1
|
Tanegashima K, Tanaka Y, Ito T, Oda Y, Nakahara T. TROP2 Expression and Therapeutic Implications in Cutaneous Squamous Cell Carcinoma: Insights From Immunohistochemical and Functional Analysis. Exp Dermatol 2024; 33:e15196. [PMID: 39422290 DOI: 10.1111/exd.15196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common form of skin cancer, but treatments for advanced cases have limited efficacy. Trophoblast cell-surface antigen 2 (TROP2) is a cell-surface protein that is widely expressed in various tumours, where it exerts significant influence over critical processes such as tumour cell growth, apoptosis, migration, invasion and metastasis. Sacituzumab govitecan, an antibody-drug conjugate (ADC) targeting TROP2, is emerging as a promising strategy for anticancer therapy. In this study, we investigated TROP2 expression in cSCC tissues from 51 patients and evaluated its function in the A431 human SCC cell line. Immunohistochemical analysis revealed TROP2 expression on the plasma membrane of cSCC tissues and A431 cells. A431 cells showed sensitivity to sacituzumab govitecan with a significant concentration-dependent decrease in viable cell number. In addition, Knockdown of TROP2 resulted in decreased expression of cyclin D1 and BCL-2, along with reduced cell viability. Knockdown of TROP2 also resulted in decreased expression of vimentin, along with reduced migratory capacity. These findings suggest that TROP2 plays a crucial role in cSCC cell proliferation and migration, and highlight the potential of sacituzumab govitecan as a promising therapeutic option for cSCC.
Collapse
Affiliation(s)
- Keiko Tanegashima
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Sun J, Tang M, Cai Z. SPP1 promotes tumor progression in esophageal carcinoma by activating focal adhesion pathway. J Gastrointest Oncol 2024; 15:818-828. [PMID: 38989403 PMCID: PMC11231845 DOI: 10.21037/jgo-24-302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Background Recurrence and metastasis are the major obstacles affecting the therapeutic efficacy and clinical outcomes for patients with esophageal carcinoma (ESCA). Secreted phosphoprotein 1 (SPP1) is considered as a hub gene in ESCA and is negatively associated with disease-free survival (DFS) in ESCA. However, the exact roles and underlying mechanisms remain elusive. This study aims to examine the roles of SPP1 on ESCA, and elucidate the potential mechanisms. Methods Bioinformatics were used to analyze the expression of SPP1 in ESCA tissues, and its relations with clinicopathological characteristics and clinical prognosis in patients with ESCA based on The Cancer Genome Atlas (TCGA) dataset. Loss-of-function was conducted to examine the roles of SPP1 on malignant behaviors of ESCA cells by cell counting kit-8 (CCK8), plate clone, wound healing, and transwell assays. Gene set enrichment analysis (GSEA) was conducted to screen the pathways associated with SPP1 in ESCA. Then, the enriched pathway and the underlying mechanism were elucidated by western blotting, cell adhesion, and cell spreading assays. Lastly, Y15 [a specific inhibitor of focal adhesion kinase (FAK)] was used to examine its potential to inhibit tumor growth in ESCA cells. Results SPP1 was upregulated in ESCA tissues compared to the adjacent nontumorous tissues, which was closely associated with clinical stage, lymph node metastasis, histological subtype, and p53 mutation. A high expression of SPP1 indicated a poor clinical prognosis in patients with ESCA. The knockdown of SPP1 inhibited cell proliferative, migratory, and invasive capacities in ESCA cells. GSEA indicated that the focal adhesion pathway was closely related with SPP1 in ESCA. Further studies confirmed that the knockdown of SPP1 suppressed cell adhesion ability and reduced the expression of p-FAK and p-Erk in ESCA cells. In addition, Y15 inhibited FAK autophosphorylation and dramatically inhibited cell proliferation, migration, and invasion in ESCA cells. Conclusions SPP1 promotes tumor progression in ESCA by activating FAK/Erk pathway, and FAK is a potential therapeutic target to overcome tumor recurrence and metastasis of ESCA.
Collapse
Affiliation(s)
- Jianjun Sun
- Department of Thoracic Surgery, Naval Specialized Medical Center Affiliated to Naval Medical University, Shanghai, China
| | - Mingming Tang
- Department of Thoracic Surgery, Naval Specialized Medical Center Affiliated to Naval Medical University, Shanghai, China
| | - Zhigang Cai
- Department of Thoracic Surgery, Naval Specialized Medical Center Affiliated to Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Calado M, Ferreira R, Pires D, Santos-Costa Q, Anes E, Brites D, Azevedo-Pereira JM. Unravelling the triad of neuroinvasion, neurodissemination, and neuroinflammation of human immunodeficiency virus type 1 in the central nervous system. Rev Med Virol 2024; 34:e2534. [PMID: 38588024 DOI: 10.1002/rmv.2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Since the identification of human immunodeficiency virus type 1 (HIV-1) in 1983, many improvements have been made to control viral replication in the peripheral blood and to treat opportunistic infections. This has increased life expectancy but also the incidence of age-related central nervous system (CNS) disorders and HIV-associated neurodegeneration/neurocognitive impairment and depression collectively referred to as HIV-associated neurocognitive disorders (HAND). HAND encompasses a spectrum of different clinical presentations ranging from milder forms such as asymptomatic neurocognitive impairment or mild neurocognitive disorder to a severe HIV-associated dementia (HAD). Although control of viral replication and suppression of plasma viral load with combination antiretroviral therapy has reduced the incidence of HAD, it has not reversed milder forms of HAND. The objective of this review, is to describe the mechanisms by which HIV-1 invades and disseminates in the CNS, a crucial event leading to HAND. The review will present the evidence that underlies the relationship between HIV infection and HAND. Additionally, recent findings explaining the role of neuroinflammation in the pathogenesis of HAND will be discussed, along with prospects for treatment and control.
Collapse
Affiliation(s)
- Marta Calado
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Ferreira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, Rio de Mouro, Portugal
| | - Quirina Santos-Costa
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Bourayou E, Perchet T, Meunier S, Bouvier H, Mailhe MP, Melanitou E, Cumano A, Golub R. Bone marrow monocytes sustain NK cell-poiesis during non-alcoholic steatohepatitis. Cell Rep 2024; 43:113676. [PMID: 38217855 DOI: 10.1016/j.celrep.2024.113676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/22/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Natural killer (NK) cells are the predominant lymphocyte population in the liver. At the onset of non-alcoholic steatohepatitis (NASH), an accumulation of activated NK cells is observed in the liver in parallel with inflammatory monocyte recruitment and an increased systemic inflammation. Using in vivo and in vitro experiments, we unveil a specific stimulation of NK cell-poiesis during NASH by medullary monocytes that trans-present interleukin-15 (IL-15) and secrete osteopontin, a biomarker for patients with NASH. This cellular dialogue leads to increased survival and maturation of NK precursors that are recruited to the liver, where they dampen the inflammatory monocyte infiltration. The increase in the production of both osteopontin and the IL-15/IL-15Rα complex by bone marrow monocytes is induced by endotoxemia. We propose a tripartite gut-liver-bone marrow axis regulating the immune population dynamics and effector functions during liver inflammation.
Collapse
Affiliation(s)
- Elsa Bourayou
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, 75015 Paris, France
| | - Thibaut Perchet
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, 75015 Paris, France
| | - Sylvain Meunier
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, 75015 Paris, France; Institut Mondor de Recherche Biomédicale (IMRB), INSERM U955, 94000 Créteil, France
| | - Hugo Bouvier
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, 75015 Paris, France
| | - Marie-Pierre Mailhe
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, 75015 Paris, France
| | - Evie Melanitou
- Institut Pasteur, Université Paris Cité, Department of Parasites and Insect Vectors, 75015 Paris, France
| | - Ana Cumano
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, 75015 Paris, France
| | - Rachel Golub
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, 75015 Paris, France.
| |
Collapse
|
5
|
Warfield R, Robinson JA, Podgorski RM, Miller AD, Burdo TH. Neuroinflammation in the Dorsal Root Ganglia and Dorsal Horn Contributes to Persistence of Nociceptor Sensitization in SIV-Infected Antiretroviral Therapy-Treated Macaques. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:2017-2030. [PMID: 37734588 PMCID: PMC10699130 DOI: 10.1016/j.ajpath.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
Despite the development of antiretroviral therapy (ART), HIV-associated distal sensory polyneuropathy remains prevalent. Using SIV-infected rhesus macaques, this study examined molecular mechanisms of peripheral and central sensitization to infer chronic pain from HIV infection. Previous studies identified atrophy in nociceptive neurons during SIV infection, which was associated with monocyte infiltration into the dorsal root ganglia (DRG). However, the sensory signaling mechanism connecting this pathology to symptoms remains unclear, especially because pain persists after resolution of high viremia and inflammation with ART. We hypothesized that residual DRG and dorsal horn neuroinflammation contributes to nociceptive sensitization. Using three cohorts of macaques [uninfected (SIV-), SIV-infected (SIV+), and SIV infected with ART (SIV+/ART)], this study showed an increase in the cellular and cytokine inflammatory profiles in the DRG of SIV+/ART macaques compared with uninfected animals. It found significant increase in the expression of nociceptive ion channels, TRPV1, and TRPA1 among DRG neurons in SIV+/ART compared with uninfected animals. SIV-infected and SIV+/ART animals showed reduced innervation of the nonpeptidergic nociceptors into the dorsal horn compared with uninfected animals. Finally, there were a significantly higher number of CD68+ cells in the dorsal horn of SIV+/ART macaques compared with uninfected animals. In summary, these data demonstrate that neuroinflammation, characteristics of nociceptor sensitization, and central terminal atrophy persists in SIV+/ART animals.
Collapse
Affiliation(s)
- Rebecca Warfield
- Department of Microbiology, Immunology, and Inflammation, Center for NeuroVirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jake A Robinson
- Department of Microbiology, Immunology, and Inflammation, Center for NeuroVirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Rachel M Podgorski
- Department of Microbiology, Immunology, and Inflammation, Center for NeuroVirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Andrew D Miller
- Section of Anatomic Pathology, Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York
| | - Tricia H Burdo
- Department of Microbiology, Immunology, and Inflammation, Center for NeuroVirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
6
|
Barbalho SM, Minniti G, Miola VFB, Haber JFDS, Bueno PCDS, de Argollo Haber LS, Girio RSJ, Detregiachi CRP, Dall'Antonia CT, Rodrigues VD, Nicolau CCT, Catharin VMCS, Araújo AC, Laurindo LF. Organokines in COVID-19: A Systematic Review. Cells 2023; 12:1349. [PMID: 37408184 DOI: 10.3390/cells12101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 07/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a viral infection caused by SARS-CoV-2 that induces a generalized inflammatory state. Organokines (adipokines, osteokines, myokines, hepatokines, and cardiokines) can produce beneficial or harmful effects in this condition. This study aimed to systematically review the role of organokines on COVID-19. PubMed, Embase, Google Scholar, and Cochrane databases were searched, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and 37 studies were selected, comprising more than 2700 individuals infected with the virus. Among COVID-19 patients, organokines have been associated with endothelial dysfunction and multiple organ failure due to augmented cytokines and increased SARS-CoV-2 viremia. Changes in the pattern of organokines secretion can directly or indirectly contribute to aggravating the infection, promoting immune response alterations, and predicting the disease progression. These molecules have the potential to be used as adjuvant biomarkers to predict the severity of the illness and severe outcomes.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, SP, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Vitor Fernando Bordin Miola
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Jesselina Francisco Dos Santos Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Centro Interdisciplinar em Diabetes (CENID), School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Patrícia Cincotto Dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Luiza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Raul S J Girio
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Cláudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| | - Camila Tiveron Dall'Antonia
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| | - Claudia C T Nicolau
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, SP, Brazil
| | - Virginia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| |
Collapse
|
7
|
Fox HS, Niu M, Morsey BM, Lamberty BG, Emanuel K, Periyasamy P, Callen S, Acharya A, Kubik G, Eudy J, Guda C, Dyavar SR, Fletcher CV, Byrareddy SN, Buch S. Morphine suppresses peripheral responses and transforms brain myeloid gene expression to favor neuropathogenesis in SIV infection. Front Immunol 2022; 13:1012884. [PMID: 36466814 PMCID: PMC9709286 DOI: 10.3389/fimmu.2022.1012884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
The twin pandemics of opioid abuse and HIV infection can have devastating effects on physiological systems, including on the brain. Our previous work found that morphine increased the viral reservoir in the brains of treated SIV-infected macaques. In this study, we investigated the interaction of morphine and SIV to identify novel host-specific targets using a multimodal approach. We probed systemic parameters and performed single-cell examination of the targets for infection in the brain, microglia and macrophages. Morphine treatment created an immunosuppressive environment, blunting initial responses to infection, which persisted during antiretroviral treatment. Antiretroviral drug concentrations and penetration into the cerebrospinal fluid and brain were unchanged by morphine treatment. Interestingly, the transcriptional signature of both microglia and brain macrophages was transformed to one of a neurodegenerative phenotype. Notably, the expression of osteopontin, a pleiotropic cytokine, was significantly elevated in microglia. This was especially notable in the white matter, which is also dually affected by HIV and opioids. Increased osteopontin expression was linked to numerous HIV neuropathogenic mechanisms, including those that can maintain a viral reservoir. The opioid morphine is detrimental to SIV/HIV infection, especially in the brain.
