1
|
Samorodnitsky S, Kruk M, Lock EF, Kunisaki KM, Morris A, Leung JM, Weise D, Mehta S, Parker LL, Jagtap PD, Griffin TJ, Wendt CH. Novel approach to exploring protease activity and targets in HIV-associated obstructive lung disease using combined proteomic-peptidomic analysis. Respir Res 2024; 25:337. [PMID: 39256809 PMCID: PMC11385845 DOI: 10.1186/s12931-024-02933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Obstructive lung disease (OLD) is increasingly prevalent among persons living with HIV (PLWH). However, the role of proteases in HIV-associated OLD remains unclear. METHODS We combined proteomics and peptidomics to comprehensively characterize protease activities. We combined mass spectrometry (MS) analysis on bronchoalveolar lavage fluid (BALF) peptides and proteins from PLWH with OLD (n = 25) and without OLD (n = 26) with a targeted Somascan aptamer-based proteomic approach to quantify individual proteases and assess their correlation with lung function. Endogenous peptidomics mapped peptides to native proteins to identify substrates of protease activity. Using the MEROPS database, we identified candidate proteases linked to peptide generation based on binding site affinities which were assessed via z-scores. We used t-tests to compare average forced expiratory volume in 1 s per predicted value (FEV1pp) between samples with and without detection of each cleaved protein and adjusted for multiple comparisons by controlling the false discovery rate (FDR). FINDINGS We identified 101 proteases, of which 95 had functional network associations and 22 correlated with FEV1pp. These included cathepsins, metalloproteinases (MMP), caspases and neutrophil elastase. We discovered 31 proteins subject to proteolytic cleavage that associate with FEV1pp, with the top pathways involved in small ubiquitin-like modifier mediated modification (SUMOylation). Proteases linked to protein cleavage included neutrophil elastase, granzyme, and cathepsin D. INTERPRETATIONS In HIV-associated OLD, a significant number of proteases are up-regulated, many of which are involved in protein degradation. These proteases degrade proteins involved in cell cycle and protein stability, thereby disrupting critical biological functions.
Collapse
Affiliation(s)
- Sarah Samorodnitsky
- Biostatistics Division, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Monica Kruk
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Eric F Lock
- Biostatistics Division, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Ken M Kunisaki
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Medicine, Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Alison Morris
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Janice M Leung
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Danielle Weise
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Subina Mehta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Laurie L Parker
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Pratik D Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Chris H Wendt
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
- Department of Medicine, Minneapolis VA Health Care System, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Samorodnitsky S, Kruk M, Lock EF, Kunisaki KM, Morris A, Leung JM, Weise D, Mehta S, Parker LL, Jagtap PD, Griffin TJ, Wendt CH. Novel Approach to Exploring Protease Activity and Targets in HIV-associated Obstructive Lung Disease using Combined Proteomic-Peptidomic Analysis. RESEARCH SQUARE 2024:rs.3.rs-4433194. [PMID: 38883770 PMCID: PMC11177978 DOI: 10.21203/rs.3.rs-4433194/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background Obstructive lung disease (OLD) is increasingly prevalent among persons living with HIV (PLWH). However, the role of proteases in HIV-associated OLD remains unclear. Methods We combined proteomics and peptidomics to comprehensively characterize protease activities. We combined mass spectrometry (MS) analysis on bronchoalveolar lavage fluid (BALF) peptides and proteins from PLWH with OLD (n=25) and without OLD (n=26) with a targeted Somascan aptamer-based proteomic approach to quantify individual proteases and assess their correlation with lung function. Endogenous peptidomics mapped peptides to native proteins to identify substrates of protease activity. Using the MEROPS database, we identified candidate proteases linked to peptide generation based on binding site affinities which were assessed via z-scores. We used t-tests to compare average forced expiratory volume in 1 second per predicted value (FEV1pp) between samples with and without detection of each cleaved protein and adjusted for multiple comparisons by controlling the false discovery rate (FDR). Findings We identified 101 proteases, of which 95 had functional network associations and 22 correlated with FEV1pp. These included cathepsins, metalloproteinases (MMP), caspases and neutrophil elastase. We discovered 31 proteins subject to proteolytic cleavage that associate with FEV1pp, with the top pathways involved in small ubiquitin-like modifier mediated modification (SUMOylation). Proteases linked to protein cleavage included neutrophil elastase, granzyme, and cathepsin D. Interpretations In HIV-associated OLD, a significant number of proteases are up-regulated, many of which are involved in protein degradation. These proteases degrade proteins involved in cell cycle and protein stability, thereby disrupting critical biological functions.
Collapse
|
3
|
Byanova KL, Abelman R, North CM, Christenson SA, Huang L. COPD in People with HIV: Epidemiology, Pathogenesis, Management, and Prevention Strategies. Int J Chron Obstruct Pulmon Dis 2023; 18:2795-2817. [PMID: 38050482 PMCID: PMC10693779 DOI: 10.2147/copd.s388142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disorder characterized by airflow limitation and persistent respiratory symptoms. People with HIV (PWH) are particularly vulnerable to COPD development; PWH have demonstrated both higher rates of COPD and an earlier and more rapid decline in lung function than their seronegative counterparts, even after accounting for differences in cigarette smoking. Factors contributing to this HIV-associated difference include chronic immune activation and inflammation, accelerated aging, a predilection for pulmonary infections, alterations in the lung microbiome, and the interplay between HIV and inhalational toxins. In this review, we discuss what is known about the epidemiology and pathobiology of COPD among PWH and outline screening, diagnostic, prevention, and treatment strategies.
Collapse
Affiliation(s)
- Katerina L Byanova
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Rebecca Abelman
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Crystal M North
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Stephanie A Christenson
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laurence Huang
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Kreniske JS, Kaner RJ, Glesby MJ. Pathogenesis and management of emphysema in people with HIV. Expert Rev Respir Med 2023; 17:873-887. [PMID: 37848398 PMCID: PMC10872640 DOI: 10.1080/17476348.2023.2272702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION Since early in the HIV epidemic, emphysema has been identified among people with HIV (PWH) and has been associated with increased mortality. Smoking cessation is key to risk reduction. Health maintenance for PWH and emphysema should ensure appropriate vaccination and lung cancer screening. Treatment should adhere to inhaler guidelines for the general population, but inhaled corticosteroid (ICS) should be used with caution. Frontiers in treatment include targeted therapeutics. Major knowledge gaps exist in the epidemiology of and optimal care for PWH and emphysema, particularly in low and middle-income countries (LMIC). AREAS COVERED Topics addressed include risk factors, pathogenesis, current treatment and prevention strategies, and frontiers in research. EXPERT OPINION There are limited data on the epidemiology of emphysema in LMIC, where more than 90% of deaths from COPD occur and where the morbidity of HIV is most heavily concentrated. The population of PWH is aging, and age-related co-morbidities such as emphysema will only increase in salience. Over the next 5 years, the authors anticipate novel trials of targeted therapy for emphysema specific to PWH, and we anticipate a growing body of evidence to inform optimal clinical care for lung health among PWH in LMIC.
Collapse
Affiliation(s)
- Jonah S. Kreniske
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, USA
| | - Robert J. Kaner
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, USA
- Department of Genetic Medicine, Weill Cornell Medical College, USA
| | - Marshall J. Glesby
- Division of Infectious Diseases, Weill Cornell Medical College, USA
- Department of Population Health Sciences, Weill Cornell Medical College, USA
| |
Collapse
|
5
|
Staitieh BS, Malik S, Auld SC, Wigger GW, Fan X, Roth AT, Chatterjee T, Arora I, Raju SV, Heath S, Aggrawal S. HIV Increases the Risk of Cigarette Smoke-Induced Emphysema Through MMP-9. J Acquir Immune Defic Syndr 2023; 92:263-270. [PMID: 36331810 PMCID: PMC9911107 DOI: 10.1097/qai.0000000000003125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND HIV is associated with an increased risk for emphysema. Matrix metalloproteinase 9 (MMP-9) is a lung tissue remodeling enzyme associated with emphysema. We previously found MMP-9 activity increases with increases in oxidative stress and that HIV increases alveolar oxidative stress. We hypothesized that HIV proteins would increase the risk of cigarette smoke-induced emphysema due to MMP-9. METHODS HIV-1 transgenic rats and wild-type littermates were exposed to cigarette smoke or sham for 8 weeks. Lung compliance and histology were assessed. Bronchoalveolar lavage (BAL), primary alveolar macrophages (AM), and serum samples were obtained. A rat alveolar macrophage cell line was exposed to the HIV protein Tat, and MMP-9 levels were assessed by Western immunoblotting. MMP-9 protein expression and activity were assessed in AM from the HIV rat model by ELISA and cytoimmunofluoresence, respectively. Serum from human subjects with and without HIV and tobacco dependence was assessed for MMP-9 levels. RESULTS MMP-9 expression was significantly increased in rat alveolar macrophages after Tat exposure. HIV-1 transgenic rats developed emphysema while wild-type littermates did not. MMP-9 expression was also increased in the serum, BAL, and AM of HIV-1 transgenic rats after exposure to cigarette smoke compared with wild-type rats. In parallel, serum samples from HIV+ smokers had higher levels of MMP-9 than subjects without HIV and those who did not smoke. CONCLUSION The combination of HIV and cigarette smoke increases MMP-9 expression in experimental rat HIV models and human subjects. HIV and cigarette smoke both induce alveolar oxidative stress and thereby increase MMP-9 activity.
