1
|
Toraman A, Sağlam E, Savran L, Köseoğlu S. Evaluation of Salivary Il-38 Levels in Periodontitis: A Cross-Sectional Study. J Interferon Cytokine Res 2025; 45:76-82. [PMID: 38497769 DOI: 10.1089/jir.2023.0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
The goal of the current study was to assess levels of salivary interleukin (IL)-38, IL-1β, and IL-10 in various periodontal clinical conditions. In total, 60 (20 healthy, 20 gingivitis, and 20 stage II-III, grade A-B periodontitis) subjects were included in the study. Demographic and clinical periodontal parameters were recorded. Samples were examined for IL-38, IL-1β, and IL-10 levels by means of enzyme-linked immunosorbent assay. Results demonstrated that the periodontitis group had significantly lower salivary IL-38 levels (P < 0.05) than the healthy group. Salivary IL-10 levels did not differ significantly between the groups (P > 0.05). The salivary IL-1β levels of gingivitis (P < 0.001) and periodontitis groups (P < 0.01) were significantly higher than those of the healthy group. The present study indicated that IL-38 level is decreased in periodontal disease. The results suggested a possible role of IL-38 in the periodontal inflammation process. Clarifying the mechanisms of IL-38 in the inflammatory process may contribute to the development of novel treatment strategies in periodontal diseases.
Collapse
Affiliation(s)
- Ayşe Toraman
- Department of Periodontology, Hamidiye Faculty of Dentistry, Health Sciences University, Istanbul, Türkiye
| | - Ebru Sağlam
- Department of Periodontology, Faculty of Dentistry, İstanbul Medeniyet University, Istanbul, Türkiye
| | - Levent Savran
- Department of Periodontology, Faculty of Dentistry, İzmir Katip Çelebi University, Izmir, Türkiye
| | - Serhat Köseoğlu
- Department of Periodontology, Faculty of Dentistry, İstanbul Medeniyet University, Istanbul, Türkiye
| |
Collapse
|
2
|
Danielsen AK, Massarenti L, Minculescu L, Jensen PØ, Hansen PR, Holmstrup P, Damgaard C, Nielsen CH. Cytokine responses of CD4+ T cells and NKT cells to periodontitis-associated bacteria in individuals with or without periodontitis. J Periodontal Res 2025; 60:177-188. [PMID: 38962877 PMCID: PMC11873674 DOI: 10.1111/jre.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
AIM Periodontitis is an inflammatory disease driven by opportunistic bacteria including Porphyromonas gingivalis and Fusobacterium nucleatum, where T-cell and NKT-cell responses to these bacteria in patients with periodontitis grade B or C are not fully elucidated. The objective is to determine if exaggerated proinflammatory Th-cell responses to periodontitis-associated bacteria, but not commensal bacteria, is a characteristic of increased periodontitis grade. METHODS Mononuclear cells from patients with periodontitis grade C (n = 26) or grade B (n = 33) and healthy controls (HCs; n = 26) were stimulated with P. gingivalis, F. nucleatum or the commensal bacteria, Staphylococcus epidermidis and Cutibacterium acnes. Cytokine production by different T-cell populations and FOXP3-expression by regulatory T cells were assessed by flow cytometry. RESULTS Compared to HCs, grade C patients had decreased frequencies of interleukin (IL)-10-producing CD4+ T cells before stimulation (p = .02) and increased frequencies of IFN-y-producing CD4+ T cells after stimulation with P. gingivalis (p = .0019). Grade B patients had decreased frequencies of FOXP3+ CD4+ T cells before (p = .030) before and after stimulation with anti-CD2/anti-CD3/anti-CD28-loaded beads (p = .047), P. gingivalis (p = .013) and S. epidermidis (p = .018). Clinical attachment loss correlated with the frequencies of IFN-y-producing Th1 cells in P. gingivalis- and F. nucleatum-stimulated cultures in grade B patients (p = .023 and p = .048, respectively) and with the frequencies of Th17 cells in P. gingivalis-stimulated cultures (p = .0062) in grade C patients. Patients with periodontitis grade C or grade B showed lower frequencies of IL-10-producing NKT cells than HCs in unstimulated cultures (p = .0043 and p = .027 respectively). CONCLUSIONS Both periodontitis groups showed decreased frequencies of immunoregulatory T-cell and NKT cell subsets at baseline. Clinical attachment loss correlated with P. gingivalis-induced Th17-responses in grade C patients and with Th1-responses in grade B patients when cells were stimulated with P. gingivalis, supporting that dysregulated pro-inflammatory T-cell responses to periodontitis-associated bacteria contribute to the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Anne Katrine Danielsen
- Research Area Periodontology, Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Institute for Inflammation Research, Center for Rheumatology and Spine DiseasesRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Laura Massarenti
- Research Area Periodontology, Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Institute for Inflammation Research, Center for Rheumatology and Spine DiseasesRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Lia Minculescu
- Department of Clinical ImmunologyRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Peter Østrup Jensen
- Institute for Inflammation Research, Center for Rheumatology and Spine DiseasesRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
- Department of Immunology and MicrobiologyCosterton Biofilm Center, University of Copenhagen Faculty of Health and Medical SciencesCopenhagenDenmark
- Department of Clinical MicrobiologyRigshospitaletCopenhagenDenmark
| | - Peter Riis Hansen
- Department of CardiologyHerlev and Gentofte Hospital, University of CopenhagenHellerupDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Palle Holmstrup
- Research Area Periodontology, Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Christian Damgaard
- Research Area Periodontology, Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Institute for Inflammation Research, Center for Rheumatology and Spine DiseasesRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Claus Henrik Nielsen
- Research Area Periodontology, Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Institute for Inflammation Research, Center for Rheumatology and Spine DiseasesRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| |
Collapse
|
3
|
Walther K, Gröger S, Vogler JAH, Wöstmann B, Meyle J. Inflammation indices in association with periodontitis and cancer. Periodontol 2000 2024; 96:281-315. [PMID: 39317462 PMCID: PMC11579835 DOI: 10.1111/prd.12612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
Inflammation is a complex physiological process that plays a pivotal role in many if not all pathological conditions, including infectious as well as inflammatory diseases, like periodontitis and autoimmune disorders. Inflammatory response to periodontal biofilms and tissue destruction in periodontitis is associated with the release of inflammatory mediators. Chronic inflammation can promote the development of cancer. Persistence of inflammatory mediators plays a crucial role in this process. Quantification and monitoring of the severity of inflammation in relation to cancer is essential. Periodontitis is mainly quantified based on the severity and extent of attachment loss and/or pocket probing depth, in addition with bleeding on probing. In recent years, studies started to investigate inflammation indices in association with periodontal diseases. To date, only few reviews have been published focusing on the relationship between blood cell count, inflammation indices, and periodontitis. This review presents a comprehensive overview of different systemic inflammation indices, their methods of measurement, and the clinical applications in relation to periodontitis and cancer. This review outlines the physiological basis of inflammation and the underlying cellular and molecular mechanisms of the parameters described. Key inflammation indices are commonly utilized in periodontology such as the neutrophil to lymphocyte ratio. Inflammation indices like the platelet to lymphocyte ratio, platelet distribution width, plateletcrit, red blood cell distribution width, lymphocyte to monocyte ratio, delta neutrophil index, and the systemic immune inflammation index are also used in hospital settings and will be discussed. The clinical roles and limitations, relationship to systemic diseases as well as their association to periodontitis and treatment response are described.
Collapse
Affiliation(s)
- Kay‐Arne Walther
- Department of Periodontology, Dental ClinicJustus Liebig University of GiessenGiessenGermany
- Department of Prosthodontics, Dental ClinicJustus Liebig University of GiessenGiessenGermany
| | - Sabine Gröger
- Department of Periodontology, Dental ClinicJustus Liebig University of GiessenGiessenGermany
- Department of Orthodontics, Dental ClinicJustus Liebig University of GiessenGiessenGermany
| | | | - Bernd Wöstmann
- Department of Periodontology, Dental ClinicJustus Liebig University of GiessenGiessenGermany
- Department of Prosthodontics, Dental ClinicJustus Liebig University of GiessenGiessenGermany
| | - Jörg Meyle
- Department of Periodontology, Dental ClinicJustus Liebig University of GiessenGiessenGermany
- Department of Periodontology, Dental ClinicUniversity of BernBernSwitzerland
| |
Collapse
|
4
|
Altaca M, Cebesoy EI, Kocak-Oztug NA, Bingül I, Cifcibasi E. Interleukin-6, -17, and -35 levels in association with clinical status in stage III and stage IV periodontitis: a cross-sectional study. BMC Oral Health 2024; 24:1015. [PMID: 39215253 PMCID: PMC11363592 DOI: 10.1186/s12903-024-04751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This study compared the concentrations of interleukin (IL)-6, IL-17, and IL-35 in the gingival crevicular fluid of periodontally healthy participants with individuals who had stage III and IV periodontitis. METHODS In total, 60 participants with stage III grade B-C (n = 12)-stage IV grade C (n = 18) periodontitis and 30 healthy controls were included in this cross-sectional study. Full-mouth clinical periodontal measurements were performed. Concentrations of IL-6, IL-17, and IL-35 were determined using enzyme-linked immunosorbent assays. Parametric/nonparametric methods, Pearson's/Spearman's correlation, and logistic regression methods were used for data analyses. RESULTS The periodontitis group exhibited significantly higher levels of IL-6, IL-17, and IL-35 compared with the healthy group (p < 0.001). IL-17 levels had a positive correlation with pocket depth (PD) (r = 0.395; p = 0.031) in the periodontitis group. IL-6, IL-17, and IL-35 levels were associated with periodontitis (odds ratio [OR] = 1.344, 95% confidence interval [CI] = 1.159-1.56; OR = 1.063, 95% CI = 1.025-1.102; OR = 1.261, 95% CI = 1.110-1.434, respectively) (p < 0.001, p = 0.001, p < 0.001, respectively). Full-mouth and sampling sites PD and clinical attachment loss (CAL) values were significantly higher in the periodontitis group than in the healthy group (p < 0.001). CONCLUSIONS This study revealed upregulated levels of IL-6, IL-17, and IL-35 in periodontitis patients compared to healthy individuals. IL-17 shows a correlation with increased PD. These findings suggest a potential association between these cytokines and severe and advanced periodontitis. TRIAL REGISTRATION The trial was registered in ClinicalTrials.gov with this identifier NCT05306860 on 24/01/2022.
