1
|
Amer J, Salhab A, Abuawad M. Restoring natural killer cell activity in lung injury with 1,25-hydroxy vitamin D 3: a promising therapeutic approach. Front Immunol 2025; 15:1466802. [PMID: 39840066 PMCID: PMC11746039 DOI: 10.3389/fimmu.2024.1466802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
Background and aim NK cells and NK-cell-derived cytokines were shown to regulate neutrophil activation in acute lung injury (ALI). However, the extent to which ALI regulates lung tissue-resident NK (trNK) activity and their molecular phenotypic alterations are not well defined. We aimed to assess the impact of 1,25-hydroxy-vitamin-D3 [1,125(OH)2D] on ALI clinical outcome in a mouse model and effects on lung trNK cell activations. Methods Oleic acid (OA)-induced ALI in C57BL/6J mice and 1,25(OH)2D treatment 2×/2 weeks were performed. Lung tissue was harvested to assess alveolar I/II cell apoptosis and lung injury marker of Surfactant-Protein-D (SP-D). Pulmonary edema markers of epithelial sodium channel, cystic fibrosis transmembrane conductance regulator, and aquaporin 5 were assessed by RT-PCR. Lung trNK cells were assessed for activation markers of CD107a and NKp46, vitamin D receptor (VDR), and programmed cell death protein-1 (PD-1) via flow cytometry. The bronchoalveolar lavage fluid (BALF) obtained was investigated for soluble receptor for advanced glycation end products (sRAGE), inflammatory cytokines, soluble 1,25(OH)2D, and PDL-1. Naïve mice treated with DMSO (vehicle) were used as a control. Results Flow cytometry analysis displayed a high apoptotic rate in alveolar I/II cells of threefold in ALI mice as compared to naïve mice. These findings were accompanied by elevated markers of pulmonary edema as well as lung injury markers of SP-D. Isolated lung trNK cells of the ALI mice exhibited reduced CD107a and NKp46 markers and cytotoxicity potentials and were correlated through significantly 2.1-fold higher levels of PD-1 and diminished VDR expressions as compared to naïve mice. BALF samples of ALI mice displayed high soluble PDL-1 and reduced soluble 1,25(OH)2D levels compared to naïve mice. 1,25(OH)2D treatment alongside OA led to a significant fourfold increase in the CD107a and NKp46 expressions to levels higher than the mice treated with the vehicle. Furthermore, 1,25(OH)2D ameliorates free radical scavengers of GSH, GPX, CAT, and GPx-1; decreased pro-inflammatory cytokines and soluble PDL-1; and increased soluble 1,25(OH)2D with amelioration in pulmonary edema markers and alveolar I/II apoptosis. Conclusion Our results indicate 1,25(OH)2D's potential therapeutic effect in preventing clinical outcomes associated with ALI via regulating NK cells through inhibiting inflammatory cytokines and alleviating levels of PDL-1 and 1,25(OH)2D released by lung tissue.
Collapse
Affiliation(s)
- Johnny Amer
- Department of Allied Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Ahmad Salhab
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Abuawad
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
2
|
Sharaf AAM, Todd I. Cigarette Smoke Constituents and Nicotine Differentially Affect Cytokine Production by Human Macrophages Stimulated by TLR Ligands In Vitro: Considerations for a Standardised Protocol. Altern Lab Anim 2024; 52:205-213. [PMID: 38870092 DOI: 10.1177/02611929241259105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory lung condition associated with cigarette (tobacco) smoking. Numerous in vivo animal studies have been conducted to investigate the links between cigarette smoke, nicotine and infection in lung pathology. As an alternative to animal experiments, we used an in vitro system to investigate the effects of cigarette smoke extract (CSE) or nicotine on TNF-α and IL-10 production by monocyte-derived human macrophages. The macrophages were simultaneously stimulated with either poly-IC (as a chemical surrogate for viral infection) or lipopolysaccharide (as a chemical surrogate for Gram-negative bacterial infection). CSE enhanced TNF-α production, whereas nicotine inhibited IL-10 production by the macrophages, particularly when co-stimulated with the microbial chemical surrogates. A system of this type may help to further our understanding of the immunological and inflammatory effects of smoking, without recourse to in vivo studies. Requirements for the optimisation and standardisation of such an in vitro system are also discussed.
Collapse
Affiliation(s)
- Abeer Abdullah M Sharaf
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Immunology Lab, Laboratory and Blood Bank Department, King Fahad General Hospital Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Ian Todd
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
3
|
Szentkereszty M, Ladányi A, Gálffy G, Tóvári J, Losonczy G. Density of tumor-infiltrating NK and Treg cells is associated with 5 years progression-free and overall survival in resected lung adenocarcinoma. Lung Cancer 2024; 192:107824. [PMID: 38761665 DOI: 10.1016/j.lungcan.2024.107824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Surgical resection of pulmonary adenocarcinoma is considered to be curative but progression-free survival (PFS) has remained highly variable. Antitumor immune response may be important, however, the prognostic significance of tumor-infiltrating natural killer (NK) and regulatory T (Treg) lymphocytes is uncertain. Resected pulmonary adenocarcinoma tissues (n = 115) were studied by immunohistochemical detection of NKp46 and FoxP3 positivity to identify NK and Treg cells, respectively. Association of cell densities with clinicopathological features and progression-free survival (PFS) as well as overall survival (OS) were analyzed with a follow-up time of 60 months. Both types of immune cells were accumulated predominantly in tumor stroma. NK cell density showed association with female gender, non-smoking and KRAS wild-type status. According to Kaplan-Meier analysis, PFS and OS proved to be longer in patients with high NK or Treg cell densities (p = 0.0293 and p = 0.0375 for PFS, p = 0.0310 and p = 0.0448 for OS, respectively). Evaluating the prognostic effect of the combination of NK and Treg cell density values revealed that PFS and OS were significantly longer in NKhigh/Treghigh cases compared to the other groups combined (p = 0.0223 and p = 0.0325, respectively). Multivariate Cox regression analysis indicated that high NK cell density was independent predictor of longer PFS while high NK and high Treg cell densities both proved significant predictors of longer OS. The NKhigh/Treghigh combination also proved to be an independent prognostic factor for both PFS and OS. In conclusion, NK and Treg cells can be components of the innate and adaptive immune response at action against progression of pulmonary adenocarcinoma.
Collapse
Affiliation(s)
- Márton Szentkereszty
- Department of Pulmonology, Semmelweis University Clinical Center, Budapest, Hungary; Tumor Pathology Center, National Institute of Oncology, Budapest, Hungary
| | - Andrea Ladányi
- Tumor Pathology Center, National Institute of Oncology, Budapest, Hungary; National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Gabriella Gálffy
- Department of Pulmonology, Semmelweis University Clinical Center, Budapest, Hungary; Pulmonology Hospital of Törökbálint, Törökbálint, Hungary
| | - József Tóvári
- National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary; Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - György Losonczy
- Department of Pulmonology, Semmelweis University Clinical Center, Budapest, Hungary.
| |
Collapse
|
4
|
Quan DH, Kwong AJ, Hansbro PM, Britton WJ. No smoke without fire: the impact of cigarette smoking on the immune control of tuberculosis. Eur Respir Rev 2022; 31:210252. [PMID: 35675921 PMCID: PMC9488690 DOI: 10.1183/16000617.0252-2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/20/2022] [Indexed: 12/12/2022] Open
Abstract
Cigarette smoke (CS) exposure is a key risk factor for both active and latent tuberculosis (TB). It is associated with delayed diagnosis, more severe disease progression, unfavourable treatment outcomes and relapse after treatment. Critically, CS exposure is common in heavily populated areas with a high burden of TB, such as China, India and the Russian Federation. It is therefore prudent to evaluate interventions for TB while taking into account the immunological impacts of CS exposure. This review is a mechanistic examination of how CS exposure impairs innate barrier defences, as well as alveolar macrophage, neutrophil, dendritic cell and T-cell functions, in the context of TB infection and disease.
Collapse
Affiliation(s)
- Diana H Quan
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Sydney, Australia
- D.H. Quan and W.J. Britton contributed equally to this article as lead authors and supervised the work
| | | | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Warwick J Britton
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Sydney, Australia
- Dept of Clinical Immunology, Royal Prince Alfred Hospital, Sydney, Australia
- D.H. Quan and W.J. Britton contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
5
|
Le T, Reeves RK, McKinnon LR. The Functional Diversity of Tissue-Resident Natural Killer Cells Against Infection. Immunology 2022; 167:28-39. [PMID: 35751452 DOI: 10.1111/imm.13523] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
For decades, studies of natural killer (NK) cells have focused on those found in peripheral blood (PBNK cells) as the prototype for NK cell biology. Only recently have researchers begun to explore the diversity of tissue-resident NK (tr-NK) cells. While tr-NK cells were initially identified from mice parabiosis and intravascular staining experiments, they can also be identified by tissue retention markers such as CD69, CD103, and others. More importantly, tr-NK cells have distinct functions compared to PBNK cells. Within the liver, there are diverse subsets of tr-NK cells expressing different combinations of tissue-retention markers and transcription factors, the clinical relevance of which are still unclear. Functionally, liver tr-NK are primed with immediate responsiveness to infection and equipped with regulatory mechanisms to prevent liver damage. When decidual NK (dNK) cells were first discovered, they were mainly characterized by their reduced cytotoxicity and functions related to placental development. Recent studies, however, revealed different mechanisms by which dNK cells prevent uterine infections. The lungs are one of the most highly exposed sites for infection due to their role in oxygen exchange. Upon influenza infection, lung tr-NK cells can degranulate and produce more inflammatory cytokines than PBNK cells. Less understood are gut tr-NK cells which were recently characterized in infants and adults for their functional differences. In this mini-review, we aim to provide a brief overview of the most recent discoveries on how several tr-NK cells are implicated in the immune response against infection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Toby Le
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - R Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA.,Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Lyle R McKinnon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| |
Collapse
|
6
|
Harnessing Natural Killer Cells in Non-Small Cell Lung Cancer. Cells 2022; 11:cells11040605. [PMID: 35203256 PMCID: PMC8869885 DOI: 10.3390/cells11040605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. There are two main subtypes: small cell lung cancer (SCLC), and non-small cell lung cancer (NSCLC). NSCLC accounts for 85% of lung cancer diagnoses. Early lung cancer very often has no specific symptoms, and many patients present with late stage disease. Despite the various treatments currently available, many patients experience tumor relapse or develop therapeutic resistance, highlighting the need for more effective therapies. The development of immunotherapies has revolutionized the cancer treatment landscape by enhancing the body’s own immune system to fight cancer. Natural killer (NK) cells are crucial anti-tumor immune cells, and their exclusion from the tumor microenvironment is associated with poorer survival. It is well established that NK cell frequencies and functions are impaired in NSCLC; thus, placing NK cell-based immunotherapies as a desirable therapeutic concept for this malignancy. Immunotherapies such as checkpoint inhibitors are transforming outcomes for NSCLC. This review explores the current treatment landscape for NSCLC, the role of NK cells and their dysfunction in the cancer setting, the advancement of NK cell therapies, and their future utility in NSCLC.
