1
|
Dong X, Xu J, Du K, Chen X, Shu H, Yu S. Plateau hypoxia-induced upregulation of reticulon 4 pathway mediates altered autophagic flux involved in blood-brain barrier disruption after traumatic brain injury. Neuroreport 2025; 36:81-92. [PMID: 39661527 DOI: 10.1097/wnr.0000000000002122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
This study aimed to examine reticulon 4 (RTN4), neurite outgrowth inhibitor protein expression that changes in high-altitude traumatic brain injury (HA-TBI) and affects on blood-brain barrier's (BBB) function. C57BL/6J 6-8-week-old male mice were used for TBI model induction and randomized into the normal altitude group and the 5000-m high-altitude (HA) group, each group was divided into control (C) and 8h/12h/24h/48h-TBI according to different times post-TBI. Brain water content (BWC) and modified Neurological Severity Score were measured, RTN4 and autophagy-related indexes (Beclin1, LC3B, and SQSTM1/p62) were detected by western blot, immunofluorescence technique, and PCR in peri-injury cortical tissues. The expression of NgR1, Lingo-1, TROY, P75, PirB, S1PR2, and RhoA receptors' downstream of RTN4 was detected by PCR. HA-TBI caused increased neurological deficits including motor, sensory, balance and reflex deficits, increased BWC, earlier peak RTN4 expression and a longer duration of high expression in peri-injury cortical tissues, and enhanced levels of Beclin1, LC3B, and SQSTM1/p62 to varying degrees. Concurrently, the transcription of S1PR2 and PirB, the main signaling molecules downstream of RTN4, was significantly increased. In HA-TBI's early stages, the increased RTN4 may regulate enhanced autophagic initiation and impaired autolysosome degradation in vascular endothelial cells via S1PR2 receptor activation, thereby reducing BBB function. This suggests that autophagy could be a new target using RTN4 intervention as a clinical HA-TBI mechanism.
Collapse
Affiliation(s)
- Xinning Dong
- College of Medicine, Southwest Jiaotong University
- Department of Neurosurgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Jing Xu
- College of Medicine, Southwest Jiaotong University
- Department of Neurosurgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Kejun Du
- College of Medicine, Southwest Jiaotong University
- Department of Neurosurgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xin Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Haifeng Shu
- Department of Neurosurgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Sixun Yu
- Department of Neurosurgery, Affiliated Hospital of Southwest Jiaotong University, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Rorex C, Cardona SM, Church KA, Rodriguez D, Vanegas D, Saldivar RA, El-Sheikh A, Wang Y, Gyoneva S, Cotleur AC, Cardona AE. CX3CR1-Fractalkine Dysregulation Affects Retinal GFAP Expression, Inflammatory Gene Induction, and LPS Response in a Mouse Model of Hypoxic Retinopathy. Int J Mol Sci 2025; 26:1131. [PMID: 39940901 PMCID: PMC11817233 DOI: 10.3390/ijms26031131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Diabetic retinopathy (DR) causes vision loss due to sustained inflammation and vascular damage. The vascular damage is evident by fibrinogen leakage, angiogenesis, and hypoxia. Neuronal regulation of microglia via the CX3CL1 (Fractalkine or FKN)-CX3CR1 pathway plays a significant role in retinal pathology. Defects in FKN or CX3CR1 exacerbate inflammation, vascular damage, and vision impairment. However, the contribution of hypoxic astrocytes to the pathological process of DR is unclear. A hypoxic model (7 days of systemic 7.5% O2) was utilized to induce retinal damage in adult mice in the absence of systemic inflammatory signals. This model induced vascular and microglial responses similar to 10 weeks of STZ-induced hyperglycemia. The goal of this study is to characterize retinal damage in WT and mice with defects in the FKN-CX3CR1 signaling axis and hence assess the impact of the microglial inflammatory responses to hypoxic retinopathy. Tissues were analyzed by immunostaining, RNA sequencing, and cytokine quantification. We found that CX3CR1 deficiency in hypoxic animals induced reactive astrogliosis and that Müller glial responses to hypoxia and systemic inflammation were dependent on FKN signaling. Exacerbated microglial reactivity to hypoxic conditions significantly altered the expression of HIF transcripts. Microglial dysregulation was found to reduce the anti-inflammatory response to hypoxic conditions, downregulate hypoxia-responsive gene expression, and restrained LPS-induced inflammatory responses. We found that microglia dysregulation alters the hypoxic response by inhibiting the upregulation of HIF2α/3α, increasing CD31 immunoreactivity, and altering the expression of ECM-associated transcripts such as type I, III, and XVIII collagens to hypoxic conditions.
Collapse
Affiliation(s)
- Colin Rorex
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Sandra M. Cardona
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Kaira A. Church
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Derek Rodriguez
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Difernando Vanegas
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Reina A. Saldivar
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Amira El-Sheikh
- Natural and Physical Science, Northwest Vista College, San Antonio, TX 78251, USA
| | - Yufeng Wang
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | - Astrid E. Cardona
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
3
|
Timofeeva AV, Akhmetzyanova ER, Rizvanov AA, Mukhamedshina YO. Interaction of microglia with the microenvironment in spinal cord injury. Neuroscience 2025; 565:594-603. [PMID: 39622381 DOI: 10.1016/j.neuroscience.2024.11.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
This article discusses the peculiarities of microglia behaviour and their interaction with other cells of the central nervous system (CNS) during neural tissue injury with a focus on spinal cord injury (SCI). Taking into account the plasticity of microglia, the influence of the microenvironment should be taken into account to establish the mechanisms determining the polarization pathways of these cells. Determination of the system of microglia interactions with other CNS cells during injury will reveal the patterns of post-traumatic microglia responses, in particular, determining both pro-inflammatory and anti-inflammatory responses. This review compiles information on changes in microglia activation, migration and phagocytosis, as well as their reciprocal effects on other CNS cells, such as neurons, astrocytes and oligodendrocytes, in the background of SCI. The information contained in this article may be of interest not only to scientists studying traumatic injuries of the central nervous system, but also to specialists in the field of studying and treating neurodegenerative diseases, since the mechanisms occurring in the injured spinal cord may also be characteristic of pathological events in degenerative processes.
Collapse
Affiliation(s)
- A V Timofeeva
- Kazan (Volga Region) Federal University, Kazan, Russia
| | | | - A A Rizvanov
- Kazan (Volga Region) Federal University, Kazan, Russia; Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Russia
| | - Y O Mukhamedshina
- Kazan (Volga Region) Federal University, Kazan, Russia; Kazan State Medical University, Kazan, Russia
| |
Collapse
|
4
|
Zhang Q, Wang Q, Jin F, Huang D, Ji X, Wang Y. Intermittent hypoxia training improves cerebral blood flow without cognitive impairment. Ann Clin Transl Neurol 2025; 12:86-96. [PMID: 39543930 PMCID: PMC11752099 DOI: 10.1002/acn3.52248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/26/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024] Open
Abstract
OBJECTIVE Brief exposure to intermittent hypoxia has been shown to potentially induce protective effects in the body. Animal studies suggest that intermittent hypoxia could increase cerebral blood flow and confer resistance to subsequent hypoxic-ischemic injury, yet clinical investigations are limited. This study aimed to evaluate the impact of a moderate short-term intermittent hypoxia protocol on cerebral blood flow and cognitive performance. METHODS Subjects who met the inclusion criteria were recruited to this study and randomized into the intermittent hypoxia group or the control group, which receives intermittent hypoxia training and sham-intermittent hypoxia training, respectively. Cerebral hemodynamics, cognitive performance, cerebral perfusion pressure, and oxygen saturation were assessed before and after the intervention. RESULTS A total of 100 healthy participants were included in this study. Compared to the control group, the intermittent hypoxia group exhibited higher peak systolic blood flow velocity (108.64 ± 22.53 vs. 100.21 ± 19.06, p = 0.049) and cerebrovascular conduction index (0.74 ± 0.17 vs. 0.66 ± 0.21, p = 0.027), and lower cerebrovascular resistance index (1.41 ± 0.29 vs. 1.54 ± 0.36, p = 0.044) following intermittent hypoxia training. Additionally, within-group comparisons revealed that intermittent hypoxia training led to increased cerebral blood flow velocity, elevated cerebrovascular conductance index, and decreased cerebrovascular resistance index (p < 0.05). Other indicators including cognitive function, cerebral perfusion pressure, and oxygen saturation did not exhibit significant differences between groups. INTERPRETATION These findings revealed that intermittent hypoxia may represent a safe and effective strategy for improving cerebral blood flow.
Collapse
Affiliation(s)
- Qihan Zhang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Qing Wang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Feiyang Jin
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Dan Huang
- Development Coordination OfficeBeijing Xiaotangshan HospitalBeijingChina
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yuan Wang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Sapkota A, Halder SK, Milner R. Blood-brain barrier disruption and microglial activation during hypoxia and post-hypoxic recovery in aged mice. Brain Commun 2024; 7:fcae456. [PMID: 39737467 PMCID: PMC11683835 DOI: 10.1093/braincomms/fcae456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/30/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025] Open
Abstract
Hypoxia triggers blood-brain barrier disruption and a strong microglial activation response around leaky cerebral blood vessels. These events are greatly amplified in aged mice which is translationally relevant because aged patients are far more likely to suffer hypoxic events from heart or lung disease, and because of the pathogenic role of blood-brain barrier breakdown in vascular dementia. Importantly, it is currently unclear if disrupted cerebral blood vessels spontaneously repair and if they do, whether surrounding microglia deactivates. In this study, we addressed these questions by exposing aged (20 months old) mice to chronic mild hypoxia (8% O2) for 7 days and then returned them to normoxic conditions for 7 or 14 days, before evaluating blood-brain barrier disruption and microglial activation at the different timepoints. Seven days chronic mild hypoxia triggered marked blood-brain barrier disruption, as measured by extravascular leak of fibrinogen and red blood cells, which led to enhanced microglial activation, as measured by Mac-1 and CD68 levels. Interestingly, while return to normoxia promoted spontaneous repair of damaged blood vessels, the surrounding microglia remained persistently activated and were slow to deactivate. Chronic mild hypoxia also triggered neuronal loss that resulted in irreversible cognitive decline as measured by the novel object recognition test. Taken together, these findings describe an important disconnect between vascular repair and microglial deactivation in aged mice, which likely contributes to prolonged neuroinflammation. As hypoxia occurs in many age-related conditions, our data have important implications for the pathogenic role of hypoxia in the induction and progression of vascular dementia.
Collapse
Affiliation(s)
- Arjun Sapkota
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Sebok K Halder
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| |
Collapse
|
6
|
Hatch K, Lischka F, Wang M, Xu X, Stimpson CD, Barvir T, Cramer NP, Perl DP, Yu G, Browne CA, Dickstein DL, Galdzicki Z. The role of microglia in neuronal and cognitive function during high altitude acclimatization. Sci Rep 2024; 14:18981. [PMID: 39152179 PMCID: PMC11329659 DOI: 10.1038/s41598-024-69694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Due to their interactions with the neurovasculature, microglia are implicated in maladaptive responses to hypobaric hypoxia at high altitude (HA). To explore these interactions at HA, pharmacological depletion of microglia with the colony-stimulating factor-1 receptor inhibitor, PLX5622, was employed in male C57BL/6J mice maintained at HA or sea level (SL) for 3-weeks, followed by assessment of ex-vivo hippocampal long-term potentiation (LTP), fear memory recall and microglial dynamics/physiology. Our findings revealed that microglia depletion decreased LTP and reduced glucose levels by 25% at SL but did not affect fear memory recall. At HA, the absence of microglia did not significantly alter HA associated deficits in fear memory or HA mediated decreases in peripheral glucose levels. In regard to microglial dynamics in the cortex, HA enhanced microglial surveillance activity, ablation of microglia resulted in increased chemotactic responses and decreased microglia tip proliferation during ball formation. In contrast, vessel ablation increased cortical microglia tip path tortuosity. In the hippocampus, changes in microglial dynamics were only observed in response to vessel ablation following HA. As the hippocampus is critical for learning and memory, poor hippocampal microglial context-dependent adaptation may be responsible for some of the enduring neurological deficits associated with HA.
