1
|
Kumari N, Ahmad A, Berto-Junior C, Ivanov A, Wen F, Lin X, Diaz S, Okpala I, Taylor JG, Jerebtsova M, Nekhai S. Antiviral response and HIV-1 inhibition in sickle cell disease. iScience 2024; 27:108813. [PMID: 38318349 PMCID: PMC10839265 DOI: 10.1016/j.isci.2024.108813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/03/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Sickle cell disease (SCD) is characterized by hemolysis, vaso-occlusion, and ischemia. HIV-1 infection was previously shown to be suppressed in SCD PBMCs. Here, we report that HIV-1 suppression is attributed to the increased expression of iron, hypoxia, and interferon-induced innate antiviral factors. Inhibition of upregulated antiviral genes, HMOX-1, CDKN1A, and CH25H, increased HIV-1 replication in SCD PBMCs, suggesting their critical role in HIV-1 suppression. Levels of IFN-β were elevated in SCD patients. Sickle cell hemoglobin (HbS) treatment of THP-1-derived and primary monocyte-derived macrophages induced production of IFN-β, upregulated antiviral gene expression, and suppressed HIV-1 infection. Infection with mouse-adapted EcoHIV was suppressed in the SCD mice that also exhibited elevated levels of antiviral restriction factors. Our findings suggest that hemolysis and release of HbS leads to the induction of IFN-β production, induction of cellular antiviral state by the expression of iron and IFN-driven factors, and suppression of HIV-1 infection.
Collapse
Affiliation(s)
- Namita Kumari
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
- Department of Medicine, Howard University, Washington, DC, USA
| | - Asrar Ahmad
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
| | - Clemilson Berto-Junior
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrey Ivanov
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
| | - Fayuan Wen
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
| | - Xionghao Lin
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
| | - Sharmin Diaz
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
| | | | - James G. Taylor
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
- Department of Medicine, Howard University, Washington, DC, USA
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | | | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA
- Department of Medicine, Howard University, Washington, DC, USA
- Department of Microbiology, Howard University, Washington, DC, USA
| |
Collapse
|
2
|
Sivani BM, Azzeh M, Patnaik R, Pantea Stoian A, Rizzo M, Banerjee Y. Reconnoitering the Therapeutic Role of Curcumin in Disease Prevention and Treatment: Lessons Learnt and Future Directions. Metabolites 2022; 12:metabo12070639. [PMID: 35888763 PMCID: PMC9320502 DOI: 10.3390/metabo12070639] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Turmeric is a plant with a very long history of medicinal use across different cultures. Curcumin is the active part of turmeric, which has exhibited various beneficial physiological and pharmacological effects. This review aims to critically appraise the corpus of literature associated with the above pharmacological properties of curcumin, with a specific focus on antioxidant, anti-inflammatory, anticancer and antimicrobial properties. We have also reviewed the different extraction strategies currently in practice, highlighting the strengths and drawbacks of each technique. Further, our review also summarizes the clinical trials that have been conducted with curcumin, which will allow the reader to get a quick insight into the disease/patient population of interest with the outcome that was investigated. Lastly, we have also highlighted the research areas that need to be further scrutinized to better grasp curcumin’s beneficial physiological and medicinal properties, which can then be translated to facilitate the design of better bioactive therapeutic leads.
Collapse
Affiliation(s)
- Bala Mohan Sivani
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Mahmoud Azzeh
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Rajashree Patnaik
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania;
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, 90128 Palermo, Italy;
| | - Yajnavalka Banerjee
- Banerjee Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai 505055, United Arab Emirates; (B.M.S.); (M.A.); (R.P.)
- Centre for Medical Education, University of Dundee, Dundee DD1 4HN, UK
- Correspondence: or ; Tel.: +971-527-873-636
| |
Collapse
|
3
|
Nekhai S, Kumari N. HIV-1 infection in sickle cell disease and sickle cell trait: role of iron and innate response. Expert Rev Hematol 2022; 15:253-263. [PMID: 35322747 PMCID: PMC9041812 DOI: 10.1080/17474086.2022.2054799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Sickle cell disease (SCD), an inherited hemoglobinopathy, affects primarily African Americans in the U.S.A. In addition, about 15% African Americans carry sickle cell trait (SCT). Despite the risk associated with blood transfusions, SCD patients have lower risk of acquiring HIV-1 infection. SCT individuals might also have some protection from HIV-1 infection. AREAS COVERED Here, we will review recent and previous studies with the focus on molecular mechanisms that might underlie and contribute to the protection of individuals with SCD and SCT from HIV-1 infection. As both of these conditions predispose to hemolysis, we will focus our discussion on the effects of systemic and intracellular iron on HIV-1 infection and progression. We will also review changes in iron metabolism and activation of innate antiviral responses in SCD and SCT and their effects on HIV-1 infection. EXPERT OPINION Previous studies, including ours, showed that SCD might protect from HIV-1 infection. This protection is likely due to the upregulation of complex protein network in response to hemolysis, hypoxia and interferon signaling. These findings are important not only for HIV-1 field but also for SCD cure efforts as antiviral state of SCD patients may adversely affect lentivirus-based gene therapy efforts.
Collapse
Affiliation(s)
- Sergei Nekhai
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington DC, USA
- Department of Medicine, Howard University, Washington DC, USA
- Corresponding Author: Sergei Nekhai, , Center for Sickle Cell Disease, Howard University, HUIRB, Suite 321D, 2201 Georgia Avenue, NW, Washington DC 20059, USA, Phone: (202) 806-3378
| | - Namita Kumari
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington DC, USA
- Department of Medicine, Howard University, Washington DC, USA
| |
Collapse
|
4
|
Huang H, Dabrazhynetskaya A, Pluznik J, Zheng J, Wu Y, Chizhikov V, Buehler PW, Yamada KM, Dhawan S. Hemin activation abrogates Mycoplasma hyorhinis replication in chronically infected prostate cancer cells via heme oxygenase-1 induction. FEBS Open Bio 2021; 11:2727-2739. [PMID: 34375508 PMCID: PMC8487054 DOI: 10.1002/2211-5463.13271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/16/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma hyorhinis (M. hyorhinis) lacks a cell wall and resists multiple antibiotics. We describe here the striking > 90% inhibitory effect of hemin, a natural inducer of the cytoprotective enzyme heme oxygenase‐1 (HO‐1), on M. hyorhinis replication in chronically infected LNCaP prostate cancer cells. The role of HO‐1 in interrupting M. hyorhinis replication was confirmed by HO‐1‐specific siRNA suppression of hemin‐induced HO‐1 protein expression, which increased intracellular M. hyorhinis DNA levels in LNCaP cells. Proteomic analysis and transmission electron microscopy of hemin‐treated cells confirmed the complete absence of M. hyorhinis proteins and intact microorganisms, respectively, strongly supporting these findings. Our study is the first to our knowledge suggesting therapeutic potential for activated HO‐1 in cellular innate responses against mycoplasma infection.
