1
|
Ferreira BA, Moura FBRD, Cassimiro IS, Londero VS, Gonçalves MDM, Lago JHG, Araújo FDA. Costic acid, a sesquiterpene from Nectandra barbellata (Lauraceae), attenuates sponge implant-induced inflammation, angiogenesis and collagen deposition in vivo. Fitoterapia 2024; 175:105939. [PMID: 38570096 DOI: 10.1016/j.fitote.2024.105939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Sesquiterpenes are a class of metabolites derived from plant species with immunomodulatory activity. In this study, we evaluated the effects of treatment with costic acid on inflammation, angiogenesis, and fibrosis induced by subcutaneous sponge implants in mice. One sponge disc per animal was aseptically implanted in the dorsal region of the mice and treated daily with costic acid (at concentrations of 0.1, 1, and 10 μg diluted in 10 μL of 0.5% DMSO) or 0.5% DMSO (control group). After 9 days of treatment, the animals were euthanized, and the implants collected for further analysis. Treatment with costic acid resulted in the reduction of the inflammatory parameters evaluated compared to the control group, with a decrease in the levels of inflammatory cytokines and chemokines (TNF, CXCL-1, and CCL2) and in the activity of MPO and NAG enzymes. Costic acid administration altered the process of mast cell degranulation. We also observed a reduction in angiogenic parameters, such as a decrease in the number of blood vessels, the hemoglobin content, and the levels of VEGF and FGF cytokines. Finally, when assessing implant-induced fibrogenesis, we observed a reduction in the levels of the pro-fibrogenic cytokine TGF-β1, and lower collagen deposition. The results of this study demonstrate, for the first time, the anti-inflammatory, anti-angiogenic, and anti-fibrotic effects of costic acid in an in vivo model of chronic inflammation and reinforce the therapeutic potential of costic acid.
Collapse
Affiliation(s)
- Bruno Antonio Ferreira
- Center for Natural and Human Sciences, Federal University of ABC, São Paulo 09210-170, Brazil; Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38408-100, Brazil
| | | | - Isabella Silva Cassimiro
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38408-100, Brazil
| | - Vinicius Silva Londero
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo 05508-000, Brazil
| | | | | | - Fernanda de Assis Araújo
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38408-100, Brazil.
| |
Collapse
|
2
|
Marín-Prida J, Rodríguez-Ulloa A, Besada V, Llopiz-Arzuaga A, Batista NV, Hernández-González I, Pavón-Fuentes N, Marciano Vieira ÉL, Falcón-Cama V, Acosta EF, Martínez-Donato G, Cervantes-Llanos M, Lingfeng D, González LJ, Fernández-Massó JR, Guillén-Nieto G, Pentón-Arias E, Amaral FA, Teixeira MM, Pentón-Rol G. The effects of Phycocyanobilin on experimental arthritis involve the reduction in nociception and synovial neutrophil infiltration, inhibition of cytokine production, and modulation of the neuronal proteome. Front Immunol 2023; 14:1227268. [PMID: 37936684 PMCID: PMC10627171 DOI: 10.3389/fimmu.2023.1227268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction The antinociceptive and pharmacological activities of C-Phycocyanin (C-PC) and Phycocyanobilin (PCB) in the context of inflammatory arthritis remain unexplored so far. In the present study, we aimed to assess the protective actions of these compounds in an experimental mice model that replicates key aspects of human rheumatoid arthritis. Methods Antigen-induced arthritis (AIA) was established by intradermal injection of methylated bovine serum albumin in C57BL/6 mice, and one hour before the antigen challenge, either C-PC (2, 4, or 8 mg/kg) or PCB (0.1 or 1 mg/kg) were administered intraperitoneally. Proteome profiling was also conducted on glutamate-exposed SH-SY5Y neuronal cells to evaluate the PCB impact on this key signaling pathway associated with nociceptive neuronal sensitization. Results and discussion C-PC and PCB notably ameliorated hypernociception, synovial neutrophil infiltration, myeloperoxidase activity, and the periarticular cytokine concentration of IFN-γ, TNF-α, IL-17A, and IL-4 dose-dependently in AIA mice. In addition, 1 mg/kg PCB downregulated the gene expression for T-bet, RORγ, and IFN-γ in the popliteal lymph nodes, accompanied by a significant reduction in the pathological arthritic index of AIA mice. Noteworthy, neuronal proteome analysis revealed that PCB modulated biological processes such as pain, inflammation, and glutamatergic transmission, all of which are involved in arthritic pathology. Conclusions These findings demonstrate the remarkable efficacy of PCB in alleviating the nociception and inflammation in the AIA mice model and shed new light on mechanisms underlying the PCB modulation of the neuronal proteome. This research work opens a new avenue to explore the translational potential of PCB in developing a therapeutic strategy for inflammation and pain in rheumatoid arthritis.
Collapse
Affiliation(s)
- Javier Marín-Prida
- Center for Research and Biological Evaluations, Institute of Pharmacy and Food, University of Havana, Havana, Cuba
| | - Arielis Rodríguez-Ulloa
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Vladimir Besada
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co. Ltd, Yongzhou, China
| | - Alexey Llopiz-Arzuaga
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Department of Cellular Engineering and Biocatalysis , Institute of Biotechnology, National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico
| | - Nathália Vieira Batista
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Nancy Pavón-Fuentes
- Immunochemical Department, International Center for Neurological Restoration (CIREN), Havana, Cuba
| | - Érica Leandro Marciano Vieira
- Translational Psychoneuroimmunology Group, School of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Viviana Falcón-Cama
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Departments of Physiological or Morphological Sciences, Latin American School of Medicine (ELAM), Havana, Cuba
| | - Emilio F. Acosta
- Department of Characterization, Center for Advanced Studies of Cuba, Havana, Cuba
| | - Gillian Martínez-Donato
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Majel Cervantes-Llanos
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Dai Lingfeng
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co. Ltd, Yongzhou, China
| | - Luis J. González
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | - Gerardo Guillén-Nieto
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Departments of Physiological or Morphological Sciences, Latin American School of Medicine (ELAM), Havana, Cuba
| | - Eduardo Pentón-Arias
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Departments of Physiological or Morphological Sciences, Latin American School of Medicine (ELAM), Havana, Cuba
| | - Flávio Almeida Amaral
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Giselle Pentón-Rol
- Division of Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Departments of Physiological or Morphological Sciences, Latin American School of Medicine (ELAM), Havana, Cuba
| |
Collapse
|
3
|
Gouveia-Eufrasio L, de Freitas GJC, Costa MC, Peres-Emidio EC, Carmo PHF, Rodrigues JGM, de Rezende MC, Rodrigues VF, de Brito CB, Miranda GS, de Lima PA, da Silva LMV, Oliveira JBS, da Paixão TA, da Glória de Souza D, Fagundes CT, Peres NTDA, Negrão-Correa DA, Santos DA. The Th2 Response and Alternative Activation of Macrophages Triggered by Strongyloides venezuelensis Is Linked to Increased Morbidity and Mortality Due to Cryptococcosis in Mice. J Fungi (Basel) 2023; 9:968. [PMID: 37888224 PMCID: PMC10607621 DOI: 10.3390/jof9100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Cryptococcosis is a systemic mycosis that causes pneumonia and meningoencephalitis. Strongyloidiasis is a chronic gastrointestinal infection caused by parasites of the genus Strongyloides. Cryptococcosis and strongyloidiasis affect the lungs and are more prevalent in the same world regions, i.e., Africa and tropical countries such as Brazil. It is undeniable that those coincidences may lead to the occurrence of coinfections. However, there are no studies focused on the interaction between Cryptococcus spp. and Strongyloides spp. In this work, we aimed to investigate the interaction between Strongyloides venezuelensis (Sv) and Cryptococcus gattii (Cg) in a murine coinfection model. Murine macrophage exposure to Sv antigens reduced their ability to engulf Cg and produce reactive oxygen species, increasing the ability of fungal growth intracellularly. We then infected mice with both pathogens. Sv infection skewed the host's response to fungal infection, increasing lethality in a murine coinfection model. In addition to increased NO levels and arginase activity, coinfected mice presented a classic Th2 anti-Sv response: eosinophilia, higher levels of alternate activated macrophages (M2), increased concentrations of CCL24 and IL-4, and lower levels of IL-1β. This milieu favored fungal growth in the lungs with prominent translocation to the brain, increasing the host's tissue damage. In conclusion, our data shows that primary Sv infection promotes Th2 bias of the pulmonary response to Cg-infection and worsens its pathological outcomes.
Collapse
Affiliation(s)
- Ludmila Gouveia-Eufrasio
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| | - Gustavo José Cota de Freitas
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| | - Marliete Carvalho Costa
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| | - Eluzia Castro Peres-Emidio
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| | - Paulo Henrique Fonseca Carmo
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| | - João Gustavo Mendes Rodrigues
- Departamento de Parasitologia, Laboratório de Esquistossomose, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.A.N.-C.)
| | - Michelle Carvalho de Rezende
- Departamento de Parasitologia, Laboratório de Esquistossomose, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.A.N.-C.)
| | - Vanessa Fernandes Rodrigues
- Departamento de Parasitologia, Laboratório de Esquistossomose, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.A.N.-C.)
| | - Camila Bernardo de Brito
- Departamento de Microbiologia, Laboratório de Interação Microrganismo-Hospedeiro, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.d.G.d.S.); (C.T.F.)
| | - Guilherme Silva Miranda
- Departamento de Parasitologia, Laboratório de Esquistossomose, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.A.N.-C.)
| | - Pâmela Aparecida de Lima
- Departamento de Patologia, Laboratório de Patologia Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (T.A.d.P.)
| | - Lívia Mara Vitorino da Silva
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| | - Jefferson Bruno Soares Oliveira
- Departamento de Patologia, Laboratório de Patologia Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (T.A.d.P.)
| | - Tatiane Alves da Paixão
- Departamento de Patologia, Laboratório de Patologia Celular e Molecular, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (T.A.d.P.)
| | - Daniele da Glória de Souza
- Departamento de Microbiologia, Laboratório de Interação Microrganismo-Hospedeiro, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.d.G.d.S.); (C.T.F.)
| | - Caio Tavares Fagundes
- Departamento de Microbiologia, Laboratório de Interação Microrganismo-Hospedeiro, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.d.G.d.S.); (C.T.F.)
| | - Nalu Teixeira de Aguiar Peres
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| | - Deborah Aparecida Negrão-Correa
- Departamento de Parasitologia, Laboratório de Esquistossomose, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (D.A.N.-C.)
| | - Daniel Assis Santos
- Departamento de Microbiologia, Laboratório de Micologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (L.G.-E.); (N.T.d.A.P.)
| |
Collapse
|
4
|
Ferreira BA, Souza RAC, de Moura FBR, Silva TDC, Adriano TDS, Franca EDF, de Sousa RMF, Araújo FDA, Lago JHG, de Oliveira A. An In Vivo Assessment of the Effect of Hexane Extract from Endlicheria paniculata Branches and Its Main Compound, Methyldehydrodieugenol B, on Murine Sponge-Induced Inflammation. Molecules 2023; 28:5247. [PMID: 37446907 DOI: 10.3390/molecules28135247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The present study aims to explore the anti-inflammatory potential activity of the hexane extract from branches (HEB) of Endlicheria paniculata (Lauraceae) and its main compound, methyldehydrodieugenol B, in the inflammatory response induced by a murine implant sponge model. HPLC-ESI/MS analysis of HEB led to the identification of six chemically related neolignans, with methyldehydrodieugenol B as the main compound. An in silico analysis of the pharmacokinetic parameters of the identified compounds suggested moderate solubility but good absorption and biodistribution in vivo. Thus, the treatment of mice with HEB using in vivo assays indicated that HEB promoted pro-inflammatory, antiangiogenic, and antifibrogenic effects, whereas treatment with methyldehydrodieugenol B caused anti-inflammatory, antifibrogenic, and antiangiogenic effects. The obtained results shown the therapeutic potential of HEB and methyldehydrodieugenol B in the treatment of pathologies associated with inflammation and angiogenesis, including chronic wounds.
Collapse
Affiliation(s)
- Bruno Antonio Ferreira
- Department of Physiological Sciences, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre 09210-180, Brazil
| | | | - Francyelle Borges Rosa de Moura
- Department of Cell Biology, Histology and Embryology, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
- Department of Biological Sciences, Federal University of Catalao, Catalao 75704-020, Brazil
| | - Tiara da Costa Silva
- Institute of Chemistry, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
| | - Tais da Silva Adriano
- Institute of Chemistry, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
| | | | | | - Fernanda de Assis Araújo
- Department of Physiological Sciences, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
| | | | - Alberto de Oliveira
- Institute of Chemistry, Federal University of Uberlandia, Uberlandia 38408-100, Brazil
| |
Collapse
|
5
|
Martins FRB, de Oliveira MD, Souza JAM, Queiroz-Junior CM, Lobo FP, Teixeira MM, Malacco NL, Soriani FM. Chronic ethanol exposure impairs alveolar leukocyte infiltration during pneumococcal pneumonia, leading to an increased bacterial burden despite increased CXCL1 and nitric oxide levels. Front Immunol 2023; 14:1175275. [PMID: 37275853 PMCID: PMC10235596 DOI: 10.3389/fimmu.2023.1175275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Ethanol abuse is a risk factor for the development of pneumonia caused by Streptococcus pneumoniae, a critical pathogen for public health. The aim of this article was to investigate the inflammatory mechanisms involved in pneumococcal pneumonia that may be associated with chronic ethanol exposure. Male C57BL6/J-Unib mice were exposed to 20% (v/v) ethanol for twelve weeks and intranasally infected with 5x104 CFU of S. pneumoniae. Twenty-four hours after infection, lungs, bronchoalveolar lavage and blood samples were obtained to assess the consequences of chronic ethanol exposure during infection. Alcohol-fed mice showed increased production of nitric oxide and CXCL1 in alveoli and plasma during pneumococcal pneumonia. Beside this, ethanol-treated mice exhibited a decrease in leukocyte infiltration into the alveoli and reduced frequency of severe lung inflammation, which was associated with an increase in bacterial load. Curiously, no changes were observed in survival after infection. Taken together, these results demonstrate that chronic ethanol exposure alters the inflammatory response during S. pneumoniae lung infection in mice with a reduction in the inflammatory infiltrate even in the presence of higher levels of the chemoattractant CXCL1.