Collapse
|
7
|
Effect of Autoimmune Cell Therapy on Immune Cell Content in Patients with COPD: A Randomized Controlled Trial. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8361665. [PMID: 35047059 PMCID: PMC8763482 DOI: 10.1155/2022/8361665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 01/05/2023]
Abstract
Objective To explore the effect of autoimmune cell therapy on immune cells in patients with chronic obstructive pulmonary disease (COPD) and to provide a reference for clinical treatment of COPD. Methods Sixty patients with stable COPD were randomly divided into control group and treatment group (n = 30). The control group was given conventional treatment, and the treatment group was given one autoimmune cell therapy on the basis of conventional treatment. The serum levels of CD3+ T cells, CD4+ T cells, CD8+ cells, B cells, and NK cells in the peripheral blood were detected by flow cytometry. Possible adverse reactions were detected at any time during treatment. Results There were no significant differences in the contents of CD3+ T cells, CD4+ T cells, CD8+ cells, B cells, and NK cells in the serum of the control group (P > 0.05). Compared with before treatment, the contents of CD3+ T cells, CD4+ T cells, CD8+ cells, B cells, and NK cells in the serum of the treatment group were significantly increased (P < 0.05). The ratio of CD4 + /CD8+ T cells in both control and treatment groups did not change significantly during treatment (P > 0.05). There were no significant differences in serum CD3+ T cells, CD4+ T cells, CD8+ cells, B cells, and NK cells in the treatment group at 30 days and 90 days after treatment (P > 0.05), but they were significantly higher than those in the control group (P < 0.05). Conclusion Autoimmune cell therapy can significantly increase the level of immune cells in the body and can be maintained for a long period of time, which has certain clinical benefits for recurrent respiratory tract infections and acute exacerbation in patients with COPD.
Collapse
|
8
|
Hamilton G, Plangger A. The Impact of NK Cell-Based Therapeutics for the Treatment of Lung Cancer for Biologics: Targets and Therapy. Biologics 2021; 15:265-277. [PMID: 34262255 PMCID: PMC8273903 DOI: 10.2147/btt.s290305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
Lung cancer has a dismal prognosis and novel targeted therapies leave still room for major improvements and better outcomes. Immunotherapy targeting immune checkpoint (IC) proteins, either as single agents or in combination with chemotherapy, is active but responders constitute only approximately 10-15% of non-small cell lung cancer (NSCLC) patients. Other effector immune cells such as CAR-T cells or NK cells may help to overcome the limitations of the IC inhibitor therapies for lung cancer. NK cells can kill tumor cells without previous priming and are present in the circulatory system and lymphoid organs. Tissue-residing NK cells differ from peripheral effector cells and, in case of the lung, comprise CD56bright CD16-negative populations showing high cytokine release but low cytotoxicity in contrast to the circulating CD56dim CD16-positive NK cells exhibiting high cytotoxic efficacy. This local attenuation of NK cell killing potency seems due to a specific stage of NK differentiation, immunosuppressive factors as well as presence of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (TREGs). Improved NK cell-based immunotherapies involve IL-2-stimulated effector cells, NK cells expanded with the help of cytokines, permanent NK cell lines, induced pluripotent stem cell-derived NK cells and NK cells armed with chimeric antigen receptors. Compared to CAR T cell therapy, NK cells administration is devoid of graft-versus-host disease (GvHD) and cytokine-release syndrome. Although NK cells are clearly active against lung cancer cells, the low-cytotoxicity differentiation state in lung tumors, the presence of immunosuppressive leucocyte populations, limited infiltration and adverse conditions of the microenvironment need to be overcome. This goal may be achieved in the future using large numbers of activated and armed NK cells as provided by novel methods in NK cell isolation, expansion and stimulation of cytotoxic activity, including combinations with monoclonal antibodies in antibody-dependent cytotoxicity (ADCC). This review discusses the basic characteristics of NK cells and the potential of NK cell preparations in cancer therapy.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - Adelina Plangger
- Department of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Hess JB, Sutherland KD, Best SA. Exploring natural killer cell immunology as a therapeutic strategy in lung cancer. Transl Lung Cancer Res 2021; 10:2788-2805. [PMID: 34295678 PMCID: PMC8264324 DOI: 10.21037/tlcr-20-765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/19/2020] [Indexed: 11/06/2022]
Abstract
Cytotoxic immune cells are key in the control of tumor development and progression. Natural killer (NK) cells are the cytotoxic arm of the innate immune system with the capability to kill tumor cells and surveil tumor cell dissemination. As such, the interest in harnessing NK cells in tumor control is increasing in many solid tumor types, including lung cancer. Here, we review the pre-clinical models used to unveil the role of NK cells in immunosurveillance of solid tumors and highlight measures to enhance NK cell activity. Importantly, the development of NK immunotherapy is rapidly evolving. Enhancing the NK cell response can be achieved using two broad modalities: enhancing endogenous NK cell activity, or performing adoptive transfer of pre-activated NK cells to patients. Numerous clinical trials are evaluating the efficacy of NK cell immunotherapy in isolation or in combination with standard treatments, with encouraging initial results. Pre-clinical studies and early phase clinical trials suggest that patients with solid tumors, including lung cancer, have the potential to benefit from recent developments in NK cell immunotherapy.
Collapse
Affiliation(s)
- Jonas B Hess
- ACRF Cancer Biology and Stem Cell Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kate D Sutherland
- ACRF Cancer Biology and Stem Cell Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah A Best
- ACRF Cancer Biology and Stem Cell Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Centuori SM, Caulin C, Bauman JE. Precision and Immunoprevention Strategies for Tobacco-Related Head and Neck Cancer Chemoprevention. Curr Treat Options Oncol 2021; 22:52. [PMID: 33991232 PMCID: PMC8122210 DOI: 10.1007/s11864-021-00848-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 12/02/2022]
Abstract
OPINION STATEMENT To date, there is no FDA-approved chemoprevention approach for tobacco-related HNSCC. Effective chemoprevention approaches validated in sufficiently powered randomized trials are needed to reduce the incidence and improve survival. In this review, we recap the challenges encountered in past chemoprevention trials and discuss emerging approaches, with major focus on green chemoprevention, precision prevention, and immunoprevention. As our current depth of knowledge expands in the arena of cancer immunotherapy, the field of immunoprevention is primed for new discoveries and successes in cancer prevention.
Collapse
Affiliation(s)
- Sara M. Centuori
- Department of Medicine, University of Arizona, 1515 N. Campbell Ave, PO Box 245024, Tucson, AZ 85724-5024 USA
- University of Arizona Cancer Center, 1515 N. Campbell Ave, Tucson, AZ 85724 USA
| | - Carlos Caulin
- University of Arizona Cancer Center, 1515 N. Campbell Ave, Tucson, AZ 85724 USA
- Department of Otolaryngology-Head and Neck Surgery, University of Arizona, 1515 N. Campbell Ave, Tucson, AZ 85724 USA
| | - Julie E. Bauman
- Department of Medicine, University of Arizona, 1515 N. Campbell Ave, PO Box 245024, Tucson, AZ 85724-5024 USA
- University of Arizona Cancer Center, 1515 N. Campbell Ave, Tucson, AZ 85724 USA
| |
Collapse
|
11
|
Nicotine promotes breast cancer metastasis by stimulating N2 neutrophils and generating pre-metastatic niche in lung. Nat Commun 2021; 12:474. [PMID: 33473115 PMCID: PMC7817836 DOI: 10.1038/s41467-020-20733-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Smoking has a profound impact on tumor immunity, and nicotine, which is the major addictive component of smoke, is known to promote tumor progression despite being a non-carcinogen. In this study, we demonstrate that chronic exposure of nicotine plays a critical role in the formation of pre-metastatic niche within the lungs by recruiting pro-tumor N2-neutrophils. This pre-metastatic niche promotes the release of STAT3-activated lipocalin 2 (LCN2), a secretory glycoprotein from the N2-neutrophils, and induces mesenchymal-epithelial transition of tumor cells thereby facilitating colonization and metastatic outgrowth. Elevated levels of serum and urine LCN2 is elevated in early-stage breast cancer patients and cancer-free females with smoking history, suggesting that LCN2 serve as a promising prognostic biomarker for predicting increased risk of metastatic disease in female smoker(s). Moreover, natural compound, salidroside effectively abrogates nicotine-induced neutrophil polarization and consequently reduced lung metastasis of hormone receptor-negative breast cancer cells. Our findings suggest a pro-metastatic role of nicotine-induced N2-neutrophils for cancer cell colonization in the lungs and illuminate the therapeutic use of salidroside to enhance the anti-tumor activity of neutrophils in breast cancer patients. Smoking is known to impact tumor immunity and promote tumor progression. Here, the authors show that chronic nicotine exposure promotes the lung pre-metastatic niche formation by recruiting pro-tumor N2-neutrophils that release lipocalin-2.
Collapse
|
12
|
Delgado GE, Krämer BK, März W, Hellstern P, Kleber ME, Leipe J. Immune Status and Mortality in Smokers, Ex-smokers, and Never-Smokers: The Ludwigshafen Risk and Cardiovascular Health Study. Nicotine Tob Res 2021; 23:1191-1198. [PMID: 33460442 DOI: 10.1093/ntr/ntab011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/14/2021] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Elevated leukocyte counts are associated with cardiovascular disease. Smoking induces inflammation and alters levels of leukocyte subtypes. AIMS AND METHODS Our aim was to investigate the effect of smoking on circulating immune cells and their association with mortality. Lymphocyte subtypes were identified by flow cytometry of fluorescent-labeled cells. We analyzed the association of leukocytes with mortality using Cox regression and assessed their effect on risk prediction based on principle components (PCs) using area under the receiver operating characteristic curve and net-reclassification in 2173 participants from the Ludwigshafen Risk and Cardiovascular Health Study, a prospective case-control study in patients who underwent coronary angiography. RESULTS The numbers of T cells, monocytes, and neutrophils were higher and natural killer cells were lower in smokers compared with never-smokers. In never-smokers, lymphocyte counts were inversely associated with mortality while a positive association was observed for neutrophils. The neutrophil-to-lymphocyte ratio (NLR) had the strongest association in never-smokers with a hazard ratio (95% confidence interval) of 1.43 (1.26-1.61). No associations were found in smokers. Adding the first five PCs or the NLR to a risk prediction model based on conventional risk factors did not improve risk prediction in smokers, but significantly increased the area under the curve from 0.777 to 0.801 and 0.791, respectively, in never-smokers. CONCLUSIONS Lymphocyte counts were inversely associated with mortality in never-smokers but not in active smokers. Markers of innate immunity, namely total neutrophils and CD11b+/CD18+ and CD31+/CD40- granulocytes, were directly associated with mortality. Adding markers of immune function like PCs or the NLR to basic risk models improved risk prediction in never-smokers only. IMPLICATIONS Total leukocyte counts were higher in active smokers as compared to never-smokers due to elevated counts of neutrophils and monocytes but declined in ex-smokers with increasing time since quitting. In the never-smokers but not in smokers, lymphocyte counts were inversely associated with mortality while there was a direct association with neutrophils, even after adjustment for conventional cardiovascular risk factors. Adding markers of immune function to basic risk models improved risk prediction in never-smokers only. Our data indicate that smoking status has an important impact on the ability of leukocyte counts to predict long-term cardiovascular outcomes.
Collapse
Affiliation(s)
- Graciela E Delgado
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Bernhard K Krämer
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,European Center for Angioscience ECAS, Medical Faculty Mannheim of the University Heidelberg, Mannheim, Germany
| | - Winfried März
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria.,SYNLAB Academy, SYNLAB Holding Deutschland GmbH, Augsburg and Mannheim, Germany
| | - Peter Hellstern
- Center of Hemostasis and Thrombosis Zurich, Zurich, Switzerland
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,SYNLAB MVZ für Humangenetik Mannheim GmbH, Mannheim, Germany
| | - Jan Leipe
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Internal Medicine IV, Division of Rheumatology and Clinical Immunology, University of Munich, Munich, Germany
| |
Collapse
|
13
|
Li J, Li H, Zhang C, Zhang C, Wang H. Integrative analysis of genomic alteration, immune cells infiltration and prognosis of lung squamous cell carcinoma (LUSC) to identify smoking-related biomarkers. Int Immunopharmacol 2020; 89:107053. [PMID: 33045568 DOI: 10.1016/j.intimp.2020.107053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
Lung squamous cell carcinoma (LUSC) is the most common histologic type of smoking-related non-small cell lung cancer (NSCLC). However, there are no identified potential biomarkers for smoking-related LUSC diagnosis and prognosis. Especially, the characteristics of genetic alteration and tumor microenvironment induced by cigarette smoking remain unknown. Here, we performed integrative analysis of 463 LUSC with smoking history information from The Cancer Genome Atlas (TCGA). Non-smokers had the best prognosis, and current reformed smokers had better overall survival (OS) than current smokers in all and stage I-II cohort. Then, pathway enrichment analysis might suggest that smoking may play a role in regulating tumor metabolism and invasion and metastasis via those pathways. We constructed an eight-gene signature and identified WNT7A, Solute carrier-7A5 (SLC7A5) and Brain‑type glycogen phosphorylase (PYGB), which may be served as biomarkers related to the smoking. Notably, the single copy deletion of WNT7A and SLC17A5 and the low-level amplification of PYGB may be related to the epigenetic mechanism of smoking on tumorigenesis. We also estimated the relative proportion of 24 immune cell subtypes within tumor microenvironment in different smoking status. Interestingly, we found NK cells activated, NK cells resting and endothelial cells might play an important role in immunologic dysfunction and harmful tumor microenvironment induced by cigarette smoking. Our research has identified potential biomarkers for smoking-related LUSC diagnosis and prognosis, which would help to further understand the pathogenesis of LUSC.