Collapse
Affiliation(s)
- Hanxia Huang
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring
| | - Alena Dabrazhynetskaya
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring
| | - Jacob Pluznik
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring
| | - Jiwen Zheng
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring
| | - Yong Wu
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring
| | - Vladimir Chizhikov
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring
| | - Paul W Buehler
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring.,Department of Pathology, Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore
| | - Kenneth M Yamada
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda
| | - Subhash Dhawan
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring.,Retired Senior FDA Research & Regulatory Scientist, 9890 Washingtonian Blvd., #703, Gaithersburg, 20878
| |
Collapse
|
5
|
Jennings MR, Parks RJ. Curcumin as an Antiviral Agent. Viruses 2020; 12:v12111242. [PMID: 33142686 PMCID: PMC7693600 DOI: 10.3390/v12111242] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
Curcumin, the primary curcuminoid compound found in turmeric spice, has shown broad activity as an antimicrobial agent, limiting the replication of many different fungi, bacteria and viruses. In this review, we summarize recent studies supporting the development of curcumin and its derivatives as broad-spectrum antiviral agents.
Collapse
Affiliation(s)
- Morgan R. Jennings
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Correspondence: ; Tel.: +1-613-737-8123
| |
Collapse
|
6
|
Ssenyondwa J, George PE, Carlos Bazo-Alvarez J, Mercedes R, Kanywa JB, Naturinda E, Wasswa PLM, Lubega J. Impact of sickle cell disease on presentation and progression of paediatric HIV: a retrospective cohort study. Trop Med Int Health 2020; 25:897-904. [PMID: 32329120 DOI: 10.1111/tmi.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES HIV and sickle cell disease (SCD) are significant causes of morbidity and mortality in sub-Saharan Africa. Given their separate roles in immune dysregulation, our objective was to characterise the impact that SCD has on the presentation and progression of paediatric HIV. METHODS The study was a retrospective cohort study (study period 2004-2018). Cases of HIV + and SCD-afflicted patients (HIV+/SCD+) were obtained via electronic chart review from a paediatric HIV clinic in Kampala, Uganda and matched 1:3 with HIV + controls without SCD (HIV+/SCD-). RESULTS Thirty-five HIV+/SCD + subjects and 95 HIV+/SCD- controls were analysed (39% female (51/130), age 3.6 years (SD3.9)). At baseline, WHO clinical stage (64% total cohort Stage III/IV) and nutritional status (9.4% severe acute malnutrition) were similar for both groups, whereas HIV+/SCD + had higher though non-significant baseline CD4 count (1036 (SD713) vs 849 (SD638) cells/microlitre, P = 0.20, two-tailed t-test). There were 19 deaths, 6 (17%) HIV+/SCD + and 13 (14%) HIV+/SCD-, with unadjusted/adjusted models showing no significant difference. Nutritional progression and clinical stage progression showed no significant differences between groups. Kaplan-Meier analysis showed a slower rate of treatment failures in the HIV+/SCD + cohort (P = 0.11, log-rank survival test). Trajectory analysis showed that in the time period analysed, the HIV+/SCD + cohort showed a more rapid rise and higher total CD4 count (P = 0.012, regression analysis). CONCLUSION The study suggests that SCD does not adversely affect the progression of HIV in patients on ART. Further, HIV+/SCD + achieved higher CD4 counts and fewer HIV treatment failures, suggesting physiological effects due to SCD might mitigate HIV progression.
Collapse
Affiliation(s)
- Joseph Ssenyondwa
- Baylor College of Medicine Children's Foundation, Kampala, Uganda.,Texas Children's Hospital - Global HOPE Program, Kampala, Uganda
| | - Paul E George
- Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | | | - Rebecca Mercedes
- Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | | | - Ernest Naturinda
- Baylor College of Medicine Children's Foundation, Kampala, Uganda.,Texas Children's Hospital - Global HOPE Program, Kampala, Uganda
| | - Peter L M Wasswa
- Texas Children's Hospital - Global HOPE Program, Kampala, Uganda.,Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Joseph Lubega
- Texas Children's Hospital - Global HOPE Program, Kampala, Uganda.,Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
7
|
Khan N, Chen X, Geiger JD. Role of Divalent Cations in HIV-1 Replication and Pathogenicity. Viruses 2020; 12:E471. [PMID: 32326317 PMCID: PMC7232465 DOI: 10.3390/v12040471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/09/2020] [Accepted: 04/18/2020] [Indexed: 12/22/2022] Open
Abstract
Divalent cations are essential for life and are fundamentally important coordinators of cellular metabolism, cell growth, host-pathogen interactions, and cell death. Specifically, for human immunodeficiency virus type-1 (HIV-1), divalent cations are required for interactions between viral and host factors that govern HIV-1 replication and pathogenicity. Homeostatic regulation of divalent cations' levels and actions appear to change as HIV-1 infection progresses and as changes occur between HIV-1 and the host. In people living with HIV-1, dietary supplementation with divalent cations may increase HIV-1 replication, whereas cation chelation may suppress HIV-1 replication and decrease disease progression. Here, we review literature on the roles of zinc (Zn2+), iron (Fe2+), manganese (Mn2+), magnesium (Mg2+), selenium (Se2+), and copper (Cu2+) in HIV-1 replication and pathogenicity, as well as evidence that divalent cation levels and actions may be targeted therapeutically in people living with HIV-1.