Collapse
Affiliation(s)
- Müge Altaca
- Faculty of Dentistry, Department of Periodontology, Istanbul University, Istanbul, 34116, Turkey
- Institute of Graduate Studies in Health Sciences, Department of Periodontology, Istanbul University, Istanbul, 34126, Turkey
| | - Elif Ilke Cebesoy
- Faculty of Dentistry, Department of Periodontology, Istanbul University, Istanbul, 34116, Turkey
- Institute of Graduate Studies in Health Sciences, Department of Periodontology, Istanbul University, Istanbul, 34126, Turkey
| | - Necla Asli Kocak-Oztug
- Faculty of Dentistry, Department of Periodontology, Istanbul University, Istanbul, 34116, Turkey
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, 4006, Australia
| | - Ilknur Bingül
- Faculty of Medicine, Department of Medical Biochemistry, Istanbul University, Istanbul, Turkey
| | - Emine Cifcibasi
- Faculty of Dentistry, Department of Periodontology, Istanbul University, Istanbul, 34116, Turkey.
| |
Collapse
|
5
|
Neurath N, Kesting M. Cytokines in gingivitis and periodontitis: from pathogenesis to therapeutic targets. Front Immunol 2024; 15:1435054. [PMID: 39253090 PMCID: PMC11381234 DOI: 10.3389/fimmu.2024.1435054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Chronic inflammatory processes in the oral mucosa and periodontitis are common disorders caused by microflora and microbial biofilms. These factors activate both the innate and adaptive immune systems, leading to the production of pro-inflammatory cytokines. Cytokines are known to play a crucial role in the pathogenesis of gingivitis and periodontitis and have been proposed as biomarkers for diagnosis and follow-up of these diseases. They can activate immune and stromal cells, leading to local inflammation and tissue damage. This damage can include destruction of the periodontal ligaments, gingiva, and alveolar bone. Studies have reported increased local levels of pro-inflammatory cytokines, such as interleukin-1beta (IL-1beta), tumor necrosis factor (TNF), IL-6, IL-17, and IL-23, in patients with periodontitis. In experimental models of periodontitis, TNF and the IL-23/IL-17 axis play a pivotal role in disease pathogenesis. Inactivation of these pro-inflammatory pathways through neutralizing antibodies, genetic engineering or IL-10 function has been demonstrated to reduce disease activity. This review discusses the role of cytokines in gingivitis and periodontitis, with particular emphasis on their role in mediating inflammation and tissue destruction. It also explores new therapeutic interventions that offer potential for research and clinical therapy in these chronic inflammatory diseases.
Collapse
Affiliation(s)
- Nicole Neurath
- Department of Oral and Cranio-Maxillofacial Surgery, Uniklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Uniklinikum Erlangen, Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Cranio-Maxillofacial Surgery, Uniklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Uniklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
6
|
Kinane DF, Lappin DF, Culshaw S. The role of acquired host immunity in periodontal diseases. Periodontol 2000 2024. [PMID: 38641953 DOI: 10.1111/prd.12562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 04/21/2024]
Abstract
The aim of this narrative review is to relate the contribution of European researchers to the complex topic of the host immune system in periodontal disease, focusing on acquired immunity. Other chapters in this volume will address the genetics and autoantibody responses and other forms of immunity to periodontal disease. While the contribution of European authors is the focus, global literature is included in this descriptive narrative for contextual clarity, albeit many with European co-authors. The topic is relatively intense and is thus broken down into sections outlined below, tackled as descriptive narratives to enhance understanding. Any attempt at a systematic or scoping review was quickly abandoned given the descriptive nature and marked variation of approach in almost all publications. Even the most uniform area of this acquired periodontal immunology literature, antibody responses to putative pathogens in periodontal diseases, falls short of common structures and common primary outcome variables one would need and expect in clinical studies, where randomized controlled clinical trials (RCTs) abound. Addressing 'the host's role' in immunity immediately requires a discussion of host susceptibility, which necessitates consideration of genetic studies (covered elsewhere in the volume and superficially covered here).
Collapse
|
7
|
Junxian L, Mehrabanian M, Mivehchi H, Banakar M, Etajuri EA. The homeostasis and therapeutic applications of innate and adaptive immune cells in periodontitis. Oral Dis 2023; 29:2552-2564. [PMID: 36004490 DOI: 10.1111/odi.14360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Periodontitis (PD) is one of the most common dental disorders. This chronic oral inflammation is caused by complicated interrelations between bacterial infections, dysregulated immune reactions, and environmental risk factors. A dysregulated immune response can lead to inflammatory bone resorption by allowing the recruitment of pro-inflammatory immune cells to the periodontal tissues. SUBJECTS The recruitment of innate and adaptive immune cells in PD initiates the acute and following chronic inflammatory processes. The inflamed tissues, on the other hand, can be restored if the anti-inflammatory lineages are predominantly established in the periodontal tissues. Therefore, we aimed to review the published literature to provide an overview of the existing knowledge about the role of immune cells in PD, as well as their possible therapeutic applications. RESULTS Experimental studies showed that drugs/systems that negatively regulate inflammatory cells in the body, as well as interventions aimed at increasing the number of anti-inflammatory cells such as Tregs and Bregs, can both help in the healing process of PD. CONCLUSION Targeting immune cells or their positive/negative manipulations has been demonstrated to be an effective therapeutic method. However, to use this sort of immunotherapy in humans, further pre-clinical investigations, as well as randomized clinical trials, are required.
Collapse
Affiliation(s)
- Li Junxian
- Department of Oral and Maxillofacial Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Mojtaba Mehrabanian
- DMD Dentist, Alumni of the Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Hassan Mivehchi
- DMD Dentist, Alumni of the Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Morteza Banakar
- Saveetha Dental College, Chennai, India
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Enas Abdalla Etajuri
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Malaya, Malaysia
| |
Collapse
|
8
|
Li C, Yu R, Ding Y. Association between Porphyromonas Gingivalis and systemic diseases: Focus on T cells-mediated adaptive immunity. Front Cell Infect Microbiol 2022; 12:1026457. [PMID: 36467726 PMCID: PMC9712990 DOI: 10.3389/fcimb.2022.1026457] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2023] Open
Abstract
The association between periodontal disease and systemic disease has become a research hotspot. Porphyromonas gingivalis (P. gingivalis), a crucial periodontal pathogen, affects the development of systemic diseases. The pathogenicity of P. gingivalis is largely linked to interference with the host's immunity. This review aims to discover the role of P. gingivalis in the modulation of the host's adaptive immune system through a large number of virulence factors and the manipulation of cellular immunological responses (mainly mediated by T cells). These factors may affect the cause of large numbers of systemic diseases, such as atherosclerosis, hypertension, adverse pregnancy outcomes, inflammatory bowel disease, diabetes mellitus, non-alcoholic fatty liver disease, rheumatoid arthritis, and Alzheimer's disease. The point of view of adaptive immunity may provide a new idea for treating periodontitis and related systemic diseases.
Collapse
Affiliation(s)
- Cheng Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ran Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
9
|
Kajihara R, Sakai H, Han Y, Amari K, Kawamoto M, Hakoyama Y, Nagashio S, Yamada SI, Sanjo H, Kurita H. Presence of periodontitis may synergistically contribute to cancer progression via Treg and IL-6. Sci Rep 2022; 12:11584. [PMID: 35804048 PMCID: PMC9270385 DOI: 10.1038/s41598-022-15690-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/28/2022] [Indexed: 11/09/2022] Open
Abstract
A close causal relationship has been suggested to exist between cancer and periodontitis. We hypothesized that the immune surveillance system is impaired in patients with periodontitis, which contributes to cancer development and growth. Therefore, the present study investigated the relationship between immune surveillance mechanisms and periodontitis in cancer patients. The presence or absence of periodontitis was assessed and the peripheral blood (PB) concentrations of IL-6, immunosuppressive cytokines (VEGF, TGF-β1, and CCL22) and proportion of T regulatory cells (Treg, CD3 + CD4 + CD25 + Foxp3 +) were measured. Subjects were classified into the following four groups: non-cancer patients without periodontitis (C − P −), non-cancer patients with periodontitis (C − P +), cancer patients without periodontitis (C + P −), and cancer patients with periodontitis (C + P +). The results of a multivariate analysis showed that the PB concentration of IL-6 was significantly higher in C + than in C- and higher in C + P + than in C + P −. The PB proportion of Treg was significantly higher in C + P + than in C + P −, C − P + , and C − P −. The results of this study suggested that the presence of periodontitis and cancer synergistically increased Treg in PB, which may be one of the underlying causes of immunosuppression and immune evasion in cancer. It was also suggested that the presence of periodontal disease and/or cancer also increases IL-6 in PB, which would be associated with cancer progression. These results suggest the possibility that the presence of periodontitis might synergistically contribute to cancer progression.
Collapse
Affiliation(s)
- Ryo Kajihara
- Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, 390-8621, Japan
| | - Hironori Sakai
- Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, 390-8621, Japan.
| | - Yibing Han
- Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, 390-8621, Japan
| | - Kei Amari
- Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, 390-8621, Japan
| | - Makiko Kawamoto
- Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, 390-8621, Japan
| | - Yusuke Hakoyama
- Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, 390-8621, Japan
| | - Sachiho Nagashio
- Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, 390-8621, Japan
| | - Shin-Ichi Yamada
- Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, 390-8621, Japan
| | - Hideki Sanjo
- Department of Molecular and Cellular Immunology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroshi Kurita
- Department of Dentistry and Oral Surgery, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, 390-8621, Japan
| |
Collapse
|
10
|
Quach SS, Zhu A, Lee RSB, Seymour GJ. Immunomodulation—What to Modulate and Why? Potential Immune Targets. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.883342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite over 50 years of research into the immunology of periodontal disease, the precise mechanisms and the role of many cell types remains an enigma. Progress has been limited by the inability to determine disease activity clinically. Understanding the immunopathogenesis of periodontal disease however is fundamental if immunomodulation is to be used as a therapeutic strategy. It is important for the clinician to understand what could be modulated and why. In this context, potential targets include different immune cell populations and their subsets, as well as various cytokines. The aim of this review is to examine the role of the principal immune cell populations and their cytokines in the pathogenesis of periodontal disease and their potential as possible therapeutic targets.