Collapse
Affiliation(s)
- Jia Li
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Huahua Li
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai 200032, China
| | - Chenxing Zhang
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China.
| |
Collapse
|
14
|
Olloquequi J. COVID-19 Susceptibility in chronic obstructive pulmonary disease. Eur J Clin Invest 2020; 50:e13382. [PMID: 32780415 PMCID: PMC7435530 DOI: 10.1111/eci.13382] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
In barely nine months, the pandemic known as COVID-19 has spread over 200 countries, affecting more than 22 million people and causing over than 786 000 deaths. Elderly people and patients with previous comorbidities such as hypertension and diabetes are at an increased risk to suffer a poor prognosis after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although the same could be expected from patients with chronic obstructive pulmonary disease (COPD), current epidemiological data are conflicting. This could lead to a reduction of precautionary measures in these patients, in the context of a particularly complex global health crisis. Most COPD patients have a long history of smoking or exposure to other harmful particles or gases, capable of impairing pulmonary defences even years after the absence of exposure. Moreover, COPD is characterized by an ongoing immune dysfunction, which affects both pulmonary and systemic cellular and molecular inflammatory mediators. Consequently, increased susceptibility to viral respiratory infections have been reported in COPD, often worsened by bacterial co-infections and leading to serious clinical outcomes. The present paper is an up-to-date review that discusses the available research regarding the implications of coronavirus infection in COPD. Although validation in large studies is still needed, COPD likely increases SARS-CoV-2 susceptibility and increases COVID-19 severity. Hence, specific mechanisms to monitor and assess COPD patients should be addressed in the current pandemic.
Collapse
Affiliation(s)
- Jordi Olloquequi
- Laboratory of Cellular and Molecular PathologyFacultad de Ciencias de la SaludInstituto de Ciencias BiomédicasUniversidad Autónoma de ChileTalcaChile
| |
Collapse
|
15
|
Differences in biomarkers of inflammation and immune responses in chronic smokers and moist snuff users. Cytokine 2020; 137:155299. [PMID: 33011400 DOI: 10.1016/j.cyto.2020.155299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Cigarette smoking is a major risk factor for cancer and other diseases. While smoking induces chronic inflammation and aberrant immune responses, the effects of smokeless tobacco products (STPs) on immune responses is less clear. Here we evaluated markers related to immune regulation in smokers (SMK), moist snuff consumers (MSC) and non-tobacco consumers (NTC) to better understand the effects of chronic tobacco use. MATERIALS AND METHODS Several markers associated with immune regulation were measured in peripheral blood mononuclear cells (PBMCs) from SMK (n = 40), MSC (n = 40), and NTC (n = 40) by flow cytometry. RESULTS Relative to NTC, seven markers were significantly suppressed in SMK, whereas in MSC, only one marker was significantly suppressed. In a logistic regression model, markers including granzyme B+ lymphocytes, perforin+ lymphocytes, granzyme B+ CD8+T cells, and KLRB1+ CD8+ T cells remained as statistically significant predictors for classifying the three cohorts. Further, cell-surface receptor signaling pathways and cell-cell signaling processes were downregulated in SMK relative to MSC; chemotaxis and LPS-mediated signaling pathways, were upregulated in SMK compared to MSC. A network of the tested markers was constructed to visualize the immunosuppression in SMK relative to MSC. CONCLUSION Moist snuff consumption is associated with significantly fewer perturbations in inflammation and immune function biomarkers relative to smoking. IMPACT This work identifies several key immunological biomarkers that differentiate the effects of chronic smoking from the use of moist snuff. Additionally, a molecular basis for aberrant immune responses that could render smokers more susceptible for infections and cancer is provided.
Collapse
|
16
|
Salhi L, Albert A, Seidel L, Lambert F. Respective Effects of Oral Hygiene Instructions and Periodontal Nonsurgical Treatment (Debridement) on Clinical Parameters and Patient-Reported Outcome Measures with Respect to Smoking. J Clin Med 2020; 9:E2491. [PMID: 32756385 PMCID: PMC7464916 DOI: 10.3390/jcm9082491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Oral hygiene instructions (OHI) and periodontal nonsurgical treatment (PNST) play pivotal roles in the management of periodontitis. The study aims to discern their respective effects on periodontal clinical parameters and patient-reported outcome measures (PROMs). METHODS Ninety-one patients were included, 34 non-smokers (NS), 25 former smokers (FS) and 32 current smoker (CS). Clinical parameters such as probing depth (PD) and bleeding on probing (BOP) were collected, and the periodontal inflamed tissue area (PISA) was calculated. Clinical parameters and PROMs were recorded before and after receiving OHI, with electronic tooth brush and interdental brushes, as well as 3 months after debridement. RESULTS Smokers presented a significantly higher proportion of severe periodontitis (64.7%) with generalized extension (76.5%) and with a rapid rate of progression (97.1%) compared to NS and FS. OHI led to a significant decrease of PD, BOP, and PISA (p < 0.0001) only in NS and FS. Debridement reduced PD and the percentage of PD >6 mm in all groups (p < 0.0001). OHI induced significant improvement of oral hygiene, frequency of interdental cleaning, and PROMs (p < 0.0001). Further debridement induced significant additional improvement PROMs in FS and NS (p < 0.0001). CONCLUSION OHI and debridement improved periodontal clinical parameters and PROMs in both NS and FS. Former smokers had comparable outcomes to non-smokers, suggesting that smoking cessation should be encouraged.
Collapse
Affiliation(s)
- Leila Salhi
- Department of Periodontology and Oral Surgery, Faculty of Medicine, University of Liège, 4000 Liège, Belgium
| | - Adelin Albert
- Department of Public Health Sciences, University of Liège, 4000 Liège, Belgium;
| | - Laurence Seidel
- Department of Biostatistics and Medico-economic information, University of Liège, 4000 Liège, Belgium;
| | - France Lambert
- Dental Biomaterials Research Unit, Department of Periodontology and Oral Surgery, Faculty of Medicine, University of Liège, 4000 Liège, Belgium;
| |
Collapse
|
17
|
Fujiyoshi K, Chen Y, Haruki K, Ugai T, Kishikawa J, Hamada T, Liu L, Arima K, Borowsky J, Väyrynen JP, Zhao M, Lau MC, Gu S, Shi S, Akimoto N, Twombly TS, Drew DA, Song M, Chan AT, Giovannucci EL, Meyerhardt JA, Fuchs CS, Nishihara R, Lennerz JK, Giannakis M, Nowak JA, Zhang X, Wu K, Ogino S. Smoking Status at Diagnosis and Colorectal Cancer Prognosis According to Tumor Lymphocytic Reaction. JNCI Cancer Spectr 2020; 4:pkaa040. [PMID: 32923934 PMCID: PMC7477375 DOI: 10.1093/jncics/pkaa040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Smoking has been associated with worse colorectal cancer patient survival and may potentially suppress the immune response in the tumor microenvironment. We hypothesized that the prognostic association of smoking behavior at colorectal cancer diagnosis might differ by lymphocytic reaction patterns in cancer tissue. METHODS Using 1474 colon and rectal cancer patients within 2 large prospective cohort studies (Nurses' Health Study and Health Professionals Follow-up Study), we characterized 4 patterns of histopathologic lymphocytic reaction, including tumor-infiltrating lymphocytes (TILs), intratumoral periglandular reaction, peritumoral lymphocytic reaction, and Crohn's-like lymphoid reaction. Using covariate data of 4420 incident colorectal cancer patients in total, an inverse probability weighted multivariable Cox proportional hazards regression model was conducted to adjust for selection bias due to tissue availability and potential confounders, including tumor differentiation, disease stage, microsatellite instability status, CpG island methylator phenotype, long interspersed nucleotide element-1 methylation, and KRAS, BRAF, and PIK3CA mutations. RESULTS The prognostic association of smoking status at diagnosis differed by TIL status. Compared with never smokers, the multivariable-adjusted colorectal cancer-specific mortality hazard ratio for current smokers was 1.50 (95% confidence interval = 1.10 to 2.06) in tumors with negative or low TIL and 0.43 (95% confidence interval = 0.16 to 1.12) in tumors with intermediate or high TIL (2-sided P interaction = .009). No statistically significant interactions were observed in the other patterns of lymphocytic reaction. CONCLUSIONS The association of smoking status at diagnosis with colorectal cancer mortality may be stronger for carcinomas with negative or low TIL, suggesting a potential interplay of smoking and lymphocytic reaction in the colorectal cancer microenvironment.
Collapse
Affiliation(s)
- Kenji Fujiyoshi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Surgery, Kurume University, Kurume, Fukuoka, Japan
| | - Yang Chen
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Junko Kishikawa
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Tsuyoshi Hamada
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Li Liu
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer Borowsky
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Juha P Väyrynen
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Melissa Zhao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Simeng Gu
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Shanshan Shi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Tyler S Twombly
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, CT, USA
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
- Smilow Cancer Hospital, New Haven, CT, USA
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|
18
|
Jiang C, Chen Q, Xie M. Smoking increases the risk of infectious diseases: A narrative review. Tob Induc Dis 2020; 18:60. [PMID: 32765200 PMCID: PMC7398598 DOI: 10.18332/tid/123845] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 01/17/2023] Open
Abstract
Smoking is relevant to infectious diseases resulting in increased prevalence and mortality. In this article, we aim to provide an overview of the effects of smoking in various infections and to explain the potential mechanisms. We searched PubMed and other relevant databases for scientific studies that explored the relationship between smoking and infection. The mechanisms of susceptibility to infection in smokers may include alteration of the structural, functional and immunologic host defences. Smoking is one of the main risk factors for infections in the respiratory tract, digestive tract, reproductive tract, and other systems in humans, increasing the prevalence of HIV, tuberculosis, SARS-CoV, and the current SARS-CoV-2. Smoking cessation can reduce the risk of infection. Smoking increases the incidence of infections and aggravates the progress and prognosis of infectious diseases in a dose-dependent manner. Smoking cessation promotion and education are the most practical and economical preventive measures to reduce aggravation of disease infection owing to tobacco use.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Gerontology and Respirology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Chen
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Mingxuan Xie
- Department of Gerontology and Respirology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Osborne AJ, Pearson JF, Noble AJ, Gemmell NJ, Horwood LJ, Boden JM, Benton MC, Macartney-Coxson DP, Kennedy MA. Genome-wide DNA methylation analysis of heavy cannabis exposure in a New Zealand longitudinal cohort. Transl Psychiatry 2020; 10:114. [PMID: 32321915 PMCID: PMC7176736 DOI: 10.1038/s41398-020-0800-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Cannabis use is of increasing public health interest globally. Here we examined the effect of heavy cannabis use, with and without tobacco, on genome-wide DNA methylation in a longitudinal birth cohort (Christchurch Health and Development Study, CHDS). A total of 48 heavy cannabis users were selected from the CHDS cohort, on the basis of their adult exposure to cannabis and tobacco, and DNA methylation assessed from whole blood samples, collected at approximately age 28. Methylation in heavy cannabis users was assessed, relative to non-users (n = 48 controls) via the Illumina Infinium® MethylationEPIC BeadChip. We found the most differentially methylated sites in cannabis with tobacco users were in the AHRR and F2RL3 genes, replicating previous studies on the effects of tobacco. Cannabis-only users had no evidence of differential methylation in these genes, or at any other loci at the epigenome-wide significance level (P < 10-7). However, there were 521 sites differentially methylated at P < 0.001 which were enriched for genes involved in neuronal signalling (glutamatergic synapse and long-term potentiation) and cardiomyopathy. Further, the most differentially methylated loci were associated with genes with reported roles in brain function (e.g. TMEM190, MUC3L, CDC20 and SP9). We conclude that the effects of cannabis use on the mature human blood methylome differ from, and are less pronounced than, the effects of tobacco use, and that larger sample sizes are required to investigate this further.