Collapse
Affiliation(s)
- Bashar S. Staitieh
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | - Simran Malik
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Sara C. Auld
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Gregory W. Wigger
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | - Xian Fan
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | - Andrew T. Roth
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Tanima Chatterjee
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Itika Arora
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - S. Vamsee Raju
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL; and
| | - Sonya Heath
- Department of Medicine, Division of Infectious Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Saurabh Aggrawal
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
6
|
Kaner RJ. Premature Aging of the Airway Epithelium in Chronic Obstructive Pulmonary Disease in People Living with HIV. Am J Respir Crit Care Med 2022; 206:131-132. [PMID: 35579631 PMCID: PMC9887417 DOI: 10.1164/rccm.202204-0743ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Robert J. Kaner
- Department of Medicine,Department of Genetic MedicineWeill Cornell MedicineNew York, New York
| |
Collapse
|
7
|
Impaired differentiation of small airway basal stem/progenitor cells in people living with HIV. Sci Rep 2022; 12:2966. [PMID: 35194053 PMCID: PMC8864005 DOI: 10.1038/s41598-022-06373-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
With highly active anti-retroviral therapy (HAART), higher incidence of airway abnormalities is common in the HIV population consistent with the concept of accelerated lung "aging". Our previous findings demonstrated that HIV induces human airway basal cells (BC) into destructive and inflammatory phenotypes. Since BC function as stem/progenitor cells of the small airway epithelium (SAE), responsible for self-renewal and differentiation of SAE, we hypothesized that BC from people living with HIV (PLWH) may have altered differentiation capacity that contribute to premature aging. The data demonstrates that BC from PLWH have impaired capacity to differentiate in vitro and senescent phenotypes including shortened telomeres, increased expression of β-galactosidase and cell cycle inhibitors, and mitochondrial dysfunction. In vitro studies demonstrated that BC senescence is partly due to adverse effects of HAART on BC. These findings provide an explanation for higher incidence of airway dysfunction and accelerated lung aging observed in PLWH.
Collapse
|
8
|
Alexandrova Y, Costiniuk CT, Jenabian MA. Pulmonary Immune Dysregulation and Viral Persistence During HIV Infection. Front Immunol 2022; 12:808722. [PMID: 35058937 PMCID: PMC8764194 DOI: 10.3389/fimmu.2021.808722] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the success of antiretroviral therapy (ART), people living with HIV continue to suffer from high burdens of respiratory infections, lung cancers and chronic lung disease at a higher rate than the general population. The lung mucosa, a previously neglected HIV reservoir site, is of particular importance in this phenomenon. Because ART does not eliminate the virus, residual levels of HIV that remain in deep tissues lead to chronic immune activation and pulmonary inflammatory pathologies. In turn, continuous pulmonary and systemic inflammation cause immune cell exhaustion and pulmonary immune dysregulation, creating a pro-inflammatory environment ideal for HIV reservoir persistence. Moreover, smoking, gut and lung dysbiosis and co-infections further fuel the vicious cycle of residual viral replication which, in turn, contributes to inflammation and immune cell proliferation, further maintaining the HIV reservoir. Herein, we discuss the recent evidence supporting the notion that the lungs serve as an HIV viral reservoir. We will explore how smoking, changes in the microbiome, and common co-infections seen in PLWH contribute to HIV persistence, pulmonary immune dysregulation, and high rates of infectious and non-infectious lung disease among these individuals.
Collapse
Affiliation(s)
- Yulia Alexandrova
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC, Canada
| | - Cecilia T. Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC, Canada
| |
Collapse
|
9
|
Abstract
Alveolar macrophages (AMs) are lung-resident myeloid cells that sit at the interface of the airway and lung tissue. Under homeostatic conditions, their primary function is to clear debris, dead cells and excess surfactant from the airways. They also serve as innate pulmonary sentinels for respiratory pathogens and environmental airborne particles and as regulators of pulmonary inflammation. However, they have not typically been viewed as primary therapeutic targets for respiratory diseases. Here, we discuss the role of AMs in various lung diseases, explore the potential therapeutic strategies to target these innate cells and weigh the potential risks and challenges of such therapies. Additionally, in the context of the COVID-19 pandemic, we examine the role AMs play in severe disease and the therapeutic strategies that have been harnessed to modulate their function and protect against severe lung damage. There are many novel approaches in development to target AMs, such as inhaled antibiotics, liposomal and microparticle delivery systems, and host-directed therapies, which have the potential to provide critical treatment to patients suffering from severe respiratory diseases, yet there is still much work to be done to fully understand the possible benefits and risks of such approaches.
Collapse
|
10
|
Thudium RF, Ringheim H, Ronit A, Hoel H, Benfield T, Mocroft A, Gerstoft J, Trøseid M, Borges ÁH, Ostrowski SR, Vestbo J, Nielsen SD. Independent Associations of Tumor Necrosis Factor-Alpha and Interleukin-1 Beta With Radiographic Emphysema in People Living With HIV. Front Immunol 2021; 12:668113. [PMID: 33936110 PMCID: PMC8080065 DOI: 10.3389/fimmu.2021.668113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/26/2021] [Indexed: 11/23/2022] Open
Abstract
Background People living with HIV (PLWH) have increased systemic inflammation, and inflammation has been suggested to contribute to the pathogenesis of emphysema. We investigated whether elevated cytokine concentrations (interleukin (IL)-1β, IL-1 receptor antagonist (IL-1RA), IL-2, IL-4, IL-6, IL-10, IL-17A, tumor necrosis factor-alpha (TNFα), interferon-gamma (IFNγ), soluble CD14 (sCD14) and sCD163 were independently associated with radiographic emphysema in PLWH. Methods We included PLWH from the Copenhagen Comorbidity in HIV Infection (COCOMO) Study without hepatitis B and C co-infection and with a plasma sample and a chest computed tomography scan available. Emphysema plus trace emphysema was defined as the percentage of low attenuation area under −950 Houndsfield Unit (%LAA-950) using a cut-off at 5%. Cytokine concentrations were measured by ELISA or Luminex immunoassays. An elevated cytokine concentration was defined as above the 75th percentile. Results Of 783 PLWH, 147 (18.8%) had emphysema. PLWH were predominantly male (86.0%) and 743 (94.9%) had undetectable viral replication. PLWH with emphysema had higher concentrations of TNFα (median (IQR): 8.2 (6.4-9.8) versus 7.1 (5.7-8.6) pg/ml, p<0.001), IL-1β (0.21 (0.1-0.4) versus 0.17 (0.1-0.3) pg/ml, p=0.004) and IL-6 (3.6 (2.6-4.9) versus 3.1 (2.0-4.3) pg/ml, p=0.023) than PLWH without. In a logistic regression model adjusted for age, sex, ethnicity, smoking status, BMI and CD4 nadir, elevated TNFα (adjusted odds ratio (aOR): 1.78 [95%CI: 1.14-2.76], p=0.011) and IL-1β (aOR: 1.81 [95%CI: 1.16-2.81], p=0.009) were independently associated with emphysema. The association between IL-1β and emphysema was modified by smoking (p-interaction=0.020) with a more pronounced association in never-smokers (aOR: 4.53 [95%CI: 2.05-9.98], p<0.001). Conclusion Two markers of systemic inflammation, TNFα and IL-1β, were independently associated with emphysema in PLWH and may contribute to the pathogenesis of emphysema. Importantly, the effect of IL-1β seems to be mediated through pathways that are independent of excessive smoking. Clinical Trial Registration clinicaltrials.gov, identifier NCT02382822.
Collapse
Affiliation(s)
- Rebekka F Thudium
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hedda Ringheim
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Ronit
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre Hospital, Hvidovre, Denmark
| | - Hedda Hoel
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre Hospital, Hvidovre, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Amanda Mocroft
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME), Institute for Global Health, University College London, London, United Kingdom.,Centre for Health and Infectious Diseases (CHIP), Department of Infectious Diseases, Section 2100, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gerstoft
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Álvaro H Borges
- Department of Infectious Diseases Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester and Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Susanne D Nielsen
- Viro-immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Chung NPY, Khan KMF, Kaner RJ, O'Beirne SL, Crystal RG. HIV induces airway basal progenitor cells to adopt an inflammatory phenotype. Sci Rep 2021; 11:3988. [PMID: 33597552 PMCID: PMC7889866 DOI: 10.1038/s41598-021-82143-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the introduction of anti-retroviral therapy, chronic HIV infection is associated with an increased incidence of other comorbidities such as COPD. Based on the knowledge that binding of HIV to human airway basal stem/progenitor cells (BC) induces a destructive phenotype by increased MMP-9 expression through MAPK signaling pathways, we hypothesized that HIV induces the BC to express inflammatory mediators that contribute to the pathogenesis of emphysema. Our data demonstrate that airway BC isolated from HAART-treated HIV+ nonsmokers spontaneously release inflammatory mediators IL-8, IL-1β, ICAM-1 and GM-CSF. Similarly, exposure of normal BC to HIV in vitro up-regulates expression of the same inflammatory mediators. These HIV-BC derived mediators induce migration of alveolar macrophages (AM) and neutrophils and stimulate AM proliferation. This HIV-induced inflammatory phenotype likely contributes to lung inflammation in HIV+ individuals and provides explanation for the increased incidence of COPD in HIV+ individuals.
Collapse
Affiliation(s)
- Nancy P Y Chung
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - K M Faisal Khan
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Robert J Kaner
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Sarah L O'Beirne
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
12
|
Neff CP, Atif SM, Logue EC, Siebert J, Görg C, Lavelle J, Fiorillo S, Twigg H, Campbell TB, Fontenot AP, Palmer BE. HIV Infection Is Associated with Loss of Anti-Inflammatory Alveolar Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2447-2455. [PMID: 32929038 PMCID: PMC7577929 DOI: 10.4049/jimmunol.2000361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
HIV type 1 is associated with pulmonary dysfunction that is exacerbated by cigarette smoke. Alveolar macrophages (AM) are the most prominent immune cell in the alveolar space. These cells play an important role in clearing inhaled pathogens and regulating the inflammatory environment; however, how HIV infection impacts AM phenotype and function is not well understood, in part because of their autofluorescence and the absence of well-defined surface markers. The main aim of this study was to evaluate the impact of HIV infection on human AM and to compare the effect of smoking on their phenotype and function. Time-of-flight mass cytometry and RNA sequencing were used to characterize macrophages from human bronchoalveolar lavage of HIV-infected and -uninfected smokers and nonsmokers. We found that the frequency of CD163+ anti-inflammatory AM was decreased, whereas CD163-CCR7+ proinflammatory AM were increased in HIV infection. HIV-mediated proinflammatory polarization was associated with increased levels of inflammatory cytokines and macrophage activation. Conversely, smoking heightened the inflammatory response evident by change in the expression of CXCR4 and TLR4. Altogether, these findings suggest that HIV infection, along with cigarette smoke, favors a proinflammatory macrophage phenotype associated with enhanced expression of inflammatory molecules. Further, this study highlights time-of-flight mass cytometry as a reliable method for immunophenotyping the highly autofluorescent cells present in the bronchoalveolar lavage of cigarette smokers.
