1
|
Bu Y, Burks J, Yang K, Prince J, Borna A, Coe CL, Simmons A, Tu XM, Baker D, Kimball D, Rao R, Shah V, Huang M, Schwindt P, Coleman TP, Lerman I. Non-invasive ventral cervical magnetoneurography as a proxy of in vivo lipopolysaccharide-induced inflammation. Commun Biol 2024; 7:893. [PMID: 39075164 PMCID: PMC11286963 DOI: 10.1038/s42003-024-06435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
Maintenance of autonomic homeostasis is continuously calibrated by sensory fibers of the vagus nerve and sympathetic chain that convey compound action potentials (CAPs) to the central nervous system. Lipopolysaccharide (LPS) intravenous challenge reliably elicits a robust inflammatory response that can resemble systemic inflammation and acute endotoxemia. Here, we administered LPS intravenously in nine healthy subjects while recording ventral cervical magnetoneurography (vcMNG)-derived CAPs at the rostral Right Nodose Ganglion (RNG) and the caudal Right Carotid Artery (RCA) with optically pumped magnetometers (OPM). We observed vcMNG RNG and RCA neural firing rates that tracked changes in TNF-α levels in the systemic circulation. Further, endotype subgroups based on high and low IL-6 responders segregate RNG CAP frequency (at 30-120 min) and based on high and low IL-10 response discriminate RCA CAP frequency (at 0-30 min). These vcMNG tools may enhance understanding and management of the neuroimmune axis that can guide personalized treatment based on an individual's distinct endophenotype.
Collapse
Affiliation(s)
- Yifeng Bu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jamison Burks
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kun Yang
- Division of Biostatistics and Bioinformatics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jacob Prince
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Amir Borna
- Quantum Information Sciences, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Christopher L Coe
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alan Simmons
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xin M Tu
- Division of Biostatistics and Bioinformatics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dewleen Baker
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Donald Kimball
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ramesh Rao
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Vishal Shah
- Quspin Laboratory Head Quarters, Boulder, CO, 80305, USA
| | - Mingxiong Huang
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Peter Schwindt
- Quantum Information Sciences, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Todd P Coleman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Imanuel Lerman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Center for Stress and Mental Health (CESAMH) VA San Diego, La Jolla, CA, 92093, USA.
- InflammaSense Incorporated Head Quarters, La Jolla, CA, 92093, USA.
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Kawana Y, Imai J, Morizawa YM, Ikoma Y, Kohata M, Komamura H, Sato T, Izumi T, Yamamoto J, Endo A, Sugawara H, Kubo H, Hosaka S, Munakata Y, Asai Y, Kodama S, Takahashi K, Kaneko K, Sawada S, Yamada T, Ito A, Niizuma K, Tominaga T, Yamanaka A, Matsui K, Katagiri H. Optogenetic stimulation of vagal nerves for enhanced glucose-stimulated insulin secretion and β cell proliferation. Nat Biomed Eng 2024; 8:808-822. [PMID: 37945752 PMCID: PMC11310082 DOI: 10.1038/s41551-023-01113-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/26/2023] [Indexed: 11/12/2023]
Abstract
The enhancement of insulin secretion and of the proliferation of pancreatic β cells are promising therapeutic options for diabetes. Signals from the vagal nerve regulate both processes, yet the effectiveness of stimulating the nerve is unclear, owing to a lack of techniques for doing it so selectively and prolongedly. Here we report two optogenetic methods for vagal-nerve stimulation that led to enhanced glucose-stimulated insulin secretion and to β cell proliferation in mice expressing choline acetyltransferase-channelrhodopsin 2. One method involves subdiaphragmatic implantation of an optical fibre for the photostimulation of cholinergic neurons expressing a blue-light-sensitive opsin. The other method, which suppressed streptozotocin-induced hyperglycaemia in the mice, involves the selective activation of vagal fibres by placing blue-light-emitting lanthanide microparticles in the pancreatic ducts of opsin-expressing mice, followed by near-infrared illumination. The two methods show that signals from the vagal nerve, especially from nerve fibres innervating the pancreas, are sufficient to regulate insulin secretion and β cell proliferation.
Collapse
Affiliation(s)
- Yohei Kawana
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yosuke M Morizawa
- Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Yoko Ikoma
- Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Masato Kohata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Komamura
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshihiro Sato
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohito Izumi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junpei Yamamoto
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Endo
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroto Sugawara
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haremaru Kubo
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Yuichiro Munakata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichiro Asai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinjiro Kodama
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Takahashi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shojiro Sawada
- Division of Metabolism and Diabetes, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Ito
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Ko Matsui
- Super-network Brain Physiology, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Waataja JJ, Honda CN, Asp AJ, Nihilani RK, Farajidavar A. The Duration and Intensity of High Frequency Alternating Current Influences the Degree and Recovery of Nerve Conduction Block. IEEE Trans Biomed Eng 2024; 71:2170-2179. [PMID: 38335073 DOI: 10.1109/tbme.2024.3364350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
OBJECTIVE The purpose of this paper is to investigate the persistence of nerve blockade beyond the duration of applying high frequency alternating current (HFAC) to thinly myelinated and non-myelinated fibers, also termed a "carry-over effect". METHODS In this study, we used electrically-evoked compound action potentials from isolated rat vagus nerves to assess the influence of 5 kHz HFAC amplitude and duration on the degree of the carry-over effect. Current amplitudes from 1-10 mA and 5 kHz durations from 10-120 seconds were tested. RESULTS By testing 20 different combinations of 5 kHz amplitude and duration, we found a significant interaction between 5 kHz amplitude and duration on influencing the carry-over effect. CONCLUSION The degree of carry-over effect was dependent on 5 kHz amplitude, as well as duration. SIGNIFICANCE Utilizing the carry-over effect may be useful in designing energy efficient nerve blocking algorithms for the treatment of diseases influenced by nerve activity.
Collapse
|
4
|
Gabalski AH, Tynan A, Tsaava T, Li JH, Lee D, Hepler TD, Hide D, George S, Iñiguez CEB, Thompson DA, Zhu C, Wang H, Brines M, Tracey KJ, Chavan SS. Circulating extracellular choline acetyltransferase regulates inflammation. J Intern Med 2024; 295:346-356. [PMID: 38011942 PMCID: PMC10922394 DOI: 10.1111/joim.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
BACKGROUND Choline acetyltransferase (ChAT) is required for the biosynthesis of acetylcholine, the molecular mediator that inhibits cytokine production in the cholinergic anti-inflammatory pathway of the vagus nerve inflammatory reflex. Abundant work has established the biology of cytoplasmic ChAT in neurons, but much less is known about the potential presence and function of ChAT in the extracellular milieu. OBJECTIVES We evaluated the hypothesis that extracellular ChAT activity responds to inflammation and serves to inhibit cytokine release and attenuate inflammation. METHODS After developing novel methods for quantification of ChAT activity in plasma, we determined whether ChAT activity changes in response to inflammatory challenges. RESULTS Active ChAT circulates within the plasma compartment of mice and responds to immunological perturbations. Following the administration of bacterial endotoxin, plasma ChAT activity increases for 12-48 h, a time period that coincides with declining tumor necrosis factor (TNF) levels. Further, a direct activation of the cholinergic anti-inflammatory pathway by vagus nerve stimulation significantly increases plasma ChAT activity, whereas the administration of bioactive recombinant ChAT (r-ChAT) inhibits endotoxin-stimulated TNF production and anti-ChAT antibodies exacerbate endotoxin-induced TNF levels, results of which suggest that ChAT activity regulates endogenous TNF production. Administration of r-ChAT significantly attenuates pro-inflammatory cytokine production and disease activity in the dextran sodium sulfate preclinical model of inflammatory bowel disease. Finally, plasma ChAT levels are also elevated in humans with sepsis, with the highest levels observed in a patient who succumbed to infection. CONCLUSION As a group, these results support further investigation of ChAT as a counter-regulator of inflammation and potential therapeutic agent.