Collapse
Affiliation(s)
- Flávia Rayssa Braga Martins
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maycon Douglas de Oliveira
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jéssica Amanda Marques Souza
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Francisco Pereira Lobo
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Frederico Marianetti Soriani
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
6
|
Ferreira BA, de Moura FBR, Gomes KS, da Silva Souza DC, Lago JHG, Araújo FDA. Biseugenol from Ocotea cymbarum (Lauraceae) attenuates inflammation, angiogenesis and collagen deposition of sponge-induced fibrovascular tissue in mice. Inflammopharmacology 2023; 31:1539-1549. [PMID: 37022573 DOI: 10.1007/s10787-023-01210-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Several species of the genus Ocotea are used in traditional medicine due to their anti-inflammatory and analgesic properties. In this work we sought to investigate the effects of biseugenol, the main component of the hexane extract from the leaves of Ocotea cymbarum (Lauraceae), during a chronic inflammatory process induced by polyester-polyurethane sponge in mice. In addition to the inflammatory component, sponge discs also allowed us to evaluate parameters associated with the formation of new blood vessels and the deposition and organization of the extracellular matrix, processes that are related to the chronification of the inflammatory response. Daily treatment with biseugenol (0.1, 1 or 10 µg in 10 µl of 0.5% DMSO) inhibited the synthesis of inflammatory cytokines (TNF-α, CXCL-1 and CCL2) and the neutrophil and macrophage infiltrate into to the implants, indirectly evaluated by the activity of myeloperoxidase and N-acetyl-β-D-glycosaminidase enzymes, respectively. In implants treated with biseugenol, we observed a reduction in angiogenesis, assessed through histological quantification of mean number of blood vessels, the levels of the pro-angiogenic cytokines FGF and VEGF and the activity of metalloproteinases. Except for VEGF levels, all mentioned parameters showed significant reductions after treatment with biseugenol. Finally, the administration of the compound also reduced TGF-β1 levels, collagen synthesis and deposition, in addition to modifying the organization of the newly formed matrix, presenting a potential anti-fibrotic effect. Therefore, our results demonstrate the potential therapeutic use of biseugenol for the treatment of a series of pathological conditions, where parameters associated with inflammation, angiogenesis and fibrogenesis are deregulated.
Collapse
Affiliation(s)
- Bruno Antonio Ferreira
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, 38408-100, Brazil
- Centro de Ciências Naturais e Humanas, Universidade Federal Do ABC (UFABC), Santo André, SP, 09210-580, Brazil
| | - Francyelle Borges Rosa de Moura
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, 38408-100, Brazil
| | - Kaio Souza Gomes
- Centro de Ciências Naturais e Humanas, Universidade Federal Do ABC (UFABC), Santo André, SP, 09210-580, Brazil
| | | | - João Henrique Ghilardi Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal Do ABC (UFABC), Santo André, SP, 09210-580, Brazil.
| | - Fernanda de Assis Araújo
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, 38408-100, Brazil.
| |
Collapse
|
7
|
Merlo E, Zimerman J, Dos Santos FCF, Zanol JF, da Costa CS, Carneiro PH, Miranda-Alves L, Warner GR, Graceli JB. Subacute and low dose of tributyltin exposure leads to brown adipose abnormalities in male rats. Toxicol Lett 2023; 376:26-38. [PMID: 36638932 PMCID: PMC9928871 DOI: 10.1016/j.toxlet.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Tributyltin (TBT) is an obesogenic endocrine disrupting chemical (EDC) linked with several metabolic complications. Brown adipose tissue (BAT) is the principal site for thermogenesis, making it a potential target for obesity management and metabolic disease. However, few studies have evaluated TBT effect on BAT function. In this investigation, we assessed whether subacute (15 days) and low dose of TBT exposure (100 ng/kg/day) results in abnormal BAT morphophysiology in adult male rats. Body temperature, BAT morphology, inflammation, oxidative stress, collagen deposition and BAT metabolic gene expression markers were assessed in room temperature (Room, ∼24 ºC) and after cold tolerance test (Cold, ∼4 ºC) conditions. A reduction in body temperature was observed in both Room and Cold conditions in TBT rats, suggesting abnormal BAT thermogenic function. Changes in BAT morphology were observed in TBT rats, with an increase in BAT lipid accumulation, an increase in BAT unilocular adipocyte number and a decrease in BAT multilocular adipocyte number in Room condition. All these parameters were opposite in Cold condition TBT rats, leading to a borderline increase in BAT UCP1 protein expression. An increase in BAT mast cell number was observed in TBT rats in Room condition. An increase in ED1 protein expression (macrophage marker) was observed in TBT rats in Cold condition. Oxidative stress and collagen deposition increased in both Room and Cold conditions in TBT rats. TBT exposure caused a borderline increase in BAT COL1A1 protein expression in Cold condition. Further, strong negative correlations were observed between body temperature and BAT lipid accumulation, and BAT lipid accumulation and multilocular adipocyte number. Thus, these data suggest that TBT exposure impaired BAT morphophysiology through impacts on lipid accumulation, inflammation, fibrosis and oxidative stress in male rats.
Collapse
Affiliation(s)
- Eduardo Merlo
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Jeanini Zimerman
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Jordana F Zanol
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Charles S da Costa
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Pedro H Carneiro
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, UFRJ, RJ, Brazil
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, UFRJ, RJ, Brazil
| | - Genoa R Warner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, USA
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil.
| |
Collapse
|
8
|
Zanol JF, Niño OMS, da Costa CS, Zimerman J, Silva NP, Oliveira TM, Maas EMSWD, Dos Santos FCF, Miranda-Alves L, Graceli JB. High-refined carbohydrate diet alters different metabolic functions in female rats. Mol Cell Endocrinol 2022; 558:111774. [PMID: 36096379 DOI: 10.1016/j.mce.2022.111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022]
Abstract
A diet containing refined carbohydrate (HCD) caused obesity and white adipose tissue (WAT) abnormalities, but it is unclear if HCD is linked with other metabolic dysfunctions in female models. Thus, we assessed whether HCD results in WAT, pancreas, liver, skeletal muscle (SM) and thyroid (TH) abnormalities in female rats. Female rats were fed with HCD for 15 days and metabolic morphophysiology, inflammation, oxidative stress (OS), and fibrosis markers were assessed. HCD rats presented large adipocytes, hyperleptinemia, and WAT OS. HCD caused irregular glucose metabolism, low insulin levels, and large pancreatic isle. Granulomas, reduced glycogen, and OS were observed in HCD livers. HCD caused hypertrophy and increased in glycogen in SM. HCD caused irregular TH morphophysiology, reduced colloid area and high T3 levels. In all selected tissues, inflammation and fibrosis were observed in HCD rats. Collectively, these data suggest that the HCD impairs metabolic function linked with irregularities in WAT, pancreas, liver, SM and TH in female rats.
Collapse
Affiliation(s)
- Jordana F Zanol
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Oscar M S Niño
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil; Faculty of Human Sciences and Education, Universidad de los Llanos, Villavicencio-Meta, Colombia
| | - Charles S da Costa
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Jeanini Zimerman
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Natalia P Silva
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Thalita M Oliveira
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Edgar M S W D Maas
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, RJ, UFRJ, Brazil
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil.
| |
Collapse
|
9
|
Miranda GS, Rodrigues JGM, de Rezende MC, Resende SD, Camelo GMA, de Oliveira Silva JKA, Maggi L, Rodrigues VF, de Oliveira VG, Negrão-Corrêa DA. Experimental infection with Schistosoma mansoni isolated from the wild rodent Holochilus sciureus shows a low parasite burden but induces high schistosomiasis severity in BALB/c mice. Parasitology 2022; 149:1381-1396. [PMID: 35641335 PMCID: PMC11010505 DOI: 10.1017/s0031182022000774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022]
Abstract
Wild mammals, especially rodents, can participate in the life cycle of Schistosoma mansoni; however, the impact of these parasite strains on the severity of schistosomiasis remains unclear. The aim of this study was to comparatively evaluate the parasitological and immunopathological alterations induced by an S. mansoni strain isolated from the wild rodent Holochilus sciureus (HS strain) and a parasite strain isolated from a human (LE strain) in experimentally infected mice. Male BALB/c mice were subcutaneously infected with 50 cercariae/mouse of either the HS or the LE strain and were evaluated for 12 weeks. In the experimental groups, the parasite burden was estimated by worm and egg (feces and tissues) count, and immunopathological alterations were evaluated in the liver and intestines. Compared to experimental infection with the LE parasite strain, HS-infected mice showed reduced number of parasite worms but higher fecundity rate, significant reduction in IL-5, IL-10 and IL-13 concentrations, lower EPO-activity in liver homogenate and higher concentrations of TNF-α, IFN-γ, IL-12 and IL-17 in the small intestine homogenate. Moreover, HS infection resulted in higher concentrations of NO end-products in both the liver and intestine, suggesting a predominance of the Th1/Th17 immune response. HS-infected mice also showed higher plasma transaminase levels, formed larger granulomas, and had a higher mortality rate in comparison with LE-infected mice. Data indicate that BALB/c mice infected with the HS strain of S. mansoni showed reduced susceptibility to the parasite but stronger tissue inflammation and high disease severity.
Collapse
Affiliation(s)
- Guilherme Silva Miranda
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
- Department of Biology, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, Brazil
| | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Michelle Carvalho de Rezende
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Samira Diniz Resende
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Genil Mororó Araújo Camelo
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | | | - Laura Maggi
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Vanessa Fernandes Rodrigues
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Vinícius Gustavo de Oliveira
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | | |
Collapse
|
10
|
Leal-Silva T, Lopes CDA, Vieira-Santos F, Oliveira FMS, Kraemer L, Padrão LDLS, Amorim CCO, Souza JLN, Barbosa FS, Rachid MA, Russo RC, Fujiwara RT, Bueno LL. Tissue eosinophilia correlates with mice susceptibility, granuloma formation, and damage during Toxocara canis infection. Parasitology 2022; 149:1-38. [PMID: 35139931 DOI: 10.1017/s0031182022000075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractAn increase in peripheral blood eosinophils in helminth infections is expected, and these cells are known to promote immunity against these parasites. However, studies have suggested that in some specific helminths, eosinophils may promote the needs and longevity of these parasites, and their role in these infections remains undefined, including in Toxocara canis infection. Thus, this study aimed to investigate the role of eosinophils in the context of larval migration of T. canis and the immunopathological aspects of infection. For this, we used wild-type mice and mice genetically deficient for the transcription factor GATA-binding factor 1 (GATA1−/−), infected with 1000 eggs of T. canis. At 0, 3, 14 and 63 days post-infection, parasite load, tissue cytokine production, leucocyte profile, bronchoalveolar lavage cells and histopathological analyses were carried out. Collectively, our results demonstrate that the presence of eosinophils mediates susceptibility to T. canis, inducing leucocytosis and the formation of granulomas, increasing the pulmonary and cerebral parasite load, and reducing the number of neutrophils, which may be necessary to control the infection.