Collapse
|
11
|
Zou J, Zeng Z, Xie W, Zeng Z. Immunotherapy with regulatory T and B cells in periodontitis. Int Immunopharmacol 2022; 109:108797. [PMID: 35487085 DOI: 10.1016/j.intimp.2022.108797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 01/04/2023]
Abstract
Periodontitis (PD), also known as gum disease, is a condition causing inflammatory bone resorption and tooth loss. Regulatory T cells (Tregs) and regulatory B cells (Bregs) are vital in controlling the immune response and hence play a role in infections and peripheral tolerance adjustment. These cells have immunosuppressive and tissue-repairing capabilities that are important for periodontal health; however, in inflammatory circumstances, Tregs may become unstable and dysfunctional, accelerating tissue deterioration. In recent years, Regulatory cell-mediated immunotherapy has been shown to be effective in many inflammatory diseases. Considering the roles of Tregs and Bregs in shaping immune responses, this study aimed to review the published articles in this field to provide a comprehensive view of the existing knowledge about the role of regulatory T and B cells, as well as their therapeutic applications in PD.
Collapse
Affiliation(s)
- Juan Zou
- Department of stomatology, Maternal and Child Health Centre, Ganzhou, Jiangxi 341000, China
| | - Zijun Zeng
- Anesthesia surgery, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, China
| | - Wen Xie
- Health Management Center, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, China
| | - Zhimei Zeng
- The First Affiliated Hospital of Gannan Medical College Dental Department Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
12
|
Local induction of regulatory T cells prevents inflammatory bone loss in ligature-induced experimental periodontitis in mice. Sci Rep 2022; 12:5032. [PMID: 35322204 PMCID: PMC8943171 DOI: 10.1038/s41598-022-09150-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/16/2022] [Indexed: 11/15/2022] Open
Abstract
Periodontitis (periodontal disease) is a highly prevalent disease, affecting over 65 million adults in the United States alone. Characterized by an overburden of invasive bacteria, gum inflammation and plaque buildup, over time, these symptoms can result in severe loss of gingival tissue attachment, bone resorption and even tooth loss. Although current treatments (local antibiotics and scaling and root planing procedures) target the bacterial dysbiosis, they do not address the underlying inflammatory imbalance in the periodontium. In the healthy steady state, the body naturally combats destructive, imbalanced inflammatory responses through regulatory pathways mediated by cells such as regulatory T cells (Tregs). Consequently, we hypothesized that local enrichment of regulatory lymphocytes (Tregs) could restore local, immunological homeostasis and prevent the main outcome of bone loss. Accordingly, we locally delivered a combination of TGFβ, Rapamycin, and IL2 microspheres in a ligature-induced murine periodontitis model. Herein, we have demonstrated this preventative treatment decreases alveolar bone loss, increases the local ratio of Tregs to T effector cells and changes the local microenvironment’s expression of inflammatory and regenerative markers. Ultimately, these Treg-inducing microspheres appear promising as a method to improve periodontitis outcomes and may be able to serve as a platform delivery system to treat other inflammatory diseases.
Collapse
|
13
|
Taheri M, Gholami L, Nicknafs F, Hussen BM, Arsang-Jang S, Sayad A, Ghafouri-Fard S. Transcript levels of cytokine coding genes in peripheral blood and tissues of patients with periodontitis. Hum Antibodies 2021; 30:47-55. [PMID: 34864655 DOI: 10.3233/hab-211507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Periodontal diseases are common conditions in almost all age groups and a public health problem. Numerous risk factors have been demonstrated for this condition. The main mechanism of tissue destruction in the periodontitis is the functional interactions between microbial pathogens and host immune responses, thus cytokines have crucial roles in the pathogenesis periodontitis. Our previous study has demonstrated the susceptibility role of HLA-DRB1*04 allele in development of this disease. So, the individuals who were positive for HLA-DRB1*04 allele were excluded. We aimed to appraise the function of cytokines in the pathogenesis of periodontitis via assessment of tissue and blood levels of a number of cytokine coding genes, namely IL-1B, CXCL8, IL-17, IFNG, TGFB and TNFA1. Expressions of IFNG, IL-17, TGFB and TNFA1 were significantly higher in the peripheral blood of individuals with periodontitis compared with unaffected persons (Posterior beta = 1.91, P value = 0.043; Posterior beta = 1.84, P value = 0.033; Posterior beta = 0.713, P value = 0.009 and Posterior beta = 2.85, P value = 0.001, respectively). Moreover, expression of IL-17 was higher in females compared with males (Posterior beta = 1.47, P value = 0.036). As the interaction effect between gender and group was remarkable for IL-17 expression, we further conducted subgroup analysis within gender group. Expression of IL-17 was higher in male patients compared with unaffected males (Posterior beta = 1.9, P value = 0.048). We did not detect any significant difference in the expression of these cytokines in tissues obtained from affected individuals and unaffected controls. Therefore, our results imply dysregulation of cytokine coding genes in patients with periodontitis and warrant further mechanistical studies.
Collapse
Affiliation(s)
- Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Gholami
- Department of Periodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fwad Nicknafs
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Shahram Arsang-Jang
- Cancer Gene therapy Research Center, Zanjan University of Medical Science, Zanjan, Iran
| | - Arezou Sayad
- Dental Research Center, Research Institute of Dental Science, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Maxillofacial-Derived Mesenchymal Stem Cells: Characteristics and Progress in Tissue Regeneration. Stem Cells Int 2021; 2021:5516521. [PMID: 34426741 PMCID: PMC8379387 DOI: 10.1155/2021/5516521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Maxillofacial-derived mesenchymal stem cells (MFSCs) are a particular collective type of mesenchymal stem cells (MSCs) that originate from the hard and soft tissue of the maxillofacial region. Recently, many types of MFSCs have been isolated and characterized. MFSCs have the common characteristics of being extremely accessible and amazingly multipotent and thus have become a promising stem cell resource in tissue regeneration. However, different MFSCs can give rise to different cell lineages, have different advantages in clinical use, and regulate the immune and inflammation microenvironment through paracrine mechanisms in different ways. Hence, in this review, we will concentrate on the updated new findings of all types of MFSCs in tissue regeneration and also introduce the recently discovered types of MFSCs. Important issues about proliferation and differentiation in vitro and in vivo, up-to-date clinical application, and paracrine effect of MFSCs in tissue regeneration will also be discussed. Our review may provide a better guide for the clinical use of MFSCs and further direction of research in MFSC regeneration medicine.
Collapse
|
15
|
Zhang Y, Guo J, Jia R. Treg: A Promising Immunotherapeutic Target in Oral Diseases. Front Immunol 2021; 12:667862. [PMID: 34177907 PMCID: PMC8222692 DOI: 10.3389/fimmu.2021.667862] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
With the pandemic of COVID-19, maintenance of oral health has increasingly become the main challenge of global health. Various common oral diseases, such as periodontitis and oral cancer, are closely associated with immune disorders in the oral mucosa. Regulatory T cells (Treg) are essential for maintaining self-tolerance and immunosuppression. During the process of periodontitis and apical periodontitis, two typical chronic immune-inflammatory diseases, Treg contributes to maintain host immune homeostasis and minimize tissue damage. In contrast, in the development of oral precancerous lesions and oral cancer, Treg is expected to be depleted or down-regulated to enhance the anti-tumor immune response. Therefore, a deeper understanding of the distribution, function, and regulatory mechanisms of Treg cells may provide a prospect for the immunotherapy of oral diseases. In this review, we summarize the distribution and multiple roles of Treg in different oral diseases and discuss the possible mechanisms involved in Treg cell regulation, hope to provide a reference for future Treg-targeted immunotherapy in the treatment of oral diseases.
Collapse
Affiliation(s)
- Yujing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Zhou N, Zou F, Cheng X, Huang Y, Zou H, Niu Q, Qiu Y, Shan F, Luo A, Teng W, Sun J. Porphyromonas gingivalis induces periodontitis, causes immune imbalance, and promotes rheumatoid arthritis. J Leukoc Biol 2021; 110:461-473. [PMID: 34057740 DOI: 10.1002/jlb.3ma0121-045r] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Periodontitis induced by bacteria especially Porphyromonas gingivalis (P. gingivalis) is the most prevalent microbial disease worldwide and is a significant risk factor for systemic diseases such as rheumatoid arthritis (RA). RA and periodontitis share similar clinical and pathologic features. Moreover, the prevalence of RA is much higher in patients with periodontitis than in those without periodontitis. To explore the immunologic mechanism of periodontitis involved in RA, we established a mouse model of periodontitis and then induced RA. According to the results of paw thickness, arthritis clinical score, arthritis incidence, microscopic lesion using H&E staining, and micro-CT analysis, periodontitis induced by P. gingivalis promoted the occurrence and development of collagen-induced arthritis (CIA) in mice. Furthermore, periodontitis enhanced the frequency of CD19+ B cells, Th17, Treg, gMDSCs, and mMDSCs, whereas down-regulated IL-10 producing regulatory B cells (B10) in CIA mice preinduced for periodontitis with P. gingivalis. In vitro stimulation with splenic cells revealed that P. gingivalis directly enhanced differentiation of Th17, Treg, and mMDSCs but inhibited the process of B cell differentiation into B10 cells. Considering that adoptive transfer of B10 cells prevent RA development, our study, although preliminary, suggests that down-regulation of B10 cells may be the key mechanism that periodontitis promotes RA as the other main immune suppressive cells such as Treg and MDSCs are up-regulated other than down-regulated in group of P. gingivalis plus CIA.
Collapse
Affiliation(s)
- Niu Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guangzhou Zoo, Guangzhou, China
| | - Fagui Zou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiao Cheng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yilian Huang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hang Zou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qingru Niu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yi Qiu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | | | - Aoxiang Luo
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei Teng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jianbo Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
17
|
Elmanfi S, Yilmaz M, Ong WWS, Yeboah KS, Sintim HO, Gürsoy M, Könönen E, Gürsoy UK. Bacterial Cyclic Dinucleotides and the cGAS-cGAMP-STING Pathway: A Role in Periodontitis? Pathogens 2021; 10:675. [PMID: 34070809 PMCID: PMC8226932 DOI: 10.3390/pathogens10060675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/07/2023] Open
Abstract
Host cells can recognize cytosolic double-stranded DNAs and endogenous second messengers as cyclic dinucleotides-including c-di-GMP, c-di-AMP, and cGAMP-of invading microbes via the critical and essential innate immune signaling adaptor molecule known as STING. This recognition activates the innate immune system and leads to the production of Type I interferons and proinflammatory cytokines. In this review, we (1) focus on the possible role of bacterial cyclic dinucleotides and the STING/TBK1/IRF3 pathway in the pathogenesis of periodontal disease and the regulation of periodontal immune response, and (2) review and discuss activators and inhibitors of the STING pathway as immune response regulators and their potential utility in the treatment of periodontitis. PubMed/Medline, Scopus, and Web of Science were searched with the terms "STING", "TBK 1", "IRF3", and "cGAS"-alone, or together with "periodontitis". Current studies produced evidence for using STING-pathway-targeting molecules as part of anticancer therapy, and as vaccine adjuvants against microbial infections; however, the role of the STING/TBK1/IRF3 pathway in periodontal disease pathogenesis is still undiscovered. Understanding the stimulation of the innate immune response by cyclic dinucleotides opens a new approach to host modulation therapies in periodontology.
