e0000 0000 9999 5706Core Facility for Next-Generation Sequencing, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Steve Hoffmann
- grid.418245.e0000 0000 9999 5706Computational Biology Group, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany.
| |
Collapse
|
48
|
Puglisi-Allegra S, Lazzeri G, Busceti CL, Giorgi FS, Biagioni F, Fornai F. Lithium engages autophagy for neuroprotection and neuroplasticity: translational evidence for therapy. Neurosci Biobehav Rev 2023; 148:105148. [PMID: 36996994 DOI: 10.1016/j.neubiorev.2023.105148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
Here an overview is provided on therapeutic/neuroprotective effects of Lithium (Li+) in neurodegenerative and psychiatric disorders focusing on the conspicuous action of Li+ through autophagy. The effects on the autophagy machinery remain the key molecular mechanisms to explain the protective effects of Li+ for neurodegenerative diseases, offering potential therapeutic strategies for the treatment of neuropsychiatric disorders and emphasizes a crossroad linking autophagy, neurodegenerative disorders, and mood stabilization. Sensitization by psychostimulants points to several mechanisms involved in psychopathology, most also crucial in neurodegenerative disorders. Evidence shows the involvement of autophagy and metabotropic Glutamate receptors-5 (mGluR5) in neurodegeneration due to methamphetamine neurotoxicity as well as in neuroprotection, both in vitro and in vivo models. More recently, Li+ was shown to modulate autophagy through its action on mGluR5, thus pointing to an additional way of autophagy engagement by Li+ and to a substantial role of mGluR5 in neuroprotection related to neural e neuropsychiatry diseases. We propose Li+ engagement of autophagy through the canonical mechanisms of autophagy machinery and through the intermediary of mGluR5.
Collapse
|
49
|
Cambiaghi M, Cordaro M, Dossena S, Cuzzocrea S, Buffelli M. Editorial: Non-invasive brain stimulation techniques in neurological and neuropsychiatric disorders: Physiological and molecular evidence. Front Syst Neurosci 2023; 17:1128205. [PMID: 36814991 PMCID: PMC9939818 DOI: 10.3389/fnsys.2023.1128205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Affiliation(s)
- Marco Cambiaghi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy,*Correspondence: Marco Cambiaghi ✉
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mario Buffelli
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
50
|
Costello H, Roiser JP, Howard R. Antidepressant medications in dementia: evidence and potential mechanisms of treatment-resistance. Psychol Med 2023; 53:654-667. [PMID: 36621964 PMCID: PMC9976038 DOI: 10.1017/s003329172200397x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/13/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023]
Abstract
Depression in dementia is common, disabling and causes significant distress to patients and carers. Despite widespread use of antidepressants for depression in dementia, there is no evidence of therapeutic efficacy, and their use is potentially harmful in this patient group. Depression in dementia has poor outcomes and effective treatments are urgently needed. Understanding why antidepressants are ineffective in depression in dementia could provide insight into their mechanism of action and aid identification of new therapeutic targets. In this review we discuss why depression in dementia may be a distinct entity, current theories of how antidepressants work and how these mechanisms of action may be affected by disease processes in dementia. We also consider why clinicians continue to prescribe antidepressants in dementia, and novel approaches to understand and identify effective treatments for patients living with depression and dementia.
Collapse
Affiliation(s)
- Harry Costello
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Jonathan P. Roiser
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK
| |
Collapse
|