Collapse
Affiliation(s)
- Kathleen Hatch
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Fritz Lischka
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Mengfan Wang
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA
| | - Xiufen Xu
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Cheryl D Stimpson
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Tara Barvir
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Nathan P Cramer
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Daniel P Perl
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Guoqiang Yu
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA
| | - Caroline A Browne
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Dara L Dickstein
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Zygmunt Galdzicki
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
7
|
Liu G, Wang Q, Tian L, Wang M, Duo D, Duan Y, Lin Y, Han J, Jia Q, Zhu J, Li X. Blood-Brain Barrier Permeability is Affected by Changes in Tight Junction Protein Expression at High-Altitude Hypoxic Conditions-this may have Implications for Brain Drug Transport. AAPS J 2024; 26:90. [PMID: 39107477 DOI: 10.1208/s12248-024-00957-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/04/2024] [Indexed: 09/14/2024] Open
Abstract
Changes to blood-brain barrier structure and function may affect the delivery of drugs into the brain. It is worthwhile to exploring more study on how the blood-brain barrier changes in structure and function and how that affects drug transport in high-altitude hypoxic environment. The DIA high-throughput sequencing technique indicate that the rats blood-brain barrier has been identified to have 7252 proteins overall and 8 tight junction proteins, among which Claudin-7 was a plateau-specific tight junction protein under high-altitude hypoxia, and based on the interaction network study, 2421 proteins are found to interact with one another, with ZO-1 being the primary target. The results of the projected gene function analysis demonstrated that changes in tight junction proteins are related to the control of TRP channels by inflammatory mediators, the wnt signaling pathway, the ABC transporter system, and drug metabolism-CYP450 enzyme regulation. Additionally, the electron microscopy, the Evans blue combination with confocal laser scanning microscopy, and the Western Blot and RT-qPCR revealed that high-altitude hypoxic environment induces blood-brain barrier tight junctions to open, blood-brain barrier permeability increases, ZO-1, Occludin, Claudin-5 protein and mRNA expression decreased. Our research implies that structural and functional alterations in the blood-brain barrier induced by high altitude hypoxia may impact drug transport inside the central nervous system, and that drug transporters and drug-metabolizing enzymes may be key players in this process.
Collapse
Affiliation(s)
- Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Qian Wang
- College of Clinical Medicine, Qinghai University, Xining, China
| | - Lu Tian
- Medical College of Qinghai University, No.16 Kunlun Road, Xining, 810001, China
| | - Mengyue Wang
- Medical College of Qinghai University, No.16 Kunlun Road, Xining, 810001, China
| | - Delong Duo
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Yabin Duan
- Affiliated Hospital of Qinghai University, Xining, China
| | - Yue Lin
- Affiliated Hospital of Qinghai University, Xining, China
| | - Junjun Han
- Medical College of Qinghai University, No.16 Kunlun Road, Xining, 810001, China
| | - Qiangqiang Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, No. 256 Ningda Road, Xining, 810016, China
| | - Junbo Zhu
- Medical College of Qinghai University, No.16 Kunlun Road, Xining, 810001, China.
| | - Xiangyang Li
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China.
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, No. 256 Ningda Road, Xining, 810016, China.
| |
Collapse
|
8
|
Lau K, Kotzur R, Richter F. Blood-brain barrier alterations and their impact on Parkinson's disease pathogenesis and therapy. Transl Neurodegener 2024; 13:37. [PMID: 39075566 PMCID: PMC11285262 DOI: 10.1186/s40035-024-00430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024] Open
Abstract
There is increasing evidence for blood-brain barrier (BBB) alterations in Parkinson's disease (PD), the second most common neurodegenerative disorder with rapidly rising prevalence. Altered tight junction and transporter protein levels, accumulation of α-synuclein and increase in inflammatory processes lead to extravasation of blood molecules and vessel degeneration. This could result in a self-perpetuating pathophysiology of inflammation and BBB alteration, which contribute to neurodegeneration. Toxin exposure or α-synuclein over-expression in animal models has been shown to initiate similar pathologies, providing a platform to study underlying mechanisms and therapeutic interventions. Here we provide a comprehensive review of the current knowledge on BBB alterations in PD patients and how rodent models that replicate some of these changes can be used to study disease mechanisms. Specific challenges in assessing the BBB in patients and in healthy controls are discussed. Finally, a potential role of BBB alterations in disease pathogenesis and possible implications for therapy are explored. The interference of BBB alterations with current and novel therapeutic strategies requires more attention. Brain region-specific BBB alterations could also open up novel opportunities to target specifically vulnerable neuronal subpopulations.
Collapse
Affiliation(s)
- Kristina Lau
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Rebecca Kotzur
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
9
|
Wertman E. Essential New Complexity-Based Themes for Patient-Centered Diagnosis and Treatment of Dementia and Predementia in Older People: Multimorbidity and Multilevel Phenomenology. J Clin Med 2024; 13:4202. [PMID: 39064242 PMCID: PMC11277671 DOI: 10.3390/jcm13144202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Dementia is a highly prevalent condition with devastating clinical and socioeconomic sequela. It is expected to triple in prevalence by 2050. No treatment is currently known to be effective. Symptomatic late-onset dementia and predementia (SLODP) affects 95% of patients with the syndrome. In contrast to trials of pharmacological prevention, no treatment is suggested to remediate or cure these symptomatic patients. SLODP but not young onset dementia is intensely associated with multimorbidity (MUM), including brain-perturbating conditions (BPCs). Recent studies showed that MUM/BPCs have a major role in the pathogenesis of SLODP. Fortunately, most MUM/BPCs are medically treatable, and thus, their treatment may modify and improve SLODP, relieving suffering and reducing its clinical and socioeconomic threats. Regrettably, the complex system features of SLODP impede the diagnosis and treatment of the potentially remediable conditions (PRCs) associated with them, mainly due to failure of pattern recognition and a flawed diagnostic workup. We suggest incorporating two SLODP-specific conceptual themes into the diagnostic workup: MUM/BPC and multilevel phenomenological themes. By doing so, we were able to improve the diagnostic accuracy of SLODP components and optimize detecting and favorably treating PRCs. These revolutionary concepts and their implications for remediability and other parameters are discussed in the paper.
Collapse
Affiliation(s)
- Eli Wertman
- Department of Neurology, Hadassah University Hospital, The Hebrew University, Jerusalem 9190500, Israel;
- Section of Neuropsychology, Department of Psychology, The Hebrew University, Jerusalem 9190500, Israel
- Or’ad: Organization for Cognitive and Behavioral Changes in the Elderly, Jerusalem 9458118, Israel
- Merhav Neuropsychogeriatric Clinics, Nehalim 4995000, Israel
| |
Collapse
|
10
|
Kapoor A, Dutt S, Alitin JPM, Sible IJ, Marshall A, Shenasa F, Engstrom AC, Gaubert A, Shao X, Bradford DR, Rodgers K, Mather M, Wang DJJ, Nation DA. Older adults with reduced cerebrovascular reactivity exhibit high white matter hyperintensity burden. Neurobiol Aging 2024; 139:5-10. [PMID: 38579393 DOI: 10.1016/j.neurobiolaging.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
Cerebrovascular reactivity (CVR) deficits may contribute to small vessel disease, such as white matter hyperintensities (WMH). Moreover, apolipoprotein-e4 (APOE4) carriers at genetic risk for Alzheimer's disease exhibit cerebrovascular dysfunction relative to non-carriers. We examined whether older adults, and APOE4 carriers specifically, with diminished CVR would exhibit higher WMH burden. Independently living older adults (N = 125, mean age = 69.2 years; SD = 7.6; 31.2% male) free of dementia or clinical stroke underwent brain MRI to quantify cerebral perfusion during CVR to hypercapnia and hypocapnia and determine WMH volume. Adjusting for age, sex and intracranial volume, hierarchical regression analysis revealed a significant association between whole brain CVR to hypercapnia and WMH overall [B = -.02, 95% CI (-.04, -.008), p =.003] and in APOE4 carriers [B = -.03, 95% CI (-.06, -.009), p =.009]. Findings suggest deficits in cerebral vasodilatory capacity are associated with WMH burden in older adults and future studies are warranted to further delineate the effect of APOE4 on precipitating WMH.
Collapse
Affiliation(s)
- Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - John Paul M Alitin
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Isabel J Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Anisa Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Fatemah Shenasa
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Allison C Engstrom
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Aimée Gaubert
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Xingfeng Shao
- Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - David Robert Bradford
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Kathleen Rodgers
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Mara Mather
- University of Southern California Leonard Davis School of Gerontology, USA
| | - Danny J J Wang
- Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Daniel A Nation
- University of Southern California Leonard Davis School of Gerontology, USA; Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California Keck School of Medicine, USA.
| |
Collapse
|
11
|
Hou Y, Fan F, Xie N, Zhang Y, Wang X, Meng X. Rhodiola crenulata alleviates hypobaric hypoxia-induced brain injury by maintaining BBB integrity and balancing energy metabolism dysfunction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155529. [PMID: 38503156 DOI: 10.1016/j.phymed.2024.155529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/25/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND/PURPOSE Rhodiola crenulata (Hook. f. et Thoms.) H. Ohba (R. crenulate), a famous and characteristic Tibetan medicine, has been demonstrated to exert an outstanding brain protection role in the treatment of high-altitude hypoxia disease. However, the metabolic effects of R. crenulate on high-altitude hypoxic brain injury (HHBI) are still incompletely understood. Herein, the anti-hypoxic effect and associated mechanisms of R. crenulate were explored through both in vivo and in vitro experiments. STUDY DESIGN/METHODS The mice model of HHBI was established using an animal hypobaric and hypoxic chamber. R. crenulate extract (RCE, 0.5, 1.0 and 2.0 g/kg) and salidroside (Sal, 25, 50 and 100 mg/kg) was given by gavage for 7 days. Pathological changes and neuronal apoptosis of mice hippocampus and cortex were evaluated using H&E and TUNEL staining, respectively. The effects of RCE and Sal on the permeability of blood brain barrier (BBB) were detected by Evans blue staining and NIR-II fluorescence imaging. Meanwhile, the ultrastructural BBB and cerebrovascular damages were observed using a transmission electron microscope (TEM). The levels of tight junction proteins Claudin-1, ZO-1 and occludin were detected by immunofluorescence. Additionally, the metabolites in mice serum and brain were determined using UHPLC-MS and MALDI-MSI analysis. The cell viability of Sal on hypoxic HT22 cells induced by CoCl2 was investigated by cell counting kit-8. The contents of LDH, MDA, SOD, GSH-PX and SDH were detected by using commercial biochemical kits. Meanwhile, intracellular ROS, Ca2+ and mitochondrial membrane potential were determined by corresponding specific labeled probes. The intracellular metabolites of HT22 cells were performed by the targeted metabolomics analysis of the Q300 kit. The cell apoptosis and necrosis were examined by YO-PRO-1/PI, Annexin V/PI and TUNEL staining. In addition, mitochondrial morphology was tested by Mito-tracker red with confocal microscopy and TEM. Real-time ATP production, oxygen consumption rate, and proton efflux rate were measured using a Seahorse analyzer. Subsequently, MCU, OPA1, p-Drp1ser616, p-AMPKα, p-AMPKβ and Sirt1 were determined by immunofluorescent and western blot analyses. RESULTS The results demonstrated that R. crenulate and Sal exert anti-hypoxic brain protection from inhibiting neuronal apoptosis, maintaining BBB integrity, increasing tight junction protein Claudin-1, ZO-1 and occludin and improving mitochondrial morphology and function. Mechanistically, R. crenulate and Sal alleviated HHBI by enhancing the tricarboxylic acid cycle to meet the demand of energy of brain. Additionally, experiments in vitro confirmed that Sal could ameliorate the apoptosis of HT22 cells, improve mitochondrial morphology and energy metabolism by enhancing mitochondrial respiration and glycolysis. Meanwhile, Sal-mediated MCU inhibited the activation of Drp1 and enhanced the expression of OPA1 to maintain mitochondrial homeostasis, as well as activation of AMPK and Sirt1 to enhance ATP production. CONCLUSION Collectively, the findings suggested that RCE and Sal may afford a protective intervention in HHBI through maintaining BBB integrity and improving energy metabolism via balancing MCU-mediated mitochondrial homeostasis by activating the AMPK/Sirt1 signaling pathway.
Collapse
Affiliation(s)
- Ya Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Fuhan Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Na Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| |
Collapse
|
12
|
Rorex C, Cardona SM, Church KA, Rodriguez D, Vanegas D, Saldivar R, Faz B, Cardona AE. Astrogliosis in the GFAP-Cre ERT2:Rosa26 iDTR Mouse Model Does Not Exacerbate Retinal Microglia Activation or Müller Cell Gliosis under Hypoxic Conditions. Biomolecules 2024; 14:567. [PMID: 38785974 PMCID: PMC11117533 DOI: 10.3390/biom14050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Diabetic retinopathy (DR) affects over 140 million people globally. The mechanisms that lead to blindness are still enigmatic but there is evidence that sustained inflammation and hypoxia contribute to vascular damage. Despite efforts to understand the role of inflammation and microglia in DR's pathology, the contribution of astrocytes to hypoxic responses is less clear. To investigate the role of astrocytes in hypoxia-induced retinopathy, we utilized a 7-day systemic hypoxia model using the GFAP-CreERT2:Rosa26iDTR transgenic mouse line. This allows for the induction of inflammatory reactive astrogliosis following tamoxifen and diphtheria toxin administration. We hypothesize that DTx-induced astrogliosis is neuroprotective during hypoxia-induced retinopathy. Glial, neuronal, and vascular responses were quantified using immunostaining, with antibodies against GFAP, vimentin, IBA-1, NeuN, fibrinogen, and CD31. Cytokine responses were measured in both the brain and serum. We report that while both DTx and hypoxia induced a phenotype of reduced microglia morphological activation, DTx, but not hypoxia, induced an increase in the Müller glia marker vimentin. We did not observe that the combination of DTx and hypoxic treatments exacerbated the signs of reactive glial cells, nor did we observe a significant change in the expression immunomodulatory mediators IL-1β, IL2, IL-4, IL-5, IL-6, IL-10, IL-18, CCL17, TGF-β1, GM-CSF, TNF-α, and IFN-γ. Overall, our results suggest that, in this hypoxia model, reactive astrogliosis does not alter the inflammatory responses or cause vascular damage in the retina.