Collapse
Affiliation(s)
- Thaís Leal-Silva
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais,Belo Horizonte, Brazil
- Post-graduation Program in Health Sciences: Infectious Diseases and Tropical Medicine, Faculdade de Medicina, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Camila de Almeida Lopes
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais,Belo Horizonte, Brazil
| | - Flaviane Vieira-Santos
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais,Belo Horizonte, Brazil
| | - Fabrício Marcus Silva Oliveira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais,Belo Horizonte, Brazil
| | - Lucas Kraemer
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais,Belo Horizonte, Brazil
| | - Luiza de Lima Silva Padrão
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais,Belo Horizonte, Brazil
- Post-graduation Program in Health Sciences: Infectious Diseases and Tropical Medicine, Faculdade de Medicina, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Chiara Cássia Oliveira Amorim
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais,Belo Horizonte, Brazil
| | - Jorge Lucas Nascimento Souza
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais,Belo Horizonte, Brazil
| | - Fernando Sérgio Barbosa
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais,Belo Horizonte, Brazil
| | - Milene Alvarenga Rachid
- Laboratory of Protozooses, Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais,Belo Horizonte, Brazil
- Post-graduation Program in Health Sciences: Infectious Diseases and Tropical Medicine, Faculdade de Medicina, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais,Belo Horizonte, Brazil
- Post-graduation Program in Health Sciences: Infectious Diseases and Tropical Medicine, Faculdade de Medicina, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Ferreira BA, De Moura FBR, Tomiosso TC, Corrêa NCR, Goulart LR, Barcelos LS, Clissa PB, Araújo FDA. Jararhagin-C, a disintegrin-like protein, improves wound healing in mice through stimulation of M2-like macrophage, angiogenesis and collagen deposition. Int Immunopharmacol 2021; 101:108224. [PMID: 34655846 DOI: 10.1016/j.intimp.2021.108224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Jararhagin-C (Jar-C) is a disintegrin-like protein, isolated from the venom of B. jararaca, with affinity for α2β1 integrin and the ability to incite processes such as angiogenesis and collagen deposition in vivo. Thus, we raised the hypothesis that this protein could be used as a therapeutic strategy for stimulating the healing of excisional wounds in mice. Four wounds were made on the back of Swiss mice, treated with daily intradermal injections of PBS (control group) or Jar-C (200 ng). Ten animals from each experimental group were euthanized and the tissue from the wounds and skin around them were collected for further biochemical, histological and molecular analysis. Wounds treated with Jar-C showed a faster closure rate, accompanied by a reduction in neutrophil infiltrate (MPO), pro-inflammatory cytokine levels (TNF, CXCL1 and CCL2) and an accumulation of macrophages in the analyzed tissues. It was also observed a greater expression of genes associated with the phenotype of alternatively activated macrophages (M2). Concomitantly, the administration of Jar-C holds an angiogenic potential, increasing the density of blood vessels and the synthesis of pro-angiogenic cytokines (VEGF and FGF). We also observed an increase in collagen deposition, accompanied by higher levels of the pro-fibrogenic cytokine TGF-β1. Our data suggests Jar-C stimulates wound healing through stimulation of M2-like macrophage, angiogenesis and collagen deposition. Jar-C may be explored as a therapeutic strategy for wound healing, including the treatment of chronic wounds, where processes such as inflammation, angiogenesis and the deposition / remodeling of the matrix constituents are unregulated.
Collapse
Affiliation(s)
- Bruno Antonio Ferreira
- Institute of Biotechnology, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil; Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Francyelle Borges Rosa De Moura
- Department of Cell Biology, Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Tatiana Carla Tomiosso
- Department of Cell Biology, Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil
| | | | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil; Department of Medical Microbiology and Immunology, University of California-Davis, Davis, USA
| | - Lucíola Silva Barcelos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Fernanda de Assis Araújo
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Uberlândia, UFU, Uberlândia, MG, Brazil.
| |
Collapse
|
12
|
Eosinophils participate in modulation of liver immune response and tissue damage induced by Schistosoma mansoni infection in mice. Cytokine 2021; 149:155701. [PMID: 34741881 DOI: 10.1016/j.cyto.2021.155701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 01/18/2023]
Abstract
The severity of chronic schistosomiasis has been mainly associated with the intensity and extension of the inflammatory response induced by egg-secreted antigens in the host tissue, especially in the liver and intestine. During acute schistosomiasis, eosinophils account for approximately 50% of the cells that compose the liver granulomas; however, the role of this cell-type in the pathology of schistosomiasis remains controversial. In the current study, we compared the parasite burden and liver immunopathological changes during experimental schistosomiasis in wild-type (WT) BALB/c mice and BALB/c mice selectively deficient for the differentiation of eosinophils (ΔdblGATA). Our data demonstrated that the absence of eosinophil differentiation did not alter the S. mansoni load or the liver retention of parasite eggs; however, there were significant changes in the liver immune response profile and tissue damage. S. mansoni infection in ΔdblGATA mice resulted in significantly lower liver concentrations of IL-5, IL-13, IL-33, IL-17, IL-10, and TGF-β and higher concentrations of IFN-γ and TNF-α, as compared to WT mice. The changes in liver immune response observed in infected ΔdblGATA mice were accompanied by lower collagen deposition, but higher liver damage and larger granulomas. Moreover, the absence of eosinophils resulted in a higher mortality rate in mice infected with a high parasite load. Therefore, the data indicated that eosinophils participate in the establishment and/or amplification of liver Th-2 and regulatory response induced by S. mansoni, which is necessary for the balance between liver damage and fibrosis, which in turn is essential for modulating disease severity.
Collapse
|
13
|
de Moura FBR, Ferreira BA, Deconte SR, Landim BC, Justino AB, Aro AAD, Espindola FS, Rodrigues RAF, Ribeiro DL, Araújo FDA, Tomiosso TC. Wound healing activity of the hydroethanolic extract of the leaves of Maytenus ilicifolia Mart. Ex Reis. J Tradit Complement Med 2021; 11:446-456. [PMID: 34522639 PMCID: PMC8427480 DOI: 10.1016/j.jtcme.2021.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND AIM Maytenus ilicifolia has analgesic, healing, antioxidant and anti-inflammatory properties. This study evaluated effect of the hydroalcoholic extract of M. ilicifolia leaves on skin wound repair. EXPERIMENTAL PROCEDURE Wounds were induced on mice and treated with the extract. The treatment was performed daily, until day 7 after wound induction. Wound closure was measured and the features of the repaired tissue were investigated, including mast cell quantification, neutrophil and macrophage activities, collagen deposition, angiogenesis, and pro-metalloproteases and metalloproteases 2 and 9 activity (pro-MMPs and MMPs). RESULTS AND CONCLUSION The M. ilicifolia extract accelerated the closure of wounds. The extract at a concentration of 4% was found to be effective, presenting anti-inflammatory effects and hemoglobin increased, along with increased soluble, total and type III collagens in the wound. In addition, there was an increase in pro-MMP9 and MMP9 activity after day 7th of treatment. The phenolic compounds and tannins present in this plant could be associated with the anti-inflammatory and healing activities observed in this study. Therefore, the ability to modulate essential parameters for accelerated and adequate healing as shown here suggests that the use of standardised extracts of M. ilicifolia and its fractions enriched in polyphenols may represent a therapeutic strategy for the treatment of wounds.
Collapse
Affiliation(s)
- Francyelle Borges Rosa de Moura
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenue Pará 1720, zip code 38400-902, Uberlândia, MG, Brazil
- Institute of Biology, State University of Campinas, Street Monteiro Lobato, 255, zip code 13083-862, Campinas, SP, Brazil
| | - Bruno Antonio Ferreira
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenue Pará 1720, zip code 38400-902, Uberlândia, MG, Brazil
- Institute of Biotechnology, Federal University of Uberlândia, Street Acre 1004, zip code 38405-319, Uberlândia, MG, Brazil
| | - Simone Ramos Deconte
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenue Pará 1720, zip code 38400-902, Uberlândia, MG, Brazil
| | - Breno Costa Landim
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenue Pará 1720, zip code 38400-902, Uberlândia, MG, Brazil
| | - Allisson Benatti Justino
- Institute of Biotechnology, Federal University of Uberlândia, Street Acre 1004, zip code 38405-319, Uberlândia, MG, Brazil
| | - Andrea Aparecida de Aro
- Institute of Biology, State University of Campinas, Street Monteiro Lobato, 255, zip code 13083-862, Campinas, SP, Brazil
| | - Foued Salmen Espindola
- Institute of Biotechnology, Federal University of Uberlândia, Street Acre 1004, zip code 38405-319, Uberlândia, MG, Brazil
| | - Rodney Alexandre Ferreira Rodrigues
- Multidisciplinary Center of Chemical, Biological and Agricultural Research, State University of Campinas, Street Alexandre Cazelatto 999, zip code 13148-218, Paulínia, SP, Brazil
| | - Daniele Lisboa Ribeiro
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenue Pará 1720, zip code 38400-902, Uberlândia, MG, Brazil
| | - Fernanda de Assis Araújo
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenue Pará 1720, zip code 38400-902, Uberlândia, MG, Brazil
| | - Tatiana Carla Tomiosso
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenue Pará 1720, zip code 38400-902, Uberlândia, MG, Brazil
| |
Collapse
|
14
|
Leal-Silva T, Vieira-Santos F, Oliveira FMS, Padrão LDLS, Kraemer L, da Paixão Matias PH, de Almeida Lopes C, Loiola Ruas AC, de Azevedo IC, Nogueira DS, Rachid MA, Caliari MV, Castro Russo R, Fujiwara RT, Bueno LL. Detrimental role of IL-33/ST2 pathway sustaining a chronic eosinophil-dependent Th2 inflammatory response, tissue damage and parasite burden during Toxocara canis infection in mice. PLoS Negl Trop Dis 2021; 15:e0009639. [PMID: 34324507 PMCID: PMC8354467 DOI: 10.1371/journal.pntd.0009639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/10/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Toxocariasis is a neglected disease that affects people around the world. Humans become infected by accidental ingestion of eggs containing Toxocara canis infective larvae, which upon reaching the intestine, hatch, penetrate the mucosa and migrate to various tissues such as liver, lungs and brain. Studies have indicated that Th2 response is the main immune defense mechanism against toxocariasis, however, there are still few studies related to this response, mainly the IL-33/ST2 pathway. Some studies have reported an increase in IL-33 during helminth infections, including T. canis. By binding to its ST2 receptor, IL-33 stimulating the Th2 polarized immune cell and cytokine responses. Thus, we aimed to investigate the role of the IL-33/ST2 pathway in the context of T. canis larval migration and the immunological and pathophysiological aspects of the infection in the liver, lungs and brain from Wild-Type (WT) BALB/c background and genetically deficient mice for the ST2 receptor (ST2-/-). The most important findings revealed that the IL-33/ST2 pathway is involved in eosinophilia, hepatic and cerebral parasitic burden, and induces the formation of granulomas related to tissue damage and pulmonary dysfunction. However, ST2-/- mice, the immune response was skewed to Th1/Th17 type than Th2, that enhanced the control of parasite burden related to IgG2a levels, tissue macrophages infiltration and reduced lung dysfunction. Collectively, our results demonstrate that the Th2 immune response triggered by IL-33/ST2 pathway mediates susceptibility to T. canis, related to parasitic burden, eosinophilia and granuloma formation in which consequently contributes to tissue inflammation and injury. Toxocariasis is a neglected disease caused by Toxocara canis, which has 19% worldwide seroprevalence, and is associated with socioeconomic, geographic and environmental factors. Humans become infected by accidental ingestion of T. canis eggs present in contaminated food, water or soil. After ingestion, the larvae hatch in the intestine and can reach various tissues such as liver, lung and brain. Helminth infections usually trigger a Th2 immune response in the host, by releasing cytokines such as IL-4, IL-5, IL-13 and IL-33. IL-33 is an alarmin that binds to the ST2 receptor, and some studies have observed an increase in this cytokine in toxocariasis, however there are no studies regarding the IL-33/ST2 role in this infection. Thus, we evaluated the influence of this pathway by analyzing immunological and pathophysiological aspects in T. canis-infected mice. Our results demonstrated that the IL-33/ST2 pathway is related to parasite burden on the liver and brain and also increases the number of eosinophils in the blood and tissues. In addition, it involved with the pulmonary immune response and granulomas with impact in lung function. In conclusion, the IL-33/ST2 pathway governs the host susceptibility to T. canis in mice.
Collapse
Affiliation(s)
- Thaís Leal-Silva
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Post-graduation Program in Health Sciences: Infectious Diseases and Tropical Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flaviane Vieira-Santos
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício Marcus Silva Oliveira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiza de Lima Silva Padrão
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Kraemer
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pablo Hemanoel da Paixão Matias
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila de Almeida Lopes
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Cristina Loiola Ruas
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella Carvalho de Azevedo
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Denise Silva Nogueira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Milene Alvarenga Rachid
- Laboratory of Protozooses, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Vidigal Caliari
- Laboratory of Protozooses, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- * E-mail:
| |
Collapse
|
15
|
Baltazar LM, Ribeiro GF, Freitas GJ, Queiroz-Junior CM, Fagundes CT, Chaves-Olórtegui C, Teixeira MM, Souza DG. Protective Response in Experimental Paracoccidioidomycosis Elicited by Extracellular Vesicles Containing Antigens of Paracoccidioides brasiliensis. Cells 2021; 10:1813. [PMID: 34359982 PMCID: PMC8304155 DOI: 10.3390/cells10071813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 01/22/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a systemic disease caused by Paracoccidioides spp. PCM is endemic in Latin America and most cases are registered in Brazil. This mycosis affects mainly the lungs, but can also spread to other tissues and organs, including the liver. Several approaches have been investigated to improve treatment effectiveness and protection against the disease. Extracellular vesicles (EVs) are good antigen delivery vehicles. The present work aims to investigate the use of EVs derived from Paracoccidioides brasiliensis as an immunization tool in a murine model of PCM. For this, male C57BL/6 were immunized with two doses of EVs plus adjuvant and then infected with P. brasiliensis. EV immunization induced IgM and IgG in vivo and cytokine production by splenocytes ex vivo. Further, immunization with EVs had a positive effect on mice infected with P. brasiliensis, as it induced activated T lymphocytes and NKT cell mobilization to the infected lungs, improved production of proinflammatory cytokines and the histopathological profile, and reduced fungal burden. Therefore, the present study shows a new role for P. brasiliensis EVs in the presence of adjuvant as modulators of the host immune system, suggesting their utility as immunizing agents.
