1
|
Koshizuka T, Sasaki Y, Kondo H, Koizumi J, Takahashi K. Downregulation of CD86 in HCMV-infected THP-1 cells. Microbiol Immunol 2024; 68:406-413. [PMID: 39380416 DOI: 10.1111/1348-0421.13176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Monocytes and macrophages are at the frontline of defense against pathogens. Human cytomegalovirus (HCMV) uses myeloid cells as vehicles to facilitate viral dissemination. HCMV infection in monocytes and macrophages leads to the downregulation of several cell surface markers via an undefined mechanism. Previously, we showed that HCMV pUL42 associates with the Nedd4 family ubiquitin E3 ligases through the PPXY motif on pUL42 and downregulates Nedd4 and Itch proteins in HCMV-infected fibroblasts. Homologous proteins of HCMV pUL42, such as HHV-6 U24, downregulate cell surface markers. To reveal the downregulation property of pUL42, we focused on CD86, the key costimulatory factor for acquired immunity. Here, we constructed CD86-expressing THP-1 cells using a retroviral vector and analyzed the effects of HCMV infection and pUL42 on CD86 downregulation. Disruption of the PPXY motifs of pUL42 (UL42PA) decelerated the degradation of CD86 in recombinant virus-infected cells, indicating the involvement of Nedd4 family functions. However, no direct interactions were observed between CD86 and Itch. Interestingly, unlike fibroblast infection, the expression of Nedd4 and Itch proteins increased in HCMV-infected THP-1 cells, accompanied by an increase in their transcript levels. Although the function of pUL42 did not relate to the increase of Nedd4 and Itch proteins, pUL42 should affect these Nedd4 proteins to downregulate CD86.
Collapse
Affiliation(s)
- Tetsuo Koshizuka
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuta Sasaki
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroki Kondo
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Juri Koizumi
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Keita Takahashi
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
2
|
Mollik M, Rohorzka A, Chen X, Kropff B, Eisler L, Külekci B, Puchhammer-Stöckl E, Thomas M, Görzer I. Growth defect of domain III glycoprotein B mutants of human cytomegalovirus reverted by compensatory mutations co-localizing in post-fusion conformation. mBio 2024; 15:e0181224. [PMID: 39315800 PMCID: PMC11481916 DOI: 10.1128/mbio.01812-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Cell entry is a crucial step for a virus to infect a host cell. Human cytomegalovirus utilizes glycoprotein B (gB) to fuse the viral and host cell membranes upon receptor binding of gH/gL-containing complexes. Fusion is mediated by major conformational changes of gB from a metastable pre-fusion to a stable post-fusion state whereby the central trimeric coiled-coils, formed by domain (Dom)III α helices, remain structurally nearly unchanged. To better understand the role of the stable core, we individually introduced three potentially helix-breaking or one disulfide bond-breaking mutation in the DIII α3 to study different aspects of the viral behavior upon long-term culturing. Two of the three helix-breaking mutations, gB_Y494P and gB_I495P, were lethal for the virus in either fibroblasts or epithelial cells. The third substitution, gB_G493P, on the other hand, displayed a delayed replication and spread, which was more pronounced in epithelial cells, hinting at an impaired fusion. Interestingly, the disulfide bond-breaker mutation, gB_C507S, performed strikingly differently in the two cell types - lethal in epithelial cells and an atypical phenotype in fibroblasts, respectively. Replication curve analyses paired with the infection efficiency, the spread morphology, and the cell-cell fusogenicity suggest a dysregulated fusion process, which could be reverted by second-site mutations mapping predominantly to gB DomV. Our findings underline the functional importance of a stable DomIII core for a well-regulated DomV rearrangement during fusion.IMPORTANCEHuman cytomegalovirus (HCMV) can establish a lifelong infection. In most people, the infection follows an asymptomatic course; however, it is a major cause of morbidity and mortality in immunocompromised patients or neonates. HCMV has a very broad cell tropism, ranging from fibroblasts to epi- and endothelial cells. The virus uses different entry pathways utilizing the core fusion machinery consisting of glycoprotein complexes gH/gL and glycoprotein B (gB). The fusion protein gB undergoes fundamental rearrangements from a metastable pre-fusion to a stable post-fusion conformation. Here, we characterized the viral behavior after the introduction of four single-point mutations in the gB central core. These led to various cell type-specific atypical phenotypes and the emergence of compensatory mutations, demonstrating an important interaction between domains III and V. We provide a new basis for the development of a structurally and functionally altered gB, which can further serve as a tool for drug and vaccine development.
Collapse
Affiliation(s)
- Madlen Mollik
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Andreas Rohorzka
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Xiaohan Chen
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Kropff
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Eisler
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Büsra Külekci
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Marco Thomas
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Irene Görzer
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Das S, Finney AC, Anand SK, Rohilla S, Liu Y, Pandey N, Ghrayeb A, Kumar D, Nunez K, Liu Z, Arias F, Zhao Y, Pearson-Gallion BH, McKinney MP, Richard KSE, Gomez-Vidal JA, Abdullah CS, Cockerham ED, Eniafe J, Yurochko AD, Magdy T, Pattillo CB, Kevil CG, Razani B, Bhuiyan MS, Seeley EH, Galliano GE, Wei B, Tan L, Mahmud I, Surakka I, Garcia-Barrio MT, Lorenzi PL, Gottlieb E, Salido E, Zhang J, Orr AW, Liu W, Diaz-Gavilan M, Chen YE, Dhanesha N, Thevenot PT, Cohen AJ, Yurdagul A, Rom O. Inhibition of hepatic oxalate overproduction ameliorates metabolic dysfunction-associated steatohepatitis. Nat Metab 2024; 6:1939-1962. [PMID: 39333384 PMCID: PMC11495999 DOI: 10.1038/s42255-024-01134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/28/2024] [Indexed: 09/29/2024]
Abstract
The incidence of metabolic dysfunction-associated steatohepatitis (MASH) is on the rise, and with limited pharmacological therapy available, identification of new metabolic targets is urgently needed. Oxalate is a terminal metabolite produced from glyoxylate by hepatic lactate dehydrogenase (LDHA). The liver-specific alanine-glyoxylate aminotransferase (AGXT) detoxifies glyoxylate, preventing oxalate accumulation. Here we show that AGXT is suppressed and LDHA is activated in livers from patients and mice with MASH, leading to oxalate overproduction. In turn, oxalate promotes steatosis in hepatocytes by inhibiting peroxisome proliferator-activated receptor-α (PPARα) transcription and fatty acid β-oxidation and induces monocyte chemotaxis via C-C motif chemokine ligand 2. In male mice with diet-induced MASH, targeting oxalate overproduction through hepatocyte-specific AGXT overexpression or pharmacological inhibition of LDHA potently lowers steatohepatitis and fibrosis by inducing PPARα-driven fatty acid β-oxidation and suppressing monocyte chemotaxis, nuclear factor-κB and transforming growth factor-β targets. These findings highlight hepatic oxalate overproduction as a target for the treatment of MASH.
Collapse
Grants
- R01 HL162294 NHLBI NIH HHS
- R00 HL150233 NHLBI NIH HHS
- R01 DK134011 NIDDK NIH HHS
- HL138139 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL145753 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL141155 NHLBI NIH HHS
- HL159871 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL134569 NHLBI NIH HHS
- R01 DK136685 NIDDK NIH HHS
- HL134569 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL153710 NHLBI NIH HHS
- HL139755 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL153710 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL159871 NHLBI NIH HHS
- P01 AI127335 NIAID NIH HHS
- DK136685 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- HL133497 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138139 NHLBI NIH HHS
- 24POST1196650 American Heart Association (American Heart Association, Inc.)
- HL141155 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL109946 NHLBI NIH HHS
- P20 GM134974 NIGMS NIH HHS
- K99 HL150233 NHLBI NIH HHS
- HL109946 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 19POST34380224 American Heart Association (American Heart Association, Inc.)
- 24POST1199805 American Heart Association (American Heart Association, Inc.)
- DK134011 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- R01 AI056077 NIAID NIH HHS
- 23POST1026505 American Heart Association (American Heart Association, Inc.)
- R01 HL158546 NHLBI NIH HHS
- HL145131 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 20CDA3560123 American Heart Association (American Heart Association, Inc.)
- AI127335 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- R00 HL145131 NHLBI NIH HHS
- R01 HL145753 NHLBI NIH HHS
- R01 HL139755 NHLBI NIH HHS
- HL145753-01S1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL162294 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL150233 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL167758 NHLBI NIH HHS
- K99 HL145131 NHLBI NIH HHS
- HL145753-03S1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL167758 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL172970 NHLBI NIH HHS
- P20GM134974 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R56 AI159672 NIAID NIH HHS
- R56-AI159672 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- DK131859 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- F31 DK131859 NIDDK NIH HHS
- R01 HL133497 NHLBI NIH HHS
- HL158546 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- RP190617 Cancer Prevention and Research Institute of Texas (Cancer Prevention Research Institute of Texas)
- U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
Collapse
Affiliation(s)
- Sandeep Das
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Sumit Kumar Anand
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Sumati Rohilla
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Yuhao Liu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Nilesh Pandey
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Alia Ghrayeb
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dhananjay Kumar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Kelley Nunez
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Fabio Arias
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Granada, Spain
| | - Ying Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Brenna H Pearson-Gallion
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - M Peyton McKinney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Koral S E Richard
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Jose A Gomez-Vidal
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Granada, Spain
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Elizabeth D Cockerham
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Joseph Eniafe
- Department of Microbiology and Immunology, Center of Applied Immunology and Pathological Processes, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Center of Applied Immunology and Pathological Processes, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Tarek Magdy
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Babak Razani
- Division of Cardiology and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Erin H Seeley
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | | | - Bo Wei
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Iqbal Mahmud
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ida Surakka
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eyal Gottlieb
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Salido
- Department of Pathology, Hospital Universitario de Canarias, Universidad de La Laguna, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Tenerife, Spain
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Monica Diaz-Gavilan
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Granada, Spain
| | - Y Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Paul T Thevenot
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Ari J Cohen
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA, USA
- Multi-Organ Transplant Institute, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Arif Yurdagul
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
| |
Collapse
|
4
|
Cai X, Padilla NT, Rosbe K, Tugizov SM. Breast milk induces the differentiation of monocytes into macrophages, promoting human cytomegalovirus infection. J Virol 2024; 98:e0117724. [PMID: 39194236 PMCID: PMC11406957 DOI: 10.1128/jvi.01177-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus found in human breast milk that is frequently transmitted from HCMV-seropositive mothers to their infants during the postnatal period. Despite extensive research, the mechanisms underlying HCMV transmission from breast milk and the anatomical location at which virus transfer takes place remain unclear. Breast milk contains many uniquely differentiated macrophages that undergo specific morphological and functional modifications in the mammary gland during lactation. Although the existence of permissive HCMV infection in differentiated macrophages has been well-described, the role of breast milk in this process remains unknown. Herein, we report that exposure of isolated peripheral blood monocytes to breast milk induces their differentiation into macrophages that exhibit an M2 phenotype (CD14highCD163highCD68highCD206high) and promotes a productive and sustained HCMV infection. We also found that breast milk triggers macrophage proliferation and thus sustains a unique population of proliferating, long-lived, and HCMV-susceptible macrophages that are capable of ongoing production of infectious virions. These results suggest a mechanism that explains chronic HCMV shedding into the breast milk of postpartum seropositive mothers. We also found that HCMV virions released from breast milk-induced macrophages generate a productive infection in primary infant tonsil epithelial cells. Collectively, our results suggest that breast milk may facilitate HCMV transmission from mother to infant via the oropharyngeal mucosa. IMPORTANCE While human cytomegalovirus (HCMV) is frequently detected in the breast milk of HCMV-seropositive women and is often transmitted to infants via breastfeeding, the mechanisms by which this transmission occurs remain unclear. In this study, we modeled HCMV transmission at the oropharyngeal mucosa. We treated human monocytes with breast milk to mimic the lactating mammary gland microenvironment. We found that monocytes differentiated into macrophages with an M2 phenotype, which were highly permissive for HCMV. We also discovered that breast milk induces macrophage proliferation. Thus, exposure to breast milk increased the number of HCMV-susceptible macrophages and supported high levels of infectious HCMV. We found that HCMV virions released from breast milk-induced macrophages could infect primary infant tonsil epithelial cells. Collectively, these findings reveal the dual role of breast milk that induces the differentiation and proliferation of macrophages in the mammary gland and thus facilitates mother-to-child HCMV transmission at the oropharyngeal mucosa.