Collapse
Affiliation(s)
- Howard S. Fox
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States,*Correspondence: Howard S. Fox,
| | - Meng Niu
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Brenda M. Morsey
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Benjamin G. Lamberty
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Katy Emanuel
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Palsamy Periyasamy
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shannon Callen
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Arpan Acharya
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Gregory Kubik
- The Genomics Core Facility, University of Nebraska Medical Center, Omaha, NE, United States
| | - James Eudy
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chittibabu Guda
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shetty Ravi Dyavar
- The Antiviral Pharmacology Laboratory, University of Nebraska Medical Center, Omaha, NE, United States
| | - Courtney V. Fletcher
- The Antiviral Pharmacology Laboratory, University of Nebraska Medical Center, Omaha, NE, United States
| | - Siddappa N. Byrareddy
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shilpa Buch
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
8
|
Wang M, Sun X, Xin H, Wen Z, Cheng Y. SPP1 promotes radiation resistance through JAK2/STAT3 pathway in esophageal carcinoma. Cancer Med 2022; 11:4526-4543. [PMID: 35593388 PMCID: PMC9741975 DOI: 10.1002/cam4.4840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Therapeutic resistance to radiotherapy is one of the major obstacles in clinical practice that significantly affect the therapeutic efficiency and prognosis of human esophageal carcinoma (ESCA). Thus, it is critical to understand the molecular mechanisms of radiation resistance in ESCA. Secreted phosphoprotein 1 (SPP1) plays an essential role in various human cancers, but its role in radiation resistance remains unclear. METHOD Cell culture and transfection; Cell Counting Kit-8 (CCK-8) assays; EdU incorporation assays; Patient sample collection and medical records review; Transwell assays; Colony formation assays; Wound healing assays; Western blot; Immunofluorescence; Immunohistochemistry; Irradiation; Flow cytometry; Animal studies; Human Apoptosis Array Kit; Bioinformatics. RESULT In the current study, we reported the novel phenomenon that radiation-treated human ESCA cells upregulated SPP1 expression, which in turn contributed to the ESCA resistance to radiotherapy. We also reported the tumor-promoting effect of SPP1 in ESCA systematically and comprehensively. Furthermore, subsequent studies by knocking down or overexpressing SPP1 in human ESCA cells showed that SPP1 could facilitate the repair of DNA damage and the survival of tumor cells post-radiation in ESCA, which might contribute to the development of radiation resistance during the radiotherapy process. More detailed investigations on the downstream molecular pathway suggested that radiation could increase the phosphorylation level of JAK2 and STAT3 by increasing SPP1 expression. Further in vivo validation using a mouse ESCA xenograft model showed that SPP1 overexpression significantly increased tumor volume while either SPP1 knockdown or pharmacological inhibition of the JAK2-STAT3 pathway reduced tumor volume in a synergistic manner with radiotherapy. CONCLUSION Collectively, these findings suggested that the SPP1/JAK2/STAT3 axis is a critical player in ESCA progression and radiation resistance, which is a potential therapeutic target for combined therapy with the standard radiotherapy regimen to improve curative effect and increase patients' survival with ESCA.
Collapse
Affiliation(s)
- Meijie Wang
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of MedicineQilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina,Laboratory of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Xiaozheng Sun
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of MedicineQilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina,Laboratory of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Huixian Xin
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of MedicineQilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina,Laboratory of Basic Medical Sciences, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Zhihua Wen
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of MedicineQilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of MedicineQilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
9
|
Reisner A, Blackwell LS, Sayeed I, Myers HE, Wali B, Heilman S, Figueroa J, Lu A, Hussaini L, Anderson EJ, Shane AL, Rostad CA. Osteopontin as a biomarker for COVID-19 severity and multisystem inflammatory syndrome in children: A pilot study. Exp Biol Med (Maywood) 2022; 247:145-151. [PMID: 34565198 PMCID: PMC8777475 DOI: 10.1177/15353702211046835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
This study sought to evaluate the candidacy of plasma osteopontin (OPN) as a biomarker of COVID-19 severity and multisystem inflammatory condition in children (MIS-C) in children. A retrospective analysis of 26 children (0-21 years of age) admitted to Children's Healthcare of Atlanta with a diagnosis of COVID-19 between March 17 and May 26, 2020 was undertaken. The patients were classified into three categories based on COVID-19 severity levels: asymptomatic or minimally symptomatic (control population, admitted for other non-COVID-19 conditions), mild/moderate, and severe COVID-19. A fourth category of children met the Centers for Disease Control and Prevention's case definition for MIS-C. Residual blood samples were analyzed for OPN, a marker of inflammation using commercial ELISA kits (R&D), and results were correlated with clinical data. This study demonstrates that OPN levels are significantly elevated in children hospitalized with moderate and severe COVID-19 and MIS-C compared to OPN levels in mild/asymptomatic children. Further, OPN differentiated among clinical levels of severity in COVID-19, while other inflammatory markers including maximum erythrocyte sedimentation rate, C-reactive protein and ferritin, minimum lymphocyte and platelet counts, soluble interleukin-2R, and interleukin-6 did not. We conclude OPN is a potential biomarker of COVID-19 severity and MIS-C in children that may have future clinical utility. The specificity and positive predictive value of this marker for COVID-19 and MIS-C are areas for future larger prospective research studies.
Collapse
Affiliation(s)
- Andrew Reisner
- Department of Pediatrics, Emory
University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurosurgery, Emory
University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurosurgery,
Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Laura S Blackwell
- Department of Neurosurgery,
Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Iqbal Sayeed
- Department of Emergency Medicine,
Brain Research Laboratory, Emory University School of Medicine, Atlanta, GA
30322, USA
| | - Hannah E Myers
- Department of Neurosurgery,
Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Bushra Wali
- Department of Emergency Medicine,
Brain Research Laboratory, Emory University School of Medicine, Atlanta, GA
30322, USA
| | - Stacy Heilman
- Department of Pediatrics, Emory
University School of Medicine, Atlanta, GA 30322, USA
| | - Janet Figueroa
- Department of Pediatrics, Emory
University School of Medicine, Atlanta, GA 30322, USA
| | - Austin Lu
- Division of Infectious Disease,
Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
30322, USA
- Center for Childhood Infections and
Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Laila Hussaini
- Division of Infectious Disease,
Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
30322, USA
- Center for Childhood Infections and
Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Evan J Anderson
- Division of Infectious Disease,
Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
30322, USA
- Department of Medicine, Emory University School of
Medicine, Emory University School of Medicine, Atlanta, GA 30322,
USA
- Center for Childhood Infections and
Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Andi L Shane
- Division of Infectious Disease,
Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
30322, USA
- Center for Childhood Infections and
Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| | - Christina A Rostad
- Division of Infectious Disease,
Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
30322, USA
- Center for Childhood Infections and
Vaccines, Children’s Healthcare of Atlanta, Atlanta, GA 30342, USA
| |
Collapse
|
10
|
Bai G, Furushima D, Niki T, Matsuba T, Maeda Y, Takahashi A, Hattori T, Ashino Y. High Levels of the Cleaved Form of Galectin-9 and Osteopontin in the Plasma Are Associated with Inflammatory Markers That Reflect the Severity of COVID-19 Pneumonia. Int J Mol Sci 2021; 22:ijms22094978. [PMID: 34067072 PMCID: PMC8125627 DOI: 10.3390/ijms22094978] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023] Open
Abstract
Numbers of patients with coronavirus disease 2019 (COVID-19) have increased rapidly worldwide. Plasma levels of full-length galectin-9 (FL-Gal9) and osteopontin (FL-OPN) as well as their truncated forms (Tr-Gal9, Ud-OPN, respectively), are representative inflammatory biomarkers. Here, we measured FL-Gal9, FL-OPN, Tr-Gal9, and Ud-OPN in 94 plasma samples obtained from 23 COVID-19-infected patients with mild clinical symptoms (CV), 25 COVID-19 patients associated with pneumonia (CP), and 14 patients with bacterial infection (ID). The four proteins were significantly elevated in the CP group when compared with healthy individuals. ROC analysis between the CV and CP groups showed that C-reactive protein had the highest ability to differentiate, followed by Tr-Gal9 and ferritin. Spearman's correlation analysis showed that Tr-Gal9 and Ud-OPN but not FL-Gal9 and FL-OPN, had a significant association with laboratory markers for lung function, inflammation, coagulopathy, and kidney function in CP patients. CP patients treated with tocilizumab had reduced levels of FL-Gal9, Tr-Gal9, and Ud-OPN. It was suggested that OPN is cleaved by interleukin-6-dependent proteases. These findings suggest that the cleaved forms of OPN and galectin-9 can be used to monitor the severity of pathological inflammation and the therapeutic effects of tocilizumab in CP patients.
Collapse
Affiliation(s)
- Gaowa Bai
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (G.B.); (A.T.)
| | - Daisuke Furushima
- Department of Drug Evaluation and Informatics, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
| | - Toshiro Niki
- Department of Immunology, Kagawa University, Kagawa 761-0793, Japan;
| | - Takashi Matsuba
- Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Tottori 683-8503, Japan;
- Department of Animal Pharmaceutical Science, School of Pharmaceutical Science, Kyusyu University of Health and Welfare, Nobeoka, Miyazaki 882-8508, Japan
| | - Yosuke Maeda
- Viral Section, Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| | - Atsushi Takahashi
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (G.B.); (A.T.)
| | - Toshio Hattori
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (G.B.); (A.T.)
- Correspondence: (T.H.); (Y.A.); Tel.: +81-866-22-9469 (T.H.); +81-22-308-7111 (Y.A.); Fax: +81-866-22-9469 (T.H.); +81-22-308-9921 (Y.A.)
| | - Yugo Ashino
- Department of Respiratory Medicine, Sendai City Hospital, Miyagi 982-8502, Japan
- Correspondence: (T.H.); (Y.A.); Tel.: +81-866-22-9469 (T.H.); +81-22-308-7111 (Y.A.); Fax: +81-866-22-9469 (T.H.); +81-22-308-9921 (Y.A.)
| |
Collapse
|
11
|
Varım C, Demirci T, Cengiz H, Hacıbekiroğlu İ, Tuncer FB, Çokluk E, Toptan H, Karabay O, Yıldırım İ. Relationship between serum osteopontin levels and the severity of COVID-19 infection. Wien Klin Wochenschr 2021; 133:298-302. [PMID: 33369698 PMCID: PMC7768087 DOI: 10.1007/s00508-020-01789-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/26/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is an acute inflammatory respiratory disease. Osteopontin (OPN) is a glycoprotein expressed in various cell types, such as bone, immune, smooth muscle, epithelial and endothelial cells. It also acts as a regulator of immune response. The aim of the present study was to reveal the place of serum osteopontin levels in predicting severity among patients with COVID-19. METHODS This study included 84 patients, 43 female and 45 male. Patients were divided into 2 groups, group 1 non-severe group (n: 48), group 2 severe (n: 40). Demographic data, neutrophil, lymphocyte, platelet, white blood cell counts, albumin, procalcitonin, C‑reactive protein (CRP) and OPN levels were recorded. The OPN levels and these inflammatory parameters of the two groups were compared. RESULTS There were no significant differences in terms of gender (female/male 25/23 vs. 18/22) and platelet count (178 K/μL vs. 191 K/μL) between the groups (p > 0.05). Ages (57.7 ± 17.0 years vs. 71.4 ± 12.8 years), procalcitonin (0.07 vs. 0.24 ng/mL), CRP (17 vs 158 mg/l), neutrophil count (3.7 vs 5.64 K/μL), WBC counts (5.38 vs 7.85 K/μL) and number of deaths (0 vs 26) (p < 0.001). The OPN levels (98.5 vs 13.75 ng/mL, p = 0.002) were found to be statistically higher, in group 2 than group 1. CONCLUSION The present study showed that OPN can be used to predict the severity in patients with COVID-19.