Collapse
Affiliation(s)
- Samira Elmanfi
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| | - Mustafa Yilmaz
- Department of Periodontology, Faculty of Dentistry, Biruni University, 34010 Istanbul, Turkey;
| | - Wilson W. S. Ong
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, IN 47907, USA; (W.W.S.O.); (K.S.Y.)
| | - Kofi S. Yeboah
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, IN 47907, USA; (W.W.S.O.); (K.S.Y.)
| | - Herman O. Sintim
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, IN 47907, USA; (W.W.S.O.); (K.S.Y.)
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
- Oral Health Care, Welfare Division, City of Turku, 20520 Turku, Finland
| | - Ulvi K. Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| |
Collapse
|
18
|
Zou H, Zhou N, Huang Y, Luo A, Sun J. Phenotypes, roles, and modulation of regulatory lymphocytes in periodontitis and its associated systemic diseases. J Leukoc Biol 2021; 111:451-467. [PMID: 33884656 DOI: 10.1002/jlb.3vmr0321-027rrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Periodontitis is a common chronic inflammatory disease that can result in tooth loss and poses a risk to systemic health. Lymphocytes play important roles in periodontitis through multiple mechanisms. Regulatory lymphocytes including regulatory B cells (Bregs) and T cells (Tregs) are the main immunosuppressive cells that maintain immune homeostasis, and are critical to our understanding of the pathogenesis of periodontitis and the development of effective treatments. In this review, we discuss the phenotypes, roles, and modulating strategies of regulatory lymphocytes including Bregs and Tregs in periodontitis and frequently cooccurring inflammatory diseases such as rheumatoid arthritis, Alzheimer disease, diabetes mellitus, and stroke. The current evidence suggests that restoring immune balance through therapeutic targeting of regulatory lymphocytes is a promising strategy for the treatment of periodontitis and other systemic inflammatory diseases.
Collapse
Affiliation(s)
- Hang Zou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Niu Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guangzhou Zoo, Guangzhou, China
| | - Yilian Huang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, China
| | - Aoxiang Luo
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianbo Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
19
|
Hathaway-Schrader JD, Novince CM. Maintaining homeostatic control of periodontal bone tissue. Periodontol 2000 2021; 86:157-187. [PMID: 33690918 DOI: 10.1111/prd.12368] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alveolar bone is a unique osseous tissue due to the proximity of dental plaque biofilms. Periodontal health and homeostasis are mediated by a balanced host immune response to these polymicrobial biofilms. Dysbiotic shifts within dental plaque biofilms can drive a proinflammatory immune response state in the periodontal epithelial and gingival connective tissues, which leads to paracrine signaling to subjacent bone cells. Sustained chronic periodontal inflammation disrupts "coupled" osteoclast-osteoblast actions, which ultimately result in alveolar bone destruction. This chapter will provide an overview of alveolar bone physiology and will highlight why the oral microbiota is a critical regulator of alveolar bone remodeling. The ecology of dental plaque biofilms will be discussed in the context that periodontitis is a polymicrobial disruption of host homeostasis. The pathogenesis of periodontal bone loss will be explained from both a historical and current perspective, providing the opportunity to revisit the role of fibrosis in alveolar bone destruction. Periodontal immune cell interactions with bone cells will be reviewed based on our current understanding of osteoimmunological mechanisms influencing alveolar bone remodeling. Lastly, probiotic and prebiotic interventions in the oral microbiota will be evaluated as potential noninvasive therapies to support alveolar bone homeostasis and prevent periodontal bone loss.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
20
|
Dental Mesenchymal Stem/Progenitor Cells: A New Prospect in Regenerative Medicine. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Huang H, Chen D, Lippuner K, Hunziker EB. Induced Experimental Periimplantitis and Periodontitis: What are the Differences in the Inflammatory Response ? J ORAL IMPLANTOL 2020; 47:359-369. [PMID: 33259586 DOI: 10.1563/aaid-joi-d-19-00362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This preliminary study investigates the differences between experimental periodontitis and periimplantitis in a dog model, with a focus on the histopathology, the inflammatory responses and specific immunoregulatory activities, driven by Th1/Th2 positive cells. Twelve dental implants were inserted into the edentulated posterior mandibles of six Beagle dogs and were given twelve weeks time for osseointegration. Experimental periimplantitis and periodontitis (first mandible molar) was then induced using cotton-floss ligatures. Twelve weeks later, alveolar bones were quantitated by cone beam-computer tomography. Histopathological analysis of the inflamed gingiva and of the periodontal tissues was performed by light microscopy, and the Th1/ Th2 cell populations were investigated by flow cytometry. Periimplantitis as well as periodontitis were both found to be associated with pronounced bone resorption effects, both to a similar degree vertically, but with a differential bone resorption pattern mesio-distally, and with a significantly higher and consistent bone resorption result in periimplantitis; however, with a higher variance of bone resorption in periodontitis. The histological appearances of the inflammatory tissues were identical. The percentages of Th1/ Th2 cells in the inflamed gingival tissues of both experimental periimplantitis and periodontitis were also found to be similar. Experimental periodontitis and periimplantitis in the dog model show essentially the same cellular pathology of inflammation. However, bone resorption was found to be significantly higher in periimplantitis; the histopathological changes in the periodontal tissues were similar in both groups, but showed a higher inter-individual variation in periodontitis, and appeared more uniform in periimplantitis. This preliminary study indicates that more focused experimental in-vivo inflammation models need to be developed to better simulate the human pathology in the two different diseases, and in order to have a valuable tool to investigate more specifically how novel treatments/prevention approaches may heal the differential adverse effects on bone tissue and on periodontium in periodontitis and in periimplantitis.
Collapse
Affiliation(s)
- Hairong Huang
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije University Amsterdam, Gustav Mahlerlaan 3004, 1081LA Amsterdam, Nord-Holland, the Netherlands
| | - Dong Chen
- State Key Laboratory of Basic Science of Stomatology, Laboratory of Oral Biomedicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Kurt Lippuner
- Department of Osteoporosis, Inselspital Bern University Hospital, Freiburgstrasse 3, CH-3010 Bern, Switzerland
| | - Ernst Bruno Hunziker
- Inselspital Universitatsspital Bern Research Head Osteoporosis and Othopaedic Research Freiburgstrasse 3 SWITZERLAND Bern Bern 3010 +41860794446551 +41794446551 Departments of Osteoporosis and Orthopaedic Surgery, Inselspital Bern University Hospital, Freiburgstrasse 3, CH-3010 Bern, Switzerland
| |
Collapse
|
22
|
Schulz S, Zimmer P, Pütz N, Jurianz E, Schaller HG, Reichert S. rs2476601 in PTPN22 gene in rheumatoid arthritis and periodontitis-a possible interface? J Transl Med 2020; 18:389. [PMID: 33059697 PMCID: PMC7559817 DOI: 10.1186/s12967-020-02548-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) and periodontitis (PD) are proven to share common risk markers, including genetic factors. In the present study we focused on genetic variants in PTPN22 (rs2476601), PADI4 (rs2240340), CTLA4 genes (rs3087243) and its impact on RA and PD. MATERIALS AND METHODS In the study 111 RA patients and 256 systemically healthy controls were involved. A subdivision of patients and controls was carried out according the severity of periodontitis (no/level 1 PD vs. level 2 PD). RESULTS I. Evaluating the genetic impact on the occurrence of RA the T allele of rs2476601 (PTPN22) (bivariate: p < 0.001; multivariate: p = 0.018) and T allele of rs2240340 (PADI4) (bivariate: p = 0.006; multivariate: p = 0.070) were associated with an increased vulnerability to RA. II. Investigating the genetic influence on level 2 PD the T allele of rs2476601 (PTPN22) was shown to be associated with a higher susceptibility to PD within the RA group (bivariate: p = 0.043; multivariate: p = 0.024). III. The T allele of rs2476601 (PTPN22) was proven to be a significant marker of RA and level 2 PD comorbidity (bivariate: p < 0.001; multivariate: p = 0.028). CONCLUSIONS These results support the thesis that genetic variations may represent a possible link between PD and RA. The study increases knowledge about disease-specific and cross-disease genetic pattern.
Collapse
Affiliation(s)
- Susanne Schulz
- Department of Operative Dentistry and Periodontology, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | - Pauline Zimmer
- Department of Operative Dentistry and Periodontology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Natalie Pütz
- Department of Operative Dentistry and Periodontology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Elisa Jurianz
- Department of Operative Dentistry and Periodontology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Hans-Günter Schaller
- Department of Operative Dentistry and Periodontology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Stefan Reichert
- Department of Operative Dentistry and Periodontology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
23
|
Xu W, Zhou W, Wang H, Liang S. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:45-84. [PMID: 32085888 DOI: 10.1016/bs.apcsb.2019.12.001] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Periodontitis is an infection-driven inflammatory disease, which is characterized by gingival inflammation and bone loss. Periodontitis is associated with various systemic diseases, including cardiovascular, respiratory, musculoskeletal, and reproductive system related abnormalities. Recent theory attributes the pathogenesis of periodontitis to oral microbial dysbiosis, in which Porphyromonas gingivalis acts as a critical agent by disrupting host immune homeostasis. Lipopolysaccharide, proteases, fimbriae, and some other virulence factors are among the strategies exploited by P. gingivalis to promote the bacterial colonization and facilitate the outgrowth of the surrounding microbial community. Virulence factors promote the coaggregation of P. gingivalis with other bacteria and the formation of dental biofilm. These virulence factors also modulate a variety of host immune components and subvert the immune response to evade bacterial clearance or induce an inflammatory environment. In this chapter, our focus is to discuss the virulence factors of periodontal pathogens, especially P. gingivalis, and their roles in regulating immune responses during periodontitis progression.