Collapse
Affiliation(s)
- Xiaodan Cai
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Nicole T Padilla
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Kristina Rosbe
- Department of Otolaryngology, University of California-San Francisco, San Francisco, California, USA
| | - Sharof M Tugizov
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Mahmud J, Geiler BW, Biswas J, Miller MJ, Myers JE, Matthews SM, Wass AB, O’Connor CM, Chan GC. Delivery of US28 by incoming HCMV particles rapidly attenuates Akt activity to suppress HCMV lytic replication in monocytes. Sci Signal 2024; 17:eadn8727. [PMID: 39190708 PMCID: PMC11460310 DOI: 10.1126/scisignal.adn8727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Establishing a nonproductive, quiescent infection within monocytes is essential for the spread of human cytomegalovirus (HCMV). We investigated the mechanisms through which HCMV establishes a quiescent infection in monocytes. US28 is a virally encoded G protein-coupled receptor (GPCR) that is essential for silent infections within cells of the myeloid lineage. We found that preformed US28 was rapidly delivered to monocytes by HCMV viral particles, whereas the de novo synthesis of US28 was delayed for several days. A recombinant mutant virus lacking US28 (US28Δ) was unable to establish a quiescent infection, resulting in a fully productive lytic infection able to produce progeny virus. Infection with US28Δ HCMV resulted in the phosphorylation of the serine and threonine kinase Akt at Ser473 and Thr308, in contrast with the phosphorylation of Akt only at Ser473 after WT viral infection. Inhibiting the dual phosphorylation of Akt prevented the lytic replication of US28Δ, and ectopic expression of a constitutively phosphorylated Akt variant triggered lytic replication of wild-type HCMV. Mechanistically, we found that US28 was necessary and sufficient to attenuate epidermal growth factor receptor (EGFR) signaling induced during the entry of WT virus, which led to the site-specific phosphorylation of Akt at Ser473. Thus, particle-delivered US28 fine-tunes Akt activity by limiting HCMV-induced EGFR activation during viral entry, enabling quiescent infection in monocytes.
Collapse
Affiliation(s)
- Jamil Mahmud
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Brittany W. Geiler
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Juthi Biswas
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Michael J. Miller
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Julia E. Myers
- Infection Biology, Lerner Research Institute, Sheikha Fatima bint Mubarak Global Center for Pathogen & Human Health Research, Cleveland Clinic, Cleveland, OH 44195
- Case Comprehensive Cancer Center, Cleveland, OH 44106
| | - Stephen M. Matthews
- Infection Biology, Lerner Research Institute, Sheikha Fatima bint Mubarak Global Center for Pathogen & Human Health Research, Cleveland Clinic, Cleveland, OH 44195
- Case Comprehensive Cancer Center, Cleveland, OH 44106
| | - Amanda B. Wass
- Infection Biology, Lerner Research Institute, Sheikha Fatima bint Mubarak Global Center for Pathogen & Human Health Research, Cleveland Clinic, Cleveland, OH 44195
- Case Comprehensive Cancer Center, Cleveland, OH 44106
| | - Christine M. O’Connor
- Infection Biology, Lerner Research Institute, Sheikha Fatima bint Mubarak Global Center for Pathogen & Human Health Research, Cleveland Clinic, Cleveland, OH 44195
- Case Comprehensive Cancer Center, Cleveland, OH 44106
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195
| | - Gary C. Chan
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
6
|
Chesnokova LS, Mosher BS, Fulkerson HL, Nam HW, Shakya AK, Yurochko AD. Distinct early role of PTEN regulation during HCMV infection of monocytes. Proc Natl Acad Sci U S A 2024; 121:e2312290121. [PMID: 38483999 PMCID: PMC10962971 DOI: 10.1073/pnas.2312290121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/01/2023] [Indexed: 03/19/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection of monocytes is essential for viral dissemination and persistence. We previously identified that HCMV entry/internalization and subsequent productive infection of this clinically relevant cell type is distinct when compared to other infected cells. We showed that internalization and productive infection required activation of epidermal growth factor receptor (EGFR) and integrin/c-Src, via binding of viral glycoprotein B to EGFR, and the pentamer complex to β1/β3 integrins. To understand how virus attachment drives entry, we compared infection of monocytes with viruses containing the pentamer vs. those without the pentamer and then used a phosphoproteomic screen to identify potential phosphorylated proteins that influence HCMV entry and trafficking. The screen revealed that the most prominent pentamer-biased phosphorylated protein was the lipid- and protein-phosphatase phosphatase and tensin homolog (PTEN). PTEN knockdown with siRNA or PTEN inhibition with a PTEN inhibitor decreased pentamer-mediated HCMV entry, without affecting trimer-mediated entry. Inhibition of PTEN activity affected lipid metabolism and interfered with the onset of the endocytic processes required for HCMV entry. PTEN inactivation was sufficient to rescue pentamer-null HCMV from lysosomal degradation. We next examined dephosphorylation of a PTEN substrate Rab7, a regulator of endosomal maturation. Inhibition of PTEN activity prevented dephosphorylation of Rab7. Phosphorylated Rab7, in turn, blocked early endosome to late endosome maturation and promoted nuclear localization of the virus and productive infection.
Collapse
Affiliation(s)
- Liudmila S. Chesnokova
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Bailey S. Mosher
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Heather L. Fulkerson
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Hyung W. Nam
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Akhalesh K. Shakya
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Andrew D. Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Feist-Weller Cancer Center, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA 71103, Shreveport, LA71103
- Center for Excellence in Arthritis and Rheumatology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| |
Collapse
|
7
|
Miller MJ, Akter D, Mahmud J, Chan GC. Human cytomegalovirus modulates mTORC1 to redirect mRNA translation within quiescently infected monocytes. J Virol 2024; 98:e0188823. [PMID: 38289104 PMCID: PMC10878035 DOI: 10.1128/jvi.01888-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 02/21/2024] Open
Abstract
Human cytomegalovirus (HCMV) utilizes peripheral blood monocytes as a means to systemically disseminate throughout the host. Following viral entry, HCMV stimulates non-canonical Akt signaling leading to the activation of mTORC1 and the subsequent translation of select antiapoptotic proteins within infected monocytes. However, the full extent to which the HCMV-initiated Akt/mTORC1 signaling axis reshapes the monocyte translatome is unclear. We found HCMV entry alone was able to stimulate widescale changes to mRNA translation levels and that inhibition of mTOR, a component of mTORC1, dramatically attenuated HCMV-induced protein synthesis. Although monocytes treated with normal myeloid growth factors also exhibited increased levels of translation, mTOR inhibition had no effect, suggesting HCMV activation of mTOR stimulates the acquisition of a unique translatome within infected monocytes. Indeed, polyribosomal profiling of HCMV-infected monocytes identified distinct prosurvival transcripts that were preferentially loaded with ribosomes when compared to growth factor-treated cells. Sirtuin 1 (SIRT1), a deacetylase that exerts prosurvival effects through regulation of the PI3K/Akt pathway, was found to be highly enriched following HCMV infection in an mTOR-dependent manner. Importantly, SIRT1 inhibition led to the death of HCMV-infected monocytes while having minimal effect on uninfected cells. SIRT1 also supported a positive feedback loop to sustain Akt/mTORC1 signaling following viral entry. Taken together, HCMV profoundly reshapes mRNA translation in an mTOR-dependent manner to enhance the synthesis of select factors necessary for the survival of infected monocytes.IMPORTANCEHuman cytomegalovirus (HCMV) infection is a significant cause of morbidity and mortality among the immunonaïve and immunocompromised. Peripheral blood monocytes are a major cell type responsible for disseminating the virus from the initial site of infection. In order for monocytes to mediate viral spread within the host, HCMV must subvert the naturally short lifespan of these cells. In this study, we performed polysomal profiling analysis, which demonstrated HCMV to globally redirect mRNA translation toward the synthesis of cellular prosurvival factors within infected monocytes. Specifically, HCMV entry into monocytes induced the translation of cellular SIRT1 to generate an antiapoptotic state. Defining the precise mechanisms through which HCMV stimulates survival will provide insight into novel anti-HCMV drugs able to target infected monocytes.
Collapse
Affiliation(s)
- Michael J. Miller
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Dilruba Akter
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jamil Mahmud
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Gary C. Chan
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
8
|
Mahmud J, Geiler BW, Biswas J, Miller MJ, Myers JE, Matthews SM, Wass AB, O'Connor CM, Chan GC. Virion-associated US28 rapidly modulates Akt activity to suppress HCMV lytic replication in monocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556359. [PMID: 37732204 PMCID: PMC10508783 DOI: 10.1101/2023.09.05.556359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Establishing a non-productive quiescent/silent infection within monocytes is essential for spread of human cytomegalovirus (HCMV). Yet, how HCMV establishes a quiescent infection in monocytes remains unclear. US28 is a viral G protein-coupled receptor (GPCR) essential for silent infections within cells of the myeloid lineage. We found virion-associated US28 was rapidly delivered to monocytes, while de novo synthesized US28 was delayed for several days. A recombinant mutant virus lacking US28 (US28Δ) was unable to establish a quiescent infection, resulting in a fully productive lytic replication cycle. Mechanistically, viral entry of US28Δ phosphorylated Akt at both serine 473 (S473) and threonine 308 (T308), which contrasted with the site-specific phosphorylation of Akt at S473 following WT infection. Preventing Akt bi-phosphorylation prevented lytic replication of US28Δ, and ectopic expression of a constitutively phosphorylated Akt variant triggered lytic replication of WT infection. Our data demonstrate that virion-delivered US28 fine-tunes Akt activity to permit HCMV infection to enter a quiescent state following primary infection of monocytes.
Collapse
|
9
|
Cheung J, Remiszewski S, Chiang LW, Ahmad E, Pal M, Rahman SA, Nikolovska-Coleska Z, Chan GC. Inhibition of SIRT2 promotes death of human cytomegalovirus-infected peripheral blood monocytes via apoptosis and necroptosis. Antiviral Res 2023; 217:105698. [PMID: 37562606 DOI: 10.1016/j.antiviral.2023.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Peripheral blood monocytes are the cells predominantly responsible for systemic dissemination of human cytomegalovirus (HCMV) and a significant cause of morbidity and mortality in immunocompromised patients. HCMV establishes a silent/quiescent infection in monocytes, which is defined by the lack of viral replication and lytic gene expression. The absence of replication shields the virus within infected monocytes from the current available antiviral drugs that are designed to suppress active replication. Our previous work has shown that HCMV stimulates a noncanonical phosphorylation of Akt and the subsequent upregulation of a distinct subset of prosurvival proteins in normally short-lived monocytes. In this study, we found that SIRT2 activity is required for the unique activation profile of Akt induced within HCMV-infected monocytes. Importantly, both therapeutic and prophylactic treatment with a novel SIRT2 inhibitor, FLS-379, promoted death of infected monocytes via both the apoptotic and necroptotic cell death pathways. Mechanistically, SIRT2 inhibition reduced expression of Mcl-1, an Akt-dependent antiapoptotic Bcl-2 family member, and enhanced activation of MLKL, the executioner kinase of necroptosis. We have previously reported HCMV to block necroptosis by stimulating cellular autophagy. Here, we additionally demonstrate that inhibition of SIRT2 suppressed Akt-dependent HCMV-induced autophagy leading to necroptosis of infected monocytes. Overall, our data show that SIRT2 inhibition can simultaneously promote death of quiescently infected monocytes by two distinct death pathways, apoptosis and necroptosis, which may be vital for limiting viral dissemination to peripheral organs in immunosuppressed patients.
Collapse
Affiliation(s)
- Jennifer Cheung
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Stacy Remiszewski
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - Lillian W Chiang
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - Ejaz Ahmad
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Mohan Pal
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sm Ashikur Rahman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Zaneta Nikolovska-Coleska
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gary C Chan
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
10
|
Abstract
Human cytomegalovirus (HCMV) is a betaherpesvirus that establishes lifelong infection in its host and can cause severe comorbidities in individuals with suppressed or compromised immune systems. The lifecycle of HCMV consists of lytic and latent phases, largely dependent upon the cell type infected and whether transcription from the major immediate early locus can ensue. Control of this locus, which acts as a critical "switch" region from where the lytic gene expression cascade originates, as well as regulation of the additional ~235 kilobases of virus genome, occurs through chromatinization with cellular histone proteins after infection. Upon infection of a host cell, an initial intrinsic antiviral response represses gene expression from the incoming genome, which is relieved in permissive cells by viral and host factors in concert. Latency is established in a subset of hematopoietic cells, during which viral transcription is largely repressed while the genome is maintained. As these latently infected cells differentiate, the cellular milieu and epigenetic modifications change, giving rise to the initial stages of virus reactivation from latency. Thus, throughout the cycle of infection, chromatinization, chromatin modifiers, and the recruitment of specific transcription factors influence the expression of genes from the HCMV genome. In this review, we discuss epigenetic regulation of the HCMV genome during the different phases of infection, with an emphasis on recent reports that add to our current perspective.