Collapse
Affiliation(s)
- Colin Rorex
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Sandra M. Cardona
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Kaira A. Church
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Derek Rodriguez
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
- Integrative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Difernando Vanegas
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Reina Saldivar
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
| | - Brianna Faz
- Integrative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Astrid E. Cardona
- Molecular Microbiology and Immunology, College of Sciences, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (C.R.)
- South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
13
|
Lénárt N, Cserép C, Császár E, Pósfai B, Dénes Á. Microglia-neuron-vascular interactions in ischemia. Glia 2024; 72:833-856. [PMID: 37964690 DOI: 10.1002/glia.24487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Cerebral ischemia is a devastating condition that results in impaired blood flow in the brain leading to acute brain injury. As the most common form of stroke, occlusion of cerebral arteries leads to a characteristic sequence of pathophysiological changes in the brain tissue. The mechanisms involved, and comorbidities that determine outcome after an ischemic event appear to be highly heterogeneous. On their own, the processes leading to neuronal injury in the absence of sufficient blood supply to meet the metabolic demand of the cells are complex and manifest at different temporal and spatial scales. While the contribution of non-neuronal cells to stroke pathophysiology is increasingly recognized, recent data show that microglia, the main immune cells of the central nervous system parenchyma, play previously unrecognized roles in basic physiological processes beyond their inflammatory functions, which markedly change during ischemic conditions. In this review, we aim to discuss some of the known microglia-neuron-vascular interactions assumed to contribute to the acute and delayed pathologies after cerebral ischemia. Because the mechanisms of neuronal injury have been extensively discussed in several excellent previous reviews, here we focus on some recently explored pathways that may directly or indirectly shape neuronal injury through microglia-related actions. These discoveries suggest that modulating gliovascular processes in different forms of stroke and other neurological disorders might have presently unexplored therapeutic potential in combination with neuroprotective and flow restoration strategies.
Collapse
Affiliation(s)
- Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Császár
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
14
|
Choi YK. Detrimental Roles of Hypoxia-Inducible Factor-1α in Severe Hypoxic Brain Diseases. Int J Mol Sci 2024; 25:4465. [PMID: 38674050 PMCID: PMC11050730 DOI: 10.3390/ijms25084465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Hypoxia stabilizes hypoxia-inducible factors (HIFs), facilitating adaptation to hypoxic conditions. Appropriate hypoxia is pivotal for neurovascular regeneration and immune cell mobilization. However, in central nervous system (CNS) injury, prolonged and severe hypoxia harms the brain by triggering neurovascular inflammation, oxidative stress, glial activation, vascular damage, mitochondrial dysfunction, and cell death. Diminished hypoxia in the brain improves cognitive function in individuals with CNS injuries. This review discusses the current evidence regarding the contribution of severe hypoxia to CNS injuries, with an emphasis on HIF-1α-mediated pathways. During severe hypoxia in the CNS, HIF-1α facilitates inflammasome formation, mitochondrial dysfunction, and cell death. This review presents the molecular mechanisms by which HIF-1α is involved in the pathogenesis of CNS injuries, such as stroke, traumatic brain injury, and Alzheimer's disease. Deciphering the molecular mechanisms of HIF-1α will contribute to the development of therapeutic strategies for severe hypoxic brain diseases.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
15
|
Florance I, Ramasubbu S. Regulation of genes involved in the metabolic adaptation of murine microglial cells in response to elevated HIF-1α mediated activation. Immunogenetics 2024; 76:93-108. [PMID: 38326657 DOI: 10.1007/s00251-024-01334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Microglia cells are activated in response to different stress signals. Several metabolic adaptations underlie microglia activation in the brain. Among these, in conditions like ischemic stroke and, hypoxic stress stimuli activate microglia cells. Hypoxic stress is mediated by HIF-1α. Although HIF-1α has been implicated in the alteration of metabolic pathways, changes in microglia lipid metabolism during M1 activation of microglia induced by elevated HIF-1α levels are yet to be understood. This can also merit interest in the development of novel targets to mitigate chronic inflammation. Our study aims to elucidate the transcriptional regulation of metabolic pathways in microglia cells during HIF-1α mediated activation. To study the adaptations in the metabolic pathways we induced microglia activation, by activating HIF-1α. Here, we show that microglia cells activated in response to elevated HIF-1α require ongoing lipogenesis and fatty acid breakdown. Notably, autophagy is activated during the initial stages of microglia activation. Inhibition of autophagy in activated microglia affects their viability and phagocytic activity. Collectively, our study expands the understanding of the molecular link between autophagy, lipid metabolism, and inflammation during HIF-1α mediated microglial activation that can lead to the development of promising strategies for controlling maladaptive activation states of microglia responsible for neuroinflammation. Together, our findings suggest that the role of HIF-1α in regulating metabolic pathways during hypoxia in microglia is beyond optimization of glucose utilization and distinctly regulates lipid metabolism during pro-inflammatory activation.
Collapse
Affiliation(s)
- Ida Florance
- Center for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Seenivasan Ramasubbu
- Center for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
16
|
Halder SK, Sapkota A, Milner R. β1 integrins play a critical role maintaining vascular integrity in the hypoxic spinal cord, particularly in white matter. Acta Neuropathol Commun 2024; 12:45. [PMID: 38509621 PMCID: PMC10953150 DOI: 10.1186/s40478-024-01749-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/24/2024] [Indexed: 03/22/2024] Open
Abstract
Interactions between extracellular matrix (ECM) proteins and β1 integrins play an essential role maintaining vascular integrity in the brain, particularly under vascular remodeling conditions. As blood vessels in the spinal cord are reported to have distinct properties from those in the brain, here we examined the impact of β1 integrin inhibition on spinal cord vascular integrity, both under normoxic conditions, when blood vessels are stable, and during exposure to chronic mild hypoxia (CMH), when extensive vascular remodeling occurs. We found that a function-blocking β1 integrin antibody triggered a small degree of vascular disruption in the spinal cord under normoxic conditions, but under hypoxic conditions, it greatly enhanced (20-fold) vascular disruption, preferentially in spinal cord white matter (WM). This resulted in elevated microglial activation as well as marked loss of myelin integrity and reduced density of oligodendroglial cells. To understand why vascular breakdown is localized to WM, we compared expression levels of major BBB components of WM and grey matter (GM) blood vessels, but this revealed no obvious differences. Interestingly however, hypoxyprobe staining demonstrated that the most severe levels of spinal cord hypoxia induced by CMH occurred in the WM. Analysis of brain tissue revealed a similar preferential vulnerability of WM tracts to show vascular disruption under these conditions. Taken together, these findings demonstrate an essential role for β1 integrins in maintaining vascular integrity in the spinal cord, and unexpectedly, reveal a novel and fundamental difference between WM and GM blood vessels in their dependence on β1 integrin function during hypoxic exposure. Our data support the concept that the preferential WM vulnerability described may be less a result of intrinsic differences in vascular barrier properties between WM and GM, and more a consequence of differences in vascular density and architecture.
Collapse
Affiliation(s)
- Sebok K Halder
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, 92121, San Diego, CA, USA
| | - Arjun Sapkota
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, 92121, San Diego, CA, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, 92121, San Diego, CA, USA.
| |
Collapse
|
17
|
Zhang S, Ji J, Gao S, Yang S, Song Z, Li J, Liu J. Association between SpO 2 and the risk of death in elderly T2DM patients with cerebral infarction: a retrospective cohort study. Front Neurol 2024; 15:1344000. [PMID: 38533418 PMCID: PMC10964770 DOI: 10.3389/fneur.2024.1344000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Objective This study aimed to evaluate the SpO2 (transcutaneous oxygen saturation) -mortality link in elderly T2DM (diabetes mellitus type 2) patients with cerebral infarction and identify their optimal SpO2 range. Methods In this investigation, we employed a comprehensive approach. Initially, we screened the MIMIC-IV database, identifying elderly T2DM patients with cerebral infarction, utilizing specific ICD-9 and ICD-10 codes. We then harnessed the power of restricted cubic splines to craft a visual representation of the correlation between SpO2 and 1-year mortality. To enhance our analysis, we harnessed Cox multivariate regression, allowing us to compute adjusted hazard ratios (HR) accompanied by 95% confidence intervals (CIs). Additionally, we crafted Cumulative Mortality Curve analyses, augmenting our study by engaging in rigorous subgroup analyses, stratifying our observations based on pertinent covariates. Results In this study, 448 elderly T2DM patients with cerebral infarction were included. Within 1-year post-discharge, 161 patients (35.94%) succumbed. Employing Restricted Cubic Spline analysis, a statistically significant U-shaped non-linear relationship between admission ICU SpO2 levels and 1-year mortality was observed (P-value < 0.05). Further analysis indicated that both low and high SpO2 levels increased the mortality risk. Cox multivariate regression analysis, adjusting for potential confounding factors, confirmed the association of low (≤94.5%) and high SpO2 levels (96.5-98.5%) with elevated 1-year mortality risk, particularly notably high SpO2 levels (>98.5%) [HR = 2.06, 95% CI: 1.29-3.29, P-value = 0.002]. The cumulative mortality curves revealed the following SpO2 subgroups from high to low cumulative mortality at the 365th day: normal levels (94.5% < SpO2 ≤ 96.5%), low levels (SpO2 ≤ 94.5%), high levels (96.5% < SpO2 ≤ 98.5%), and notably high levels (>98.5%). Subgroup analysis demonstrated no significant interaction between SpO2 and grouping variables, including Sex, Age, Congestive heart failure, Temperature, and ICU length of stay (LOS-ICU; P-values for interaction were >0.05). Conclusions Striking an optimal balance is paramount, as fixating solely on lower SpO2 limits or neglecting high SpO2 levels may contribute to increased mortality rates. To mitigate mortality risk in elderly T2DM patients with cerebral infarction, we recommend maintaining SpO2 levels within the range of 94.5-96.5%.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Clinical Medicine, North China University of Science and Technology, Tangshan, China
| | - Jiaqi Ji
- College of Clinical Medicine, North China University of Science and Technology, Tangshan, China
| | - Siqi Gao
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Shu Yang
- College of Clinical Medicine, North China University of Science and Technology, Tangshan, China
| | - Zeyi Song
- College of Clinical Medicine, North China University of Science and Technology, Tangshan, China
| | - Jianmin Li
- College of Clinical Medicine, North China University of Science and Technology, Tangshan, China
| | - Junjie Liu
- College of Clinical Medicine, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
18
|
Denes A, Hansen CE, Oezorhan U, Figuerola S, de Vries HE, Sorokin L, Planas AM, Engelhardt B, Schwaninger M. Endothelial cells and macrophages as allies in the healthy and diseased brain. Acta Neuropathol 2024; 147:38. [PMID: 38347307 PMCID: PMC10861611 DOI: 10.1007/s00401-024-02695-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/15/2024]
Abstract
Diseases of the central nervous system (CNS) are often associated with vascular disturbances or inflammation and frequently both. Consequently, endothelial cells and macrophages are key cellular players that mediate pathology in many CNS diseases. Macrophages in the brain consist of the CNS-associated macrophages (CAMs) [also referred to as border-associated macrophages (BAMs)] and microglia, both of which are close neighbours or even form direct contacts with endothelial cells in microvessels. Recent progress has revealed that different macrophage populations in the CNS and a subset of brain endothelial cells are derived from the same erythromyeloid progenitor cells. Macrophages and endothelial cells share several common features in their life cycle-from invasion into the CNS early during embryonic development and proliferation in the CNS, to their demise. In adults, microglia and CAMs have been implicated in regulating the patency and diameter of vessels, blood flow, the tightness of the blood-brain barrier, the removal of vascular calcification, and the life-time of brain endothelial cells. Conversely, CNS endothelial cells may affect the polarization and activation state of myeloid populations. The molecular mechanisms governing the pas de deux of brain macrophages and endothelial cells are beginning to be deciphered and will be reviewed here.
Collapse
Affiliation(s)
- Adam Denes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Cathrin E Hansen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - Uemit Oezorhan
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Sara Figuerola
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomedicas de Barcelona (IIBB), Consejo Superior de Investigaciones Cientificas (CSIC), 08036, Barcelona, Spain
- Cerebrovascular Research Group, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Munster, Germany
- Cells-in-Motion Interfaculty Centre (CIMIC), University of Münster, Münster, Germany
| | - Anna M Planas
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomedicas de Barcelona (IIBB), Consejo Superior de Investigaciones Cientificas (CSIC), 08036, Barcelona, Spain
- Cerebrovascular Research Group, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | | | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.