Collapse
Affiliation(s)
- Charles Preston Neff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Shaikh M Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Eric C Logue
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Janet Siebert
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- CytoAnalytics, Denver, CO 80113
| | - Carsten Görg
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - James Lavelle
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Suzanne Fiorillo
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Homer Twigg
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University Medical Center, Indianapolis, IN 46202; and
| | - Thomas B Campbell
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Brent E Palmer
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| |
Collapse
|
13
|
Judge M, Parker E, Naniche D, Le Souëf P. Gene Expression: the Key to Understanding HIV-1 Infection? Microbiol Mol Biol Rev 2020; 84:e00080-19. [PMID: 32404327 PMCID: PMC7233484 DOI: 10.1128/mmbr.00080-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gene expression profiling of the host response to HIV infection has promised to fill the gaps in our knowledge and provide new insights toward vaccine and cure. However, despite 20 years of research, the biggest questions remained unanswered. A literature review identified 62 studies examining gene expression dysregulation in samples from individuals living with HIV. Changes in gene expression were dependent on cell/tissue type, stage of infection, viremia, and treatment status. Some cell types, notably CD4+ T cells, exhibit upregulation of cell cycle, interferon-related, and apoptosis genes consistent with depletion. Others, including CD8+ T cells and natural killer cells, exhibit perturbed function in the absence of direct infection with HIV. Dysregulation is greatest during acute infection. Differences in study design and data reporting limit comparability of existing research and do not as yet provide a coherent overview of gene expression in HIV. This review outlines the extraordinarily complex host response to HIV and offers recommendations to realize the full potential of HIV host transcriptomics.
Collapse
Affiliation(s)
- Melinda Judge
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Erica Parker
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Denise Naniche
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigação de Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Peter Le Souëf
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
14
|
O’Beirne SL, Kikkers SA, Oromendia C, Salit J, Rostmai MR, Ballman KV, Kaner RJ, Crystal RG, Cloonan SM. Alveolar Macrophage Immunometabolism and Lung Function Impairment in Smoking and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2020; 201:735-739. [PMID: 31751151 PMCID: PMC7068819 DOI: 10.1164/rccm.201908-1683le] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
15
|
Affiliation(s)
- Sushma K Cribbs
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
16
|
Cribbs SK, Crothers K, Morris A. Pathogenesis of HIV-Related Lung Disease: Immunity, Infection, and Inflammation. Physiol Rev 2019; 100:603-632. [PMID: 31600121 DOI: 10.1152/physrev.00039.2018] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite anti-retroviral therapy (ART), human immunodeficiency virus-1 (HIV)-related pulmonary disease continues to be a major cause of morbidity and mortality for people living with HIV (PLWH). The spectrum of lung diseases has changed from acute opportunistic infections resulting in death to chronic lung diseases for those with access to ART. Chronic immune activation and suppression can result in impairment of innate immunity and progressive loss of T cell and B cell functionality with aberrant cytokine and chemokine responses systemically as well as in the lung. HIV can be detected in the lungs of PLWH and has profound effects on cellular immune functions. In addition, HIV-related lung injury and disease can occur secondary to a number of mechanisms including altered pulmonary and systemic inflammatory pathways, viral persistence in the lung, oxidative stress with additive effects of smoke exposure, microbial translocation, and alterations in the lung and gut microbiome. Although ART has had profound effects on systemic viral suppression in HIV, the impact of ART on lung immunology still needs to be fully elucidated. Understanding of the mechanisms by which HIV-related lung diseases continue to occur is critical to the development of new preventive and therapeutic strategies to improve lung health in PLWH.
Collapse
Affiliation(s)
- Sushma K Cribbs
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kristina Crothers
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alison Morris
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
17
|
Logue EC, Neff CP, Mack DG, Martin AK, Fiorillo S, Lavelle J, Vandivier RW, Campbell TB, Palmer BE, Fontenot AP. Upregulation of Chitinase 1 in Alveolar Macrophages of HIV-Infected Smokers. THE JOURNAL OF IMMUNOLOGY 2019; 202:1363-1372. [PMID: 30665939 DOI: 10.4049/jimmunol.1801105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/16/2018] [Indexed: 12/27/2022]
Abstract
Recent studies suggest that HIV infection is an independent risk factor for the development of chronic obstructive pulmonary disease (COPD). We hypothesized that HIV infection and cigarette smoking synergize to alter the function of alveolar macrophages (AMs). To test this hypothesis, global transcriptome analysis was performed on purified AMs from 20 individuals split evenly between HIV-uninfected nonsmokers and smokers and untreated HIV-infected nonsmokers and smokers. Differential expression analysis identified 143 genes significantly altered by the combination of HIV infection and smoking. Of the differentially expressed genes, chitinase 1 (CHIT1) and cytochrome P450 family 1 subfamily B member 1 (CYP1B1), both previously associated with COPD, were among the most upregulated genes (5- and 26-fold, respectively) in the untreated HIV-infected smoker cohort compared with HIV-uninfected nonsmokers. Expression of CHIT1 and CYP1B1 correlated with the expression of genes involved in extracellular matrix organization, oxidative stress, immune response, and cell death. Using time-of-flight mass cytometry to characterize AMs, a significantly decreased expression of CD163, an M2 marker, was seen in HIV-infected subjects, and CD163 inversely correlated with CYP1B1 expression in AMs. CHIT1 protein levels were significantly upregulated in bronchoalveolar lavage fluid from HIV-infected smokers, and increased CHIT1 levels negatively correlated with lung function measurements. Overall, these findings raise the possibility that elevated CHIT1 and CYP1B1 are early indicators of COPD development in HIV-infected smokers that may serve as biomarkers for determining this risk.
Collapse
Affiliation(s)
- Eric C Logue
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - C Preston Neff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - Douglas G Mack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - Allison K Martin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - Suzanne Fiorillo
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - James Lavelle
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - R William Vandivier
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - Thomas B Campbell
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - Brent E Palmer
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and .,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
18
|
Wenger DS, Crothers K. Marijuana Smoking in Men with HIV Infection: A Cause for Concern. EClinicalMedicine 2019; 7:5-6. [PMID: 31193599 PMCID: PMC6537548 DOI: 10.1016/j.eclinm.2019.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/13/2023] Open
Affiliation(s)
- David S. Wenger
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Kristina Crothers
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States of America
- Corresponding author at: Veterans Affairs Puget Sound Health Care Center and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States of America.
| |
Collapse
|
19
|
Wells JM, Parker MM, Oster RA, Bowler RP, Dransfield MT, Bhatt SP, Cho MH, Kim V, Curtis JL, Martinez FJ, Paine R, O'Neal W, Labaki WW, Kaner RJ, Barjaktarevic I, Han MK, Silverman EK, Crapo JD, Barr RG, Woodruff P, Castaldi PJ, Gaggar A. Elevated circulating MMP-9 is linked to increased COPD exacerbation risk in SPIROMICS and COPDGene. JCI Insight 2018; 3:123614. [PMID: 30429371 DOI: 10.1172/jci.insight.123614] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/04/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Matrix metalloprotease 9 (MMP-9) is associated with inflammation and lung remodeling in chronic obstructive pulmonary disease (COPD). We hypothesized that elevated circulating MMP-9 represents a potentially novel biomarker that identifies a subset of individuals with COPD with an inflammatory phenotype who are at increased risk for acute exacerbation (AECOPD). METHODS We analyzed Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) and Genetic Epidemiology of COPD (COPDGene) cohorts for which baseline and prospective data were available. Elevated MMP-9 was defined based on >95th percentile plasma values from control (non-COPD) sample in SPIROMICS. COPD subjects were classified as having elevated or nonelevated MMP-9. Logistic, Poisson, and Kaplan-Meier analyses were used to identify associations with prospective AECOPD in both cohorts. RESULTS Elevated MMP-9 was present in 95/1,053 (9%) of SPIROMICS and 41/140 (29%) of COPDGene participants with COPD. COPD subjects with elevated MMP-9 had a 13%-16% increased absolute risk for AECOPD and a higher median (interquartile range; IQR) annual AECOPD rate (0.33 [0-0.74] versus 0 [0-0.80] events/year and 0.9 [0.5-2] versus 0.5 [0-1.4] events/year for SPIROMICS and COPDGene, respectively). In adjusted models within each cohort, elevated MMP-9 was associated with increased odds (odds ratio [OR], 1.71; 95%CI, 1.00-2.90; and OR, 3.03; 95%CI, 1.02-9.01), frequency (incidence rate ratio [IRR], 1.45; 95%CI, 1.23-1.7; and IRR, 1.24; 95%CI, 1.03-1.49), and shorter time-to-first AECOPD (21.7 versus 31.7 months and 14 versus 21 months) in SPIROMICS and COPDGene, respectively. CONCLUSIONS Elevated MMP-9 was independently associated with AECOPD risk in 2 well-characterized COPD cohorts. These findings provide evidence for MMP-9 as a prognostic biomarker and potential therapeutic target in COPD. TRIAL REGISTRATION ClinicalTrials.gov: NCT01969344 (SPIROMICS) and NCT00608764 (COPDGene). FUNDING This work was funded by K08 HL123940 to JMW; R01HL124233 to PJC; Merit Review I01 CX000911 to JLC; R01 (R01HL102371, R01HL126596) and VA Merit (I01BX001756) to AG. SPIROMICS (Subpopulations and Intermediate Outcomes in COPD Study) is funded by contracts from the NHLBI (HHSN268200900013C, HHSN268200900014C,HHSN268200900015C HHSN268200900016C, HHSN268200900017C, HHSN268200900018C, HHSN268200900019C, and HHSN268200900020C) and a grant from the NIH/NHLBI (U01 HL137880), and supplemented by contributions made through the Foundation for the NIH and the COPD Foundation from AstraZeneca/MedImmune; Bayer; Bellerophon Therapeutics; Boehringer-Ingelheim Pharmaceuticals Inc.; Chiesi Farmaceutici; Forest Research Institute Inc.; GlaxoSmithKline; Grifols Therapeutics Inc.; Ikaria Inc.; Novartis Pharmaceuticals Corporation; Nycomed GmbH; ProterixBio; Regeneron Pharmaceuticals Inc.; Sanofi; Sunovion; Takeda Pharmaceutical Company; and Theravance Biopharma and Mylan. COPDGene is funded by the NHLBI (R01 HL089897 and R01 HL089856) and by the COPD Foundation through contributions made to an Industry Advisory Board composed of AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Novartis, Pfizer, Siemens, and Sunovion.