Collapse
Affiliation(s)
- Stephen M. Matthews
- Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ian J. Groves
- Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christine M. O'Connor
- Infection Biology, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Crawford LB. Hematopoietic stem cells and betaherpesvirus latency. Front Cell Infect Microbiol 2023; 13:1189805. [PMID: 37346032 PMCID: PMC10279960 DOI: 10.3389/fcimb.2023.1189805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
The human betaherpesviruses including human cytomegalovirus (HCMV), human herpesvirus (HHV)-6a and HHV-6b, and HHV-7 infect and establish latency in CD34+ hematopoietic stem and progenitor cells (HPCs). The diverse repertoire of HPCs in humans and the complex interactions between these viruses and host HPCs regulate the viral lifecycle, including latency. Precise manipulation of host and viral factors contribute to preferential maintenance of the viral genome, increased host cell survival, and specific manipulation of the cellular environment including suppression of neighboring cells and immune control. The dynamic control of these processes by the virus regulate inter- and intra-host signals critical to the establishment of chronic infection. Regulation occurs through direct viral protein interactions and cellular signaling, miRNA regulation, and viral mimics of cellular receptors and ligands, all leading to control of cell proliferation, survival, and differentiation. Hematopoietic stem cells have unique biological properties and the tandem control of virus and host make this a unique environment for chronic herpesvirus infection in the bone marrow. This review highlights the elegant complexities of the betaherpesvirus latency and HPC virus-host interactions.
Collapse
Affiliation(s)
- Lindsey B Crawford
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
12
|
de Moraes FM, de Souza JWPS, Alves LP, de Siqueira MFR, dos Santos APA, de Carvalho Berardo MM, Granja MG, de Castro-Faria-Neto HC. SARS-CoV-2 Infection and Possible Neonatal Neurological Outcomes: A Literature Review. Viruses 2022; 14:1037. [PMID: 35632778 PMCID: PMC9143946 DOI: 10.3390/v14051037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
The virus responsible for COVID-19 is designated "severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2), a highly transmissible and pathogenic coronavirus. Although people of all ages are susceptible to SARS-CoV-2 infection, clinical manifestations may vary with age. The response of neonates to SARS-CoV-2 infection or exposure differs from that of children and adults. Encephalitis due to viral infections in the central nervous system (CNS) and childhood multisystem inflammatory syndrome (MIS-C) are some of the possible neonatal consequences of SARS-CoV-2 infection. This review aims to verify possible neonatal neurological outcomes after SARS-CoV-2 infection. Overall, the cellular and molecular basis of the neurological sequelae of SARS-CoV-2 in neonates remains unclear, and attempts to elucidate the pathophysiology of COVID-19 involve a comparison with the mechanism of other viral diseases. There are a considerable number of case reports in the literature exploring neurological outcomes in the neonatal period. In this review, we present possible effects of SARS-CoV-2 in neonates, emphasizing the importance of monitoring this group. The mechanisms of SARS-CoV-2 entry into the CNS have not yet been fully elucidated, and the potential severity of SARS-CoV-2 infection in neonates, as well as the possible short- and long-term neurological sequelae, remain unclear.
Collapse
Affiliation(s)
- Flávia Maciel de Moraes
- Programa de Pós-Graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro—UNIRIO, Rua Frei Caneca, 94-Centro, Rio de Janeiro 20211-010, Brazil; (F.M.d.M.); (L.P.A.)
| | - Julia Werneck Paulino Soares de Souza
- Instituto de Educação Médica—IDOMED, Escola de Medicina, Universidade Estácio de Sá, Avenida Presidente Vargas, 1121-Centro, Rio de Janeiro 20071-004, Brazil; (J.W.P.S.d.S.); (M.M.d.C.B.)
| | - Letícia Pires Alves
- Programa de Pós-Graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro—UNIRIO, Rua Frei Caneca, 94-Centro, Rio de Janeiro 20211-010, Brazil; (F.M.d.M.); (L.P.A.)
| | - Milena Ferreira Ribeiro de Siqueira
- Faculdade de Biomedicina, Instituto Biomédico, Universidade Federal Fluminense, Rua Ernani Melo, 101-São Domingos, Niterói 24210-130, Brazil;
| | - Ana Paula Aguiar dos Santos
- Escola de Medicina, Fundação Técnico-Educacional Souza Marques, Avenida Ernani Cardoso, 335-Cascadura, Rio de Janeiro 20020-080, Brazil;
| | - Mariana Monteiro de Carvalho Berardo
- Instituto de Educação Médica—IDOMED, Escola de Medicina, Universidade Estácio de Sá, Avenida Presidente Vargas, 1121-Centro, Rio de Janeiro 20071-004, Brazil; (J.W.P.S.d.S.); (M.M.d.C.B.)
| | - Marcelo Gomes Granja
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz-Fiocruz, Avenida Brasil, 4365-Manguinhos, Rio de Janeiro 21045-900, Brazil;
| | - Hugo Caire de Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz-Fiocruz, Avenida Brasil, 4365-Manguinhos, Rio de Janeiro 21045-900, Brazil;
| |
Collapse
|
13
|
Smith NA, Chan GC, O’Connor CM. Modulation of host cell signaling during cytomegalovirus latency and reactivation. Virol J 2021. [DOI: 10.1186/s12985-021-01674-1
expr 947873540 + 978833141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
AbstractBackgroundHuman cytomegalovirus (HCMV) resides latently in cells of the myeloid compartment, including CD34+hematopoietic progenitor cells and circulating monocytes. Healthy hosts maintain the virus latently, and this infection is, for the most part, asymptomatic. However, given the proper external cues, HCMV reactivates from latency, at which point the virus disseminates, causing disease. The viral and cellular factors dictating the balance between these phases of infection are incompletely understood, though a large body of literature support a role for viral-mediated manipulation of host cell signaling.Main bodyTo establish and maintain latency, HCMV has evolved various means by which it usurps host cell factors to alter the cellular environment to its own advantage, including altering host cell signaling cascades. As early as virus entry into myeloid cells, HCMV usurps cellular signaling to change the cellular milieu, and this regulation includes upregulation, as well as downregulation, of different signaling cascades. Indeed, given proper reactivation cues, this signaling is again altered to allow for transactivation of viral lytic genes.ConclusionsHCMV modulation of host cell signaling is not binary, and many of the cellular pathways altered are finely regulated, wherein the slightest modification imparts profound changes to the cellular milieu. It is also evident that viral-mediated cell signaling differs not only between these phases of infection, but also is myeloid cell type specific. Nonetheless, understanding the exact pathways and the means by which HCMV mediates them will undoubtedly provide novel targets for therapeutic intervention.
Collapse
|
14
|
Smith NA, Chan GC, O'Connor CM. Modulation of host cell signaling during cytomegalovirus latency and reactivation. Virol J 2021; 18:207. [PMID: 34663377 PMCID: PMC8524946 DOI: 10.1186/s12985-021-01674-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) resides latently in cells of the myeloid compartment, including CD34+ hematopoietic progenitor cells and circulating monocytes. Healthy hosts maintain the virus latently, and this infection is, for the most part, asymptomatic. However, given the proper external cues, HCMV reactivates from latency, at which point the virus disseminates, causing disease. The viral and cellular factors dictating the balance between these phases of infection are incompletely understood, though a large body of literature support a role for viral-mediated manipulation of host cell signaling. MAIN BODY To establish and maintain latency, HCMV has evolved various means by which it usurps host cell factors to alter the cellular environment to its own advantage, including altering host cell signaling cascades. As early as virus entry into myeloid cells, HCMV usurps cellular signaling to change the cellular milieu, and this regulation includes upregulation, as well as downregulation, of different signaling cascades. Indeed, given proper reactivation cues, this signaling is again altered to allow for transactivation of viral lytic genes. CONCLUSIONS HCMV modulation of host cell signaling is not binary, and many of the cellular pathways altered are finely regulated, wherein the slightest modification imparts profound changes to the cellular milieu. It is also evident that viral-mediated cell signaling differs not only between these phases of infection, but also is myeloid cell type specific. Nonetheless, understanding the exact pathways and the means by which HCMV mediates them will undoubtedly provide novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Nicholas A Smith
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Gary C Chan
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Christine M O'Connor
- Department of Genomic Medicine, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
15
|
Cao LQ, Zhou JR, Zhang XH, Xu LP, Wang Y, Chen YH, Chen H, Chen Y, Han W, Yan CH, Zhang YY, Wang FR, Kong J, Wang ZD, Cheng YF, Wang JZ, Mo XD, Han TT, Zhao XS, Chang YJ, Liu KY, Huang XJ, Sun YQ. A Scoring System for Predicting the Prognosis of Late-Onset Severe Pneumonia after Allogeneic Hematopoietic Stem Cell Transplantation. Transplant Cell Ther 2021; 27:870.e1-870.e7. [PMID: 34229053 DOI: 10.1016/j.jtct.2021.06.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Late-onset severe pneumonia (LOSP) is defined as severe pneumonia developing during the late phase of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Because of the high mortality in patients with LOSP, it is important to identify prognostic factors. In this study, we aimed to develop a risk score system with broad applicability that can help predict the risk of LOSP-associated mortality. We retrospectively analyzed 100 patients with LOSP after allo-HSCT between June 2009 and July 2017. The assessment variables included immune, nutritional, and metabolic parameters at the onset of LOSP. Of these 100 patients, 45 (45%) eventually died, and 55 (55%) were positive for organisms, most commonly viruses. In the multivariate analysis, higher monocyte count (≥0.20 × 109/L versus <0.20 × 109/L; P = .001), higher albumin level (≥30.5 g/L versus <30.5 g/L; P = .044), lower lactic dehydrogenase level (<250 U/L versus ≥250 U/L; P = .008) and lower blood urea nitrogen concentration (<7.2 mmol/L versus ≥7.2 mmol/L; P = .026) at the onset of LOSP were significantly associated with better 60-day survival. A risk score system based on the foregoing results showed that the probability of 60-day survival decreased with increasing risk factors, from 96.3% in the low-risk group to 49.1% in the intermediate-risk group and 12.5% in the high-risk group. Our results indicate that this scoring system using 4 variables can stratify patients with different probabilities of survival after LOSP, which suggests that patients' immune, nutritional, and metabolic status are crucial factors in determining outcome.
Collapse
Affiliation(s)
- Le-Qing Cao
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jing-Rui Zhou
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Hong Chen
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Huan Chen
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yao Chen
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Wei Han
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chen-Hua Yan
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Feng-Rong Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jun Kong
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zhi-Dong Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yi-Fei Cheng
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jing-Zhi Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Dong Mo
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ting-Ting Han
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China; Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.
| |
Collapse
|
16
|
Lee BJ, Min CK, Hancock M, Streblow DN, Caposio P, Goodrum FD, Yurochko AD. Human Cytomegalovirus Host Interactions: EGFR and Host Cell Signaling Is a Point of Convergence Between Viral Infection and Functional Changes in Infected Cells. Front Microbiol 2021; 12:660901. [PMID: 34025614 PMCID: PMC8138183 DOI: 10.3389/fmicb.2021.660901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Viruses have evolved diverse strategies to manipulate cellular signaling pathways in order to promote infection and/or persistence. Human cytomegalovirus (HCMV) possesses a number of unique properties that allow the virus to alter cellular events required for infection of a diverse array of host cell types and long-term persistence. Of specific importance is infection of bone marrow derived and myeloid lineage cells, such as peripheral blood monocytes and CD34+ hematopoietic progenitor cells (HPCs) because of their essential role in dissemination of the virus and for the establishment of latency. Viral induced signaling through the Epidermal Growth Factor Receptor (EGFR) and other receptors such as integrins are key control points for viral-induced cellular changes and productive and latent infection in host organ systems. This review will explore the current understanding of HCMV strategies utilized to hijack cellular signaling pathways, such as EGFR, to promote the wide-spread dissemination and the classic life-long herpesvirus persistence.
Collapse
Affiliation(s)
- Byeong-Jae Lee
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Chan-Ki Min
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Meaghan Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | | | - Andrew D Yurochko
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States.,Center of Excellence in Arthritis and Rheumatology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| |
Collapse
|
17
|
Jackson SE, Chen KC, Groves IJ, Sedikides GX, Gandhi A, Houldcroft CJ, Poole EL, Montanuy I, Mason GM, Okecha G, Reeves MB, Sinclair JH, Wills MR. Latent Cytomegalovirus-Driven Recruitment of Activated CD4+ T Cells Promotes Virus Reactivation. Front Immunol 2021; 12:657945. [PMID: 33912186 PMCID: PMC8072157 DOI: 10.3389/fimmu.2021.657945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection is not cleared by the initial immune response but persists for the lifetime of the host, in part due to its ability to establish a latent infection in cells of the myeloid lineage. HCMV has been shown to manipulate the secretion of cellular proteins during both lytic and latent infection; with changes caused by latent infection mainly investigated in CD34+ progenitor cells. Whilst CD34+ cells are generally bone marrow resident, their derivative CD14+ monocytes migrate to the periphery where they briefly circulate until extravasation into tissue sites. We have analyzed the effect of HCMV latent infection on the secretome of CD14+ monocytes, identifying an upregulation of both CCL8 and CXCL10 chemokines in the CD14+ latency-associated secretome. Unlike CD34+ cells, the CD14+ latency-associated secretome did not induce migration of resting immune cell subsets but did induce migration of activated NK and T cells expressing CXCR3 in a CXCL10 dependent manner. As reported in CD34+ latent infection, the CD14+ latency-associated secretome also suppressed the anti-viral activity of stimulated CD4+ T cells. Surprisingly, however, co-culture of activated autologous CD4+ T cells with latently infected monocytes resulted in reactivation of HCMV at levels comparable to those observed using M-CSF and IL-1β cytokines. We propose that these events represent a potential strategy to enable HCMV reactivation and local dissemination of the virus at peripheral tissue sites.