- German Research Centre for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel, Germany.
| |
Collapse
|
19
|
Korkalainen H, Kainulainen S, Islind AS, Óskarsdóttir M, Strassberger C, Nikkonen S, Töyräs J, Kulkas A, Grote L, Hedner J, Sund R, Hrubos-Strom H, Saavedra JM, Ólafsdóttir KA, Ágústsson JS, Terrill PI, McNicholas WT, Arnardóttir ES, Leppänen T. Review and perspective on sleep-disordered breathing research and translation to clinics. Sleep Med Rev 2024; 73:101874. [PMID: 38091850 DOI: 10.1016/j.smrv.2023.101874] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/18/2023] [Accepted: 11/09/2023] [Indexed: 01/23/2024]
Abstract
Sleep-disordered breathing, ranging from habitual snoring to severe obstructive sleep apnea, is a prevalent public health issue. Despite rising interest in sleep and awareness of sleep disorders, sleep research and diagnostic practices still rely on outdated metrics and laborious methods reducing the diagnostic capacity and preventing timely diagnosis and treatment. Consequently, a significant portion of individuals affected by sleep-disordered breathing remain undiagnosed or are misdiagnosed. Taking advantage of state-of-the-art scientific, technological, and computational advances could be an effective way to optimize the diagnostic and treatment pathways. We discuss state-of-the-art multidisciplinary research, review the shortcomings in the current practices of SDB diagnosis and management in adult populations, and provide possible future directions. We critically review the opportunities for modern data analysis methods and machine learning to combine multimodal information, provide a perspective on the pitfalls of big data analysis, and discuss approaches for developing analysis strategies that overcome current limitations. We argue that large-scale and multidisciplinary collaborative efforts based on clinical, scientific, and technical knowledge and rigorous clinical validation and implementation of the outcomes in practice are needed to move the research of sleep-disordered breathing forward, thus increasing the quality of diagnostics and treatment.
Collapse
Affiliation(s)
- Henri Korkalainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
| | - Samu Kainulainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Anna Sigridur Islind
- Department of Computer Science, Reykjavik University, Reykjavik, Iceland; Reykjavik University Sleep Institute, Reykjavik University, Reykjavik, Iceland
| | - María Óskarsdóttir
- Department of Computer Science, Reykjavik University, Reykjavik, Iceland
| | - Christian Strassberger
- Centre for Sleep and Wake Disorders, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Sami Nikkonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Juha Töyräs
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Australia; Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Antti Kulkas
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Department of Clinical Neurophysiology, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Ludger Grote
- Centre for Sleep and Wake Disorders, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden; Sleep Disorders Centre, Pulmonary Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Hedner
- Centre for Sleep and Wake Disorders, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden; Sleep Disorders Centre, Pulmonary Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Reijo Sund
- School of Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Harald Hrubos-Strom
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Ear, Nose and Throat Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Jose M Saavedra
- Reykjavik University Sleep Institute, Reykjavik University, Reykjavik, Iceland; Physical Activity, Physical Education, Sport and Health (PAPESH) Research Group, Department of Sports Science, Reykjavik University, Reykjavik, Iceland
| | | | | | - Philip I Terrill
- School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Australia
| | - Walter T McNicholas
- School of Medicine, University College Dublin, and Department of Respiratory and Sleep Medicine, St Vincent's Hospital Group, Dublin Ireland
| | - Erna Sif Arnardóttir
- Reykjavik University Sleep Institute, Reykjavik University, Reykjavik, Iceland; Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Timo Leppänen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland; School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, Australia
| |
Collapse
|
20
|
Halder SK, Sapkota A, Milner R. The importance of laminin at the blood-brain barrier. Neural Regen Res 2023; 18:2557-2563. [PMID: 37449589 DOI: 10.4103/1673-5374.373677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The blood-brain barrier is a unique property of central nervous system blood vessels that protects sensitive central nervous system cells from potentially harmful blood components. The mechanistic basis of this barrier is found at multiple levels, including the adherens and tight junction proteins that tightly bind adjacent endothelial cells and the influence of neighboring pericytes, microglia, and astrocyte endfeet. In addition, extracellular matrix components of the vascular basement membrane play a critical role in establishing and maintaining blood-brain barrier integrity, not only by providing an adhesive substrate for blood-brain barrier cells to adhere to, but also by providing guidance cues that strongly influence vascular cell behavior. The extracellular matrix protein laminin is one of the most abundant components of the basement membrane, and several lines of evidence suggest that it plays a key role in directing blood-brain barrier behavior. In this review, we describe the basic structure of laminin and its receptors, the expression patterns of these molecules in central nervous system blood vessels and how they are altered in disease states, and most importantly, how genetic deletion of different laminin isoforms or their receptors reveals the contribution of these molecules to blood-brain barrier function and integrity. Finally, we discuss some of the important unanswered questions in the field and provide a "to-do" list of some of the critical outstanding experiments.
Collapse
Affiliation(s)
- Sebok K Halder
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Arjun Sapkota
- San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA, USA
| |
Collapse
|
21
|
Liu J, Zhao Z, Li J, Zhang Q, Wang Y, Zhang J. Association between transcutaneous oxygen saturation within 24 h of admission and mortality in critically ill patients with non-traumatic subarachnoid hemorrhage: a retrospective analysis of the MIMIC-IV database. Front Neurol 2023; 14:1292260. [PMID: 38053796 PMCID: PMC10694199 DOI: 10.3389/fneur.2023.1292260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
Background In critically ill patients, transcutaneous oxygen saturation (SpO2) upon admission is typically associated with in-hospital mortality. Nevertheless, the available information for patients with non-traumatic subarachnoid hemorrhage (SAH) is limited. In our study, our objective was to assess the correlation between SpO2 levels and mortality among patients diagnosed with severe SAH. Methods In this study, we extracted data from the Medical Information Marketplace in Intensive Care (MIMIC-IV) database, which comprises information on critically ill patients. By employing matching ICD-9 and ICD-10 codes, we identified 3,328 patients diagnosed with SAH. Every individual who was admitted to the intensive care unit (ICU) had their SpO2 data and various covariates, including age, sex, diagnosis, and duration of stay, recorded upon admission. Subsequently, the patients were categorized into three distinct groups according to their SpO2 levels: low (≤95%), moderate (95-98%), and high (≥98%). To investigate the association between percutaneous oxygen saturation and mortality in patients with severe SAH, logistic regression, and cubic spline models were utilized. The main outcomes of interest were 28- and 90-day mortality rates. Additionally, subgroup analyses were conducted to evaluate these correlations and assess the consistency of interactions. Results A cohort of 864 patients diagnosed with non-traumatic SAH was included in this study. The correlation between SpO2 and mortality displayed a U-shaped curve when utilizing a finite cubic spline function (non-linearity < 0.001), with the nadir in the probability of in-hospital death at 96%. Mortality at 28 and 90 days showed an inverse correlation with SpO2 < 96% (adjusted odds ratio [OR], 0.8; 95% confidence interval [CI], 0.67-0.95, and 0.76; 95% CI, 0.6-0.96). Conversely, there was a positive correlation between percutaneous oxygen saturation (SpO2) levels of ≥96% and mortality rates at both 28 and 90 days (adjusted OR, 1.17; 95% CI, 1.02-1.35 and 1.2; 95% CI, 1.05-1.39). Conclusion In patients with severe subarachnoid hemorrhage, the association between SpO2 and mortality at 28 and 90 days demonstrated a U-shaped pattern. When SpO2 levels were between 95 and 98%, both short- and long-term mortality rates were at their lowest. Patients with significant subarachnoid hemorrhage had a lower chance of survival when their SpO2 values were either high or low.
Collapse
Affiliation(s)
- Junjie Liu
- College of Clinical Medicine, North China University of Science and Technology, Tangshan, China
| | - Zongxu Zhao
- College of Stomatology, North China University of Science and Technology, Tangshan, China
| | - Jianmin Li
- Department of Neurosurgical Intensive Care Unit, The Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Qiuhua Zhang
- College of Clinical Medicine, North China University of Science and Technology, Tangshan, China
| | - Yichao Wang
- College of Clinical Medicine, North China University of Science and Technology, Tangshan, China
| | - Junwei Zhang
- Department of Neurosurgical Intensive Care Unit, The Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
22
|
Lau K, Porschen LT, Richter F, Gericke B. Microvascular blood-brain barrier alterations in isolated brain capillaries of mice over-expressing alpha-synuclein (Thy1-aSyn line 61). Neurobiol Dis 2023; 187:106298. [PMID: 37716515 DOI: 10.1016/j.nbd.2023.106298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/22/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
Dysfunction of the blood-brain barrier (BBB) is suggested to play a critical role in the pathological mechanisms of Parkinson's disease (PD). PD-related pathology such as alpha-synuclein accumulation and inflammatory processes potentially affect the integrity of the BBB early in disease progression, which in turn may alter the crosstalk of the central and peripheral immune response. Importantly, BBB dysfunction could also affect drug response in PD. Here we analyzed microvascular changes in isolated brain capillaries and brain sections on a cellular and molecular level during disease progression in an established PD mouse model that overexpresses human wild-type alpha-synuclein (Thy1-aSyn, line 61). BBB alterations observed in Thy1-aSyn mice included reduced vessel density, reduced aquaporin-4 coverage, reduced P-glycoprotein expression, increased low-density lipoprotein receptor-related protein 1 expression, increased pS129-alpha-synuclein deposition, and increased adhesion protein and matrix metalloprotease expression together with alterations in tight junction proteins. Striatal capillaries presented with more dysregulated BBB integrity markers compared to cortical capillaries. These alterations of BBB integrity lead, however, not to an overt IgG leakage in brain parenchyma. Our data reveals intricate alterations in key proteins of BBB function together with histological evidence for altered structure of the brain vasculature. Thy1-aSyn mice represent a useful model to investigate therapeutic targeting of BBB alterations in synucleinopathies.
Collapse
Affiliation(s)
- Kristina Lau
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Lisa T Porschen
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Birthe Gericke
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
23
|
Guan Y, Gu Y, Shao H, Ma W, Li G, Guo M, Shao Q, Li Y, Liu Y, Wang C, Tian Z, Liu J, Ji X. Intermittent hypoxia protects against hypoxic-ischemic brain damage by inducing functional angiogenesis. J Cereb Blood Flow Metab 2023; 43:1656-1671. [PMID: 37395346 PMCID: PMC10581229 DOI: 10.1177/0271678x231185507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
Ischemic stroke (IS) induces neurological damage due to cerebrovascular occlusion. Restoring blood perfusion to the ischemic brain area in a timely fashion is the most effective treatment strategy. Hypoxia is an effective way of restoring blood perfusion by improving cerebrovascular microcirculation, while the effect varies greatly depending on hypoxic mode. This study aimed to screen for the optimal hypoxic mode to improve cerebrovascular microcirculation and prevent IS. Here, we found that compared with continuous hypoxia (CH), intermittent hypoxia (IH) significantly improved cerebral blood flow and oxygen saturation in mice without causing neurological impairment. By analyzing cerebrovascular microcirculation from mice, we found that the IH mode (13%, 5*10) with 13% O2, 5 min interval, and 10 cycles per day significantly improved the cerebrovascular microcirculation by promoting angiogenesis without affecting the integrity of the blood-brain barrier. In addition, IH (13%, 5*10) treatment of distal middle cerebral artery occlusion (dMCAO) mice significantly alleviated neurological dysfunction and reduced cerebral infarct volume by improving cerebrovascular microcirculation. CH had none of these positive effects. In summary, our study screened for an appropriate intermittent hypoxic mode that could improve cerebrovascular microcirculation, laying a theoretical foundation for the prevention and treatment of IS in clinical practice.