Collapse
Affiliation(s)
- Ludmila Matos Baltazar
- Laboratório de Interação Microrganismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627, Antonio Carlos Ave, Belo Horizonte, Minas Gerais 31270-901, Brazil; (L.M.B.); (G.F.R.); (C.T.F.)
| | - Gabriela Fior Ribeiro
- Laboratório de Interação Microrganismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627, Antonio Carlos Ave, Belo Horizonte, Minas Gerais 31270-901, Brazil; (L.M.B.); (G.F.R.); (C.T.F.)
| | - Gustavo J. Freitas
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627, Antonio Carlos Ave, Belo Horizonte, Minas Gerais 31270-901, Brazil;
| | - Celso Martins Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627, Antonio Carlos Ave, Belo Horizonte, Minas Gerais 31270-901, Brazil;
| | - Caio Tavares Fagundes
- Laboratório de Interação Microrganismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627, Antonio Carlos Ave, Belo Horizonte, Minas Gerais 31270-901, Brazil; (L.M.B.); (G.F.R.); (C.T.F.)
| | - Carlos Chaves-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627, Antonio Carlos Ave, Belo Horizonte, Minas Gerais 31270-901, Brazil; (C.C.-O.); (M.M.T.)
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627, Antonio Carlos Ave, Belo Horizonte, Minas Gerais 31270-901, Brazil; (C.C.-O.); (M.M.T.)
| | - Daniele G. Souza
- Laboratório de Interação Microrganismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627, Antonio Carlos Ave, Belo Horizonte, Minas Gerais 31270-901, Brazil; (L.M.B.); (G.F.R.); (C.T.F.)
| |
Collapse
|
16
|
Ferreira BA, Toyama D, Henrique-Silva F, Araújo FDA. Recombinant sugarcane cystatin CaneCPI-5 down regulates inflammation and promotes angiogenesis and collagen deposition in a mouse subcutaneous sponge model. Int Immunopharmacol 2021; 96:107801. [PMID: 34162162 DOI: 10.1016/j.intimp.2021.107801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022]
Abstract
Cystatins are natural inhibitors of cysteine peptidases that are found practically in all living organisms. CaneCPI-5 is a sugarcane cystatin with inhibitory activity against human cathepsins B, K and L, which are cysteine proteases highly expressed in a variety of pathological conditions, usually marked by persistent inflammation and processing of the extracellular matrix. This work evaluated the effects of daily administration of the recombinant cystatin CaneCPI-5 [0.01, 0.1 or 1.0 μg in 10 μL of Phosphate-Buffered Saline (PBS)] on the inflammatory, angiogenic and fibrogenic components during chronic inflammatory response induced by subcutaneous sponge implants. The anti-inflammatory effect of treatment with CaneCPI-5 was confirmed by reduction of the levels of the pro-inflammatory mediators TNF-α, CXCL1 and CCL2/JE/MCP-1, as well as the activity of the myeloperoxidase and n-acetyl-β-D-glucosaminidase. Treatment with CaneCPI-5 promoted angiogenesis in the implants, increasing the production of cytokines VEGF and FGF and the formation of new blood vessels. Finally, the administration of the recombinant cystatin favored the production of the pro-fibrogenic cytokine TGF-β1 and collagen deposition next to the implants. Together, these results show the potential therapeutic application of CaneCPI-5 as an anti-inflammatory agent, capable of favoring angiogenesis and fibrogenesis processes, necessary for tissue repair.
Collapse
Affiliation(s)
- Bruno Antonio Ferreira
- Programa de Pós-graduação em Genética e Bioquímica, Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Danyelle Toyama
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Flávio Henrique-Silva
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Fernanda de Assis Araújo
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
17
|
Vieira-Santos F, Leal-Silva T, de Lima Silva Padrão L, Ruas ACL, Nogueira DS, Kraemer L, Oliveira FMS, Caliari MV, Russo RC, Fujiwara RT, Bueno LL. Concomitant experimental coinfection by Plasmodium berghei NK65-NY and Ascaris suum downregulates the Ascaris-specific immune response and potentiates Ascaris-associated lung pathology. Malar J 2021; 20:296. [PMID: 34210332 PMCID: PMC8248286 DOI: 10.1186/s12936-021-03824-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/17/2021] [Indexed: 12/22/2022] Open
Abstract
Background Ascariasis and malaria are highly prevalent parasitic diseases in tropical regions and often have overlapping endemic areas, contributing to high morbidity and mortality rates in areas with poor sanitary conditions. Several studies have previously aimed to correlate the effects of Ascaris-Plasmodium coinfections but have obtained contradictory and inconclusive results. Therefore, the present study aimed to investigate parasitological and immunopathological aspects of the lung during murine experimental concomitant coinfection by Plasmodium berghei and Ascaris suum during larvae ascariasis. Methods C57BL/6J mice were inoculated with 1 × 104P. berghei strain NK65-NY-infected red blood cells (iRBCs) intraperitoneally and/or 2500 embryonated eggs of A. suum by oral gavage. P. berghei parasitaemia, morbidity and the survival rate were assessed. On the seventh day postinfection (dpi), A. suum lung burden analysis; bronchoalveolar lavage (BAL); histopathology; NAG, MPO and EPO activity measurements; haematological analysis; and respiratory mechanics analysis were performed. The concentrations of interleukin (IL)-1β, IL-12/IL-23p40, IL-6, IL-4, IL-33, IL-13, IL-5, IL-10, IL-17A, IFN-γ, TNF and TGF-β were assayed by sandwich ELISA. Results Animals coinfected with P. berghei and A. suum show decreased production of type 1, 2, and 17 and regulatory cytokines; low leukocyte recruitment in the tissue; increased cellularity in the circulation; and low levels of NAG, MPO and EPO activity that lead to an increase in larvae migration, as shown by the decrease in larvae recovered in the lung parenchyma and increase in larvae recovered in the airway. This situation leads to severe airway haemorrhage and, consequently, an impairment respiratory function that leads to high morbidity and early mortality. Conclusions This study demonstrates that the Ascaris-Plasmodium interaction is harmful to the host and suggests that this coinfection may potentiate Ascaris-associated pathology by dampening the Ascaris-specific immune response, resulting in the early death of affected animals. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03824-w.
Collapse
Affiliation(s)
- Flaviane Vieira-Santos
- Laboratory of Immunology and Genomics of Parasites, Institute of Biological Sciences, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaís Leal-Silva
- Laboratory of Immunology and Genomics of Parasites, Institute of Biological Sciences, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiza de Lima Silva Padrão
- Laboratory of Immunology and Genomics of Parasites, Institute of Biological Sciences, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Cristina Loiola Ruas
- Laboratory of Immunology and Genomics of Parasites, Institute of Biological Sciences, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Denise Silva Nogueira
- Laboratory of Immunology and Genomics of Parasites, Institute of Biological Sciences, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Kraemer
- Laboratory of Immunology and Genomics of Parasites, Institute of Biological Sciences, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício Marcus Silva Oliveira
- Laboratory of Immunology and Genomics of Parasites, Institute of Biological Sciences, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Vidigal Caliari
- Laboratory of Protozooses, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Institute of Biological Sciences, Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunology and Genomics of Parasites, Institute of Biological Sciences, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunology and Genomics of Parasites, Institute of Biological Sciences, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
18
|
Sarmento IV, Merlo E, Meyrelles SS, Vasquez EC, Warner GR, Gonsioroski A, De La Torre K, Meling DD, Flaws JA, Graceli JB. Subchronic and Low Dose of Tributyltin Exposure Leads to Reduced Ovarian Reserve, Reduced Uterine Gland Number, and Other Reproductive Irregularities in Female Mice. Toxicol Sci 2021; 176:74-85. [PMID: 32239163 DOI: 10.1093/toxsci/kfaa045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tributyltin (TBT) chloride is an endocrine disrupting chemical associated with reproductive complications. Studies have shown that TBT targets the reproductive tract, impairing ovarian folliculogenesis, and uterine morphophysiology. In this investigation, we assessed whether subchronic and low dose of TBT exposure results in abnormal ovarian follicular reserve and other irregularities in female mice. TBT was administered to female mice (500 ng/kg/day for 12 days via gavage), and reproductive tract morphophysiology was assessed. We further assessed reproductive tract inflammation and oxidative stress. Improper functioning of the reproductive tract in TBT mice was observed. Specifically, irregular estrous cyclicity and abnormal ovarian morphology coupled with reduction in primordial and primary follicle numbers was observed, suggesting ovarian reserve depletion. In addition, improper follicular development and a reduction in antral follicles, corpora lutea, and total healthy ovarian follicles together with an increase in cystic follicles were apparent. Evidence of uterine atrophy, reduction in endometrial gland number, and inflammation and oxidative stress were seen in TBT mice. Further, strong negative correlations were observed between testosterone levels and primordial, primary, and total healthy ovarian follicles. Thus, these data suggest that the subchronic and low dose of TBT exposure impaired ovarian follicular reserve, uterine gland number, and other reproductive features in female mice.
Collapse
Affiliation(s)
| | | | - Silvana S Meyrelles
- Department of Physiology, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Elisardo C Vasquez
- Department of Physiology, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Genoa R Warner
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois
| | | | - Kathy De La Torre
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois
| | - Daryl D Meling
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois
| | | |
Collapse
|
19
|
Castro PR, Bittencourt LFF, Larochelle S, Andrade SP, Mackay CR, Slevin M, Moulin VJ, Barcelos LS. GPR43 regulates sodium butyrate-induced angiogenesis and matrix remodeling. Am J Physiol Heart Circ Physiol 2021; 320:H1066-H1079. [PMID: 33356962 DOI: 10.1152/ajpheart.00515.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/04/2020] [Indexed: 12/26/2022]
Abstract
Butyrate is a short-chain fatty acid (SCFA) derived from microbiota and is involved in a range of cell processes in a concentration-dependent manner. Low concentrations of sodium butyrate (NaBu) were shown to be proangiogenic. However, the mechanisms associated with these effects are not yet fully known. Here, we investigated the contribution of the SCFA receptor GPR43 in the proangiogenic effects of local treatment with NaBu and its effects on matrix remodeling using the sponge-induced fibrovascular tissue model in mice lacking the Gpr43 gene (Gpr43-KO) and the wild-type (WT) mice. We demonstrated that NaBu (0.2 mM intraimplant) treatment enhanced the neovascularization process, blood flow, and VEGF levels in a GPR43-dependent manner in the implants. Moreover, NaBu was able to modulate matrix remodeling aspects of the granulation tissue such as proteoglycan production, collagen deposition, and α-smooth muscle actin (α-SMA) expression in vivo, besides increasing transforming growth factor (TGF)-β1 levels in the fibrovascular tissue, in a GPR43-dependent manner. Interestingly, NaBu directly stimulated L929 murine fibroblast migration and TGF-β1 and collagen production in vitro. GPR43 was found to be expressed in human dermal fibroblasts, myofibroblasts, and endothelial cells. Overall, our findings evidence that the metabolite-sensing receptor GPR43 contributes to the effects of low dose of NaBu in inducing angiogenesis and matrix remodeling during granulation tissue formation. These data provide important insights for the proposition of new therapeutic approaches based on NaBu, beyond the highly explored intestinal, anti-inflammatory, and anticancer purposes, as a local treatment to improve tissue repair, particularly, by modulating granulation tissue components.NEW & NOTEWORTHY Our data show the contribution of the metabolite-sensing receptor GPR43 in the effects of low dose of sodium butyrate (NaBu) on stimulating angiogenesis and extracellular matrix remodeling in a model of granulation tissue formation in mice. We also show that human dermal fibroblasts, myofibroblasts, and endothelial cells express the receptor GPR43. These data provide important insights for the use of NaBu in local therapeutic approaches applicable to tissue repair in sites other than the intestine.
Collapse
Affiliation(s)
- Pollyana Ribeiro Castro
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucas Felipe Fernandes Bittencourt
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sébastien Larochelle
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec, Canada
| | - Silvia Passos Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Mark Slevin
- School of Healthcare Science, GMBC, Manchester Metropolitan University, Manchester, United Kingdom
| | - Véronique J Moulin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Lucíola Silva Barcelos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
20
|
Ferreira BA, Norton Filho AF, Deconte SR, Tomiosso TC, Thevenard F, Andrade SP, Lago JHG, Araújo FDA. Sesquiterpene Polygodial from Drimys brasiliensis (Winteraceae) Down-Regulates Implant-Induced Inflammation and Fibrogenesis in Mice. JOURNAL OF NATURAL PRODUCTS 2020; 83:3698-3705. [PMID: 33232149 DOI: 10.1021/acs.jnatprod.0c00958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Drimys brasiliensis (Winteraceae) has been investigated in traditional medicine for its anti-inflammatory properties to treat gastric ulcers and allergic and respiratory system diseases as well as for cancer treatment. In this work, we investigate the ability of the sesquiterpene polygodial, isolated from D. brasiliensis stem barks, to modulate the chronic inflammatory response induced by polyester-polyurethane sponge implants in C57BL/6J mice. Daily treatment with polygodial inhibited the macrophage content in the implants as determined by the activity of the N-acetyl-β-d-glucosaminidase enzyme as well as decreased the levels of CXCL1/KC and CCL2/JE/MCP-1 pro-inflammatory chemokines and the presence of mast cells along the formed fibrovascular tissue. Similarly, the deposition of a new extracellular matrix (total collagen and type I and III collagen fibers) as well as the production of the TGF-β1 cytokine were attenuated in implants treated with polygodial, showing for the first time its antifibrogenic capacity. The hemoglobin content, the number of newly formed vessels, and the levels of VEGF cytokine, which were used as parameters for the assessment of the neovascularization of the implants, did not change after treatment with polygodial. The anti-inflammatory and antifibrogenic effects of polygodial over the components of the granulation tissue induced by the sponge implant indicate a therapeutic potential for the treatment of inflammatory diseases associated with the development of fibrovascular tissue.
