1
|
Aguirre-Rodríguez CA, Delgado A, Alatorre A, Oviedo-Chávez A, Martínez-Escudero JR, Barrientos R, Querejeta E. Local activation of CB1 receptors by synthetic and endogenous cannabinoids dampens burst firing mode of reticular thalamic nucleus neurons in rats under ketamine anesthesia. Exp Brain Res 2024; 242:2137-2157. [PMID: 38980339 DOI: 10.1007/s00221-024-06889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The reticular thalamic nucleus (RTN) is a thin shell that covers the dorsal thalamus and controls the overall information flow from the thalamus to the cerebral cortex through GABAergic projections that contact thalamo-cortical neurons (TC). RTN neurons receive glutamatergic afferents fibers from neurons of the sixth layer of the cerebral cortex and from TC collaterals. The firing mode of RTN neurons facilitates the generation of sleep-wake cycles; a tonic mode or desynchronized mode occurs during wake and REM sleep and a burst-firing mode or synchronized mode is associated with deep sleep. Despite the presence of cannabinoid receptors CB1 (CB1Rs) and mRNA that encodes these receptors in RTN neurons, there are few works that have analyzed the participation of endocannabinoid-mediated transmission on the electrical activity of RTN. Here, we locally blocked or activated CB1Rs in ketamine anesthetized rats to analyze the spontaneous extracellular spiking activity of RTN neurons. Our results show the presence of a tonic endocannabinoid input, since local infusion of AM 251, an antagonist/inverse agonist, modifies RTN neurons electrical activity; furthermore, local activation of CB1Rs by anandamide or WIN 55212-2 produces heterogeneous effects in the basal spontaneous spiking activity, where the main effect is an increase in the spiking rate accompanied by a decrease in bursting activity in a dose-dependent manner; this effect is inhibited by AM 251. In addition, previous activation of GABA-A receptors suppresses the effects of CB1Rs on reticular neurons. Our results show that local activation of CB1Rs primarily diminishes the burst firing mode of RTn neurons.
Collapse
Affiliation(s)
- Carlos A Aguirre-Rodríguez
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Alfonso Delgado
- Departamento de Fisiología Experimental, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Circuito Universitario Campus II, 31127, Chihuahua, Chihuahua, México
| | - Alberto Alatorre
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Aldo Oviedo-Chávez
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - José R Martínez-Escudero
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Rafael Barrientos
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Enrique Querejeta
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México.
- Sección de Investigación y Posgrado de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México, 11340, México.
| |
Collapse
|
2
|
West ML, Sharif S. Cannabis and Psychosis. Psychiatr Clin North Am 2023; 46:703-717. [PMID: 37879833 DOI: 10.1016/j.psc.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Psychosis and cannabis use may overlap in multiple ways in young people. Research suggests that cannabis use increases risk for having psychotic symptoms, both attenuated (subthreshold) and acute. Cannabis use may also exacerbate psychosis symptoms among young people with underlying psychosis risk and psychotic disorders. Although there are suggestions for treating co-occurring psychosis and cannabis use in young people (e.g., incorporating cannabis use assessment and treatment strategies into specialized early psychosis care), there are many gaps in clinical trial research to support evidence-based treatment of these overlapping concerns.
Collapse
Affiliation(s)
- Michelle L West
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Health Sciences Building, 1890 N Revere Court, Mailstop F443, Aurora, CO 80045, USA.
| | - Shadi Sharif
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Health Sciences Building, 1890 N Revere Court, Mailstop F443, Aurora, CO 80045, USA
| |
Collapse
|
3
|
West ML, Sharif S. Cannabis and Psychosis. Child Adolesc Psychiatr Clin N Am 2023; 32:69-83. [PMID: 36410907 DOI: 10.1016/j.chc.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Psychosis and cannabis use may overlap in multiple ways in young people. Research suggests that cannabis use increases risk for having psychotic symptoms, both attenuated (subthreshold) and acute. Cannabis use may also exacerbate psychosis symptoms among young people with underlying psychosis risk and psychotic disorders. Although there are suggestions for treating co-occurring psychosis and cannabis use in young people (e.g., incorporating cannabis use assessment and treatment strategies into specialized early psychosis care), there are many gaps in clinical trial research to support evidence-based treatment of these overlapping concerns.