Collapse
Affiliation(s)
| | | | - Jonathan D. Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA; (N.K.); (X.C.)
| |
Collapse
|
8
|
Jansons J, Sominskaya I, Petrakova N, Starodubova ES, Smirnova OA, Alekseeva E, Bruvere R, Eliseeva O, Skrastina D, Kashuba E, Mihailova M, Kochetkov SN, Ivanov AV, Isaguliants MG. The Immunogenicity in Mice of HCV Core Delivered as DNA Is Modulated by Its Capacity to Induce Oxidative Stress and Oxidative Stress Response. Cells 2019; 8:cells8030208. [PMID: 30823485 PMCID: PMC6468923 DOI: 10.3390/cells8030208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
HCV core is an attractive HCV vaccine target, however, clinical or preclinical trials of core-based vaccines showed little success. We aimed to delineate what restricts its immunogenicity and improve immunogenic performance in mice. We designed plasmids encoding full-length HCV 1b core and its variants truncated after amino acids (aa) 60, 98, 152, 173, or up to aa 36 using virus-derived or synthetic polynucleotides (core191/60/98/152/173/36_191v or core152s DNA, respectively). We assessed their level of expression, route of degradation, ability to trigger the production of reactive oxygen species/ROS, and to activate the components of the Nrf2/ARE antioxidant defense pathway heme oxygenase 1/HO-1 and NAD(P)H: quinone oxidoreductase/Nqo-1. All core variants with the intact N-terminus induced production of ROS, and up-regulated expression of HO-1 and Nqo-1. The capacity of core variants to induce ROS and up-regulate HO-1 and Nqo-1 expression predetermined their immunogenicity in DNA-immunized BALB/c and C57BL/6 mice. The most immunogenic was core 152s, expressed at a modest level and inducing moderate oxidative stress and oxidative stress response. Thus, immunogenicity of HCV core is shaped by its ability to induce ROS and oxidative stress response. These considerations are important in understanding the mechanisms of viral suppression of cellular immune response and in HCV vaccine design.
Collapse
Affiliation(s)
- Juris Jansons
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia.
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Irina Sominskaya
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Natalia Petrakova
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
| | - Elizaveta S Starodubova
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Olga A Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Ekaterina Alekseeva
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia.
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Ruta Bruvere
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Olesja Eliseeva
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
| | - Dace Skrastina
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia.
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
- RE Kavetsky Institite of Experimental Pathology, Oncology and Radiobiology, The National Academy of Sciences of Ukraine, 03022 Kyiv, Ukraine.
| | - Marija Mihailova
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Maria G Isaguliants
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
- MP Chumakov Center for Research and Development of Immune and Biological Preparations of RAS, 108819 Moscow, Russia.
| |
Collapse
|
9
|
Budiarti R, Kuntaman, Nasronudin, Suryokusumo, Khairunisa SQ. IN VITRO STUDIES ON HEME OXYGENASE-1 AND P24 ANTIGEN HIV-1 LEVEL AFTERHYPERBARIC OXYGEN TREATMENTOFHIV-1 INFECTED ON PERIPHERAL BLOOD MONONUCLEAR CELLS (PBMCS). Afr J Infect Dis 2018; 12:1-6. [PMID: 29619425 PMCID: PMC5876773 DOI: 10.21010/ajid.12v1s.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/04/2022] Open
Abstract
Background: Heme oxygenase-1 (HO-1) is a protein secreted by immune cells as a part of immune response mechanism.HO-1 can be induced by variety agents that causingoxidative stress, such as exposure to 100% oxygenat2,4 ATA pressure.It plays a vital role in maintaining cellular homeostasis.This study was conducted to identify the effect of hyperbaric oxygen exposure in cultured ofPBMCthat infected by HIV-1. Material and Methods: Primary culture of PBMCs were isolated from 16 healthy volunteers and HIV-1 infected MT4 cell line by co-culture. The PBMCs were aliquoted into two wells as control group and treatment group. The 16 samples of HIV-1 infected PBMCwere exposed to oxygen at 2,4 ATA in animal hyperbaric chamber forthree times in 30 minutes periods with 5 minutes spacing period, that called 1 session. The Treatment done on 5 sessions within 5 days. 16 samples of HIV-1 infected PMBCs that have no hyperbaric treatment became control group.The supernatant were measured the HO-1 production by ELISA andmRNA expression of HO-1 by real time PCR and the number ofantigen p24 HIV-1by ELISA. Results: The result showed that there was no increasing of HO-1 at both mRNA level and protein level, there was a decreasing number of antigen p24 HIV-1 at the treatment group. In addition, hyperbaric exposure could not increase the expression of HO-1, more over the viral replication might be reduced by other mechanism. Conclusions: Hyperbaric oxygen could increases cellular adaptive response of PBMCs infected HIV-1 through increased expression of proteins that can inhibit HIV viralreplication.
Collapse
Affiliation(s)
- Retno Budiarti
- Department of Microbiology, Faculty of Medicine, Hang Tuah University, Surabaya, Indonesia
| | - Kuntaman
- Department of Microbiology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Nasronudin
- Department of Internal Medicine, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Suryokusumo
- Department of Hyperbaric, Faculty of Medicine, Pembangunan Nasional University, Jakarta, Indonesia
| | | |
Collapse
|
10
|
Tseng CH, Lin CK, Chen YL, Tseng CK, Lee JY, Lee JC. Discovery of naphtho[1,2-d]oxazole derivatives as potential anti-HCV agents through inducing heme oxygenase-1 expression. Eur J Med Chem 2018; 143:970-982. [DOI: 10.1016/j.ejmech.2017.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/30/2017] [Accepted: 12/02/2017] [Indexed: 01/05/2023]
|
11
|
Acute HIV-1 infection is associated with increased plasma levels of heme oxygenase-1 and presence of heme oxygenase-1-specific regulatory T cells. AIDS 2017; 31:635-641. [PMID: 28060008 DOI: 10.1097/qad.0000000000001390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Heme oxygenase-1 (HO-1) is an inducible stress response protein with potent anti-inflammatory activity and recent data suggest a potentially beneficial role in HIV pathogenesis. We investigated the impact of HO-1 and a novel subset of HO-1-specific CD8 regulatory T cells on virus-specific T-cell immunity in HIV-1-infected individuals. METHODS HO-1 protein levels were quantified in plasma from individuals at different stages of HIV-1 disease and longitudinally following primary HIV infection. HO-1-specific CD8 T cells were investigated by flow cytometry using human leukocyte antigen (HLA) class I pentamers. Flow-sorted HO-1-specific CD8 T cells were cultured and tested for suppressive activity on HIV-1-specific cytotoxic T-cell clones clones. HO-1 gene expression was determined in sorted peripheral blood mononuclear cell (PBMC) subsets from individuals with acute HIV-1 infection. RESULTS HO-1 plasma levels were significantly increased in HIV-1 infection, with the highest levels in individuals with acute HIV-1 infection, and gradually declined over time. The frequency of CD8 T cells specific for HO-1 was elevated in study participants with primary HIV-1 infection and flow-sorted HO-1-specific CD8 T cells were capable of suppressing HIV-1-specific lysis of cytotoxic T-cell clones clones. HO-1 gene expression was upregulated in multiple immune cell subsets during acute HIV-1 infection and HO-1 overexpression modulated anti-HIV immunity in vitro. CONCLUSION Our data suggest that HO-1 is induced during acute HIV-1 infection, likely mediating anti-inflammatory effects and driving expansion of HO-1-specific CD8 regulatory T cells capable of suppressing HIV-1-specific immune responses in vitro. The investigation of HO-1 and the novel CD8 regulatory cell type described here provide further insight into immune regulation in HIV-1 infection and may hold potential for future immunotherapeutic intervention.