Collapse
Affiliation(s)
- Yuying Guan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yakun Gu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Haitao Shao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Wei Ma
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Gaifen Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mengyuan Guo
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Qianqian Shao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yuning Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yingxia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Chaoyu Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Zhengming Tian
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Kim HW, Yong H, Shea GKH. Blood-spinal cord barrier disruption in degenerative cervical myelopathy. Fluids Barriers CNS 2023; 20:68. [PMID: 37743487 PMCID: PMC10519090 DOI: 10.1186/s12987-023-00463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/12/2023] [Indexed: 09/26/2023] Open
Abstract
Degenerative cervical myelopathy (DCM) is the most prevalent cause of spinal cord dysfunction in the aging population. Significant neurological deficits may result from a delayed diagnosis as well as inadequate neurological recovery following surgical decompression. Here, we review the pathophysiology of DCM with an emphasis on how blood-spinal cord barrier (BSCB) disruption is a critical yet neglected pathological feature affecting prognosis. In patients suffering from DCM, compromise of the BSCB is evidenced by elevated cerebrospinal fluid (CSF) to serum protein ratios and abnormal contrast-enhancement upon magnetic resonance imaging (MRI). In animal model correlates, there is histological evidence of increased extravasation of tissue dyes and serum contents, and pathological changes to the neurovascular unit. BSCB dysfunction is the likely culprit for ischemia-reperfusion injury following surgical decompression, which can result in devastating neurological sequelae. As there are currently no therapeutic approaches specifically targeting BSCB reconstitution, we conclude the review by discussing potential interventions harnessed for this purpose.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hu Yong
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Graham Ka Hon Shea
- Department of Orthopaedics and Traumatology, LKS Faulty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
25
|
Kushwaha R, Li Y, Makarava N, Pandit NP, Molesworth K, Birukov KG, Baskakov IV. Reactive astrocytes associated with prion disease impair the blood brain barrier. Neurobiol Dis 2023; 185:106264. [PMID: 37597815 PMCID: PMC10494928 DOI: 10.1016/j.nbd.2023.106264] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Impairment of the blood-brain barrier (BBB) is considered to be a common feature among neurodegenerative diseases, including Alzheimer's, Parkinson's and prion diseases. In prion disease, increased BBB permeability was reported 40 years ago, yet the mechanisms behind the loss of BBB integrity have never been explored. Recently, we showed that reactive astrocytes associated with prion diseases are neurotoxic. The current work examines the potential link between astrocyte reactivity and BBB breakdown. RESULTS In prion-infected mice, the loss of BBB integrity and aberrant localization of aquaporin 4 (AQP4), a sign of retraction of astrocytic endfeet from blood vessels, were noticeable prior to disease onset. Gaps in cell-to-cell junctions along blood vessels, together with downregulation of Occludin, Claudin-5 and VE-cadherin, which constitute tight and adherens junctions, suggested that loss of BBB integrity is linked with degeneration of vascular endothelial cells. In contrast to cells isolated from non-infected adult mice, endothelial cells originating from prion-infected mice displayed disease-associated changes, including lower levels of Occludin, Claudin-5 and VE-cadherin expression, impaired tight and adherens junctions, and reduced trans-endothelial electrical resistance (TEER). Endothelial cells isolated from non-infected mice, when co-cultured with reactive astrocytes isolated from prion-infected animals or treated with media conditioned by the reactive astrocytes, developed the disease-associated phenotype observed in the endothelial cells from prion-infected mice. Reactive astrocytes were found to produce high levels of secreted IL-6, and treatment of endothelial monolayers originating from non-infected animals with recombinant IL-6 alone reduced their TEER. Remarkably, treatment with extracellular vesicles produced by normal astrocytes partially reversed the disease phenotype of endothelial cells isolated from prion-infected animals. CONCLUSIONS To our knowledge, the current work is the first to illustrate early BBB breakdown in prion disease and to document that reactive astrocytes associated with prion disease are detrimental to BBB integrity. Moreover, our findings suggest that the harmful effects are linked to proinflammatory factors secreted by reactive astrocytes.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Yue Li
- Lung Biology Research Program and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Narayan P Pandit
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Kara Molesworth
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Konstantin G Birukov
- Lung Biology Research Program and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America.
| |
Collapse
|
26
|
Halder SK, Milner R. Spinal Cord Blood Vessels in Aged Mice Show Greater Levels of Hypoxia-Induced Vascular Disruption and Microglial Activation. Int J Mol Sci 2023; 24:11235. [PMID: 37510999 PMCID: PMC10378993 DOI: 10.3390/ijms241411235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
In response to chronic mild hypoxia (CMH, 8% O2), spinal cord blood vessels launch a robust angiogenic response that is associated with transient disruption of the blood-spinal cord barrier (BSCB) which, in turn, triggers a microglial vasculo-protective response. Because hypoxia occurs in many age-related conditions, the goal of this study was to define how aging influences these responses by comparing events in young (8-10 weeks) and aged (20 months) mice. This revealed that aged mice had much greater (3-4-fold) levels of hypoxic-induced BSCB disruption than young mice and that, while the early stage of the angiogenic response in aged mice was no different to young mice, the maturation of newly formed vessels was significantly delayed. Interestingly, microglia in the spinal cords of aged mice were much more activated than young mice, even under normoxic conditions, and this was further enhanced by CMH, though, surprisingly, this resulted in reduced microglial clustering around leaky blood vessels and diminished vasculo-protection. Vascular disruption was associated with loss of myelin in spinal cord white matter (WM) in both young and aged mice. Furthermore, it was notable that the spinal cord of aged mice contained a lower density of Olig2+ oligodendroglial cells even under normoxic conditions and that CMH significantly reduced the density of Olig2+ cells in spinal cord WM of the aged, but not the young, mice. These results demonstrate that spinal cord blood vessels of aged mice are much more vulnerable to the damaging effects of hypoxia than young mice, in part due to the reduced vasculo-protection conferred by chronically activated microglial cells. These observations may have implications for the pathogenesis and/or treatment of spinal cord diseases such as amyotrophic lateral sclerosis (ALS) and suggest that an improvement in microglial function could offer therapeutic potential for treating these age-related conditions.
Collapse
Affiliation(s)
| | - Richard Milner
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA 92121, USA;
| |
Collapse
|
27
|
Halder SK, Delorme-Walker VD, Milner R. β1 integrin is essential for blood-brain barrier integrity under stable and vascular remodelling conditions; effects differ with age. Fluids Barriers CNS 2023; 20:52. [PMID: 37400852 DOI: 10.1186/s12987-023-00453-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Maintaining a tight blood-brain barrier (BBB) is an important prerequisite for the preservation of neurological health, though current evidence suggests it declines with age. While extracellular matrix-integrin interactions play critical roles in regulating the balance between vascular stability and remodeling, it remains to be established whether manipulation of integrin function weakens or strengthens vascular integrity. Indeed, recent reports have generated conflicting outcomes in this regard. METHODS Here, in young (8-10 weeks) and aged (20 months) mice, we examined the impact of intraperitoneal injection of a function-blocking β1 integrin antibody, both under normoxic conditions, when the BBB is stable, and during chronic mild hypoxic (CMH; 8% O2) conditions, when a vigorous vascular remodeling response is ongoing. Brain tissue was examined by immunofluorescence (IF) for markers of vascular remodeling and BBB disruption, and microglial activation and proliferation. Data were analyzed using one-way analysis of variance (ANOVA) followed by Tukey's multiple comparison post-hoc test. RESULTS In both young and aged mice, β1 integrin block greatly amplified hypoxia-induced vascular disruption, though it was much less under normoxic conditions. Interestingly, under both normoxic and hypoxic conditions, β1 integrin antibody-induced BBB disruption was greater in young mice. Enhanced BBB breakdown was associated with increased levels of the leaky BBB marker MECA-32 and with greater loss of endothelial tight junction proteins and the adherens protein VE-cadherin. Surprisingly, β1 integrin blockade did not reduce hypoxia-induced endothelial proliferation, nor did it prevent the hypoxia-associated increase in vascularity. Commensurate with the increased vascular disruption, β1 integrin blockade enhanced microglial activation both in young and aged brain, though the impact was much greater in young brain. In vitro studies revealed that β1 integrin blockade also reduced the integrity of a brain endothelial monolayer and triggered disruptions in tight junction proteins. CONCLUSIONS These data demonstrate that β1 integrin plays an essential role in maintaining BBB integrity, both under stable normoxic conditions and during hypoxia-induced vascular remodeling. As β1 integrin blockade had a greater disruptive effect in young brain, effectively shifting the BBB phenotype of young brain towards that of the aged, we speculate that enhancing β1 integrin function at the aged BBB may hold therapeutic potential by reverting the deteriorating BBB phenotype back towards that of the young.
Collapse
Affiliation(s)
- Sebok K Halder
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA, 92121, USA
| | - Violaine D Delorme-Walker
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA, 92121, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA, 92121, USA.
| |
Collapse
|
28
|
Bojic SC, Ladjevic NG, Stevanovic PD, Soldatovic IA. Could Olfactory Dysfunction Help Us Diagnose Acute Mountain Sickness? Wilderness Environ Med 2023; 34:120-121. [PMID: 36610918 DOI: 10.1016/j.wem.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Suzana C Bojic
- Faculty of Medicine, University of Belgrade, and Department of Anesthesiology and Intensive Care, CHC "Dr. Dragisa Misović - Dedinje", Belgrade, Serbia
| | - Nebojsa G Ladjevic
- Faculty of Medicine, University of Belgrade, and Department of Anesthesiology and Intensive Care, University Clinical Center of Serbia, Belgrade, Serbia
| | - Predrag D Stevanovic
- Faculty of Medicine, University of Belgrade, and Department of Anesthesiology and Intensive Care, CHC "Dr. Dragisa Misović - Dedinje", Belgrade, Serbia
| | - Ivan A Soldatovic
- Faculty of Medicine, University of Belgrade, and Institute of Medical Statistics and Informatics, Belgrade, Serbia
| |
Collapse
|
29
|
Cashion JM, Young KM, Sutherland BA. How does neurovascular unit dysfunction contribute to multiple sclerosis? Neurobiol Dis 2023; 178:106028. [PMID: 36736923 DOI: 10.1016/j.nbd.2023.106028] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system (CNS) and the most common non-traumatic cause of neurological disability in young adults. Multiple sclerosis clinical care has improved considerably due to the development of disease-modifying therapies that effectively modulate the peripheral immune response and reduce relapse frequency. However, current treatments do not prevent neurodegeneration and disease progression, and efforts to prevent multiple sclerosis will be hampered so long as the cause of this disease remains unknown. Risk factors for multiple sclerosis development or severity include vitamin D deficiency, cigarette smoking and youth obesity, which also impact vascular health. People with multiple sclerosis frequently experience blood-brain barrier breakdown, microbleeds, reduced cerebral blood flow and diminished neurovascular reactivity, and it is possible that these vascular pathologies are tied to multiple sclerosis development. The neurovascular unit is a cellular network that controls neuroinflammation, maintains blood-brain barrier integrity, and tightly regulates cerebral blood flow, matching energy supply to neuronal demand. The neurovascular unit is composed of vessel-associated cells such as endothelial cells, pericytes and astrocytes, however neuronal and other glial cell types also comprise the neurovascular niche. Recent single-cell transcriptomics data, indicate that neurovascular cells, particular cells of the microvasculature, are compromised within multiple sclerosis lesions. Large-scale genetic and small-scale cell biology studies also suggest that neurovascular dysfunction could be a primary pathology contributing to multiple sclerosis development. Herein we revisit multiple sclerosis risk factors and multiple sclerosis pathophysiology and highlight the known and potential roles of neurovascular unit dysfunction in multiple sclerosis development and disease progression. We also evaluate the suitability of the neurovascular unit as a potential target for future disease modifying therapies for multiple sclerosis.
Collapse
Affiliation(s)
- Jake M Cashion
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
30
|
Halder SK, Sapkota A, Milner R. Harnessing the vasculo-protective potential of microglia. Aging (Albany NY) 2023; 15:597-598. [PMID: 36734938 PMCID: PMC9970318 DOI: 10.18632/aging.204509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Affiliation(s)
- Sebok K Halder
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Arjun Sapkota
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| |
Collapse
|
31
|
Yin H, Yang R, Xin Y, Jiang T, Zhong D. In-hospital mortality and SpO2 incritical care patients with cerebral injury: data from the MIMIC‑IV Database. BMC Anesthesiol 2022; 22:386. [PMID: 36510130 PMCID: PMC9743499 DOI: 10.1186/s12871-022-01933-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Evidence regarding the relationship between in-hospital mortality and SpO2 was low oxygen saturations are often thought to be harmful, new research in patients with brain damage has found that high oxygen saturation actually enhances mortality. However, there is currently no clear study to point out the appropriate range for oxygen saturation in patients with craniocerebral diseases. METHODS: By screening all patients in the MIMIC IV database, 3823 patients with craniocerebral diseases (according to ICD-9 codes and ICD-10) were selected, and non-linear regression was used to analyze the relationship between in-hospital mortality and oxygen saturation. Covariates for all patients included age, weight, diagnosis, duration of ICU stay, duration of oxygen therapy, etc. RESULTS: In-hospital mortality in patients with TBI and SAH was kept to a minimum when oxygen saturation was in the 94-96 range. And in all patients, the relationship between oxygen saturation and in-hospital mortality was U-shaped. Subgroup analysis of the relationship between oxygen saturation and mortality in patients with metabolic encephalopathy and other encephalopathy also draws similar conclusions In-hospital mortality and oxygen saturation were all U-shaped in patients with subarachnoid hemorrhage, metabolic and toxic encephalopathy, cerebral infarction, and other encephalopathy, but the nonlinear regression was statistically significant only in patients with cerebral infarction (p for nonlinearity = 0.002). CONCLUSION Focusing too much on the lower limit of oxygen saturation and ignoring too high oxygen saturation can also lead to increase in-hospital mortality. For patients with TBI and SAH, maintaining oxygen saturation at 94-96% will minimize the in-hospital mortality of patients.