Collapse
Affiliation(s)
- Ceyhun Varım
- Department of Internal Medicine, Sakarya University Medicine Faculty, Sakarya, Turkey
| | - Taner Demirci
- Department of Internal Medicine, Division of Endocrinology, Sakarya University Medicine Faculty, Sakarya, Turkey
| | - Hasret Cengiz
- Department of Endocrinology, Sakarya University Medicine Faculty, Sakarya, Turkey
| | - İlhan Hacıbekiroğlu
- Department of Medical Oncology, Sakarya University Medicine Faculty, Sakarya, Turkey
| | - Fatima Betul Tuncer
- Department of Clinical Microbiology, Sakarya University Medicine Faculty, Sakarya, Turkey
| | - Erdem Çokluk
- Department of Medical Biochemistry, Sakarya University Medicine Faculty, Sakarya, Turkey
| | - Hande Toptan
- Department of Clinical Microbiology, Sakarya University Medicine Faculty, Sakarya, Turkey
| | - Oguz Karabay
- Department of İnfection Diseases and Clinical Microbiology, Sakarya University Medicine Faculty, Sakarya, Turkey
| | - İlhan Yıldırım
- Department of Internal Medicine, Sakarya University Medicine Faculty, Sakarya, Turkey
| |
Collapse
|
12
|
Berger J, Vigan M, Pereira B, Nguyen TT, Froissart R, Belmatoug N, Dalbiès F, Masseau A, Rose C, Serratrice C, Pers YM, Bertchansky I, Camou F, Bengherbia M, Bourgne C, Caillaud C, Pettazzoni M, Berrahal A, Stirnemann J, Mentré F, Berger MG. Intra-monocyte Pharmacokinetics of Imiglucerase Supports a Possible Personalized Management of Gaucher Disease Type 1. Clin Pharmacokinet 2020; 58:469-482. [PMID: 30128966 DOI: 10.1007/s40262-018-0708-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND OBJECTIVES Intravenous imiglucerase enzyme replacement therapy for Gaucher disease type 1 administered every 2 weeks is at variance with the imiglucerase plasma half-life of a few minutes. We hypothesized that studying the pharmacokinetics of imiglucerase in blood Gaucher disease type 1 monocytes would be more relevant for understanding enzyme replacement therapy responses. METHODS Glucocerebrosidase intra-monocyte activity was studied by flow cytometry. The pharmacokinetics of imiglucerase was analyzed using a population-pharmacokinetic model from a cohort of 31 patients with Gaucher disease type 1 who either started or were receiving long-term treatment with imiglucerase. RESULTS A pharmacokinetic analysis of imiglucerase showed a two-compartment model with a high peak followed by a two-phase exponential decay (fast phase half-life: 0.36 days; slow phase half-life: 9.7 days) leading to a median 1.4-fold increase in glucocerebrosidase intra-monocyte activity from the pre-treatment activity (p = 0.04). In patients receiving long-term treatment, for whom the imiglucerase dose per infusion was chosen on the basis of disease aggressiveness/response, imiglucerase clearance correlated with the administered dose. However, the residual glucocerebrosidase intra-monocyte activity value was dose independent, suggesting that the maintenance of imiglucerase residual activity is patient specific. Endogenous pre-treatment glucocerebrosidase intra-monocyte activity was the most informative single parameter for distinguishing patients without (n = 10) and with a clinical indication (n = 17) for starting enzyme replacement therapy (area under the receiver operating characteristic curve: 0.912; 95% confidence interval 0.8-1; p < 0.001), as confirmed also by a factorial analysis of mixed data. CONCLUSION This study provides novel pharmacokinetic data that support current imiglucerase administration regimens and suggests the existence of a glucocerebrosidase activity threshold related to Gaucher disease type 1 aggressiveness. These findings can potentially improve Gaucher disease type 1 management algorithms and clinical decision making.
Collapse
Affiliation(s)
- Juliette Berger
- Hématologie Biologique, CHU Clermont-Ferrand, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63003, Clermont-Ferrand Cedex 1, France
- Université Clermont Auvergne, Equipe d'Accueil 7453 CHELTER, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63003, Clermont-Ferrand Cedex 1, France
- CHU Clermont-Ferrand, CHU Estaing, CRB Auvergne, 1 place Lucie et Raymond Aubrac, 63003, Clermont-Ferrand Cedex 1, France
| | - Marie Vigan
- INSERM and University Paris Diderot, IAME, UMR 1137, Paris, France
- AP-HP, Department of Epidemiology, Biostatistic and Clinical Research, Bichat Hospital, 75018, Paris, France
| | - Bruno Pereira
- CHU Clermont-Ferrand, DRCI, CHU Montpied, 58 rue Montalembert, 63003, Clermont-Ferrand Cedex 1, France
| | - Thu Thuy Nguyen
- INSERM and University Paris Diderot, IAME, UMR 1137, Paris, France
| | - Roseline Froissart
- Hospices Civils de Lyon, Centre de Biologie et de Pathologie Est, Unité des Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Service de Biochimie et Biologie Moléculaire Grand Est, 69677, Bron, France
| | - Nadia Belmatoug
- Médecine Interne, AP-HP, Hôpital Beaujon, 100 boulevard Général Leclerc, 92110, Clichy, France
| | - Florence Dalbiès
- Hématologie, CHRU Brest site Hôpital Morvan, 5 avenue Maréchal Foch, 29200, Brest, France
| | - Agathe Masseau
- Médecine Interne, CHU de Nantes, Hôtel-Dieu, 44093, Nantes, France
| | - Christian Rose
- Onco-Hématologie, Hôpital Saint-Vincent de Paul, boulevard de Belfort, 59000, Lille, France
| | - Christine Serratrice
- Hôpitaux Universitaires de Genève, Département de Médecine Interne, Hôpital des Trois-Chêne, Chemin du Pont-Bochet 3, Thônex, 1226, Geneva, Switzerland
| | - Yves-Marie Pers
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Lapeyronie University Hospital, 371 avenue du Doyen-Gaston-Giraud, 34295, Montpellier, France
| | - Ivan Bertchansky
- INSERM U1183, Saint-Eloi University Hospital, Montpellier, France
| | - Fabrice Camou
- Service de Médecine Interne et Maladies Infectieuses, CHU Bordeaux, Groupe Hospitalier Sud, avenue Magellan, 33604, Pessac Cedex, France
| | - Monia Bengherbia
- Médecine Interne, AP-HP, Hôpital Beaujon, 100 boulevard Général Leclerc, 92110, Clichy, France
| | - Céline Bourgne
- Hématologie Biologique, CHU Clermont-Ferrand, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63003, Clermont-Ferrand Cedex 1, France
- Université Clermont Auvergne, Equipe d'Accueil 7453 CHELTER, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63003, Clermont-Ferrand Cedex 1, France
| | - Catherine Caillaud
- INSERM U1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
- AP-HP, Hôpital Universitaire Necker Enfants Malades, Laboratoire de Biochimie, Métabolomique et Protéomique, 149 rue de Sèvres, 75005, Paris, France
| | - Magali Pettazzoni
- Hospices Civils de Lyon, Centre de Biologie et de Pathologie Est, Unité des Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Service de Biochimie et Biologie Moléculaire Grand Est, 69677, Bron, France
| | - Amina Berrahal
- Hématologie Biologique, CHU Clermont-Ferrand, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63003, Clermont-Ferrand Cedex 1, France
| | - Jérôme Stirnemann
- Département de Médecine Interne, Hôpitaux Universitaires de Genève, Gabrielle Perret Gentil 4, 1211, Geneva, Switzerland
| | - France Mentré
- INSERM and University Paris Diderot, IAME, UMR 1137, Paris, France
- AP-HP, Department of Epidemiology, Biostatistic and Clinical Research, Bichat Hospital, 75018, Paris, France
| | - Marc G Berger
- Hématologie Biologique, CHU Clermont-Ferrand, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63003, Clermont-Ferrand Cedex 1, France.
- Université Clermont Auvergne, Equipe d'Accueil 7453 CHELTER, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63003, Clermont-Ferrand Cedex 1, France.
- CHU Clermont-Ferrand, CHU Estaing, CRB Auvergne, 1 place Lucie et Raymond Aubrac, 63003, Clermont-Ferrand Cedex 1, France.
| |
Collapse
|
13
|
Nardo AD, Grün NG, Zeyda M, Dumanic M, Oberhuber G, Rivelles E, Helbich TH, Markgraf DF, Roden M, Claudel T, Trauner M, Stulnig TM. Impact of osteopontin on the development of non-alcoholic liver disease and related hepatocellular carcinoma. Liver Int 2020; 40:1620-1633. [PMID: 32281248 PMCID: PMC7384114 DOI: 10.1111/liv.14464] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/14/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Osteopontin, a multifunctional protein and inflammatory cytokine, is overexpressed in adipose tissue and liver in obesity and contributes to the induction of adipose tissue inflammation and non-alcoholic fatty liver (NAFL). Studies performed in both mice and humans also point to a potential role for OPN in malignant transformation and tumour growth. To fully understand the role of OPN on the development of NAFL-derived hepatocellular carcinoma (HCC), we applied a non-alcoholic steatohepatitis (NASH)-HCC mouse model on osteopontin-deficient (Spp1-/- ) mice analysing time points of NASH, fibrosis and HCC compared to wild-type mice. METHODS Two-day-old wild-type and Spp1-/- mice received a low-dose streptozotocin injection in order to induce diabetes, and were fed a high-fat diet starting from week 4. Different cohorts of mice of both genotypes were sacrificed at 8, 12 and 19 weeks of age to evaluate the NASH, fibrosis and HCC phenotypes respectively. RESULTS Spp1-/- animals showed enhanced hepatic lipid accumulation and aggravated NASH, as also increased hepatocellular apoptosis and accelerated fibrosis. The worse steatotic and fibrotic phenotypes observed in Spp1-/- mice might be driven by enhanced hepatic fatty acid influx through CD36 overexpression and by a pathological accumulation of specific diacylglycerol species during NAFL. Lack of osteopontin lowered systemic inflammation, prevented HCC progression to less differentiated tumours and improved overall survival. CONCLUSIONS Lack of osteopontin dissociates NASH-fibrosis severity from overall survival and HCC malignant transformation in NAFLD, and is therefore a putative therapeutic target only for advanced chronic liver disease.
Collapse
Affiliation(s)
- Alexander D. Nardo
- Christian Doppler Laboratory for Cardio‐Metabolic Immunotherapy and Clinical Division of Endocrinology and MetabolismDepartment of Medicine IIIMedical University of ViennaViennaAustria,Present address:
Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology & HepatologyMedical University of ViennaVienna1090Austria
| | - Nicole G. Grün
- Christian Doppler Laboratory for Cardio‐Metabolic Immunotherapy and Clinical Division of Endocrinology and MetabolismDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Maximilian Zeyda
- Christian Doppler Laboratory for Cardio‐Metabolic Immunotherapy and Clinical Division of Endocrinology and MetabolismDepartment of Medicine IIIMedical University of ViennaViennaAustria,Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
| | - Monika Dumanic
- Division of Nuclear MedicineDepartment of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Georg Oberhuber
- Department of PathologyGeneral Hospital of InnsbruckInnsbruckAustria
| | - Elisa Rivelles
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Thomas H. Helbich
- Division of Nuclear MedicineDepartment of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria,Division of Molecular and Gender ImagingDepartment of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
| | - Daniel F. Markgraf
- German Diabetes CenterLeibniz Center for Diabetes ResearchInstitute for Clinical DiabetologyHeinrich Heine UniversityDüsseldorfGermany
| | - Michael Roden
- German Diabetes CenterLeibniz Center for Diabetes ResearchInstitute for Clinical DiabetologyHeinrich Heine UniversityDüsseldorfGermany,German Center of Diabetes Research (DZD e.V.)München‐NeuherbergGermany,Division of Endocrinology and DiabetologyMedical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology & HepatologyMedical University of ViennaViennaAustria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology & HepatologyMedical University of ViennaViennaAustria
| | - Thomas M. Stulnig
- Christian Doppler Laboratory for Cardio‐Metabolic Immunotherapy and Clinical Division of Endocrinology and MetabolismDepartment of Medicine IIIMedical University of ViennaViennaAustria,Present address:
Third Department of Medicine and Karl Landsteiner Institute for Metabolic Diseases and NephrologyHietzing HospitalVienna1130Austria
| |
Collapse
|
14
|
Wing TT, Erikson DW, Burghardt RC, Bazer FW, Bayless KJ, Johnson GA. OPN binds alpha V integrin to promote endothelial progenitor cell incorporation into vasculature. Reproduction 2020; 159:465-478. [PMID: 31990676 PMCID: PMC10792589 DOI: 10.1530/rep-19-0358] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/28/2020] [Indexed: 11/08/2022]
Abstract
Angiogenesis is fundamental to the expansion of the placental vasculature during pregnancy. Integrins are associated with vascular formation; and osteopontin is a candidate ligand for integrins to promote angiogenesis. Endothelial progenitor cells (EPCs) are released from bone marrow into the blood and incorporate into newly vascularized tissue where they differentiate into mature endothelium. Results of studies in women suggest that EPCs may play an important role in maintaining placental vascular integrity during pregnancy, although little is known about how EPCs are recruited to these tissues. Our goal was to determine the αv integrin mediated effects of osteopontin on EPC adhesion and incorporation into angiogenic vascular networks. EPCs were isolated from 6 h old piglets. RT-PCR revealed that EPCs initially had a monocyte-like phenotype in culture that became more endothelial-like with cell passage. Immunofluorescence microscopy confirmed that the EPCs express platelet endothelial cell adhesion molecule, vascular endothelial cadherin, and von Willebrand factor. When EPCs were cultured on OPN-coated slides, the αv integrin subunit was observed in focal adhesions at the basal surface of EPCs. Silencing of αv integrin reduced EPC binding to OPN and focal adhesion assembly. In vitro siRNA knockdown in EPCs,demonstrated that OPN stimulates EPC incorporation into human umbilical vein endothelial cell (HUVEC) networks via αv-containing integrins. Finally, in situ hybridization and immunohistochemistry localized osteopontin near placental blood vessels. In summary, OPN binds the αv integrin subunit on EPCs to support EPC adhesion and increase EPC incorporation into angiogenic vascular networks.