Collapse
Affiliation(s)
- Michelle L West
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Health Sciences Building, 1890 N Revere Court, Mailstop F443, Aurora, CO 80045, USA.
| | - Shadi Sharif
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Health Sciences Building, 1890 N Revere Court, Mailstop F443, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Benoit LJ, Canetta S, Kellendonk C. Thalamocortical Development: A Neurodevelopmental Framework for Schizophrenia. Biol Psychiatry 2022; 92:491-500. [PMID: 35550792 PMCID: PMC9999366 DOI: 10.1016/j.biopsych.2022.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Adolescence is a period of increased vulnerability for the development of psychiatric disorders, including schizophrenia. The prefrontal cortex (PFC) undergoes substantial maturation during this period, and PFC dysfunction is central to cognitive impairments in schizophrenia. As a result, impaired adolescent maturation of the PFC has been proposed as a mechanism in the etiology of the disorder and its cognitive symptoms. In adulthood, PFC function is tightly linked to its reciprocal connections with the thalamus, and acutely inhibiting thalamic inputs to the PFC produces impairments in PFC function and cognitive deficits. Here, we propose that thalamic activity is equally important during adolescence because it is required for proper PFC circuit development. Because thalamic abnormalities have been observed early in the progression of schizophrenia, we further postulate that adolescent thalamic dysfunction can have long-lasting consequences for PFC function and cognition in patients with schizophrenia.
Collapse
Affiliation(s)
- Laura J Benoit
- Graduate Program in Neurobiology and Behavior, Columbia University Medical Center, New York, New York
| | - Sarah Canetta
- Department of Psychiatry, Columbia University Medical Center, New York, New York; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, New York
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University Medical Center, New York, New York; Department of Pharmacology, Columbia University Medical Center, New York, New York; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York.
| |
Collapse
|
5
|
Lichenstein SD, Manco N, Cope LM, Egbo L, Garrison KA, Hardee J, Hillmer AT, Reeder K, Stern EF, Worhunsky P, Yip SW. Systematic review of structural and functional neuroimaging studies of cannabis use in adolescence and emerging adulthood: evidence from 90 studies and 9441 participants. Neuropsychopharmacology 2022; 47:1000-1028. [PMID: 34839363 PMCID: PMC8938408 DOI: 10.1038/s41386-021-01226-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/09/2022]
Abstract
Cannabis use peaks in adolescence, and adolescents may be more vulnerable to the neural effects of cannabis and cannabis-related harms due to ongoing brain development during this period. In light of ongoing cannabis policy changes, increased availability, reduced perceptions of harm, heightened interest in medicinal applications of cannabis, and drastic increases in cannabis potency, it is essential to establish an understanding of cannabis effects on the developing adolescent brain. This systematic review aims to: (1) synthesize extant literature on functional and structural neural alterations associated with cannabis use during adolescence and emerging adulthood; (2) identify gaps in the literature that critically impede our ability to accurately assess the effect of cannabis on adolescent brain function and development; and (3) provide recommendations for future research to bridge these gaps and elucidate the mechanisms underlying cannabis-related harms in adolescence and emerging adulthood, with the long-term goal of facilitating the development of improved prevention, early intervention, and treatment approaches targeting adolescent cannabis users (CU). Based on a systematic search of Medline and PsycInfo and other non-systematic sources, we identified 90 studies including 9441 adolescents and emerging adults (n = 3924 CU, n = 5517 non-CU), which provide preliminary evidence for functional and structural alterations in frontoparietal, frontolimbic, frontostriatal, and cerebellar regions among adolescent cannabis users. Larger, more rigorous studies are essential to reconcile divergent results, assess potential moderators of cannabis effects on the developing brain, disentangle risk factors for use from consequences of exposure, and elucidate the extent to which cannabis effects are reversible with abstinence. Guidelines for conducting this work are provided.