Collapse
Affiliation(s)
- Sarah E Jackson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Kevin C Chen
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Ian J Groves
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - George X Sedikides
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Amar Gandhi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Charlotte J Houldcroft
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Emma L Poole
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Inmaculada Montanuy
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Gavin M Mason
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Georgina Okecha
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Matthew B Reeves
- Institute of Immunity & Transplantation, University College London (UCL), London, United Kingdom
| | - John H Sinclair
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Mark R Wills
- Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| |
Collapse
|
18
|
Singh K, Hamilton ST, Shand AW, Hannan NJ, Rawlinson WD. Receptors in host pathogen interactions between human cytomegalovirus and the placenta during congenital infection. Rev Med Virol 2021; 31:e2233. [PMID: 33709529 DOI: 10.1002/rmv.2233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 11/09/2022]
Abstract
Cellular receptors in human cytomegalovirus (HCMV) mother to child transmission play an important role in congenital infection. Placental trophoblast cells are a significant cell type in placental development, placental functional processes, and in HCMV transmission. Different cells within the placental floating and chorionic villi present alternate receptors for HCMV cell entry. Syncytiotrophoblasts present neonatal Fc receptors that bind and transport circulating maternal immunoglobulin G across the placental interface which can also be bound to HCMV virions, facilitating viral entry into the placenta and foetal circulation. Cytotrophoblast express HCMV receptors including integrin-α1β1, integrin-αVβ3, epidermal growth factor receptor and platelet-derived growth factor receptor alpha. The latter interacts with HCMV glycoprotein-H, glycoprotein-L and glycoprotein-O (gH/gL/gO) trimers (predominantly in placental fibroblasts) and the gH/gL/pUL128, UL130-UL131A pentameric complex in other placental cell types. The pentameric complex allows viral tropism of placental trophoblasts, endothelial cells, epithelial cells, leukocytes and monocytes. This review outlines HCMV ligands and target receptor proteins in congenital HCMV infection.
Collapse
Affiliation(s)
- Krishneel Singh
- Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Stuart T Hamilton
- Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Antonia W Shand
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Natalie J Hannan
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women Heidelberg, Victoria, Australia
| | - William D Rawlinson
- Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
CD34 + Hematopoietic Progenitor Cell Subsets Exhibit Differential Ability To Maintain Human Cytomegalovirus Latency and Persistence. J Virol 2021; 95:JVI.02105-20. [PMID: 33177198 DOI: 10.1128/jvi.02105-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 11/20/2022] Open
Abstract
In human cytomegalovirus (HCMV)-seropositive patients, CD34+ hematopoietic progenitor cells (HPCs) provide an important source of latent virus that reactivates following cellular differentiation into tissue macrophages. Multiple groups have used primary CD34+ HPCs to investigate mechanisms of viral latency. However, analyses of mechanisms of HCMV latency have been hampered by the genetic variability of CD34+ HPCs from different donors, availability of cells, and low frequency of reactivation. In addition, multiple progenitor cell types express surface CD34, and the frequencies of these populations differ depending on the tissue source of the cells and culture conditions in vitro In this study, we generated CD34+ progenitor cells from two different embryonic stem cell (ESC) lines, WA01 and WA09, to circumvent limitations associated with primary CD34+ HPCs. HCMV infection of CD34+ HPCs derived from either WA01 or WA09 ESCs supported HCMV latency and induced myelosuppression similar to infection of primary CD34+ HPCs. Analysis of HCMV-infected primary or ESC-derived CD34+ HPC subpopulations indicated that HCMV was able to establish latency and reactivate in CD38+ CD90+ and CD38+/low CD90- HPCs but persistently infected CD38- CD90+ cells to produce infectious virus. These results indicate that ESC-derived CD34+ HPCs can be used as a model for HCMV latency and that the virus either latently or persistently infects specific subpopulations of CD34+ cells.IMPORTANCE Human cytomegalovirus infection is associated with severe disease in transplant patients and understanding how latency and reactivation occur in stem cell populations is essential to understand disease. CD34+ hematopoietic progenitor cells (HPCs) are a critical viral reservoir; however, these cells are a heterogeneous pool with donor-to-donor variation in functional, genetic, and phenotypic characteristics. We generated a novel system using embryonic stem cell lines to model HCMV latency and reactivation in HPCs with a consistent cellular background. Our study defined three key stem cell subsets with differentially regulated latent and replicative states, which provide cellular candidates for isolation and treatment of transplant-mediated disease. This work provides a direction toward developing strategies to control the switch between latency and reactivation.
Collapse
|
20
|
Chesnokova LS, Yurochko AD. Using a Phosphoproteomic Screen to Profile Early Changes During HCMV Infection of Human Monocytes. Methods Mol Biol 2021; 2244:233-246. [PMID: 33555590 DOI: 10.1007/978-1-0716-1111-1_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During the binding and infection of monocytes, HCMV binds to at least two major cell surface receptors/receptor families: the epidermal growth factor receptor (EGFR) to initiate downstream signaling through the EGFR-PI3K pathway, and to β1- and β3-integrins to initiate downstream signaling through the integrin-c-Src pathway (Nogalski et al. PLoS Pathog 9:e1003463, 2013; Chan et al. Proc Natl Acad Sci U S A 106:22369-22374, 2009; Kim et al. Proc Natl Acad Sci U S A 113:8819-8824, 2016; Wang et al. Nature 424:456-461, 2003; Wang et al. Nat Med 11:515-521, 2005; Yurochko et al. Proc Natl Acad Sci U S A 89:9034-9038, 1992). Signaling through these receptors can occur rapidly with phosphorylation observed as early as 15 s after EGF-EGFR interaction, for example (Alvarez-Salamero et al. Front Immunol 8:938, 2017). The ability to detect signaling and the consequences of that signaling are critical for our understanding of how HCMV-receptor engagement promotes infection and modulates the biology of different target cells. In this chapter we describe how we used an ELISA-based antibody platform to perform an assessment of the rapid phosphorylation events that occur in monocytes following infection. This assay can be adapted to other infection systems, time points and cell types as needed. Together, we examined via an ELISA-based antibody array a phosphoproteomic screen to search for potential phosphorylated proteins that might influence HCMV infection.
Collapse
Affiliation(s)
- Liudmila S Chesnokova
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
| |
Collapse
|
21
|
Fulkerson HL, Nogalski MT, Collins-McMillen D, Yurochko AD. Overview of Human Cytomegalovirus Pathogenesis. Methods Mol Biol 2021; 2244:1-18. [PMID: 33555579 DOI: 10.1007/978-1-0716-1111-1_1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human cytomegalovirus (HCMV) is a betaherpesvirus with a global seroprevalence of 60-90%. HCMV is the leading cause of congenital infections and poses a great health risk to immunocompromised individuals. Although HCMV infection is typically asymptomatic in the immunocompetent population, infection can result in mononucleosis and has also been associated with the development of certain cancers, as well as chronic inflammatory diseases such as various cardiovascular diseases. In immunocompromised patients, including AIDS patients, transplant recipients, and developing fetuses, HCMV infection is associated with increased rates of morbidity and mortality. Currently there is no vaccine for HCMV and there is a need for new pharmacological treatments. Ongoing research seeks to further define the complex aspects of HCMV pathogenesis, which could potentially lead to the generation of new therapeutics to mitigate the disease states associated with HCMV infection. The following chapter reviews the advancements in our understanding of HCMV pathogenesis in the immunocompetent and immunocompromised hosts.
Collapse
Affiliation(s)
- Heather L Fulkerson
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Maciej T Nogalski
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Andrew D Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
| |
Collapse
|
22
|
Mosher BS, Fulkerson HL, Yurochko AD. Collection and Isolation of CD14 + Primary Human Monocytes Via Dual Density Gradient Centrifugation as a Model System to Study Human Cytomegalovirus Infection and Pathogenesis. Methods Mol Biol 2021; 2244:103-113. [PMID: 33555584 DOI: 10.1007/978-1-0716-1111-1_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human cytomegalovirus (HCMV) can cause severe disease in the immunocompromised. One of the hallmarks of HCMV infection of a human host is the targeted infection of peripheral blood monocytes (but not other leukocyte populations) that in turn serve as the key cell type for hematogenous dissemination and the establishment of persistence following primary infection. Monocytes are also a key cell type associated with viral reactivation and spread following viral reactivation. Because of their importance in the HCMV-host infection cycle and lifelong infection, it is critical to be able to study their infection in controlled in vitro systems in the laboratory. In this chapter, we discuss a viable protocol for harvesting fresh ex vivo blood monocytes from human donors that are pure and unactivated cells and that can be used in a research setting.
Collapse
Affiliation(s)
- Bailey S Mosher
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Heather L Fulkerson
- Department of Microbiology & Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.,Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
| |
Collapse
|
23
|
Alam SB, Willows S, Kulka M, Sandhu JK. Severe acute respiratory syndrome coronavirus 2 may be an underappreciated pathogen of the central nervous system. Eur J Neurol 2020; 27:2348-2360. [PMID: 32668062 PMCID: PMC7405269 DOI: 10.1111/ene.14442] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a highly contagious respiratory disease referred to as COVID-19. However, emerging evidence indicates that a small but growing number of COVID-19 patients also manifest neurological symptoms, suggesting that SARS-CoV-2 may infect the nervous system under some circumstances. SARS-CoV-2 primarily enters the body through the epithelial lining of the respiratory and gastrointestinal tracts, but under certain conditions this pleiotropic virus may also infect peripheral nerves and gain entry into the central nervous system (CNS). The brain is shielded by various anatomical and physiological barriers, most notably the blood-brain barrier (BBB) which functions to prevent harmful substances, including pathogens and pro-inflammatory mediators, from entering the brain. The BBB is composed of highly specialized endothelial cells, pericytes, mast cells and astrocytes that form the neurovascular unit, which regulates BBB permeability and maintains the integrity of the CNS. In this review, potential routes of viral entry and the possible mechanisms utilized by SARS-CoV-2 to penetrate the CNS, either by disrupting the BBB or infecting the peripheral nerves and using the neuronal network to initiate neuroinflammation, are briefly discussed. Furthermore, the long-term effects of SARS-CoV-2 infection on the brain and in the progression of neurodegenerative diseases known to be associated with other human coronaviruses are considered. Although the mechanisms of SARS-CoV-2 entry into the CNS and neurovirulence are currently unknown, the potential pathways described here might pave the way for future research in this area and enable the development of better therapeutic strategies.
Collapse
Affiliation(s)
- S. B. Alam
- Nanotechnology Research CentreNational Research Council CanadaEdmontonAlbertaCanada
- Department of Medical Microbiology and ImmunologyUniversity of AlbertaEdmontonAlbertaCanada
| | - S. Willows
- Nanotechnology Research CentreNational Research Council CanadaEdmontonAlbertaCanada
- Department of Medical Microbiology and ImmunologyUniversity of AlbertaEdmontonAlbertaCanada
| | - M. Kulka
- Nanotechnology Research CentreNational Research Council CanadaEdmontonAlbertaCanada
- Department of Medical Microbiology and ImmunologyUniversity of AlbertaEdmontonAlbertaCanada
| | - J. K. Sandhu
- Human Health Therapeutics Research CentreNational Research Council CanadaOttawaOntarioCanada
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
24
|
Human Cytomegalovirus-Induced Autophagy Prevents Necroptosis of Infected Monocytes. J Virol 2020; 94:JVI.01022-20. [PMID: 32878887 DOI: 10.1128/jvi.01022-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022] Open
Abstract
Key to the viral dissemination strategy of human cytomegalovirus (HCMV) is the induction of monocyte survival, where monocytes are normally short-lived cells. Autophagy is a cellular process that preserves cellular homeostasis and promotes cellular survival during times of stress. We found that HCMV rapidly induced autophagy within infected monocytes. The early induction of autophagy during HCMV infection was distinctly required for the survival of HCMV-infected monocytes, as repression of autophagosome formation led to cellular death of infected cells but had no effect on the viability of uninfected monocytes. The inhibition of caspases was insufficient to rescue cell viability of autophagy-repressed infected monocytes, suggesting that autophagy was not protecting cells from apoptosis. Accordingly, we found that HCMV blocked the activation of caspase 8, which was maintained in the presence of autophagy inhibitors. Necroptosis is an alternative form of cell death triggered when apoptosis is impeded and is dependent on RIPK3 phosphorylation of MLKL. Although we found that HCMV activated RIP3K upon infection, MLKL was not activated. However, inhibition of autophagy removed the block in RIPK3 phosphorylation of MLKL, suggesting that autophagy was protecting infected monocytes from undergoing necroptosis. Indeed, survival of autophagy-inhibited HCMV-infected monocytes was rescued when MLKL and RIPK3 were suppressed. Taken together, these data indicate that HCMV induces autophagy to prevent necroptotic cell death in order to ensure the survival of infected monocytes and thus facilitate viral dissemination within the host.IMPORTANCE Human cytomegalovirus (HCMV) infection is endemic throughout the world, with a seroprevalence of 40 to 100% depending on geographic location. HCMV infection is generally asymptomatic, but can cause severe inflammatory organ diseases in immunocompromised individuals. The broad array of organ diseases caused by HCMV is directly linked to the systematic spread of the virus mediated by monocytes. Monocytes are naturally programmed to undergo apoptosis, which is rapidly blocked by HCMV to ensure the survival and dissemination of infected monocytes to different organ sites. In this work, we demonstrate infected monocytes also initiate necroptosis as a "trap door" death pathway in response to HCMV subversion of apoptosis. HCMV then activates cellular autophagy as a countermeasure to prevent the execution of necroptosis, thereby promoting the continued survival of infected monocytes. Elucidating the mechanisms by which HCMV stimulates monocyte survival is an important step to the development of novel anti-HCMV drugs that prevent the spread of infected monocytes.