Collapse
Affiliation(s)
- Theodore T. Wing
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - David W. Erikson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Robert C. Burghardt
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| | - Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Kayla J. Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843
| | - Greg A. Johnson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843
| |
Collapse
|
15
|
Qian X, Lai Y, Zhu F. Molecular characterization of carboxypeptidase B-like (CPB) in Scylla paramamosain and its role in white spot syndrome virus and Vibrio alginolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2019; 94:434-446. [PMID: 31536767 DOI: 10.1016/j.fsi.2019.09.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Carboxypeptidase plays an important physiological role in the tissues and organs of animals. In this study, we cloned an entire 2316 bp carboxypeptidase B-like (CPB) sequence with a 1302 bp open reading frame encoding a 434 amino acid peptide from Scylla paramamosain. The CPB gene was expressed highly in hepatopancreas and decreased in crab hemocytes after challenges with white spot syndrome virus (WSSV) or Vibrio alginolyticus. After CPB gene knockdown using double-stranded RNA (CPB-dsRNA), the expression of JAK, STAT, C-type lectin, crustin antimicrobial peptide, Toll-like receptors, prophenoloxidase, and myosin II essential light chain-like protein were down-regulated in hemocytes at 24 h post dsRNA treatment. CPB knockdown decreases total hemocyte count in crabs indicated that CPB may negatively regulate crab hemocyte proliferation in crabs. CPB showed an inhibitory effect on hemocyte apoptosis in crabs infected with WSSV or V. alginolyticus. The phagocytosis rate of WSSV by hemocytes was increased after CPB-dsRNA treatment. After WSSV challenge, the mortality and WSSV copy number were both decreased but the rate of hemocyte apoptosis was increased in CPB-dsRNA-treated crabs. The results indicate that the antiviral activity of the crabs was enhanced when CPB was knocked down, indicating WSSV may take advantage of CPB to benefit its replication. In contrast, the absence of CPB in crabs increased mortality following the V. alginolyticus challenge. The phagocytosis rate of V. alginolyticus by hemocytes was increased after CPB-dsRNA treatment. It was revealed that CPB may play a positive role in the immune response to V. alginolyticus through increasing the phagocytosis rate of V. alginolyticus. This research further adds to our understanding of the CPB and identifies its potential role in the innate immunity of crabs.
Collapse
Affiliation(s)
- Xiyi Qian
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Yongyong Lai
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Fei Zhu
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
16
|
Calvez M, Hseeh G, Benzer S, Brown AM. Osteopontin counters human immunodeficiency virus type 1-induced impairment of neurite growth through mammalian target of rapamycin and beta-integrin signaling pathways. J Neurovirol 2019; 25:384-396. [PMID: 30758811 PMCID: PMC6647884 DOI: 10.1007/s13365-019-00729-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
Despite the fact that human immunodeficiency virus type 1 (HIV-1) does not enter or replicate in neurons, its infection of a subset of resident brain glia cells (microglia and astrocytes) induces via disparate mechanisms, dysregulation of glutamate metabolism, neurotoxicity, and inflammation. Antiretroviral therapies suppress viral load, but cellular activation and release of proinflammatory factors, some of which is likely related to viral reservoirs, continue to promote a microenvironment that is injurious to neurons. However, the molecular mechanisms remain to be identified. Osteopontin (OPN) is a proinflammatory cytokine-like, extracellular matrix protein that is elevated within the brain and CSF in several neurodegenerative disorders, including HIV-associated cognitive disorder. However, the impact of elevated OPN on neuronal integrity and function in HIV-infected individuals who exhibit cognitive dysfunction remains unknown. In this study, using a neuronal cell line and primary cultures of cortical rat neurons, we identify the mammalian target of rapamycin pathway involvement in a signaling interaction between OPN-β1-integrins and the HIV-1 envelope glycoprotein, which stimulates neurite growth. These findings link for the first time HIV X4-envelope receptor engagement and osteopontin-mediated signaling through β1-integrin receptors to the mTOR pathway and alterations in the cytoskeleton of cortical neurons.
Collapse
Affiliation(s)
- Mathilde Calvez
- Department of Biology, Ecole Normale Superieure de Lyon, Lyon, France
| | - George Hseeh
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD, 21287, USA
| | - Simon Benzer
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD, 21287, USA
| | - Amanda M Brown
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD, 21287, USA.
| |
Collapse
|
17
|
Wang M, Chen F, Wang J, Chen X, Liang J, Yang X, Zhu X, Fan Y, Zhang X. Calcium phosphate altered the cytokine secretion of macrophages and influenced the homing of mesenchymal stem cells. J Mater Chem B 2018; 6:4765-4774. [PMID: 32254303 DOI: 10.1039/c8tb01201f] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Immune cells such as macrophages play an important role in tissue regeneration. In this study, an in vivo mouse intramuscular implantation model was applied to demonstrate the gradual infiltration of macrophages, followed by homing of mesenchymal stem cells (MSCs) during the early phase of biphasic calcium phosphate (BCP)-induced ectopic bone formation. Then, a novel real-time cell analysis (RTCA) system was used to continuously monitor cell migration in vitro, suggesting the positive roles of BCP-mediated macrophage secretion in MSC recruitment. A Proteome Profiler cytokine array was also applied to investigate the BCP-stimulated secretion pattern of macrophages by simultaneously screening 111 cytokines, indicating that Raw 264.7 macrophages released a pronounced amount of chemokines (CCL2, 3, 4, 5 and CXCL2, 10, 16) and non-chemokine molecules (OPN, VEGF, CD14, Cystatin C and PAI-1), which are involved in cell homing and bone regeneration. Among them, osteoinductive BCP ceramics significantly promoted the secretion of CCL2, 3, 4 and Cystatin C in macrophages, which was consistent with the up-regulated expression of chemokine genes (Ccl2, 3, 4). Considering their previously-reported chemotactic functions, the effects of CCL2/MCP-1 and CCL3/MIP-1α on MSC recruitment were further evaluated by the RTCA system. It was found that exogenous CCL2/MCP-1 and CCL3/MIP-1α dramatically accelerated MSC migration, while their neutralizing antibodies reduced MSC motility. Moreover, BCP-mediated macrophage secretion up-regulated the gene expression of chemokine receptors (Ccr1 and Ccr2) in MSCs, but the blockage of CCR1 and CCR2 exerted inhibitory effects on MSC chemotaxis. RTCA results showed that compared to CCL3/CCR1, the CCL2/CCR2 axis might exert a predominant chemotactic effect for MSC recruitment. These findings indicated that osteoinductive BCP ceramics might regulate macrophage secretion via an ERK signaling pathway, and the increased release of chemokines in macrophages would accelerate MSC homing to facilitate bone formation. These findings might deepen our understanding of biomaterial-mediated immune response and help to design orthopedic implants with desired immunomodulatory abilities to recruit host stem cells endogenously for bone regeneration.
Collapse
Affiliation(s)
- Menglu Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mazaheri N, Peymani M, Galehdari H, Ghaedi K, Ghoochani A, Kiani-Esfahani A, Nasr-Esfahani MH. Ameliorating Effect of Osteopontin on H 2O 2-Induced Apoptosis of Human Oligodendrocyte Progenitor Cells. Cell Mol Neurobiol 2018; 38:891-899. [PMID: 29110207 DOI: 10.1007/s10571-017-0563-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022]
Abstract
Recently our group used oligodendrocyte progenitor cells (OPCs) as appropriate model cells to pinpoint the mechanism of the progress of neurodegenerative disorders. In the present study, we focused on the therapeutic role of osteopontin (OPN), a secreted glycosylated phosphoprotein, involved in a number of physiological events including bone formation and remodeling, immune responses, and tumor progression. Protective role of OPN, as a negative regulator of tumorigenesis, has already been clarified. Human embryonic stem cell-derived OPCs were pretreated with OPN before induction of apoptosis by H2O2. Data indicated that OPN prohibited cell death and enhanced OPC viability. This effect is achieved through reduction of apoptosis and induction of anti-apoptosis markers. In addition OPN induces expression of several integrin subunits, responsible for OPN interaction. Notably, our findings showed that expression of αV β1/β3/β5 and β8 integrins increased in response to OPN, while treatment with H2O2 down-regulated αV β1/β5 and β8 integrins expression significantly. In conclusion, OPN may act via αV integrin signaling and trigger suppression of P53-dependent apoptotic cascades. Therefore OPN therapy may be considered as a feasible process to prevent progress of neurodegenerative diseases in human.
Collapse
Affiliation(s)
- Neda Mazaheri
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 816513-1378, Iran
| | - Hamid Galehdari
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kamran Ghaedi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 816513-1378, Iran.
| | - Ali Ghoochani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 816513-1378, Iran
| | - Abbas Kiani-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 816513-1378, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, 816513-1378, Iran.
| |
Collapse
|
19
|
Methylglyoxal-bis-guanylhydrazone inhibits osteopontin expression and differentiation in cultured human monocytes. PLoS One 2018. [PMID: 29538412 PMCID: PMC5851547 DOI: 10.1371/journal.pone.0192680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Monocyte activation and polarization play essential roles in many chronic inflammatory diseases. An imbalance of M1 and M2 macrophage activation (pro-inflammatory and alternatively activated, respectively) is believed to be a key aspect in the etiology of these diseases, thus a therapeutic approach that regulates macrophage activation could be of broad clinical relevance. Methylglyoxal-bis-guanylhydrazone (MGBG), a regulator of polyamine metabolism, has recently been shown to be concentrated in monocytes and macrophages, and interfere with HIV integration into the DNA of these cells in vitro. RNA expression analysis of monocytes from HIV+ and control donors with or without MGBG treatment revealed the only gene to be consistently down regulated by MGBG to be osteopontin (OPN). The elevated expression of this pro-inflammatory cytokine and monocyte chemoattractant is associated with various chronic inflammatory diseases. We demonstrate that MGBG is a potent inhibitor of secreted OPN (sOPN) in cultured monocytes with 50% inhibition achieved at 0.1 μM of the drug. Furthermore, inhibition of OPN RNA transcription in monocyte cultures occurs at similar concentrations of the drug. During differentiation of monocytes into macrophages in vitro, monocytes express cell surface CD16 and the cells undergo limited DNA synthesis as measured by uptake of BrdU. MGBG inhibited both activities at similar doses to those regulating OPN expression. In addition, monocyte treatment with MGBG inhibited differentiation into both M1 and M2 classes of macrophages at non-toxic doses. The inhibition of differentiation and anti-OPN effects of MGBG were specific for monocytes in that differentiated macrophages were nearly resistant to MGBG activities. Thus MGBG may have potential therapeutic utility in reducing or normalizing OPN levels and regulating monocyte activation in diseases that involve chronic inflammation.
Collapse
|
20
|
The Biology of Monocytes and Dendritic Cells: Contribution to HIV Pathogenesis. Viruses 2018; 10:v10020065. [PMID: 29415518 PMCID: PMC5850372 DOI: 10.3390/v10020065] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023] Open
Abstract
Myeloid cells such as monocytes, dendritic cells (DC) and macrophages (MΦ) are key components of the innate immune system contributing to the maintenance of tissue homeostasis and the development/resolution of immune responses to pathogens. Monocytes and DC, circulating in the blood or infiltrating various lymphoid and non-lymphoid tissues, are derived from distinct bone marrow precursors and are typically short lived. Conversely, recent studies revealed that subsets of tissue resident MΦ are long-lived as they originate from embryonic/fetal precursors that have the ability to self-renew during the life of an individual. Pathogens such as the human immunodeficiency virus type 1 (HIV-1) highjack the functions of myeloid cells for viral replication (e.g., MΦ) or distal dissemination and cell-to-cell transmission (e.g., DC). Although the long-term persistence of HIV reservoirs in CD4+ T-cells during viral suppressive antiretroviral therapy (ART) is well documented, the ability of myeloid cells to harbor replication competent viral reservoirs is still a matter of debate. This review summarizes the current knowledge on the biology of monocytes and DC during homeostasis and in the context of HIV-1 infection and highlights the importance of future studies on long-lived resident MΦ to HIV persistence in ART-treated patients.
Collapse
|
21
|
Osteopontin Impacts West Nile virus Pathogenesis and Resistance by Regulating Inflammasome Components and Cell Death in the Central Nervous System at Early Time Points. Mediators Inflamm 2017; 2017:7582437. [PMID: 28811681 PMCID: PMC5547729 DOI: 10.1155/2017/7582437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/17/2017] [Accepted: 05/22/2017] [Indexed: 11/23/2022] Open
Abstract
Osteopontin (OPN) is a molecule that is common in central nervous system (CNS) pathologies, which participates in the activation, migration, and survival of inflammatory cells. However, the mechanisms by which OPN modulates inflammatory pathways are not clear. To understand the role of OPN in CNS viral infections, we used a lethal mouse model of West Nile virus (WNV), characterized by the injection of high doses of the Eg101 strain of WNV, causing the increase of OPN levels in the brain since early time points. To measure the impact of OPN in neuropathogenesis and resistance, we compared C57BI/6 WT with mice lacking the OPN gene (OPN KO). OPN KO presented a significantly higher mortality compared to WT mice, detectable since day 5 pi. Our data suggests that OPN expression at early time points may provide protection against viral spread in the CNS by negatively controlling the type I IFN-sensitive, caspase 1-dependent inflammasome, while promoting an alternative caspase 8-associated pathway, to control the apoptosis of infected cells during WNV infection in the CNS. Overall, we conclude that the expression of OPN maintains a critical threshold in the innate immune response that controls apoptosis and lethal viral spread in early CNS infection.