Collapse
Affiliation(s)
- Haoyang Yin
- grid.452206.70000 0004 1758 417XDepartment of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Yang
- grid.452206.70000 0004 1758 417XDepartment of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Xin
- grid.452206.70000 0004 1758 417XDepartment of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Jiang
- grid.452206.70000 0004 1758 417XDepartment of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong Zhong
- grid.452206.70000 0004 1758 417XDepartment of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
32
|
Medina-Rodriguez EM, Beurel E. Blood brain barrier and inflammation in depression. Neurobiol Dis 2022; 175:105926. [PMID: 36375722 PMCID: PMC10035601 DOI: 10.1016/j.nbd.2022.105926] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
The blood brain barrier (BBB) is a vital structure to protect the brain, tightly filtering the passage of nutrients and molecules from the blood to the brain. This is critical for maintaining the proper functioning of the brain, and any disruption in the BBB has detrimental consequences often leading to diseases. It is not clear whether disruption of the BBB occurs first in depression or is the consequence of the disease, however disruption of the BBB has been observed in depressed patients and evidence points to the role of important culprits in depression, stress and inflammation in disrupting the integrity of the BBB. The mechanisms whereby stress, and inflammation affect the BBB remain to be fully understood. Yet, the role of cytokines in regulating tight junction protein expression seems crucial. Altogether, the findings in depression suggest that acting at the BBB level might provide therapeutic benefit in depression.
Collapse
Affiliation(s)
- Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, United States of America
| | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, United States of America; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States of America.
| |
Collapse
|
33
|
Knopp RC, Banks WA, Erickson MA. Physical associations of microglia and the vascular blood-brain barrier and their importance in development, health, and disease. Curr Opin Neurobiol 2022; 77:102648. [PMID: 36347075 DOI: 10.1016/j.conb.2022.102648] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Brain endothelial cells (BEC) of the vascular blood-brain barrier (BBB) interact with many different cell types in the brain, including microglia, the brain's resident immune cells. Physical associations of microglia with the BBB and the importance of these interactions in health and disease are an emerging area of study and likely involved in neuroimmune communication. In this mini-review, we consider how microglia and the BBB are intrinsically linked in the developing brain, discuss possible mechanisms that attract microglia to the vasculature in healthy physiological conditions, and examine the known microglial-vascular associated changes in systemic infection and various disease states. Our findings shed light on the complexities of microglial-vascular interactions and highlight the contributions of microglia to the functions of the neurovascular unit.
Collapse
Affiliation(s)
- Rachel C Knopp
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA USA, 98108; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA USA, 98108; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Michelle A Erickson
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA USA, 98108; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
34
|
Halder SK, Milner R. Exaggerated hypoxic vascular breakdown in aged brain due to reduced microglial vasculo-protection. Aging Cell 2022; 21:e13720. [PMID: 36130175 PMCID: PMC9649604 DOI: 10.1111/acel.13720] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/04/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023] Open
Abstract
In a recent study of young mice, we showed that chronic mild hypoxia (CMH, 8% O2 ) triggers transient blood-brain barrier (BBB) disruption, and that microglia play an important vasculo-protective function in maintaining BBB integrity. As hypoxia is a common component of many age-related diseases, here we extended these studies to aged mice and found that hypoxia-induced vascular leak was greatly amplified (5-fold to 10-fold) in aged mice, being particularly high in the olfactory bulb and midbrain. While aged mice showed no obvious difference in the early stages of hypoxic angiogenic remodeling, the compensatory increase in vascularity and vessel maturation was significantly delayed. Compared with young brain, microglia in the normoxic aged brain were markedly activated, and this was further increased under hypoxic conditions, but paradoxically, this correlated with reduced vasculo-protection. Microglial depletion studies showed that microglial still play an important vasculo-protective role in aged brain, but interestingly, partial attenuation of microglial activation with minocycline resulted in fewer vascular leaks and reduced loss of endothelial tight junction proteins. Taken together, these findings suggest that increased BBB disruption in hypoxic aged mice can be explained both by a delayed vascular remodeling response and reduced microglial vasculo-protection. Importantly, they show that overly activated microglia in the aged brain are less effective at maintaining vascular integrity, though this can be improved by reducing microglial activation with minocycline, suggesting therapeutic potential for enhancing BBB integrity in the hypoxia-predisposed elderly population.
Collapse
Affiliation(s)
- Sebok K. Halder
- San Diego Biomedical Research InstituteSan DiegoCaliforniaUSA
| | - Richard Milner
- San Diego Biomedical Research InstituteSan DiegoCaliforniaUSA
| |
Collapse
|
35
|
Basova LV, Bortell N, Conti B, Fox HS, Milner R, Marcondes MCG. Age-associated changes in microglia activation and Sirtuin-1- chromatin binding patterns. Aging (Albany NY) 2022; 14:8205-8220. [PMID: 36227148 PMCID: PMC9648798 DOI: 10.18632/aging.204329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022]
Abstract
The aging process is associated with changes in mechanisms maintaining physiology, influenced by genetics and lifestyle, and impacting late life quality and longevity. Brain health is critical in healthy aging. Sirtuin 1 (Sirt1), a histone deacetylase with silencing properties, is one of the molecular determinants experimentally linked to health and longevity. We compared brain pathogenesis and Sirt1-chromatin binding dynamics in brain pre-frontal cortex from 2 groups of elder rhesus macaques, divided by age of necropsy: shorter-lived animals (18-20 years old (yo)), equivalent to 60-70 human yo; and longer-lived animals (23-29 yo), corresponding to 80-100 human yo and modeling successful aging. These were compared with young adult brains (4-7 yo). Our findings indicated drastic differences in the microglia marker Iba1, along with factors influencing Sirt1 levels and activity, such as CD38 (an enzyme limiting NAD that controls Sirt1 activity) and mir142 (a microRNA targeting Sirt1 transcription) between the elder groups. Iba1 was lower in shorter-lived animals than in the other groups, while CD38 was higher in both aging groups compared to young. mir142 and Sirt1 levels were inversely correlated in longer-lived brains (>23yo), but not in shorter-lived brains (18-20 yo). We also found that Sirt1 binding showed signs of better efficiency in longer-lived animals compared to shorter-lived ones, in genes associated with nuclear activity and senescence. Overall, differences in neuroinflammation and Sirt1 interactions with chromatin distinguished shorter- and longer-lived animals, suggesting the importance of preserving microglia and Sirt1 functional efficiency for longevity.
Collapse
Affiliation(s)
- Liana V. Basova
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | | | - Bruno Conti
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Howard S. Fox
- University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | | |
Collapse
|
36
|
Smith BC, Tinkey RA, Shaw BC, Williams JL. Targetability of the neurovascular unit in inflammatory diseases of the central nervous system. Immunol Rev 2022; 311:39-49. [PMID: 35909222 PMCID: PMC9489669 DOI: 10.1111/imr.13121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The blood-brain barrier (BBB) is a selectively permeable barrier separating the periphery from the central nervous system (CNS). The BBB restricts the flow of most material into and out of the CNS, including many drugs that could be used as potent therapies. BBB permeability is modulated by several cells that are collectively called the neurovascular unit (NVU). The NVU consists of specialized CNS endothelial cells (ECs), pericytes, astrocytes, microglia, and neurons. CNS ECs maintain a complex "seal" via tight junctions, forming the BBB; breakdown of these tight junctions leads to BBB disruption. Pericytes control the vascular flow within capillaries and help maintain the basal lamina. Astrocytes control much of the flow of material that has moved beyond the CNS EC layer and can form a secondary barrier under inflammatory conditions. Microglia survey the border of the NVU for noxious material. Neuronal activity also plays a role in the maintenance of the BBB. Since astrocytes, pericytes, microglia, and neurons are all able to modulate the permeability of the BBB, understating the complex contributions of each member of the NVU will potentially uncover novel and effective methods for delivery of neurotherapies to the CNS.
Collapse
Affiliation(s)
- Brandon C. Smith
- Department of NeurosciencesLerner Research Institute, Cleveland ClinicClevelandOhioUSA,Department of Biological, Geological, and Environmental SciencesCleveland State UniversityClevelandOhioUSA
| | - Rachel A. Tinkey
- Department of NeurosciencesLerner Research Institute, Cleveland ClinicClevelandOhioUSA,School of Biomedical SciencesKent State UniversityKentOhioUSA
| | - Benjamin C. Shaw
- Department of NeurosciencesLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Jessica L. Williams
- Department of NeurosciencesLerner Research Institute, Cleveland ClinicClevelandOhioUSA,Brain Health Research Institute, Kent State UniversityKentOhioUSA
| |
Collapse
|
37
|
Méndez-García LA, Escobedo G, Minguer-Uribe AG, Viurcos-Sanabria R, Aguayo-Guerrero JA, Carrillo-Ruiz JD, Solleiro-Villavicencio H. Role of the renin-angiotensin system in the development of COVID-19-associated neurological manifestations. Front Cell Neurosci 2022; 16:977039. [PMID: 36187294 PMCID: PMC9523599 DOI: 10.3389/fncel.2022.977039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2 causes COVID-19, which has claimed millions of lives. This virus can infect various cells and tissues, including the brain, for which numerous neurological symptoms have been reported, ranging from mild and non-life-threatening (e.g., headaches, anosmia, dysgeusia, and disorientation) to severe and life-threatening symptoms (e.g., meningitis, ischemic stroke, and cerebral thrombosis). The cellular receptor for SARS-CoV-2 is angiotensin-converting enzyme 2 (ACE2), an enzyme that belongs to the renin-angiotensin system (RAS). RAS is an endocrine system that has been classically associated with regulating blood pressure and fluid and electrolyte balance; however, it is also involved in promoting inflammation, proliferation, fibrogenesis, and lipogenesis. Two pathways constitute the RAS with counter-balancing effects, which is the key to its regulation. The first axis (classical) is composed of angiotensin-converting enzyme (ACE), angiotensin (Ang) II, and angiotensin type 1 receptor (AT1R) as the main effector, which -when activated- increases the production of aldosterone and antidiuretic hormone, sympathetic nervous system tone, blood pressure, vasoconstriction, fibrosis, inflammation, and reactive oxygen species (ROS) production. Both systemic and local classical RAS' within the brain are associated with cognitive impairment, cell death, and inflammation. The second axis (non-classical or alternative) includes ACE2, which converts Ang II to Ang-(1-7), a peptide molecule that activates Mas receptor (MasR) in charge of opposing Ang II/AT1R actions. Thus, the alternative RAS axis enhances cognition, synaptic remodeling, cell survival, cell signal transmission, and antioxidant/anti-inflammatory mechanisms in the brain. In a physiological state, both RAS axes remain balanced. However, some factors can dysregulate systemic and local RAS arms. The binding of SARS-CoV-2 to ACE2 causes the internalization and degradation of this enzyme, reducing its activity, and disrupting the balance of systemic and local RAS, which partially explain the appearance of some of the neurological symptoms associated with COVID-19. Therefore, this review aims to analyze the role of RAS in the development of the neurological effects due to SARS-CoV-2 infection. Moreover, we will discuss the RAS-molecular targets that could be used for therapeutic purposes to treat the short and long-term neurological COVID-19-related sequelae.