Collapse
Affiliation(s)
- Arielle H. Gabalski
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY 11549, USA
| | - Aisling Tynan
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Tea Tsaava
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Jian Hua Li
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Diana Lee
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY 11549, USA
| | - Tyler D. Hepler
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Daniel Hide
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Sam George
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Carlos E. Bravo Iñiguez
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Dane A Thompson
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Cassie Zhu
- Institute for Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Haichao Wang
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY 11549, USA
- Institute for Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Michael Brines
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Kevin J. Tracey
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY 11549, USA
| | - Sangeeta S. Chavan
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY 11549, USA
| |
Collapse
|
5
|
Lim J, Zoss PA, Powley TL, Lee H, Ward MP. A flexible, thin-film microchannel electrode array device for selective subdiaphragmatic vagus nerve recording. MICROSYSTEMS & NANOENGINEERING 2024; 10:16. [PMID: 38264708 PMCID: PMC10803373 DOI: 10.1038/s41378-023-00637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 01/25/2024]
Abstract
The vagus nerve (VN) plays an important role in regulating physiological conditions in the gastrointestinal (GI) tract by communicating via the parasympathetic pathway to the enteric nervous system (ENS). However, the lack of knowledge in the neurophysiology of the VN and GI tract limits the development of advanced treatments for autonomic dysfunctions related to the VN. To better understand the complicated underlying mechanisms of the VN-GI tract neurophysiology, it is necessary to use an advanced device enabled by microfabrication technologies. Among several candidates including intraneural probe array and extraneural cuff electrodes, microchannel electrode array devices can be used to interface with smaller numbers of nerve fibers by securing them in the separate channel structures. Previous microchannel electrode array devices to interface teased nerve structures are relatively bulky with thickness around 200 µm. The thick design can potentially harm the delicate tissue structures, including the nerve itself. In this paper, we present a flexible thin film based microchannel electrode array device (thickness: 11.5 µm) that can interface with one of the subdiaphragmatic nerve branches of the VN in a rat. We demonstrated recording evoked compound action potentials (ECAP) from a transected nerve ending that has multiple nerve fibers. Moreover, our analysis confirmed that the signals are from C-fibers that are critical in regulating autonomic neurophysiology in the GI tract.
Collapse
Affiliation(s)
- Jongcheon Lim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN USA
| | - Peter A. Zoss
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
| | - Terry L. Powley
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Department of Psychological Sciences, Purdue University, West Lafayette, IN USA
- Purdue Institute of Integrative Neuroscience, Purdue University, West Lafayette, IN USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN USA
| | - Matthew P. Ward
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Indiana University School of Medicine, Indianapolis, IN USA
| |
Collapse
|
6
|
Okonogi T, Kuga N, Yamakawa M, Kayama T, Ikegaya Y, Sasaki T. Stress-induced vagal activity influences anxiety-relevant prefrontal and amygdala neuronal oscillations in male mice. Nat Commun 2024; 15:183. [PMID: 38195621 PMCID: PMC10776769 DOI: 10.1038/s41467-023-44205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024] Open
Abstract
The vagus nerve crucially affects emotions and psychiatric disorders. However, the detailed neurophysiological dynamics of the vagus nerve in response to emotions and its associated pathological changes remain unclear. In this study, we demonstrated that the spike rates of the cervical vagus nerve change depending on anxiety behavior in an elevated plus maze test, and these changes were eradicated in stress-susceptible male mice. Furthermore, instantaneous spike rates of the vagus nerve were negatively and positively correlated with the power of 2-4 Hz and 20-30 Hz oscillations, respectively, in the prefrontal cortex and amygdala. The oscillations also underwent dynamic changes depending on the behavioral state in the elevated plus maze, and these changes were no longer observed in stress-susceptible and vagotomized mice. Chronic vagus nerve stimulation restored behavior-relevant neuronal oscillations with the recovery of altered behavioral states in stress-susceptible mice. These results suggested that physiological vagal-brain communication underlies anxiety and mood disorders.
Collapse
Affiliation(s)
- Toya Okonogi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Nahoko Kuga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Musashi Yamakawa
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Tasuku Kayama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan.
| |
Collapse
|
7
|
Vallone F, Dushpanova A, Leali M, Strauss I, Agnesi F, Zinno C, Casieri V, Carrozzo A, Bernini F, Terlizzi D, Carpaneto J, Micera S, Lionetti V. Left cardiac vagotomy rapidly reduces contralateral cardiac vagal electrical activity in anesthetized Göttingen minipigs. Int J Cardiol 2024; 394:131349. [PMID: 37689397 DOI: 10.1016/j.ijcard.2023.131349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND The impact of acute unilateral injury on spontaneous electrical activity in both vagus nerves at the heart level is poorly understood. We investigated the immediate neuroelectrical response after right or left cardiac vagal nerve transection (VNTx) by recording spiking activity of each heart vagus nerve (VN). METHODS Fourteen male Göttingen minipigs underwent sternotomy. Multi-electrode cuffs were implanted below the cut level to record vagal electroneurographic signals during electrocardiographic and hemodynamic monitoring, before and immediately after cardiac VNTx (left: L-cut, n = 6; right: R-cut, n = 8). RESULTS Left cardiac VNTx significantly reduced multi-unit electrical activity (MUA) firing rate in the vagal stump (-30.7% vs pre-cut) and intact right VN (-21.8% vs pre-cut) at the heart level, without affecting heart rate, heart rate variability, or hemodynamics. In contrast, right cardiac VNTx did not acutely alter MUA in either VN but slightly increased (p < 0.022) the root mean square of successive RR interval differences (rMSSD), an index of parasympathetic outflow, without affecting hemodynamics. CONCLUSIONS Our study reveals an early left-lateralized pattern in vagal spiking activity following unilateral cardiac vagotomy. These findings enhance understanding of the neuroelectrical response to vagal injury and provide insights into preserving vagal outflow after unilateral cardiac vagotomy. Importantly, monitoring spiking activity of the cardiac right VN may predict onset of left vagal pathway injury, which is detrimental to cardiac patients and can occur as a complication of catheter ablation for atrial fibrillation.
Collapse
Affiliation(s)
- Fabio Vallone
- BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Anar Dushpanova
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science," Scuola Superiore Sant'Anna, Pisa, Italy; Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Marco Leali
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science," Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ivo Strauss
- Institut für Mikrosystemtechnik, University of Freiburg, IMTEK, Freiburg, Germany
| | - Filippo Agnesi
- BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ciro Zinno
- BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Valentina Casieri
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science," Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alessandro Carrozzo
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science," Scuola Superiore Sant'Anna, Pisa, Italy; Department of Cardiac Surgery, ICLAS, GVM Care & Research, Rapallo, Italy
| | | | | | - Jacopo Carpaneto
- BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Silvestro Micera
- BioRobotics Institute, Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy; Bertarelli Foundation Chair in Translational NeuroEngineering, Centre for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science," Scuola Superiore Sant'Anna, Pisa, Italy; BioMedLab, Scuola Superiore Sant'Anna, Pisa, Italy; Fondazione Toscana "G. Monasterio", Pisa, Italy.
| |
Collapse
|
8
|
Güemes Gonzalez A, Carnicer-Lombarte A, Hilton S, Malliaras G. A multivariate physiological model of vagus nerve signalling during metabolic challenges in anaesthetised rats for diabetes treatment. J Neural Eng 2023; 20:056033. [PMID: 37757803 DOI: 10.1088/1741-2552/acfdcd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
Objective.This study aims to develop a comprehensive decoding framework to create a multivariate physiological model of vagus nerve transmission that reveals the complex interactions between the nervous and metabolic systems.Approach.Vagus nerve activity was recorded in female Sprague-Dawley rats using gold hook microwires implanted around the left cervical vagus nerve. The rats were divided into three experimental cohorts (intact nerve, ligation nerve for recording afferent activation, and ligation for recording efferent activation) and metabolic challenges were administered to change glucose levels while recording the nerve activity. The decoding methodology involved various techniques, including continuous wavelet transformation, extraction of breathing rate (BR), and correlation of neural metrics with physiological signals.Main results.Decrease in glucose level was consistently negatively correlated with an increase in the firing activity of the intact vagus nerve that was found to be conveyed by both afferent and efferent pathways, with the afferent response being more similar to the one on the intact nerve. A larger variability was observed in the sensory and motor responses to hyperglycaemia. A novel strategy to extract the BR over time based on inter-burst-interval is also presented. The vagus afferent was found to encode breathing information through amplitude and firing rate modulation. Modulations of the signal amplitude were also observed due to changes in heart rate in the intact and efferent recordings, highlighting the parasympathetic control of the heart.Significance.The analytical framework presented in this study provides an integrative understanding that considers the relationship between metabolic, cardiac, and breathing signals and contributes to the development of a multivariable physiological model for the transmission of vagus nerve signals. This work progresses toward the development of closed-loop neuro-metabolic therapeutic systems for diabetes.