Collapse
Affiliation(s)
- Weizhe Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Wei Zhou
- Department of Endodontics, Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, Pudong, China
| | - Huizhi Wang
- VCU Philips Institute for Oral Health Research, Department of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University School of Dentistry, Richmond, VA, United States
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| |
Collapse
|
24
|
da Motta RJG, Almeida LY, Villafuerte KRV, Ribeiro-Silva A, León JE, Tirapelli C. FOXP3+ and CD25+ cells are reduced in patients with stage IV, grade C periodontitis: A comparative clinical study. J Periodontal Res 2019; 55:374-380. [PMID: 31876956 DOI: 10.1111/jre.12721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Some studies suggest that regulatory T cells (Tregs) have suppressive effects on inflammatory osteolysis. The aim of this study was to evaluate Treg immunomarkers in periodontitis-affected tissues from patients with periodontitis and clinically healthy gingiva (control). MATERIAL AND METHODS The presence and distribution of positive cells for CD4, CD25 and FOXP3 (Treg immunomarkers) in periodontitis-affected tissues (epithelium and lamina propria) of 30 patients (ten per group) with a diagnosis of stage IV, grade C periodontitis (IV-C), stage III, grade B periodontitis (III-B) and the control were evaluated. A two-way ANOVA followed by Fisher's LSD test was used to demonstrate differences between the groups and immunomarkers; Student's t test was used to demonstrate differences between the epithelium and the lamina propria. RESULTS Both IV-C and III-B periodontitis presented a significantly high proportion of immune-stained cells for all immunomarkers when compared to the control group. Notably, CD25+ and FOXP3+ cells were detected in a significantly higher number in III-B than IV-C periodontitis (P < .05). CONCLUSION Our results suggest the participation of Tregs on the osteoimmunological mechanisms in IV-C and III-B periodontitis patients, notably contributing to strategies for alveolar bone regeneration in clinical treatment decisions.
Collapse
Affiliation(s)
- Raphael J G da Motta
- Integrated Dental Clinic, Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto (FORP/USP), University of São Paulo, Ribeirão Preto, Brazil
| | - Luciana Yamamoto Almeida
- Haematology Division, Department of Clinical Medicine, Ribeirão Preto Medical School (FMRP/USP), University of São Paulo, Ribeirão Preto, Brazil
| | - Kelly R V Villafuerte
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto (FORP/USP), University of São Paulo, Ribeirão Preto, Brazil
| | - Alfredo Ribeiro-Silva
- Department of Pathology, Ribeirão Preto Medical School (FMRP/USP), University of São Paulo, Ribeirão Preto, Brazil
| | - Jorge E León
- Oral Pathology, Department of Stomatology, Public Oral Health, and Forensic Dentistry, School of Dentistry of Ribeirão Preto (FORP/USP), University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Tirapelli
- Integrated Dental Clinic, Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto (FORP/USP), University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
25
|
Pan W, Wang Q, Chen Q. The cytokine network involved in the host immune response to periodontitis. Int J Oral Sci 2019; 11:30. [PMID: 31685798 PMCID: PMC6828663 DOI: 10.1038/s41368-019-0064-z] [Citation(s) in RCA: 397] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an inflammatory disease involving the destruction of both soft and hard tissue in the periodontal region. Although dysbiosis of the local microbial community initiates local inflammation, over-activation of the host immune response directly activates osteoclastic activity and alveolar bone loss. Many studies have reported on the cytokine network involved in periodontitis and its crucial and pleiotropic effect on the recruitment of specific immunocytes, control of pathobionts and induction or suppression of osteoclastic activity. Nonetheless, particularities in the stimulation of pathogens in the oral cavity that lead to the specific and complex periodontal cytokine network are far from clarified. Thus, in this review, we begin with an up-to-date aetiological hypothesis of periodontal disease and summarize the roles of cytokines in the host immune response. In addition, we also summarize the latest cytokine-related therapeutic measures for periodontal disease.
Collapse
Affiliation(s)
- Weiyi Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
26
|
Andrukhov O, Behm C, Blufstein A, Rausch-Fan X. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells: Implication in disease and tissue regeneration. World J Stem Cells 2019; 11:604-617. [PMID: 31616538 PMCID: PMC6789188 DOI: 10.4252/wjsc.v11.i9.604] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/24/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are considered as an attractive tool for tissue regeneration and possess a strong immunomodulatory ability. Dental tissue-derived MSCs can be isolated from different sources, such as the dental pulp, periodontal ligament, deciduous teeth, apical papilla, dental follicles and gingiva. According to numerous in vitro studies, the effect of dental MSCs on immune cells might depend on several factors, such as the experimental setting, MSC tissue source and type of immune cell preparation. Most studies have shown that the immunomodulatory activity of dental MSCs is strongly upregulated by activated immune cells. MSCs exert mostly immunosuppressive effects, leading to the dampening of immune cell activation. Thus, the reciprocal interaction between dental MSCs and immune cells represents an elegant mechanism that potentially contributes to tissue homeostasis and inflammatory disease progression. Although the immunomodulatory potential of dental MSCs has been extensively investigated in vitro, its role in vivo remains obscure. A few studies have reported that the MSCs isolated from inflamed dental tissues have a compromised immunomodulatory ability. Moreover, the expression of some immunomodulatory proteins is enhanced in periodontal disease and even shows some correlation with disease severity. MSC-based immunomodulation may play an essential role in the regeneration of different dental tissues. Therefore, immunomodulation-based strategies may be a very promising tool in regenerative dentistry.
Collapse
Affiliation(s)
- Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| | - Christian Behm
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| | - Alice Blufstein
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
27
|
Koshy B, Rees JS, Farnell DD, Wei XQ, Waddington RJ. Array analysis for T-cell associated cytokines in gingival crevicular fluid: Identifying altered profiles associated with periodontal disease status. J Dent 2019; 85:39-46. [DOI: 10.1016/j.jdent.2019.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/29/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022] Open
|
28
|
Martins E, César-Neto J, Albuquerque-Souza E, Rebeis E, Holzhausen M, Pannuti C, Mayer M, Saraiva L. One-year follow-up of the immune profile in serum and selected sites of generalized and localized aggressive periodontitis. Cytokine 2019; 116:27-37. [DOI: 10.1016/j.cyto.2018.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 11/26/2018] [Accepted: 12/28/2018] [Indexed: 12/16/2022]
|
29
|
Hays A, Duan X, Zhu J, Zhou W, Upadhyayula S, Shivde J, Song L, Wang H, Su L, Zhou X, Liang S. Down-regulated Treg cells in exacerbated periodontal disease during pregnancy. Int Immunopharmacol 2019; 69:299-306. [PMID: 30753969 PMCID: PMC6411422 DOI: 10.1016/j.intimp.2019.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Pregnancy is a special period marked with complicated changes in various immune responses. Although pregnant women are prone to developing gingival inflammation, its immunological mechanism remains to be clarified. In a modified ligature-induced periodontal disease murine model, pregnant mice developed more severe alveolar bone loss. Using this model, we investigated the Treg responses during exacerbated periodontal disease in pregnant mice. We tested Treg-associated molecules in gingival tissues by quantitative real-time PCR and found decreased gingival expression of Foxp3, TGFβ, CTLA-4, and CD28 in pregnant mice after periodontal disease induction. We further confirmed that lower number of Treg cells were present in the cervical lymph nodes of pregnant periodontitis mice. Treg cells from the cervical lymph nodes of ligated pregnant mice and non-pregnant mice were tested for their suppressive function in vitro. We manifested that Treg suppressive function was also down-regulated in the pregnant mice. Additionally, we demonstrated that more inflammatory Th17 cells were present in the cervical lymph nodes of ligated pregnant mice. Therefore, impaired Treg development and function, together with upregulated Th17 response, may contribute to the exacerbated periodontal disease during pregnancy.
Collapse
Affiliation(s)
- Aislinn Hays
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Xingyu Duan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Jianxin Zhu
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Wei Zhou
- Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Satya Upadhyayula
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Juili Shivde
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Li Song
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Li Su
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuyu Zhou
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA.
| |
Collapse
|
30
|
Arul D, Rao S. Isolation of Naturally Induced T-regulatory Cells in Gingival Tissues of Healthy Human Subjects and Subjects with Gingivitis and Chronic Periodontitis. Cureus 2019; 11:e4283. [PMID: 31183266 PMCID: PMC6538230 DOI: 10.7759/cureus.4283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: The immune mechanism depends on CD4+ T cells for its regular function, and altered T cell function leads to microbial disease progression. Aim: The present study aimed to determine the role of naturally induced T-regulatory (nTreg) cells (CD4+ CD25+ Fox P3+) in periodontal disease pathogenesis. Materials and methods: A total of 30 patients attending the out-patient clinic of the Department of Periodontology and Implantology, Faculty of Dental Sciences, Sri Ramachandra University (SRU), Chennai, India were recruited for the study. They were categorized in three groups as healthy individuals, individuals with chronic gingivitis, and individuals with chronic periodontitis gingival tissues. nTreg (CD4+ CD25+ Fox P3+) cells were isolated using flow cytometry. Different conjugated, isolated cells were then gated in the order of CD4+, CD25+, and Fox P3+ cells. Results: The results of our study showed an increase in the proportions of Treg cells in individuals with chronic periodontitis compared to individuals with gingivitis and healthy individuals. Conclusion: Further elucidation of cellular and molecular processes underlying Treg cells will help unravel the complexity behind periodontal disease pathogenesis besides paving the way in developing newer treatment strategies.