Collapse
Affiliation(s)
- Lucía A. Méndez-García
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga,”Mexico City, Mexico
| | - Galileo Escobedo
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga,”Mexico City, Mexico
| | - Alan Gerardo Minguer-Uribe
- Laboratory of Molecular Neuropathology, Cellular Physiology Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Rebeca Viurcos-Sanabria
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga,”Mexico City, Mexico
- PECEM, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - José A. Aguayo-Guerrero
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico “Dr. Eduardo Liceaga,”Mexico City, Mexico
| | - José Damián Carrillo-Ruiz
- Research Directorate, General Hospital of Mexico “Dr. Eduardo Liceaga,”Mexico City, Mexico
- Department of Neurology and Neurosurgery, General Hospital of Mexico “Dr. Eduardo Liceaga,”Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anáhuac, Huixquilucan, Mexico
| | | |
Collapse
|
38
|
Han Y, Miao W, Hao Z, An N, Yang Y, Zhang Z, Chen J, Storey KB, Lefai E, Chang H. The Protective Effects on Ischemia–Reperfusion Injury Mechanisms of the Thoracic Aorta in Daurian Ground Squirrels (Spermophilus dauricus) over the Torpor–Arousal Cycle of Hibernation. Int J Mol Sci 2022; 23:ijms231810248. [PMID: 36142152 PMCID: PMC9499360 DOI: 10.3390/ijms231810248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/28/2022] [Accepted: 09/04/2022] [Indexed: 11/25/2022] Open
Abstract
Hibernators are a natural model of vascular ischemia–reperfusion injury; however, the protective mechanisms involved in dealing with such an injury over the torpor–arousal cycle are unclear. The present study aimed to clarify the changes in the thoracic aorta and serum in summer-active (SA), late-torpor (LT) and interbout-arousal (IBA) Daurian ground squirrels (Spermophilus dauricus). The results show that total antioxidant capacity (TAC) was unchanged, but malondialdehyde (MDA), hydrogen peroxide (H2O2), interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) were significantly increased for the LT group, whereas the levels of superoxide dismutase (SOD) and interleukin-10 (IL-10) were significantly reduced in the LT group as compared with the SA group. Moreover, the levels of MDA and IL-1β were significantly reduced, whereas SOD and IL-10 were significantly increased in the IBA group as compared with the SA group. In addition, the lumen area of the thoracic aorta and the expression of the smooth muscle cells (SMCs) contractile marker protein 22α (SM22α) were significantly reduced, whereas the protein expression of the synthetic marker proteins osteopontin (OPN), vimentin (VIM) and proliferating cell nuclear antigen (PCNA) were significantly increased in the LT group as compared with the SA group. Furthermore, the smooth muscle layer of the thoracic aorta was significantly thickened, and PCNA protein expression was significantly reduced in the IBA group as compared with the SA group. The contractile marker proteins SM22α and synthetic marker protein VIM underwent significant localization changes in both LT and IBA groups, with localization of the contractile marker protein α-smooth muscle actin (αSMA) changing only in the IBA group as compared with the SA group. In tunica intima, the serum levels of heparin sulfate (HS) and syndecan-1 (Sy-1) in the LT group were significantly reduced, but the serum level of HS in the IBA group increased significantly as compared with the SA group. Protein expression and localization of endothelial nitric oxide synthase (eNOS) was unchanged in the three groups. In summary, the decrease in reactive oxygen species (ROS) and pro-inflammatory factors and increase in SOD and anti-inflammatory factors during the IBA period induced controlled phenotypic switching of thoracic aortic SMCs and restoration of endothelial permeability to resist ischemic and hypoxic injury during torpor of Daurian ground squirrels.
Collapse
Affiliation(s)
- Yuting Han
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Weilan Miao
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Ziwei Hao
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Ning An
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Yingyu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Ziwen Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Jiayu Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Etienne Lefai
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, UMR 1019, F-63000 Clermont-Ferrand, France
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, 229# North Taibai Road, Xi’an 710069, China
- Correspondence:
| |
Collapse
|
39
|
Ma K, Chen X, Zhao X, Chen S, Yang J. PLVAP is associated with glioma-associated malignant processes and immunosuppressive cell infiltration as a promising marker for prognosis. Heliyon 2022; 8:e10298. [PMID: 36033326 PMCID: PMC9404362 DOI: 10.1016/j.heliyon.2022.e10298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/25/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Previous reports have confirmed the significance of plasmalemma vesicle-associated protein (PLVAP) in the progression of multiple tumors; however, there are few studies examining its immune properties in the context of gliomas. Here, we methodically investigated the pathophysiological characteristics and clinical manifestations of gliomas. A total of 699 patients diagnosed with gliomas in the cancer genome atlas along with 325 glioma patients in the Chinese glioma genome atlas were collected for the training and validation sets. We analyzed and visualized the total statistics using RStudio. PLVAP was markedly upregulated among high grade gliomas, O6-methylguanine-DNA methyltransferase promoter unmethylated subforms, isocitrate dehydrogenase wild forms, 1p19q non-codeletion subforms, and mesenchyme type gliomas. The receiver operating characteristics analysis illustrated the favorable applicability of PLVAP in regard to estimating mesenchyme subform gliomas. Subsequent Kaplan–Meier curves together with multivariable Cox analyses upon survival identified high-expression PLVAP as a distinct prognostic variable for patients with gliomas. Gene ontology analysis of PLVAP among gliomas has documented the predominant role of this protein in glioma-associated immunobiological processes and also in inflammatory responses. We consequently examined the associations of PLVAP with immune-related meta-genes, and PLVAP was positively correlated with hematopoietic cell kinase, lymphocyte-specific protein tyrosine kinase, major histocompatibility complex (MHC) I, MHC II, signal transducer and activator of transcription 1, and interferon and was negatively correlated with immunoglobulin G. Moreover, association analyses between PLVAP and glioma-infiltrating immunocytes indicated that the infiltrating degrees of most immune cells exhibited positive correlations with PLVAP expression, particularly immunosuppressive subsets such as tumor-related macrophages, myeloid-derived suppressor cells, and regulatory T lymphocytes. In summary, we originally demonstrated that PLVAP is markedly associated with immunosuppressive immune cell infiltration degrees, unfavorable survival, and adverse pathology types among gliomas, thus identifying PLVAP as a practicable marker and a promising target for glioma-based precise diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Kaiming Ma
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Xin Chen
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| | - Xiaofang Zhao
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Suhua Chen
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China.,Center for Precision Neurosurgery and Oncology of Peking University Health Science Center, Beijing, China
| |
Collapse
|
40
|
Tran KA, Baldwin-Leclair A, DeOre BJ, Antisell M, Galie PA. Oxygen gradients dictate angiogenesis but not barriergenesis in a 3D brain microvascular model. J Cell Physiol 2022; 237:3872-3882. [PMID: 35901247 DOI: 10.1002/jcp.30840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/01/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022]
Abstract
A variety of biophysical properties are known to regulate angiogenic sprouting, and in vitro systems can parse the individual effects of these factors in a controlled setting. Here, a three-dimensional brain microvascular model interrogates how variables including extracellular matrix composition, fluid shear stress, and radius of curvature affect angiogenic sprouting of cerebral endothelial cells. Tracking endothelial migration over several days reveals that application of fluid shear stress and enlarged vessel radius of curvature both attenuate sprouting. Computational modeling informed by oxygen consumption assays suggests that sprouting correlates to reduced oxygen concentration: both fluid shear stress and vessel geometry alter the local oxygen levels dictated by both ambient conditions and cellular respiration. Moreover, increasing cell density and consequently lowering the local oxygen levels yields significantly more sprouting. Further analysis reveals that the magnitude of oxygen concentration is not as important as its spatial concentration gradient: decreasing ambient oxygen concentration causes significantly less sprouting than applying an external oxygen gradient to the vessels. In contrast, barriergenesis is dictated by shear stress independent of local oxygen concentrations, suggesting that different mechanisms mediate angiogenesis and barrier formation and that angiogenic sprouting can occur without compromising the barrier. Overall, these results improve our understanding of how specific biophysical variables regulate the function and activation of cerebral vasculature, and identify spatial oxygen gradients as the driving factor of angiogenesis in the brain.
Collapse
Affiliation(s)
- Kiet A Tran
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | | | - Brandon J DeOre
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | - Morgan Antisell
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey, USA
| |
Collapse
|
41
|
Janssen Daalen JM, Meinders MJ, Giardina F, Roes KCB, Stunnenberg BC, Mathur S, Ainslie PN, Thijssen DHJ, Bloem BR. Multiple N-of-1 trials to investigate hypoxia therapy in Parkinson's disease: study rationale and protocol. BMC Neurol 2022; 22:262. [PMID: 35836147 PMCID: PMC9281145 DOI: 10.1186/s12883-022-02770-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Parkinson’s disease (PD) is a neurodegenerative disease, for which no disease-modifying therapies exist. Preclinical and clinical evidence suggest that hypoxia-based therapy might have short- and long-term benefits in PD. We present the contours of the first study to assess the safety, feasibility and physiological and symptomatic impact of hypoxia-based therapy in individuals with PD. Methods/Design In 20 individuals with PD, we will investigate the safety, tolerability and short-term symptomatic efficacy of continuous and intermittent hypoxia using individual, double-blind, randomized placebo-controlled N-of-1 trials. This design allows for dose finding and for including more individualized outcomes, as each individual serves as its own control. A wide range of exploratory outcomes is deployed, including the Movement Disorders Society Unified Parkinson’s Disease Rating scale (MDS-UPDRS) part III, Timed Up & Go Test, Mini Balance Evaluation Systems (MiniBES) test and wrist accelerometry. Also, self-reported impression of overall symptoms, motor and non-motor symptoms and urge to take dopaminergic medication will be assessed on a 10-point Likert scale. As part of a hypothesis-generating part of the study, we also deploy several exploratory outcomes to probe possible underlying mechanisms of action, including cortisol, erythropoietin and platelet-derived growth factor β. Efficacy will be assessed primarily by a Bayesian analysis. Discussion This evaluation of hypoxia therapy could provide insight in novel pathways that may be pursued for PD treatment. This trial also serves as a proof of concept for deploying an N-of-1 design and for including individualized outcomes in PD research, as a basis for personalized treatment approaches. Trial registration ClinicalTrials.gov Identifier: NCT05214287 (registered January 28, 2022).
Supplementary Information The online version contains supplementary material available at 10.1186/s12883-022-02770-7.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson & Movement Disorders; Nijmegen, the Netherlands, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson & Movement Disorders; Nijmegen, the Netherlands, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.,IQ Healthcare, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Federica Giardina
- Department of Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Section Biostatistics, Nijmegen, The Netherlands
| | - Kit C B Roes
- Department of Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Section Biostatistics, Nijmegen, The Netherlands
| | - Bas C Stunnenberg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Neurology, Rijnstate Hospital, Arnhem, Netherlands
| | | | - Philip N Ainslie
- Center for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson & Movement Disorders; Nijmegen, the Netherlands, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
42
|
Gao X, Cao Z, Tan H, Li P, Su W, Wan T, Guo W. LncRNA, an Emerging Approach for Neurological Diseases Treatment by Regulating Microglia Polarization. Front Neurosci 2022; 16:903472. [PMID: 35860297 PMCID: PMC9289270 DOI: 10.3389/fnins.2022.903472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Neurological disorders cause untold human disability and death each year. For most neurological disorders, the efficacy of their primary treatment strategies remains suboptimal. Microglia are associated with the development and progression of multiple neurological disorders. Targeting the regulation of microglia polarization has emerged as an important therapeutic strategy for neurological disorders. Their pro-inflammatory (M1)/anti-inflammatory (M2) phenotype microglia are closely associated with neuronal apoptosis, synaptic plasticity, blood-brain barrier integrity, resistance to iron death, and astrocyte regulation. LncRNA, a recently extensively studied non-coding transcript of over 200 nucleotides, has shown great value to intervene in microglia polarization. It can often participate in gene regulation of microglia by directly regulating transcription or sponging downstream miRNAs, for example. Through proper regulation, microglia can exert neuroprotective effects, reduce neurological damage and improve the prognosis of many neurological diseases. This paper reviews the progress of research linking lncRNAs to microglia polarization and neurological diseases.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zilong Cao
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Haifeng Tan
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Peiling Li
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Wenen Su
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Teng Wan
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Teng Wan,
| | - Weiming Guo
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- *Correspondence: Weiming Guo,
| |
Collapse
|
43
|
Barkaway A, Attwell D, Korte N. Immune-vascular mural cell interactions: consequences for immune cell trafficking, cerebral blood flow, and the blood-brain barrier. NEUROPHOTONICS 2022; 9:031914. [PMID: 35581998 PMCID: PMC9107322 DOI: 10.1117/1.nph.9.3.031914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Brain barriers are crucial sites for cerebral energy supply, waste removal, immune cell migration, and solute exchange, all of which maintain an appropriate environment for neuronal activity. At the capillary level, where the largest area of brain-vascular interface occurs, pericytes adjust cerebral blood flow (CBF) by regulating capillary diameter and maintain the blood-brain barrier (BBB) by suppressing endothelial cell (EC) transcytosis and inducing tight junction expression between ECs. Pericytes also limit the infiltration of circulating leukocytes into the brain where resident microglia confine brain injury and provide the first line of defence against invading pathogens. Brain "waste" is cleared across the BBB into the blood, phagocytosed by microglia and astrocytes, or removed by the flow of cerebrospinal fluid (CSF) through perivascular routes-a process driven by respiratory motion and the pulsation of the heart, arteriolar smooth muscle, and possibly pericytes. "Dirty" CSF exits the brain and is probably drained around olfactory nerve rootlets and via the dural meningeal lymphatic vessels and possibly the skull bone marrow. The brain is widely regarded as an immune-privileged organ because it is accessible to few antigen-primed leukocytes. Leukocytes enter the brain via the meninges, the BBB, and the blood-CSF barrier. Advances in genetic and imaging tools have revealed that neurological diseases significantly alter immune-brain barrier interactions in at least three ways: (1) the brain's immune-privileged status is compromised when pericytes are lost or lymphatic vessels are dysregulated; (2) immune cells release vasoactive molecules to regulate CBF, modulate arteriole stiffness, and can plug and eliminate capillaries which impairs CBF and possibly waste clearance; and (3) immune-vascular interactions can make the BBB leaky via multiple mechanisms, thus aggravating the influx of undesirable substances and cells. Here, we review developments in these three areas and briefly discuss potential therapeutic avenues for restoring brain barrier functions.