Collapse
Affiliation(s)
- Bruno Antonio Ferreira
- Programa de Pós-graduação em Genética e Bioquímica, Instituto de Biotecnologia, Universidade Federal de Uberlândia (UFU), Uberlândia, MG 38408-100, Brazil
| | - Anderson Ferraz Norton Filho
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia, MG 38408-100, Brazil
| | - Simone Ramos Deconte
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia, MG 38408-100, Brazil
| | - Tatiana Carla Tomiosso
- Departamento de Biologia Celular, Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia, MG 38408-100, Brazil
| | - Fernanda Thevenard
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210-580, Brazil
| | - Silvia Passos Andrade
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | | | - Fernanda de Assis Araújo
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia, MG 38408-100, Brazil
| |
Collapse
|
21
|
de Rezende MC, Moreira JMP, Fernandes LLM, Rodrigues VF, Negrão-Corrêa D. Strongyloides venezuelensis-infection alters the profile of cytokines and liver inflammation in mice co-infected with Schistosoma mansoni. Cytokine 2020; 127:154931. [DOI: 10.1016/j.cyto.2019.154931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023]
|
22
|
Ceotto Freitas-Lima L, Merlo E, Campos Zicker M, Navia-Pelaez JM, de Oliveira M, Dos Santos Aggum Capettini L, Nogueira CR, Versiani Matos Ferreira A, Sousa Santos SH, Bernardes Graceli J. Tributyltin impacts in metabolic syndrome development through disruption of angiotensin II receptor signaling pathways in white adipose tissue from adult female rats. Toxicol Lett 2018; 299:21-31. [PMID: 30172001 DOI: 10.1016/j.toxlet.2018.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 01/09/2023]
Abstract
White adipose tissue (WAT) dysfunction and obesity are a consequence of a low-grade inflammation state. These WAT irregularities could result from abnormal metabolic renin-angiotensin system (RAS) control. Recently, tributyltin (TBT) has been found to play a critical role in these metabolic irregularities. However, TBT actions on the WAT-RAS functions are not currently well understood. In this study, we assessed whether TBT exposure resulted in metabolic syndrome (MetS) development and other metabolic complications as a result of abnormal modulation of WAT-RAS pathways. TBT (100 ng/kg/day) was administered to adult female Wistar rats, and their WAT morphophysiology and adipokine profiles were assessed. We further assessed the expression of Angiotensin-II receptor proteins (AT1R and AT2R) and proteins involved in downstream pathways mediating inflammation and adipogenesis modulation. TBT-exposed rats exhibited increases in body weight and adiposity. TBT rats present dyslipidemia and insulin resistance, suggesting MetS development. TBT promoted WAT inflammatory infiltration, AT1R protein overexpression and reduced Angiotensin-(1-7) expression. These TBT WAT abnormalities are reflected by NFκB activation, with higher adipokine levels (leptin, TNF-α and IL-6) and overexpression of AKT, ERK, P38, FAS and PPARγ protein. In vitro, TBT exposure stimulates lipid accumulation, reduces AT2R protein expression, and increases leptin, AKT and ERK protein expression in 3T3L1 cells. These findings suggest that TBT exposure participates in MetS development via the improper function of WAT-RAS metabolic control.
Collapse
Affiliation(s)
| | - Eduardo Merlo
- Department of Morphology, Healthy Sciences Center, Federal University of Espírito Santo, Brazil
| | - Marina Campos Zicker
- Department. of Food Science, Faculty of Pharmacy, Federal University of Minas Gerais, Brazil
| | | | - Miriane de Oliveira
- Department of Internal Medicine, Botucatu School of Medicine, University of São Paulo State, Botucatu, SP, Brazil
| | | | - Célia Regina Nogueira
- Department of Internal Medicine, Botucatu School of Medicine, University of São Paulo State, Botucatu, SP, Brazil
| | | | - Sérgio Henrique Sousa Santos
- Health Science Graduate Program, UNIMONTES, Montes Claros, MG, Brazil; Institute of Agricultural Sciences, Food Engineering College, Federal University of Minas Gerais, Montes Claros, MG, Brazil
| | - Jones Bernardes Graceli
- Department of Morphology, Healthy Sciences Center, Federal University of Espírito Santo, Brazil.
| |
Collapse
|
23
|
Cassini-Vieira P, Felipetto M, Prado LB, Verano-Braga T, Andrade SP, Santos RAS, Teixeira MM, de Lima ME, Pimenta AMC, Barcelos LS. Ts14 from Tityus serrulatus boosts angiogenesis and attenuates inflammation and collagen deposition in sponge-induced granulation tissue in mice. Peptides 2017; 98:63-69. [PMID: 27732900 DOI: 10.1016/j.peptides.2016.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/18/2022]
Abstract
We have previously described a 25mer anti-hypertensive peptide, previously named TsHpt-I (Tityus serrulatus Hypotensin-I), now Ts14, as an agonist of B2 kinin receptor. Bradykinin is known to play physiological roles in angiogenic, inflammatory, and fibrogenic processes, mostly mediated by B2 receptor. Therefore, we investigated whether Ts14 could modulate key events (neovascularization, inflammatory cell recruitment, and extracellular matrix deposition) of the fibrovascular tissue, induced by polyether-polyurethane sponge implants in mice. Sponges were implanted in the dorsum of 7-week-old C57Bl/6 male mice that received daily intrasponge treatment with Ts14 (27.25μg/sponge/day in 10μL PBS) or vehicle (10μL PBS/sponge/day) and were assessed on day 7 after surgery. Hemoglobin content, blood flow (laser Doppler perfusion imaging), and VEGF levels in the implants, used as indices of vascularization, indicated that Ts14 enhanced angiogenesis in implants relative to the PBS-treated group. Interestingly, Ts14 reduced TNF-α levels and neutrophil infiltration, although stimulated macrophage infiltration into implants, as determined by myeloperoxidase (MPO) and N-acetyl-β-d-glucosaminidase (NAG) enzyme activities, respectively. Regarding the fibrogenic component (soluble collagen content and Sirius-red histological staining), we observed that Ts14 inhibited collagen deposition in the implants. Overall, our results suggest that Ts14 exerts proangiogenic, anti-inflammatory, and anti-fibrogenic activities. These effects may indicate a therapeutical potential of this peptide in conditions where angiogenesis, inflammation, and fibrogenesis contribute to disease progression and chronicity.
Collapse
Affiliation(s)
- Puebla Cassini-Vieira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Mariane Felipetto
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Leandro Barbosa Prado
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Thiago Verano-Braga
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Silvia Passos Andrade
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Robson A S Santos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Maria Elena de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Adriano M C Pimenta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Luciola Silva Barcelos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil.
| |
Collapse
|
24
|
Estevão LRM, Simões RS, Cassini-Vieira P, Canesso MCC, Barcelos LDS, Rachid MA, Câmara CAGD, Evêncio-Neto J. Schinus terebinthifolius Raddi ( Aroeira) leaves oil attenuates inflammatory responses in cutaneous wound healing in mice 1. Acta Cir Bras 2017; 32:726-735. [PMID: 29019590 DOI: 10.1590/s0102-865020170090000005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To investigated the inflammatory, angiogenic and fibrogenic activities of the Schinus terebinthifolius Raddi leaves oil (STRO) on wound healing. METHODS The excisional wound healing model was used to evaluate the effects of STRO. The mice were divided into two groups: Control, subjected to vehicle solution (ointment lanolin/vaseline base), or STRO- treated group, administered topically once a day for 3, 7 and 14 days post-excision. We evaluated the macroscopic wound closure rate; the inflammation was evaluated by leukocytes accumulation and cytokine levels in the wounds. The accumulation of neutrophil and macrophages in the wounds were determined by assaying myeloperoxidase and N-acetyl-β-D-glucosaminidase activities. The levels of TNF-α, CXCL-1 and CCL-2 in wound were evaluated by ELISA assay. Angiogenesis and collagen fibers deposition were evaluated histologically. RESULTS We observed that macroscopic wound closure rate was improved in wounds from STRO-group than Control-group. The wounds treated with STRO promoted a reduction in leucocyte accumulation and in pro-inflammatory cytokine. Moreover, STRO treatment increased significantly the number of blood vessels and collagen fibers deposition, as compared to control group. CONCLUSION Topical application of STRO display anti-inflammatory and angiogenic effects, as well as improvement in collagen replacement, suggesting a putative use of this herb for the development of phytomedicines to treat inflammatory diseases, including wound healing.
Collapse
Affiliation(s)
- Lígia Reis Moura Estevão
- PhD, Department of Morphology and Animal Physiology, Universidade Federal Rural de Pernambuco (UFRPE), Recife-PE, Brazil. Acquisition, analysis and interpretation of data; manuscript writing
| | - Ricardo Santos Simões
- PhD, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Brazil. Acquisition of data, histopathological examinations, manuscript preparation, critical revision
| | - Puebla Cassini-Vieira
- PhD, Department of Morphology and Animal Physiology, Universidade Federal Rural de Pernambuco (UFRPE), Recife-PE, Brazil. Acquisition, analysis and interpretation of data; manuscript writing
| | - Maria Cecilia Campos Canesso
- PhD, Department of Morphology and Animal Physiology, Universidade Federal Rural de Pernambuco (UFRPE), Recife-PE, Brazil. Acquisition, analysis and interpretation of data; manuscript writing
| | - Lucíola da Silva Barcelos
- PhD, Department of Morphology and Animal Physiology, Universidade Federal Rural de Pernambuco (UFRPE), Recife-PE, Brazil. Acquisition, analysis and interpretation of data; manuscript writing
| | - Milene Alvarenga Rachid
- PhD, Department of Morphology and Animal Physiology, Universidade Federal Rural de Pernambuco (UFRPE), Recife-PE, Brazil. Acquisition, analysis and interpretation of data; manuscript writing
| | | | - Joaquim Evêncio-Neto
- Full Professor, Department of Morphology and Animal Physiology, UFRPE, Recife-PE, Brazil. Conception and design of the study, manuscript preparation
| |
Collapse
|
25
|
Probucol attenuates lipopolysaccharide-induced leukocyte recruitment and inflammatory hyperalgesia: effect on NF-кB activation and cytokine production. Eur J Pharmacol 2017; 809:52-63. [DOI: 10.1016/j.ejphar.2017.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023]
|
26
|
Probucol attenuates overt pain-like behavior and carrageenan-induced inflammatory hyperalgesia and leukocyte recruitment by inhibiting NF-кB activation and cytokine production without antioxidant effects. Inflamm Res 2017; 66:591-602. [DOI: 10.1007/s00011-017-1040-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/08/2017] [Accepted: 03/28/2017] [Indexed: 01/18/2023] Open
|
27
|
Andrade I, Silva T, Silva G, Teixeira A, Teixeira M. The Role of Tumor Necrosis Factor Receptor Type 1 in Orthodontic Tooth Movement. J Dent Res 2016; 86:1089-94. [DOI: 10.1177/154405910708601113] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Orthodontic tooth movement is dependent on osteoclast activity. Tumor necrosis factor (TNF)-α plays an important role, directly or via chemokine release, in osteoclast recruitment and activation. This study aimed to investigate whether the TNF receptor type 1 (p55) influences these events and, consequently, orthodontic tooth movement. An orthodontic appliance was placed in wild-type mice (WT) and p55-deficient mice (p55−/−). Levels of TNF-α and 2 chemokines (MCP-1/CCL2, RANTES/CCL5) were evaluated in periodontal tissues. A significant increase in CCL2 and TNF-α was observed in both groups after 12 hrs of mechanical loading. However, CCL5 levels remained unchanged in p55−/− mice at this time-point. The number of TRAP-positive osteoclasts in p55−/− mice was significantly lower than that in WT mice. Also, there was a significantly smaller rate of tooth movement in p55−/− mice. Analysis of our data suggests that the TNFR-1 plays a significant role in orthodontic tooth movement that might be associated with changes in CCL5 levels.