Collapse
|
12
|
Huang H, Falgout B, Takeda K, Yamada KM, Dhawan S. Nrf2-dependent induction of innate host defense via heme oxygenase-1 inhibits Zika virus replication. Virology 2017; 503:1-5. [PMID: 28068513 DOI: 10.1016/j.virol.2016.12.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 01/09/2023]
Abstract
We identified primary human monocyte-derived macrophages (MDM) as vulnerable target cells for Zika virus (ZIKV) infection. We demonstrate dramatic effects of hemin, the natural inducer of the heme catabolic enzyme heme oxygenase-1 (HO-1), in the reduction of ZIKV replication in vitro. Both LLC-MK2 monkey kidney cells and primary MDM exhibited hemin-induced HO-1 expression with major reductions of >90% in ZIKV replication, with little toxicity to infected cells. Silencing expression of HO-1 or its upstream regulatory gene, nuclear factor erythroid-related factor 2 (Nrf2), attenuated hemin-induced suppression of ZIKV infection, suggesting an important role for induction of these intracellular mediators in retarding ZIKV replication. The inverse correlation between hemin-induced HO-1 levels and ZIKV replication provides a potentially useful therapeutic modality based on stimulation of an innate cellular response against Zika virus infection.
Collapse
Affiliation(s)
- Hanxia Huang
- Food and Drug Administration, Silver Spring, MD, United States
| | - Barry Falgout
- Food and Drug Administration, Silver Spring, MD, United States
| | - Kazuyo Takeda
- Food and Drug Administration, Silver Spring, MD, United States
| | | | - Subhash Dhawan
- Food and Drug Administration, Silver Spring, MD, United States.
| |
Collapse
|
13
|
Increased iron export by ferroportin induces restriction of HIV-1 infection in sickle cell disease. Blood Adv 2016; 1:170-183. [PMID: 28203649 DOI: 10.1182/bloodadvances.2016000745] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The low incidence of HIV-1 infection in patients with sickle cell disease (SCD) and inhibition of HIV-1 replication in vitro under the conditions of low intracellular iron or heme treatment suggests a potential restriction of HIV-1 infection in SCD. We investigated HIV-1 ex vivo infection of SCD peripheral blood mononuclear cells (PBMCs) and found that HIV-1 replication was inhibited at the level of reverse transcription (RT) and transcription. We observed increased expression of heme and iron-regulated genes, previously shown to inhibit HIV-1, including ferroportin, IKBα, HO-1, p21, and SAM domain and HD domain-containing protein 1 (SAMHD1). HIV-1 inhibition was less pronounced in hepcidin-treated SCD PBMCs and more pronounced in the iron or iron chelators treated, suggesting a key role of iron metabolism. In SCD PBMCs, labile iron levels were reduced and protein levels of ferroportin, HIF-1α, IKBα, and HO-1 were increased. Hemin treatment induced ferroportin expression and inhibited HIV-1 in THP-1 cells, mimicking the HIV-1 inhibition in SCD PBMCs, especially as hepcidin similarly prevented HIV-1 inhibition. In THP-1 cells with knocked down ferroportin, IKBα, or HO-1 genes but not HIF-1α or p21, HIV-1 was not inhibited by hemin. Activity of SAMHD1-regulatory CDK2 was decreased, and SAMHD1 phosphorylation was reduced in SCD PBMCs and hemin-treated THP-1 cells, suggesting SAMHD1-mediated HIV-1 restriction in SCD. Our findings point to ferroportin as a trigger of HIV-1 restriction in SCD settings, linking reduced intracellular iron levels to the inhibition of CDK2 activity, reduction of SAMHD1 phosphorylation, increased IKBα expression, and inhibition of HIV-1 RT and transcription.
Collapse
|
14
|
Agosto LM, Hirnet JB, Michaels DH, Shaik-Dasthagirisaheb YB, Gibson FC, Viglianti G, Henderson AJ. Porphyromonas gingivalis-mediated signaling through TLR4 mediates persistent HIV infection of primary macrophages. Virology 2016; 499:72-81. [PMID: 27639573 PMCID: PMC5126732 DOI: 10.1016/j.virol.2016.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022]
Abstract
Periodontal infections contribute to HIV-associated co-morbidities in the oral cavity and provide a model to interrogate the dysregulation of macrophage function, inflammatory disease progression, and HIV replication during co-infections. We investigated the effect of Porphyromonas gingivalis on the establishment of HIV infection in monocyte-derived macrophages. HIV replication in macrophages was significantly repressed in the presence of P. gingivalis. This diminished viral replication was due partly to a decrease in the expression of integrated HIV provirus. HIV repression depended upon signaling through TLR4 as knock-down of TLR4 with siRNA rescued HIV expression. Importantly, HIV expression was reactivated upon removal of P. gingivalis. Our observations suggest that exposure of macrophages to Gram-negative bacteria influence the establishment and maintenance of HIV persistence in macrophages through a TLR4-dependent mechanism.
Collapse
Affiliation(s)
- Luis M Agosto
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA.
| | - Juliane B Hirnet
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Daniel H Michaels
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA
| | | | - Frank C Gibson
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | - Gregory Viglianti
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Andrew J Henderson
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, MA, USA; Department of Microbiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
15
|
Kumari N, Kulkarni AA, Lin X, McLean C, Ammosova T, Ivanov A, Hipolito M, Nekhai S, Nwulia E. Inhibition of HIV-1 by curcumin A, a novel curcumin analog. Drug Des Devel Ther 2015; 9:5051-60. [PMID: 26366056 PMCID: PMC4562762 DOI: 10.2147/dddt.s86558] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the remarkable success of combination antiretroviral therapy at curtailing HIV progression, emergence of drug-resistant viruses, chronic low-grade inflammation, and adverse effects of combination antiretroviral therapy treatments, including metabolic disorders collectively present the impetus for development of newer and safer antiretroviral drugs. Curcumin, a phytochemical compound, was previously reported to have some in vitro anti-HIV and anti-inflammatory activities, but poor bioavailability has limited its clinical utility. To circumvent the bioavailability problem, we derivatized curcumin to sustain retro-aldol decomposition at physiological pH. The lead compound derived, curcumin A, showed increased stability, especially in murine serum where it was stable for up to 25 hours, as compared to curcumin that only had a half-life of 10 hours. Both curcumin and curcumin A showed similar inhibition of one round of HIV-1 infection in cultured lymphoblastoid (also called CEM) T cells (IC50=0.7 μM). But in primary peripheral blood mononuclear cells, curcumin A inhibited HIV-1 more potently (IC50=2 μM) compared to curcumin (IC50=12 μM). Analysis of specific steps of HIV-1 replication showed that curcumin A inhibited HIV-1 reverse transcription, but had no effect on HIV-1 long terminal repeat basal or Tat-induced transcription, or NF-κB-driven transcription at low concentrations that affected reverse transcription. Finally, we showed curcumin A induced expression of HO-1 and decreased cell cycle progression of T cells. Our findings thus indicate that altering the core structure of curcumin could yield more stable compounds with potent antiretroviral and anti-inflammatory activities.