Collapse
Affiliation(s)
- J Michael Wells
- Division of Pulmonary and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Lung Health Center, Birmingham, Alabama, USA.,Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Margaret M Parker
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Robert A Oster
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Russ P Bowler
- Division of Pulmonary, Critical Care Medicine, National Jewish Health, Denver, Colorado, USA
| | - Mark T Dransfield
- Division of Pulmonary and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Lung Health Center, Birmingham, Alabama, USA.,Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Surya P Bhatt
- Division of Pulmonary and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Lung Health Center, Birmingham, Alabama, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Victor Kim
- Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Fernando J Martinez
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Robert Paine
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA.,Medical Service, Salt Lake City VA Medical Center, Salt Lake City, Utah, USA
| | - Wanda O'Neal
- Marsico Lung Institute/Cystic Fibrosis Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert J Kaner
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, UCLA, Los Angeles, California, USA
| | - MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - James D Crapo
- Division of Pulmonary, Critical Care Medicine, National Jewish Health, Denver, Colorado, USA
| | - R Graham Barr
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Prescott Woodruff
- Division of Pulmonary and Critical Care Medicine, UCSF, School of Medicine, San Francisco, California, USA
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Amit Gaggar
- Division of Pulmonary and Critical Care, University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Lung Health Center, Birmingham, Alabama, USA.,Birmingham VA Medical Center, Birmingham, Alabama, USA
| | -
- The SPIROMICS and COPDGene groups are detailed in the Supplemental Acknowledgments
| |
Collapse
|
20
|
Ronit A, Kristensen T, Hoseth VS, Abou-Kassem D, Kühl JT, Benfield T, Gerstoft J, Afzal S, Nordestgaard B, Lundgren JD, Vestbo J, Kofoed K, Nielsen SD. Computed tomography quantification of emphysema in people living with HIV and uninfected controls. Eur Respir J 2018; 52:13993003.00296-2018. [DOI: 10.1183/13993003.00296-2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/22/2018] [Indexed: 12/14/2022]
Abstract
People living with HIV (PLWH) may be more susceptible to the development of emphysema than uninfected individuals. We assessed prevalence and risk factors for emphysema in PLWH and uninfected controls. Spirometry and chest computed tomography scans were obtained in PLWH from the Copenhagen Comorbidity in HIV Infection (COCOMO) study and in uninfected controls from the Copenhagen General Population Study (CGPS) who were >40 years. Emphysema was quantified using a low attenuation area < −950 Hounsfield units (%LAA-950) and the 15th percentile density index (PD15) and assessed by semi-quantitative visual scales. Of 742 PLWH, 21.2% and 4.7% had emphysema according to the %LAA-950 threshold with cut-offs at 5% and 10%, respectively. Of 470 uninfected controls, these numbers were 24.3% (p=0.23) and 4.0% (p=0.68). HIV was not associated with emphysema (adjusted OR 1.25, 95% CI 0.68–2.36 for %LAA-950 >10%) by PD15 or by visually assessed emphysema. We found no interaction between HIV and cumulative smoking. Breathlessness and sputum production were more common in PLWH with emphysema, and emphysema seemed to be more prevalent in PLWH with airflow limitation. HIV was therefore not independently associated with emphysema, but the clinical impact of emphysema was greater in PLWH than in uninfected controls.
Collapse
|
21
|
Gharib SA, Manicone AM, Parks WC. Matrix metalloproteinases in emphysema. Matrix Biol 2018; 73:34-51. [PMID: 29406250 DOI: 10.1016/j.matbio.2018.01.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/14/2017] [Accepted: 01/24/2018] [Indexed: 02/07/2023]
Abstract
Several studies have implicated a causative role for specific matrix metalloproteinases (MMPs) in the development and progression of cigarette smoke-induced chronic obstructive pulmonary disease (COPD) and its severe sequela, emphysema. However, the precise function of any given MMP in emphysema remains an unanswered question. Emphysema results from the degradation of alveolar elastin - among other possible mechanisms - a process that is often thought to be caused by elastolytic proteinases made by macrophages. In this article, we discuss the data suggesting, supporting, or refuting causative roles of macrophage-derived MMPs, with a focus on MMPs-7, -9, -10, -12, and 28, in both the human disease and mouse models of emphysema. Findings from experimental models suggest that some MMPs, such as MMP-12, may directly breakdown elastin, whereas others, particularly MMP-10 and MMP-28, promote the development of emphysema by influencing the proteolytic and inflammatory activities of macrophages.
Collapse
Affiliation(s)
- Sina A Gharib
- Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - Anne M Manicone
- Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - William C Parks
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Chung NPY, Ou X, Khan KMF, Salit J, Kaner RJ, Crystal RG. HIV Reprograms Human Airway Basal Stem/Progenitor Cells to Acquire a Tissue-Destructive Phenotype. Cell Rep 2018; 19:1091-1100. [PMID: 28494859 DOI: 10.1016/j.celrep.2017.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/09/2017] [Accepted: 04/09/2017] [Indexed: 12/30/2022] Open
Abstract
While highly active anti-retroviral therapy has dramatically improved the survival of HIV-infected individuals, there is an increased risk for other co-morbidities, such as COPD, manifesting as emphysema. Given that emphysema originates around the airways and that human airway basal cells (BCs) are adult airway stem/progenitor cells, we hypothesized that HIV reprograms BCs to a distinct phenotype that contributes to the development of emphysema. Our data indicate that HIV binds to but does not replicate in BCs. HIV binding to BCs induces them to acquire an invasive phenotype, mediated by upregulation of MMP-9 expression through activation of MAPK signaling pathways. This HIV-induced "destructive" phenotype may contribute to degradation of extracellular matrix and tissue damage relevant to the development of emphysema commonly seen in HIV+ individuals.
Collapse
Affiliation(s)
- Nancy P Y Chung
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Xuemei Ou
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - K M Faisal Khan
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jacqueline Salit
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Robert J Kaner
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
23
|
Walker NF, Wilkinson KA, Meintjes G, Tezera LB, Goliath R, Peyper JM, Tadokera R, Opondo C, Coussens AK, Wilkinson RJ, Friedland JS, Elkington PT. Matrix Degradation in Human Immunodeficiency Virus Type 1-Associated Tuberculosis and Tuberculosis Immune Reconstitution Inflammatory Syndrome: A Prospective Observational Study. Clin Infect Dis 2017; 65:121-132. [PMID: 28475709 PMCID: PMC5815569 DOI: 10.1093/cid/cix231] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/29/2017] [Indexed: 12/11/2022] Open
Abstract
Background Extensive immunopathology occurs in human immunodeficiency virus (HIV)/tuberculosis (TB) coinfection, but the underlying molecular mechanisms are not well-defined. Excessive matrix metalloproteinase (MMP) activity is emerging as a key process but has not been systematically studied in HIV-associated TB. Methods We performed a cross-sectional study of matrix turnover in HIV type 1 (HIV-1)-infected and -uninfected TB patients and controls, and a prospective cohort study of HIV-1-infected TB patients at risk of TB immune reconstitution inflammatory syndrome (TB-IRIS), in Cape Town, South Africa. Sputum and plasma MMP concentrations were quantified by Luminex, plasma procollagen III N-terminal propeptide (PIIINP) by enzyme-linked immunosorbent assay, and urinary lipoarabinomannan (LAM) by Alere Determine TB LAM assay. Peripheral blood mononuclear cells from healthy donors were cultured with Mycobacterium tuberculosis and extracellular matrix in a 3D model of TB granuloma formation. Results MMP activity differed between HIV-1-infected and -uninfected TB patients and corresponded with specific TB clinical phenotypes. HIV-1-infected TB patients had reduced pulmonary MMP concentrations, associated with reduced cavitation, but increased plasma PIIINP, compared to HIV-1-uninfected TB patients. Elevated extrapulmonary extracellular matrix turnover was associated with TB-IRIS, both before and during TB-IRIS onset. The predominant collagenase was MMP-8, which was likely neutrophil derived and M. tuberculosis-antigen driven. Mycobacterium tuberculosis-induced matrix degradation was suppressed by the MMP inhibitor doxycycline in vitro. Conclusions MMP activity in TB differs by HIV-1 status and compartment, and releases matrix degradation products. Matrix turnover in HIV-1-infected patients is increased before and during TB-IRIS, informing novel diagnostic strategies. MMP inhibition is a potential host-directed therapy strategy for prevention and treatment of TB-IRIS.