Collapse
|
25
|
HCMV-induced signaling through gB-EGFR engagement is required for viral trafficking and nuclear translocation in primary human monocytes. Proc Natl Acad Sci U S A 2020; 117:19507-19516. [PMID: 32723814 DOI: 10.1073/pnas.2003549117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous analysis of postentry events revealed that human cytomegalovirus (HCMV) displays a unique, extended nuclear translocation pattern in monocytes. We determined that c-Src signaling through pentamer engagement of integrins is required upon HCMV entry to avoid sorting of the virus into late endosomes and subsequent degradation. To follow up on this previous study, we designed experiments to investigate how HCMV-induced signaling through the other major axis-the epidermal growth factor receptor (EGFR) kinase-regulates viral postentry events. Here we show that HCMV induces chronic and functional EGFR signaling that is distinct to the virus as compared to the natural EGFR ligand: EGF. This chronic EGFR kinase activity in infected monocytes is required for the proper subcellular localization of the viral particle during trafficking events, as well as for promoting translocation of viral DNA into the host nucleus. Our data indicate that HCMV glycoprotein B (gB) binds to EGFR at the monocyte surface, the virus and EGFR are internalized together, and gB remains bound to EGFR throughout viral postentry events until de-envelopment to promote the chronic EGFR kinase activity required for viral trafficking and nuclear translocation. These data highlight how initial EGFR signaling via viral binding is necessary for entry, but not sufficient to promote each viral trafficking event. HCMV appears to manipulate the EGFR kinase postentry, via gB-EGFR interaction, to be active at the critical points throughout the trafficking process that leads to nuclear translocation and productive infection of peripheral blood monocytes.
Collapse
|
26
|
Human Cytomegalovirus Mediates Unique Monocyte-to-Macrophage Differentiation through the PI3K/SHIP1/Akt Signaling Network. Viruses 2020; 12:v12060652. [PMID: 32560319 PMCID: PMC7354488 DOI: 10.3390/v12060652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
Blood monocytes mediate the hematogenous dissemination of human cytomegalovirus (HCMV) in the host. However, monocytes have a short 48-hour (h) lifespan and are not permissive for viral replication. We previously established that HCMV infection drives differentiation of monocytes into long-lived macrophages to mediate viral dissemination, though the mechanism was unclear. Here, we found that HCMV infection promoted monocyte polarization into distinct macrophages by inducing select M1 and M2 differentiation markers and that Akt played a central role in driving differentiation. Akt's upstream positive regulators, PI3K and SHIP1, facilitated the expression of the M1/M2 differentiation markers with p110δ being the predominant PI3K isoform inducing differentiation. Downstream of Akt, M1/M2 differentiation was mediated by caspase 3, whose activity was tightly regulated by Akt in a temporal manner. Overall, this study highlights that HCMV employs the PI3K/SHIP1/Akt pathway to regulate caspase 3 activity and drive monocyte differentiation into unique macrophages, which is critical for viral dissemination.
Collapse
|
27
|
Gabor F, Jahn G, Sedmak DD, Sinzger C. In vivo Downregulation of MHC Class I Molecules by HCMV Occurs During All Phases of Viral Replication but Is Not Always Complete. Front Cell Infect Microbiol 2020; 10:283. [PMID: 32596168 PMCID: PMC7304332 DOI: 10.3389/fcimb.2020.00283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Based on cell culture data, MHC class I downregulation by HCMV on infected cells has been suggested as a means of immune evasion by this virus. In order to address this issue in vivo, an immunohistochemical analysis of tissue sections from biopsy and autopsy materials of HCMV infected organs was performed. HCMV antigens from the immediate early, early, and late phase of viral replication, and cellular MHC class I molecules were detected simultaneously or in serial sections by immuno-peroxidase and immuno-alkaline phosphatase techniques. Investigated organs included lung, gastrointestinal tract, and placenta. Colocalization of MHC molecules with sites of viral replication as well as MHC expression in individual infected cells were analyzed. To detect immune effector cells at sites of viral replication, leukocytes, CD8+ lymphocytes, and HCMV antigens were stained in serial sections. While strong MHC class I expression was detected in the cells surrounding infected cells, it appeared downregulated in the majority of infected cells themselves, particularly in the late replication phase. Despite significantly reduced MHC class I signals on infected cells, sites of infection were infiltrated by inflammatory cells that consisted predominantly of CD8+ lymphocytes. The extent of inflammatory infiltrates was negatively correlated with the extent of HCMV infected cells. Taken together, our findings indicate that HCMV can downmodulate MHC class I expression in vivo, whereas cytokines originating from infiltrating immune effector cells probably up regulates MHC class I expression in noninfected bystander cells. The presence of cytotoxic lymphocytes in close contact to infected cells may reflect control of viral spread by these cells despite MHC class I downmodulation.
Collapse
Affiliation(s)
- Florin Gabor
- Institute of Medical Virology, University of Tübingen, Tübingen, Germany
| | - Gerhard Jahn
- Institute of Medical Virology, University of Tübingen, Tübingen, Germany
| | - Daniel D Sedmak
- Institute of Pathology, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
28
|
Drutman SB, Mansouri D, Mahdaviani SA, Neehus AL, Hum D, Bryk R, Hernandez N, Belkaya S, Rapaport F, Bigio B, Fisch R, Rahman M, Khan T, Al Ali F, Marjani M, Mansouri N, Lorenzo-Diaz L, Emile JF, Marr N, Jouanguy E, Bustamante J, Abel L, Boisson-Dupuis S, Béziat V, Nathan C, Casanova JL. Fatal Cytomegalovirus Infection in an Adult with Inherited NOS2 Deficiency. N Engl J Med 2020; 382:437-445. [PMID: 31995689 PMCID: PMC7063989 DOI: 10.1056/nejmoa1910640] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cytomegalovirus (CMV) can cause severe disease in children and adults with a variety of inherited or acquired T-cell immunodeficiencies, who are prone to multiple infections. It can also rarely cause disease in otherwise healthy persons. The pathogenesis of idiopathic CMV disease is unknown. Inbred mice that lack the gene encoding nitric oxide synthase 2 (Nos2) are susceptible to the related murine CMV infection. METHODS We studied a previously healthy 51-year-old man from Iran who after acute CMV infection had an onset of progressive CMV disease that led to his death 29 months later. We hypothesized that the patient may have had a novel type of inborn error of immunity. Thus, we performed whole-exome sequencing and tested candidate mutant alleles experimentally. RESULTS We found a homozygous frameshift mutation in NOS2 encoding a truncated NOS2 protein that did not produce nitric oxide, which determined that the patient had autosomal recessive NOS2 deficiency. Moreover, all NOS2 variants that we found in homozygosity in public databases encoded functional proteins, as did all other variants with an allele frequency greater than 0.001. CONCLUSIONS These findings suggest that inherited NOS2 deficiency was clinically silent in this patient until lethal infection with CMV. Moreover, NOS2 appeared to be redundant for control of other pathogens in this patient. (Funded by the National Center for Advancing Translational Sciences and others.).
Collapse
Affiliation(s)
- Scott B Drutman
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Davood Mansouri
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Seyed Alireza Mahdaviani
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Anna-Lena Neehus
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - David Hum
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Ruslana Bryk
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Nicholas Hernandez
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Serkan Belkaya
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Franck Rapaport
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Benedetta Bigio
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Robert Fisch
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Mahbuba Rahman
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Taushif Khan
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Fatima Al Ali
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Majid Marjani
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Nahal Mansouri
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Lazaro Lorenzo-Diaz
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Jean-François Emile
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Nico Marr
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Emmanuelle Jouanguy
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Jacinta Bustamante
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Laurent Abel
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Stéphanie Boisson-Dupuis
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Vivien Béziat
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Carl Nathan
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| | - Jean-Laurent Casanova
- From St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University (S.B.D., D.H., N.H., S.B., F.R., B.B., R.F., E.J., J.B., L.A., S.B.-D., J.-L.C.), the Department of Microbiology and Immunology, Weill Cornell Medicine (R.B., C.N.), and Howard Hughes Medical Institute (J.-L.C.) - all in New York; the Pediatric Respiratory Diseases Research Center (D.M., S.A.M.), the Department of Clinical Immunology and Infectious Diseases (D.M., N. Mansouri), and the Clinical Tuberculosis and Epidemiology Research Center (D.M., M.M.), National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; the Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM Unité 1163 (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), Paris University, Imagine Institute (A.-L.N., L.L.-D., E.J., J.B., L.A., S.B.-D., V.B., J.-L.C.), and the Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP) (J.B.), and the Pediatric Immunology-Hematology Unit (J.-L.C.), Necker Hospital for Sick Children, Paris, and the Department of Pathology, Ambroise Paré Hospital, AP-HP, Boulogne-Billancourt (J.-F.E.) - all in France; the Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany (A.-L.N.); the Research Branch, Sidra Medicine (M.R., T.K., F.A.A., N. Marr), and the College of Health and Life Sciences, Hamad Bin Khalifa University (N. Marr), Doha, Qatar; and the Division of Pulmonary Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (N. Mansouri)
| |
Collapse
|
29
|
Ye L, Qian Y, Yu W, Guo G, Wang H, Xue X. Functional Profile of Human Cytomegalovirus Genes and Their Associated Diseases: A Review. Front Microbiol 2020; 11:2104. [PMID: 33013768 PMCID: PMC7498621 DOI: 10.3389/fmicb.2020.02104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
The human cytomegalovirus (HCMV), whose genome is 235 ± 1.9 kbp long, is a common herpesvirus. However, the functions of many of its genes are still unknown. HCMV is closely associated with various human diseases and infects 60-90% of the global population. It can infect various human cells, including fibroblasts, epithelial cells, endothelial cells, smooth muscle cells, and monocytes. Although HCMV infection is generally asymptomatic and causes subtle clinical symptoms, it can generate a robust immune response and establish a latent infection in immunocompromised individuals, including those with AIDS, transplant recipients, and developing fetuses. Currently available antivirals approved for the treatment of HCMV-associated diseases are limited by dose-limiting toxicity and the emergence of resistance; however, vaccines and immunoglobulins are unavailable. In this review, we have summarized the recent literature on 43 newly identified HCMV genes. We have described their novel functions on the viral replication cycle, latency, and host immune evasion. Further, we have discussed HCMV-associated diseases and current therapeutic targets. Our review may provide a foundational basis for studies aiming to prevent and develop targeted therapies for HCMV-associated diseases.
Collapse
Affiliation(s)
- Lele Ye
- Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yunyun Qian
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Weijie Yu
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Gangqiang Guo
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hong Wang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Hong Wang, ; Xiangyang Xue,
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Hong Wang, ; Xiangyang Xue,
| |
Collapse
|
30
|
Min CK, Shakya AK, Lee BJ, Streblow DN, Caposio P, Yurochko AD. The Differentiation of Human Cytomegalovirus Infected-Monocytes Is Required for Viral Replication. Front Cell Infect Microbiol 2020; 10:368. [PMID: 32850474 PMCID: PMC7411144 DOI: 10.3389/fcimb.2020.00368] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
Viral dissemination is a key mechanism responsible for persistence and disease following human cytomegalovirus (HCMV) infection. Monocytes play a pivotal role in viral dissemination to organ tissue during primary infection and following reactivation from latency. For example, during primary infection, infected monocytes migrate into tissues and differentiate into macrophages, which then become a source of viral replication. In addition, because differentiated macrophages can survive for months to years, they provide a potential persistent infection source in various organ systems. We broadly note that there are three phases to infection and differentiation of HCMV-infected monocytes: (1) Virus enters and traffics to the nucleus through a virus receptor ligand engagement event that activates a unique signalsome that initiates the monocyte-to-macrophage differentiation process. (2) Following initial infection, HCMV undergoes a "quiescence-like state" in monocytes lasting for several weeks and promotes monocyte differentiation into macrophages. While, the initial event is triggered by the receptor-ligand engagement, the long-term cellular activation is maintained by chronic viral-mediated signaling events. (3) Once HCMV infected monocytes differentiate into macrophages, the expression of immediate early viral (IE) genes is detectable, followed by viral replication and long term infectious viral particles release. Herein, we review the detailed mechanisms of each phase during infection and differentiation into macrophages and discuss the biological significance of the differentiation of monocytes in the pathogenesis of HCMV.