Collapse
Affiliation(s)
- Amy J. Osborne
- grid.21006.350000 0001 2179 4063School of Biological Sciences, University of Canterbury, Christchurch, 8041 New Zealand
| | - John F. Pearson
- grid.29980.3a0000 0004 1936 7830Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, 8011 New Zealand
| | - Alexandra J. Noble
- grid.21006.350000 0001 2179 4063School of Biological Sciences, University of Canterbury, Christchurch, 8041 New Zealand
| | - Neil J. Gemmell
- grid.29980.3a0000 0004 1936 7830Department of Anatomy, Otago School of Medical Sciences, University of Otago, Dunedin, 9054 New Zealand
| | - L. John Horwood
- grid.29980.3a0000 0004 1936 7830Department of Psychological Medicine, University of Otago Christchurch, Christchurch, 8011 New Zealand
| | - Joseph M. Boden
- grid.29980.3a0000 0004 1936 7830Department of Psychological Medicine, University of Otago Christchurch, Christchurch, 8011 New Zealand
| | - Miles C. Benton
- grid.419706.d0000 0001 2234 622XHuman Genomics, Institute of Environmental Science and Research, Kenepuru Science Centre, Porirua, 5240 New Zealand
| | - Donia P. Macartney-Coxson
- grid.419706.d0000 0001 2234 622XHuman Genomics, Institute of Environmental Science and Research, Kenepuru Science Centre, Porirua, 5240 New Zealand
| | - Martin A. Kennedy
- grid.29980.3a0000 0004 1936 7830Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, 8011 New Zealand
| |
Collapse
|
20
|
Mimpen M, Smolders J, Hupperts R, Damoiseaux J. Natural killer cells in multiple sclerosis: A review. Immunol Lett 2020; 222:1-11. [PMID: 32113900 DOI: 10.1016/j.imlet.2020.02.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
As the most common non-traumatic disabling disease among adolescents, multiple sclerosis (MS) is a devastating neurological inflammatory disease of the central nervous system. Research has not yet fully elucidated its pathogenesis, but it has shown MS to be a complex, multifactorial disease with many interplaying factors. One of these factors, natural killer (NK) cells, lymphocytes of the innate immune system, have recently gained attention due to the effects of daclizumab therapy, causing an expansion of the immunoregulatory subset of NK cells. Since then, NK cells and their relation to MS have been the focus of research, with many new findings being published in the last decade. In this review, NK cells are pictured as potent cytotoxic killers, as well as unique immune-regulators. Additionally, an overview of our current knowledge regarding NK cells in MS is given. The role of NK cells in MS is reviewed in the context of well-established environmental factors and current disease modifying therapies to gain further understanding of the pathogenesis and treatment options in MS.
Collapse
Affiliation(s)
- Max Mimpen
- School for Mental Health and Neuroscience, University of Maastricht, Maastricht The Netherlands
| | - Joost Smolders
- Department of Neurology, Erasmus University Medical Center, Rotterdam The Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam The Netherlands
| | - Raymond Hupperts
- School for Mental Health and Neuroscience, University of Maastricht, Maastricht The Netherlands; Department of Neurology, Zuyderland Medical Center, Sittard The Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht The Netherlands.
| |
Collapse
|
21
|
Ishikawa Y, Terao C. The Impact of Cigarette Smoking on Risk of Rheumatoid Arthritis: A Narrative Review. Cells 2020; 9:cells9020475. [PMID: 32092988 PMCID: PMC7072747 DOI: 10.3390/cells9020475] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and subsequent proliferation of synovial tissues, which eventually leads to cartilage and bone destruction without effective treatments. Anti-citrullinated cyclic peptide/protein antibody (ACPA) and rheumatoid factor (RF) are two main characteristic autoantibodies found in RA patients and are associated with unfavorable disease outcomes. Although etiologies and causes of the disease have not been fully clarified yet, it is likely that interactive contributions of genetic and environmental factors play a main role in RA pathology. Previous works have demonstrated several genetic and environmental factors as risks of RA development and/or autoantibody productions. Among these, cigarette smoking and HLA-DRB1 are the well-established environmental and genetic risks, respectively. In this narrative review, we provide a recent update on genetic contributions to RA and the environmental risks of RA with a special focus on cigarette smoking and its impacts on RA pathology. We also describe gene–environmental interaction in RA pathogenesis with an emphasis on cigarette smoking and HLA-DRB1.
Collapse
Affiliation(s)
- Yuki Ishikawa
- Section for Immunobiology, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA;
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Clinical Research Center, Shizuoka General Hospital, 4 Chome-27-1 Kitaando, Aoi Ward, Shizuoka 420-8527, Japan
- Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- Correspondence: ; Tel.: +81-(0)45-503-9121
| |
Collapse
|
22
|
Brambilla I, Manti S, Savasta S, Valsecchi C, Caimmi SME, Marseglia GL, Licari A. Adenoidal Immune Response in the Context of Inflammation and Allergy. CURRENT RESPIRATORY MEDICINE REVIEWS 2020. [DOI: 10.2174/1573398x15666190703110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:The mucosal-associated lymphoid tissues of the upper respiratory tract, including adenoids and palatine tonsils, are considered as the first line of defense against respiratory infections, being important effector organs in both mucosal-type and systemic-type adaptive immunity. They are strategically located for mediating both local and regional immune functions, as they are exposed to antigens from both the inhaled air (allergens and pathogens) and the alimentary tract. Adenoids play a major role in the early and effective immune responses against viral and bacterial upper airway infections, as well as in the development of allergic reactions to respiratory allergens, being influenced by several environmental antigens and pollutants, such as tobacco smoke. In addition, recent studies have focused on new immune-modulating strategies for adenoidal cells as a preventive and therapeutic approach for chronic upper airways inflammation.:Herein, we aimed to summarize what is known about the cellular and molecular mechanisms regulating adenoidal immune responses in the context of inflammation and allergy, with particular reference to scientific literature published within the last five years.
Collapse
Affiliation(s)
- Ilaria Brambilla
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Sara Manti
- Department of Pediatrics, University of Messina, Messina, Italy
| | - Salvatore Savasta
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Valsecchi
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Gian Luigi Marseglia
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Amelia Licari
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
23
|
Giotopoulou GA, Stathopoulos GT. Effects of Inhaled Tobacco Smoke on the Pulmonary Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:53-69. [PMID: 32030647 DOI: 10.1007/978-3-030-35727-6_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tobacco smoke is a multicomponent mixture of chemical, organic, and inorganic compounds, as well as additive substances and radioactive materials. Many studies have proved the carcinogenicity of various of these compounds through the induction of DNA adducts, mutational potential, epigenetic changes, gene fusions, and chromosomal events. The tumor microenvironment plays an important role in malignant tumor formation and progression through the regulation of expression of key molecules which mediate the recruitment of immune cells to the tumor site and subsequently regulate tumor growth and metastasis. In this chapter, we discuss the effects of inhaled tobacco smoke in the tumor microenvironment of the respiratory tract. The mechanisms underlying these effects as well as their link with tumor progression are analyzed.
Collapse
Affiliation(s)
- Georgia A Giotopoulou
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany.
- Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, Rio, Greece.
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
- Laboratory for Molecular Respiratory Carcinogenesis, Faculty of Medicine, University of Patras, Rio, Greece
| |
Collapse
|
24
|
Chua MHY, Ng IAT, W L-Cheung M, Mak A. Association Between Cigarette Smoking and Systemic Lupus Erythematosus: An Updated Multivariate Bayesian Metaanalysis. J Rheumatol 2019; 47:1514-1521. [PMID: 31787611 DOI: 10.3899/jrheum.190733] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2019] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The association between cigarette smoking and the risk of systemic lupus erythematosus (SLE) remains a matter for debate. Additionally, the effect of the change of smokers' demographics on the risk of development of SLE over time has not been formally addressed. We aimed to examine the association between cigarette smoking and the risk of SLE by performing an updated metaanalysis. METHODS A literature search using keywords including "lupus," "smoking," "cigarette," "environmental," "autoimmune," and "connective tissue disease" was performed in computerized databases to identify studies addressing the relationship between cigarette smoking and SLE occurrence. A Bayesian metaanalysis was conducted by computing the log-OR between current and never smokers, and between former and never smokers. The average log-OR (subsequently converted to OR) and their corresponding 95% credible intervals (CrI) were calculated. The effect of publication time, sex, and age of patients with SLE on the effect sizes was examined by multivariate metaregression. RESULTS Data aggregation of 12 eligible studies comprising 3234 individuals who developed SLE and 288,336 control subjects revealed a significant association between SLE occurrence and current smoking status (OR 1.54, 95% CrI 1.06-2.25), while only a non-significant trend was demonstrated between SLE occurrence and former smoking status (OR 1.39, 95% CrI 0.95-2.08). Publication time, sex, and the mean age of patients with SLE did not explain the heterogeneity of the effect sizes. CONCLUSION Current smoking status is associated with risk of SLE. Sex and age of patients with SLE had no significant effect on the risk of SLE over time.
Collapse
Affiliation(s)
- Monica Hui Yan Chua
- M.H. Chua, MBBS, I.A. Ng, MBBS, Division of Rheumatology, Department of Medicine, National University of Singapore
| | - Irene Ai Ting Ng
- M.H. Chua, MBBS, I.A. Ng, MBBS, Division of Rheumatology, Department of Medicine, National University of Singapore
| | - Mike W L-Cheung
- M.W. Cheung, PhD, Department of Psychology, Faculty of Arts and Social Sciences, National University of Singapore
| | - Anselm Mak
- A. Mak, MMedSc, MBBS, PhD, MD, FRCP, FRCPI, Division of Rheumatology, Department of Medicine, National University of Singapore, and University Medicine Cluster, National University Health System, Singapore.
| |
Collapse
|
25
|
Alidoost S, Habibi M, Noormohammadi Z, Hosseini J, Azargashb E, Pouresmaeili F. Association between tumor necrosis factor-alpha gene rs1800629 (-308G/A) and rs361525 (-238G > A) polymorphisms and prostate cancer risk in an Iranian cohort. Hum Antibodies 2019; 28:65-74. [PMID: 31594215 DOI: 10.3233/hab-190397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Prostate cancer (PCa) as the first men's common cancer in the world and the third cancer in Iranian men is a heterogeneous disorder which sometimes several biopsies are needed for its diagnosis. OBJECTIVES The aim of current study is finding new biomarkers in order to diagnose of PCa at the earliest possible stage. Hence, the relationship between rs1800629 and rs361525 polymorphisms of TNF-α gene with PCa was investigated. MATERIALS AND METHODS Blood DNA samples were collected from 100 patients with PCa, 110 with BPH, and 110 controls. Collected samples were examined using PCR-RFLP and Tetra-ARMS-PCR techniques to detect the desired polymorphisms. RESULTS The frequency of rs1800629 genotypes in smokers was significantly different from non-smokers with PCa (p= 0.001). Logistic regression analysis results showed that GA heterozygotes in comparison to GG homozygotes had higher risk of developing Benign Prostatic Hyperplasia (BPH) or prostate cancer. However, no significant correlation was considered between the risk of PCa and the TNF-α gene polymorphisms (rs1800629 and rs361525). CONCLUSIONS Although, the achieved results of this investigation demonstrated that the two examined genetic variants do not seem to be suitable markers for early diagnosis of prostate cancer in this pilot study; however increased risk for the disease is shown in GA heterozygotes and smokers which is indicative of some epigenetic factors influence on prostate cancer etiology.