Collapse
Affiliation(s)
- I. Andrade
- Department of Orthodontics, Pontifícia Universidade Católica de Minas Gerais -PUC-Minas-, Faculty of Dentistry, Belo Horizonte/MG, Brazil
- Department of Oral Pathology, Universidade Federal de Minas Gerais, Faculty of Dentistry, Av. Antônio Carlos 6627, CEP 31.270-901, Belo Horizonte/MG, Brazil
- Department of Morphology, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte/MG, Brazil
- Department of Clinical Medicine, Universidade Federal de Minas Gerais, Faculty of Medicine, Belo Horizonte/MG, Brazil; and
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte/MG, Brazil
| | - T.A. Silva
- Department of Orthodontics, Pontifícia Universidade Católica de Minas Gerais -PUC-Minas-, Faculty of Dentistry, Belo Horizonte/MG, Brazil
- Department of Oral Pathology, Universidade Federal de Minas Gerais, Faculty of Dentistry, Av. Antônio Carlos 6627, CEP 31.270-901, Belo Horizonte/MG, Brazil
- Department of Morphology, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte/MG, Brazil
- Department of Clinical Medicine, Universidade Federal de Minas Gerais, Faculty of Medicine, Belo Horizonte/MG, Brazil; and
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte/MG, Brazil
| | - G.A.B. Silva
- Department of Orthodontics, Pontifícia Universidade Católica de Minas Gerais -PUC-Minas-, Faculty of Dentistry, Belo Horizonte/MG, Brazil
- Department of Oral Pathology, Universidade Federal de Minas Gerais, Faculty of Dentistry, Av. Antônio Carlos 6627, CEP 31.270-901, Belo Horizonte/MG, Brazil
- Department of Morphology, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte/MG, Brazil
- Department of Clinical Medicine, Universidade Federal de Minas Gerais, Faculty of Medicine, Belo Horizonte/MG, Brazil; and
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte/MG, Brazil
| | - A.L. Teixeira
- Department of Orthodontics, Pontifícia Universidade Católica de Minas Gerais -PUC-Minas-, Faculty of Dentistry, Belo Horizonte/MG, Brazil
- Department of Oral Pathology, Universidade Federal de Minas Gerais, Faculty of Dentistry, Av. Antônio Carlos 6627, CEP 31.270-901, Belo Horizonte/MG, Brazil
- Department of Morphology, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte/MG, Brazil
- Department of Clinical Medicine, Universidade Federal de Minas Gerais, Faculty of Medicine, Belo Horizonte/MG, Brazil; and
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte/MG, Brazil
| | - M.M. Teixeira
- Department of Orthodontics, Pontifícia Universidade Católica de Minas Gerais -PUC-Minas-, Faculty of Dentistry, Belo Horizonte/MG, Brazil
- Department of Oral Pathology, Universidade Federal de Minas Gerais, Faculty of Dentistry, Av. Antônio Carlos 6627, CEP 31.270-901, Belo Horizonte/MG, Brazil
- Department of Morphology, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte/MG, Brazil
- Department of Clinical Medicine, Universidade Federal de Minas Gerais, Faculty of Medicine, Belo Horizonte/MG, Brazil; and
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte/MG, Brazil
| |
Collapse
|
28
|
Merlo E, Podratz PL, Sena GC, de Araújo JFP, Lima LCF, Alves ISS, Gama-de-Souza LN, Pelição R, Rodrigues LCM, Brandão PAA, Carneiro MTWD, Pires RGW, Martins-Silva C, Alarcon TA, Miranda-Alves L, Silva IV, Graceli JB. The Environmental Pollutant Tributyltin Chloride Disrupts the Hypothalamic-Pituitary-Adrenal Axis at Different Levels in Female Rats. Endocrinology 2016; 157:2978-95. [PMID: 27267847 DOI: 10.1210/en.2015-1896] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tributyltin chloride (TBT) is an environmental contaminant that is used as a biocide in antifouling paints. TBT has been shown to induce endocrine-disrupting effects. However, studies evaluating the effects of TBT on the hypothalamus-pituitary-adrenal (HPA) axis are especially rare. The current study demonstrates that exposure to TBT is critically responsible for the improper function of the mammalian HPA axis as well as the development of abnormal morphophysiology in the pituitary and adrenal glands. Female rats were treated with TBT, and their HPA axis morphophysiology was assessed. High CRH and low ACTH expression and high plasma corticosterone levels were detected in TBT rats. In addition, TBT leads to an increased in the inducible nitric oxide synthase protein expression in the hypothalamus of TBT rats. Morphophysiological abnormalities, including increases in inflammation, a disrupted cellular redox balance, apoptosis, and collagen deposition in the pituitary and adrenal glands, were observed in TBT rats. Increases in adiposity and peroxisome proliferator-activated receptor-γ protein expression in the adrenal gland were observed in TBT rats. Together, these data provide in vivo evidence that TBT leads to functional dissociation between CRH, ACTH, and costicosterone, which could be associated an inflammation and increased of inducible nitric oxide synthase expression in hypothalamus. Thus, TBT exerts toxic effects at different levels on the HPA axis function.
Collapse
Affiliation(s)
- Eduardo Merlo
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Priscila L Podratz
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Gabriela C Sena
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Julia F P de Araújo
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Leandro C F Lima
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Izabela S S Alves
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Letícia N Gama-de-Souza
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Renan Pelição
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Lívia C M Rodrigues
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Poliane A A Brandão
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Maria T W D Carneiro
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Rita G W Pires
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Cristina Martins-Silva
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Tamara A Alarcon
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Leandro Miranda-Alves
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Ian V Silva
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| | - Jones B Graceli
- Department of Morphology (E.M., P.L.P., G.C.S., J.F.P.d.A., I.S.S.A., L.N.G.-d.S., I.V.S., J.B.G.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Biophysics and Physiology (L.C.F.L.), Federal University of Minas Gerais, Vitória ES, 29040090 Brazil; Department of Physiological Sciences (R.P., L.C.M.R., R.G.W.P., C.M.-S., T.A.A.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Department of Chemistry (P.A.A.B., M.T.W.D.C.), Federal University of Espírito Santo, Vitória ES, 29040090 Brazil; Experimental Endocrinology Research Group (L.M.-A.), Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil; and Postgraduate Program in Endocrinology (L.M.-A.), School of Medicine, Federal University of Rio de Janeiro, Vitória ES, 29040090 Brazil
| |
Collapse
|
29
|
Campos-Junior PHA, Alves TJM, Dias MT, Assunçao CM, Munk M, Mattos MS, Kraemer LR, Almeida BG, Russo RC, Barcelos L, Camargo LSA, Viana JHM. Ovarian Grafts 10 Days after Xenotransplantation: Folliculogenesis and Recovery of Viable Oocytes. PLoS One 2016; 11:e0158109. [PMID: 27362486 PMCID: PMC4928796 DOI: 10.1371/journal.pone.0158109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/12/2016] [Indexed: 11/30/2022] Open
Abstract
Ovarian xenotransplantation is a promising alternative to preserve fertility of oncologic patients. However, several functional aspects of this procedure remained to be addressed. The aim of this study was evaluate the feasibility of xenotransplantation as a strategy to maintain bovine ovarian grafts and produce oocytes. Adult ovarian cortical pieces were xenotransplanted to the dorsal subcutaneous of female NOD-SCID mice (n = 62). Grafts were recovered ten days after xenotransplantation. Host and graft weights; folliculogenesis progression; blood perfusion, relative gene expression and number of macrophage and neutrophil of xenografts; in vitro developmental competence of graft-derived oocytes were evaluated. Folliculogenesis was supported in the grafts, as indicated by the presence of primordial, primary, secondary, antral, and atretic follicles. The xenografts showed a greater volumetric density of atretic follicles and higher hyperemia and number of host-derived macrophage and neutrophil (P<0.05), when compared to non-grafted fragments. There was a higher blood perfusion under the back skin in the transplantation sites of host animals than in control and non-grafted (P<0.01). BAX and PRDX1 genes were up-regulated, while BCL2, FSHR, IGF1R and IGF2R were down-regulated, when compared to the control (P<0.01). Twenty seven oocytes were successfully harvested from grafts, and some of these oocytes were able to give rise to blastocysts after in vitro fertilization. However, cleavage and blastocyst rates of xenograft derived oocytes were lower than in control (P<0.01). Despite showing some functional modifications, the ovarian xenografts were able to support folliculogenesis and produce functional oocytes.
Collapse
Affiliation(s)
- Paulo Henrique Almeida Campos-Junior
- Fertility Preservation Research Group, Department of Natural Sciences, Federal University of Sao Joao Del Rei, Sao Joao Del Rei, Minas Gerais, Brazil, 36301–160
- * E-mail:
| | - Thalys Jair Melo Alves
- Fertility Preservation Research Group, Department of Natural Sciences, Federal University of Sao Joao Del Rei, Sao Joao Del Rei, Minas Gerais, Brazil, 36301–160
| | - Marco Tulio Dias
- Fertility Preservation Research Group, Department of Natural Sciences, Federal University of Sao Joao Del Rei, Sao Joao Del Rei, Minas Gerais, Brazil, 36301–160
| | - Carolina Marinho Assunçao
- Laboratory of Genetics and Biotechnology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil, 36036–900
| | - Michele Munk
- Laboratory of Genetics and Biotechnology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil, 36036–900
| | - Matheus Silvério Mattos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 31270–901
| | - Lucas Rocha Kraemer
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 31270–901
| | - Brígida Gomes Almeida
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 31270–901
| | - Remo Castro Russo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 31270–901
| | - Lucíola Barcelos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 31270–901
| | | | | |
Collapse
|
30
|
Evaluation of carbon nanotubes functionalized with sodium hyaluronate in the inflammatory processes for oral regenerative medicine applications. Clin Oral Investig 2015; 20:1607-16. [DOI: 10.1007/s00784-015-1639-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/23/2015] [Indexed: 10/22/2022]
|
31
|
Kang Y, Regmi SC, Kim MY, Banskota S, Gautam J, Kim DH, Kim JA. Anti-angiogenic activity of macrolactin A and its succinyl derivative is mediated through inhibition of class I PI3K activity and its signaling. Arch Pharm Res 2014; 38:249-60. [PMID: 25547980 DOI: 10.1007/s12272-014-0535-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/20/2014] [Indexed: 02/01/2023]
Abstract
In the current study, macrolactin compounds, macrolactin A (MA) and 7-O-succinyl macrolactin A (SMA), were investigated for their anti-angiogenic activities and action mechanism. MA and SMA inhibited in vitro and in vivo angiogenesis induced by three different classes of pro-angiogenic factors, VEGF, IL-8, and TNF-α. SMA exhibited stronger anti-angiogenic activity than MA, and such anti-angiogenic activity of SMA was consistently observed in MDA-MB-231 human breast cancer cell-inoculated CAM assay showing dose-dependent suppression of tumor growth and tumor-induced angiogenesis. In an in vitro PI3K competitive activity assay, SMA induced concentration-dependent inhibition of class I PI3K isoforms, p110α, p110β, p110δ, and p110γ. In addition, non-receptor tyrosine kinase c-Src, which is involved in the activation of PI3K heterodimer, was suppressed by MA and SMA. Correspondingly, MA and SMA significantly inhibited the stimulus-induced phosphorylation of Akt, mTOR, p70S6K, and ribosomal S6 in human umbilical vein endothelial cells (HUVECs). At the same time, the stimulus-induced production of reactive oxygen species (ROS) and activation of NF-κB were significantly suppressed by MA and SMA. Moreover, the macrolactins suppressed NF-κB-regulated HSP90 protein expression, which stabilizes phosphorylated Akt and NADPH oxidase. Suppression of NF-κB in macrolactin-treated HUVECs with concurrent inhibition of rS6 indicates that MAs effectively block angiogenesis through down-regulation of genes related to angiogenesis at both transcriptional and translational levels. Taken together, the results demonstrate that anti-angiogenic effect of MA and SMA is mediated through inhibition of PI3K/Akt and NADPH oxidase-derived ROS/NF-κB signaling pathways. These results further indicate that MA and SMA may be applicable for treatment of various diseases associated with angiogenesis.
Collapse
Affiliation(s)
- Youra Kang
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
2-(Benzylideneamino)phenol: A Promising Hydroxyaldimine with Potent Activity Against Dermatophytoses. Mycopathologia 2014; 179:243-51. [DOI: 10.1007/s11046-014-9850-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
|
33
|
Cassini-Vieira P, Deconte SR, Tomiosso TC, Campos PP, Montenegro CDF, Selistre-de-Araújo HS, Barcelos LS, Andrade SP, Araújo FDA. DisBa-01 inhibits angiogenesis, inflammation and fibrogenesis of sponge-induced-fibrovascular tissue in mice. Toxicon 2014; 92:81-9. [DOI: 10.1016/j.toxicon.2014.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 11/26/2022]
|
34
|
Guedes-da-Silva FH, Shrestha D, Salles BC, Figueiredo VP, Lopes LR, Dias L, Barcelos LDS, Moura S, de Andrade SP, Talvani A. Trypanosoma cruzi antigens induce inflammatory angiogenesis in a mouse subcutaneous sponge model. Microvasc Res 2014; 97:130-6. [PMID: 25446369 DOI: 10.1016/j.mvr.2014.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 01/13/2023]
Abstract
Acute inflammation and angiogenesis are persistent features of several pathological conditions induced by biological agents leading to the resolution of local and systemic events. Glycoproteins derived from the protozoan Trypanosoma cruzi are suggested to mediate angiogenesis induced by inflammatory cells with still undescribed mechanisms. In this study, we investigated the effects of total antigen from trypomastigote forms of T. cruzi (Y strain), inoculated in sponges 24h after implantation in mice, on angiogenesis, inflammatory cell pattern and endogenous production of inflammatory and angiogenic mediators on days 1, 4, 7 and 14 post-implant. There was an increase in hemoglobin content and in the number of blood vessels associated with T. cruzi antigen stimuli on the 14th day, assessed by the hemoglobin of the implants and by morphometric analysis. However, these antigens were not able to increase type I collagen content on the 14th day. Parasite antigens also induced high production of vascular endothelial growth factor (VEGF) and inflammatory mediators TNF-alpha, CCL2 and CCL5 on the 7th day in sponges when compared to the unstimulated group. Neutrophils and macrophages were determined by measuring myeloperoxidase (MPO) and N-acetyl-β-d-glucosaminidase (NAG) enzyme activities, respectively. Only NAG was increased after stimulation with antigens, starting from day 4 and peaking at day 7. Together, these data showed that antigens from the Y strain of T. cruzi are able to promote inflammatory neovascularization probably induced by macrophage-induced angiogenic mediators in T. cruzi antigen-stimulated sponges in Swiss mice.