Collapse
Affiliation(s)
- Namita Kumari
- Translational Neuroscience Laboratory, Howard University, Washington, DC, USA
- Department of Medicine, Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| | | | - Xionghao Lin
- Department of Medicine, Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| | - Charlee McLean
- Translational Neuroscience Laboratory, Howard University, Washington, DC, USA
| | - Tatiana Ammosova
- Department of Medicine, Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| | - Andrey Ivanov
- Department of Medicine, Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| | - Maria Hipolito
- Translational Neuroscience Laboratory, Howard University, Washington, DC, USA
| | - Sergei Nekhai
- Department of Medicine, Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, DC, USA
| | - Evaristus Nwulia
- Translational Neuroscience Laboratory, Howard University, Washington, DC, USA
| |
Collapse
|
16
|
Induction of Heme Oxygenase-1 Deficiency and Associated Glutamate-Mediated Neurotoxicity Is a Highly Conserved HIV Phenotype of Chronic Macrophage Infection That Is Resistant to Antiretroviral Therapy. J Virol 2015; 89:10656-67. [PMID: 26269184 DOI: 10.1128/jvi.01495-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/05/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Expression of the cytoprotective enzyme heme oxygenase-1 (HO-1) is significantly reduced in the brain prefrontal cortex of HIV-positive individuals with HIV-associated neurocognitive disorders (HAND). Furthermore, this HO-1 deficiency correlates with brain viral load, markers of macrophage activation, and type I interferon responses. In vitro, HIV replication in monocyte-derived macrophages (MDM) selectively reduces HO-1 protein and RNA expression and induces production of neurotoxic levels of glutamate; correction of this HO-1 deficiency reduces neurotoxic glutamate production without an effect on HIV replication. We now demonstrate that macrophage HO-1 deficiency, and the associated neurotoxin production, is a conserved feature of infection with macrophage-tropic HIV-1 strains that correlates closely with the extent of replication, and this feature extends to HIV-2 infection. We further demonstrate that this HO-1 deficiency does not depend specifically upon the HIV-1 accessory genes nef, vpr, or vpu but rather on HIV replication, even when markedly limited. Finally, antiretroviral therapy (ART) applied to MDM after HIV infection is established does not prevent HO-1 loss or the associated neurotoxin production. This work defines a predictable relationship between HIV replication, HO-1 loss, and neurotoxin production in MDM that likely reflects processes in place in the HIV-infected brains of individuals receiving ART. It further suggests that correcting this HO-1 deficiency in HIV-infected MDM could provide neuroprotection above that provided by current ART or proposed antiviral therapies directed at limiting Nef, Vpr, or Vpu functions. The ability of HIV-2 to reduce HO-1 expression suggests that this is a conserved phenotype among macrophage-tropic human immunodeficiency viruses that could contribute to neuropathogenesis. IMPORTANCE The continued prevalence of HIV-associated neurocognitive disorders (HAND) underscores the need for adjunctive therapy that targets the neuropathological processes that persist in antiretroviral therapy (ART)-treated HIV-infected individuals. To this end, we previously identified one such possible process, a deficiency of the antioxidative and anti-inflammatory enzyme heme oxygenase-1 (HO-1) in the brains of individuals with HAND. In the present study, our findings suggest that the HO-1 deficiency associated with excess glutamate production and neurotoxicity in HIV-infected macrophages is a highly conserved phenotype of macrophage-tropic HIV strains and that this phenotype can persist in the macrophage compartment in the presence of ART. This suggests a plausible mechanism by which HIV infection of brain macrophages in ART-treated individuals could exacerbate oxidative stress and glutamate-induced neuronal injury, each of which is associated with neurocognitive dysfunction in infected individuals. Thus, therapies that rescue the HO-1 deficiency in HIV-infected individuals could provide additional neuroprotection to ART.
Collapse
|
17
|
Ambegaokar SS, Kolson DL. Heme oxygenase-1 dysregulation in the brain: implications for HIV-associated neurocognitive disorders. Curr HIV Res 2015; 12:174-88. [PMID: 24862327 PMCID: PMC4155834 DOI: 10.2174/1570162x12666140526122709] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/20/2014] [Accepted: 01/27/2014] [Indexed: 12/17/2022]
Abstract
Heme oxygenase-1 (HO-1) is a highly inducible and ubiquitous cellular enzyme that subserves cytoprotective responses to toxic insults, including inflammation and oxidative stress. In neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and multiple sclerosis, HO-1 expression is increased, presumably reflecting an endogenous neuroprotective response against ongoing cellular injury. In contrast, we have found that in human immunodeficiency virus (HIV) infection of the brain, which is also associated with inflammation, oxidative stress and neurodegeneration, HO-1 expression is decreased, likely reflecting a unique role for HO-1 deficiency in neurodegeneration pathways activated by HIV infection. We have also shown that HO-1 expression is significantly suppressed by HIV replication in cultured macrophages which represent the primary cellular reservoir for HIV in the brain. HO-1 deficiency is associated with release of neurotoxic levels of glutamate from both HIV-infected and immune-activated macrophages; this glutamate-mediated neurotoxicity is suppressed by pharmacological induction of HO-1 expression in the macrophages. Thus, HO-1 induction could be a therapeutic strategy for neuroprotection against HIV infection and other neuroinflammatory brain diseases. Here, we review various stimuli and signaling pathways regulating HO-1 expression in macrophages, which could promote neuronal survival through HO-1-modulation of endogenous antioxidant and immune modulatory pathways, thus limiting the oxidative stress that can promote HIV disease progression in the CNS. The use of pharmacological inducers of endogenous HO-1 expression as potential adjunctive neuroprotective therapeutics in HIV infection is also discussed.