Collapse
Affiliation(s)
- Saeideh Alidoost
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Habibi
- Central Laboratory, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Jalil Hosseini
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Eznollah Azargashb
- Department of Social Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pouresmaeili
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Cigarette smoke preparations, not moist snuff, impair expression of genes involved in immune signaling and cytolytic functions. Sci Rep 2019; 9:13390. [PMID: 31527707 PMCID: PMC6746724 DOI: 10.1038/s41598-019-48822-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/27/2019] [Indexed: 12/29/2022] Open
Abstract
Cigarette smoke-induced chronic inflammation is associated with compromised immune responses. To understand how tobacco products impact immune responses, we assessed transcriptomic profiles in peripheral blood mononuclear cells (PBMCs) pretreated with Whole Smoke-Conditioned Medium (WS-CM) or Smokeless Tobacco Extracts (STE), and stimulated with lipopolysaccharide, phorbol myristate and ionomycin (agonists). Gene expression profiles from PBMCs treated with low equi-nicotine units (0.3 μg/mL) of WS-CM and one high dose of STE (100 μg/mL) were similar to those from untreated controls. Cells treated with medium and high doses of WS-CM (1.0 and 3.0 μg/mL) exhibited significantly different gene expression profiles compared to the low WS-CM dose and STE. Pre-treatment with higher doses of WS-CM inhibited the expression of several pro-inflammatory genes (IFNγ, TNFα, and IL-2), while CSF1-R and IL17RA were upregulated. Pre-treatment with high doses of WS-CM abolished agonist-stimulated secretion of IFNγ, TNF and IL-2 proteins. Pathway analyses revealed that higher doses of WS-CM inhibited NF-ĸB signaling, immune cell differentiation and inflammatory responses, and increased apoptotic pathways. Our results show that pre-treatment of PBMCs with higher doses of WS-CM inhibits immune activation and effector cytokine expression and secretion, resulting in a reduced immune response, whereas STE exerted minimal effects.
Collapse
|
27
|
Affiliation(s)
- Nise H Yamaguchi
- Integrative Advances in Medicine, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
28
|
Choi SI, Lee SH, Park JY, Kim KA, Lee EJ, Lee SY, In KH. Clinical utility of a novel natural killer cell activity assay for diagnosing non-small cell lung cancer: a prospective pilot study. Onco Targets Ther 2019; 12:1661-1669. [PMID: 30881021 PMCID: PMC6398406 DOI: 10.2147/ott.s194473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose Although decreased natural killer cell activity (NKA) has been observed in many solid cancers, clinical implication of NKA has been scarcely investigated in lung cancer. The objective of this study was to evaluate the potential of using NKA to support diagnosis of non-small cell lung cancer (NSCLC). Materials and methods We prospectively evaluated and compared peripheral blood NKA using a novel interferon-gamma releasing assay in healthy population (n=40), patients with benign lung disease (n=40), and those with NSCLC (n=71). We explored the correlation between NKA and clinical parameters and assessed diagnostic performance of NKA for NSCLC using receiver operating characteristic curve analysis. Results Median NKA values in healthy population, patients with benign lung disease, and those with NSCLC were 1,364.2, 1,438.2, and 406.3 pg/mL, respectively. NKA in NSCLC patients was significantly lower than that in the other two control groups (both P<0.001). At a cutoff value of NKA at 391.0 pg/mL, the area under the curve was 0.762 (95% CI: 0.685–0.838, P<0.001), with a sensitivity of 52.3%, a specificity of 91.0%, a positive predictive value of 85.3%, and a negative predictive value of 65.4% for the diagnosis of NSCLC. Multivariate analysis demonstrated that diagnosis of NSCLC is the only clinical parameter that was significantly associated with NKA (P<0.001). Conclusion This pilot study showed that patients with low NKA were more likely to have lung cancer. Further studies are warranted in order to establish the clinical utility of NKA test for diagnosing lung cancer.
Collapse
Affiliation(s)
- Sue In Choi
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea,
| | - Seung Hyeun Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, South Korea
| | - Ji-Young Park
- Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine, Seoul, South Korea
| | - Kyoung-Ah Kim
- Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine, Seoul, South Korea
| | - Eun Joo Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea,
| | - Sang Yeub Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea,
| | - Kwang Ho In
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea,
| |
Collapse
|
29
|
Arimilli S, Makena P, Liu G, Prasad GL. Distinct gene expression changes in human peripheral blood mononuclear cells treated with different tobacco product preparations. Toxicol In Vitro 2019; 57:117-125. [PMID: 30776502 DOI: 10.1016/j.tiv.2019.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
Cigarette smoking exerts diverse physiological effects including immune suppression. To better characterize the biological effects of different categories of tobacco products, a genome-wide gene expression study was performed. Transcriptomic profiling was performed in PBMCs treated with different equi-nicotine units of aqueous extracts of cigarette smoke (termed Whole Smoke-Conditioned Medium, or WS-CM), or a single dose smokeless tobacco extract (STE) prepared from reference tobacco products. WS-CM induced dose-dependent changes in the expression of several genes. No significant expression differences between low WS-CM and media control were detected. However, transcripts were significantly affected by medium WS-CM (479), high WS-CM (2, 703), and STE (2, 156). The overlap between medium WS-CM and STE, and high WS-CM and STE, was minimal (34 and 65 transcripts, respectively). Hierarchical clustering revealed that gene expression profiles for STE and medium WS-CM co-clustered, while those affected by the high dose of WS-CM clustered distinctly. Functional analysis revealed that WS-CM, but not STE, uniquely affected genes involved in immune cell development and inflammatory response. Cascades of upstream regulators (e.g., TNF, IL1β, NFƙB) were identified for the observed gene expression changes and generally suppressed by WS-CM, but not by STE. Collectively, these findings demonstrate that combustible and non-combustible tobacco products elicit distinct biological effects, which could explain the observed chronic immune suppression in smokers.
Collapse
Affiliation(s)
| | - Patrudu Makena
- RAI Services Company, 401 North Main Street, Winston Salem, NC 27101, USA
| | - Gang Liu
- RAI Services Company, 401 North Main Street, Winston Salem, NC 27101, USA
| | - G L Prasad
- RAI Services Company, 401 North Main Street, Winston Salem, NC 27101, USA.
| |
Collapse
|
30
|
Finch DK, Stolberg VR, Ferguson J, Alikaj H, Kady MR, Richmond BW, Polosukhin VV, Blackwell TS, McCloskey L, Curtis JL, Freeman CM. Lung Dendritic Cells Drive Natural Killer Cytotoxicity in Chronic Obstructive Pulmonary Disease via IL-15Rα. Am J Respir Crit Care Med 2018; 198:1140-1150. [PMID: 29676596 PMCID: PMC6221577 DOI: 10.1164/rccm.201712-2513oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/19/2018] [Indexed: 02/02/2023] Open
Abstract
RATIONALE Lung natural killer cells (NKs) kill a greater percentage of autologous lung parenchymal cells in chronic obstructive pulmonary disease (COPD) than in nonobstructed smokers. To become cytotoxic, NKs require priming, typically by dendritic cells (DCs), but whether priming occurs in the lungs in COPD is unknown. METHODS We used lung tissue and in some cases peripheral blood from patients undergoing clinically indicated resections to determine in vitro killing of CD326+ lung epithelial cells by isolated lung CD56+ NKs. We also measured the cytotoxicity of unprimed blood NKs after preincubation with lung DCs. To investigate mechanisms of DC-mediated priming, we used murine models of COPD induced by cigarette smoke (CS) exposure or by polymeric immunoglobulin receptor (pIgR) deficiency, and blocked IL-15Rα (IL-15 receptor α subunit) trans-presentation by genetic and antibody approaches. RESULTS Human lung NKs killed isolated autologous lung epithelial cells; cytotoxicity was increased (P = 0.0001) in COPD, relative to smokers without obstruction. Similarly, increased lung NK cytotoxicity compared with control subjects was observed in CS-exposed mice and pIgR-/- mice. Blood NKs both from smokers without obstruction and subjects with COPD showed minimal epithelial cell killing, but in COPD, preincubation with lung DCs increased cytotoxicity. NKs were primed by CS-exposed murine DCs in vitro and in vivo. Inhibiting IL-15Rα trans-presentation eliminated NK priming both by murine CS-exposed DCs and by lung DCs from subjects with COPD. CONCLUSIONS Heightened NK cytotoxicity against lung epithelial cells in COPD results primarily from lung DC-mediated priming via IL-15 trans-presentation on IL-15Rα. Future studies are required to test whether increased NK cytotoxicity contributes to COPD pathogenesis.
Collapse
Affiliation(s)
- Donna K. Finch
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - Valerie R. Stolberg
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - John Ferguson
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - Henrih Alikaj
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Mohamed R. Kady
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Bradley W. Richmond
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Timothy S. Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
- Department of Cell and Developmental Biology and
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Lisa McCloskey
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Jeffrey L. Curtis
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan; and
- Pulmonary and Critical Care Medicine Section, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Christine M. Freeman
- Research Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan; and
| |
Collapse
|
31
|
Solak I, Marakoglu K, Pekgor S, Kargin NC, Gederet YT, Alatas N, Eryilmaz MA. Sigara bırakma sonrası sistemik inflamatuar ve nazal mukosilier yanıttaki değişiklikler. FAMILY PRACTICE AND PALLIATIVE CARE 2018. [DOI: 10.22391/fppc.474484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
32
|
Tobacco smoke and nicotine suppress expression of activating signaling molecules in human dendritic cells. Toxicol Lett 2018; 299:40-46. [PMID: 30227238 DOI: 10.1016/j.toxlet.2018.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/10/2018] [Accepted: 09/11/2018] [Indexed: 12/26/2022]
Abstract
Cigarette smoke has significant toxic effects on the immune system, and increases the risk of developing autoimmune diseases; one immunosuppressive effect of cigarette smoke is that it inhibits the T cell-stimulating, immunogenic properties of myeloid dendritic cells (DCs). As the functions of DCs are regulated by intra-cellular signaling pathways, we investigated the effects of cigarette smoke extract (CSE) and nicotine on multiple signaling molecules and other regulatory proteins in human DCs to elucidate the molecular basis of the inhibition of DC maturation and function by CSE and nicotine. Maturation of monocyte-derived DCs was induced with the TLR3-agonist poly I:C or with the TLR4-agonist lipopolysaccharide, in the absence or presence of CSE or nicotine. Reverse-phase protein microarray was used to quantify multiple signaling molecules and other proteins in cell lysates. Particularly in poly I:C-matured DCs, cigarette smoke constituents and nicotine suppressed the expression of signaling molecules associated with DC maturation and T cell stimulation, cell survival and cell migration. In conclusion, constituents of tobacco smoke suppress the immunogenic potential of DCs at the signaling pathway level.