Collapse
Affiliation(s)
| | - Nick Manco
- Medical University of South Carolina, Charleston, SC, USA
| | - Lora M Cope
- Department of Psychiatry and Addiction Center, University of Michigan, Ann Arbor, MI, USA
| | - Leslie Egbo
- Neuroscience and Behavior Program, Wesleyan University, Middletown, CT, USA
| | | | - Jillian Hardee
- Department of Psychiatry and Addiction Center, University of Michigan, Ann Arbor, MI, USA
| | - Ansel T Hillmer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Kristen Reeder
- Department of Internal Medicine, East Carolina University/Vidant Medical Center, Greenville, NC, USA
| | - Elisa F Stern
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Patrick Worhunsky
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Sarah W Yip
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
Moulin V, Framorando D, Gasser J, Dan-Glauser E. The Link Between Cannabis Use and Violent Behavior in the Early Phase of Psychosis: The Potential Role of Impulsivity. Front Psychiatry 2022; 13:746287. [PMID: 35392388 PMCID: PMC8980530 DOI: 10.3389/fpsyt.2022.746287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Recently, the literature has shown that Cannabis Use (CU) was a risk factor for Violent Behavior (VB) in patients with psychosis, and those in the early phase of psychosis (EPP). These findings are relevant because of the high prevalence of CU in this EPP, and the potential for prevention during this phase of illness. However, there is still a lack of clear explanations, supported by empirical evidence, about what underlies the link between CU and VB against other. METHOD This viewpoint reviews the scientific literature on the link between CU and VB, and the involvement of impulsivity in this relationship. This last point will be addressed at clinical and neurobiological levels. RESULTS Recent studies confirmed that CU is particularly high in the EPP, and is a risk factor for VB in the EPP and schizophrenia. Studies have also shown that impulsivity is a risk factor for VB in psychosis, is associated with CU, and may mediate the link between CU and VB. Research suggests a neurobiological mechanism, as CU affects the structures and function of frontal areas, known to play a role in impulsive behavior. CONCLUSION Scientific evidence support the hypothesis of an involvement of impulsivity as a variable that could mediate the link between CU and aggression, particularly, when CU has an early onset. However, this hypothesis should be confirmed with longitudinal studies and by taking into account confounding factors. The studies highlight the relevance of early prevention in the EPP, in addition to interventions focusing on psychotic disorders.
Collapse
Affiliation(s)
- Valerie Moulin
- Unit for Research in Legal Psychiatry and Psychology, Institute of Forensic Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - David Framorando
- Unit for Research in Legal Psychiatry and Psychology, Institute of Forensic Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Jacques Gasser
- Unit for Research in Legal Psychiatry and Psychology, Institute of Forensic Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Elise Dan-Glauser
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Scheffler F, Du Plessis S, Asmal L, Kilian S, Phahladira L, Luckhoff HK, Emsley R. Cannabis use and hippocampal subfield volumes in males with a first episode of a schizophrenia spectrum disorder and healthy controls. Schizophr Res 2021; 231:13-21. [PMID: 33740561 DOI: 10.1016/j.schres.2021.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 01/25/2021] [Accepted: 02/27/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Both schizophrenia and cannabis use are associated with structural brain changes. The hippocampus is a region of particular interest due to its role in memory and select cognitive functions, impairment of which is a core feature of schizophrenia and has also been observed in substance abuse. This study aimed to explore the effects of recent/current cannabis use on hippocampal subfield volumes in male patients with first-episode schizophrenia spectrum disorders and matched controls. METHODS This cross-sectional, case-control study included 63 patients and 58 controls scanned on 3T MRI scanners, with hippocampal segmentation performed using recently validated Freesurfer v6.0 software. Cannabis use status was determined by self and carer report together with urine toxicology screening, and patients were categorised as recent/current users or non-users. We used multivariate analysis of covariance (MANCOVA) with age, scan sequence, scan quality, and total intracranial volume as covariates, with subsequent analysis of variance (ANOVA) to test the effects of diagnosis and cannabis use status on individual hippocampal subfields. RESULTS We found a group (patient/control) by cannabis use interaction effect in the subiculum, with decreased volumes observed in the cannabis non-using patients compared to the cannabis using patients, and decreased volumes in the cannabis using controls compared to the cannabis non-using controls. CONCLUSION The increased subiculum volume in cannabis using patients compared to cannabis non-using patients raises important questions regarding the pathophysiology of schizophrenia and the role of cannabis use therein.