Collapse
|
22
|
Karpinsky G, Fatyga A, Krawczyk MA, Chamera M, Sande N, Szmyd D, Izycka-Swieszewska E, Bien E. Osteopontin: its potential role in cancer of children and young adults. Biomark Med 2017; 11:389-402. [DOI: 10.2217/bmm-2016-0308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective: Osteopontin (OPN) is aglyco-phosphoprotein, involved in tissue remodeling, inflammation and boneresorption. In various adult neoplasms OPN was shown to correlate with cancer progression, invasiveness and metastasis. Aim: to define the role of OPN in malignancies of children and young adults. Material and methods: a structured PubMed and Google Scholar literature analysis based on reports published in English between I'1995 and XII'2015. Results: 14 studies (four on hematological malignancies, four on bone tumors, three on CNS tumors, two on dendritic proliferative diseases and one on renal tumors) were identified. Higher levels of serum and cerebro-spinal fluid OPN protein, and high expressions of OPN mRNA and SPP1 gene were present in more aggressive and advanced childhood malignancies. In children with acute lymphoblastic leukemia with CNS involvement and with atypical teratoid/rhabdoid tumor (AT/RT) and medulloblastoma, the serum and CSF OPN levels reflected tumor bulk and response to therapy, while in children with AT/RT and multisystem Langerhans cell histiocytosis with high-risk organs involvement, high OPN serum levels correlated with poorer survival. To the contrary, in osteosarcoma, high OPN mRNA and SPP1 gene expressions correlated with better survival and good response to chemotherapy. Conclusions: The literature review suggests that OPN may play important roles in the development and progression of selected cancers of children and young adults, including acute lymphoblastic leukemia, malignant gliomas, AT/RT and Langerhans cell histiocytosis. However, limited number of published studies prevents from definite concluding on the clinical utility of OPN as a marker of diagnosis, prognosis and treatment monitoring in these pediatric cancers. Further studies performed in more numerous groups of patients with particular types of cancers of children and young adults are warranted.
Collapse
Affiliation(s)
- Gabrielle Karpinsky
- Children's Hospital of Michigan, Detroit Medical Center, 3901 Beaubien Street, Detroit, MI 48201, USA
| | - Aleksandra Fatyga
- Department of Pediatrics, Hematology & Oncology, University Clinic Center, 7 Debinki Street, 80–952 Gdansk, Poland
| | - Malgorzata Anna Krawczyk
- Department of Pediatrics, Hematology & Oncology, Medical University of Gdansk, 7 Debinki Street, 80–211 Gdansk, Poland
| | - Madeleine Chamera
- The English Division Pediatric Oncology Scientific Circle, Medical University of Gdansk, 7 Debinki Street, 80–211 Gdansk, Poland
| | - Natalia Sande
- The English Division Pediatric Oncology Scientific Circle, Medical University of Gdansk, 7 Debinki Street, 80–211 Gdansk, Poland
| | - Dagmara Szmyd
- Coronary Care Unit, Cardiology Department, West Cumberland Hospital, Whitehaven, United Kingdom
| | - Ewa Izycka-Swieszewska
- Department of Pathology & Neuropathology, Medical University of Gdansk, 1 Debinki Street, 80–211 Gdansk, Poland
| | - Ewa Bien
- Department of Pediatrics, Hematology & Oncology, Medical University of Gdansk, 7 Debinki Street, 80–211 Gdansk, Poland
| |
Collapse
|
23
|
Tardelli M, Zeyda K, Moreno-Viedma V, Wanko B, Grün NG, Staffler G, Zeyda M, Stulnig TM. Osteopontin is a key player for local adipose tissue macrophage proliferation in obesity. Mol Metab 2016; 5:1131-1137. [PMID: 27818939 PMCID: PMC5081407 DOI: 10.1016/j.molmet.2016.09.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 12/16/2022] Open
Abstract
Objective Recent findings point towards an important role of local macrophage proliferation also in obesity-induced adipose tissue inflammation that underlies insulin resistance and type 2 diabetes. Osteopontin (OPN) is an inflammatory cytokine highly upregulated in adipose tissue (AT) of obese and has repeatedly been shown to be functionally involved in adipose-tissue inflammation and metabolic sequelae. In the present work, we aimed at unveiling both the role of OPN in human monocyte and macrophage proliferation as well as the impact of OPN deficiency on local macrophage proliferation in a mouse model for diet-induced obesity. Methods The impact of recombinant OPN on viability, apoptosis, and proliferation was analyzed in human peripheral blood monocytes and derived macrophages. Wild type (WT) and OPN knockout mice (SPP1KO) were compared with respect to in vivo adipose tissue macrophage and in vitro bone marrow-derived macrophage (BMDM) proliferation. Results OPN not only enhanced survival and decreased apoptosis of human monocytes but also induced proliferation similar to macrophage colony stimulating factor (M-CSF). Even in fully differentiated monocyte-derived macrophages, OPN induced a proliferative response. Moreover, proliferation of adipose tissue macrophages in obese mice was detectable in WT but virtually absent in SPP1KO. In BMDM, OPN also induced proliferation while OPN as well as M-CSF-induced proliferation was similar in WT and SPP1KO. Conclusions These data confirm that monocytes and macrophages not only are responsive to OPN and migrate to sites of inflammation but also they survive and proliferate more in the presence of OPN, a mechanism also strongly confirmed in vivo. Therefore, secreted OPN appears to be an essential player in AT inflammation, not only by driving monocyte chemotaxis and macrophage differentiation but also by facilitating local proliferation of macrophages. Osteopontin enhances survival and decreases apoptosis of human monocytes. Osteopontin induces proliferation of differentiated macrophages. Osteopontin facilitates local adipose tissue macrophage proliferation in obesity.
Collapse
Affiliation(s)
- Matteo Tardelli
- Christian Doppler-Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Karina Zeyda
- Christian Doppler-Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria; FH Campus Wien, University of Applied Sciences, Department Health, Section Biomedical Science, Vienna, Austria
| | - Veronica Moreno-Viedma
- Christian Doppler-Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bettina Wanko
- Christian Doppler-Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Nicole G Grün
- Christian Doppler-Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Maximilian Zeyda
- Christian Doppler-Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Department of Pediatrics and Adolescent Medicine, Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Medical University of Vienna, Vienna, Austria
| | - Thomas M Stulnig
- Christian Doppler-Laboratory for Cardio-Metabolic Immunotherapy and Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
24
|
Bissel SJ, Kofler J, Nyaundi J, Murphey-Corb M, Wisniewski SR, Wiley CA. Cerebrospinal Fluid Biomarkers of Simian Immunodeficiency Virus Encephalitis : CSF Biomarkers of SIV Encephalitis. J Neuroimmune Pharmacol 2016; 11:332-47. [PMID: 27059917 PMCID: PMC4871628 DOI: 10.1007/s11481-016-9666-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/15/2016] [Indexed: 01/12/2023]
Abstract
Antiretroviral therapy has led to increased survival of HIV-infected patients but also increased prevalence of HIV-associated neurocognitive disorders. We previously identified YKL40 as a potential cerebrospinal fluid (CSF) biomarker of lentiviral central nervous system (CNS) disease in HIV-infected patients and in the macaque model of HIV encephalitis. The aim of this study was to define the specificity and sensitivity along with the predictive value of YKL40 as a biomarker of encephalitis and to assess its relationship to CSF viral load. CSF YKL40 and SIV RNA concentrations were analyzed over the course of infection in 19 SIV-infected pigtailed macaques and statistical analyses were performed to evaluate the relationship to encephalitis. Using these relationships, CSF alterations of 31 neuroimmune markers were studied pre-infection, during acute and asymptomatic infection, at the onset of encephalitis, and at necropsy. YKL40 CSF concentrations above 1122 ng/ml were found to be a specific and sensitive biomarker for the presence of encephalitis and were highly correlated with CSF viral load. Macaques that developed encephalitis had evidence of chronic CNS immune activation during early, asymptomatic, and end stages of infection. At the onset of encephalitis, CSF demonstrated a rise of neuroimmune markers associated with macrophage recruitment, activation and interferon response. CSF YKL40 concentration and viral load are valuable biomarkers to define the onset of encephalitis. Chronic CNS immune activation precedes the development of encephalitis while some responses suggest protection from CNS lentiviral disease.
Collapse
Affiliation(s)
- Stephanie J Bissel
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.
| | - Julia Kofler
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Julia Nyaundi
- Department of Molecular Genetics & Biochemistry, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Michael Murphey-Corb
- Department of Molecular Genetics & Biochemistry, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Stephen R Wisniewski
- Department of Epidemiology, Graduate School of Public Health, 130 DeSoto Street, Pittsburgh, PA, 15261, USA
| | - Clayton A Wiley
- Department of Pathology, Division of Neuropathology, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| |
Collapse
|
25
|
Nowlin BT, Burdo TH, Midkiff CC, Salemi M, Alvarez X, Williams KC. SIV encephalitis lesions are composed of CD163(+) macrophages present in the central nervous system during early SIV infection and SIV-positive macrophages recruited terminally with AIDS. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1649-65. [PMID: 25963554 DOI: 10.1016/j.ajpath.2015.01.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/16/2015] [Accepted: 01/30/2015] [Indexed: 10/23/2022]
Abstract
Macrophage recruitment to the central nervous system (CNS) during AIDS pathogenesis is poorly understood. We measured the accumulation of brain perivascular (CD163(+)) and inflammatory (MAC387(+)) macrophages in SIV-infected monkeys. Monocyte progenitors were 5-bromo-2'-deoxyuridine (BrdU) labeled in bone marrow, and CNS macrophages were labeled serially with fluorescent dextrans injected into the cisterna magna. MAC387(+) macrophages accumulated in the meninges and choroid plexus in early inflammation and in the perivascular space and SIV encephalitis (SIVE) lesions late. CD163(+) macrophages accumulated in the perivascular space and SIVE lesions with late inflammation. Most of the BrdU(+) cells were MAC387(+); however, CD163(+)BrdU(+) macrophages were present in the meninges and choroid plexus with AIDS. Most (81.6% ± 1.8%) of macrophages in SIVE lesions were present in the CNS before SIVE lesion formation. There was a 2.9-fold increase in SIVp28(+) macrophages entering the CNS late compared with those entering early (P < 0.05). The rate of CD163(+) macrophage recruitment to the CNS inversely correlated with time to death (P < 0.03) and increased with SIVE. In SIVE animals, soluble CD163 correlated with CD163(+) macrophage recruitment (P = 0.02). Most perivascular macrophages that comprise SIVE lesions and multinucleated giant cells are present in the CNS early, before SIVE lesions are formed. Most SIV-infected macrophages traffic to the CNS terminally with AIDS.
Collapse
Affiliation(s)
- Brian T Nowlin
- Biology Department, Boston College, Chestnut Hill, Massachusetts
| | - Tricia H Burdo
- Biology Department, Boston College, Chestnut Hill, Massachusetts
| | - Cecily C Midkiff
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University Health Science Center, Covington, Louisiana
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University Health Science Center, Covington, Louisiana
| | | |
Collapse
|
26
|
Silva K, Hope-Lucas C, White T, Hairston TK, Rameau T, Brown A. Cortical neurons are a prominent source of the proinflammatory cytokine osteopontin in HIV-associated neurocognitive disorders. J Neurovirol 2015; 21:174-85. [PMID: 25636782 PMCID: PMC4372685 DOI: 10.1007/s13365-015-0317-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/30/2014] [Accepted: 01/09/2015] [Indexed: 12/13/2022]
Abstract
The proinflammatory cytokine osteopontin (OPN) is elevated in the cerebrospinal fluid (CSF) in individuals with HIV-associated neurocognitive disorders (HAND) and remains so in those on suppressive antiretroviral therapy. To understand the pathophysiological significance of elevated OPN in the CNS, we sought to determine the cellular source of this cytokine. As HIV-1 replicates productively in macrophages/microglia, we tested whether these cells are the predominant producers of OPN in the brain. Stringent patient selection criteria, which excluded brain tissues from those with evidence of drug abuse and dependence, were used. Uninfected normal controls, amyotrophic lateral sclerosis (ALS), HIV+ asymptomatic neurocognitive impairment (ANI), and HIV+ mild neurocognitive disorder (MND)/HIV-associated dementia (HAD) groups were included. Double-label immunohistochemistry for CNS cells and OPN was used to quantify OPN expression in astrocytes, macrophages/microglia, and neurons. While resident macrophages/microglia expressed OPN, astrocytes and unexpectedly neurons were also a major source of OPN. OPN levels in ionized Ca(2+)-binding adapter 1 (Iba1)/allograft inflammatory factor-1 (AIF-1)+ microglia in HIV+ ANI and MND/HAD exceeded those of HIV-negative controls and were comparable to expression seen in ALS. Moreover, in neurons, OPN was expressed at the highest levels in the HIV+ ANI group. These findings suggest that while infiltrating HIV-infected macrophages are most likely the initial source of OPN, resident CNS cells become activated and also express this inflammatory cytokine at significant levels. Moreover, as OPN levels are elevated compared to uninfected individuals and increases with the severity of impairment, it appears that the expression of OPN is persistent and sustained within the brain parenchyma in those that progress to HAND.