Collapse
|
33
|
Arimilli S, Schmidt E, Damratoski BE, Prasad GL. Role of Oxidative Stress in the Suppression of Immune Responses in Peripheral Blood Mononuclear Cells Exposed to Combustible Tobacco Product Preparation. Inflammation 2018; 40:1622-1630. [PMID: 28577134 PMCID: PMC5587635 DOI: 10.1007/s10753-017-0602-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cigarette smoking is a major risk factor for several human diseases. Chronic inflammation, resulting from increased oxidative stress, has been suggested as a mechanism that contributes to the increased susceptibility of smokers to cancer and microbial infections. We have previously shown that whole-smoke conditioned medium (WS-CM) and total particulate matter (TPM) prepared from Kentucky 3R4F reference cigarettes [collectively called as combustible tobacco product preparations (TPPs)] potently suppressed agonist-stimulated cytokine secretion and target cell killing in peripheral blood mononuclear cells (PBMCs). Here we have investigated the role of oxidative stress from TPPs, which alters inflammatory responses in vitro. Particularly, we investigated the mechanisms of WS-CM-induced suppression of select cytokine secretions in Toll-like receptor (TLR) agonist-stimulated cells and target cell killing by effector cells in PBMCs. Pretreatment with N-acetyl cysteine (NAC), a precursor of reduced glutathione and an established anti-oxidant, protected against DNA damage and cytotoxicity caused by exposure to WS-CM. Similarly, secretion of tumor necrosis factor (TNF), interleukin (IL)-6, and IL-8 in response to TLR-4 stimulation was restored by pretreatment with NAC. Target cell killing, a functional measure of cytolytic cells in PBMCs, is suppressed by WS-CM. Pretreatment with NAC restored the target cell killing in WS-CM treated PBMCs. This was accompanied by higher perforin levels in the effector cell populations. Collectively, these data suggest that reducing oxidative stress caused by cigarette smoke components restores select immune responses in this ex vivo model.
Collapse
Affiliation(s)
- Subhashini Arimilli
- Department of Microbiology & Immunology, Wake Forest University Health Sciences, Room 2N-052, 575 Patterson Avenue, Winston-Salem, NC, 27101, USA.
| | | | - Brad E Damratoski
- Department of Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - G L Prasad
- RAI Services Company, Winston-Salem, NC, USA
| |
Collapse
|
34
|
Strzelak A, Ratajczak A, Adamiec A, Feleszko W. Tobacco Smoke Induces and Alters Immune Responses in the Lung Triggering Inflammation, Allergy, Asthma and Other Lung Diseases: A Mechanistic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1033. [PMID: 29883409 PMCID: PMC5982072 DOI: 10.3390/ijerph15051033] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023]
Abstract
Many studies have been undertaken to reveal how tobacco smoke skews immune responses contributing to the development of chronic obstructive pulmonary disease (COPD) and other lung diseases. Recently, environmental tobacco smoke (ETS) has been linked with asthma and allergic diseases in children. This review presents the most actual knowledge on exact molecular mechanisms responsible for the skewed inflammatory profile that aggravates inflammation, promotes infections, induces tissue damage, and may promote the development of allergy in individuals exposed to ETS. We demonstrate how the imbalance between oxidants and antioxidants resulting from exposure to tobacco smoke leads to oxidative stress, increased mucosal inflammation, and increased expression of inflammatory cytokines (such as interleukin (IL)-8, IL-6 and tumor necrosis factor α ([TNF]-α). Direct cellular effects of ETS on epithelial cells results in increased permeability, mucus overproduction, impaired mucociliary clearance, increased release of proinflammatory cytokines and chemokines, enhanced recruitment of macrophages and neutrophils and disturbed lymphocyte balance towards Th2. The plethora of presented phenomena fully justifies a restrictive policy aiming at limiting the domestic and public exposure to ETS.
Collapse
Affiliation(s)
- Agnieszka Strzelak
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| | - Aleksandra Ratajczak
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| | - Aleksander Adamiec
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| | - Wojciech Feleszko
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| |
Collapse
|
35
|
Aktaş ON, Öztürk AB, Erman B, Erus S, Tanju S, Dilege Ş. Role of natural killer cells in lung cancer. J Cancer Res Clin Oncol 2018; 144:997-1003. [PMID: 29616326 DOI: 10.1007/s00432-018-2635-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/28/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE One of the key immune cells involved in the pathogenesis of lung cancer is natural killer (NK) cells and these cells are novel targets for therapeutic applications in lung cancer. The purpose of this review is to summarize the current literature on lung cancer pathogenesis with a focus on the interaction between NK cells and smoking, how these factors are related to the pathogenesis of lung cancer and how NK cell-based immunotherapy effect lung cancer survival. METHODS The relevant literature from PubMed and Medline databases is reviewed in this article. RESULTS The cytolytic potential of NK cells are reduced in lung cancer and increasing evidence suggests that improving NK cell functioning may induce tumor regression. Recent clinical trials on NK cell-based novel therapies such as cytokines including interleukin (IL)-15, IL-12 and IL-2, NK-92 cell lines and allogenic NK cell immunotherapy showed promising results with less adverse effects on the lung cancer survival. CONCLUSIONS The NK cell targeting strategy has not yet been approved for lung cancer treatment. More clinical studies focusing on the role of NK cells in lung cancer pathogenesis are warranted to develop novel NK cell-based therapeutic approaches for the treatment of lung cancer.
Collapse
Affiliation(s)
- Ozge Nur Aktaş
- Feinberg School of Medicine, Center for Community Health, Northwestern University, Chicago, IL, USA
| | - Ayşe Bilge Öztürk
- Department of Allergy and Immunology, Koç University Hospital, Istanbul, Turkey.
| | - Baran Erman
- Koç University, School of Medicine, Translational Medicine Research Center, Istanbul, Turkey
| | - Suat Erus
- Department of Thoracic Surgery, Koç University Hospital, Istanbul, Turkey
| | - Serhan Tanju
- Department of Thoracic Surgery, Koç University Hospital, Istanbul, Turkey
| | - Şükrü Dilege
- Department of Thoracic Surgery, Koç University Hospital, Istanbul, Turkey
| |
Collapse
|
36
|
Hussain MS, Tripathi V. Smoking under hypoxic conditions: a potent environmental risk factor for inflammatory and autoimmune diseases. Mil Med Res 2018; 5:11. [PMID: 29598831 PMCID: PMC5877397 DOI: 10.1186/s40779-018-0158-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Autoimmune disease management presents a significant challenge to medical science. Environmental factors potentially increase the risk of developing inflammatory and autoimmune diseases, such as multiple sclerosis, rheumatoid arthritis, and lupus. Among various environmental stresses, cigarette smoke and hypoxia have both been reported to lead to an enhanced risk of inflammatory and autoimmune diseases.In this review, we shed light on all reported mechanisms whereby cigarette smoke and a hypoxic environment can induce inflammatory and autoimmune diseases and discuss how hypoxic conditions influence the cigarette smoke-induced threat of inflammatory and autoimmune disease development.Cigarette smoke and hypoxia both lead to increased oxidative stress and production of reactive oxygen species and other free radicals, which have various effects including the generation of autoreactive pro-inflammatory T cells and autoantibodies, reductions in T regulatory (Treg) cell activity, and enhanced expression of pro-inflammatory mediators [e.g., interleukin-6 (IL-6), interleukin-4 (IL-4) and interleukin-8 (IL-8)]. Accordingly, smoking and hypoxic environments may synergistically act as potent environmental risk factors for inflammatory and autoimmune diseases. To our knowledge, no studies have reported the direct association of cigarette smoke and hypoxic environments with the risk of developing inflammatory and autoimmune diseases.Future studies exploring the risk of autoimmune disease development in smokers at high altitudes, particularly military personnel and mountaineers who are not acclimatized to high-altitude regions, are required to obtain a better understanding of disease risk as well as its management.
Collapse
Affiliation(s)
- Md. Saddam Hussain
- School of Biotechnology, Gautam Buddha University, Greater Noida, Gautam Budh Nagar, Uttar Pradesh 201312 India
| | - Vishwas Tripathi
- School of Biotechnology, Gautam Buddha University, Greater Noida, Gautam Budh Nagar, Uttar Pradesh 201312 India
| |
Collapse
|
37
|
Tsao TM, Tsai MJ, Hwang JS, Cheng WF, Wu CF, Chou CCK, Su TC. Health effects of a forest environment on natural killer cells in humans: an observational pilot study. Oncotarget 2018; 9:16501-16511. [PMID: 29662662 PMCID: PMC5893257 DOI: 10.18632/oncotarget.24741] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/01/2018] [Indexed: 12/24/2022] Open
Abstract
Health effect assessments based on natural killer (NK) cells are an important emerging area of human health. We recruited 90 forest staff members in Xitou, Taiwan and 110 urban staff members in Taipei to investigate the health effects of forest environment exposure on NK cells (CD3−/CD56+) and activating NK cells (CD3−/CD56+/CD69+) in humans. We also invited 11 middle-aged volunteers in a pilot study to participate in a five-day/four-night forest trip to Xitou forest to investigate the health effects of a forest trip on NK cells and activating NK cells. Results showed that NK cells were higher in the forest group (19.5 ± 9.1%) than in the urban group (16.4 ± 8.4%). In particular, the percentage of NK cells was significantly higher in the forest group than in the urban group among the subgroups of male, a higher body mass index (≥ 25 kg/m2), without hypertension, lower high-sensitivity C-reactive protein, hyperglycemia, without smoking habit, and with tea drinking habit. After the five-day trip in Xitou forest, the percentage of activating NK cells of the invited participants from Taipei increased significantly after the trip to Xitou forest (0.83 ± 0.39% vs. 1.72 ± 0.1%). The percentage of activating NK cells was 1.13 ± 0.43%, which was higher than the baseline value of 0.77 ± 0.38% before the forest trip among the seven subjects who participated in the follow-up study four days after returning to Taipei. This study suggests that exposure to forest environments might enhance the immune response of NK cells and activating NK cells in humans.
Collapse
Affiliation(s)
- Tsung-Ming Tsao
- The Experimental Forest, National Taiwan University, Nantou, Taiwan
| | - Ming-Jer Tsai
- The Experimental Forest, National Taiwan University, Nantou, Taiwan.,School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | | | - Wen-Fang Cheng
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang-Fu Wu
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Charles-C K Chou
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ta-Chen Su
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
38
|
Bandil K, Singhal P, Dogra A, Rawal SK, Doval DC, Varshney AK, Bharadwaj M. Association of SNPs/haplotypes in promoter of TNF A and IL-10 gene together with life style factors in prostate cancer progression in Indian population. Inflamm Res 2017; 66:1085-1097. [PMID: 28993831 DOI: 10.1007/s00011-017-1088-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/03/2017] [Accepted: 08/22/2017] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Levels of proinflammatory (TNF A) and anti-inflammatory (IL-10) cytokines play a key role in the progression of inflammation as well as cancer disease. We were investigating the potential association of single-nucleotide polymorphisms (SNPs)/haplotypes in proinflammatory (TNF A) and anti-inflammatory (IL-10) cytokines locus with the development of PCa in Indian population. MATERIALS AND METHODS We had genotyped 235 BPH/PCa samples (130 BPH and 105 cancer) along with 115 control samples for proinflammatory (TNF A -238G/A and -308G/A) and anti-inflammatory (IL-10 -1082A/G, -819C/T and -592C/A) cytokines SNPs in the gene promoter region using ARMS-PCR method. RESULTS Allelic frequencies of TNF A and IL-10 SNPs were found to be significantly associated with the risk of prostate cancer and BPH when compared to controls (p = 0.05). Further haplotypic analysis showed that two haplotypes of TNF A (AG and AA) and IL-10 gene (CCG and CTG) were serving as risk haplotypes for prostate cancer development. IL-10 risk haplotypes were found to be positively associated with aggressiveness of prostate cancer. We also noticed successively increasing percentage of TNF A and IL-10 risk haplotypes with life style habits like smoking (10 and 26%) and alcohol consuming (9 and 27%). CONCLUSIONS According to our data, TNF A -238G>A and IL-10 -1082A>G, -819C>T and -592C>A may be associated with the development of prostate cancer and BPH. We could also notice higher frequency of TNF A and IL-10 risk haplotypes in smoker and alcohol user. Interestingly, IL-10 risk haplotype was positively associated with aggressiveness of tumor. This information can be used for the early diagnosis of disease and to improve tissue-specific treatment's efficacy which will be moving ultimately towards the discovery of personalized therapy.