Collapse
Affiliation(s)
- Chan-Ki Min
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Akhalesh K Shakya
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Byeong-Jae Lee
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Center of Excellence in Arthritis and Rheumatology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| |
Collapse
|
31
|
Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System? Viruses 2019; 12:v12010014. [PMID: 31861926 PMCID: PMC7020001 DOI: 10.3390/v12010014] [Citation(s) in RCA: 690] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
Respiratory viruses infect the human upper respiratory tract, mostly causing mild diseases. However, in vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, causing a more severe disease (e.g., pneumonia). Respiratory viruses can also exacerbate asthma and lead to various types of respiratory distress syndromes. Furthermore, as they can adapt fast and cross the species barrier, some of these pathogens, like influenza A and SARS-CoV, have occasionally caused epidemics or pandemics, and were associated with more serious clinical diseases and even mortality. For a few decades now, data reported in the scientific literature has also demonstrated that several respiratory viruses have neuroinvasive capacities, since they can spread from the respiratory tract to the central nervous system (CNS). Viruses infecting human CNS cells could then cause different types of encephalopathy, including encephalitis, and long-term neurological diseases. Like other well-recognized neuroinvasive human viruses, respiratory viruses may damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuro-immunopathology) and/or viral replication, which directly causes damage to CNS cells (virus-induced neuropathology). The etiological agent of several neurological disorders remains unidentified. Opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of these disorders whose etiology remains poorly understood. Herein, we present a global portrait of some of the most prevalent or emerging human respiratory viruses that have been associated with possible pathogenic processes in CNS infection, with a special emphasis on human coronaviruses.
Collapse
|
32
|
Ashley CL, Abendroth A, McSharry BP, Slobedman B. Interferon-Independent Innate Responses to Cytomegalovirus. Front Immunol 2019; 10:2751. [PMID: 31921100 PMCID: PMC6917592 DOI: 10.3389/fimmu.2019.02751] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022] Open
Abstract
The critical role of interferons (IFNs) in mediating the innate immune response to cytomegalovirus (CMV) infection is well established. However, in recent years the functional importance of the IFN-independent antiviral response has become clearer. IFN-independent, IFN regulatory factor 3 (IRF3)-dependent interferon-stimulated gene (ISG) regulation in the context of CMV infection was first documented 20 years ago. Since then several IFN-independent, IRF3-dependent ISGs have been characterized and found to be among the most influential in the innate response to CMV. These include virus inhibitory protein, endoplasmic reticulum-associated IFN-inducible (viperin), ISG15, members of the interferon inducible protein with tetratricopeptide repeats (IFIT) family, interferon-inducible transmembrane (IFITM) proteins and myxovirus resistance proteins A and B (MxA, MxB). IRF3-independent, IFN-independent activation of canonically IFN-dependent signaling pathways has also been documented, such as IFN-independent biphasic activation of signal transducer and activator of transcription 1 (STAT1) during infection of monocytes, differential roles of mitochondrial and peroxisomal mitochondrial antiviral-signaling protein (MAVS), and the ability of human CMV (HCMV) immediate early protein 1 (IE1) protein to reroute IL-6 signaling and activation of STAT1 and its associated ISGs. This review examines the role of identified IFN-independent ISGs in the antiviral response to CMV and describes pathways of IFN-independent innate immune response induction by CMV.
Collapse
Affiliation(s)
- Caroline L Ashley
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Allison Abendroth
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Brian P McSharry
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia.,School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
33
|
Buehler J, Carpenter E, Zeltzer S, Igarashi S, Rak M, Mikell I, Nelson JA, Goodrum F. Host signaling and EGR1 transcriptional control of human cytomegalovirus replication and latency. PLoS Pathog 2019; 15:e1008037. [PMID: 31725811 PMCID: PMC6855412 DOI: 10.1371/journal.ppat.1008037] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022] Open
Abstract
Sustained phosphotinositide3-kinase (PI3K) signaling is critical to the maintenance of alpha and beta herpesvirus latency. We have previously shown that the beta-herpesvirus, human cytomegalovirus (CMV), regulates epidermal growth factor receptor (EGFR), upstream of PI3K, to control states of latency and reactivation. How signaling downstream of EGFR is regulated and how this impacts CMV infection and latency is not fully understood. We demonstrate that CMV downregulates EGFR early in the productive infection, which blunts the activation of EGFR and its downstream pathways in response to stimuli. However, CMV infection sustains basal levels of EGFR and downstream pathway activity in the context of latency in CD34+ hematopoietic progenitor cells (HPCs). Inhibition of MEK/ERK, STAT or PI3K/AKT pathways downstream of EGFR increases viral reactivation from latently infected CD34+ HPCs, defining a role for these pathways in latency. We hypothesized that CMV modulation of EGFR signaling might impact viral transcription important to latency. Indeed, EGF-stimulation increased expression of the UL138 latency gene, but not immediate early or early viral genes, suggesting that EGFR signaling promotes latent gene expression. The early growth response-1 (EGR1) transcription factor is induced downstream of EGFR signaling through the MEK/ERK pathway and is important for the maintenance of hematopoietic stemness. We demonstrate that EGR1 binds the viral genome upstream of UL138 and is sufficient to promote UL138 expression. Further, disruption of EGR1 binding upstream of UL138 prevents the establishment of latency in CD34+ HPCs. Our results indicate a model whereby UL138 modulation of EGFR signaling feeds back to promote UL138 gene expression and suppression of replication for latency. By this mechanism, the virus has hardwired itself into host cell biology to sense and respond to changes in homeostatic host cell signaling. Host signaling is important for regulating states of cytomegalovirus (CMV) replication and latency. We have shown that human cytomegalovirus regulates EGFR levels and trafficking and that sustained EGFR or downstream PI3K signaling is a requirement for viral latency. Changes in host signaling have the ability to alter viral and host gene expression to impact the outcome of infection. Here we show that EGFR signaling through MEK/ERK pathway induces the host EGR1 transcription factor that is highly expressed in hematopoietic stem cells and necessary for the maintenance of hematopoietic stemness. Downregulation of EGR1 promotes stem cell mobilization and differentiation, known stimuli for CMV reactivation. We identified functional EGR1 binding sites upstream of the UL138 CMV latency gene and EGR1 stimulated UL138 expression to reinforce the latent infection. Mutant viruses where the regulation of UL138 by EGR1 is disrupted are unable to establish latency in CD34+ HPCs. This study advances our understanding of how host signaling impacts decisions to enter into or exit from latency. The regulation of viral gene expression by host signaling allows the virus to sense and respond to changes in host stress or differentiation.
Collapse
Affiliation(s)
- Jason Buehler
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Ethan Carpenter
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Sebastian Zeltzer
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Suzu Igarashi
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Michael Rak
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Iliyana Mikell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jay A. Nelson
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Felicia Goodrum
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
34
|
Srivorakul S, Guntawang T, Kochagul V, Photichai K, Sittisak T, Janyamethakul T, Boonprasert K, Khammesri S, Langkaphin W, Punyapornwithaya V, Chuammitri P, Thitaram C, Pringproa K. Possible roles of monocytes/macrophages in response to elephant endotheliotropic herpesvirus (EEHV) infections in Asian elephants (Elephas maximus). PLoS One 2019; 14:e0222158. [PMID: 31491031 PMCID: PMC6730851 DOI: 10.1371/journal.pone.0222158] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Elephant endotheliotropic herpesvirus-hemorrhagic disease (EEHV-HD) is the primary cause of acute, highly fatal, hemorrhagic diseases in young Asian elephants. Although monocytopenia is frequently observed in EEHV-HD cases, the role monocytes play in EEHV-disease pathogenesis is unknown. This study seeks to explain the responses of monocytes/macrophages in the pathogenesis of EEHV-HD. Samples of blood, frozen tissues, and formalin-fixed, paraffin-embedded (FFPE) tissues from EEHV1A-HD, EEHV4-HD, co-infected EEHV1A and 4-HD, and EEHV-negative calves were analyzed. Peripheral blood mononuclear cells (PBMCs) from the persistent EEHV4-infected and EEHV-negative calves were also studied. The results showed increased infiltration of Iba-1-positive macrophages in the inflamed tissues of the internal organs of elephant calves with EEHV-HD. In addition, cellular apoptosis also increased in the tissues of elephants with EEHV-HD, especially in the PBMCs, compared to the EEHV-negative control. In the PBMCs of persistent EEHV4-infected elephants, cytokine mRNA expression was high, particularly up-regulation of TNF-α and IFN-γ. Moreover, viral particles were observed in the cytoplasm of the persistent EEHV4-infected elephant monocytes. Our study demonstrated for the first time that apoptosis of the PBMCs increased in cases of EEHV-HD. Furthermore, this study showed that monocytes may serve as a vehicle for viral dissemination during EEHV infection in Asian elephants.
Collapse
Affiliation(s)
- Saralee Srivorakul
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thunyamas Guntawang
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Varankpicha Kochagul
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kornravee Photichai
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Tidaratt Sittisak
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Khajohnpat Boonprasert
- Center of Excellence in Elephant and Wildlife Research, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Veerasak Punyapornwithaya
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phongsakorn Chuammitri
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchote Thitaram
- Center of Excellence in Elephant and Wildlife Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Companion Animals and Wildlife Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Elephant and Wildlife Research, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
35
|
Picarda G, Benedict CA. Cytomegalovirus: Shape-Shifting the Immune System. THE JOURNAL OF IMMUNOLOGY 2019; 200:3881-3889. [PMID: 29866770 DOI: 10.4049/jimmunol.1800171] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/26/2018] [Indexed: 11/19/2022]
Abstract
Systems-based based approaches have begun to shed light on extrinsic factors that contribute to immune system variation. Among these, CMV (HHV-5, a β-herpesvirus) imposes a surprisingly profound impact. Most of the world's population is CMV+, and the virus goes through three distinct infection phases en route to establishing lifelong détente with its host. Immune control of CMV in each phase recruits unique arms of host defense, and in turn the virus employs multiple immune-modulatory strategies that help facilitate the establishment of lifelong persistence. In this review, we explain how CMV shapes immunity and discuss the impact it may have on overall health.
Collapse
Affiliation(s)
- Gaëlle Picarda
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Chris A Benedict
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and .,Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
36
|
Altman AM, Mahmud J, Nikolovska-Coleska Z, Chan G. HCMV modulation of cellular PI3K/AKT/mTOR signaling: New opportunities for therapeutic intervention? Antiviral Res 2019; 163:82-90. [PMID: 30668978 PMCID: PMC6391997 DOI: 10.1016/j.antiviral.2019.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
Abstract
Human cytomegalovirus (HCMV) remains a major public health burden domestically and abroad. Current approved therapies, including ganciclovir, are only moderately efficacious, with many transplant patients suffering from a variety of side effects. A major impediment to the efficacy of current anti-HCMV drugs is their antiviral effects are restricted to the lytic stage of viral replication. Consequently, the non-lytic stages of the viral lifecycle remain major sources of HCMV infection associated with transplant recipients and ultimately the cause of morbidity and mortality. While work continues on new antivirals that block lytic replication, the dormant stages of HCMV's unique lifecycle need to be concurrently assessed for new therapeutic interventions. In this review, we will examine the role that the PI3K/Akt/mTOR signaling axis plays during the different stages of HCMV's lifecycle, and describe the advantages of targeting this cellular pathway as an antiviral strategy. In particular, we focus on the potential of exploiting the unique modifications HCMV imparts on the PI3K/Akt/mTOR pathway during quiescent infection of monocytes, which serve an essential role in the dissemination strategy of the virus.