Collapse
Affiliation(s)
| | - Dennis L Kolson
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 280 Clinical Research Building, 415 Curie Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Assas BM, Miyan JA, Pennock JL. Cross-talk between neural and immune receptors provides a potential mechanism of homeostatic regulation in the gut mucosa. Mucosal Immunol 2014; 7:1283-9. [PMID: 25183366 DOI: 10.1038/mi.2014.80] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/25/2014] [Indexed: 02/07/2023]
Abstract
The relationship between elements of the immune system and the nervous system in the presence of bacteria has been addressed recently. In particular, the sensory vanilloid receptor 1 (transient receptor potential cation channel subfamily V member 1 (TRPV1)) and the neuropeptide calcitonin gene-related peptide (CGRP) have been found to modulate cytokine response to lipopolysaccharide (LPS) independently of adaptive immunity. In this review we discuss mucosal homeostasis in the gastrointestinal tract where bacterial concentration is high. We propose that the Gram-negative bacterial receptor Toll-like receptor 4 (TLR4) can activate TRPV1 via intracellular signaling, and thereby induce the subsequent release of anti-inflammatory CGRP to maintain mucosal homeostasis.
Collapse
Affiliation(s)
- B M Assas
- 1] Faculty of Applied Medical Sciences, King Abdul Aziz University, Jeddah, Saudi Arabia [2] Faculty of Medicine and Human Sciences, University of Manchester, Manchester, UK
| | - J A Miyan
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - J L Pennock
- Institute of Inflammation and Repair, Faculty of Medicine and Human Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Meseda CA, Srinivasan K, Wise J, Catalano J, Yamada KM, Dhawan S. Non-coding RNAs and heme oxygenase-1 in vaccinia virus infection. Biochem Biophys Res Commun 2014; 454:84-8. [PMID: 25450361 DOI: 10.1016/j.bbrc.2014.10.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/08/2014] [Indexed: 12/18/2022]
Abstract
Small nuclear RNAs (snRNAs) are <200 nucleotide non-coding uridylate-rich RNAs. Although the functions of many snRNAs remain undetermined, a population of snRNAs is produced during the early phase of infection of cells by vaccinia virus. In the present study, we demonstrate a direct correlation between expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), suppression of selective snRNA expression, and inhibition of vaccinia virus infection of macrophages. Hemin induced HO-1 expression, completely reversed virus-induced host snRNA expression, and suppressed vaccinia virus infection. This involvement of specific virus-induced snRNAs and associated gene clusters suggests a novel HO-1-dependent host-defense pathway in poxvirus infection.
Collapse
Affiliation(s)
- Clement A Meseda
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, United States
| | - Kumar Srinivasan
- Division of Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, United States
| | | | - Jennifer Catalano
- Center for Tobacco Products, Food and Drug Administration, Bethesda, MD, United States
| | - Kenneth M Yamada
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Subhash Dhawan
- Division of Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, United States.
| |
Collapse
|
20
|
Lee JC, Tseng CK, Young KC, Sun HY, Wang SW, Chen WC, Lin CK, Wu YH. Andrographolide exerts anti-hepatitis C virus activity by up-regulating haeme oxygenase-1 via the p38 MAPK/Nrf2 pathway in human hepatoma cells. Br J Pharmacol 2014; 171:237-52. [PMID: 24117426 DOI: 10.1111/bph.12440] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/16/2013] [Accepted: 09/24/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE This study aimed to evaluate the anti-hepatitis C virus (HCV) activity of andrographolide, a diterpenoid lactone extracted from Andrographis paniculata, and to identify the signalling pathway involved in its antiviral action. EXPERIMENTAL APPROACH Using HCV replicon and HCVcc infectious systems, we identified anti-HCV activity of andrographolide by measuring protein and RNA levels. A reporter activity assay was used to determine transcriptional regulation of anti-HCV agents. A specific inhibitor and short hairpin RNAs were used to investigate the mechanism responsible for the effect of andrographolide on HCV replication. KEY RESULTS In HCV replicon and HCVcc infectious systems, andrographolide time- and dose-dependently suppressed HCV replication. When combined with IFN-α, an inhibitor targeting HCV NS3/4A protease (telaprevir), or NS5B polymerase (PSI-7977), andrographolide exhibited a significant synergistic effect. Andrographolide up-regulated the expression of haeme oxygenase-1 (HO-1), leading to increased amounts of its metabolite biliverdin, which was found to suppress HCV replication by promoting the antiviral IFN responses and inhibiting NS3/4A protease activity. Significantly, these antiviral effects were attenuated by an HO-1-specific inhibitor or HO-1 gene knockdown, indicating that HO-1 contributed to the anti-HCV activity of andrographolide. Andrographolide activated p38 MAPK phosphorylation, which stimulated nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated HO-1 expression, and this was found to be associated with its anti-HCV activity. CONCLUSIONS AND IMPLICATIONS Our results demonstrate that andrographolide has the potential to control HCV replication and suggest that targeting the Nrf2-HO-1 signalling pathway might be a promising strategy for drug development.
Collapse
Affiliation(s)
- Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Reactive oxygen species (ROS) are deadly weapons used by phagocytes and other cell types, such as lung epithelial cells, against pathogens. ROS can kill pathogens directly by causing oxidative damage to biocompounds or indirectly by stimulating pathogen elimination by various nonoxidative mechanisms, including pattern recognition receptors signaling, autophagy, neutrophil extracellular trap formation, and T-lymphocyte responses. Thus, one should expect that the inhibition of ROS production promote infection. Increasing evidences support that in certain particular infections, antioxidants decrease and prooxidants increase pathogen burden. In this study, we review the classic infections that are controlled by ROS and the cases in which ROS appear as promoters of infection, challenging the paradigm. We discuss the possible mechanisms by which ROS could promote particular infections. These mechanisms are still not completely clear but include the metabolic effects of ROS on pathogen physiology, ROS-induced damage to the immune system, and ROS-induced activation of immune defense mechanisms that are subsequently hijacked by particular pathogens to act against more effective microbicidal mechanisms of the immune system. The effective use of antioxidants as therapeutic agents against certain infections is a realistic possibility that is beginning to be applied against viruses.