Collapse
Affiliation(s)
- F Scheffler
- Department of Psychiatry, Stellenbosch University, South Africa.
| | - S Du Plessis
- Department of Psychiatry, Stellenbosch University, South Africa
| | - L Asmal
- Department of Psychiatry, Stellenbosch University, South Africa
| | - S Kilian
- Department of Psychiatry, Stellenbosch University, South Africa
| | - L Phahladira
- Department of Psychiatry, Stellenbosch University, South Africa
| | - H K Luckhoff
- Department of Psychiatry, Stellenbosch University, South Africa
| | - R Emsley
- Department of Psychiatry, Stellenbosch University, South Africa
| |
Collapse
|
8
|
Sami M, Cole JH, Kempton MJ, Annibale L, Das D, Kelbrick M, Eranti S, Collier T, Onyejiaka C, O'Neill A, Lythgoe DJ, McGuire P, Williams SCR, Bhattacharyya S. Cannabis use in patients with early psychosis is associated with alterations in putamen and thalamic shape. Hum Brain Mapp 2020; 41:4386-4396. [PMID: 32687254 PMCID: PMC7502838 DOI: 10.1002/hbm.25131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 03/06/2020] [Accepted: 06/24/2020] [Indexed: 12/31/2022] Open
Abstract
Around half of patients with early psychosis have a history of cannabis use. We aimed to determine if there are neurobiological differences in these the subgroups of persons with psychosis with and without a history of cannabis use. We expected to see regional deflations in hippocampus as a neurotoxic effect and regional inflations in striatal regions implicated in addictive processes. Volumetric, T1w MRIs were acquired from people with a diagnosis psychosis with (PwP + C = 28) or without (PwP - C = 26) a history of cannabis use; and Controls with (C + C = 16) or without (C - C = 22) cannabis use. We undertook vertex-based shape analysis of the brainstem, amygdala, hippocampus, globus pallidus, nucleus accumbens, caudate, putamen, thalamus using FSL FIRST. Clusters were defined through Threshold Free Cluster Enhancement and Family Wise Error was set at p < .05. We adjusted analyses for age, sex, tobacco and alcohol use. The putamen (bilaterally) and the right thalamus showed regional enlargement in PwP + C versus PwP - C. There were no areas of regional deflation. There were no significant differences between C + C and C - C. Cannabis use in participants with psychosis is associated with morphological alterations in subcortical structures. Putamen and thalamic enlargement may be related to compulsivity in patients with a history of cannabis use.
Collapse
Affiliation(s)
- Musa Sami
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - James H. Cole
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - Matthew J. Kempton
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - Luciano Annibale
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - Debasis Das
- Leicestershire Partnership NHS TrustLondonUK
| | | | | | - Tracy Collier
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | | | - Aisling O'Neill
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - David J. Lythgoe
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - Philip McGuire
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - Steve C. R. Williams
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - Sagnik Bhattacharyya
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| |
Collapse
|
9
|
Sami MB, Bhattacharyya S. Are cannabis-using and non-using patients different groups? Towards understanding the neurobiology of cannabis use in psychotic disorders. J Psychopharmacol 2018; 32:825-849. [PMID: 29591635 PMCID: PMC6058406 DOI: 10.1177/0269881118760662] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A substantial body of credible evidence has accumulated that suggest that cannabis use is an important potentially preventable risk factor for the development of psychotic illness and its worse prognosis following the onset of psychosis. Here we summarize the relevant evidence to argue that the time has come to investigate the neurobiological effects of cannabis in patients with psychotic disorders. In the first section we summarize evidence from longitudinal studies that controlled for a range of potential confounders of the association of cannabis use with increased risk of developing psychotic disorders, increased risk of hospitalization, frequent and longer hospital stays, and failure of treatment with medications for psychosis in those with established illness. Although some evidence has emerged that cannabis-using and non-using patients with psychotic disorders may have distinct patterns of neurocognitive and neurodevelopmental impairments, the biological underpinnings of the effects of cannabis remain to be fully elucidated. In the second and third sections we undertake a systematic review of 70 studies, including over 3000 patients with psychotic disorders or at increased risk of psychotic disorder, in order to delineate potential neurobiological and neurochemical mechanisms that may underlie the effects of cannabis in psychotic disorders and suggest avenues for future research.