Collapse
Affiliation(s)
- Kapil Bandil
- Division of Molecular Genetics and Biochemistry, National Institute of Cancer Prevention and Research (ICMR), I-7, Sector-39, Noida, 201301, India.,Dr. A.P.J. Abdul Kalam Technical University, Lucknow, UP, India
| | - Pallavi Singhal
- Division of Molecular Genetics and Biochemistry, National Institute of Cancer Prevention and Research (ICMR), I-7, Sector-39, Noida, 201301, India
| | - Atika Dogra
- Research Department, Rajiv Gandhi Cancer Institute and Research Centre, Rohini, New Delhi, India
| | - Sudhir K Rawal
- Surgical Gynae Uro-Oncology, Rajiv Gandhi Cancer Institute and Research Centre, Rohini, New Delhi, India
| | - D C Doval
- Medical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, Rohini, New Delhi, India
| | - Anil K Varshney
- R. G. Stone Urology and Laparoscopy Hospital, New Delhi, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics and Biochemistry, National Institute of Cancer Prevention and Research (ICMR), I-7, Sector-39, Noida, 201301, India. .,Dr. A.P.J. Abdul Kalam Technical University, Lucknow, UP, India.
| |
Collapse
|
39
|
Ponce-Gallegos MA, Ramírez-Venegas A, Falfán-Valencia R. Th17 profile in COPD exacerbations. Int J Chron Obstruct Pulmon Dis 2017; 12:1857-1865. [PMID: 28694696 PMCID: PMC5491572 DOI: 10.2147/copd.s136592] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
COPD is characterized by an ongoing inflammatory process of the airways that leads to obstruction or limitation of airflow. It is mainly associated with exposure to cigarette smoke. In addition, it is considered, at present, a serious public health problem, ranking fourth in mortality worldwide. Many cells participate in the pathophysiology of COPD, the most important are neutrophils, macrophages and CD4+ and CD8+ T cells. Neutrophil migration to the inflammation area could be mediated largely by cytokines related to CD4+ Th17 lymphocytes, because it has been shown that IL-17A, IL-17F and IL-22 act as inducers for CXCL8, CXCL1, CXCL5, G-CSF, and GM-CSF secretion by epithelial cells of the airways. The aims of these molecules are differentiation, proliferation and recruitment of neutrophils. Furthermore, it is believed that CD4+ lymphocytes Th17 may be involved in protection against pathogens for which Th1 and Th2 are not prepared to fight. In COPD exacerbations, there is an increased cellularity in the lung region and respiratory tract. Therefore, the increase in the number of neutrophils and macrophages in the airways and the increase in proinflammatory cytokines are directly related to the severity of exacerbations and that is the importance of the functions of Th17 profile in this entity.
Collapse
Affiliation(s)
- Marco Antonio Ponce-Gallegos
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.,Medicine Academic Unit, Universidad Autónoma de Nayarit. Tepic, Nayarit, Mexico.,Interinstitutional Program for Strengthening Research and the Postgraduate in the Pacific (Dolphin), Tepic, Nayarit, México
| | - Alejandra Ramírez-Venegas
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
40
|
Volchenkov R, Nygaard V, Sener Z, Skålhegg BS. Th17 Polarization under Hypoxia Results in Increased IL-10 Production in a Pathogen-Independent Manner. Front Immunol 2017; 8:698. [PMID: 28674533 PMCID: PMC5474482 DOI: 10.3389/fimmu.2017.00698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/29/2017] [Indexed: 12/15/2022] Open
Abstract
The IL-17-producing CD4+ T helper cell (Th17) differentiation is affected by stimulation of the aryl hydrocarbon receptor (AhR) pathway and by hypoxia-inducible factor 1 alpha (HIF-1α). In some cases, Th17 become non-pathogenic and produce IL-10. However, the initiating events triggering this phenotype are yet to be fully understood. Here, we show that such cells may be differentiated at low oxygen and regardless of AhR ligand treatment such as cigarette smoke extract. Hypoxia led to marked alterations of the transcriptome of IL-10-producing Th17 cells affecting genes involved in metabolic, anti-apoptotic, cell cycle, and T cell functional pathways. Moreover, we show that oxygen regulates the expression of CD52, which is a cell surface protein that has been shown to suppress the activation of other T cells upon release. Taken together, these findings suggest a novel ability for Th17 cells to regulate immune responses in vivo in an oxygen-dependent fashion.
Collapse
Affiliation(s)
- Roman Volchenkov
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Vegard Nygaard
- Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital HF - Radiumhospitalet, Montebello, Oslo, Norway
| | - Zeynep Sener
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bjørn Steen Skålhegg
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
41
|
Arimilli S, Madahian B, Chen P, Marano K, Prasad GL. Gene expression profiles associated with cigarette smoking and moist snuff consumption. BMC Genomics 2017; 18:156. [PMID: 28193179 PMCID: PMC5307792 DOI: 10.1186/s12864-017-3565-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/07/2017] [Indexed: 01/11/2023] Open
Abstract
Background Among the different tobacco products that are available on the US market, cigarette smoking is shown to be the most harmful and the effects of cigarette smoking have been well studied. US epidemiological studies indicate that non-combustible tobacco products are less harmful than smoking and yet very limited biological and mechanistic information is available on the effects of these alternative tobacco products. For the first time, we characterized gene expression profiling in PBMCs from moist snuff consumers (MSC), compared with that from consumers of cigarettes (SMK) and non-tobacco consumers (NTC). Results Microarray analysis identified 100 differentially expressed genes (DEGs) between the SMK and NTC groups and 46 DEGs between SMK and MSC groups. However, we found no significant differences in gene expression between MSC and NTC. Both hierarchical clustering and principle component analysis revealed that MSC and NTC expression profiles were more similar than to SMK. Random forest classification identified a subset of DEGs which predicted SMK from either NTC or MSC with high accuracy (AUC 0.98). Conclusions PMBC gene expression profiles of NTC and MSC are similar to each other, while SMK exhibit distinct profiles with alterations in immune related pathways. In addition to discovering several biomarkers, these studies support further understanding of the biological effects of different tobacco products. Trial registration ClinicalTrials.gov. Identifier: NCT01923402. Date of Registration: August 14, 2013. Study was retrospectively registered. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3565-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Subhashini Arimilli
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | | | - Peter Chen
- RAI Services Company, PO Box 1487, Winston-Salem, NC, 27102, USA
| | - Kristin Marano
- RAI Services Company, 401 North Main Street, Winston-Salem, NC, 27101, USA
| | - G L Prasad
- RAI Services Company, PO Box 1487, Winston-Salem, NC, 27102, USA.
| |
Collapse
|
42
|
Qiu F, Liang CL, Liu H, Zeng YQ, Hou S, Huang S, Lai X, Dai Z. Impacts of cigarette smoking on immune responsiveness: Up and down or upside down? Oncotarget 2017; 8:268-284. [PMID: 27902485 PMCID: PMC5352117 DOI: 10.18632/oncotarget.13613] [Citation(s) in RCA: 375] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/12/2016] [Indexed: 01/08/2023] Open
Abstract
Cigarette smoking is associated with numerous diseases and poses a serious challenge to the current healthcare system worldwide. Smoking impacts both innate and adaptive immunity and plays dual roles in regulating immunity by either exacerbation of pathogenic immune responses or attenuation of defensive immunity. Adaptive immune cells affected by smoking mainly include T helper cells (Th1/Th2/Th17), CD4+CD25+ regulatory T cells, CD8+ T cells, B cells and memory T/B lymphocytes while innate immune cells impacted by smoking are mostly DCs, macrophages and NK cells. Complex roles of cigarette smoke have resulted in numerous diseases, including cardiovascular, respiratory and autoimmune diseases, allergies, cancers and transplant rejection etc. Although previous reviews have described the effects of smoking on various diseases and regional immunity associated with specific diseases, a comprehensive and updated review is rarely seen to demonstrate impacts of smoking on general immunity and, especially on major components of immune cells. Here, we aim to systematically and objectively review the influence of smoking on major components of both innate and adaptive immune cells, and summarize cellular and molecular mechanisms underlying effects of cigarette smoking on the immune system. The molecular pathways impacted by cigarette smoking involve NFκB, MAP kinases and histone modification. Further investigations are warranted to understand the exact mechanisms responsible for smoking-mediated immunopathology and to answer lingering questions over why cigarette smoking is always harmful rather than beneficial even though it exerts dual effects on immune responses.
Collapse
Affiliation(s)
- Feifei Qiu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chun-Ling Liang
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huazhen Liu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yu-Qun Zeng
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shaozhen Hou
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Song Huang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoping Lai
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhenhua Dai
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
43
|
Lee EE, Hong S, Martin AS, Eyler LT, Jeste DV. Inflammation in Schizophrenia: Cytokine Levels and Their Relationships to Demographic and Clinical Variables. Am J Geriatr Psychiatry 2017; 25:50-61. [PMID: 27840055 PMCID: PMC5164855 DOI: 10.1016/j.jagp.2016.09.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Inflammation may play a role in the accelerated physical aging reported in schizophrenia, though biomarker findings and associations with demographic and clinical factors are inconsistent. METHODS In a cross-sectional, case-control design, 95 outpatients with schizophrenia (mean age ± SD: 48.1 ± 10.2 years) and 95 demographically comparable healthy comparison subjects (HCs) (mean age ± SD: 48.1 ± 12.1 years) were studied. Sociodemographic and clinical data were collected, and plasma levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interferon-γ (IFN-γ) were assayed. The authors compared cytokine levels, examined demographic and clinical associations, and adjusted for relevant variables with linear models. RESULTS Individuals with schizophrenia had higher levels of TNF-α and IL-6 but not IFN-γ than HCs. Age was not related to cytokine levels, and age relationships did not differ between diagnostic groups. Women had higher levels of IL-6. TNF-α and IL-6 levels were significantly correlated with depressive symptoms, and adjustment for depression reduced the group effect for both. Within the HCs, TNF-α levels were associated with physical comorbidity and body mass index. IL-6 levels were significantly correlated with body mass index and within schizophrenia patients, with worse mental and physical well-being. Accounting for physical morbidity and mental well-being reduced group differences in TNF-α and IL-6 levels, respectively. Worse positive symptoms were associated with higher IL-6 levels. CONCLUSION Higher TNF-α and IL-6 levels in schizophrenia patients were associated with depression, physical comorbidity, and mental well-being. Further longitudinal studies are warranted to assess inflammation as a potential treatment target for a subgroup of schizophrenia.
Collapse
Affiliation(s)
- Ellen E. Lee
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States,Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA, United States
| | - Suzi Hong
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States,Department of Family Medicine and Public Health, University of California, San Diego
| | - Averria Sirkin Martin
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States,Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA, United States
| | - Lisa T. Eyler
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States,Desert-Pacific Mental Illness Research Education and Clinical Center, Veterans Affairs San Diego Healthcare System, San Diego
| | - Dilip V. Jeste
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States,Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA, United States,Center for Healthy Aging, University of California San Diego, La Jolla, CA, United States,Department of Neurosciences, University of California, San Diego
| |
Collapse
|
44
|
Franconi F, Rosano G, Basili S, Montella A, Campesi I. Human cells involved in atherosclerosis have a sex. Int J Cardiol 2016; 228:983-1001. [PMID: 27915217 DOI: 10.1016/j.ijcard.2016.11.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/06/2016] [Indexed: 12/30/2022]
Abstract
The influence of sex has been largely described in cardiovascular diseases. Atherosclerosis is a complex process that involves many cell types such as vessel cells, immune cells and endothelial progenitor cells; however, many, if not all, studies do not report the sex of the cells. This review focuses on sex differences in human cells involved in the atherosclerotic process, emphasizing the role of sex hormones. Furthermore, we report sex differences and issues related to the processes that determine the fate of the cells such as apoptotic and autophagic mechanisms. The analysis of the data reveals that there are still many gaps in our knowledge regarding sex influences in atherosclerosis, largely for the cell types that have not been well studied, stressing the urgent need for a clear definition of experimental conditions and the inclusion of both sexes in preclinical studies.