Collapse
Affiliation(s)
- Katie Silva
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street/Meyer 6-181, Baltimore, MD, 21287-7131, USA
| | | | | | | | | | | |
Collapse
|
27
|
The osteopontin transgenic mouse is a new model for Sjögren's syndrome. Clin Immunol 2015; 157:30-42. [PMID: 25572532 DOI: 10.1016/j.clim.2014.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/08/2014] [Accepted: 12/19/2014] [Indexed: 12/22/2022]
Abstract
Osteopontin (Opn) is a cytokine involved in both physiological and pathological processes, and is elevated in many autoimmune diseases. Sjögren's syndrome (SS) is an autoimmune disease with a strong female predilection characterized by lymphocytic infiltration of exocrine glands. We hypothesized that Opn contributes to SS pathogenesis. We examined an established SS model and found increased Opn locally and systemically. Next, we examined Opn transgenic (Opn Tg) mice for evidence of SS. Opn Tg animals exhibited lymphocytic infiltration of salivary and lacrimal glands, and Opn co-localized with the infiltrates. Moreover, saliva production was reduced, and SS autoantibodies were observed in the serum of these mice. Finally, female Opn Tg mice showed more severe disease compared to males. Taken together, these data support a role for Opn in SS pathogenesis. We identify a new model of spontaneous SS that recapitulates the human disease in terms of sex predilection, histopathology, salivary deficits, and autoantibodies.
Collapse
|
28
|
Marcondes MCG, Ojakian R, Bortell N, Flynn C, Conti B, Fox HS. Osteopontin expression in the brain triggers localized inflammation and cell death when immune cells are activated by pertussis toxin. Mediators Inflamm 2014; 2014:358218. [PMID: 25525298 PMCID: PMC4265371 DOI: 10.1155/2014/358218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 12/15/2022] Open
Abstract
Upregulation of osteopontin (OPN) is a characteristic of central nervous system pathologies. However, the role of OPN in inflammation is still controversial, since it can both prevent cell death and induce the migration of potentially damaging inflammatory cells. To understand the role of OPN in inflammation and cell survival, we expressed OPN, utilizing an adenoviral vector, in the caudoputamen of mice deficient in OPN, using beta-galactosidase- (β-gal-) expressing vector as control. The tissue pathology and the expression of proinflammatory genes were compared in both treatments. Interestingly, inflammatory infiltrate was only found when the OPN-vector was combined with a peripheral treatment with pertussis toxin (Ptx), which activated peripheral cells to express the OPN receptor CD44v6. Relative to β-gal, OPN increased the levels of inflammatory markers, including IL13Rα1, CXCR3, and CD40L. In Ptx-treated OPN KOs, apoptotic TUNEL+ cells surrounding the OPN expression site increased, compared to β-gal. Together, these results show that local OPN expression combined with a peripheral inflammatory stimulus, such as Ptx, may be implicated in the development of brain inflammation and induction of cell death, by driving a molecular pattern characteristic of cytotoxicity. These are characteristics of inflammatory pathologies of the CNS in which OPN upregulation is a hallmark.
Collapse
Affiliation(s)
- Maria Cecilia Garibaldi Marcondes
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ryan Ojakian
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nikki Bortell
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Claudia Flynn
- Immunology and Microbial Science Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bruno Conti
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- Chemical Physiology Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Howard S. Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
29
|
Maltby S, Hansbro NG, Tay HL, Stewart J, Plank M, Donges B, Rosenberg HF, Foster PS. Production and differentiation of myeloid cells driven by proinflammatory cytokines in response to acute pneumovirus infection in mice. THE JOURNAL OF IMMUNOLOGY 2014; 193:4072-82. [PMID: 25200951 DOI: 10.4049/jimmunol.1400669] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Respiratory virus infections are often pathogenic, driving severe inflammatory responses. Most research has focused on localized effects of virus infection and inflammation. However, infection can induce broad-reaching, systemic changes that are only beginning to be characterized. In this study, we assessed the impact of acute pneumovirus infection in C57BL/6 mice on bone marrow hematopoiesis. We hypothesized that inflammatory cytokine production in the lung upregulates myeloid cell production in response to infection. We demonstrate a dramatic increase in the percentages of circulating myeloid cells, which is associated with pronounced elevations in inflammatory cytokines in serum (IFN-γ, IL-6, CCL2), bone (TNF-α), and lung tissue (TNF-α, IFN-γ, IL-6, CCL2, CCL3, G-CSF, osteopontin). Increased hematopoietic stem/progenitor cell percentages (Lineage(-)Sca-I(+)c-kit(+)) were also detected in the bone marrow. This increase was accompanied by an increase in the proportions of committed myeloid progenitors, as determined by colony-forming unit assays. However, no functional changes in hematopoietic stem cells occurred, as assessed by competitive bone marrow reconstitution. Systemic administration of neutralizing Abs to either TNF-α or IFN-γ blocked expansion of myeloid progenitors in the bone marrow and also limited virus clearance from the lung. These findings suggest that acute inflammatory cytokines drive production and differentiation of myeloid cells in the bone marrow by inducing differentiation of committed myeloid progenitors. Our findings provide insight into the mechanisms via which innate immune responses regulate myeloid cell progenitor numbers in response to acute respiratory virus infection.
Collapse
Affiliation(s)
- Steven Maltby
- Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle, Callaghan, New South Wales 2308, Australia; Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia; and
| | - Nicole G Hansbro
- Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle, Callaghan, New South Wales 2308, Australia; Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia; and
| | - Hock L Tay
- Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle, Callaghan, New South Wales 2308, Australia; Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia; and
| | - Jessica Stewart
- Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle, Callaghan, New South Wales 2308, Australia; Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia; and
| | - Maximilian Plank
- Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle, Callaghan, New South Wales 2308, Australia; Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia; and
| | - Bianca Donges
- Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle, Callaghan, New South Wales 2308, Australia; Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia; and
| | - Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Paul S Foster
- Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle, Callaghan, New South Wales 2308, Australia; Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia; and
| |
Collapse
|
30
|
Hsu KH, Tsai HW, Lin PW, Hsu YS, Lu PJ, Shan YS. Anti-apoptotic effects of osteopontin through the up-regulation of Mcl-1 in gastrointestinal stromal tumors. World J Surg Oncol 2014; 12:189. [PMID: 24947165 PMCID: PMC4080696 DOI: 10.1186/1477-7819-12-189] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/12/2014] [Indexed: 01/04/2023] Open
Abstract
Background Osteopontin (OPN) is a secreted phosphoprotein expressed by neoplastic cells involved in the malignant potential and aggressive phenotypes of human malignancies, including gastrointestinal stromal tumors (GISTs). Our previous study showed that OPN can promote tumor cell proliferation in GISTs. In this series, we further aim to investigate the effect of OPN on apoptosis in GISTs. Methods The expression of apoptotic and anti-apoptotic proteins in response to OPN was evaluated. In vitro effects of OPN against apoptosis in GIST were also assessed. GIST specimens were also used for analyzing protein expression of specific apoptosis-related molecules and their clinicopathologic significance. Results Up-regulation of β-catenin and anti-apoptotic proteins Mcl-1 with concomitant suppression of apoptotic proteins in response to OPN was noted. A significant anti-apoptotic effect of OPN on imatinib-induced apoptosis was identified. Furthermore, Mcl-1 overexpression was significantly associated with OPN and β-catenin expression in tumor tissues, as well as worse survival clinically. Conclusions Our study identifies anti-apoptotic effects of OPN that, through β-catenin-mediated Mcl-1 up-regulation, significantly antagonized imatinib-induced apoptosis in GISTs. These results provide a potential rationale for therapeutic strategies targeting both OPN and Mcl-1 of the same anti-apoptotic signaling pathway, which may account for resistance to imatinib in GISTs.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan-Shen Shan
- Department of Surgery, National Cheng Kung University, College of Medicine, Tainan 70428, Taiwan.
| |
Collapse
|
31
|
Eger C, Cirelli K, Budiaman J, Brown A. Noncontiguous Protein Interaction Domains in Osteopontin Contribute to Enhance HIV-1 Replication. ACTA ACUST UNITED AC 2014; 1:7-14. [PMID: 31773048 DOI: 10.15406/jhvrv.2014.01.00003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteopontin (OPN) is a proinflammatory cytokine produced by T-cells, macrophages, osteoclasts, and several other cell types, which confers immunity to many intracellular pathogens. OPN was first identified as an early marker of cellular activation of T-lymphocytes and subsequently was shown to play a role in cancer through its ability to promote cell survival and inflammation. OPN levels are elevated in the plasma and cerebrospinal fluid of HIV-infected individuals and even more so in those suffering from HIV-related neurocognitive impairment. The infiltration of monocytes and macrophages both infected and uninfected into the brain is the first step in HIV pathogenesis of the central nervous system. Inhibition of OPN in macrophages significantly impairs HIV replication. In an effort to identify and understand the role of OPN in the neuropathogenesis of HIV infection, we are using a combination of in vitro, ex vivo and in vivo approaches. In this study we have used a molecular approach and a surrogate cell culture model to identify the domains of OPN that are required to enhance HIV replication. We found that N- and C-terminal fragments, encoding multiple motifs including sequences involved in binding integrins and CD44, a domain know to promote adhesion contribute to OPN's ability to increase HIV replication. Use of inhibitors against c-Jun N-terminal kinase (JNK) and phosphoinositide 3-kinase (PI-3K) impaired the ability of OPN to increase the integrin subunit 1 or CD29 on the surface of HIV-infected and bystander cells. These results suggest that multiple OPN-regulated cellular pathways are commandeered by HIV to promote productive replication and cell-to-cell spread.
Collapse
Affiliation(s)
- Caitlin Eger
- Department of Neurology, Syracuse University, USA
| | - Kimberly Cirelli
- Department of Neurology, Massachusetts Institute of Technology, USA
| | - Jessica Budiaman
- Department of Neurology, School of Public Health, Tufts University, USA
| | - Amanda Brown
- Department of Neurology, Johns Hopkins University School of Medicine, USA
| |
Collapse
|
32
|
Kruger TE, Miller AH, Godwin AK, Wang J. Bone sialoprotein and osteopontin in bone metastasis of osteotropic cancers. Crit Rev Oncol Hematol 2014; 89:330-41. [PMID: 24071501 PMCID: PMC3946954 DOI: 10.1016/j.critrevonc.2013.08.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/23/2013] [Accepted: 08/28/2013] [Indexed: 02/06/2023] Open
Abstract
The mechanisms underlying malignant cell metastasis to secondary sites such as bone are complex and no doubt multifactorial. Members of the small integrin-binding ligand N-linked glycoproteins (SIBLINGs) family, particularly bone sialoprotein (BSP) and osteopontin (OPN), exhibit multiple activities known to promote malignant cell proliferation, detachment, invasion, and metastasis of several osteotropic cancers. The expression level of BSP and OPN is elevated in a variety of human cancers, particularly those that metastasize preferentially to the skeleton. Recent studies suggest that the "osteomimicry" of malignant cells is not only conferred by transmembrane receptors bound by BSP and OPN, but includes the "switch" in gene expression repertoire typically expressed in cells of skeletal lineage. Understanding the role of BSP and OPN in tumor progression, altered pathophysiology of bone microenvironment, and tumor metastasis to bone will likely result in development of better diagnostic approaches and therapeutic regimens for osteotropic malignant diseases.
Collapse
Affiliation(s)
- Thomas E Kruger
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Andrew H Miller
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Jinxi Wang
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
33
|
Iaffaldano P, Ruggieri M, Viterbo RG, Mastrapasqua M, Trojano M. The improvement of cognitive functions is associated with a decrease of plasma Osteopontin levels in Natalizumab treated relapsing multiple sclerosis. Brain Behav Immun 2014; 35:176-81. [PMID: 23994630 DOI: 10.1016/j.bbi.2013.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To investigate the effect of two-years Natalizumab treatment on plasma Osteopontin levels, cognitive performances and fatigue in relapsing multiple sclerosis (RRMS) patients. METHODS Forty-nine RRMS patients scheduled for Natalizumab treatment as second-line therapy were enrolled. Plasma samples of twenty-four treatment-naïve RRMS and 22 healthy controls (HCs) were used as controls of baseline Osteopontin levels. Plasma Osteopontin levels, using an enzyme-linked immunosorbent assay, cognitive functions using the brief repeatable battery, and fatigue, by the fatigue severity scale (FSS), were assessed at baseline and every 12months. A global cognitive impairment index (CII) was calculated for each patient. RESULTS Patients scheduled for Natalizumab treatment had higher baseline Osteopontin levels (mean [SD] 65.42 [22.20]ng/ml) (p=0.013) than HCs (53.20 [12.68]ng/ml), but not different from those in the treatment-naïve RRMS group (67.70 [24.23]ng/ml); 30.6% of patients showed a cognitive impairment (failure ⩾3 tests) and 47.6% complained fatigue interfering with daily activities(FSS score ⩾4.5). A significant decrease of mean Osteopontin levels (p<0.005), of mean CII values (p<0.005) and of mean FSS score (p<0.05) was found during the treatment. Baseline Osteopontin levels significantly correlated (p=0.002) with baseline CII values, and the reduction of the CII values during Natalizumab treatment significantly correlated with the decrease of the Osteopontin levels (p<0.05). No correlations were found between Osteopontin levels and FSS score before and during Natalizumab treatment. CONCLUSIONS Natalizumab treatment reduces plasma Osteopontin levels and improves cognition and fatigue in RRMS patients. The results suggest that the improvement of cognitive functions is associated to a decrease of plasma Osteopontin levels.