Collapse
Affiliation(s)
- Musa Basseer Sami
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
- Lambeth Early Onset Inpatient Unit, Lambeth Hospital, South London and Maudsley NHS Foundation Trust, UK
| | - Sagnik Bhattacharyya
- Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
- Lambeth Early Onset Inpatient Unit, Lambeth Hospital, South London and Maudsley NHS Foundation Trust, UK
| |
Collapse
|
10
|
Gillespie NA, Neale MC, Bates TC, Eyler LT, Fennema-Notestine C, Vassileva J, Lyons MJ, Prom-Wormley EC, McMahon KL, Thompson PM, de Zubicaray G, Hickie IB, McGrath JJ, Strike LT, Rentería ME, Panizzon MS, Martin NG, Franz CE, Kremen WS, Wright MJ. Testing associations between cannabis use and subcortical volumes in two large population-based samples. Addiction 2018; 113:10.1111/add.14252. [PMID: 29691937 PMCID: PMC6200645 DOI: 10.1111/add.14252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/26/2017] [Accepted: 04/06/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS Disentangling the putative impact of cannabis on brain morphology from other comorbid substance use is critical. After controlling for the effects of nicotine, alcohol and multi-substance use, this study aimed to determine whether frequent cannabis use is associated with significantly smaller subcortical grey matter volumes. DESIGN Exploratory analyses using mixed linear models, one per region of interest (ROI), were performed whereby individual differences in volume (outcome) at seven subcortical ROIs were regressed onto cannabis and comorbid substance use (predictors). SETTING Two large population-based twin samples from the United States and Australia. PARTICIPANTS A total of 622 young Australian adults [66% female; μage = 25.9, standard deviation SD) = 3.6] and 474 middle-aged US males (μage = 56.1SD = 2.6 ) of predominately Anglo-Saxon ancestry with complete substance use and imaging data. Subjects with a history of stroke or traumatic brain injury were excluded. MEASUREMENTS Magnetic resonance imaging (MRI) and volumetric segmentation methods were used to estimate volume in seven subcortical ROIs: thalamus, caudate nucleus, putamen, pallidum, hippocampus, amygdala and nucleus accumbens. Substance use measurements included maximum nicotine and alcohol use, total life-time multi-substance use, maximum cannabis use in the young adults and regular cannabis use in the middle-aged males. FINDINGS After correcting for multiple testing (P = 0.007), cannabis use was unrelated to any subcortical ROI. However, maximum nicotine use was associated with significantly smaller thalamus volumes in middle-aged males. CONCLUSIONS In exploratory analyses based on young adult and middle-aged samples, normal variation in cannabis use is unrelated statistically to individual differences in brain morphology as measured by subcortical volume.
Collapse
Affiliation(s)
- Nathan A. Gillespie
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, VA, USA
- QIMR Berghofer Medical Research Institute, QLD, Australia
| | - Michael C. Neale
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, VA, USA
| | | | - Lisa T. Eyler
- Desert-Pacific Mental Illness Research, Education, and Clinical Center, VA San Diego Healthcare System, CA, USA
- Department of Psychiatry, University of California San Diego, CA, USA
| | | | - Jasmin Vassileva
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, VA, USA
| | - Michael J. Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | | | - Katie L. McMahon
- Centre for Advanced Imaging, The University of Queensland, QLD, Australia
| | - Paul M. Thompson
- Centre for Advanced Imaging, The University of Queensland, QLD, Australia
| | - Greig de Zubicaray
- School of Psychology, The University of Queensland, QLD, Australia
- Faculty of Health and Institute of Biomedical Innovation, Queensland University of Technology
| | - Ian B. Hickie
- Brain and Mind Research Institute, University of Sydney, NSW, Australia
| | - John J. McGrath
- Queensland Brain Institute, The University of Queensland, QLD, Australia
| | - Lachlan T. Strike
- QIMR Berghofer Medical Research Institute, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, QLD, Australia
- School of Psychology, The University of Queensland, QLD, Australia
| | | | | | | | - Carol E. Franz
- Department of Psychiatry, University of California San Diego, CA, USA
| | - William S. Kremen
- Department of Psychiatry, University of California San Diego, CA, USA
| | - Margaret J. Wright
- QIMR Berghofer Medical Research Institute, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, QLD, Australia
| |
Collapse
|
11
|