Collapse
Affiliation(s)
- Naomi F Walker
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Infectious Diseases and Immunity, and Imperial College Wellcome Trust Centre for Global Health, Imperial College London, United Kingdom
- Department of Medicine, University of Cape Town, Observatory, South Africa
- Department of Clinical Research, London School of Hygiene and Tropical Medicine
| | - Katalin A Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town, Observatory, South Africa
- Francis Crick Institute, London, and
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town, Observatory, South Africa
| | - Liku B Tezera
- National Institute for Health Research Respiratory Biomedical Research Unit, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, United Kingdom
| | - Rene Goliath
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Janique M Peyper
- Applied Proteomics and Chemical Biology Group, Department of Integrative Biomedical Sciences, and
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, and
| | - Rebecca Tadokera
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- HIV/AIDS, Sexually Transmitted Infections and Tuberculosis Programme, Human Sciences Research Council, Cape Town, South Africa
| | - Charles Opondo
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, and
| | - Anna K Coussens
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town, Observatory, South Africa
- Francis Crick Institute, London, and
- Department of Medicine, Imperial College London, United Kingdom
| | - Jon S Friedland
- Infectious Diseases and Immunity, and Imperial College Wellcome Trust Centre for Global Health, Imperial College London, United Kingdom
| | - Paul T Elkington
- Infectious Diseases and Immunity, and Imperial College Wellcome Trust Centre for Global Health, Imperial College London, United Kingdom
- National Institute for Health Research Respiratory Biomedical Research Unit, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, United Kingdom
| |
Collapse
|
24
|
Staitieh BS, Egea EE, Guidot DM. Pulmonary Innate Immune Dysfunction in Human Immunodeficiency Virus. Am J Respir Cell Mol Biol 2017; 56:563-567. [PMID: 27911588 PMCID: PMC5449488 DOI: 10.1165/rcmb.2016-0213tr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/30/2016] [Indexed: 12/18/2022] Open
Abstract
The advent of antiretroviral therapy has transformed infection by the type 1 human immunodeficiency virus (HIV) from a rapidly fatal disease to a chronic illness with excellent long-term survival rates. Although HIV primarily targets the adaptive arm of host immunity, it simultaneously impacts the innate immune system, and has profound implications for lung health, even when viral suppression is achieved with antiretroviral therapy. The lung has evolved a unique array of innate immune defenses, and the pathophysiological interactions between HIV and the pulmonary innate immune system deserve particular attention. In this review, we discuss work that elucidates how the components of innate immunity both respond to and are perturbed by infection with HIV.
Collapse
Affiliation(s)
- Bashar S. Staitieh
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia; and
| | - Eduardo E. Egea
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia; and
| | - David M. Guidot
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia; and
- the Atlanta Veterans Administration Medical Center, Decatur, Georgia
| |
Collapse
|
25
|
Presti RM, Flores SC, Palmer BE, Atkinson JJ, Lesko CR, Lau B, Fontenot AP, Roman J, McDyer JF, Twigg HL. Mechanisms Underlying HIV-Associated Noninfectious Lung Disease. Chest 2017; 152:1053-1060. [PMID: 28427967 DOI: 10.1016/j.chest.2017.04.154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/28/2017] [Accepted: 04/05/2017] [Indexed: 01/15/2023] Open
Abstract
Pulmonary disease remains a primary source of morbidity and mortality in persons living with HIV (PLWH), although the advent of potent combination antiretroviral therapy has resulted in a shift from predominantly infectious to noninfectious pulmonary complications. PLWH are at high risk for COPD, pulmonary hypertension, and lung cancer even in the era of combination antiretroviral therapy. The underlying mechanisms of this are incompletely understood, but recent research in both human and animal models suggests that oxidative stress, expression of matrix metalloproteinases, and genetic instability may result in lung damage, which predisposes PLWH to these conditions. Some of the factors that drive these processes include tobacco and other substance use, direct HIV infection and expression of specific HIV proteins, inflammation, and shifts in the microbiome toward pathogenic and opportunistic organisms. Further studies are needed to understand the relative importance of these factors to the development of lung disease in PLWH.
Collapse
Affiliation(s)
- Rachel M Presti
- Department of Medicine, Washington University School of Medicine, St. Louis, MO.
| | - Sonia C Flores
- Department of Medicine, University of Colorado Denver, Aurora, CO
| | - Brent E Palmer
- Department of Medicine, University of Colorado Denver, Aurora, CO
| | - Jeffrey J Atkinson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Catherine R Lesko
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Bryan Lau
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, School of Medicine, Johns Hopkins University, Baltimore, MD
| | | | - Jesse Roman
- Department of Medicine, University of Louisville, Health Sciences Center and Robley Rex VA Medical Center, Louisville, KY
| | - John F McDyer
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Homer L Twigg
- Department of Medicine, Indiana University, Indianapolis, IN
| |
Collapse
|
26
|
Smigiel KS, Parks WC. Matrix Metalloproteinases and Leukocyte Activation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:167-195. [PMID: 28413028 DOI: 10.1016/bs.pmbts.2017.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As their name implies, matrix metalloproteinases (MMPs) are thought to degrade extracellular matrix proteins, a function that is indeed performed by some members. However, regardless of their cell source, matrix degradation is not the only function of these enzymes. Rather, individual MMPs have been shown to regulate specific immune processes, such as leukocyte influx and migration, antimicrobial activity, macrophage activation, and restoration of barrier function, typically by processing a range of nonmatrix protein substrates. Indeed, MMP expression is low under steady-state conditions but is markedly induced during inflammatory processes including infection, wound healing, and cancer. Increasing research is showing that MMPs are not just a downstream consequence of a generalized inflammatory process, but rather are critical factors in the overall regulation of the pattern, type, and duration of immune responses. This chapter outlines the role of leukocytes in tissue remodeling and describes recent progress in our understanding of how MMPs alter leukocyte activity.
Collapse
Affiliation(s)
- Kate S Smigiel
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - William C Parks
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
27
|
Wight TN, Frevert CW, Debley JS, Reeves SR, Parks WC, Ziegler SF. Interplay of extracellular matrix and leukocytes in lung inflammation. Cell Immunol 2017; 312:1-14. [PMID: 28077237 PMCID: PMC5290208 DOI: 10.1016/j.cellimm.2016.12.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022]
Abstract
During inflammation, leukocytes influx into lung compartments and interact with extracellular matrix (ECM). Two ECM components, versican and hyaluronan, increase in a range of lung diseases. The interaction of leukocytes with these ECM components controls leukocyte retention and accumulation, proliferation, migration, differentiation, and activation as part of the inflammatory phase of lung disease. In addition, bronchial epithelial cells from asthmatic children co-cultured with human lung fibroblasts generate an ECM that is adherent for monocytes/macrophages. Macrophages are present in both early and late lung inflammation. Matrix metalloproteinase 10 (MMP10) is induced in alveolar macrophages with injury and infection and modulates macrophage phenotype and their ability to degrade collagenous ECM components. Collectively, studies outlined in this review highlight the importance of specific ECM components in the regulation of inflammatory events in lung disease. The widespread involvement of these ECM components in the pathogenesis of lung inflammation make them attractive candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| | - Charles W Frevert
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Jason S Debley
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - William C Parks
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
28
|
Geraghty P, Hadas E, Kim BH, Dabo AJ, Volsky DJ, Foronjy R. HIV infection model of chronic obstructive pulmonary disease in mice. Am J Physiol Lung Cell Mol Physiol 2017; 312:L500-L509. [PMID: 28104604 DOI: 10.1152/ajplung.00431.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 11/22/2022] Open
Abstract
Cigarette smoke usage is prevalent in human immunodeficiency virus (HIV)-positive patients, and, despite highly active antiretroviral therapy, these individuals develop an accelerated form of chronic obstructive pulmonary disease (COPD). Studies investigating the mechanisms of COPD development in HIV have been limited by the lack of suitable mouse models. Here we describe a model of HIV-induced COPD in wild-type mice using EcoHIV, a chimeric HIV capable of establishing chronic infection in immunocompetent mice. A/J mice were infected with EcoHIV and subjected to whole body cigarette smoke exposure. EcoHIV was detected in alveolar macrophages of mice. Compared with uninfected mice, concomitant EcoHIV infection significantly reduced forced expiratory flow 50%/forced vital capacity and enhanced distal airspace enlargement following cigarette smoke exposure. Lung IL-6, granulocyte-macrophage colony-stimulating factor, neutrophil elastase, cathepsin G, and matrix metalloproteinase-9 expression was significantly enhanced in smoke-exposed EcoHIV-infected mice. These changes coincided with enhanced IκBα, ERK1/2, p38, and STAT3 phosphorylation and lung cell apoptosis. Thus, the EcoHIV smoke exposure mouse model reproduces several of the pathophysiological features of HIV-related COPD in humans, indicating that this murine model can be used to determine key parameters of HIV-related COPD and to test future therapies for this disorder.
Collapse
Affiliation(s)
- Patrick Geraghty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York; and
| | - Eran Hadas
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Boe-Hyun Kim
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Abdoulaye J Dabo
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York; and
| | - David J Volsky
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Robert Foronjy
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York; .,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York; and
| |
Collapse
|
29
|
Crothers K, Petrache I, Wongtrakool C, Lee PJ, Schnapp LM, Gharib SA. Widespread activation of immunity and pro-inflammatory programs in peripheral blood leukocytes of HIV-infected patients with impaired lung gas exchange. Physiol Rep 2016; 4:4/8/e12756. [PMID: 27117807 PMCID: PMC4848721 DOI: 10.14814/phy2.12756] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 03/13/2016] [Indexed: 01/17/2023] Open
Abstract
HIV infection is associated with impaired lung gas transfer as indicated by a low diffusing capacity (DLCO), but the mechanisms are not well understood. We hypothesized that HIV-associated gas exchange impairment is indicative of system-wide perturbations that could be reflected by alterations in peripheral blood leukocyte (PBL) gene expression. Forty HIV-infected (HIV(+)) and uninfected (HIV(-)) men with preserved versus low DLCO were enrolled. All subjects were current smokers and those with acute illness, lung diseases other than COPD or asthma were excluded. Total RNA was extracted from PBLs and hybridized to whole-genome microarrays. Gene set enrichment analysis (GSEA) was performed between HIV(+) versus HIV(-) subjects with preserved DLCO and those with low DLCO to identify differentially activated pathways. Using pathway-based analyses, we found that in subjects with preserved DLCO, HIV infection is associated with activation of processes involved in immunity, cell cycle, and apoptosis. Applying a similar analysis to subjects with low DLCO, we identified a much broader repertoire of pro-inflammatory and immune-related pathways in HIV(+) patients relative to HIV(-) subjects, with up-regulation of multiple interleukin pathways, interferon signaling, and toll-like receptor signaling. We confirmed elevated circulating levels of IL-6 in HIV(+) patients with low DLCO relative to the other groups. Our findings reveal that PBLs of subjects with HIV infection and low DLCO are distinguished by widespread enrichment of immuno-inflammatory programs. Activation of these pathways may alter the biology of circulating leukocytes and play a role in the pathogenesis of HIV-associated gas exchange impairment.