Collapse
Affiliation(s)
- Aaron M Altman
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jamil Mahmud
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Gary Chan
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
37
|
Rak MA, Buehler J, Zeltzer S, Reitsma J, Molina B, Terhune S, Goodrum F. Human Cytomegalovirus UL135 Interacts with Host Adaptor Proteins To Regulate Epidermal Growth Factor Receptor and Reactivation from Latency. J Virol 2018; 92:e00919-18. [PMID: 30089695 PMCID: PMC6158428 DOI: 10.1128/jvi.00919-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023] Open
Abstract
Human cytomegalovirus, HCMV, is a betaherpesvirus that establishes a lifelong latent infection in its host that is marked by recurrent episodes of reactivation. The molecular mechanisms by which the virus and host regulate entry into and exit from latency remain poorly understood. We have previously reported that UL135 is critical for reactivation, functioning in part by overcoming suppressive effects of the latency determinant UL138 We have demonstrated a role for UL135 in diminishing cell surface levels and targeting epidermal growth factor receptor (EGFR) for turnover. The attenuation of EGFR signaling promotes HCMV reactivation in combination with cellular differentiation. In this study, we sought to define the mechanisms by which UL135 functions in regulating EGFR turnover and viral reactivation. Screens to identify proteins interacting with pUL135 identified two host adaptor proteins, CIN85 and Abi-1, with overlapping activities in regulating EGFR levels in the cell. We mapped the amino acids in pUL135 necessary for interaction with Abi-1 and CIN85 and generated recombinant viruses expressing variants of pUL135 that do not interact with CIN85 or Abi-1. These recombinant viruses replicate in fibroblasts but are defective for reactivation in an experimental model for latency using primary CD34+ hematopoietic progenitor cells (HPCs). These UL135 variants have altered trafficking of EGFR and are defective in targeting EGFR for turnover. These studies demonstrate a requirement for pUL135 interactions with Abi-1 and CIN85 for regulation of EGFR and mechanistically link the regulation of EGFR to reactivation.IMPORTANCE Human cytomegalovirus (HCMV) establishes a lifelong latent infection in the human host. While the infection is typically asymptomatic in healthy individuals, HCMV infection poses life-threatening disease risk in immunocompromised individuals and is the leading cause of birth defects. Understanding how HCMV controls the lifelong latent infection and reactivation of replication from latency is critical to developing strategies to control HCMV disease. Here, we identify the host factors targeted by a viral protein that is required for reactivation. We define the importance of this virus-host interaction in reactivation from latency, providing new insights into the molecular underpinnings of HCMV latency and reactivation.
Collapse
Affiliation(s)
- Michael A Rak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Jason Buehler
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Sebastian Zeltzer
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Justin Reitsma
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Belen Molina
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | - Scott Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Felicia Goodrum
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- University of Arizona Center on Aging, Tucson, Arizona, USA
| |
Collapse
|
38
|
HCMV Infection and Apoptosis: How Do Monocytes Survive HCMV Infection? Viruses 2018; 10:v10100533. [PMID: 30274264 PMCID: PMC6213175 DOI: 10.3390/v10100533] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection of peripheral blood monocytes plays a key role in the hematogenous dissemination of the virus to multiple organ systems following primary infection or reactivation of latent virus in the bone marrow. Monocytes have a short life span of 1⁻3 days in circulation; thus, HCMV must alter their survival and differentiation to utilize these cells and their differentiated counterparts-macrophages-for dissemination and long term viral persistence. Because monocytes are not initially permissive for viral gene expression and replication, HCMV must control host-derived factors early during infection to prevent apoptosis or programmed cell death prior to viral induced differentiation into naturally long-lived macrophages. This review provides a short overview of HCMV infection of monocytes and describes how HCMV has evolved to utilize host cell anti-apoptotic pathways to allow infected monocytes to bridge the 48⁻72 h viability gate so that differentiation into a long term stable mature cell can occur. Because viral gene expression is delayed in monocytes following initial infection and only occurs (begins around two to three weeks post infection in our model) following what appears to be complete differentiation into mature macrophages or dendritic cells, or both; virally-encoded anti-apoptotic gene products cannot initially control long term infected cell survival. Anti-apoptotic viral genes are discussed in the second section of this review and we argue they would play an important role in long term macrophage or dendritic cell survival following infection-induced differentiation.
Collapse
|
39
|
Collins-McMillen D, Buehler J, Peppenelli M, Goodrum F. Molecular Determinants and the Regulation of Human Cytomegalovirus Latency and Reactivation. Viruses 2018; 10:E444. [PMID: 30127257 PMCID: PMC6116278 DOI: 10.3390/v10080444] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a beta herpesvirus that establishes a life-long persistence in the host, like all herpesviruses, by way of a latent infection. During latency, viral genomes are maintained in a quieted state. Virus replication can be reactivated from latency in response to changes in cellular signaling caused by stress or differentiation. The past decade has brought great insights into the molecular basis of HCMV latency. Here, we review the complex persistence of HCMV with consideration of latent reservoirs, viral determinants and their host interactions, and host signaling and the control of cellular and viral gene expression that contributes to the establishment of and reactivation from latency.
Collapse
Affiliation(s)
| | - Jason Buehler
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
| | | | - Felicia Goodrum
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
40
|
Aberrant regulation of the Akt signaling network by human cytomegalovirus allows for targeting of infected monocytes. Antiviral Res 2018; 158:13-24. [PMID: 30055197 DOI: 10.1016/j.antiviral.2018.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022]
Abstract
Primary peripheral blood monocytes are responsible for the hematogenous dissemination of human cytomegalovirus (HCMV) following a primary infection. In order to facilitate viral spread, HCMV extends the naturally short 48-h lifespan of monocytes by stimulating a non-canonical activation of Akt during viral entry, which leads to the increased expression of a specific subset of antiapoptotic proteins. In this study, global analysis of the Akt signaling network showed HCMV induced a more robust activation of the entire network when compared to normal myeloid growth factors. Furthermore, we found a unique interplay between HCMV-activated Akt and the stress response transcription heat shock factor 1 (HSF1) that allowed for the synthesis of both cap- and internal ribosome entry site (IRES)-containing antiapoptotic mRNAs such as myeloid cell leukemia-1 (Mcl-1) and X-linked inhibitor of apoptosis (XIAP), respectively. As generally a switch from cap-dependent to IRES-mediated translation occurs during cellular stress, the ability of HCMV to concurrently drive both types of translation produces a distinct milieu of prosurvival proteins needed for the viability of infected monocytes. Indeed, we found inhibition of XIAP led to death of ∼99% of HCMV-infected monocytes while having minimal effect on the viability of uninfected cells. Taken together, these data indicate that the aberrant activation of the Akt network by HCMV induces the upregulation of a unique subset of antiapoptotic proteins specifically required for the survival of infected monocytes. Consequently, our study highlights the possibility of exploiting these virus-induced changes to prevent viral spread in immunocompromised patients at high-risk for HCMV exposure.
Collapse
|
41
|
Human Cytomegalovirus UL111A and US27 Gene Products Enhance the CXCL12/CXCR4 Signaling Axis via Distinct Mechanisms. J Virol 2018; 92:JVI.01981-17. [PMID: 29237840 DOI: 10.1128/jvi.01981-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/06/2017] [Indexed: 01/19/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a prevalent pathogen that establishes lifelong infection in the host. Virus persistence is aided by extensive manipulation of the host immune system, particularly cytokine and chemokine signaling pathways. The HCMV UL111A gene encodes cmvIL-10, an ortholog of human interleukin-10 that has many immunomodulatory effects. We found that cmvIL-10 increased signaling outcomes from human CXCR4, a chemokine receptor with essential roles in hematopoiesis and immune cell trafficking, in response to its natural ligand CXCL12. Calcium flux and chemotaxis to CXCL12 were significantly greater in the presence of cmvIL-10 in monocytes, epithelial cells, and fibroblasts that express CXCR4. cmvIL-10 effects on CXCL12/CXCR4 signaling required the IL-10 receptor and Stat3 activation. Heightened signaling occurred both in HCMV-infected cells and in uninfected bystander cells, suggesting that cmvIL-10 may broadly influence chemokine networks by paracrine signaling during infection. Moreover, CXCL12/CXCR4 signaling was amplified in HCMV-infected cells compared to mock-infected cells even in the absence of cmvIL-10. Enhanced CXCL12/CXCR4 outcomes were associated with expression of the virally encoded chemokine receptor US27, and CXCL12/CXCR4 activation was reduced in cells infected with a deletion mutant lacking US27 (TB40/E-mCherry-US27Δ). US27 effects were Stat3 independent but required close proximity to CXCR4 in cell membranes of either HCMV-infected or US27-transfected cells. Thus, HCMV encodes two proteins, cmvIL-10 and US27, that exhibit distinct mechanisms for enhancing CXCR4 signaling. Either individually or in combination, cmvIL-10 and US27 may enable HCMV to exquisitely manipulate CXCR4 signaling to alter host immune responses and modify cell trafficking patterns during infection.IMPORTANCE The human chemokine system plays a central role in host defense, as evidenced by the many strategies devised by viruses for manipulating it. Human cytomegalovirus (HCMV) is widespread in the human population, but infection rarely causes disease except in immunocompromised hosts. We found that two different HCMV proteins, cmvIL-10 and US27, act through distinct mechanisms to upregulate the signaling activity of a cellular chemokine receptor, CXCR4. cmvIL-10 is a secreted viral cytokine that affects CXCR4 signaling in both infected and uninfected cells, while US27 is a component of the virus particle and impacts CXCR4 activity only in infected cells. Both cmvIL-10 and US27 promote increased intracellular calcium signaling and cell migration in response to chemokine CXCL12 binding to CXCR4. Our results demonstrate that HCMV exerts fine control over the CXCL12/CXCR4 pathway, which could lead to enhanced virus dissemination, altered immune cell trafficking, and serious health implications for HCMV patients.
Collapse
|
42
|
Rider PJF, Musarrat F, Nabil R, Naidu S, Kousoulas KG. First Impressions-the Potential of Altering Initial Host-Virus Interactions for Rational Design of Herpesvirus Vaccine Vectors. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018; 5:55-65. [PMID: 30560044 DOI: 10.1007/s40588-018-0082-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose The earliest host-virus interactions occur during virus attachment and entry into cells. These initial steps in the virus lifecycle influence the outcome of infection beyond delivery of the viral genome into the cell. Herpesviruses alter host signaling pathways and processes during attachment and entry to facilitate virus infection and modulate innate immune responses. We suggest in this review that understanding these early signaling events may inform the rational design of therapeutic and prevention strategies for herpesvirus infection, as well as the engineering of viral vectors for immunotherapy purposes. Recent Findings Recent reports demonstrate that modulation of Herpes Simplex Virus Type-1 (HSV-1) entry results in unexpected enhancement of antiviral immune responses. Summary A variety of evidence suggests that herpesviruses promote specific cellular signaling responses that facilitate viral replication after binding to cell surfaces, as well as during virus entry. Of particular interest is the ability of the virus to alter innate immune responses through these cellular signaling events. Uncovering the underlying immune evasion strategies may lead to the design of live-attenuated vaccines that can generate robust and protective anti-viral immune responses against herpesviruses. These adjuvant properties may be extended to a variety of heterologous antigens expressed by herpesviral vectors.
Collapse
Affiliation(s)
- Paul J F Rider
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Farhana Musarrat
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Rafiq Nabil
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Shan Naidu
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| |
Collapse
|
43
|
Human Cytomegalovirus Utilizes a Nontraditional Signal Transducer and Activator of Transcription 1 Activation Cascade via Signaling through Epidermal Growth Factor Receptor and Integrins To Efficiently Promote the Motility, Differentiation, and Polarization of Infected Monocytes. J Virol 2017; 91:JVI.00622-17. [PMID: 29021395 DOI: 10.1128/jvi.00622-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) infects peripheral blood monocytes and triggers biological changes that promote viral dissemination and persistence. We have shown that HCMV induces a proinflammatory state in infected monocytes, resulting in enhanced monocyte motility and transendothelial migration, prolonged monocyte survival, and differentiation toward a long-lived M1-like macrophage phenotype. Our data indicate that HCMV triggers these changes, in the absence of de novo viral gene expression and replication, through engagement and activation of epidermal growth factor receptor (EGFR) and integrins on the surface of monocytes. We previously identified that HCMV induces the upregulation of multiple proinflammatory gene ontologies, with the interferon-associated gene ontology exhibiting the highest percentage of upregulated genes. However, the function of the HCMV-induced interferon (IFN)-stimulated genes (ISGs) in infected monocytes remained unclear. We now show that HCMV induces the enhanced expression and activation of a key ISG transcriptional regulator, signal transducer and activator of transcription (STAT1), via an IFN-independent but EGFR- and integrin-dependent signaling pathway. Furthermore, we identified a biphasic activation of STAT1 that likely promotes two distinct phases of STAT1-mediated transcriptional activity. Moreover, our data show that STAT1 is required for efficient early HCMV-induced enhanced monocyte motility and later for HCMV-induced monocyte-to-macrophage differentiation and for the regulation of macrophage polarization, suggesting that STAT1 may serve as a molecular convergence point linking the biological changes that occur at early and later times postinfection. Taken together, our results suggest that HCMV reroutes the biphasic activation of a traditionally antiviral gene product through an EGFR- and integrin-dependent pathway in order to help promote the proviral activation and polarization of infected monocytes.IMPORTANCE HCMV promotes multiple functional changes in infected monocytes that are required for viral spread and persistence, including their enhanced motility and differentiation/polarization toward a proinflammatory M1 macrophage. We now show that HCMV utilizes the traditionally IFN-associated gene product, STAT1, to promote these changes. Our data suggest that HCMV utilizes EGFR- and integrin-dependent (but IFN-independent) signaling pathways to induce STAT1 activation, which may allow the virus to specifically dictate the biological activity of STAT1 during infection. Our data indicate that HCMV utilizes two phases of STAT1 activation, which we argue molecularly links the biological changes that occur following initial binding to those that continue to occur days to weeks following infection. Furthermore, our findings may highlight a unique mechanism for how HCMV avoids the antiviral response during infection by hijacking the function of a critical component of the IFN response pathway.