Collapse
Affiliation(s)
- Amparo Güemes Gonzalez
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
| | - Alejandro Carnicer-Lombarte
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
| | - Sam Hilton
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
| | - George Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom
| |
Collapse
|
9
|
Shaffer C, Barrett LF, Quigley KS. Signal processing in the vagus nerve: Hypotheses based on new genetic and anatomical evidence. Biol Psychol 2023; 182:108626. [PMID: 37419401 PMCID: PMC10563766 DOI: 10.1016/j.biopsycho.2023.108626] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Each organism must regulate its internal state in a metabolically efficient way as it interacts in space and time with an ever-changing and only partly predictable world. Success in this endeavor is largely determined by the ongoing communication between brain and body, and the vagus nerve is a crucial structure in that dialogue. In this review, we introduce the novel hypothesis that the afferent vagus nerve is engaged in signal processing rather than just signal relay. New genetic and structural evidence of vagal afferent fiber anatomy motivates two hypotheses: (1) that sensory signals informing on the physiological state of the body compute both spatial and temporal viscerosensory features as they ascend the vagus nerve, following patterns found in other sensory architectures, such as the visual and olfactory systems; and (2) that ascending and descending signals modulate one another, calling into question the strict segregation of sensory and motor signals, respectively. Finally, we discuss several implications of our two hypotheses for understanding the role of viscerosensory signal processing in predictive energy regulation (i.e., allostasis) as well as the role of metabolic signals in memory and in disorders of prediction (e.g., mood disorders).
Collapse
Affiliation(s)
- Clare Shaffer
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| | - Lisa Feldman Barrett
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Karen S Quigley
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| |
Collapse
|
10
|
Zouali M. Pharmacological and Electroceutical Targeting of the Cholinergic Anti-Inflammatory Pathway in Autoimmune Diseases. Pharmaceuticals (Basel) 2023; 16:1089. [PMID: 37631004 PMCID: PMC10459025 DOI: 10.3390/ph16081089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Continuous dialogue between the immune system and the brain plays a key homeostatic role in various immune responses to environmental cues. Several functions are under the control of the vagus nerve-based inflammatory reflex, a physiological mechanism through which nerve signals regulate immune functions. In the cholinergic anti-inflammatory pathway, the vagus nerve, its pivotal neurotransmitter acetylcholine, together with the corresponding receptors play a key role in modulating the immune response of mammals. Through communications of peripheral nerves with immune cells, it modulates proliferation and differentiation activities of various immune cell subsets. As a result, this pathway represents a potential target for treating autoimmune diseases characterized by overt inflammation and a decrease in vagal tone. Consistently, converging observations made in both animal models and clinical trials revealed that targeting the cholinergic anti-inflammatory pathway using pharmacologic approaches can provide beneficial effects. In parallel, bioelectronic medicine has recently emerged as an alternative approach to managing systemic inflammation. In several studies, nerve electrostimulation was reported to be clinically relevant in reducing chronic inflammation in autoimmune diseases, including rheumatoid arthritis and diabetes. In the future, these new approaches could represent a major therapeutic strategy for autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
11
|
Verma N, Knudsen B, Gholston A, Skubal A, Blanz S, Settell M, Frank J, Trevathan J, Ludwig K. Microneurography as a minimally invasive method to assess target engagement during neuromodulation. J Neural Eng 2023; 20:10.1088/1741-2552/acc35c. [PMID: 36898148 PMCID: PMC10587909 DOI: 10.1088/1741-2552/acc35c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/10/2023] [Indexed: 03/12/2023]
Abstract
Objective.Peripheral neural signals recorded during neuromodulation therapies provide insights into local neural target engagement and serve as a sensitive biomarker of physiological effect. Although these applications make peripheral recordings important for furthering neuromodulation therapies, the invasive nature of conventional nerve cuffs and longitudinal intrafascicular electrodes (LIFEs) limit their clinical utility. Furthermore, cuff electrodes typically record clear asynchronous neural activity in small animal models but not in large animal models. Microneurography, a minimally invasive technique, is already used routinely in humans to record asynchronous neural activity in the periphery. However, the relative performance of microneurography microelectrodes compared to cuff and LIFE electrodes in measuring neural signals relevant to neuromodulation therapies is not well understood.Approach.To address this gap, we recorded cervical vagus nerve electrically evoked compound action potentials (ECAPs) and spontaneous activity in a human-scaled large animal model-the pig. Additionally, we recorded sensory evoked activity and both invasively and non-invasively evoked CAPs from the great auricular nerve. In aggregate, this study assesses the potential of microneurography electrodes to measure neural activity during neuromodulation therapies with statistically powered and pre-registered outcomes (https://osf.io/y9k6j).Main results.The cuff recorded the largest ECAP signal (p< 0.01) and had the lowest noise floor amongst the evaluated electrodes. Despite the lower signal to noise ratio, microneurography electrodes were able to detect the threshold for neural activation with similar sensitivity to cuff and LIFE electrodes once a dose-response curve was constructed. Furthermore, the microneurography electrodes recorded distinct sensory evoked neural activity.Significance.The results show that microneurography electrodes can measure neural signals relevant to neuromodulation therapies. Microneurography could further neuromodulation therapies by providing a real-time biomarker to guide electrode placement and stimulation parameter selection to optimize local neural fiber engagement and study mechanisms of action.
Collapse
Affiliation(s)
- Nishant Verma
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Bruce Knudsen
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Aaron Gholston
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Aaron Skubal
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Stephan Blanz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Megan Settell
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Jennifer Frank
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
| | - James Trevathan
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
| | - Kip Ludwig
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
12
|
Silverman HA, Tynan A, Hepler TD, Chang EH, Gunasekaran M, Li JH, Huerta TS, Tsaava T, Chang Q, Addorisio ME, Chen AC, Thompson DA, Pavlov VA, Brines M, Tracey KJ, Chavan SS. Transient Receptor Potential Ankyrin-1-expressing vagus nerve fibers mediate IL-1β induced hypothermia and reflex anti-inflammatory responses. Mol Med 2023; 29:4. [PMID: 36650454 PMCID: PMC9847185 DOI: 10.1186/s10020-022-00590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/11/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Inflammation, the physiological response to infection and injury, is coordinated by the immune and nervous systems. Interleukin-1β (IL-1β) and other cytokines produced during inflammatory responses activate sensory neurons (nociceptors) to mediate the onset of pain, sickness behavior, and metabolic responses. Although nociceptors expressing Transient Receptor Potential Ankyrin-1 (TRPA1) can initiate inflammation, comparatively little is known about the role of TRPA1 nociceptors in the physiological responses to specific cytokines. METHODS To monitor body temperature in conscious and unrestrained mice, telemetry probes were implanted into peritoneal cavity of mice. Using transgenic and tissue specific knockouts and chemogenetic techniques, we recorded temperature responses to the potent pro-inflammatory cytokine IL-1β. Using calcium imaging, whole cell patch clamping and whole nerve recordings, we investigated the role of TRPA1 during IL-1β-mediated neuronal activation. Mouse models of acute endotoxemia and sepsis were used to elucidate how specific activation, with optogenetics and chemogenetics, or ablation of TRPA1 neurons can affect the outcomes of inflammatory insults. All statistical tests were performed with GraphPad Prism 9 software and for all analyses, P ≤ 0.05 was considered statistically significant. RESULTS Here, we describe a previously unrecognized mechanism by which IL-1β activates afferent vagus nerve fibers to trigger hypothermia, a response which is abolished by selective silencing of neuronal TRPA1. Afferent vagus nerve TRPA1 signaling also inhibits endotoxin-stimulated cytokine storm and significantly reduces the lethality of bacterial sepsis. CONCLUSION Thus, IL-1β activates TRPA1 vagus nerve signaling in the afferent arm of a reflex anti-inflammatory response which inhibits cytokine release, induces hypothermia, and reduces the mortality of infection. This discovery establishes that TRPA1, an ion channel known previously as a pro-inflammatory detector of cold, pain, itch, and a wide variety of noxious molecules, also plays a specific anti-inflammatory role via activating reflex anti-inflammatory activity.
Collapse
Affiliation(s)
- Harold A Silverman
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Aisling Tynan
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Tyler D Hepler
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Eric H Chang
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Manojkumar Gunasekaran
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Jian Hua Li
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Tomás S Huerta
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Tea Tsaava
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Qing Chang
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Meghan E Addorisio
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Adrian C Chen
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Dane A Thompson
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Department of Surgery, North Shore University Hospital, Northwell Health, 300 Community Drive, Manhasset, NY, 11030, USA
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Valentin A Pavlov
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Michael Brines
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Kevin J Tracey
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA.