Collapse
Affiliation(s)
- Kristina Crothers
- Division of Pulmonary & Critical Care Medicine, Harborview Medical Center, University of Washington, Seattle, Washington
| | - Irina Petrache
- Division of Pulmonary & Critical Care Medicine, National Jewish Health, Denver, Colorado
| | - Cherry Wongtrakool
- Pulmonary Section, Department of Veterans Affairs Medical Center, Decatur, Georgia Division of Pulmonary, Allergy, Critical Care, & Sleep Medicine, Emory University, Atlanta, Georgia
| | - Patty J Lee
- Division of Pulmonary & Critical Care Medicine, Yale University, New Haven, Connecticut
| | - Lynn M Schnapp
- Division of Pulmonary & Critical Care Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Sina A Gharib
- Division of Pulmonary & Critical Care Medicine, Harborview Medical Center, University of Washington, Seattle, Washington
| |
Collapse
|
30
|
McMahan RS, Birkland TP, Smigiel KS, Vandivort TC, Rohani MG, Manicone AM, McGuire JK, Gharib SA, Parks WC. Stromelysin-2 (MMP10) Moderates Inflammation by Controlling Macrophage Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:899-909. [PMID: 27316687 PMCID: PMC4955757 DOI: 10.4049/jimmunol.1600502] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/24/2016] [Indexed: 02/06/2023]
Abstract
Several members of the matrix metalloproteinase (MMP) family control a range of immune processes, such as leukocyte influx and chemokine activity. Stromelysin-2 (MMP10) is expressed by macrophages in numerous tissues after injury; however, little is known of its function. In this study, we report that MMP10 is expressed by macrophages in human lungs from patients with cystic fibrosis and induced in mouse macrophages in response to Pseudomonas aeruginosa infection both in vivo and by isolated resident alveolar and bone marrow-derived macrophages (BMDM). Our data indicates that macrophage MMP10 serves a beneficial function in response to acute infection. Whereas wild-type mice survived infection with minimal morbidity, 50% of Mmp10(-/-) mice died and all showed sustained weight loss (morbidity). Although bacterial clearance and neutrophil influx did not differ between genotypes, macrophage numbers were ∼3-fold greater in infected Mmp10(-/-) lungs than in wild-types. Adoptive transfer of wild-type BMDM normalized infection-induced morbidity in Mmp10(-/-) recipients to wild-type levels, demonstrating that the protective effect of MMP10 was due to its production by macrophages. Both in vivo and in cultured alveolar macrophages and BMDM, expression of several M1 macrophage markers was elevated, whereas M2 markers were reduced in Mmp10(-/-) tissue and cells. Global gene expression analysis revealed that infection-mediated transcriptional changes persisted in Mmp10(-/-) BMDM long after they were downregulated in wild-type cells. These results indicate that MMP10 serves a beneficial role in response to acute infection by moderating the proinflammatory response of resident and infiltrating macrophages.
Collapse
Affiliation(s)
- Ryan S McMahan
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105
| | - Timothy P Birkland
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Medicine, University of Washington, Seattle, WA 98195
| | - Kate S Smigiel
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Tyler C Vandivort
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105; Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Maryam G Rohani
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Medicine, University of Washington, Seattle, WA 98195; Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Anne M Manicone
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Medicine, University of Washington, Seattle, WA 98195
| | - John K McGuire
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Pediatrics, University of Washington, Seattle, WA 98195
| | - Sina A Gharib
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Medicine, University of Washington, Seattle, WA 98195
| | - William C Parks
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Medicine, University of Washington, Seattle, WA 98195; Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| |
Collapse
|
31
|
The Role of Interleukin-23 in the Early Development of Emphysema in HIV1(+) Smokers. J Immunol Res 2016; 2016:3463104. [PMID: 27446965 PMCID: PMC4942665 DOI: 10.1155/2016/3463104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/19/2016] [Indexed: 12/28/2022] Open
Abstract
Rationale. Matrix metalloproteinase-9 (MMP-9) expression is upregulated in alveolar macrophages (AM) of HIV1+ smokers who develop emphysema. Knowing that lung epithelial lining fluid (ELF) of HIV1+ smokers contains increased levels of inflammatory cytokines compared to HIV1− smokers, we hypothesized that upregulation of lung cytokines in HIV1+ smokers may be functionally related to increased MMP-9 expression. Methods. Cytokine arrays evaluated cytokine protein levels in ELF obtained from 5 groups of individuals: HIV1− healthy nonsmokers, HIV1− healthy smokers, HIV1− smokers with low diffusing capacity (DLCO), HIV1+ nonsmokers, and HIV1+ smokers with low DLCO. Results. Increased levels of the Th17 related cytokine IL-23 were found in HIV1− smokers with low DLCO and HIV1+ smokers and nonsmokers. Relative IL-23 gene expression was increased in AM of HIV1+ individuals, with greater expression in AM of HIV1+ smokers with low DLCO. Infection with HIV1 in vitro induced IL-23 expression in normal AM. IL-23 stimulation of AM/lymphocyte cocultures in vitro induced upregulation of MMP-9. Lung T lymphocytes express receptor IL-23R and interact with AM in order to upregulate MMP-9. Conclusion. This mechanism may contribute to the increased tissue destruction in the lungs of HIV1+ smokers and suggests that Th17 related inflammation may play a role.
Collapse
|
32
|
Chou SHS, Prabhu SJ, Crothers K, Stern EJ, Godwin JD, Pipavath SN. Thoracic diseases associated with HIV infection in the era of antiretroviral therapy: clinical and imaging findings. Radiographics 2015; 34:895-911. [PMID: 25019430 DOI: 10.1148/rg.344130115] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) pandemic has entered its 4th decade. Since the introduction of combination antiretroviral therapy (ART) in 1996, the number of AIDS-related deaths has plateaued worldwide. Today, owing to the effectiveness of ART, the HIV-infected population is aging and HIV infection has become a chronic illness. Non-AIDS comorbidities are increasing, and the spectrum of HIV-related thoracic diseases is evolving. In developed countries, bacterial pneumonia has become more common than Pneumocystis pneumonia. Its imaging appearance depends on the responsible organism, most commonly Streptococcus pneumoniae. Mycobacterium tuberculosis continues to be a major threat. Its imaging patterns vary depending on CD4 count. Primary lung cancer and Hodgkin lymphoma are two important non-AIDS-defining malignancies that are increasingly encountered at chest imaging. Human herpesvirus 8, also known as Kaposi sarcoma-associated herpesvirus (KSHV), is strongly linked to HIV-related diseases, including Kaposi sarcoma, multicentric Castleman disease, KSHV inflammatory cytokine syndrome, and primary effusion lymphoma. Immune reconstitution inflammatory syndrome is a direct complication of ART whose manifestations vary with the underlying disease. Given the high rate of smoking among HIV-infected patients, chronic obstructive pulmonary disease is another important cause of morbidity and mortality. A high degree of suspicion is required for the early diagnosis of pulmonary arterial hypertension and lymphocytic interstitial pneumonia, given their nonspecific manifestations. Finally, multilocular thymic cyst manifests as a cystic anterior mediastinal mass. Recognition of the clinical and radiologic manifestations of these less traditional HIV-related diseases can expedite diagnosis and treatment in the ART era.
Collapse
Affiliation(s)
- Shinn-Huey S Chou
- From the Department of Radiology (S.H.S.C., S.J.P., E.J.S., J.D.G., S.N.P.) and Division of Pulmonary and Critical Care Medicine (K.C.), University of Washington, 1959 NE Pacific St, UW Mailbox 357115, Seattle, WA 98195-7115
| | | | | | | | | | | |
Collapse
|
33
|
Sathyamoorthy T, Tezera LB, Walker NF, Brilha S, Saraiva L, Mauri FA, Wilkinson RJ, Friedland JS, Elkington PT. Membrane Type 1 Matrix Metalloproteinase Regulates Monocyte Migration and Collagen Destruction in Tuberculosis. THE JOURNAL OF IMMUNOLOGY 2015; 195:882-91. [PMID: 26091717 PMCID: PMC4505956 DOI: 10.4049/jimmunol.1403110] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/24/2015] [Indexed: 12/28/2022]
Abstract
Tuberculosis (TB) remains a global pandemic and drug resistance is rising. Multicellular granuloma formation is the pathological hallmark of Mycobacterium tuberculosis infection. The membrane type 1 matrix metalloproteinase (MT1-MMP or MMP-14) is a collagenase that is key in leukocyte migration and collagen destruction. In patients with TB, induced sputum MT1-MMP mRNA levels were increased 5.1-fold compared with matched controls and correlated positively with extent of lung infiltration on chest radiographs (r = 0.483; p < 0.05). M. tuberculosis infection of primary human monocytes increased MT1-MMP surface expression 31.7-fold and gene expression 24.5-fold. M. tuberculosis-infected monocytes degraded collagen matrix in an MT1-MMP-dependent manner, and MT1-MMP neutralization decreased collagen degradation by 73%. In human TB granulomas, MT1-MMP immunoreactivity was observed in macrophages throughout the granuloma. Monocyte-monocyte networks caused a 17.5-fold increase in MT1-MMP surface expression dependent on p38 MAPK and G protein-coupled receptor-dependent signaling. Monocytes migrating toward agarose beads impregnated with conditioned media from M. tuberculosis-infected monocytes expressed MT1-MMP. Neutralization of MT1-MMP activity decreased this M. tuberculosis network-dependent monocyte migration by 44%. Taken together, we demonstrate that MT1-MMP is central to two key elements of TB pathogenesis, causing collagen degradation and regulating monocyte migration.