Collapse
Affiliation(s)
- Flavia Franconi
- Assessorato alle Politiche per la Persona of Basilicata Region, Potenza, Italy; Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giuseppe Rosano
- Cardiovascular and Cell Sciences Research Institute, St. George's University of London, United Kingdom
| | - Stefania Basili
- Department of Internal Medicine and Medical Specialties - Research Center on Gender and Evaluation and Promotion of Quality in Medicine (CEQUAM), Sapienza University of Rome, Italy
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Osilo, Italy.
| |
Collapse
|
45
|
Andersson A, Malmhäll C, Houltz B, Tengvall S, Sjöstrand M, Qvarfordt I, Lindén A, Bossios A. Interleukin-16-producing NK cells and T-cells in the blood of tobacco smokers with and without COPD. Int J Chron Obstruct Pulmon Dis 2016; 11:2245-2258. [PMID: 27695312 PMCID: PMC5029848 DOI: 10.2147/copd.s103758] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Long-term exposure to tobacco smoke causes local inflammation in the airways that involves not only innate immune cells, including NK cells, but also adaptive immune cells such as cytotoxic (CD8+) and helper (CD4+) T-cells. We have previously demonstrated that long-term tobacco smoking increases extracellular concentration of the CD4+-recruiting cytokine interleukin (IL)-16 locally in the airways. Here, we hypothesized that tobacco smoking alters IL-16 biology at the systemic level and that this effect involves oxygen free radicals (OFR). Methods We quantified extracellular IL-16 protein (ELISA) and intracellular IL-16 in NK cells, T-cells, B-cells, and monocytes (flow cytometry) in blood samples from long-term tobacco smokers with and without chronic obstructive pulmonary disease (COPD) and in never-smokers. NK cells from healthy blood donors were stimulated with water-soluble tobacco smoke components (cigarette smoke extract) with or without an OFR scavenger (glutathione) in vitro and followed by quantification of IL-16 protein. Results The extracellular concentrations of IL-16 protein in blood did not display any substantial differences between groups. Notably, intracellular IL-16 protein was detected in all types of blood leukocytes. All long-term smokers displayed a decrease in this IL-16 among NK cells, irrespective of COPD status. Further, both NK and CD4+ T-cell concentrations displayed a negative correlation with pack-years. Moreover, cigarette smoke extract caused release of IL-16 protein from NK cells in vitro, and this was not affected by glutathione, in contrast to the decrease in intracellular IL-16, which was prevented by this drug. Conclusion Long-term exposure to tobacco smoke does not markedly alter extracellular concentrations of IL-16 protein in blood. However, it does decrease the intracellular IL-16 concentrations in blood NK cells, the latter effect involving OFR. Thus, long-term tobacco smoking exerts an impact at the systemic level that involves NK cells; innate immune cells that are critical for host defense against viruses and tumors – conditions that are overrepresented among smokers.
Collapse
Affiliation(s)
- Anders Andersson
- Respiratory Medicine and Allergology, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Carina Malmhäll
- Krefting Research Center, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Birgitta Houltz
- Respiratory Medicine and Allergology, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sara Tengvall
- Respiratory Medicine and Allergology, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Margareta Sjöstrand
- Krefting Research Center, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ingemar Qvarfordt
- Respiratory Medicine and Allergology, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anders Lindén
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Apostolos Bossios
- Krefting Research Center, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
46
|
di Mauro G, Bernardini R, Barberi S, Capuano A, Correra A, de’ Angelis GL, Iacono ID, de Martino M, Ghiglioni D, Di Mauro D, Giovannini M, Landi M, Marseglia GL, Martelli A, Miniello VL, Peroni D, Sullo LRMG, Terracciano L, Vascone C, Verduci E, Verga MC, Chiappini E. Prevention of food and airway allergy: consensus of the Italian Society of Preventive and Social Paediatrics, the Italian Society of Paediatric Allergy and Immunology, and Italian Society of Pediatrics. World Allergy Organ J 2016; 9:28. [PMID: 27583103 PMCID: PMC4989298 DOI: 10.1186/s40413-016-0111-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/07/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Allergic sensitization in children and allergic diseases arising therefrom are increasing for decades. Several interventions, functional foods, pro- and prebiotics, vitamins are proposed for the prevention of allergies and they can't be uncritically adopted. OBJECTIVE This Consensus document was developed by the Italian Society of Preventive and Social Paediatrics and the Italian Society of Paediatric Allergy and Immunology. The aim is to provide updated recommendations regarding allergy prevention in children. METHODS The document has been issued by a multidisciplinary expert panel and it is intended to be mainly directed to primary care paediatricians. It includes 19 questions which have been preliminarily considered relevant by the panel. Relatively to each question, a literature search has been performed, according to the Italian National Guideline Program. Methodology, and a brief summary of the available literature data, has been provided. Many topics have been analyzed including the role of mother's diet restriction, use of breast/formula/hydrolyzed milk; timing of introduction of complementary foods, role (if any) of probiotics, prebiotics, vitamins, exposure to dust mites, animals and to tobacco smoke. RESULTS Some preventive interventions have a strong level of recommendation. (e.g., the dehumidifier to reduce exposure to mite allergens). With regard to other types of intervention, such as the use of partially and extensively hydrolyzed formulas, the document underlines the lack of evidence of effectiveness. No preventive effect of dietary supplementation with polyunsaturated fatty acids, vitamins or minerals has been demonstrated. There is no preventive effect of probiotics on asthma, rhinitis and allergic diseases. It has demonstrated a modest effect, but steady, in the prevention of atopic dermatitis. CONCLUSIONS The recommendations of the Consensus are based on a careful analysis of the evidence available. The lack of evidence of efficacy does not necessarily imply that some interventions may not be effective, but currently they can't be recommended.
Collapse
Affiliation(s)
- Giuseppe di Mauro
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| | - Roberto Bernardini
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| | - Salvatore Barberi
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| | - Annalisa Capuano
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| | - Antonio Correra
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| | - Gian Luigi de’ Angelis
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| | - Iride Dello Iacono
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| | - Maurizio de Martino
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| | - Daniele Ghiglioni
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| | - Dora Di Mauro
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| | - Marcello Giovannini
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| | - Massimo Landi
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| | - Gian Luigi Marseglia
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| | - Alberto Martelli
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| | - Vito Leonardo Miniello
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| | - Diego Peroni
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| | - Lucilla Ricottini Maria Giuseppa Sullo
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| | - Luigi Terracciano
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| | - Cristina Vascone
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| | - Elvira Verduci
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| | - Maria Carmen Verga
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| | - Elena Chiappini
- Department of Sciences for Health Sciences, Anna Meyer Children’s University Hospital, University of Florence, Viale Pieraccini, 24, Florence, 50100 Italy
| |
Collapse
|
47
|
Bandil K, Singhal P, Sharma U, Hussain S, Basu S, Parashari A, Singh V, Sehgal A, Shivam A, Ahuja P, Bharadwaj M, Banerjee BD, Mehrotra R. Impacts of TNF-LTA SNPs/Haplotypes and Lifestyle Factors on Oral Carcinoma in an Indian Population. Mol Diagn Ther 2016; 20:469-80. [PMID: 27312561 DOI: 10.1007/s40291-016-0215-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
48
|
Rettman P, Willem C, David G, Riou R, Legrand N, Esbelin J, Cesbron A, Senitzer D, Gagne K, Retière C. New insights on the natural killer cell repertoire from a thorough analysis of cord blood cells. J Leukoc Biol 2016; 100:471-9. [DOI: 10.1189/jlb.1hi0116-036r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/10/2016] [Indexed: 11/24/2022] Open
|
49
|
Chen M, Xu H. Parainflammation, chronic inflammation, and age-related macular degeneration. J Leukoc Biol 2015; 98:713-25. [PMID: 26292978 PMCID: PMC4733662 DOI: 10.1189/jlb.3ri0615-239r] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022] Open
Abstract
Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune-privileged tissue as a result of its unique anatomic and physiologic properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate-immune system, particularly microglia and the complement system, undergoes low levels of activation (parainflammation). In many cases, this parainflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration, this parainflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal parainflammation include genetic predisposition, environmental risk factors, and old age. Dysregulated parainflammation (chronic inflammation) in age-related macular degeneration damages the blood retina barrier, resulting in the breach of retinal-immune privilege, leading to the development of retinal lesions. This review discusses the basic principles of retinal innate-immune responses to endogenous chronic insults in normal aging and in age-related macular degeneration and explores the difference between beneficial parainflammation and the detrimental chronic inflammation in the context of age-related macular degeneration.
Collapse
Affiliation(s)
- Mei Chen
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, United Kingdom
| | - Heping Xu
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, United Kingdom
| |
Collapse
|
50
|
Nishimura M, Ohkawara T, Tetsuka K, Kawasaki Y, Nakagawa R, Satoh H, Sato Y, Nishihira J. Effects of yogurt containing Lactobacillus plantarum HOKKAIDO on immune function and stress markers. J Tradit Complement Med 2015; 6:275-80. [PMID: 27419093 PMCID: PMC4936756 DOI: 10.1016/j.jtcme.2015.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 07/13/2015] [Indexed: 11/04/2022] Open
Abstract
Lactobacillus plantarum HOKKAIDO (HOKKAIDO strain) was isolated from well-pickled vegetables in Hokkaido, Japan. We report a randomized, double-blind, placebo-controlled study evaluating the effects of L. plantarum HOKKAIDO on immune function and stress markers in 171 adult subjects. Subjects were divided into three groups: the L. plantarum HOKKAIDO yogurt group, the placebo-1 group who ingested yogurt without the HOKKAIDO strain, and the placebo-2 group who ingested a yogurt-like dessert without the HOKKAIDO strain. Hematological tests and body composition measurements were performed before and after 4 and 8 weeks of blinded ingestion. Although no significant differences in natural killer cell activity were observed, it was found that neutrophil ratio significantly decreased and lymphocytes tended to increase in the HOKKAIDO strain yogurt group compared with the yogurt-like dessert group. In addition, the neutrophil-to-lymphocyte ratio, a stress marker, tended to improve in the HOKKAIDO strain yogurt group compared with the yogurt-like dessert group. These results suggest that the ingestion of HOKKAIDO strain yogurt tends to improve immune activity and decrease stress markers.
Collapse
Key Words
- BMI, body mass index
- BW, body weight
- FPG, fasting plasma glucose
- HDL-C, high-density lipoprotein cholesterol
- HPA, hypothalamic-pituitary-adrenal
- HbA1c, hemoglobin A1c
- Immune activity
- LDL-C, low-density lipoprotein cholesterol
- Lactobacillus plantarum HOKKAIDO
- NK, natural killer
- NLR, neutrophil-to-lymphocyte ratio
- Natural killer cell
- Neutrophil-to-lymphocyte ratio
- Stress markers
- TC, total cholesterol
- TG, triglyceride
Collapse
Affiliation(s)
- Mie Nishimura
- Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu, Hokkaido, Japan
| | - Tatsuya Ohkawara
- Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu, Hokkaido, Japan; Pathophysiology and Therapeutics, Hokkaido University Faculty of Pharmaceutical Sciences, Sapporo, Japan
| | - Kyohei Tetsuka
- Hokkaido Milk Product Co. Ltd., Hakodate, Hokkaido, Japan
| | - Yo Kawasaki
- Hokkaido Milk Product Co. Ltd., Hakodate, Hokkaido, Japan
| | - Ryoji Nakagawa
- Food Processing Research Center, Hokkaido Research Organization, Ebetsu, Hokkaido, Japan
| | - Hiroki Satoh
- Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu, Hokkaido, Japan
| | - Yuji Sato
- Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu, Hokkaido, Japan
| | - Jun Nishihira
- Department of Medical Management and Informatics, Hokkaido Information University, Ebetsu, Hokkaido, Japan
| |
Collapse
|