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Sangeeta S Chavan
- Laboratory for Biomedical Sciences, Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA.
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
13
|
Jiang Y, Yabluchanskiy A, Deng J, Amil FA, Po SS, Dasari TW. The role of age-associated autonomic dysfunction in inflammation and endothelial dysfunction. GeroScience 2022; 44:2655-2670. [PMID: 35773441 PMCID: PMC9768093 DOI: 10.1007/s11357-022-00616-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/22/2022] [Indexed: 01/23/2023] Open
Abstract
Aging of the cardiovascular regulatory function manifests as an imbalance between the sympathetic and parasympathetic (vagal) components of the autonomic nervous system (ANS). The most characteristic change is sympathetic overdrive, which is manifested by an increase in the muscle sympathetic nerve activity (MSNA) burst frequency with age. Age-related changes that occur in vagal nerve activity is less clear. The resting tonic parasympathetic activity can be estimated noninvasively by measuring the increase in heart rate occurring in response to muscarinic cholinergic receptor blockade; animal study models have shown this to diminish with age. Humoral, cellular, and neural mechanisms work together to prevent non-resolving inflammation. This review focuses on the mechanisms underlying age-related alternations in the ANS and how an imbalance in the ANS, evaluated by MSNA and heart rate variability (HRV), potentially facilitates inflammation when the homeostatic mechanisms between reflex neural circuits and the immune system are compromised, particularly the dysfunction of the cholinergic anti-inflammatory reflex. Physiologically, the efferent arm of this reflex acts via the [Formula: see text] 7 nicotinic acetylcholine receptors expressed in macrophages, monocytes, dendritic cells, T cells, and endothelial cells to curb the release of inflammatory cytokines, in which inhibition of NF‑κB nuclear translocation and activation of a JAK/STAT-mediated signaling cascade in macrophages and other immune cells are implicated. This reflex is likely to become less adequate with advanced age. Consequently, a pro-inflammatory state induced by reduced vagus output with age is associated with endothelial dysfunction and may significantly contribute to the development and propagation of atherosclerosis, heart failure, and hypertension. The aim of this review is to summarize the relationship between ANS dysfunction, inflammation, and endothelial dysfunction in the context of aging. Meanwhile, this review also attempts to describe the role of HRV measures as a predictor of the level of inflammation and endothelial dysfunction in the aged population and explore the possible therapeutical effects of vagus nerve stimulation.
Collapse
Affiliation(s)
- Yunqiu Jiang
- Cardiovascular Section, Department of Internal Medicine, University of Oklahoma Health Sciences Center, 800 SL Young Blvd, COM 5400, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jielin Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Faris A Amil
- Cardiovascular Section, Department of Internal Medicine, University of Oklahoma Health Sciences Center, 800 SL Young Blvd, COM 5400, Oklahoma City, OK, 73104, USA
| | - Sunny S Po
- Cardiovascular Section, Department of Internal Medicine, University of Oklahoma Health Sciences Center, 800 SL Young Blvd, COM 5400, Oklahoma City, OK, 73104, USA
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tarun W Dasari
- Cardiovascular Section, Department of Internal Medicine, University of Oklahoma Health Sciences Center, 800 SL Young Blvd, COM 5400, Oklahoma City, OK, 73104, USA.
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
14
|
Wright JP, Mughrabi IT, Wong J, Mathew J, Jayaprakash N, Crosfield C, Chang EH, Chavan SS, Tracey KJ, Pavlov VA, Al-Abed Y, Zanos TP, Zanos S, Datta-Chaudhuri T. A fully implantable wireless bidirectional neuromodulation system for mice. Biosens Bioelectron 2022; 200:113886. [PMID: 34995836 PMCID: PMC9258776 DOI: 10.1016/j.bios.2021.113886] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 01/09/2023]
Abstract
Novel research in the field of bioelectronic medicine requires neuromodulation systems that pair high-performance neurostimulation and bio-signal acquisition hardware with advanced signal processing and control algorithms. Although mice are the most commonly used animal in medical research, the size, weight, and power requirements of such bioelectronic systems either preclude use in mice or impose significant constraints on experimental design. Here, a fully-implantable recording and stimulation neuromodulation system suitable for use in mice is presented, measuring 2.2 cm3 and weighing 2.8 g. The bidirectional wireless interface allows simultaneous readout of multiple physiological signals and complete control over stimulation parameters, and a wirelessly rechargeable battery provides a lifetime of up to 5 days on a single charge. The device was implanted to deliver vagus nerve stimulation (n = 12 animals) and a functional neural interface (capable of inducing acute bradycardia) was demonstrated with lifetimes exceeding three weeks. The design utilizes only commercially-available electrical components and 3D-printed packaging, with the goal of facilitating widespread adoption and accelerating discovery and translation of future bioelectronic therapeutics.
Collapse
Affiliation(s)
- Jason P Wright
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr, Manhasset, NY, United States
| | - Ibrahim T Mughrabi
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr, Manhasset, NY, United States
| | - Jason Wong
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr, Manhasset, NY, United States
| | - Jose Mathew
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr, Manhasset, NY, United States
| | - Naveen Jayaprakash
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr, Manhasset, NY, United States
| | - Christine Crosfield
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr, Manhasset, NY, United States
| | - Eric H Chang
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr, Manhasset, NY, United States
| | - Sangeeta S Chavan
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr, Manhasset, NY, United States
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr, Manhasset, NY, United States
| | - Valentin A Pavlov
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr, Manhasset, NY, United States
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr, Manhasset, NY, United States
| | - Theodoros P Zanos
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr, Manhasset, NY, United States
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr, Manhasset, NY, United States
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr, Manhasset, NY, United States.
| |
Collapse
|
15
|
Domacena J, Ruan J, Ye H. Improving suction technology for nerve activity recording. J Neurosci Methods 2022; 365:109401. [PMID: 34728256 DOI: 10.1016/j.jneumeth.2021.109401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/10/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Extracellular recording of nerve activities using suction electrodes is an easy yet powerful tool in characterizing neural activities in physiology and pathological conditions. The key factors that determine the quality of suction electrode recordings have not been fully investigated. New Methods: Here, we proposed a biophysical model to study the mechanisms underlying suction technology for axon recording. The model focuses on the interpretation of the recorded single neuron activity based on the location of the electrode, the integrity of the recorded tissue, and the tightness of the suction. To directly test these model predictions, we applied two channel recordings from the nerves in Aplysia californica, and analyzed the shape of the extracellularly recorded single neuron activity under various conditions. RESULTS We found that both the recording site and the integrity of the neural tissue impact the shape of the action potentials traveling along the axon. In practice, the tightness of the suction is the key parameter for high-quality recordings using a suction electrode. Comparison with Existing Methods: Experimental protocols that can improve precise positioning of the electrode tip to the target nerve, avoid tissue damage, enhance suction force, and maintain tightness are essential for high-quality suction recording from axons. Current methods have not emphasized on achieving and maintaining of the suction pressure during experimentation, and have sometimes ignored the impact of suction electrode position or tissue damage to the quality of the recorded neural signal. CONCLUSIONS A combined theoretical analysis and experimental approach is essential in improving neural recording technology. The work provides theoretical and practical guidelines to improve suction technology. This work also provides valuable insights to the improvement of several other extracellular recording technology in laboratory research or clinical settings.
Collapse
Affiliation(s)
- Justin Domacena
- Department of Biology, Loyola University Chicago, Chicago, USA
| | - Joyce Ruan
- Department of Biology, Loyola University Chicago, Chicago, USA
| | - Hui Ye
- Department of Biology, Loyola University Chicago, Chicago, USA.
| |
Collapse
|
16
|
Tarnawski L, Olofsson PS. Inflammation neuroscience: neuro-immune crosstalk and interfaces. Clin Transl Immunology 2021; 10:e1352. [PMID: 34754449 PMCID: PMC8558388 DOI: 10.1002/cti2.1352] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a key process in antimicrobial defence and tissue repair, and failure to properly regulate inflammation can result in tissue damage and death. Neural circuits play important roles throughout the course of an inflammatory response, and the neurophysiological and molecular mechanisms are only partly understood. Here, we review key evidence for the neural regulation of inflammation and discuss emerging technologies to further map and harness this neurophysiology, a cornerstone in the rapidly evolving field of inflammation neuroscience.