Buchy L, Mathalon DH, Cannon TD, Cadenhead KS, Cornblatt BA, McGlashan TH, Perkins DO, Seidman LJ, Tsuang MT, Walker EF, Woods SW, Bearden CE, Addington J. Relation between cannabis use and subcortical volumes in people at clinical high risk of psychosis. Psychiatry Res 2016; 254:3-9. [PMID: 27289213 PMCID: PMC5037437 DOI: 10.1016/j.pscychresns.2016.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/21/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023]
Abstract
Among people at genetic risk of schizophrenia, those who use cannabis show smaller thalamic and hippocampal volumes. We evaluated this relationship in people at clinical high risk (CHR) of psychosis. The Alcohol and Drug Use Scale was used to identify 132 CHR cannabis users, the majority of whom were non-dependent cannabis users, 387 CHR non-users, and 204 healthy control non-users, and all participants completed magnetic resonance imaging scans. Volumes of the thalamus, hippocampus and amygdala were extracted with FreeSurfer, and compared across groups. Comparing all CHR participants with healthy control participants revealed no significant differences in volumes of any ROI. However, when comparing CHR users to CHR non-users, a significant ROI×Cannabis group effect emerged: CHR users showed significantly smaller amygdala compared to CHR non-users. However, when limiting analysis to CHR subjects who reported using alcohol at a 'use without impairment' severity level, the amygdala effect was non-significant; rather, smaller hippocampal volumes were seen in CHR cannabis users compared to non-users. Controlling statistically for effects of alcohol and tobacco use rendered all results non-significant. These results highlight the importance of controlling for residual confounding effects of other substance use when examining the relationship between cannabis use and neural structure.
Collapse
Affiliation(s)
- Lisa Buchy
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Daniel H Mathalon
- University of California, San Francisco, San Francisco, CA, United States
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, United States
| | | | - Barbara A Cornblatt
- Department of Psychiatry, Zucker Hillside Hospital, Long Island, NY, United States
| | | | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States
| | - Larry J Seidman
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, United States
| | - Ming T Tsuang
- Department of Psychiatry, UCSD, La Jolla, CA, United States
| | - Elaine F Walker
- Departments of Psychology and Psychiatry, Emory University, Atlanta, GA, United States
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CT, Unites States
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, CA, United States
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
12
|
Buchy L, Cannon TD, Anticevic A, Lyngberg K, Cadenhead KS, Cornblatt BA, McGlashan TH, Perkins DO, Seidman LJ, Tsuang MT, Walker EF, Woods SW, Bearden CE, Mathalon DH, Addington J. Evaluating the impact of cannabis use on thalamic connectivity in youth at clinical high risk of psychosis. BMC Psychiatry 2015; 15:276. [PMID: 26553191 PMCID: PMC4640353 DOI: 10.1186/s12888-015-0656-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/19/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Disruptions in thalamic functional connectivity have been observed in people with schizophrenia and in youth at clinical high risk (CHR) of psychosis. However, the impact of environmental risk factors for psychosis on thalamic dysconnectivity is poorly understood. We tested whether thalamic dysconnectivity is related to patterns of cannabis use in a CHR sample. METHODS 162 CHR and 105 control participants were assessed on cannabis use severity, frequency, and age at onset of first use as part of the North American Prodrome Longitudinal Study and completed resting-state fMRI scans. Whole-brain thalamic functional connectivity maps were generated using individual subjects' anatomically defined thalamic seeds. RESULTS Thalamic connectivity did not significantly correlate with current cannabis use severity or frequency in either CHR or controls. In CHR cannabis users, a significant correlation emerged between attenuated thalamic connectivity with left sensory/motor cortex and a younger age at onset of cannabis use. CHR who used cannabis before age 15 did not differ on thalamic connectivity as compared to CHR who used after age 15 or CHR who were cannabis naïve. No group differences in thalamic connectivity emerged when comparing CHR separated by moderate/high use frequency, low-frequency or cannabis naïve. CONCLUSIONS Although a younger age at onset of cannabis use may be associated with disrupted thalamo-cortical coupling, cannabis use does not appear to be an identifying characteristic for thalamic connectivity in CHR with moderate/high use frequency compared to low-frequency users or CHR who are cannabis naïve.