Collapse
Affiliation(s)
| | - Liku B Tezera
- National Institute for Health Research Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Naomi F Walker
- Infectious Diseases and Immunity, Imperial College London, London W12 0NN, United Kingdom; Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Sara Brilha
- Infectious Diseases and Immunity, Imperial College London, London W12 0NN, United Kingdom
| | - Luisa Saraiva
- Infectious Diseases and Immunity, Imperial College London, London W12 0NN, United Kingdom
| | - Francesco A Mauri
- Department of Histopathology, Imperial College London, London W12 0NN, United Kingdom
| | - Robert J Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa; Department of Medicine, Imperial College London, London W12 0NN, United Kingdom; Medical Research Council, National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - Jon S Friedland
- Infectious Diseases and Immunity, Imperial College London, London W12 0NN, United Kingdom
| | - Paul T Elkington
- Infectious Diseases and Immunity, Imperial College London, London W12 0NN, United Kingdom; National Institute for Health Research Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
34
|
Shirley DK, Kaner RJ, Glesby MJ. Screening for Chronic Obstructive Pulmonary Disease (COPD) in an Urban HIV Clinic: A Pilot Study. AIDS Patient Care STDS 2015; 29:232-9. [PMID: 25723842 DOI: 10.1089/apc.2014.0265] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Increased smoking and a detrimental response to tobacco smoke in the lungs of HIV/AIDS patients result in an increased risk for COPD. We aimed to determine the predictive value of a COPD screening strategy validated in the general population and to identify HIV-related factors associated with decreased lung function. Subjects at least 35 years of age at an HIV clinic in New York City completed a COPD screening questionnaire and peak flow measurement. Those with abnormal results and a random one-third of normal screens had spirometry. 235 individuals were included and 89 completed spirometry. Eleven (12%) had undiagnosed airway obstruction and 5 had COPD. A combination of a positive questionnaire and abnormal peak flow yielded a sensitivity of 20% (specificity 93%) for detection of COPD. Peak flow alone had a sensitivity of 80% (specificity 80%). Abnormal peak flow was associated with an AIDS diagnosis (p=0.04), lower nadir (p=0.001), and current CD4 counts (p=0.001). Nadir CD4 remained associated in multivariate analysis (p=0.05). Decreased FEV1 (<80% predicted) was associated with lower CD4 count nadir (p=0.04) and detectable current HIV viral load (p=0.01) in multivariate analysis. Questionnaire and peak flow together had low sensitivity, but abnormal peak flow shows potential as a screening tool for COPD in HIV/AIDS. These data suggest that lung function may be influenced by HIV-related factors.
Collapse
Affiliation(s)
- Daniel K Shirley
- 1 Divisions of Infectious Disease and Hospital Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | | | | |
Collapse
|
35
|
Abstract
Human immunodeficiency virus type 1 (HIV-1) is the retrovirus responsible for the development of AIDS. Its profound impact on the immune system leaves the host vulnerable to a wide range of opportunistic infections not seen in individuals with a competent immune system. Pulmonary infections dominated the presentations in the early years of the epidemic, and infectious and noninfectious lung diseases remain the leading causes of morbidity and mortality in persons living with HIV despite the development of effective antiretroviral therapy. In addition to the long known immunosuppression and infection risks, it is becoming increasingly recognized that HIV promotes the risk of noninfectious pulmonary diseases through a number of different mechanisms, including direct tissue toxicity by HIV-related viral proteins and the secondary effects of coinfections. Diseases of the airways, lung parenchyma and the pulmonary vasculature, as well as pulmonary malignancies, are either more frequent in persons living with HIV or have atypical presentations. As the pulmonary infectious complications of HIV are generally well known and have been reviewed extensively, this review will focus on the breadth of noninfectious pulmonary diseases that occur in HIV-infected individuals as these may be more difficult to recognize by general medical physicians and subspecialists caring for this large and uniquely vulnerable population.
Collapse
|
36
|
Segal LN, Weiden MD, Horowitz HW. Acute Exacerbations of Chronic Obstructive Pulmonary Disease. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015. [PMCID: PMC7152150 DOI: 10.1016/b978-1-4557-4801-3.00067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Almodovar S. The complexity of HIV persistence and pathogenesis in the lung under antiretroviral therapy: challenges beyond AIDS. Viral Immunol 2014; 27:186-99. [PMID: 24797368 DOI: 10.1089/vim.2013.0130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Antiretroviral therapy (ART) represents a significant milestone in the battle against AIDS. However, we continue learning about HIV and confronting challenges 30 years after its discovery. HIV has cleverly tricked both the host immune system and ART. First, the many HIV subtypes and recombinant forms have different susceptibilities to antiretroviral drugs, which may represent an issue in countries where ART is just being introduced. Second, even under the suppressive pressures of ART, HIV still increases inflammatory mediators, deregulates apoptosis and proliferation, and induces oxidative stress in the host. Third, the preference of HIV for CXCR4 as a co-receptor may also have noxious outcomes, including potential malignancies. Furthermore, HIV still replicates cryptically in anatomical reservoirs, including the lung. HIV impairs bronchoalveolar T-lymphocyte and macrophage immune responses, rendering the lung susceptible to comorbidities. In addition, HIV-infected individuals are significantly more susceptible to long-term HIV-associated complications. This review focuses on chronic obstructive pulmonary disease (COPD), pulmonary arterial hypertension, and lung cancer. Almost two decades after the advent of highly active ART, we now know that HIV-infected individuals on ART live as long as the uninfected population. Fortunately, its availability is rapidly increasing in low- and middle-income countries. Nevertheless, ART is not risk-free: the developed world is facing issues with antiretroviral drug toxicity, resistance, and drug-drug interactions, while developing countries are confronting issues with immune reconstitution inflammatory syndrome. Several aspects of the complexity of HIV persistence and challenges with ART are discussed, as well as suggestions for new avenues of research.
Collapse
Affiliation(s)
- Sharilyn Almodovar
- Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|
38
|
Ande A, McArthur C, Kumar A, Kumar S. Tobacco smoking effect on HIV-1 pathogenesis: role of cytochrome P450 isozymes. Expert Opin Drug Metab Toxicol 2013; 9:1453-64. [PMID: 23822755 PMCID: PMC4007120 DOI: 10.1517/17425255.2013.816285] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Tobacco smoking is highly prevalent among the HIV-1-infected population. In addition to diminished immune response, smoking has been shown to increase HIV-1 replication and decrease response to antiretroviral therapy, perhaps through drug-drug interaction. However, the mechanism by which tobacco/nicotine increases HIV-1 replication and mediates drug-drug interaction is poorly understood. AREAS COVERED In this review, the authors discuss the effects of smoking on HIV-1 pathogenesis. Since they propose a role for the cytochrome P450 (CYP) pathway in smoking-mediated HIV-1 pathogenesis, the authors briefly converse the role of CYP enzymes in tobacco-mediated oxidative stress and toxicity. Finally, the authors focus on the role of CYP enzymes, especially CYP2A6, in tobacco/nicotine metabolism and oxidative stress in HIV-1 model systems monocytes/macrophages, lymphocytes, astrocytes and neurons, which may be responsible for HIV-1 pathogenesis. EXPERT OPINION Recent findings suggest that CYP-mediated oxidative stress is a novel pathway that may be involved in smoking-mediated HIV-1 pathogenesis, including HIV-1 replication and drug-drug interaction. Thus, CYP and CYP-associated oxidative stress pathways may be potential targets to develop novel pharmaceuticals for HIV-1-infected smokers. Since HIV-1/TB co-infections are common, future study involving interactions between antiretroviral and antituberculosis drugs that involve CYP pathways would also help treat HIV-1/TB co-infected smokers effectively.