Collapse
Affiliation(s)
- Claudia N Paiva
- Departamento de Imunologia, Instituto de Microbiologia , CCS Bloco D, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | |
Collapse
|
22
|
Rodriguez Rodrigues C, Remes Lenicov F, Jancic C, Sabatté J, Cabrini M, Ceballos A, Merlotti A, Gonzalez H, Ostrowski M, Geffner J. Candida albicans delays HIV-1 replication in macrophages. PLoS One 2013; 8:e72814. [PMID: 24009706 PMCID: PMC3751824 DOI: 10.1371/journal.pone.0072814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 07/21/2013] [Indexed: 11/19/2022] Open
Abstract
Macrophages are one of the most important HIV-1 target cells. Unlike CD4(+) T cells, macrophages are resistant to the cytophatic effect of HIV-1. They are able to produce and harbor the virus for long periods acting as a viral reservoir. Candida albicans (CA) is a commensal fungus that colonizes the portals of HIV-1 entry, such as the vagina and the rectum, and becomes an aggressive pathogen in AIDS patients. In this study, we analyzed the ability of CA to modulate the course of HIV-1 infection in human monocyte-derived macrophages. We found that CA abrogated HIV-1 replication in macrophages when it was evaluated 7 days after virus inoculation. A similar inhibitory effect was observed in monocyte-derived dendritic cells. The analysis of the mechanisms responsible for the inhibition of HIV-1 production in macrophages revealed that CA efficiently sequesters HIV-1 particles avoiding its infectivity. Moreover, by acting on macrophages themselves, CA diminishes their permissibility to HIV-1 infection by reducing the expression of CD4, enhancing the production of the CCR5-interacting chemokines CCL3/MIP-1α, CCL4/MIP-1β, and CCL5/RANTES, and stimulating the production of interferon-α and the restriction factors APOBEC3G, APOBEC3F, and tetherin. Interestingly, abrogation of HIV-1 replication was overcome when the infection of macrophages was evaluated 2-3 weeks after virus inoculation. However, this reactivation of HIV-1 infection could be silenced by CA when added periodically to HIV-1-challenged macrophages. The induction of a silent HIV-1 infection in macrophages at the periphery, where cells are continuously confronted with CA, might help HIV-1 to evade the immune response and to promote resistance to antiretroviral therapy.
Collapse
Affiliation(s)
- Christian Rodriguez Rodrigues
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Federico Remes Lenicov
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Carolina Jancic
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Juan Sabatté
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Mercedes Cabrini
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Ana Ceballos
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Antonela Merlotti
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Heidi Gonzalez
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Matías Ostrowski
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Jorge Geffner
- Instituto de Investigaciones Médicas en Retrovirus y SIDA (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Hospital de Clínicas “José de San Martín”, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
23
|
Heme oxygenase-1 induction alters chemokine regulation and ameliorates human immunodeficiency virus-type-1 infection in lipopolysaccharide-stimulated macrophages. Biochem Biophys Res Commun 2013; 435:373-7. [PMID: 23665328 PMCID: PMC3992914 DOI: 10.1016/j.bbrc.2013.04.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/29/2013] [Indexed: 12/29/2022]
Abstract
We have elucidated a putative mechanism for the host resistance against HIV-1 infection of primary human monocyte-derived macrophages (MDM) stimulated with lipopolysaccharide (LPS). We show that LPS-activated MDM both inhibited HIV-1 entry into the cells and were refractory to post-entry productive viral replication. LPS-treated cells were virtually negative for mature virions as revealed by transmission electron microscopy. LPS activation of MDM markedly enhanced the expression of heme oxygenase-1 (HO-1), a potent inducible cytoprotective enzyme. Increased HO-1 expression was accompanied by elevated production of macrophage inflammatory chemokines (MIP1α and MIP1β) by LPS-activated MDM, significantly decreased surface chemokine receptor-5 (CCR-5) expression, and substantially reduced virus replication. Treatment of cells with HO-1 inhibitor SnPP IX (tin protoporphyrin IX) attenuated the LPS-mediated responses, HIV-1 replication and secretion of MIP1α, MIP1β, and LD78β chemokines with little change in surface CCR-5 expression. These results identify a novel role for HO-1 in the modulation of host immune response against HIV infection of MDM.
Collapse
|
24
|
Nekhai S, Kumari N, Dhawan S. Role of cellular iron and oxygen in the regulation of HIV-1 infection. Future Virol 2013; 8:301-311. [PMID: 23678366 DOI: 10.2217/fvl.13.6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite efficient antiretroviral therapy, eradication of HIV-1 infection is challenging and requires novel biological insights and therapeutic strategies. Among other physiological and environmental factors, intracellular iron greatly affects HIV-1 replication. Higher iron stores were shown to be associated with faster progression of HIV-1 infection and to inversely correlate with the survival of HIV-1 infected patients. Iron is required for several steps in the HIV-1 life cycle, including reverse transcription, HIV-1 gene expression and capsid assembly. Here, the authors present a comprehensive review of the molecular mechanisms involved in iron- and oxygen-mediated regulation of HIV-1 replication. We also propose key intracellular pathways that may be involved in regulating HIV-1 replication, via protein kinase complexes, CDK9/cyclin T1 and CDK 2/cyclin E, protein phosphatase-1 and other host factors.
Collapse
Affiliation(s)
- Sergei Nekhai
- Center for Sickle Cell Disease, Department of Medicine, Howard University, 520 W Street, NW, Washington DC 20059, USA
| | | | | |
Collapse
|
25
|
Nouraie M, Nekhai S, Gordeuk VR. Sickle cell disease is associated with decreased HIV but higher HBV and HCV comorbidities in U.S. hospital discharge records: a cross-sectional study. Sex Transm Infect 2012; 88:528-33. [PMID: 22628662 DOI: 10.1136/sextrans-2011-050459] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Some studies suggest that HIV infection progresses slowly in patients with sickle cell disease (SCD). The authors aimed to determine the relationships between SCD and HIV infection. METHODS National Hospital Discharge Survey data from adult African-Americans in the period of 1997-2009 were analysed. The comorbidities of SCD with HIV infections in hospital discharges were analysed. Multiple logistic regression was used to test the association between SCD and HIV. For comparative purposes, the relationships of SCD with hepatitis B virus (HBV) and hepatitis C virus (HCV) were also assessed. RESULTS 423,431 records were divided into two time periods 1997-2003 (53% of records) and 2004-2009 (47% of records). The frequency of HIV diagnosis was lower in patients with SCD (1.5% vs 3.3% in patients without SCD). In logistic regression, SCD diagnosis was associated with an OR of 0.24 (95% CI 0.18 to 0.32) for HIV diagnosis in the first period and with an OR of 0.31 (95% CI 0.22 to 0.42) in the second period. In contrast, SCD was associated with higher risk of HCV (OR=2.01, 95% CI 1.56 to 2.59 in the first period and OR=2.12, 95% CI 1.71 to 2.63 in the second period). SCD was also associated with a higher risk of HBV (OR=1.15, 95% CI 0.72 to 1.83 in the first period and OR=1.82, 95% CI 1.24 to 2.68 in the second period). CONCLUSIONS The lower risk of HIV comorbidity, but not HCV and HBV, with SCD is consistent with the possibility that SCD has a unique effect in altering the risk of HIV infection or progression. Investigation of how the haemolytic and immunological changes of SCD influence HIV might lead to new therapeutic or preventive approaches.