Collapse
Affiliation(s)
| | - Deena Shrestha
- Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Beatriz Cristina Salles
- Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Vivian Paulino Figueiredo
- Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Laís Roquete Lopes
- Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Luiza Dias
- Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | | | - Sandra Moura
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil; Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Silvia Passos de Andrade
- Departamento de Fisiologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andre Talvani
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil; Programa de Pós-Graduação em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil; Programa de Pós-Graduação em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil.
| |
Collapse
|
35
|
Canesso MCC, Vieira AT, Castro TBR, Schirmer BGA, Cisalpino D, Martins FS, Rachid MA, Nicoli JR, Teixeira MM, Barcelos LS. Skin wound healing is accelerated and scarless in the absence of commensal microbiota. THE JOURNAL OF IMMUNOLOGY 2014; 193:5171-80. [PMID: 25326026 DOI: 10.4049/jimmunol.1400625] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The commensal microbiota has a high impact on health and disease by modulating the development and homeostasis of host immune system. Immune cells are involved in virtually every aspect of the wound repair process; however, the impact of commensal microbiota on skin wound healing is largely unknown. In this study, we evaluated the influence of commensal microbiota on tissue repair of excisional skin wounds by using germ-free (GF) Swiss mice. We observed that macroscopic wound closure rate is accelerated in the absence of commensal microbiota. Accordantly, histologically assessed wound epithelization was accelerated in GF in comparison with conventional (CV) Swiss mice. The wounds of GF mice presented a significant decrease in neutrophil accumulation and an increase in mast cell and macrophage infiltration into wounds. Interestingly, alternatively activated healing macrophage-related genes were highly expressed in the wound tissue of GF mice. Moreover, levels of the anti-inflammatory cytokine IL-10, the angiogenic growth factor VEGF and angiogenesis were higher in the wound tissue of those mice. Conversely, scarring and levels of the profibrogenic factor TGF-β1 were greatly reduced in GF mice wounded skin when compared with CV mice. Of note, conventionalization of GF mice with CV microbiota restored wound closure rate, neutrophil and macrophage accumulation, cytokine production, and scarring to the same extent as CV mice. Overall, our findings suggest that, in the absence of any contact with microbiota, skin wound healing is accelerated and scarless, partially because of reduced accumulation of neutrophils, increased accumulation of alternatively activated healing macrophages, and better angiogenesis at wound sites.
Collapse
Affiliation(s)
- Maria C C Canesso
- Departamento de Fisiologia e Biofísica, Grupo de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Angélica T Vieira
- Departamento de Microbiologia, Grupo de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Tiago B R Castro
- Departamento de Fisiologia e Biofísica, Grupo de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Brígida G A Schirmer
- Departamento de Fisiologia e Biofísica, Grupo de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Cisalpino
- Departamento de Microbiologia, Grupo de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Flaviano S Martins
- Departamento de Microbiologia, Grupo de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Milene A Rachid
- Departamento de Patologia Geral, Grupo de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil; and
| | - Jacques R Nicoli
- Departamento de Microbiologia, Grupo de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Grupo de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Lucíola S Barcelos
- Departamento de Fisiologia e Biofísica, Grupo de Imunofarmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil;
| |
Collapse
|
36
|
Astashkina AI, Jones CF, Thiagarajan G, Kurtzeborn K, Ghandehari H, Brooks BD, Grainger DW. Nanoparticle toxicity assessment using an in vitro 3-D kidney organoid culture model. Biomaterials 2014; 35:6323-31. [DOI: 10.1016/j.biomaterials.2014.04.060] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/16/2014] [Indexed: 11/16/2022]
|
37
|
Baltazar LDM, Santos PC, Paula TPD, Rachid MA, Cisalpino PS, Souza DG, Santos DA. IFN-γ impairs Trichophyton rubrum proliferation in a murine model of dermatophytosis through the production of IL-1β and reactive oxygen species. Med Mycol 2014; 52:293-302. [PMID: 24577006 DOI: 10.1093/mmy/myt011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Trichophyton rubrum is the main etiological agent of dermatophytosis, an infection of the skin that affects millions of people worldwide. In this study, we developed a murine model of the dermatophytosis caused by T. rubrum in which C57BL/6 wild-type, interleukin (IL)-12(-/-), and interferon-gamma (IFN-γ(-/-)) mice were inoculated with 1 × 10(6) conidia/animal. The fungal burden, myeloperoxidase and N-acetylglucosaminidase activities, cytokine and chemokine profiles, and histopathology of the skin were evaluated on the seventh and fourteenth days post infection. Phagocytic indices, intracellular proliferation rates, and oxidative bursts generated by macrophages from WT and IFN-γ(-/-) mice were determined. On day 7 post infection, higher fungal burdens were observed comparison with burdens on day 14 post infection. The IL-12(-/-) and IFN-γ(-/-) mice showed higher fungal burdens on the skin and lower levels of IL-1β. Conversely, the WT mice showed lower fungal burdens with higher production of TNF-α, IL-1β, and chemokine ligand 1/keratinocyte chemoattractant (CXCL1/KC). The macrophages from WT mice proved to be more efficient at engulfing and killing T. rubrum conidia through the production of reactive oxygen species. The results show that our model is a useful tool for understanding the pathogenesis of dermatophytosis caused by T. rubrum and that IL-12 and IFN-γ are pivotal in controlling the infection through the recruitment and activation of neutrophils and macrophages.
Collapse
Affiliation(s)
- Ludmila de Matos Baltazar
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte Minas Gerais
| | | | | | | | | | | | | |
Collapse
|
38
|
Preventive and therapeutic anti-TNF-α therapy with pentoxifylline decreases arthritis and the associated periodontal co-morbidity in mice. Life Sci 2013; 93:423-8. [PMID: 23911669 DOI: 10.1016/j.lfs.2013.07.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/02/2013] [Accepted: 07/19/2013] [Indexed: 01/29/2023]
Abstract
AIMS The association between rheumatoid arthritis (RA) and periodontal disease (PD) has long been studied and some reports suggest that treating RA may improve the associated PD, and vice versa. This study aimed to evaluate the effects of an anti-tumor necrosis factor (TNF)-α therapy with pentoxifylline (PTX) in an experimental model of RA-associated PD. MAIN METHODS Male C57BL/6 mice were subjected to chronic antigen-induced arthritis (AIA) and daily treated with PTX (50mg/kg, i.p.) using preventive (Pre-PTX) or therapeutic (The-PTX) strategies. Fourteen days after the antigen challenge, mice were euthanized and knee joints, maxillae and serum were collected for microscopic and/or immunoenzymatic analysis. KEY FINDINGS AIA triggered significant leukocyte recruitment to the synovial cavity, tissue damage and proteoglycan loss in the knee joint. Pre-PTX and The-PTX regimens decreased these signs of joint inflammation. The increased levels of TNF-α and IL-17 in periarticular tissues of AIA mice were also reduced by both PTX treatments. Serum levels of C-reactive protein, which were augmented after AIA, were reduced by the PTX regimens. Concomitantly to AIA, mice presented alveolar bone loss, and recruitment of osteoclasts and neutrophils to periodontal tissues. Pre-PTX and The-PTX prevented and treated these signs of PD. PTX treatment also decreased TNF-α and increased IL-10 expression in the maxillae of AIA mice, although it did not affect the expression of IFN-γ and IL-17. SIGNIFICANCE The current study shows the anti-inflammatory and bone protective effects of preventive and therapeutic PTX treatments, which decreased the joint damage triggered by AIA and the associated periodontal co-morbidity.
Collapse
|
39
|
Blockade of cannabinoid receptors reduces inflammation, leukocyte accumulation and neovascularization in a model of sponge-induced inflammatory angiogenesis. Inflamm Res 2013; 62:811-21. [PMID: 23722450 DOI: 10.1007/s00011-013-0638-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/16/2013] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Angiogenesis depends on a complex interaction between cellular networks and mediators. The endocannabinoid system and its receptors have been shown to play a role in models of inflammation. Here, we investigated whether blockade of cannabinoid receptors may interfere with inflammatory angiogenesis. MATERIALS AND METHODS Polyester-polyurethane sponges were implanted in C57Bl/6j mice. Animals received doses (3 and 10 mg/kg/daily, s.c.) of the cannabinoid receptor antagonists SR141716A (CB1) or SR144528 (CB2). Implants were collected at days 7 and 14 for cytokines, hemoglobin, myeloperoxidase, and N-acetylglucosaminidase measurements, as indices of inflammation, angiogenesis, neutrophil and macrophage accumulation, respectively. Histological and morphometric analysis were also performed. RESULTS Cannabinoid receptors expression in implants was detected from day 4 after implantation. Treatment with CB1 or CB2 receptor antagonists reduced cellular influx into sponges at days 7 and 14 after implantation, although CB1 receptor antagonist were more effective at blocking leukocyte accumulation. There was a reduction in TNF-α, VEGF, CXCL1/KC, CCL2/JE, and CCL3/MIP-1α levels, with increase in CCL5/RANTES. Both treatments reduced neovascularization. Dual blockade of cannabinoid receptors resulted in maximum inhibition of inflammatory angiogenesis. CONCLUSIONS Blockade of cannabinoid receptors reduced leukocyte accumulation, inflammation and neovascularization, suggesting an important role of endocannabinoids in sponge-induced inflammatory angiogenesis both via CB1 and CB2 receptors.
Collapse
|
40
|
Fathy H, Amin MM, El-Gilany AH. Upregulation of human β-defensin-3 and cathelicidin LL-37 in Kaposi's sarcoma. F1000Res 2012; 1:38. [PMID: 24358820 PMCID: PMC3782342 DOI: 10.12688/f1000research.1-38.v2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2012] [Indexed: 12/19/2022] Open
Abstract
Background: Kaposi’s sarcoma (KS) is a rare neoplasm of lymphatic endothelial cells. Human herpes virus 8 (HHV-8) is considered to be a necessary, but not sufficient causal agent of KS and additional cofactors remain unknown. In this study we evaluated the expression of human β defensin (HBD)-3 and LL-37 in cutaneous lesions of KS in comparison to the healthy skin of normal subjects. Methods: We performed a quantitative immunohistochemical study of HBD-3 and LL-37 on skin lesions from 18 patients having KS, and on healthy skin from 12 normal controls. Results: HBD-3 and LL-37 were significantly upregulated in epidermal and dermal specimens of all KS patients in comparison to normal skin of healthy controls. The immunostaining score of dermal HBD-3 was significantly higher in nodular lesions (9.6 ± 2.4) versus plaque lesions (4.1 ± 2.2), P = 0.001. Also the immunostaining score of dermal LL-37 was significantly higher in nodular lesions versus plaque lesions (P = 0.001). Conclusions: We have demonstrated for the first time that HBD-3 and LL-37 are significantly upregulated in lesional skin of KS in comparison to the skin of healthy controls. The obtained data suggest a possible involvement of these antimicrobial peptides in the pathogenesis of KS. However, the biological significance of HBD-3 and LL-37 in KS lesions needs further research.
Collapse
Affiliation(s)
- Hanan Fathy
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maha M Amin
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
41
|
Queiroz-Junior CM, Madeira MFM, Coelho FM, Oliveira CR, Cândido LCM, Garlet GP, Teixeira MM, Souza DDG, Silva TAD. Experimental arthritis exacerbates Aggregatibacter actinomycetemcomitans-induced periodontitis in mice. J Clin Periodontol 2012; 39:608-16. [DOI: 10.1111/j.1600-051x.2012.01886.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2012] [Indexed: 01/19/2023]
Affiliation(s)
| | | | - Fernanda Matos Coelho
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Minas Gerais; Brazil
| | | | - Luíza Castro Menezes Cândido
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Minas Gerais; Brazil
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences; School of Dentistry of Bauru, Universidade de São Paulo; São Paulo; Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Minas Gerais; Brazil
| | - Daniele da Glória Souza
- Department of Microbiology, Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Minas Gerais; Brazil
| | | |
Collapse
|
42
|
Fragioudaki M, Tsirakis G, Pappa CA, Aristeidou I, Tsioutis C, Alegakis A, Kyriakou DS, Stathopoulos EN, Alexandrakis MG. Serum BAFF levels are related to angiogenesis and prognosis in patients with multiple myeloma. Leuk Res 2012; 36:1004-8. [PMID: 22498341 DOI: 10.1016/j.leukres.2012.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 03/11/2012] [Accepted: 03/13/2012] [Indexed: 01/01/2023]
Abstract
B-cell activating factor (BAFF) is a B-cell growth factor. We measured its serum levels and correlated them with parameters of disease activity, as serum levels of tumor necrosis factor-α and lactate dehydrogenase, bone marrow microvascular density and proliferating cell nuclear antigen expression, in 50 myeloma patients, in 22 of them in plateau phase and in 20 controls. All of them were higher in patients and in advanced disease while reduced in plateau phase. BAFF correlated with all the above markers. Higher BAFF levels predicted a shorter survival, suggesting an important prognostic marker and a possible therapeutic target in myeloma.