Collapse
Affiliation(s)
- Anusha Ande
- University of Missouri Kansas City, School of Pharmacy, Division of Pharmacology & Toxicology, Kansas City, MO 64108, USA
| | - Carole McArthur
- Professor, University of Missouri Kansas City, School of Dentistry, Department of Oral Biology, Kansas City, MO 64108, USA
| | - Anil Kumar
- Professor and Chair, University of Missouri Kansas City, School of Pharmacy, Division of Pharmacology & Toxicology, Kansas City, MO 64108, USA
| | - Santosh Kumar
- Assistant Professor, University of Missouri Kansas City, School of Pharmacy, Division of Pharmacology & Toxicology, 2464 Charlotte St. Kansas City, MO 64108, USA Tel: +1 816 235 5494 (Off); Fax: +1 816 235 1776;
| |
Collapse
|
39
|
Crothers K, McGinnis K, Kleerup E, Wongtrakool C, Hoo GS, Kim J, Sharafkhaneh A, Huang L, Luo Z, Thompson B, Diaz P, Kirk GD, Rom W, Detels R, Kingsley L, Morris A. HIV infection is associated with reduced pulmonary diffusing capacity. J Acquir Immune Defic Syndr 2013; 64:271-8. [PMID: 23979001 PMCID: PMC3845879 DOI: 10.1097/qai.0b013e3182a9215a] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Prior studies comparing abnormalities in pulmonary function between HIV-infected and HIV-uninfected persons in the current era are limited. OBJECTIVES To determine the pattern and severity of impairment in pulmonary function in HIV-infected compared with HIV-uninfected individuals. METHODS Cross-sectional analysis of 300 HIV-infected men and 289 HIV-uninfected men enrolled from 2009 to 2011 in 2 clinical centers of the Lung HIV Study. Participants completed pre- and postbronchodilator spirometry, diffusing capacity of the lung for carbon monoxide (DLCO) measurement, and standardized questionnaires. RESULTS Most participants had normal airflow; 18% of HIV-infected and 16% of HIV-uninfected men had airflow obstruction. The mean percent predicted DLCO was 69% in HIV-infected vs. 76% in HIV-uninfected men (P < 0.001). A moderately to severely reduced DLCO of ≤60% was observed in 30% of HIV-infected compared with 18% of HIV-uninfected men (P < 0.001), despite the fact that 89% of those with HIV were on antiretroviral therapy. A reduced DLCO was significantly associated with HIV and CD4 cell count in linear regression adjusting for smoking and other confounders. The DLCO was lowest in HIV-infected men with CD4 cell counts <200 cells per microliter compared with those with CD4 cell counts ≥200 cells per microliter and to HIV-uninfected men. Respiratory symptoms of cough, phlegm and dyspnea were more prevalent in HIV-infected patients particularly those with abnormal pulmonary function compared with HIV-uninfected patients. CONCLUSIONS HIV infection is an independent risk factor for reduced DLCO, particularly in individuals with a CD4 cell count below 200 cells per microliter. Abnormalities in pulmonary function among HIV-infected patients manifest clinically with increased respiratory symptoms. Mechanisms accounting for the reduced DLCO require further evaluation.
Collapse
Affiliation(s)
- Kristina Crothers
- *Department of Medicine, University of Washington, Seattle, WA; †Department of Medicine, University of Pittsburgh, Pittsburgh, PA; ‡Department of Medicine, University of California, Los Angeles, Los Angeles, CA; §Department of Medicine, Atlanta Veterans Affairs Medical Center (VAMC) and Emory University, Atlanta, GA; ‖Department of Medicine, West Los Angeles VAMC and David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA; ¶Department of Medicine, James J. Peters Bronx VAMC, Bronx, NY; #Department of Medicine, Michael E. DeBakey Houston VAMC and Baylor College of Medicine, Houston, TX; **Department of Medicine, University of California, San Francisco, San Francisco, CA; ††Department of Medicine, Clinical Trials and Survey Corporation, Owings Mills, MD; ‡‡Department of Medicine, Ohio State University Medical Center, Columbus, OH; §§Department of Medicine, Johns Hopkins University, Baltimore, MD; ‖‖Department of Medicine, New York University School of Medicine, New York, NY; ¶¶Departments of Infectious Diseases and Microbiology; and Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA; and ##Departments of Medicine and Immunology, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Veerappan A, O'Connor NJ, Brazin J, Reid AC, Jung A, McGee D, Summers B, Branch-Elliman D, Stiles B, Worgall S, Kaner RJ, Silver RB. Mast cells: a pivotal role in pulmonary fibrosis. DNA Cell Biol 2013; 32:206-18. [PMID: 23570576 DOI: 10.1089/dna.2013.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Pulmonary fibrosis is characterized by an inflammatory response that includes macrophages, neutrophils, lymphocytes, and mast cells. The purpose of this study was to evaluate whether mast cells play a role in initiating pulmonary fibrosis. Pulmonary fibrosis was induced with bleomycin in mast-cell-deficient WBB6F1-W/W(v) (MCD) mice and their congenic controls (WBB6F1-(+)/(+)). Mast cell deficiency protected against bleomycin-induced pulmonary fibrosis, but protection was reversed with the re-introduction of mast cells to the lungs of MCD mice. Two mast cell mediators were identified as fibrogenic: histamine and renin, via angiotensin (ANG II). Both human and rat lung fibroblasts express the histamine H1 and ANG II AT1 receptor subtypes and when activated, they promote proliferation, transforming growth factor β1 secretion, and collagen synthesis. Mast cells appear to be critical to pulmonary fibrosis. Therapeutic blockade of mast cell degranulation and/or histamine and ANG II receptors should attenuate pulmonary fibrosis.
Collapse
Affiliation(s)
- Arul Veerappan
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Shirley DK, Kaner RJ, Glesby MJ. Effects of smoking on non-AIDS-related morbidity in HIV-infected patients. Clin Infect Dis 2013; 57:275-82. [PMID: 23572487 DOI: 10.1093/cid/cit207] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tobacco smoking has many adverse health consequences. Patients with human immunodeficiency virus (HIV) infection smoke at very high rates, and many of the comorbidities associated with smoking in the general population are more prevalent in this population. It is likely that a combination of higher smoking rates along with an altered response to cigarette smoke throughout the body in persons with HIV infection leads to increased rates of the known conditions related to smoking. Several AIDS-defining conditions associated with smoking have been reviewed elsewhere. This review aims to summarize the data on non-AIDS-related health consequences of smoking in the HIV-infected population and explore evidence for the potential compounding effects on chronic systemic inflammation due to HIV infection and smoking.
Collapse
Affiliation(s)
- Daniel K Shirley
- Division of Infectious Diseases, Weill Cornell Medical College, 525 E 68th St, Floor 24, New York, NY 10065, USA.
| | | | | |
Collapse
|
42
|
Pisani M. Lung Disease in Older Patients with HIV. AGING AND LUNG DISEASE 2012. [PMCID: PMC7120014 DOI: 10.1007/978-1-60761-727-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Successful treatment of HIV with combination antiretroviral therapy (ART) has resulted in an aging HIV-infected population. As HIV-infected patients are living longer, noninfectious pulmonary diseases are becoming increasingly prevalent with a proportional decline in the incidence of opportunistic infections (OIs). Pulmonary OIs such as Pneumocystis jirovecii pneumonia (PCP) and tuberculosis are still responsible for a significant proportion of pulmonary diseases in HIV-infected patients. However, bacterial pneumonia (BP) and noninfectious pulmonary diseases such as chronic obstructive pulmonary disease (COPD), lung cancer, pulmonary arterial hypertension (PAH), and interstitial lung disease (ILD) account for a growing number of pulmonary diseases in aging HIV-infected patients. The purpose of this chapter is to discuss the spectrum and management of pulmonary diseases in aging HIV-infected patients, although limited data exists to guide management of many noninfectious pulmonary diseases in HIV-infected patients. In the absence of such data, treatment of lung diseases in HIV-infected patients should generally follow guidelines for management established in HIV-uninfected patients.
Collapse
Affiliation(s)
- Margaret Pisani
- School of Medicine, Pulmonary and Critical Care Medicine, Yale University, Cedar Street 330, New Haven, 06520-8057 Connecticut USA
| |
Collapse
|
43
|
Fitzgerald DW, Bezak K, Ocheretina O, Riviere C, Wright TC, Milne GL, Zhou XK, Du B, Subbaramaiah K, Byrt E, Goodwin ML, Rafii A, Dannenberg AJ. The effect of HIV and HPV coinfection on cervical COX-2 expression and systemic prostaglandin E2 levels. Cancer Prev Res (Phila) 2012; 5:34-40. [PMID: 22135046 PMCID: PMC3252428 DOI: 10.1158/1940-6207.capr-11-0496] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human immunodeficiency virus (HIV-1) infection causes chronic inflammation. COX-2-derived prostaglandin E(2) (PGE(2)) has been linked to both inflammation and carcinogenesis. We hypothesized that HIV-1 could induce COX-2 in cervical tissue and increase systemic PGE(2) levels and that these alterations could play a role in AIDS-related cervical cancer. Levels of cervical COX-2 mRNA and urinary PGE-M, a biomarker of systemic PGE(2) levels, were determined in 17 HIV-negative women with a negative cervical human papilloma virus (HPV) test, 18 HIV-infected women with a negative HPV test, and 13 HIV-infected women with cervical HPV and high-grade squamous intraepithelial lesions on cytology. Cervical COX-2 levels were significantly associated with HIV and HPV status (P = 0.006 and 0.002, respectively). Median levels of urinary PGE-M were increased in HIV-infected compared with uninfected women (11.2 vs. 6.8 ng/mg creatinine, P = 0.02). Among HIV-infected women, urinary PGE-M levels were positively correlated with plasma HIV-1 RNA levels (P = 0.003). Finally, levels of cervical COX-2 correlated with urinary PGE-M levels (P = 0.005). This study shows that HIV-1 infection is associated with increased cervical COX-2 and elevated systemic PGE(2) levels. Drugs that inhibit the synthesis of PGE(2) may prove useful in reducing the risk of cervical cancer or systemic inflammation in HIV-infected women.
Collapse
Affiliation(s)
- Daniel W Fitzgerald
- Division of Infectious Diseases, Center for Global Health, Weill Cornell Medical College, 440 East 69 Street, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Smoking-related diseases, such as chronic obstructive pulmonary disease (COPD), are of particular concern in the HIV-infected population. Smoking rates are high in this population, and long-term exposure to cigarette smoke in the setting of HIV infection may increase the number of complications seen. Before the era of combination antiretroviral therapy, HIV-infected persons were noted to have an accelerated form of COPD, with significant emphysematous disease seen in individuals less than 40 years old. Unlike many of the AIDS-defining opportunistic infections, HIV-associated COPD may be more common in the current era of HIV because it is frequently reported in patients without a history of AIDS-related pulmonary complications and because many aging HIV-infected individuals have had a longer exposure to smoking and HIV. In this review, we document the epidemiology of HIV-associated COPD before and after the institution of combination antiretroviral therapy, review data suggesting that COPD is accelerated in those with HIV, and discuss possible mechanisms of HIV-associated COPD, including an increased susceptibility to chronic, latent infections; an aberrant inflammatory response; altered oxidant-antioxidant balance; increased apoptosis associated with HIV; and the effects of antiretroviral therapy.
Collapse
|