Collapse
Affiliation(s)
- Devi Arul
- Periodontics, Sri Ramachandra Medical College and Research Institute, Chennai, IND
| | - Suresh Rao
- Periodontics, Sri Ramachandra Medical College and Research Institute, Chennai, IND
| |
Collapse
|
31
|
CD8 + Foxp3 + T Cells Affect Alveolar Bone Homeostasis via Modulating Tregs/Th17 During Induced Periodontitis: an Adoptive Transfer Experiment. Inflammation 2019; 41:1791-1803. [PMID: 29951876 DOI: 10.1007/s10753-018-0822-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Periodontitis is a dysbiotic bacteria-mediated disease characterized by periodontal inflammations and alveolar bone damage. Its mechanisms were complicated, involving an inflammation-mediated bone destruction. We sought to determine roles and rules that CD8+ regulatory T cells (CD8+ Tregs) affect alveolar bone homeostasis during periodontitis. Presence of CD8+ Tregs in the gingiva, cervical lymph nodes (CLNs), and spleens of healthy or periodontitis animals was analyzed. CD8+ regulatory T cells from periodontitis animals were sorted by magnetic-activated cell sorting and fluorescent-activated cell sorting technique, subsequently injected into recipient animals to set adoptive transfer model. We induced experimental periodontitis on transfer models and equal number healthy animals. Four weeks later, their alveolar bone loss and osteoclast coverage length were measured. We also detected CD8+ Tregs, CD4+ T cell, CD4+ Tregs, Th17 cell, and IL-1β, IL-6, IL-10, IL-17A, RANKL, TGF-β expression in the gingiva, CLNs, and spleen to illustrate possible working mechanism of CD8+ regulatory T cells. Periodontitis does not induce significant change on proportion or amount of CD8+ Tregs. Adoptive transfer of CD8+ Tregs reduces alveolar bone destruction and osteoclast formation. In addition, experimental periodontitis increases percentage of Th17 cells and decreases CD4+ Tregs in the gingiva and CLNs. More IL-1β, IL-6, IL-17A, and RANKL, and less IL-10 and TGF-β are also detected in the gingiva and CLNs from animals with periodontitis than the one from healthy animals. Adoptive transfer of CD8+ regulatory T cells remedies all above pathological change effectively. We did not find any significant difference in spleen, regardless group and detected items. Outcomes of present study clarify function that CD8+ regulatory T cells affect alveolar bone homeostasis, and disclose its possible working mechanisms. CD8+ regulatory T cells protect alveolar bone via reducing osteoclastogenesis and modulating local immune response.
Collapse
|
32
|
Nikolajczyk BS, Dawson DR. Origin of Th17 Cells in Type 2 Diabetes-Potentiated Periodontal Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:45-54. [DOI: 10.1007/978-3-030-28524-1_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Escobar GF, Abdalla DR, Beghini M, Gotti VB, Rodrigues Junior V, Napimoga MH, Ribeiro BM, Rodrigues DBR, Nogueira RD, Pereira SADL. Levels of Pro and Anti-inflammatory Citokynes and C-Reactive Protein in Patients with Chronic Periodontitis Submitted to
Nonsurgical Periodontal Treatment. Asian Pac J Cancer Prev 2018; 19:1927-1933. [PMID: 30051674 PMCID: PMC6165634 DOI: 10.22034/apjcp.2018.19.7.1927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim to compare the levels of IFN-γ, TGF-β and C-reactive protein (CRP) in healthy patients (HP) and chronic periodontitis patients (CP) before and seven days after the last session of Non-Surgical Periodontal Treatment (NSPT). Materials and Methods 40 subjects were divided into two groups: healthy (n= 20), and with chronic periodontitis (n = 20). Serum and gingival crevicular fluid (GCF) were collected from each patient and quantified for IFN-γ, TGF-β and CRP using the enzyme-linked immunosorbent assay (ELISA). Results IFN-γ was found to be higher in the GCF of the CP group before NSPT in relation to the HP group (p<0.05), and it had significant higher levels after seven days of NSPT (p<0.05). The levels of TGF-β in the GCF of CP patients before NSPT were significantly higher when compared to HP (p<0.05), but they decreased after seven days of NSPT (p>0.05). Serum CRP levels did not show statistical difference between CP and HP before or after NSPT. Conclusion Therefore, our results demonstrated for the first time that NSPT causes early exacerbation of the immune response at the local level represented by increased levels of IFN-γ and decreased levels of TGF-β in the gingival crevicular fluid after seven days of treatment.
Collapse
|
34
|
Napimoga MH, Rocha EP, Trindade-da-Silva CA, Demasi APD, Martinez EF, Macedo CG, Abdalla HB, Bettaieb A, Haj FG, Clemente-Napimoga JT, Inceoglu B, Hammock BD. Soluble epoxide hydrolase inhibitor promotes immunomodulation to inhibit bone resorption. J Periodontal Res 2018; 53:743-749. [PMID: 29851077 DOI: 10.1111/jre.12559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Soluble epoxide hydrolase (sEH) is an enzyme in the arachidonate cascade which converts epoxy fatty acids (EpFAs), such as epoxyeicosatrienoic acids (EETs) produced by cytochrome P450 enzymes, to dihydroxy-eicosatrienoic acids. In the last 20 years with the development of inhibitors to sEH it has been possible to increase the levels of EETs and other EpFAs in in vivo models. Recently, studies have shown that EETs play a key role in blocking inflammation in a bone resorption process, but the mechanism is not clear. In the current study we used the sEH inhibitor (1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea [TPPU]) to investigate the immunomodulatory effects in a mouse periodontitis model. MATERIAL AND METHODS Mice were infected on days 0, 2, and 4 with Aggregatibacter actinomycetemcomitans and divided into groups (n = 6) that were treated orally, daily for 15 days, with 1 mg/kg of TPPU. Then, the mice were killed and their jaws were analyzed for bone resorption using morphometry. Immunoinflammatory markers in the gingival tissue were analyzed by microarray PCR or western blotting. RESULTS Infected mice treated with TPPU showed lower bone resorption than infected mice without treatment. Interestingly, infected mice showed increased expression of sEH; however, mice treated with TPPU had a reduction in expression of sEH. Besides, several proinflammatory cytokines and molecular markers were downregulated in the gingival tissue in the group treated with 1 mg/kg of TPPU. CONCLUSION The sEH inhibitor, TPPU, showed immunomodulatory effects, decreasing bone resorption and inflammatory responses in a bone resorption mouse model.
Collapse
Affiliation(s)
- M H Napimoga
- São Leopoldo Mandic Institute and Research Center, Campinas, Brazil
| | - E P Rocha
- São Leopoldo Mandic Institute and Research Center, Campinas, Brazil
| | - C A Trindade-da-Silva
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - A P D Demasi
- São Leopoldo Mandic Institute and Research Center, Campinas, Brazil
| | - E F Martinez
- São Leopoldo Mandic Institute and Research Center, Campinas, Brazil
| | - C G Macedo
- São Leopoldo Mandic Institute and Research Center, Campinas, Brazil
| | - H B Abdalla
- Laboratory of Orofacial Pain, Department of Physiology, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - A Bettaieb
- Department of Nutrition, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - F G Haj
- Nutrition Department, University of California, Davis, CA, USA
| | | | - B Inceoglu
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - B D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| |
Collapse
|
35
|
Hajishengallis G, Korostoff JM. Revisiting the Page & Schroeder model: the good, the bad and the unknowns in the periodontal host response 40 years later. Periodontol 2000 2018; 75:116-151. [PMID: 28758305 DOI: 10.1111/prd.12181] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In their classic 1976 paper, Page & Schroeder described the histopathologic events and the types of myeloid cells and lymphocytes involved in the initiation and progression of inflammatory periodontal disease. The staging of periodontal disease pathogenesis as 'initial', 'early', 'established' and 'advanced' lesions productively guided subsequent research in the field and remains fundamentally valid. However, major advances regarding the cellular and molecular mechanisms underlying the induction, regulation and effector functions of immune and inflammatory responses necessitate a reassessment of their work and its integration with emerging new concepts. We now know that each type of leukocyte is actually represented by functionally distinct subsets with different, or even conflicting, roles in immunity and inflammation. Unexpectedly, neutrophils, traditionally regarded as merely antimicrobial effectors in acute conditions and protagonists of the 'initial' lesion, are currently appreciated for their functional versatility and critical roles in chronic inflammation. Moreover, an entirely new field of study, osteoimmunology, has emerged and sheds light on the impact of immunoinflammatory events on the skeletal system. These developments and the molecular dissection of crosstalk interactions between innate and adaptive leukocytes, as well as between the immune system and local homeostatic mechanisms, offer a more nuanced understanding of the host response in periodontitis, with profound implications for treatment. At the same time, deeper insights have generated new questions, many of which remain unanswered. In this review, 40 years after Page & Schroeder proposed their model, we summarize enduring and emerging advances in periodontal disease pathogenesis.
Collapse
|
36
|
Parachuru VPB, Coates DE, Milne TJ, Rich AM, Seymour GJ. FoxP3 + regulatory T cells, interleukin 17 and mast cells in chronic inflammatory periodontal disease. J Periodontal Res 2018; 53:622-635. [PMID: 29633265 DOI: 10.1111/jre.12552] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND OBJECTIVE T cells are known to play a pivotal role in periodontal disease; however, less is known about the T-helper subsets of regulatory T cells (Tregs) and Th17 cells. The aim of this study was to investigate the cell types expressing FoxP3 and interleukin (IL)-17A within periodontal disease tissues and to determine gene and protein expression profiles associated with periodontitis. MATERIAL AND METHODS A total of 10 healthy/gingivitis and 10 chronic periodontitis tissues were investigated. Immunohistochemistry and immunofluorescence techniques were used to identify the FoxP3 and IL17-positive cells and to determine the cell types respectively. Gene expression was determined using semi-quantitative polymerase chain reaction array technology that allowed the analysis of 84 pathway-focused genes known to be associated with Tregs and Th17 cells. Transforming growth factor (TGF)-β1, IL10 and IL17A protein levels were determined using enzyme-linked immunosorbent assay. RESULTS Double immunofluorescence labeling revealed that all FoxP3+ cells were CD4+ , while IL17+ cells were neither CD4+ nor CD8+ but were tryptase+ , suggestive of mast cells. More FoxP3+ cells than IL17+ cells were found in all the tissues examined and overall there were few IL17+ cells. Statistically significant increases in gene expression were found for STAT5A, STAT3, SOCS1, TGFβ1 and IL10 in the chronic periodontitis specimens predominantly infiltrated with B cells and plasma cells when compared with healthy/gingivitis specimens predominantly infiltrated with T cells. Protein analysis demonstrated higher levels of the TGFβ1 and IL10 cytokines in periodontitis tissues and in B-cell and plasma cell predominant gingival tissues than in healthy/gingivitis tissues and T-cell predominant gingival tissues. IL17A gene and protein expression was not detected in any of the tissues. CONCLUSION Based on the findings of this study, we suggest that the source of low levels of IL17A in periodontal tissues is mast cells not Th17 cells and that Tregs may have a more prominent role in the pathogenesis of periodontal disease than Th17 cells.