Collapse
Affiliation(s)
- Pietro Iaffaldano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | | | | | | | | |
Collapse
|
34
|
Winkler JM, Chaudhuri AD, Fox HS. Translating the brain transcriptome in neuroAIDS: from non-human primates to humans. J Neuroimmune Pharmacol 2012; 7:372-9. [PMID: 22367717 PMCID: PMC3354039 DOI: 10.1007/s11481-012-9344-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
In the post-human genome project era, high throughput techniques to detect and computational algorithms to analyze differentially expressed genes have proven to be powerful tools for studying pathogenesis of neuroAIDS. Concurrently, discovery of non-coding RNAs and their role in development and disease has underscored the importance of examining the entire transcriptome instead of protein coding genes alone. Herein, we review the documented changes in brain RNA expression profiles in the non-human primate model of neuroAIDS (SIV infected monkeys) and compare the findings to those resulting from studies in post-mortem human samples of neuroAIDS. Differential expression of mRNAs involved in inflammation and immune response are a common finding in both monkey and human samples - even in HIV infected people on combination antiretroviral therapy, a shared set of genes is upregulated in the brains of both infected monkeys and humans: B2M, IFI44, IFIT3, MX1, STAT1. Additionally, alterations in ion channel encoding genes have been observed in the human studies. Brain miRNA profiling has also been performed, and up-regulation of two miRNAs originating from the same transcript, miR-142-3p and miR-142-5p, is common to human and monkey neuroAIDS studies. With increases in knowledge about the genome and advances in technology, unraveling alterations in the transcriptome in the SIV/monkey model will continue to enrich our knowledge about the effects of HIV on the brain.
Collapse
Affiliation(s)
- Jessica M Winkler
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | | | | |
Collapse
|
35
|
Hamamura K, Swarnkar G, Tanjung N, Cho E, Li J, Na S, Yokota H. RhoA-mediated signaling in mechanotransduction of osteoblasts. Connect Tissue Res 2012; 53:398-406. [PMID: 22420753 DOI: 10.3109/03008207.2012.671398] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Osteoblasts play a pivotal role in load-driven bone formation by activating Wnt signaling through a signal from osteocytes as a mechanosensor. Osteoblasts are also sensitive to mechanical stimulation, but the role of RhoA, a small GTPase involved in the regulation of cytoskeleton adhesion complexes, in mechanotransduction of osteoblasts is not completely understood. Using MC3T3-E1 osteoblast-like cells under 1 hr flow treatment at 10 dyn/cm(2), we examined a hypothesis that RhoA signaling mediates the cellular responses to flow-induced shear stress. To test the hypothesis, we conducted genome-wide pathway analysis and evaluated the role of RhoA in molecular signaling. Activity of RhoA was determined with a RhoA biosensor, which determined the activation state of RhoA based on a fluorescence resonance energy transfer between CFP and YFP fluorophores. A pathway analysis indicated that flow treatment activated phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling as well as a circadian regulatory pathway. Western blot analysis revealed that in response to flow treatment phosphorylation of Akt in PI3K signaling and phosphorylation of p38 and ERK1/2 in MAPK signaling were induced. FRET measurement showed that RhoA was activated by flow treatment, and an inhibitor to a Rho kinase significantly reduced flow-induced phosphorylation of p38, ERK1/2, and Akt as well as flow-driven elevation of the mRNA levels of osteopontin and cyclooxygenase-2. Collectively, the result demonstrates that in response to 1 hr flow treatment to MC3T3-E1 cells at 10 dyn/cm(2), RhoA plays a critical role in activating PI3K and MAPK signaling as well as modulating the circadian regulatory pathway.
Collapse
Affiliation(s)
- Kazunori Hamamura
- Center for Craniofacial Molecular Biology, University of Southern California School of Dentistry, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Quinolone-induced upregulation of osteopontin gene promoter activity in human lung epithelial cell line A549. Antimicrob Agents Chemother 2012; 56:2868-72. [PMID: 22430970 DOI: 10.1128/aac.06062-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quinolones, in addition to their antibacterial activities, act as immunomodulators. Osteopontin (OPN), a member of the extracellular matrix proteins, was found to play a role in the immune and inflammatory response. We found that quinolones significantly enhanced OPN secretion, namely, garenoxacin (220%), moxifloxacin (62%), gatifloxacin (82%), sparfloxacin, (79%), and sitafloxacin (60%). Enhancement of OPN secretion was shown to be due to the effect of quinolones on the OPN gene promoter activity. We also examined the role of quinolones on apoptosis and found that sparfloxacin decreased the late apoptosis of A549 cells, but garenoxacin did not show the antiapoptotic effect. The antiapoptotic effects of quinolones do not appear to be associated with OPN elevation.
Collapse
|
37
|
Psallidas I, Stathopoulos GT, Maniatis NA, Magkouta S, Moschos C, Karabela SP, Kollintza A, Simoes DCM, Kardara M, Vassiliou S, Papiris SA, Roussos C, Kalomenidis I. Secreted phosphoprotein-1 directly provokes vascular leakage to foster malignant pleural effusion. Oncogene 2012; 32:528-35. [PMID: 22370646 DOI: 10.1038/onc.2012.57] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Secreted phosphoprotein-1 (SPP1) promotes cancer cell survival and regulates tumor-associated angiogenesis and inflammation, both central to the pathogenesis of malignant pleural effusion (MPE). Here, we examined the impact of tumor- and host-derived SPP1 in MPE formation and explored the mechanisms by which the cytokine exerts its effects. We used a syngeneic murine model of lung adenocarcinoma-induced MPE. To dissect the effects of tumor- versus host-derived SPP1, we intrapleurally injected wild-type and SPP1-knockout C57/BL/6 mice with either wild-type or SPP1-deficient syngeneic lung cancer cells. We demonstrated that both tumor- and host-derived SPP1 promoted pleural fluid accumulation and tumor dissemination in a synergistic manner (P<0.001). SPP1 of host origin elicited macrophage recruitment into the cancer-affected pleural cavity and boosted tumor angiogenesis, whereas tumor-derived SPP1 curtailed cancer cell apoptosis in vivo. Moreover, the cytokine directly promoted vascular hyper-permeability independently of vascular endothelial growth factor. In addition, SPP1 of tumor and host origin differentially affected the expression of proinflammatory and angiogenic mediators in the tumor microenvironment. These results suggest that SPP1 of tumor and host origin impact distinct aspects of MPE pathobiology to synergistically promote pleural fluid formation and pleural tumor progression. SPP1 may present an attractive target of therapeutic interventions for patients with MPE.
Collapse
Affiliation(s)
- I Psallidas
- Marianthi Simou Laboratory, 1st Department of Critical Care & Pulmonary Services, Athens Medical School, Evangelismos Hospital, Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
OSTEOPONTIN: A KEY LINK BETWEEN IMMUNITY, INFLAMMATION AND THE CENTRAL NERVOUS SYSTEM. Transl Neurosci 2012; 3:288-293. [PMID: 23565338 DOI: 10.2478/s13380-012-0028-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Osteopontin (OPN) is a pro-inflammatory cytokine that can be secreted from many cells including activated macrophages and T-lymphocytes. Elevated levels of osteopontin in the plasma, cerebrospinal fluid or brain of individuals with neurodegenerative diseases such as multiple sclerosis (MS), Parkinson's and Alzheimer's disease and more recently in HIV-associated neurocognitive disorder has been reported. However, except for the case of MS, little is known regarding the molecular mechanisms by which OPN may exacerbate disease. Alternatively, OPN through its ability to promote cell survival may in some contexts function in the brain in a protective capacity. OPN has several protein motifs that allow it to engage with several different signaling pathways involved in immunity and inflammation. A better understanding of the cellular pathways that are regulated by OPN in cells of the central nervous system is required to uncover its putative role in neuronal homeostasis.
Collapse
|
39
|
Arjomandi M, Frelinger J, Donde A, Wong H, Yellamilli A, Raymond W. Secreted osteopontin is highly polymerized in human airways and fragmented in asthmatic airway secretions. PLoS One 2011; 6:e25678. [PMID: 22031818 PMCID: PMC3198733 DOI: 10.1371/journal.pone.0025678] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 09/09/2011] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Osteopontin (OPN) is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family and a cytokine with diverse biologic roles. OPN undergoes extensive post-translational modifications, including polymerization and proteolytic fragmentation, which alters its biologic activity. Recent studies suggest that OPN may contribute to the pathogenesis of asthma. METHODOLOGY To determine whether secreted OPN (sOPN) is polymerized in human airways and whether it is qualitatively different in asthma, we used immunoblotting to examine sOPN in bronchoalveolar lavage (BAL) fluid samples from 12 healthy and 21 asthmatic subjects (and in sputum samples from 27 healthy and 21 asthmatic subjects). All asthmatic subjects had mild to moderate asthma and abstained from corticosteroids during the study. Furthermore, we examined the relationship between airway sOPN and cellular inflammation. PRINCIPAL FINDINGS We found that sOPN in BAL fluid and sputum exists in polymeric, monomeric, and cleaved forms, with most of it in polymeric form. Compared to healthy subjects, asthmatic subjects had proportionately less polymeric sOPN and more monomeric and cleaved sOPN. Polymeric sOPN in BAL fluid was associated with increased alveolar macrophage counts in airways in all subjects. CONCLUSIONS These results suggest that sOPN in human airways (1) undergoes extensive post-translational modification by polymerization and proteolytic fragmentation, (2) is more fragmented and less polymerized in subjects with mild to moderate asthma, and (3) may contribute to recruitment or survival of alveolar macrophages.
Collapse
Affiliation(s)
- Mehrdad Arjomandi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America.
| | | | | | | | | | | |
Collapse
|
40
|
Hsieh YH, Margaret Juliana M, Ho KJ, Kuo HC, van der Heyde H, Elmets C, Chang PL. Host-derived osteopontin maintains an acute inflammatory response to suppress early progression of extrinsic cancer cells. Int J Cancer 2011; 131:322-33. [PMID: 21826648 DOI: 10.1002/ijc.26359] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 07/27/2011] [Indexed: 01/13/2023]
Abstract
The matricellular protein osteopontin (OPN), expressed in various cancer types and elevated in the blood of cancer patients, is thought to have different functions when derived from host versus cancer cells. To assess the effect of host-derived OPN on growth of cancers of epithelial origin, we established a line of cutaneous squamous cell carcinoma (SCC) cells, named ONSC, which lacks the OPN gene and develops SCC in syngeneic wild-type (WT) and OPN-null mice. At 8 and/or 10 week after subcutaneous injection of ONSC cells in mice, however, there was a lower tumor incidence in WT mice, suggesting that host-derived OPN is associated with suppression of early growth of extrinsic cancer cells. Histological, immunohistochemical, biochemical and hematological analyses were performed on the tumor microenvironment and blood from tumor-bearing mice during the first week after implantation. Host-derived OPN suppression of extrinsic ONSC cell progression is likely mediated through elicitation of an early innate inflammatory response, through its function as a chemoattractant and/or by enhancing survival of inflammatory cells. Further, consistent with a previous report, the serum levels of host-derived OPN, which are elevated during the early phase of tumor growth in mice implanted with ONSC, appear to reflect an anti-tumor progression effect.
Collapse
Affiliation(s)
- Yu-Hua Hsieh
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Barkhordarian A, Ajaj R, Ramchandani MH, Demerjian G, Cayabyab R, Danaie S, Ghodousi N, Iyer N, Mahanian N, Phi L, Giroux A, Manfrini E, Neagos N, Siddiqui M, Cajulis OS, Brant XMC, Shapshak P, Chiappelli F. Osteoimmunopathology in HIV/AIDS: A Translational Evidence-Based Perspective. PATHOLOGY RESEARCH INTERNATIONAL 2011; 2011:359242. [PMID: 21660263 PMCID: PMC3108376 DOI: 10.4061/2011/359242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 01/21/2023]
Abstract
Infection with the human immunodeficiency virus-1 (HIV) and the resulting acquired immune deficiency syndrome (AIDS) alter not only cellular immune regulation but also the bone metabolism. Since cellular immunity and bone metabolism are intimately intertwined in the osteoimmune network, it is to be expected that bone metabolism is also affected in patients with HIV/AIDS. The concerted evidence points convincingly toward impaired activity of osteoblasts and increased activity of osteoclasts in patients with HIV/AIDS, leading to a significant increase in the prevalence of osteoporosis. Research attributes these outcomes in part at least to the ART, PI, and HAART therapies endured by these patients. We review and discuss these lines of evidence from the perspective of translational clinically relevant complex systematic reviews for comparative effectiveness analysis and evidence-based intervention on a global scale.