Collapse
Affiliation(s)
- Mehdi Nouraie
- Center for Sickle Cell Disease, Howard University, Washington, DC, USA.
| | | | | |
Collapse
|
26
|
Shankaran P, Vlkova L, Liskova J, Melkova Z. Heme arginate potentiates latent HIV-1 reactivation while inhibiting the acute infection. Antiviral Res 2011; 92:434-46. [PMID: 22001321 DOI: 10.1016/j.antiviral.2011.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 09/28/2011] [Accepted: 09/28/2011] [Indexed: 11/16/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) successfully escapes from host immune surveillance, vaccines and antiretroviral agents. The available antiretroviral compounds can only control viremia, but it is impossible to eliminate the virus from the organism, namely because HIV-1 provirus persists in the reservoir cells from which the virus repeatedly disseminates into new cells. Current therapeutic approaches, however, do not specifically address the stage of virus reactivation. Heme has been demonstrated as very efficient in inhibiting HIV-1 reverse transcription, while its derivative hemin ameliorated HIV-1 infection via induction of heme oxygenase-1. Normosang (heme arginate; HA) is a human hemin-containing compound used to treat acute porphyria. In this work, we studied the effects of HA in HIV-1-acutely infected T-cell lines, and in cell lines harboring either a complete HIV-1 provirus (ACH-2 cells) or an HIV-1 "mini-virus" (Jurkat clones expressing EGFP under control of HIV LTR). We demonstrate that HA inhibited HIV-1 replication during the acute infection, which was accompanied by the inhibition of reverse transcription. On the other hand, HA alone stimulated the reactivation of HIV-1 "mini-virus" and synergized with phorbol ester or TNF-α in the reactivation of HIV-1 provirus. The stimulatory effects of HA were inhibited by N-acetyl cysteine, suggesting an increased redox stress and activation of NF-κB. Further, HA induced expression of heme oxygenase-1 (HO-1) in ACH-2 cells, while HO-1 was found expressed in untreated Jurkat clones. Inhibitor of HO-1 activity, tin protoporphyrin IX, further increased HA-mediated reactivation of HIV-1 "mini-virus" in Jurkat clones, and this effect was also inhibited by N-acetyl cysteine. The stimulatory effects of HA on HIV-1 reactivation thus seem to involve HO-1 and generation of free radicals. Additionally, the effective concentrations of HA did neither affect normal T-cell activation with PMA nor induce activation of the unstimulated cells. In conclusion, HA appears to possess a combination of unique properties that could help to decrease the pool of latently infected reservoir cells, while simultaneously inhibiting HIV-1 replication in newly infected cells. Our results thus suggest a new direction to explore in treatment of HIV/AIDS disease.
Collapse
Affiliation(s)
- Prakash Shankaran
- Department of Immunology and Microbiology, 1st Medical Faculty, Charles University in Prague, Czech Republic
| | | | | | | |
Collapse
|
27
|
Cross SA, Cook DR, Chi AWS, Vance PJ, Kolson LL, Wong BJ, Jordan-Sciutto KL, Kolson DL. Dimethyl fumarate, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and macrophage-mediated neurotoxicity: a novel candidate for HIV neuroprotection. THE JOURNAL OF IMMUNOLOGY 2011; 187:5015-25. [PMID: 21976775 DOI: 10.4049/jimmunol.1101868] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite antiretroviral therapy (ART), HIV infection promotes cognitive dysfunction and neurodegeneration through persistent inflammation and neurotoxin release from infected and/or activated macrophages/microglia. Furthermore, inflammation and immune activation within both the CNS and periphery correlate with disease progression and morbidity in ART-treated individuals. Accordingly, drugs targeting these pathological processes in the CNS and systemic compartments are needed for effective, adjunctive therapy. Using our in vitro model of HIV-mediated neurotoxicity, in which HIV-infected monocyte-derived macrophages release excitatory neurotoxins, we show that HIV infection dysregulates the macrophage antioxidant response and reduces levels of heme oxygenase-1 (HO-1). Furthermore, restoration of HO-1 expression in HIV-infected monocyte-derived macrophages reduces neurotoxin release without altering HIV replication. Given these novel observations, we have identified dimethyl fumarate (DMF), used to treat psoriasis and showing promising results in clinical trials for multiple sclerosis, as a potential neuroprotectant and HIV disease-modifying agent. DMF, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and neurotoxin release. Two distinct mechanisms are proposed: inhibition of NF-κB nuclear translocation and signaling, which could contribute to the suppression of HIV replication, and induction of HO-1, which is associated with decreased neurotoxin release. Finally, we found that DMF attenuates CCL2-induced monocyte chemotaxis, suggesting that DMF could decrease recruitment of activated monocytes to the CNS in response to inflammatory mediators. We propose that dysregulation of the antioxidant response during HIV infection drives macrophage-mediated neurotoxicity and that DMF could serve as an adjunctive neuroprotectant and HIV disease modifier in ART-treated individuals.
Collapse
Affiliation(s)
- Stephanie A Cross
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
HIV-1 gp120 induces antioxidant response element-mediated expression in primary astrocytes: role in HIV associated neurocognitive disorder. Neurochem Int 2011; 61:807-14. [PMID: 21756955 DOI: 10.1016/j.neuint.2011.06.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/06/2011] [Accepted: 06/18/2011] [Indexed: 11/22/2022]
Abstract
HIV infection affects the central nervous system resulting in HIV associated neurocognitive disorder (HAND), which is characterized by depression, behavioral and motor dysfunctions. The HIV-1 viral envelope protein gp120 is known to induce the release of neurotoxic factors which lead to apoptotic cell death. Although the exact mechanisms involved in HIV-1 gp120-induced neurotoxicity are not completely understood, oxidative stress is suggested to play a vital role in the neuropathogenesis of HAND. Astrocytes represent major population of the non-neuronal cell type in the brain and play a critical role in the neuropathogenesis of HAND. Increased oxidative stress is known to induce nuclear factor erythroid derived 2-related factor 2 (Nrf2), a basic leucine zipper transcription factor which is known to regulate the antioxidant defensive mechanism. However, the role of Nrf2 in HAND has not been elucidated. We report that gp120 significantly upregulates Nrf2 in human astrocytes and is associated with stimulation of key antioxidant defensive enzymes Hemoxygenase (HO-1) and NAD(P)H dehydrogenase quinone1 (Nqo1). Pretreatment of the astrocytes with antioxidants or a specific calcium chelator BAPTA-AM, significantly blocked the upregulation of Nrf2, HO-1 and Nqo1. These results suggest a possible role of the intracellular calcium and oxidative stress in Nrf2 mediated antioxidant defense mechanism, which may have protective role in promoting cell survival.
Collapse
|