Collapse
Affiliation(s)
- Laura Tarnawski
- Laboratory of ImmunobiologyDivision of Cardiovascular MedicineDepartment of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Stockholm Center for Bioelectronic MedicineMedTechLabsBioclinicumKarolinska University HospitalSolnaSweden
| | - Peder S Olofsson
- Laboratory of ImmunobiologyDivision of Cardiovascular MedicineDepartment of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Stockholm Center for Bioelectronic MedicineMedTechLabsBioclinicumKarolinska University HospitalSolnaSweden
- Institute of Bioelectronic MedicineFeinstein Institutes for Medical ResearchManhassetNYUSA
| |
Collapse
|
17
|
Carnevale L, Perrotta M, Lembo G. A Focused Review of Neural Recording and Stimulation Techniques With Immune-Modulatory Targets. Front Immunol 2021; 12:689344. [PMID: 34646261 PMCID: PMC8502970 DOI: 10.3389/fimmu.2021.689344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
The complex interactions established between the nervous and immune systems have been investigated for a long time. With the advent of small and portable devices to record and stimulate nerve activity, researchers from many fields began to be interested in how nervous activity can elicit immune responses and whether this activity can be manipulated to trigger specific immune responses. Pioneering works demonstrated the existence of a cholinergic inflammatory reflex, capable of controlling the systemic inflammatory response through a vagus nerve-mediated modulation of the spleen. This work inspired many different areas of technological and conceptual advancement, which are here reviewed to provide a concise reference for the main works expanding the knowledge on vagus nerve immune-modulatory capabilities. In these works the enabling technologies of peripheral nervous activity recordings were implemented and embody the current efforts aimed at controlling neural activity with modulating functions in immune response, both in experimental and clinical contexts.
Collapse
Affiliation(s)
- Lorenzo Carnevale
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Department of Angiocardioneurology and Translational Medicine, Pozzilli (IS), Italy
| | - Marialuisa Perrotta
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Giuseppe Lembo
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Department of Angiocardioneurology and Translational Medicine, Pozzilli (IS), Italy.,Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
18
|
Gonzalez-Gonzalez MA, Bendale GS, Wang K, Wallace GG, Romero-Ortega M. Platinized graphene fiber electrodes uncover direct spleen-vagus communication. Commun Biol 2021; 4:1097. [PMID: 34535751 PMCID: PMC8448843 DOI: 10.1038/s42003-021-02628-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/30/2021] [Indexed: 11/21/2022] Open
Abstract
Neural interfacing nerve fascicles along the splenic neurovascular plexus (SNVP) is needed to better understand the spleen physiology, and for selective neuromodulation of this major organ. However, their small size and anatomical location have proven to be a significant challenge. Here, we use a reduced liquid crystalline graphene oxide (rGO) fiber coated with platinum (Pt) as a super-flexible suture-like electrode to interface multiple SNVP. The Pt-rGO fibers work as a handover knot electrodes over the small SNVP, allowing sensitive recording from four splenic nerve terminal branches (SN 1–4), to uncover differential activity and axon composition among them. Here, the asymmetric defasciculation of the SN branches is revealed by electron microscopy, and the functional compartmentalization in spleen innervation is evidenced in response to hypoxia and pharmacological modulation of mean arterial pressure. We demonstrate that electrical stimulation of cervical and sub-diaphragmatic vagus nerve (VN), evokes activity in a subset of SN terminal branches, providing evidence for a direct VN control over the spleen. This notion is supported by adenoviral tract-tracing of SN branches, revealing an unconventional direct brain-spleen projection. High-performance Pt-rGO fiber electrodes, may be used for the fine neural modulation of other small neurovascular plexus at the point of entry of major organs as a bioelectronic medical alternative. Gonzalez-Gonzalez et al. use high-performance platinized graphene fiber electrodes to interface individual neurovascular plexus that innervate the spleen. Their approach provides evidence for distinct function of individual spleen terminal branches in organ function.
Collapse
Affiliation(s)
- Maria A Gonzalez-Gonzalez
- Biomedical Engineering and Biomedical Sciences, University of Houston, Health 2, 4849 Calhoun Rd., Room 6014, Houston, TX, 77204-6064, USA
| | - Geetanjali S Bendale
- Biomedical Engineering and Biomedical Sciences, University of Houston, Health 2, 4849 Calhoun Rd., Room 6014, Houston, TX, 77204-6064, USA
| | - Kezhong Wang
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Mario Romero-Ortega
- Biomedical Engineering and Biomedical Sciences, University of Houston, Health 2, 4849 Calhoun Rd., Room 6014, Houston, TX, 77204-6064, USA.
| |
Collapse
|
19
|
Datta-Chaudhuri T. Closed-loop neuromodulation will increase the utility of mouse models in Bioelectronic Medicine. Bioelectron Med 2021; 7:10. [PMID: 34193309 PMCID: PMC8244222 DOI: 10.1186/s42234-021-00071-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/01/2021] [Indexed: 01/16/2023] Open
Abstract
Mouse models have been of tremendous benefit to medical science for the better part of a century, yet bioelectronic medicine research using mice has been limited to mostly acute studies because of a lack of tools for chronic stimulation and sensing. A wireless neuromodulation platform small enough for implantation in mice will significantly increase the utility of mouse models in bioelectronic medicine. This perspective examines the necessary functionality of such a system and the technical challenges needed to be overcome for its development. Recent progress is examined and the outlook for the future of implantable devices for mice is discussed.
Collapse
Affiliation(s)
- Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA. .,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, NY, 11549, USA.
| |
Collapse
|
20
|
Recording and manipulation of vagus nerve electrical activity in chronically instrumented unanesthetized near term fetal sheep. J Neurosci Methods 2021; 360:109257. [PMID: 34139266 DOI: 10.1016/j.jneumeth.2021.109257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND The chronically instrumented pregnant sheep has been used as a model of human fetal development and responses to pathophysiologic stimuli. This is due to the unique amenability of the unanesthetized fetal sheep to the surgical placement and maintenance of catheters and electrodes, allowing repetitive blood sampling, substance injection, recording of bioelectrical activity, application of electric stimulation, and in vivo organ imaging. Recently, there has been growing interest in the pleiotropic effects of vagus nerve stimulation (VNS) on various organ systems such as innate immunity and inflammation, and metabolism. There is no approach to study this in utero and corresponding physiological understanding is scarce. NEW METHOD Based on our previous presentation of a stable chronically instrumented unanesthetized fetal sheep model, here we describe the surgical instrumentation procedure allowing successful implantation of a cervical uni- or bilateral VNS probe with or without vagotomy. RESULTS In a cohort of 68 animals, we present the changes in blood gas, metabolic, and inflammatory markers during the postoperative period. We detail the design of a VNS probe which also allows recording from the fetal nerve. We also present an example of fetal vagus electroneurogram (VENG) recorded from the VNS probe and an analytical approach to the data. COMPARISON WITH EXISTING METHODS This method represents the first implementation of fetal VENG/VNS in a large pregnant mammalian organism. CONCLUSIONS This study describes a new surgical procedure allowing to record and manipulate chronically fetal vagus nerve activity in an animal model of human pregnancy.
Collapse
|
21
|
Loper H, Leinen M, Bassoff L, Sample J, Romero-Ortega M, Gustafson KJ, Taylor DM, Schiefer MA. Both high fat and high carbohydrate diets impair vagus nerve signaling of satiety. Sci Rep 2021; 11:10394. [PMID: 34001925 PMCID: PMC8128917 DOI: 10.1038/s41598-021-89465-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
Obesity remains prevalent in the US. One potential treatment is vagus nerve stimulation (VNS), which activates the sensory afferents innervating the stomach that convey stomach volume and establish satiety. However, current VNS approaches and stimulus optimization could benefit from additional understanding of the underlying neural response to stomach distension. In this study, obesity-prone Sprague Dawley rats consumed a standard, high-carbohydrate, or high-fat diet for several months, leading to diet-induced obesity in the latter two groups. Under anesthesia, the neural activity in the vagus nerve was recorded with a penetrating microelectrode array while the stomach was distended with an implanted balloon. Vagal tone during distension was compared to baseline tone prior to distension. Responses were strongly correlated with stomach distension, but the sensitivity to distension was significantly lower in animals that had been fed the nonstandard diets. The results indicate that both high fat and high carbohydrate diets impair vagus activity.