Collapse
Affiliation(s)
- André Barkhordarian
- Section of Oral Biology, Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Brown A, Islam T, Adams R, Nerle S, Kamara M, Eger C, Marder K, Cohen B, Schifitto G, McArthur JC, Sacktor N, Pardo CA. Osteopontin enhances HIV replication and is increased in the brain and cerebrospinal fluid of HIV-infected individuals. J Neurovirol 2011; 17:382-92. [PMID: 21556958 DOI: 10.1007/s13365-011-0035-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/11/2011] [Accepted: 04/25/2011] [Indexed: 11/28/2022]
Abstract
Despite effective and widely available suppressive anti-HIV therapy, the prevalence of mild neurocognitive dysfunction continues to increase. HIV-associated neurocognitive disorder (HAND) is a multifactorial disease with sustained central nervous system inflammation and immune activation as prominent features. Inflammatory macrophages, HIV-infected and uninfected, play a central role in the development of HIV dementia. There is a critical need to identify biomarkers and to better understand the molecular mechanisms leading to cognitive dysfunction in HAND. In this regard, we identified through a subtractive hybridization strategy osteopontin (OPN, SPP1, gene) an inflammatory marker, as an upregulated gene in HIV-infected primary human monocyte-derived macrophages. Knockdown of OPN in primary macrophages resulted in a threefold decrease in HIV-1 replication. Ectopic expression of OPN in the TZM-bl cell line significantly enhanced HIV infectivity and replication. A significant increase in the degradation of the NF-κB inhibitor, IκBα and an increase in the nuclear-to-cytoplasmic ratio of NF-κB were found in HIV-infected cells expressing OPN compared to controls. Moreover, mutation of the NF-κB binding domain in the HIV-LTR abrogated enhanced promoter activity stimulated by OPN. Interestingly, compared to cerebrospinal fluid from normal and multiple sclerosis controls, OPN levels were significantly higher in HIV-infected individuals both with and without neurocognitive disorder. OPN levels were highest in HIV-infected individuals with moderate to severe cognitive impairment. Moreover, OPN was significantly elevated in brain tissue from HIV-infected individuals with cognitive disorder versus those without impairment. Collectively, these data suggest that OPN stimulates HIV-1 replication and that high levels of OPN are present in the CNS compartment of HIV-infected individuals, reflecting ongoing inflammatory processes at this site despite anti-HIV therapy.
Collapse
Affiliation(s)
- Amanda Brown
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287-7131, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hong J, Hutton GJ. Regulatory effects of interferon-β on osteopontin and interleukin-17 expression in multiple sclerosis. J Interferon Cytokine Res 2011; 30:751-7. [PMID: 20874252 DOI: 10.1089/jir.2010.0082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease characterized by autoimmune inflammation in the central nervous system. Despite over a decade of use of interferon-β (IFN-β) in the treatment of MS, its mechanisms of action are still not fully elucidated. New data now demonstrate that the 2 important proinflammatory cytokines involved in the pathogenesis of MS, osteopontin (OPN) and interleukin-17 (IL-17), are regulated by IFN-β. This review discusses the role of OPN and IL-17 in the development of MS and how the downregulation of the levels of OPN and interleukin-17 contributes to the therapeutic effects of IFN-β in MS.
Collapse
Affiliation(s)
- Jian Hong
- Department of Neurology and Baylor Multiple Sclerosis Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
44
|
Abstract
Macrophages and CD4+ T cells are natural target cells for HIV-1, and both cell types contribute to the establishment of the viral reservoir that is responsible for continuous residual virus replication during antiretroviral therapy and viral load rebound upon treatment interruption. Scientific findings that support a critical role for the infected monocyte/macrophage in HIV-1-associated diseases, such as neurological disorders and cardiovascular disease, are accumulating. To prevent or treat these HIV-1-related diseases, we need to halt HIV-1 replication in the macrophage reservoir. This article describes our current knowledge of how monocytes and certain macrophage subsets are able to restrict HIV-1 infection, in addition to what makes macrophages respond less well to current antiretroviral drugs as compared with CD4+ T cells. These insights will help to find novel approaches that can be used to meet this challenge.
Collapse
Affiliation(s)
- Sebastiaan M Bol
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Viviana Cobos-Jiménez
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA) at the Academic Medical Center of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
45
|
Lausch E, Janecke A, Bros M, Trojandt S, Alanay Y, De Laet C, Hübner CA, Meinecke P, Nishimura G, Matsuo M, Hirano Y, Tenoutasse S, Kiss A, Machado Rosa RF, Unger SL, Renella R, Bonafé L, Spranger J, Unger S, Zabel B, Superti-Furga A. Genetic deficiency of tartrate-resistant acid phosphatase associated with skeletal dysplasia, cerebral calcifications and autoimmunity. Nat Genet 2011; 43:132-7. [DOI: 10.1038/ng.749] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 12/06/2010] [Indexed: 12/16/2022]
|
46
|
Buckner CM, Calderon TM, Willams DW, Belbin TJ, Berman JW. Characterization of monocyte maturation/differentiation that facilitates their transmigration across the blood-brain barrier and infection by HIV: implications for NeuroAIDS. Cell Immunol 2010; 267:109-23. [PMID: 21292246 DOI: 10.1016/j.cellimm.2010.12.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 11/02/2010] [Accepted: 12/18/2010] [Indexed: 01/10/2023]
Abstract
The prevalence of human immunodeficiency virus 1 (HIV) associated neurocognitive disorders resulting from infection of the central nervous system (CNS) by HIV continues to increase despite the success of combination antiretroviral therapy. Although monocytes are known to transport HIV across the blood-brain barrier (BBB) into the CNS, there are few specific markers that identify monocyte subpopulations susceptible to HIV infection and/or capable of infiltrating the CNS. We cultured human peripheral blood monocytes and characterized the expression of the phenotypic markers CD14, CD16, CD11b, Mac387, CD163, CD44v6 and CD166 during monocyte/macrophage (Mo/Mac) maturation/differentiation. We determined that a CD14(+)CD16(+)CD11b(+)Mac387(+) Mo/Mac subpopulation preferentially transmigrates across our in vitro BBB model in response to CCL2. Genes associated with Mo/Mac subpopulations that transmigrate across the BBB and/or are infected by HIV were identified by cDNA microarray analyses. Our findings contribute to the understanding of monocyte maturation, infection and transmigration into the brain during the pathogenesis of NeuroAIDS.
Collapse
Affiliation(s)
- Clarisa M Buckner
- Departments of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
47
|
Matušan-Ilijaš K, Damante G, Fabbro D, Dorđević G, Hadžisejdić I, Grahovac M, Marić I, Spanjol J, Grahovac B, Jonjić N, Lučin K. Osteopontin expression correlates with nuclear factor-κB activation and apoptosis downregulation in clear cell renal cell carcinoma. Pathol Res Pract 2010; 207:104-10. [PMID: 21167650 DOI: 10.1016/j.prp.2010.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/11/2010] [Accepted: 11/11/2010] [Indexed: 01/13/2023]
Abstract
Osteopontin (OPN) is a phosphoglycoprotein implicated in tumorigenesis and tumor cell metastasis. Apoptosis inhibition is one of the mechanisms that contribute to development and progression of cancer, and might be initiated by OPN interaction with tumor cells. The aim of this study was to analyze the relation between OPN and nuclear factor-kappa B (NF-κB) expression in clear cell renal cell carcinoma (CCRCC), as well as their relation to apoptotic activity of tumor cells. Expression of OPN protein and p65 NF-κB subunit was analyzed immunohistochemically in 87 CCRCC samples, and compared mutually and with apoptotic index. Expression of OPN mRNA was analyzed using quantitative real-time PCR and compared with OPN and NF-κB protein expression in 22 CCRCC samples. Statistical analysis showed an association of p65 NF-κB with OPN mRNA (p=0.015) and protein (p<0.001). Also, we found an inverse relationship of OPN with NF-κB protein expression and apoptotic activity of tumor cells (p=0.006 and p=0.022, respectively). Our results indicate that p65 NF-κB signaling pathway may be involved in OPN-mediated CCRCC progression, partly by protecting tumor cells from apoptosis. Therefore, both molecules can constitute potential targets for therapeutic intervention in CCRCC.
Collapse
|
48
|
Chen G, Zhang X, Li R, Fang L, Niu X, Zheng Y, He D, Xu R, Zhang JZ. Role of osteopontin in synovial Th17 differentiation in rheumatoid arthritis. ACTA ACUST UNITED AC 2010; 62:2900-8. [PMID: 20533542 DOI: 10.1002/art.27603] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Osteopontin (OPN) that is aberrantly produced in rheumatoid synovium is thought to play an important role in rheumatoid arthritis (RA). This study was undertaken to investigate the role of OPN in the differentiation and accumulation of Th17 cells in rheumatoid synovium. METHODS Peripheral blood mononuclear cells and purified CD4+ T cells derived from patients with RA or healthy controls were used to test the effect of OPN in vitro. Cytokine expression was determined by enzyme-linked immunosorbent assay and quantitative polymerase chain reaction. Intracellular staining and flow cytometry were used to detect the percentages of Th17 cells and OPN receptors. Signaling and molecular events were analyzed by immunoblotting and chromatin immunoprecipitation. RESULTS The levels of OPN correlated significantly with interleukin-17 (IL-17) production and the frequency of Th17 cells in the synovial fluid (SF) of RA patients. Endogenous OPN produced in RA SF was responsible for markedly increased production of IL-17 in T cells, which was blocked by OPN antibody. The effect of OPN in Th17 differentiation was mediated through a mechanism independent of the IL-6/STAT-3 pathway or other cytokines and specifically involved the OPN receptors CD44 and CD29 and the transcription factor retinoic acid-related orphan receptor (ROR). Furthermore, OPN was found to induce H3 acetylation of the IL17A gene promoter, mainly through the CD44 binding domain in CD4+ T cells, allowing the interaction of the IL17A gene locus with ROR. CONCLUSION This study reveals new evidence of the critical role of OPN in Th17 differentiation in rheumatoid synovitis.
Collapse
Affiliation(s)
- Guangjie Chen
- Institute of Health Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai JiaoTong University School of Medicine, and Shanghai Institute of Immunology, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Seo D, Goldschmidt-Clermont P, Goldschidt-Clermont P, Velazquez O, Beecham G. Genomics of premature atherosclerotic vascular disease. Curr Atheroscler Rep 2010; 12:187-93. [PMID: 20425258 DOI: 10.1007/s11883-010-0104-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Atherosclerotic vascular disease is a systemic process with a common pathophysiology but with different disease manifestations depending on the vascular site. Over the past two decades, significant efforts have gone toward determining the genomic factors contributing to atherosclerotic vascular disease. Substantial information has been generated regarding the genomics of atherosclerotic coronary heart disease, and recently, several genomic analyses have looked at the cerebrovascular and peripheral vascular beds. This article reviews genomic investigations of atherosclerotic vascular disease in the coronary, cerebrovascular, and peripheral arteries. In this review, we have tried to restrict the discussion to studies of premature atherosclerosis, particularly those using non-biased genomic techniques.
Collapse
Affiliation(s)
- David Seo
- University of Miami Miller School of Medicine, 1501 NW 10th Ave, 809 Biomedical Research Building, Miami, FL 33136, USA.
| | | | | | | | | |
Collapse
|
50
|
Kadirvel R, Ding YH, Dai D, Lewis DA, Kallmes DF. Differential gene expression in well-healed and poorly healed experimental aneurysms after coil treatment. Radiology 2010; 257:418-26. [PMID: 20829543 DOI: 10.1148/radiol.10100362] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To compare gene expression patterns between well-healed and poorly healed aneurysms following coil embolization in a rabbit model. MATERIALS AND METHODS The Institutional Animal Care and Use Committee approved all procedures before initiation of the study. Elastase-induced, saccular aneurysms were created in rabbits and embolized by using platinum microcoils. Group 1 aneurysms were densely packed (volumetric packing density, >30%) to achieve good healing, whereas group 2 aneurysms were loosely packed (volumetric packing density, <20%), which yields poor healing. At 2 or 4 weeks after implantation, samples were harvested. RNA was isolated separately from the necks and domes of the aneurysms and analyzed by using a microarray containing 294 rabbit genes. Genes with significant differences between groups (P < .05; false discovery rate, <0.1; fold change, ≥1.2 and ≤0.8) were considered differentially expressed. RESULTS At 2 weeks, of 294 genes, 22 (7.5%) genes in the neck and 14 (4.8%) genes in the dome were differentially expressed between groups; at 4 weeks, of 294 genes, 25 (8.5%) genes in the neck and 17 (5.8%) genes in the dome were differentially expressed between groups. Genes overexpressed in group 1 as compared with group 2 aneurysms included those encoding proteases, adhesion molecules, and chemoattractant molecules. Conversely, group 2 aneurysms had increased expression of genes encoding structural molecules, including collagens, as compared with expression in group 1 aneurysms. CONCLUSION Robust healing after coil embolization is associated with substantial biological activity, as evidenced by overexpression of proteases, adhesion molecules, and chemoattractants. However, contrary to prior hypotheses, structural molecules such as collagen were not associated with the healing response in the rabbit model.
Collapse
Affiliation(s)
- Ramanathan Kadirvel
- Department of Radiology, Neuroradiology Research Laboratory, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|