Collapse
|
44
|
LeBel M, Egarnes B, Brunet A, Lacerte P, Paré A, Lacroix S, Brown JP, Gosselin J. Ly6C high monocytes facilitate transport of Murid herpesvirus 68 into inflamed joints of arthritic mice. Eur J Immunol 2017; 48:250-257. [PMID: 28980305 DOI: 10.1002/eji.201747048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/20/2017] [Accepted: 09/29/2017] [Indexed: 01/08/2023]
Abstract
Viruses, particularly the Epstein-Barr virus (EBV) has long been suspected to exacerbate acute arthritic symptoms. However, the cell populations that contribute to import viruses into the inflamed tissues remain to be identified. In the present study, we have investigated the role of monocytes in the transport of Murid herpesvirus 68 (MHV-68), a mouse virus closely related to EBV, using the serum transfer-induced arthritis (STIA) model. We found compelling evidence that MHV-68 infection markedly increased disease severity in NR4A1-/- mice, which are deficient for Ly6Clow monocytes. In contrast, the MHV-68-induced enhancement of joint inflammation was lessened in CCR2-/- mice, suggesting the involvement of inflammatory Ly6Chigh monocytes in viral transport. We also observed that following selective depletion of monocyte subsets by administration of clodronate, MHV-68 transport into the synovium occurs only in the presence of Ly6Chigh monocytes. Tracking of adoptively transferred Ly6Chigh GFP infected monocytes into arthritic CCR2-/- mice by two-photon intravital microscopy showed that this monocyte subset has the capacity to deliver viruses to inflamed AR joints, as confirmed by the detection of viral DNA in inflamed tissues of recipient mice. We thus conclude that Ly6Chigh monocytes import MHV-68 when they are mobilized to the inflamed arthritic joint.
Collapse
Affiliation(s)
- Manon LeBel
- Laboratory of Innate Immunology, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada
| | - Benoit Egarnes
- Laboratory of Innate Immunology, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada
| | - Alexandre Brunet
- Department of Molecular Medicine, Université Laval, Québec, QC, Canada.,Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada
| | - Patricia Lacerte
- Laboratory of Innate Immunology, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada
| | - Alexandre Paré
- Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada
| | - Steve Lacroix
- Department of Molecular Medicine, Université Laval, Québec, QC, Canada.,Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada
| | - Jacques P Brown
- Division of Rheumatology, CHU de Québec - Université Laval (CHUL), Infectious and Immune Diseases, Centre de recherche du CHU de Québec - Université Laval (CHUL), Québec, QC, Canada
| | - Jean Gosselin
- Laboratory of Innate Immunology, Centre de recherche du CHU de Québec - Université Laval, Québec, QC, Canada.,Department of Molecular Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
45
|
Pocock JM, Storisteanu DML, Reeves MB, Juss JK, Wills MR, Cowburn AS, Chilvers ER. Human Cytomegalovirus Delays Neutrophil Apoptosis and Stimulates the Release of a Prosurvival Secretome. Front Immunol 2017; 8:1185. [PMID: 28993776 PMCID: PMC5622148 DOI: 10.3389/fimmu.2017.01185] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/07/2017] [Indexed: 12/24/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a major cause of viral disease in the young and the immune-suppressed. At sites of infection, HCMV recruits the neutrophil, a cell with a key role in orchestrating the initial immune response. Herein, we report a profound survival response in human neutrophils exposed to the clinical HCMV isolate Merlin, but not evident with the attenuated strain AD169, through suppression of apoptosis. The initial survival event, which is independent of viral gene expression and involves activation of the ERK/MAPK and NF-κB pathways, is augmented by HCMV-stimulated release of a secretory cytokine profile that further prolongs neutrophil lifespan. As aberrant neutrophil survival contributes to tissue damage, we predict that this may be relevant to the immune pathology of HCMV, and the presence of this effect in clinical HCMV strains and its absence in attenuated strains implies a beneficial effect to the virus in pathogenesis and/or dissemination. In addition, we show that HCMV-exposed neutrophils release factors that enhance monocyte recruitment and drive monocyte differentiation to a HCMV-permissive phenotype in an IL-6-dependent manner, thus providing an ideal vehicle for viral dissemination. This study increases understanding of HCMV-neutrophil interactions, highlighting the potential role of neutrophil recruitment as a virulence mechanism to promote HCMV pathology in the host and influence the dissemination of HCMV infection. Targeting these mechanisms may lead to new antiviral strategies aimed at limiting host damage and inhibiting viral spread.
Collapse
Affiliation(s)
- Joanna M. Pocock
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| | - Daniel M. L. Storisteanu
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| | - Matthew B. Reeves
- Department of Virology, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Jatinder K. Juss
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| | - Mark R. Wills
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| | - Andrew S. Cowburn
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Edwin R. Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| |
Collapse
|
46
|
Coleman S, Choi KY, McGregor A. Cytomegalovirus UL128 homolog mutants that form a pentameric complex produce virus with impaired epithelial and trophoblast cell tropism and altered pathogenicity in the guinea pig. Virology 2017. [PMID: 28651121 DOI: 10.1016/j.virol.2017.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Guinea pig cytomegalovirus (GPCMV) encodes a homolog pentameric complex (PC) for specific cell tropism and congenital infection. In human cytomegalovirus, the PC is an important antibody neutralizing target and GPCMV studies will aid in the development of intervention strategies. Deletion mutants of the C-terminal domains of unique PC proteins (UL128, UL130 and UL131 homologs) were unable to form a PC in separate transient expression assays. Minor modifications to the UL128 homolog (GP129) C-terminal domain enabled PC formation but viruses encoding these mutants had altered tropism to renal and placental trophoblast cells. Mutation of the presumptive CC chemokine motif encoded by GP129 was investigated by alanine substitution of the CC motif (codons 26-27) and cysteines (codons 47 and 62). GP129 chemokine mutants formed PC but GP129 chemokine mutant viruses had reduced epitropism. A GP129 chemokine mutant virus pathogenicity study demonstrated reduced viral load to target organs but highly extended viremia.
Collapse
Affiliation(s)
- Stewart Coleman
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States
| | - K Yeon Choi
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States
| | - Alistair McGregor
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States.
| |
Collapse
|
47
|
New Mechanism by Which Human Cytomegalovirus MicroRNAs Negate the Proinflammatory Response to Infection. mBio 2017; 8:mBio.00505-17. [PMID: 28420741 PMCID: PMC5395671 DOI: 10.1128/mbio.00505-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Viruses have evolved many novel mechanisms to promote infection and to mitigate the host cell response to that infection. In the article by M. H. Hancock et al. (mBio 8:e00109-17, 2017, https://doi.org/10.1128/mBio.00109-17), the authors describe a new mechanism by which human cytomegalovirus (HCMV) microRNAs (miRNAs; miR-US5-1 and miR-UL112-3p) negate the proinflammatory response to infection. The authors document that these two viral miRNAs downregulate the NF-κB response through direct targeting of the IKKα and IKKβ mRNAs, which in turn, through diminished IκB kinases (IKKs), block production of proinflammatory cytokines (interleukin-6 [IL-6], CCL5, and tumor necrosis factor alpha [TNF-α]). Because most signaling pathways that promote NF-κB activation and nuclear translocation ultimately converge on the activation of the IKK complex, this new study documents that HCMV can strongly dictate how infected cells respond to internal and/or external stimuli and thus positively influence the outcome of both lytic and latent infection.
Collapse
|
48
|
Kim JH, Collins-McMillen D, Buehler JC, Goodrum FD, Yurochko AD. Human Cytomegalovirus Requires Epidermal Growth Factor Receptor Signaling To Enter and Initiate the Early Steps in the Establishment of Latency in CD34 + Human Progenitor Cells. J Virol 2017; 91:e01206-16. [PMID: 27974567 PMCID: PMC5309964 DOI: 10.1128/jvi.01206-16] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/06/2016] [Indexed: 01/11/2023] Open
Abstract
The establishment of human cytomegalovirus (HCMV) latency and persistence relies on the successful infection of hematopoietic cells, which serve as sites of viral persistence and contribute to viral spread. Here, using blocking antibodies and pharmacological inhibitors, we document that HCMV activation of the epidermal growth factor receptor (EGFR) and downstream phosphatidylinositol 3-kinase (PI3K) mediates viral entry into CD34+ human progenitor cells (HPCs), resulting in distinct cellular trafficking and nuclear translocation of the virus compared to that in other immune cells, such as we have documented in monocytes. We argue that the EGFR allows HCMV to regulate the cellular functions of these replication-restricted cells via its signaling activity following viral binding. In addition to regulating HCMV entry/trafficking, EGFR signaling may also shape the early steps required for the successful establishment of viral latency in CD34+ cells, as pharmacological inhibition of EGFR increases the transcription of lytic IE1/IE2 mRNA while curbing the expression of latency-associated UL138 mRNA. EGFR signaling following infection of CD34+ HPCs may also contribute to changes in hematopoietic potential, as treatment with the EGFR kinase (EGFRK) inhibitor AG1478 alters the expression of the cellular hematopoietic cytokine interleukin 12 (IL-12) in HCMV-infected cells but not in mock-infected cells. These findings, along with our previous work with monocytes, suggest that EGFR likely serves as an important determinant of HCMV tropism for select subsets of hematopoietic cells. Moreover, our new data suggest that EGFR is a key receptor for efficient viral entry and that the ensuing signaling regulates important early events required for successful infection of CD34+ HPCs by HCMV.IMPORTANCE HCMV establishes lifelong persistence within the majority of the human population without causing overt pathogenesis in healthy individuals. Despite this, reactivation of HCMV from its latent reservoir in the bone marrow causes significant morbidity and mortality in immunologically compromised individuals, such as bone marrow and solid organ transplant patients. Lifelong persistent infection has also been linked with the development of various cardiovascular diseases in otherwise healthy individuals. Current HCMV therapeutics target lytic replication, but not the latent viral reservoir; thus, an understanding of the molecular basis for viral latency and persistence is paramount to controlling or eliminating HCMV infection. Here, we show that the viral signalosome activated by HCMV binding to its entry receptor, EGFR, in CD34+ HPCs initiates early events necessary for successful latent infection of this cell type. EGFR and associated signaling players may therefore represent promising targets for mitigating HCMV persistence.
Collapse
Affiliation(s)
- Jung Heon Kim
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Donna Collins-McMillen
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | | | - Felicia D Goodrum
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Cellular and Molecular Medicine, Department of Immunobiology, Department of Molecular and Cellular Biology, University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
- Center of Excellence in Arthritis and Rheumatology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
49
|
Adler B, Sattler C, Adler H. Herpesviruses and Their Host Cells: A Successful Liaison. Trends Microbiol 2017; 25:229-241. [DOI: 10.1016/j.tim.2016.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022]
|
50
|
Dogra P, Miller-Kittrell M, Pitt E, Jackson JW, Masi T, Copeland C, Wu S, Miller WE, Sparer T. A little cooperation helps murine cytomegalovirus (MCMV) go a long way: MCMV co-infection rescues a chemokine salivary gland defect. J Gen Virol 2016; 97:2957-2972. [PMID: 27638684 DOI: 10.1099/jgv.0.000603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cytomegaloviruses (CMVs) produce chemokines (vCXCLs) that have both sequence and functional homology to host chemokines. Assessment of vCXCL-1's role in CMV infection is limited to in vitro and in silico analysis due to CMVs species specificity. In this study, we used the murine CMV (MCMV) mouse model to evaluate the function of vCXCL-1 in vivo. Recombinant MCMVs expressing chimpanzee CMV vCXCL-1 (vCXCL-1CCMV) or host chemokine, mCXCL1, underwent primary dissemination to the popliteal lymph node, spleen and lung similar to the parental MCMV. However, neither of the recombinants expressing chemokines was recovered from the salivary gland (SG) at any time post-infection although viral DNA was detected. This implies that the virus does not grow in the SG or the overexpressed chemokine induces an immune response that leads to suppressed growth. Pointing to immune suppression of virus replication, recombinant viruses were isolated from the SG following infection of immune-ablated mice [i.e. SCID (severe combined immunodeficiency), NSG (non-obese diabetic SCID gamma) or cyclophosphamide treated]. Depletion of neutrophils or NK cells does not rescue the recovery of chemokine-expressing recombinants in the SG. Surprisingly we found that co-infection of parental virus and chemokine-expressing virus leads to the recovery of the recombinants in the SG. We suggest that parental virus reduces the levels of chemokine expression leading to a decrease in inflammatory monocytes and subsequent SG growth. Therefore, aberrant expression of the chemokines induces cells of the innate and adaptive immune system that curtail the growth and dissemination of the recombinants in the SG.
Collapse
Affiliation(s)
- Pranay Dogra
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Mindy Miller-Kittrell
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Elisabeth Pitt
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Joseph W Jackson
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Tom Masi
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Courtney Copeland
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Shuen Wu
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | - William E Miller
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | - Tim Sparer
- Department of Microbiology, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| |
Collapse
|