Collapse
Affiliation(s)
- Anna Barkaway
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - David Attwell
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Nils Korte
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| |
Collapse
|
44
|
Halder SK, Sapkota A, Milner R. The impact of genetic manipulation of laminin and integrins at the blood-brain barrier. Fluids Barriers CNS 2022; 19:50. [PMID: 35690759 PMCID: PMC9188059 DOI: 10.1186/s12987-022-00346-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/18/2022] [Indexed: 12/26/2022] Open
Abstract
Blood vessels in the central nervous system (CNS) are unique in having high electrical resistance and low permeability, which creates a selective barrier protecting sensitive neural cells within the CNS from potentially harmful components in the blood. The molecular basis of this blood–brain barrier (BBB) is found at the level of endothelial adherens and tight junction protein complexes, extracellular matrix (ECM) components of the vascular basement membrane (BM), and the influence of adjacent pericytes and astrocyte endfeet. Current evidence supports the concept that instructive cues from the BBB ECM are not only important for the development and maturation of CNS blood vessels, but they are also essential for the maintenance of vascular stability and BBB integrity. In this review, we examine the contributions of one of the most abundant ECM proteins, laminin to BBB integrity, and summarize how genetic deletions of different laminin isoforms or their integrin receptors impact BBB development, maturation, and stability.
Collapse
Affiliation(s)
- Sebok K Halder
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA, 92121, USA
| | - Arjun Sapkota
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA, 92121, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA, 92121, USA.
| |
Collapse
|
45
|
Park JH, Lee HK. Current Understanding of Hypoxia in Glioblastoma Multiforme and Its Response to Immunotherapy. Cancers (Basel) 2022; 14:1176. [PMID: 35267480 PMCID: PMC8909860 DOI: 10.3390/cancers14051176] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is a hallmark of glioblastoma multiforme (GBM), the most aggressive cancer of the central nervous system, and is associated with multiple aspects of tumor pathogenesis. For example, hypoxia induces resistance to conventional cancer therapies and inhibits antitumor immune responses. Thus, targeting hypoxia is an attractive strategy for GBM therapy. However, traditional studies on hypoxia have largely excluded the immune system. Recently, the critical role of the immune system in the defense against multiple tumors has become apparent, leading to the development of effective immunotherapies targeting numerous cancer types. Critically, however, GBM is classified as a "cold tumor" due to poor immune responses. Thus, to improve GBM responsiveness against immunotherapies, an improved understanding of both immune function in GBM and the role of hypoxia in mediating immune responses within the GBM microenvironment is needed. In this review, we discuss the role of hypoxia in GBM from a clinical, pathological, and immunological perspective.
Collapse
Affiliation(s)
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| |
Collapse
|
46
|
Williams LM, Fujimoto T, Weaver RR, Logsdon AF, Evitts KM, Young JE, Banks WA, Erickson MA. Prolonged culturing of iPSC-derived brain endothelial-like cells is associated with quiescence, downregulation of glycolysis, and resistance to disruption by an Alzheimer’s brain milieu. Fluids Barriers CNS 2022; 19:10. [PMID: 35123529 PMCID: PMC8817611 DOI: 10.1186/s12987-022-00307-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Human induced pluripotent stem cell (hiPSC)-derived brain endothelial-like cells (iBECs) are a robust, scalable, and translatable model of the human blood–brain barrier (BBB). Prior works have shown that high transendothelial electrical resistance (TEER) persists in iBECs for at least 2 weeks, emphasizing the utility of the model for longer term studies. However, most studies evaluate iBECs within the first few days of subculture, and little is known about their proliferative state, which could influence their functions. In this study, we characterized iBEC proliferative state in relation to key BBB properties at early (2 days) and late (9 days) post-subculture time points.
Methods
hiPSCs were differentiated into iBECs using fully defined, serum-free medium. The proportion of proliferating cells was determined by BrdU assays. We evaluated TEER, expression of glycolysis enzymes and tight and adherens junction proteins (TJP and AJP), and glucose transporter-1 (GLUT1) function by immunoblotting, immunofluorescence, and quantifying radiolabeled tracer permeabilities. We also compared barrier disruption in response to TNF-α and conditioned medium (CM) from hiPSC-derived neurons harboring the Alzheimer’s disease (AD)-causing Swedish mutation (APPSwe/+).
Results
A significant decline in iBEC proliferation over time in culture was accompanied by adoption of a more quiescent endothelial metabolic state, indicated by downregulation of glycolysis-related proteins and upregulation GLUT1. Interestingly, upregulation of GLUT1 was associated with reduced glucose transport rates in more quiescent iBECs. We also found significant decreases in claudin-5 (CLDN5) and vascular endothelial-cadherin (VE-Cad) and a trend toward a decrease in platelet endothelial cell adhesion molecule-1 (PECAM-1), whereas zona occludens-1 (ZO-1) increased and occludin (OCLN) remained unchanged. Despite differences in TJP and AJP expression, there was no difference in mean TEER on day 2 vs. day 9. TNF-α induced disruption irrespective of iBEC proliferative state. Conversely, APPSwe/+ CM disrupted only proliferating iBEC monolayers.
Conclusion
iBECs can be used to study responses to disease-relevant stimuli in proliferating vs. more quiescent endothelial cell states, which may provide insight into BBB vulnerabilities in contexts of development, brain injury, and neurodegenerative disease.
Collapse
|
47
|
Gifre-Renom L, Daems M, Luttun A, Jones EAV. Organ-Specific Endothelial Cell Differentiation and Impact of Microenvironmental Cues on Endothelial Heterogeneity. Int J Mol Sci 2022; 23:ijms23031477. [PMID: 35163400 PMCID: PMC8836165 DOI: 10.3390/ijms23031477] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Endothelial cells throughout the body are heterogeneous, and this is tightly linked to the specific functions of organs and tissues. Heterogeneity is already determined from development onwards and ranges from arterial/venous specification to microvascular fate determination in organ-specific differentiation. Acknowledging the different phenotypes of endothelial cells and the implications of this diversity is key for the development of more specialized tissue engineering and vascular repair approaches. However, although novel technologies in transcriptomics and proteomics are facilitating the unraveling of vascular bed-specific endothelial cell signatures, still much research is based on the use of insufficiently specialized endothelial cells. Endothelial cells are not only heterogeneous, but their specialized phenotypes are also dynamic and adapt to changes in their microenvironment. During the last decades, strong collaborations between molecular biology, mechanobiology, and computational disciplines have led to a better understanding of how endothelial cells are modulated by their mechanical and biochemical contexts. Yet, because of the use of insufficiently specialized endothelial cells, there is still a huge lack of knowledge in how tissue-specific biomechanical factors determine organ-specific phenotypes. With this review, we want to put the focus on how organ-specific endothelial cell signatures are determined from development onwards and conditioned by their microenvironments during adulthood. We discuss the latest research performed on endothelial cells, pointing out the important implications of mimicking tissue-specific biomechanical cues in culture.
Collapse
Affiliation(s)
- Laia Gifre-Renom
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Margo Daems
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Aernout Luttun
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Elizabeth A. V. Jones
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence:
| |
Collapse
|
48
|
Guan Y, Liu J, Gu Y, Ji X. Effects of Hypoxia on Cerebral Microvascular Angiogenesis: Benefits or Damages? Aging Dis 2022; 14:370-385. [PMID: 37008044 PMCID: PMC10017152 DOI: 10.14336/ad.2022.0902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Cerebrovascular microcirculation is essential for maintaining the physiological functions of the brain. The brain can be protected from stress injury by remodeling the microcirculation network. Angiogenesis is a type of cerebral vascular remodeling. It is an effective approach to improve the blood flow of the cerebral microcirculation, which is necessary for preventing and treating various neurological disorders. Hypoxia is one of the most important regulators of angiogenesis, affecting the sprouting, proliferation, and maturation stages of angiogenesis. Moreover, hypoxia negatively affects cerebral vascular tissue by impairing the structural and functional integrity of the blood-brain barrier and vascular-nerve decoupling. Therefore, hypoxia has a dual effect on blood vessels and is affected by confounding factors including oxygen concentration, hypoxia duration, and hypoxia frequency and extent. Establishing an optimal model that promotes cerebral microvasculogenesis without causing vascular injury is essential. In this review, we first elaborate on the effects of hypoxia on blood vessels from two different perspectives: (1) the promotion of angiogenesis and (2) cerebral microcirculation damage. We further discuss the factors influencing the dual role of hypoxia and emphasize the benefits of moderate hypoxic irritation and its potential application as an easy, safe, and effective treatment for multiple nervous system disorders.
Collapse
Affiliation(s)
- Yuying Guan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yakun Gu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Correspondence should be addressed to: Dr. Prof. Xunming Ji; Beijing Institute of Brain Disorders, Capital Medical University, 10 Xi Tou Tiao, You Anmen, Beijing 100069, China. E-mail: .
| |
Collapse
|
49
|
Gruszecka A, Waskow M, Malkiewicz MA, Neary JP, Singh J, Teckchandani T, Kratzig GP, Wszedybyl-Winklewska M, Frydrychowski AF, Rumiński J, Głowacka N, Lass P, Winklewski PJ, Gruszecki M. Mild poikilocapnic hypoxia increases very low frequency haemoglobin oxygenation oscillations in prefrontal cortex. Biol Res 2021; 54:39. [PMID: 34906247 PMCID: PMC8669425 DOI: 10.1186/s40659-021-00362-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of the study was to investigate the effect of mild cerebral hypoxia on haemoglobin oxygenation (HbO2), cerebrospinal fluid dynamics and cardiovascular physiology. To achieve this goal, four signals were recorded simultaneously: blood pressure, heart rate / electrocardiogram, HbO2 from right hemisphere and changes of subarachnoid space (SAS) width from left hemisphere. Signals were registered from 30 healthy, young participants (2 females and 28 males, body mass index = 24.5 ± 2.3 kg/m2, age 30.8 ± 13.4 years). RESULTS We analysed the recorded signals using wavelet transform and phase coherence. We demonstrated for the first time that in healthy subjects exposed to mild poikilokapnic hypoxia there were increases in very low frequency HbO2 oscillations (< 0.052 Hz) in prefrontal cortex. Additionally, SAS fluctuation diminished in the whole frequency range which could be explained by brain oedema. CONCLUSIONS Consequently the study provides insight into mechanisms governing brain response to a mild hypoxic challenge. Our study supports the notion that HbO2 and SAS width monitoring might be beneficial for patients with acute lung disease.
Collapse
Affiliation(s)
- Agnieszka Gruszecka
- Department of Radiology Informatics and Statistics, Medical University of Gdansk, Tuwima Str. 15, 80-210, Gdansk, Poland
| | - Monika Waskow
- Institute of Health Sciences, Pomeranian University of Slupsk, Slupsk, Poland
| | - Marta A Malkiewicz
- Department of Human Physiology, Applied Cognitive Neuroscience Lab, Medical University of Gdansk, Gdansk, Poland.,Department of Psychiatry, Medical University of Gdansk, Gdansk, Poland
| | - J Patrick Neary
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Canada
| | - Jyotpal Singh
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Canada
| | - Taylor Teckchandani
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Canada
| | | | | | | | - Jacek Rumiński
- Department of Biomedical Engineering, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
| | - Natalia Głowacka
- Department of Biomedical Engineering, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
| | - Piotr Lass
- Department of Nuclear Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Pawel J Winklewski
- Department of Human Physiology, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Gruszecki
- Department of Radiology Informatics and Statistics, Medical University of Gdansk, Tuwima Str. 15, 80-210, Gdansk, Poland. .,Department of Biomedical Engineering, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland.
| |
Collapse
|
50
|
Guo L, Zhu L. Multiple Roles of Peripheral Immune System in Modulating Ischemia/Hypoxia-Induced Neuroinflammation. Front Mol Biosci 2021; 8:752465. [PMID: 34881289 PMCID: PMC8645603 DOI: 10.3389/fmolb.2021.752465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022] Open
Abstract
Given combined efforts of neuroscience and immunology, increasing evidence has revealed the critical roles of the immune system in regulating homeostasis and disorders of the central nervous system (CNS). Microglia have long been considered as the only immune cell type in parenchyma, while at the interface between CNS and the peripheral (meninges, choroid plexus, and perivascular space), embryonically originated border-associated macrophages (BAMs) and multiple surveilling leukocytes capable of migrating into and out of the brain have been identified to function in the healthy brain. Hypoxia-induced neuroinflammation is the key pathological procedure that can be detected in healthy people at high altitude or in various neurodegenerative diseases, during which a very thin line between a beneficial response of the peripheral immune system in maintaining brain homeostasis and a pathological role in exacerbating neuroinflammation has been revealed. Here, we are going to focus on the role of the peripheral immune system and its crosstalk with CNS in the healthy brain and especially in hypobaric or ischemic hypoxia-associated neuroinflammation.
Collapse
Affiliation(s)
- Liang Guo
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lingling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing, China.,University of Nanhua, Hengyang, China.,Anhui Medical University, Hefei, China
| |
Collapse
|