Collapse
Affiliation(s)
- Hailley Loper
- Malcom Randall VA Medical Center, Gainesville, FL, USA.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Monique Leinen
- Malcom Randall VA Medical Center, Gainesville, FL, USA.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Logan Bassoff
- Malcom Randall VA Medical Center, Gainesville, FL, USA.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Jack Sample
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.,College of Medicine & Life Sciences, University of Toledo, Toledo, OH, USA
| | - Mario Romero-Ortega
- Departments of Biomedical Engineering and Biomedical Sciences, University of Houston, Houston, TX, USA
| | - Kenneth J Gustafson
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Dawn M Taylor
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.,Department of Neurosciences, The Cleveland Clinic, Cleveland, OH, USA
| | - Matthew A Schiefer
- Malcom Randall VA Medical Center, Gainesville, FL, USA. .,Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA. .,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
22
|
Cuttaz EA, Chapman CAR, Syed O, Goding JA, Green RA. Stretchable, Fully Polymeric Electrode Arrays for Peripheral Nerve Stimulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004033. [PMID: 33898185 PMCID: PMC8061359 DOI: 10.1002/advs.202004033] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/19/2021] [Indexed: 05/08/2023]
Abstract
There is a critical need to transition research level flexible polymer bioelectronics toward the clinic by demonstrating both reliability in fabrication and stable device performance. Conductive elastomers (CEs) are composites of conductive polymers in elastomeric matrices that provide both flexibility and enhanced electrochemical properties compared to conventional metallic electrodes. This work focuses on the development of nerve cuff devices and the assessment of the device functionality at each development stage, from CE material to fully polymeric electrode arrays. Two device types are fabricated by laser machining of a thick and thin CE sheet variant on an insulative polydimethylsiloxane substrate and lamination into tubing to produce pre-curled cuffs. Device performance and stability following sterilization and mechanical loading are compared to a state-of-the-art stretchable metallic nerve cuff. The CE cuffs are found to be electrically and mechanically stable with improved charge transfer properties compared to the commercial cuff. All devices are applied to an ex vivo whole sciatic nerve and shown to be functional, with the CE cuffs demonstrating superior charge transfer and electrochemical safety in the biological environment.
Collapse
Affiliation(s)
- Estelle A. Cuttaz
- Department of BioengineeringImperial CollegeSouth KensingtonLondonSW7 2AZUK
| | | | - Omaer Syed
- Department of BioengineeringImperial CollegeSouth KensingtonLondonSW7 2AZUK
| | - Josef A. Goding
- Department of BioengineeringImperial CollegeSouth KensingtonLondonSW7 2AZUK
| | - Rylie A. Green
- Department of BioengineeringImperial CollegeSouth KensingtonLondonSW7 2AZUK
| |
Collapse
|
23
|
Okonogi T, Sasaki T. Optogenetic Manipulation of the Vagus Nerve. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:459-470. [PMID: 33398833 DOI: 10.1007/978-981-15-8763-4_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The vagus nerve plays a pivotal role in communication between the brain and peripheral organs involved in the sensory detection and the autonomic control of visceral activity. While the lack of appropriate experimental techniques to manipulate the physiological activity of the vagus nerve has been a long-standing problem, recent advancements in optogenetic tools, including viral vectors and photostimulation devices, during the late 2010s have begun to overcome this technical hurdle. Furthermore, identifying promoters for expressing transgenes in a cell-type-specific subpopulation of vagal neurons enables the selective photoactivation of afferent/efferent vagal neurons and specific visceral organ-innervating vagal neurons. In this chapter, we describe recent optogenetic approaches to study vagus nerve physiology and describe how these approaches have provided novel findings on the roles of vagus nerve signals in the cardiac, respiratory, and gastrointestinal systems. Compared with studies of the central nervous system, there are still few insights into vagus nerve physiology. Further studies with optogenetic tools will be useful for understanding the fundamental characteristics of vagus nerve signals transferred throughout the body.
Collapse
Affiliation(s)
- Toya Okonogi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
24
|
Jiman AA, Ratze DC, Welle EJ, Patel PR, Richie JM, Bottorff EC, Seymour JP, Chestek CA, Bruns TM. Multi-channel intraneural vagus nerve recordings with a novel high-density carbon fiber microelectrode array. Sci Rep 2020; 10:15501. [PMID: 32968177 PMCID: PMC7511947 DOI: 10.1038/s41598-020-72512-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/27/2020] [Indexed: 01/03/2023] Open
Abstract
Autonomic nerves convey essential neural signals that regulate vital body functions. Recording clearly distinctive physiological neural signals from autonomic nerves will help develop new treatments for restoring regulatory functions. However, this is very challenging due to the small nature of autonomic nerves and the low-amplitude signals from their small axons. We developed a multi-channel, high-density, intraneural carbon fiber microelectrode array (CFMA) with ultra-small electrodes (8-9 µm in diameter, 150-250 µm in length) for recording physiological action potentials from small autonomic nerves. In this study, we inserted CFMA with up to 16 recording carbon fibers in the cervical vagus nerve of 22 isoflurane-anesthetized rats. We recorded action potentials with peak-to-peak amplitudes of 15.1-91.7 µV and signal-to-noise ratios of 2.0-8.3 on multiple carbon fibers per experiment, determined conduction velocities of some vagal signals in the afferent (0.7-4.4 m/s) and efferent (0.7-8.8 m/s) directions, and monitored firing rate changes in breathing and blood glucose modulated conditions. Overall, these experiments demonstrated that CFMA is a novel interface for in-vivo intraneural action potential recordings. This work is considerable progress towards the comprehensive understanding of physiological neural signaling in vital regulatory functions controlled by autonomic nerves.
Collapse
Affiliation(s)
- Ahmad A Jiman
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - David C Ratze
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Elissa J Welle
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Paras R Patel
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Julianna M Richie
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth C Bottorff
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - John P Seymour
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX, USA
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Tim M Bruns
- Department of Biomedical Engineering, University of Michigan, NCRC - B10 - A-169, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Falcone JD, Liu T, Goldman L, David D P, Rieth L, Bouton CE, Straka M, Sohal HS. A novel microwire interface for small diameter peripheral nerves in a chronic, awake murine model. J Neural Eng 2020; 17:046003. [DOI: 10.1088/1741-2552/ab9b6d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Tsaava T, Datta-Chaudhuri T, Addorisio ME, Masi EB, Silverman HA, Newman JE, Imperato GH, Bouton C, Tracey KJ, Chavan SS, Chang EH. Specific vagus nerve stimulation parameters alter serum cytokine levels in the absence of inflammation. Bioelectron Med 2020; 6:8. [PMID: 32309522 PMCID: PMC7146955 DOI: 10.1186/s42234-020-00042-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background Electrical stimulation of peripheral nerves is a widely used technique to treat a variety of conditions including chronic pain, motor impairment, headaches, and epilepsy. Nerve stimulation to achieve efficacious symptomatic relief depends on the proper selection of electrical stimulation parameters to recruit the appropriate fibers within a nerve. Recently, electrical stimulation of the vagus nerve has shown promise for controlling inflammation and clinical trials have demonstrated efficacy for the treatment of inflammatory disorders. This application of vagus nerve stimulation activates the inflammatory reflex, reducing levels of inflammatory cytokines during inflammation. Methods Here, we wanted to test whether altering the parameters of electrical vagus nerve stimulation would change circulating cytokine levels of normal healthy animals in the absence of increased inflammation. To examine this, we systematically tested a set of electrical stimulation parameters and measured serum cytokine levels in healthy mice. Results Surprisingly, we found that specific combinations of pulse width, pulse amplitude, and frequency produced significant increases of the pro-inflammatory cytokine tumor necrosis factor (TNF), while other parameters selectively lowered serum TNF levels, as compared to sham-stimulated mice. In addition, serum levels of the anti-inflammatory cytokine interleukin-10 (IL-10) were significantly increased by select parameters of electrical stimulation but remained unchanged with others. Conclusions These results indicate that electrical stimulation parameter selection is critically important for the modulation of cytokines via the cervical vagus nerve and that specific cytokines can be increased by electrical stimulation in the absence of inflammation. As the next generation of bioelectronic therapies and devices are developed to capitalize on the neural regulation of inflammation, the selection of nerve stimulation parameters will be a critically important variable for achieving cytokine-specific changes.