Collapse
Affiliation(s)
- V P B Parachuru
- Sir John Walsh Research Institute Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - D E Coates
- Sir John Walsh Research Institute Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - T J Milne
- Sir John Walsh Research Institute Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - A M Rich
- Sir John Walsh Research Institute Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - G J Seymour
- Sir John Walsh Research Institute Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
37
|
Regulatory T Lymphocytes in Periodontitis: A Translational View. Mediators Inflamm 2018; 2018:7806912. [PMID: 29805313 PMCID: PMC5901475 DOI: 10.1155/2018/7806912] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/20/2018] [Indexed: 01/10/2023] Open
Abstract
Periodontitis is a chronic immuno-inflammatory disease in which the disruption of the balance between host and microbiota interactions is key to the onset and progression of the disease. The immune homeostasis associated with periodontal health requires a regulated immuno-inflammatory response, during which the presence of regulatory T cells (Tregs) is essential to ensure a controlled response that minimizes collateral tissue damage. Since Tregs modulate both innate and adaptive immunity, pathological conditions that may resolve by the acquisition of immuno-tolerance, such as periodontitis, may benefit by the use of Treg immunotherapy. In recent years, many strategies have been proposed to take advantage of the immuno-suppressive capabilities of Tregs as immunotherapy, including the ex vivo and in vivo manipulation of the Treg compartment. Ongoing research in both basic and translational studies let us gain a better understanding of the diversity of Treg subsets, their phenotypic plasticity, and suppressive functions, which can be used as a substrate for new immunotherapies. Certainly, as our knowledge of Treg biology increases, we will be capable to develop new therapies designed to enhance the stability and function of Tregs during periodontitis.
Collapse
|
38
|
Degasperi GR, Etchegaray A, Marcelino L, Sicard A, Villalpando K, Pinheiro SL. Periodontal Disease: General Aspects from Biofilm to the Immune Response Driven by Periodontal Pathogens. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/aim.2018.81001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
B10 Cells Alleviate Periodontal Bone Loss in Experimental Periodontitis. Infect Immun 2017; 85:IAI.00335-17. [PMID: 28652308 DOI: 10.1128/iai.00335-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/16/2017] [Indexed: 02/06/2023] Open
Abstract
B10 cells can regulate inflammatory responses in innate immunity. Toll-like receptors (TLRs) play an important role in B cell-mediated immune responses in periodontal disease. This study aimed to determine the effects of TLR-activated B10 cells on periodontal bone loss in experimental periodontitis. Spleen B cells isolated from C57BL/6J mice were cultured with Porphyromonas gingivalis lipopolysaccharide (LPS) and cytosine-phospho-guanine (CpG) oligodeoxynucleotides for 48 h. B10-enriched CD1dhi CD5+ B cells were sorted by flow cytometry and were adoptively transferred to recipient mice through tail vein injection. At the same time, P. gingivalis-soaked ligatures were placed subgingivally around the maxillary second molars and remained there for 2 weeks before the mice were euthanized. Interleukin-10 (IL-10) production and the percentage of CD1dhi CD5+ B cells were significantly increased with treatment with P. gingivalis LPS plus CpG compared to those in mice treated with P. gingivalis LPS or CpG alone. Mice with CD1dhi CD5+ B cell transfer demonstrated reduced periodontal bone loss compared to the no-transfer group and the group with CD1dlo CD5- B cell transfer. Gingival IL-10 mRNA expression was significantly increased, whereas expressions of receptor activator of NF-κB ligand (RANKL)/osteoprotegerin (OPG), tumor necrosis factor alpha (TNF-α), and IL-1β were significantly inhibited in the CD1dhi CD5+ B cell transfer group. The percentages of CD19+ IL-10+ cells, CD19+ CD1dhi CD5+ cells, and P. gingivalis-binding CD19+ cells were significantly higher in recovered mononuclear cells from gingival tissues of the CD1dhi CD5+ B cell transfer group than in tissues of the no-transfer group and the CD1dlo CD5- B cell transfer group. This study indicated that the adoptive transfer of B10 cells alleviated periodontal inflammation and bone loss in experimental periodontitis in mice.
Collapse
|
40
|
Ebersole JL, Dawson D, Emecen-Huja P, Nagarajan R, Howard K, Grady ME, Thompson K, Peyyala R, Al-Attar A, Lethbridge K, Kirakodu S, Gonzalez OA. The periodontal war: microbes and immunity. Periodontol 2000 2017; 75:52-115. [DOI: 10.1111/prd.12222] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Nędzi-Góra M, Kowalski J, Górska R. The Immune Response in Periodontal Tissues. Arch Immunol Ther Exp (Warsz) 2017; 65:421-429. [PMID: 28589230 DOI: 10.1007/s00005-017-0472-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/24/2017] [Indexed: 12/29/2022]
Abstract
The uniqueness of periodontal diseases is caused by several factors. This group of diseases is caused by numerous bacterial species formed in the dental biofilm, and one cannot distinguish the specific pathogen that is responsible for the disease initiation or progress (though Gram-negative anaerobic rods are associated with the advanced form of the disease). The disease is both infectious and inflammatory in its nature, and in the state of health there is always a subclinical level of inflammatory response, caused by the so-called harmless bacteria. Negligence in oral hygiene may result in maturation of the biofilm and trigger host response, manifesting clinically as gingivitis or-later and in susceptible subjects-as periodontitis. The article presents the contemporary knowledge of the inflammatory reaction occurring in tissues surrounding the tooth during periodontal inflammation. The most important mechanisms are described, together with implications for clinicists.
Collapse
Affiliation(s)
- Małgorzata Nędzi-Góra
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, Miodowa 18, Warsaw, 00-246, Poland.
| | - Jan Kowalski
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, Miodowa 18, Warsaw, 00-246, Poland
| | - Renata Górska
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, Miodowa 18, Warsaw, 00-246, Poland
| |
Collapse
|
42
|
Cardoso EM, Arosa FA. CD8 + T Cells in Chronic Periodontitis: Roles and Rules. Front Immunol 2017; 8:145. [PMID: 28270813 PMCID: PMC5318426 DOI: 10.3389/fimmu.2017.00145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/30/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Elsa M Cardoso
- Health Sciences Research Centre (CICS-UBI), Faculty of Health Sciences (FCS-UBI), Universidade da Beira Interior , Covilhã , Portugal
| | - Fernando A Arosa
- Health Sciences Research Centre (CICS-UBI), Faculty of Health Sciences (FCS-UBI), Universidade da Beira Interior , Covilhã , Portugal
| |
Collapse
|
43
|
Molina Da Silva GP, Tanaka OM, Campos Navarro DF, Repeke CE, Garlet GP, Guariza-Filho O, Trevilatto PC. The effect of potassium diclofenac and dexamethasone on MMP-1 gene transcript levels during experimental tooth movement in rats. Orthod Craniofac Res 2017; 20:30-34. [DOI: 10.1111/ocr.12137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2016] [Indexed: 11/30/2022]
Affiliation(s)
- G. P. Molina Da Silva
- School of Life Sciences Curitiba; Pontifícia Universidade Católica do Paraná; Curitiba Paraná Brazil
| | - O. M. Tanaka
- School of Life Sciences Curitiba; Pontifícia Universidade Católica do Paraná; Curitiba Paraná Brazil
| | - D. F. Campos Navarro
- School of Life Sciences Curitiba; Pontifícia Universidade Católica do Paraná; Curitiba Paraná Brazil
| | - C. E. Repeke
- School of Dentistry of Bauru; Department of Biological Sciences; FOB/USP; Bauru Brazil
| | - G. P. Garlet
- School of Dentistry of Bauru; Department of Biological Sciences; FOB/USP; Bauru Brazil
| | - O. Guariza-Filho
- School of Life Sciences Curitiba; Pontifícia Universidade Católica do Paraná; Curitiba Paraná Brazil
| | - P. C. Trevilatto
- School of Life Sciences Curitiba; Pontifícia Universidade Católica do Paraná; Curitiba Paraná Brazil
| |
Collapse
|
44
|
Vitales-Noyola M, Martínez-Martínez R, Loyola-Rodríguez JP, Baranda L, Niño-Moreno P, González-Amaro R. Quantitative and functional analysis of CD69 + T regulatory lymphocytes in patients with periodontal disease. J Oral Pathol Med 2016; 46:549-557. [PMID: 27759906 DOI: 10.1111/jop.12514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Periodontal disease is chronic inflammatory process that affects the attachment structures of the teeth and constitutes a significant cause of tooth loss in adults. Although different bacteria play an important role in the triggering of this condition, the progression and severity of the disease are strongly affected by the host immune response, which is under the control of different immune regulatory mechanisms, including T regulatory (Treg) cells. The aim of this study was to assess the frequency and function of CD69+ Treg lymphocytes in patients with chronic periodontal disease. METHODS Peripheral blood samples (n = 33) and gingival tissue (n = 9) were obtained from patients with chronic periodontal disease. Blood samples from 25 healthy individuals were also studied. Levels of CD69+ Treg lymphocytes in peripheral blood and gingival tissue were determined by six-color multiparametric flow cytometry, immunofluorescence, and immunohistochemistry. The immune regulatory function of CD69+ Treg cells was tested by an in vitro assay of inhibition of lymphocyte activation. RESULTS Percentages of CD69+ Treg cells were significantly higher in the peripheral blood from patients with active periodontal disease compared to healthy controls, and these percentages inversely correlated with the periodontal attachment loss. Increased numbers of these Treg cells were detected in the gingival tissue from active PD patients compared to their peripheral blood. However, the suppressive function of CD69+ Treg cells was significantly diminished in patients with periodontal disease compared to healthy controls. CONCLUSIONS Our data suggest that CD69+ Treg cells seem to be another important piece in the complex immunopathogenesis of periodontal disease.