Collapse
Affiliation(s)
- M Fragioudaki
- Department of Hematology, University Hospital of Heraklion, Heraklion, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bertini R, Barcelos LS, Beccari AR, Cavalieri B, Moriconi A, Bizzarri C, Di Benedetto P, Di Giacinto C, Gloaguen I, Galliera E, Corsi MM, Russo RC, Andrade SP, Cesta MC, Nano G, Aramini A, Cutrin JC, Locati M, Allegretti M, Teixeira MM. Receptor binding mode and pharmacological characterization of a potent and selective dual CXCR1/CXCR2 non-competitive allosteric inhibitor. Br J Pharmacol 2012; 165:436-54. [PMID: 21718305 DOI: 10.1111/j.1476-5381.2011.01566.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE DF 2156A is a new dual inhibitor of IL-8 receptors CXCR1 and CXCR2 with an optimal pharmacokinetic profile. We characterized its binding mode, molecular mechanism of action and selectivity, and evaluated its therapeutic potential. EXPERIMENTAL APPROACH The binding mode, molecular mechanism of action and selectivity were investigated using chemotaxis of L1.2 transfectants and human leucocytes, in addition to radioligand and [(35) S]-GTPγS binding approaches. The therapeutic potential of DF 2156A was evaluated in acute (liver ischaemia and reperfusion) and chronic (sponge-induced angiogenesis) experimental models of inflammation. KEY RESULTS A network of polar interactions stabilized by a direct ionic bond between DF 2156A and Lys(99) on CXCR1 and the non-conserved residue Asp(293) on CXCR2 are the key determinants of DF 2156A binding. DF 2156A acted as a non-competitive allosteric inhibitor blocking the signal transduction leading to chemotaxis without altering the binding affinity of natural ligands. DF 2156A effectively and selectively inhibited CXCR1/CXCR2-mediated chemotaxis of L1.2 transfectants and leucocytes. In a murine model of sponge-induced angiogenesis, DF 2156A reduced leucocyte influx, TNF-α production and neovessel formation. In vitro, DF 2156A prevented proliferation, migration and capillary-like organization of HUVECs in response to human IL-8. In a rat model of liver ischaemia and reperfusion (I/R) injury, DF 2156A decreased PMN and monocyte-macrophage infiltration and associated hepatocellular injury. CONCLUSION AND IMPLICATIONS DF 2156A is a non-competitive allosteric inhibitor of both IL-8 receptors CXCR1 and CXCR2. It prevented experimental angiogenesis and hepatic I/R injury in vivo and, therefore, has therapeutic potential for acute and chronic inflammatory diseases.
Collapse
|
44
|
Sahu RP, Kozman AA, Yao Y, DaSilva SC, Rezania S, Martel KC, Warren SJ, Travers JB, Konger RL. Loss of the platelet activating factor receptor in mice augments PMA-induced inflammation and cutaneous chemical carcinogenesis. Carcinogenesis 2012; 33:694-701. [PMID: 22223848 DOI: 10.1093/carcin/bgr322] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although platelet-activating factor (PAF) is a well-known acute inflammatory mediator, little is known regarding the role of PAF in chronic inflammation. Phorbol esters are known to stimulate PAF production. Moreover, the ability of repeated applications of phorbol esters to induce a sustained inflammatory response is crucial to their tumorigenic activity. We therefore examined whether PAF acts as a mediator of phorbol ester-induced inflammation and tumorigenesis. While PAF receptor knockout mice (PAFR(-/-)) showed an expected but modest reduction in the acute inflammatory response to phorbol 12-myristate 13-acetate (PMA), these mice exhibited a surprising increase in inflammation following chronic PMA application. This increased inflammation was documented by a number of findings that included: increased skin thickness, increased myeloperoxidase activity and expression and increased expression of known inflammatory mediators. Interestingly, vehicle-treated PAFR(-/-) mice also exhibited modest increases in levels of inflammatory markers. This suggests that the platelet activating factor receptor (PAFR) acts to suppress chronic inflammation in response to other stimuli, such as barrier disruption. The idea that chronic PAFR activation is anti-inflammatory was documented by repetitive topical PAFR agonist administration that resulted in reduced myeloperoxidase activity in skin. We next utilized a 7,12-dimethylbenz(a)anthracene/PMA carcinogenesis protocol to demonstrate that PAFR(-/-) mice exhibit significantly increased tumor formation and malignant progression compared with wild-type control mice. These studies provide evidence for two important, unexpected and possibly interrelated pathological roles for the PAFR: first, the PAFR acts to suppress PMA-induced chronic inflammation; secondly, the PAFR acts to suppress neoplastic development in response to chemical carcinogens.
Collapse
Affiliation(s)
- Ravi P Sahu
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Characterization of chronic cutaneous lesions from TNF-receptor-1-deficient mice infected by Leishmania major. Clin Dev Immunol 2011; 2012:865708. [PMID: 22203861 PMCID: PMC3235446 DOI: 10.1155/2012/865708] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 08/28/2011] [Indexed: 12/19/2022]
Abstract
Leishmania major-infected TNF receptor 1 deficient (TNFR1 KO) mice resolve parasitism but fail to resolve lesions, while wild-type mice completely heal. We investigated the cell composition, cytokine production, and apoptosis in lesions from L. major-infected TNFR1 KO and wild-type (WT) mice. Chronic lesions from L. major-infected TNFR1 KO mice presented larger number of CD8+ T and Ly6G+ cells. In addition, higher concentrations of mRNA for IFN-γ CCL2 and CCL5, as well as protein, but lower numbers of apoptotic cells, were found in lesions from TNFR1 KO mice than in WT, at late time points of infection. Our studies showed that persistent lesions in L. major-infected TNFR1 KO mice may be mediated by continuous migration of cells to the site of inflammation due to the presence of chemokines and also by lower levels of apoptosis. We suggest that this model has some striking similarities to the mucocutaneous clinical form of leishmaniasis.
Collapse
|
46
|
Lages ELE, Belo AV, Andrade SP, Rocha MÂ, Ferreira de Freitas G, Lamaita RM, Traiman P, Silva-Filho AL. Analysis of systemic inflammatory response in the carcinogenic process of uterine cervical neoplasia. Biomed Pharmacother 2011; 65:496-9. [DOI: 10.1016/j.biopha.2011.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/05/2011] [Indexed: 10/17/2022] Open
|
47
|
Queiroz-Junior CM, Madeira MFM, Coelho FM, Costa VV, Bessoni RLC, Sousa LFDC, Garlet GP, Souza DDGD, Teixeira MM, Silva TAD. Experimental arthritis triggers periodontal disease in mice: involvement of TNF-α and the oral Microbiota. THE JOURNAL OF IMMUNOLOGY 2011; 187:3821-30. [PMID: 21890656 DOI: 10.4049/jimmunol.1101195] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rheumatoid arthritis (RA) and periodontal disease (PD) are prevalent chronic inflammatory disorders that affect bone structures. Individuals with RA are more likely to experience PD, but how disease in joints could induce PD remains unknown. This study aimed to experimentally mimic clinical parameters of RA-induced PD and to provide mechanistic findings to explain this association. Chronic Ag-induced arthritis (AIA) was triggered by injection of methylated BSA in the knee joint of immunized mice. Anti-TNF-α was used to assess the role of this cytokine. Intra-articular challenge induced infiltration of cells, synovial hyperplasia, bone resorption, proteoglycan loss, and increased expression of cytokines exclusively in challenged joints. Simultaneously, AIA resulted in severe alveolar bone loss, migration of osteoclasts, and release of proinflammatory cytokines in maxillae. Anti-TNF-α therapy prevented the development of both AIA and PD. AIA did not modify bacterial counts in the oral cavity. PD, but not AIA, induced by injection of Ag in immunized mice was decreased by local treatment with antiseptic, which decreased the oral microbiota. AIA was associated with an increase in serum C-reactive protein levels and the expression of the transcription factors RORγ and Foxp3 in cervical lymph nodes. There were higher titers of anti-collagen I IgG, and splenocytes were more responsive to collagen I in AIA mice. In conclusion, AIA-induced PD was dependent on TNF-α and the oral microbiota. Moreover, PD was associated with changes in expression of lymphocyte transcription factors, presence of anti-collagen Abs, and increased reactivity to autoantigens.
Collapse
Affiliation(s)
- Celso Martins Queiroz-Junior
- Departamento de Clínica, Patologia e Cirurgia Odontológicas, Faculdade de Odontologia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ligresti G, Aplin AC, Zorzi P, Morishita A, Nicosia RF. Macrophage-derived tumor necrosis factor-alpha is an early component of the molecular cascade leading to angiogenesis in response to aortic injury. Arterioscler Thromb Vasc Biol 2011; 31:1151-9. [PMID: 21372301 DOI: 10.1161/atvbaha.111.223917] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The goal of this study was to define the role of tumor necrosis factor-α (TNFα) in the cascade of gene activation that regulates aortic angiogenesis in response to injury. METHODS AND RESULTS Angiogenesis was studied by culturing rat or mouse aortic rings in collagen gels. Gene expression was evaluated by quantitative reverse transcription-polymerase chain reaction, microarray analysis, immunocytochemistry, and ELISA. TNFα gene disruption and recombinant TNFα or blocking antibodies against vascular endothelial growth factor (VEGF) or TNF receptors were used to investigate TNFα-mediated angiogenic mechanisms. Resident aortic macrophages were depleted with liposomal clodronate. Angiogenesis was preceded by overexpression of TNFα and TNFα-inducible genes. Studies with isolated cells showed that macrophages were the main source of TNFα. Angiogenesis, VEGF production, and macrophage outgrowth were impaired by TNFα gene disruption and promoted by exogenous TNFα. Antibody-mediated inhibition of TNF receptor 1 significantly inhibited angiogenesis. The proangiogenic effect of TNFα was suppressed by blocking VEGF or by ablating aortic macrophages. Exogenous TNFα, however, maintained a limited proangiogenic capacity in the absence of macrophages and macrophage-mediated VEGF production. CONCLUSIONS Overexpression of TNFα is required for optimal VEGF production and angiogenesis in response to injury. This TNFα/VEGF-mediated angiogenic pathway requires macrophages. The residual capacity of TNFα to stimulate angiogenesis in macrophage-depleted aortic cultures implies the existence of a VEGF-independent alternate pathway of TNFα-induced angiogenesis.
Collapse
Affiliation(s)
- Giovanni Ligresti
- Pathology and Laboratory Medicine Services, (S-113), Department of Veterans Affairs Puget Sound Health Care System, University of Washington, 1660 S Columbian Way, Seattle, WA 98108, USA
| | | | | | | | | |
Collapse
|
49
|
Experimental infection with Schistosoma mansoni in CCR5-deficient mice is associated with increased disease severity, as CCR5 plays a role in controlling granulomatous inflammation. Infect Immun 2011; 79:1741-9. [PMID: 21263020 DOI: 10.1128/iai.00502-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The plasma level of the chemokine CCL3 is elevated in patients with chronic severe schistosomiasis mansoni. We have previously shown that CCL3(-/-) mice with experimental infection showed diminished pathology and worm burden compared to those of wild-type (WT) mice. To elucidate further the role of CC chemokines during schistosomiasis mansoni infection, we evaluated the course of infection in C57BL/6J mice deficient in CCR5, one of the receptors for CCL3. The CCR5 deficiency proved to be remarkably deleterious to the host, since mortality rates reached 70% at 14 weeks postinfection in CCR5(-/-) mice and 19% in WT mice. The increased lethality was not associated with an increased parasite burden, since similar numbers of eggs and adult worms were found in mice from both groups. Liver granulomas of chronically infected CCR5(-/-) mice were larger and showed greater numbers of cells and collagen deposition than liver granulomas from WT mice. This was associated with higher levels of production of intereleukin-5 (IL-5), IL-13, CCL3, and CCL5 in infected CCR5(-/-) mice than in infected WT mice. Moreover, at 8 weeks after infection, just before changes in pathology and mortality, the numbers of FoxP3-positive cells were lower in liver granulomas of CCR5(-/-) mice than in WT mice. In conclusion, the CCR5 deletion is deleterious to mice infected with Schistosoma mansoni, and this is associated with enhanced fibrosis and granulomatous inflammation.
Collapse
|
50
|
Russo RC, Alessandri AL, Garcia CC, Cordeiro BF, Pinho V, Cassali GD, Proudfoot AEI, Teixeira MM. Therapeutic effects of evasin-1, a chemokine binding protein, in bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 2010; 45:72-80. [PMID: 20833968 DOI: 10.1165/rcmb.2009-0406oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CC chemokines play an important role in the pathogenesis of idiopathic pulmonary fibrosis. Few studies have evaluated the efficacy of therapeutically targeting CC chemokines and their receptors during interstitial lung diseases. In the present study, the therapeutic effects of Evasin-1, a tick-derived chemokine-binding protein that has high affinity for CCL3/microphage inflammatory protein (MIP)-1α, was investigated in a murine model of bleomycin-induced lung fibrosis. CCL3/MIP-1α concentrations in lung homogenates increased significantly with time after bleomycin challenge, and this was accompanied by increased number of leukocytes and elevated levels of CCL2/monocyte chemoattractant protein (MCP)-1, CCL5/regulated upon activation, normal T cell expressed and secreted, TNF-α and transforming growth factor-β(1), and pulmonary fibrosis. Administration of evasin-1 on a preventive (from the day of bleomycin administration) or therapeutic (from Day 8 after bleomycin) schedule decreased number of leukocytes in the lung, reduced levels of TNF-α and transforming growth factor-β(1), and attenuated lung fibrosis. These protective effects were similar to those observed in CCL3/MIP-1α-deficient mice. In conclusion, targeting CCL3/MIP-1α by treatment with evasin-1 is beneficial in the context of bleomycin-induced lung injury, even when treatment is started after the fibrogenic insult. Mechanistically, evasin-1 treatment was associated with decreased recruitment of leukocytes and production of fibrogenic cytokines. Modulation of CCL3/MIP-1α function by evasin-1 could be useful for the treatment of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Remo C Russo
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas-Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, CEP 30882-650-Pampulha, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|