Collapse
Affiliation(s)
- Téa Tsaava
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, New York 11030 USA
- The Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030 USA
| | - Meghan E. Addorisio
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
| | - Emily Battinelli Masi
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, New York 11030 USA
| | - Harold A. Silverman
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
| | - Justin E. Newman
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
| | - Gavin H. Imperato
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
- The Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030 USA
| | - Chad Bouton
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, New York 11030 USA
- The Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030 USA
| | - Kevin J. Tracey
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, New York 11030 USA
- The Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030 USA
| | - Sangeeta S. Chavan
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, New York 11030 USA
- The Elmezzi Graduate School of Molecular Medicine, 350 Community Drive, Manhasset, NY 11030 USA
| | - Eric H. Chang
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030 USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra University, Hempstead, New York 11030 USA
| |
Collapse
|
27
|
Davey CE, Soto-Breceda A, Shafton A, McAllen RM, Furness JB, Grayden DB, Stebbing MJ. A new algorithm for drift compensation in multi-unit recordings of action potentials in peripheral autonomic nerves over time. J Neurosci Methods 2020; 338:108683. [PMID: 32201350 DOI: 10.1016/j.jneumeth.2020.108683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Peripheral autonomic nerves control visceral organs and convey information regarding their functional states and are, therefore, potential targets for new therapeutic and diagnostic approaches. Conventionally recorded multi-unit nerve activity in vivo undergoes slow differential drift of signal and noise amplitudes, making accurate monitoring of nerve activity for more than tens of minutes problematic. NEW METHOD We describe an on-line drift compensation algorithm that utilizes recursive least-squares to estimate the relative change in spike amplitude due to changes in the nerve-electrode interface over time. RESULTS We tested and refined our approach using simulated data and in vivo recordings from nerves supplying the small intestine under control conditions and in response to gut inflammation over several hours. The algorithm is robust to changes in recording conditions and signal-to-noise ratio and applicable to both single and multi-unit recordings. In uncompensated records, drift prevented "spike families" and single units from being discriminated accurately over hours. After rescaling, these were successfully tracked throughout recordings (up to 3 h). COMPARISON WITH EXISTING METHODS Existing methods are subjective or compensate for drift using spatial information and spike shape data which is not practical in multi-unit peripheral nerve recordings. In contrast, this method is objective and applicable to data from a single differential multi-unit recording. In comparisons using simulated data the algorithm performed as well as or better than existing methods. CONCLUSIONS Results suggest our drift compensation algorithm is widely applicable and robust, though conservative, when differentiating prolonged responses from drift in signal. Extracellular nerve recordings; drift compensation; chronic nerve recordings; closed-loop; multi-unit activity; spike discrimination; recursive least squares; real-time.
Collapse
Affiliation(s)
- Catherine E Davey
- Departments of Biomedical Engineering, Parkville, Victoria 3010, Australia.
| | | | - Anthony Shafton
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.
| | - Robin M McAllen
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.
| | - John B Furness
- Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.
| | - David B Grayden
- Departments of Biomedical Engineering, Parkville, Victoria 3010, Australia.
| | - Martin J Stebbing
- Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.
| |
Collapse
|
28
|
Pavlov VA, Chavan SS, Tracey KJ. Bioelectronic Medicine: From Preclinical Studies on the Inflammatory Reflex to New Approaches in Disease Diagnosis and Treatment. Cold Spring Harb Perspect Med 2020; 10:a034140. [PMID: 31138538 PMCID: PMC7050582 DOI: 10.1101/cshperspect.a034140] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioelectronic medicine is an evolving field in which new insights into the regulatory role of the nervous system and new developments in bioelectronic technology result in novel approaches in disease diagnosis and treatment. Studies on the immunoregulatory function of the vagus nerve and the inflammatory reflex have a specific place in bioelectronic medicine. These studies recently led to clinical trials with bioelectronic vagus nerve stimulation in inflammatory diseases and other conditions. Here, we outline key findings from this preclinical and clinical research. We also point to other aspects and pillars of interdisciplinary research and technological developments in bioelectronic medicine.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11550
| | - Sangeeta S Chavan
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11550
| | - Kevin J Tracey
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11550
| |
Collapse
|
29
|
Zanos TP. Recording and Decoding of Vagal Neural Signals Related to Changes in Physiological Parameters and Biomarkers of Disease. Cold Spring Harb Perspect Med 2019; 9:a034157. [PMID: 30670469 PMCID: PMC6886457 DOI: 10.1101/cshperspect.a034157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our bodies have built-in neural reflexes that continuously monitor organ function and maintain physiological homeostasis. Whereas the field of bioelectronic medicine has mainly focused on the stimulation of neural circuits to treat various conditions, recent studies have started to investigate the possibility of leveraging the sensory arm of these reflexes to diagnose disease states. To accomplish this, neural signals emanating from the body's built-in biosensors and propagating through peripheral nerves must be recorded and decoded to identify the presence or levels of relevant biomarkers of disease. The process of acquiring these signals poses several technical challenges related to the neural interfaces, surgical techniques, and data-processing framework needed to record and analyze them. However, these challenges can be addressed with a rigorous experimental approach and new advances in implantable electrodes, signal processing, and machine learning methods. Outlined in this review are studies decoding vagus nerve activity as it related to inflammatory, metabolic, and cardiopulmonary biomarkers. Successfully decoding peripheral nerve activity related to disease states will not only enable the development of real-time diagnostic devices, but also help advancing truly closed-loop neuromodulation technologies.
Collapse
Affiliation(s)
- Theodoros P Zanos
- Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Donald & Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York 11030
| |
Collapse
|
30
|
Levy TJ, Ahmed U, Tsaava T, Chang YC, Lorraine PJ, Tomaio JN, Cracchiolo M, Lopez M, Rieth L, Tracey KJ, Zanos S, Zanos TP. An impedance matching algorithm for common-mode interference removal in vagus nerve recordings. J Neurosci Methods 2019; 330:108467. [PMID: 31654663 DOI: 10.1016/j.jneumeth.2019.108467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/06/2019] [Accepted: 10/17/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND The peripheral nervous system is involved in a multitude of physiological functions. Recording neural signals provides information that can be used by diagnostic bioelectronic medicine devices, closed-loop neuromodulation therapies and other neuroprosthetic applications. The ability to accurately record these signals is challenging, due to the presence of various biological and instrument-related interference sources. NEW METHOD We developed a common-mode interference rejection algorithm based on an impedance matching approach for bipolar cuff electrodes. Two unipolar channels were recorded from the two electrode contacts of a bipolar cuff. The impedance mismatch was estimated and used to correct one of the two channels. RESULTS When applied to electrocardiographic (ECG) artifacts collected from three mice using CorTec electrodes, the algorithm reduced the interference to noise ratio (INR) over simple subtraction by 12 dB on average. The algorithm also reduced the INR of stimulation artifacts in recordings from three rats collected using flexible electrodes by an additional 2.4 dB. In the same experiments evoked electromyographic (EMG) interference was suppressed by 1.3 dB. COMPARISON WITH EXISTING METHODS Simple subtraction is the common approach for reducing common-mode interference in bipolar recordings, however impedance mismatches that exist or emerge compromise its efficiency. CONCLUSIONS The algorithm significantly reduced the common-mode interference from ECG artifacts, stimulation artifacts, and evoked EMG interference, while retaining neural signals, in two animal models and two recording setups. This approach can be used in a variety of different neurophysiological setups to remove common-mode interference from a variety of sources.
Collapse
Affiliation(s)
- Todd J Levy
- Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA.
| | - Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Tea Tsaava
- Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Yao-Chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | | | - Jacquelyn N Tomaio
- Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Marina Cracchiolo
- Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA; The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, PI, 56127, Italy
| | - Maria Lopez
- Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Loren Rieth
- Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Theodoros P Zanos
- Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA; Zucker School of Medicine at Hofstra/Northwell, Heampstead, NY, 11549, USA.
| |
Collapse
|
31
|
Noller CM, Levine YA, Urakov TM, Aronson JP, Nash MS. Vagus Nerve Stimulation in Rodent Models: An Overview of Technical Considerations. Front Neurosci 2019; 13:911. [PMID: 31551679 PMCID: PMC6738225 DOI: 10.3389/fnins.2019.00911] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
Over the last several decades, vagus nerve stimulation (VNS) has evolved from a treatment for select neuropsychiatric disorders to one that holds promise in treating numerous inflammatory conditions. Growing interest has focused on the use of VNS for other indications, such as heart failure, rheumatoid arthritis, inflammatory bowel disease, ischemic stroke, and traumatic brain injury. As pre-clinical research often guides expansion into new clinical avenues, animal models of VNS have also increased in recent years. To advance this promising treatment, however, there are a number of experimental parameters that must be considered when planning a study, such as physiology of the vagus nerve, electrical stimulation parameters, electrode design, stimulation equipment, and microsurgical technique. In this review, we discuss these important considerations and how a combination of clinically relevant stimulation parameters can be used to achieve beneficial therapeutic results in pre-clinical studies of sub-acute to chronic VNS, and provide a practical guide for performing this work in rodent models. Finally, by integrating clinical and pre-clinical research, we present indeterminate issues as opportunities for future research.