Collapse
Affiliation(s)
| | - Rita Martínez-Martínez
- Postgraduate Dental Science Program, Faculty of Dentistry, UASLP, San Luis Potosí, SLP, México
| | - Juan P Loyola-Rodríguez
- Postgraduate Dental Science Program, Faculty of Dentistry, UASLP, San Luis Potosí, SLP, México
| | - Lourdes Baranda
- Department of Immunology, School of Medicine, UASLP, San Luis Potosí, SLP, México
| | - Perla Niño-Moreno
- Laboratory of Genetics and Molecular Diagnostic, Faculty of Chemical Sciences, UASLP, San Luis Potosí, SLP, Mexico
| | | |
Collapse
|
45
|
Carvalho-Filho PC, Gomes-Filho IS, Meyer R, Olczak T, Xavier MT, Trindade SC. Role of Porphyromonas gingivalis HmuY in Immunopathogenesis of Chronic Periodontitis. Mediators Inflamm 2016; 2016:7465852. [PMID: 27403039 PMCID: PMC4925967 DOI: 10.1155/2016/7465852] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/25/2016] [Indexed: 12/03/2022] Open
Abstract
Periodontitis is a multifactorial disease, with participation of bacterial, environmental, and host factors. It results from synergistic and dysbiotic multispecies microorganisms, critical "keystone pathogens," affecting the whole bacterial community. The purpose of this study was to review the role of Porphyromonas gingivalis in the immunopathogenesis of chronic periodontitis, with special attention paid to HmuY. The host response during periodontitis involves the innate and adaptive immune system, leading to chronic inflammation and progressive destruction of tooth-supporting tissues. In this proinflammatory process, the ability of P. gingivalis to evade the host immune response and access nutrients in the microenvironment is directly related to its survival, proliferation, and infection. Furthermore, heme is an essential nutrient for development of these bacteria, and HmuY is responsible for its capture from host heme-binding proteins. The inflammatory potential of P. gingivalis HmuY has been shown, including induction of high levels of proinflammatory cytokines and CCL2, decreased levels of IL-8, and increased levels of anti-HmuY IgG and IgG1 antibodies in individuals with chronic periodontitis. Therefore, the HmuY protein might be a promising target for therapeutic strategies and for development of diagnostic methods in chronic periodontitis, especially in the case of patients with chronic periodontitis not responding to treatment, monitoring, and maintenance therapy.
Collapse
Affiliation(s)
- P. C. Carvalho-Filho
- Odontology Course, Bahiana School of Medicine and Public Health, 41150-100 Salvador, BA, Brazil
| | - I. S. Gomes-Filho
- Department of Periodontics, Feira de Santana State University, 44036-900 Feira de Santana, BA, Brazil
| | - R. Meyer
- Department of Biointeraction, Federal University of Bahia, 40110-100 Salvador, BA, Brazil
| | - T. Olczak
- Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - M. T. Xavier
- Odontology Course, Bahiana School of Medicine and Public Health, 41150-100 Salvador, BA, Brazil
| | - S. C. Trindade
- Department of Periodontics, Feira de Santana State University, 44036-900 Feira de Santana, BA, Brazil
| |
Collapse
|
46
|
Lu H, Zhu C, Li F, Xu W, Tao D, Feng X. Putative periodontopathic bacteria and herpesviruses in pregnant women: a case-control study. Sci Rep 2016; 6:27796. [PMID: 27301874 PMCID: PMC4908451 DOI: 10.1038/srep27796] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/25/2016] [Indexed: 11/10/2022] Open
Abstract
Little is known about herpesvirus and putative periodontopathic bacteria in maternal chronic periodontitis. The present case-control study aimed to explore the potential relationship between putative periodontopathic bacteria and herpesviruses in maternal chronic periodontitis.Saliva samples were collected from 36 pregnant women with chronic periodontitis (cases) and 36 pregnant women with healthy periodontal status (controls). Six putative periodontopathic bacteria (Porphyromonas gingivalis [Pg], Aggregatibacer actinomycetemcomitans [Aa], Fusobacterium nucleatum [Fn], Prevotella intermedia [Pi], Tannerella forsythia [Tf], and Treponema denticola [Td]) and three herpesviruses (Epstein-Barr virus [EBV], human cytomegalovirus [HCMV], and herpes simplex virus [HSV]) were detected. Socio-demographic data and oral health related behaviors, and salivary estradiol and progesterone levels were also collected. The results showed no significant differences in socio-demographic background, oral health related behaviors, and salivary estradiol and progesterone levels between the two groups (all P > 0.05). The detection rates of included periodontopathic microorganisms were not significantly different between the two groups (all P > 0.05), but the coinfection rate of EBV and Pg was significantly higher in the case group than in the control group (P = 0.028). EBV and Pg coinfection may promote the development of chronic periodontitis among pregnant women.
Collapse
Affiliation(s)
- Haixia Lu
- Department of Preventive Dentistry, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ce Zhu
- Department of Preventive Dentistry, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Fei Li
- Department of Preventive Dentistry, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Xu
- Department of Preventive Dentistry, Shanghai Stomatological Hospital, Shanghai, China
| | - Danying Tao
- Department of Preventive Dentistry, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xiping Feng
- Department of Preventive Dentistry, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
47
|
Abstract
This introductory article examines the potential mechanisms that may play a role in the associations between periodontitis and the systemic conditions being considered in the EFP/AAP Workshop in Segovia, Spain. Three basic mechanisms have been postulated to play a role in these interactions; metastatic infections,inflammation and inflammatory injury, and adaptive immunity. The potential role of each alone and together is considered in in vitro and animal studies and in human studies when available. This is not a systematic or critical review, but rather an overview of the field to set the stage for the critical reviews in each of the working groups.
Collapse
Affiliation(s)
- Thomas E Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA.
| | | |
Collapse
|
48
|
Sabarish R, Rao SR, Lavu V. Natural T Regulatory Cells (n Treg) in the Peripheral Blood of Healthy Subjects and Subjects with Chronic Periodontitis - A Pilot Study. J Clin Diagn Res 2016; 10:ZC36-9. [PMID: 27134998 DOI: 10.7860/jcdr/2016/15449.7446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/03/2015] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The T cells play a central role in the aetiopathogenesis of periodontal disease. Natural T regulatory cells (nTreg) are the key stone immunoregulatory elements having an anergic phenotype and play an important role in the suppression of exaggerated immune responses thereby maintaining homeostasis. There are increasing evidences for the role of nTreg in the periodontal disease pathogenesis. AIM To identify the proportion of natural T regulatory cells in the peripheral blood of periodontally healthy subjects and subjects with chronic periodontitis. MATERIALS AND METHODS A total of 15 subjects (7 with healthy gingiva and 8 with chronic periodontitis) were recruited for this pilot study. Baseline periodontal parameters were recorded and 5 ml of peripheral blood was collected. The samples from both the groups were analysed for the relative proportion of nTreg (identified by the expression CD45RB+CD4+CD25+FOXP3+) using flow cytometry. RESULTS The mean percentages of the CD45RB+CD4+CD25+ cells expressing FOXP3 in control and chronic periodontitis group were found to be 14.75±5.04 and 43.13±11.17 respectively. The mean proportion of nTreg were compared between the control and chronic periodontitis sample using Mann-Whitney Test and was found to be statistically significant with (p<0.001). CONCLUSION A higher proportion of nTreg in the peripheral blood sample of chronic periodontitis subjects were observed as compared to that of healthy individuals.
Collapse
Affiliation(s)
- Ram Sabarish
- Senior Lecturer, Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University , Chennai, India
| | - Suresh Ranga Rao
- Professor and Head, Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University , Chennai, India
| | - Vamsi Lavu
- Associate Professor, Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University , Chennai, India
| |
Collapse
|
49
|
Zhu C, Li F, Wong MCM, Feng XP, Lu HX, Xu W. Association between Herpesviruses and Chronic Periodontitis: A Meta-Analysis Based on Case-Control Studies. PLoS One 2015; 10:e0144319. [PMID: 26666412 PMCID: PMC4677929 DOI: 10.1371/journal.pone.0144319] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/15/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Numerous studies have investigated the associations between herpesviruses and chronic periodontitis; however, the results remain controversial. To derive a more precise estimation, a meta-analysis on all available studies was performed to identify the association between herpesviruses and chronic periodontitis. METHODS A computerized literature search was conducted in December 2014 to identify eligible case-control studies from the PUBMED and EMBASE databases according to inclusion and exclusion criteria. Data were extracted and pooled odds ratios (OR) with 95% confidence intervals (CI) were used to assess the association between herpesviruses and risk of chronic periodontitis. A fixed or random effects model was determined based on a heterogeneity test. Sensitivity analysis was conducted to investigate stability and reliability. Publication bias was investigated using the Begg rank correlation test and Egger's funnel plot. RESULTS Ten eligible studies were included to investigate the association between Epstein-Barr virus (EBV) and chronic periodontitis. The results showed that EBV has a significant association with chronic periodontitis compared with periodontally healthy group (OR = 5.74, 95% CI = 2.53-13.00, P<0.001). The association between human cytomegalovirus (HCMV) and chronic periodontitis was analyzed in 10 studies. The pooled result showed that HCMV also has a significant association with chronic periodontitis (OR = 3.59, 95% CI = 1.41-9.16, P = 0.007). Similar results were found in the sensitivity analyses. No significant publication bias was observed. Two eligible studies were included to investigate the association between herpes simplex virus (HSV) and chronic periodontitis risk. The association between HSV and chronic periodontitis was inconclusive (OR = 2.81 95% CI = 0.95-8.27, P = 0.06). Only one included study investigated the association between human herpesvirus 7 (HHV-7) and chronic periodontitis risk (OR = 1.00, 95% CI = 0.21-4.86). CONCLUSION The findings of this meta-analysis suggest that two members of the herpesvirus family, EBV and HCMV, are significantly associated with chronic periodontitis. There is insufficient evidence to support associations between HSV, HHV-7 and chronic periodontitis.
Collapse
Affiliation(s)
- Ce Zhu
- Department of Preventive Dentistry, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Fei Li
- Department of Preventive Dentistry, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - May. Chun. Mei Wong
- Dental Public Health, Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - Xi-Ping Feng
- Department of Preventive Dentistry, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hai-Xia Lu
- Department of Preventive Dentistry, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai, China
- * E-mail: (HXL); (WX)
| | - Wei Xu
- Department of Preventive Dentistry, Shanghai Municipal Hospital for Oral Health, Shanghai, China
- * E-mail: (HXL); (WX)
| |
Collapse
|
50
|
Campbell L, Millhouse E, Malcolm J, Culshaw S. T cells, teeth and tissue destruction - what do T cells do in periodontal disease? Mol Oral Microbiol 2015; 31:445-456. [DOI: 10.1111/omi.12144] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2015] [Indexed: 01/12/2023]
Affiliation(s)
- L. Campbell
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| | - E. Millhouse
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| | - J. Malcolm
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| | - S. Culshaw
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| |
Collapse
|