Collapse
Affiliation(s)
- Crystal M. Noller
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, United States
- Section of Neurosurgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | | | - Timur M. Urakov
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Jackson Memorial Hospital, Miami, FL, United States
| | - Joshua P. Aronson
- Section of Neurosurgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Mark S. Nash
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Physical Medicine and Rehabilitation, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
32
|
Masi EB, Levy T, Tsaava T, Bouton CE, Tracey KJ, Chavan SS, Zanos TP. Identification of hypoglycemia-specific neural signals by decoding murine vagus nerve activity. Bioelectron Med 2019; 5:9. [PMID: 32232099 PMCID: PMC7098244 DOI: 10.1186/s42234-019-0025-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glucose is a crucial energy source. In humans, it is the primary sugar for high energy demanding cells in brain, muscle and peripheral neurons. Deviations of blood glucose levels from normal levels for an extended period of time is dangerous or even fatal, so regulation of blood glucose levels is a biological imperative. The vagus nerve, comprised of sensory and motor fibres, provides a major anatomical substrate for regulating metabolism. While prior studies have implicated the vagus nerve in the neurometabolic interface, its specific role in either the afferent or efferent arc of this reflex remains elusive. METHODS Here we use recently developed methods to isolate and decode specific neural signals acquired from the surface of the vagus nerve in BALB/c wild type mice to identify those that respond robustly to hypoglycemia. We also attempted to decode neural signals related to hyperglycemia. In addition to wild type mice, we analyzed the responses to acute hypo- and hyperglycemia in transient receptor potential cation channel subfamily V member 1 (TRPV1) cell depleted mice. The decoding algorithm uses neural signals as input and reconstructs blood glucose levels. RESULTS Our algorithm was able to reconstruct the blood glucose levels with high accuracy (median error 18.6 mg/dl). Hyperglycemia did not induce robust vagus nerve responses, and deletion of TRPV1 nociceptors attenuated the hypoglycemia-dependent vagus nerve signals. CONCLUSION These results provide insight to the sensory vagal signaling that encodes hypoglycemic states and suggest a method to measure blood glucose levels by decoding nerve signals. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
| | - Todd Levy
- 2Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| | - Tea Tsaava
- 2Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| | - Chad E Bouton
- 2Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| | - Kevin J Tracey
- Zucker School of Medicine at Hofstra/Northwell, Heampstead, NY USA
- 2Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| | - Sangeeta S Chavan
- Zucker School of Medicine at Hofstra/Northwell, Heampstead, NY USA
- 2Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| | - Theodoros P Zanos
- Zucker School of Medicine at Hofstra/Northwell, Heampstead, NY USA
- 2Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030 USA
| |
Collapse
|
33
|
Abstract
The central nervous system controls the activity states of the peripheral organs in response to various environmental changes. However, the physiological interactions across multiple organs remain largely unknown. Recently, we have developed an electrophysiological recording system that simultaneously captures neuronal population activity patterns in the brain, heartbeat signals, muscle contraction signals, respiratory signals, and vagus nerve action potentials in freely moving rodents. This paper summarizes several recent insights obtained from this recording system, including the observations that some but not all brain activity patterns are associated with peripheral organ activity in a behavioral test, and that functions across cortical networks can predict stress-induced changes in cardiac function in rats. The evidence suggests that adding information on peripheral physiological signals to behavioral data assists in a more accurate estimation of animals' mental states. The concept of such a research approach opens a new field of large-scale analysis of systemic physiological signals, termed "physiolomics," which is expected to unveil further physiological issues involving mind-body associations in health and disease.
Collapse
Affiliation(s)
- Takuya Sasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST)
| |
Collapse
|
34
|
Pavlov VA, Tracey KJ. Bioelectronic medicine: updates, challenges and paths forward. Bioelectron Med 2019; 5:1. [PMID: 32232092 PMCID: PMC7098260 DOI: 10.1186/s42234-019-0018-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 12/30/2022] Open
Affiliation(s)
- Valentin A Pavlov
- 1Center for Biomedical Science and Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| | - Kevin J Tracey
- 1Center for Biomedical Science and Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| |
Collapse
|
35
|
Shikano Y, Nishimura Y, Okonogi T, Ikegaya Y, Sasaki T. Vagus nerve spiking activity associated with locomotion and cortical arousal states in a freely moving rat. Eur J Neurosci 2018; 49:1298-1312. [PMID: 30450796 DOI: 10.1111/ejn.14275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/18/2018] [Accepted: 11/08/2018] [Indexed: 01/15/2023]
Abstract
The vagus nerve serves as a central pathway for communication between the central and peripheral organs. Despite traditional knowledge of vagus nerve functions, detailed neurophysiological dynamics of the vagus nerve in naïve behavior remain to be understood. In this study, we developed a new method to record spiking patterns from the cervical vagus nerve while simultaneously monitoring central and peripheral organ bioelectrical signals in a freely moving rat. When the rats transiently elevated locomotor activity, the frequency of vagus nerve spikes was correspondingly increased, and this activity was retained for several seconds after the increase in running speed terminated. Spike patterns of the vagus nerve were not robustly associated with which arms the animals entered on an elevated plus maze. During sniffing behavior, vagus nerve spikes were nearly absent. During stopping, the vagus nerve spike patterns differed considerably depending on external contexts and peripheral activity states associated with cortical arousal levels. Stimulation of the vagus nerve altered rat's running speed and cortical arousal states depending on running speed at the instant of stimulation. These observations are a new step for uncovering the physiological dynamics of the vagus nerve modulating the visceral organs such as cardiovascular, respiratory, and gastrointestinal systems.
Collapse
Affiliation(s)
- Yu Shikano
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuya Nishimura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Toya Okonogi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Center for Information and Neural Networks, Suita City, Osaka, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, Japan
| |
Collapse
|
36
|
Zanos TP, Silverman HA, Levy T, Tsaava T, Battinelli E, Lorraine PW, Ashe JM, Chavan SS, Tracey KJ, Bouton CE. Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity. Proc Natl Acad Sci U S A 2018; 115:E4843-E4852. [PMID: 29735654 PMCID: PMC6003492 DOI: 10.1073/pnas.1719083115] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The nervous system maintains physiological homeostasis through reflex pathways that modulate organ function. This process begins when changes in the internal milieu (e.g., blood pressure, temperature, or pH) activate visceral sensory neurons that transmit action potentials along the vagus nerve to the brainstem. IL-1β and TNF, inflammatory cytokines produced by immune cells during infection and injury, and other inflammatory mediators have been implicated in activating sensory action potentials in the vagus nerve. However, it remains unclear whether neural responses encode cytokine-specific information. Here we develop methods to isolate and decode specific neural signals to discriminate between two different cytokines. Nerve impulses recorded from the vagus nerve of mice exposed to IL-1β and TNF were sorted into groups based on their shape and amplitude, and their respective firing rates were computed. This revealed sensory neural groups responding specifically to TNF and IL-1β in a dose-dependent manner. These cytokine-mediated responses were subsequently decoded using a Naive Bayes algorithm that discriminated between no exposure and exposures to IL-1β and TNF (mean successful identification rate 82.9 ± 17.8%, chance level 33%). Recordings obtained in IL-1 receptor-KO mice were devoid of IL-1β-related signals but retained their responses to TNF. Genetic ablation of TRPV1 neurons attenuated the vagus neural signals mediated by IL-1β, and distal lidocaine nerve block attenuated all vagus neural signals recorded. The results obtained in this study using the methodological framework suggest that cytokine-specific information is present in sensory neural signals within the vagus nerve.
Collapse
Affiliation(s)
- Theodoros P Zanos
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Harold A Silverman
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Todd Levy
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Tea Tsaava
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Emily Battinelli
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Manhasset, NY 11030
| | | | - Jeffrey M Ashe
- General Electric Global Research US, Niskayuna, NY 12309
| | - Sangeeta S Chavan
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Kevin J Tracey
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030;
- Center for Biomedical Sciences, Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Chad E Bouton
- Center for Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030;
| |
Collapse
|