Collapse
Affiliation(s)
- Lisa Buchy
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada.
| | | | - Alan Anticevic
- Department of Psychiatry, Yale University, New Haven, CT, USA.
| | - Kristina Lyngberg
- Department of Neuroscience, Faculty of Science, University of Calgary, Alberta, Canada.
| | | | | | | | - Diana O. Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC USA
| | - Larry J. Seidman
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA USA
| | - Ming T. Tsuang
- Department of Psychiatry, Zucker Hillside Hospital, Long Island, NY USA
| | - Elaine F. Walker
- Departments of Psychology and Psychiatry, Emory University, Atlanta, GA USA
| | - Scott W. Woods
- Department of Psychiatry, Yale University, New Haven, CT USA
| | - Carrie E. Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, CA USA
| | | | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada. .,Mathison Centre for Mental Health Research and Education, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4Z6.
| |
Collapse
|
13
|
Klauser P, Zhou J, Lim JK, Poh JS, Zheng H, Tng HY, Krishnan R, Lee J, Keefe RS, Adcock RA, Wood SJ, Fornito A, Chee MW. Lack of Evidence for Regional Brain Volume or Cortical Thickness Abnormalities in Youths at Clinical High Risk for Psychosis: Findings From the Longitudinal Youth at Risk Study. Schizophr Bull 2015; 41:1285-93. [PMID: 25745033 PMCID: PMC4601700 DOI: 10.1093/schbul/sbv012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
There is cumulative evidence that young people in an "at-risk mental state" (ARMS) for psychosis show structural brain abnormalities in frontolimbic areas, comparable to, but less extensive than those reported in established schizophrenia. However, most available data come from ARMS samples from Australia, Europe, and North America while large studies from other populations are missing. We conducted a structural brain magnetic resonance imaging study from a relatively large sample of 69 ARMS individuals and 32 matched healthy controls (HC) recruited from Singapore as part of the Longitudinal Youth At-Risk Study (LYRIKS). We used 2 complementary approaches: a voxel-based morphometry and a surface-based morphometry analysis to extract regional gray and white matter volumes (GMV and WMV) and cortical thickness (CT). At the whole-brain level, we did not find any statistically significant difference between ARMS and HC groups concerning total GMV and WMV or regional GMV, WMV, and CT. The additional comparison of 2 regions of interest, hippocampal, and ventricular volumes, did not return any significant difference either. Several characteristics of the LYRIKS sample like Asian origins or the absence of current illicit drug use could explain, alone or in conjunction, the negative findings and suggest that there may be no dramatic volumetric or CT abnormalities in ARMS.
Collapse
Affiliation(s)
- Paul Klauser
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, Australia;,Monash Clinical and Imaging Neuroscience, School of Psychological Sciences & Monash Biomedical Imaging, Monash University, Clayton, Australia;,These authors contributed equally to the article
| | - Juan Zhou
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore;
| | - Joseph K.W. Lim
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Joann S. Poh
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Hui Zheng
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Han Ying Tng
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Ranga Krishnan
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Jimmy Lee
- Department of General Psychiatry 1 and Research Division, Institute of Mental Health, Singapore, Singapore;,Office of Clinical Sciences, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Richard S.E. Keefe
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC
| | - R. Alison Adcock
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC;,Center for Cognitive Neuroscience, Duke University, Durham, NC
| | - Stephen J. Wood
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, Australia;,School of Psychology, University of Birmingham, Edgbaston, UK
| | - Alex Fornito
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, Australia;,Monash Clinical and Imaging Neuroscience, School of Psychological Sciences & Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Michael W.L. Chee
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| |
Collapse
|
14
|
Wetherill RR, Jagannathan K, Hager N, Childress AR, Rao H, Franklin TR. Cannabis, Cigarettes, and Their Co-Occurring Use: Disentangling Differences in Gray Matter Volume. Int J Neuropsychopharmacol 2015; 18:pyv061. [PMID: 26045474 PMCID: PMC4648161 DOI: 10.1093/ijnp/pyv061] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/25/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Structural magnetic resonance imaging techniques are powerful tools for examining the effects of drug use on the brain. The nicotine and cannabis literature has demonstrated differences between nicotine cigarette smokers and cannabis users compared to controls in brain structure; however, less is known about the effects of co-occurring cannabis and tobacco use. METHODS We used voxel-based morphometry to examine gray matter volume differences between four groups: (1) cannabis-dependent individuals who do not smoke tobacco (Cs); (2) cannabis-dependent individuals who smoke tobacco (CTs); (3) cannabis-naïve, nicotine-dependent individuals who smoke tobacco (Ts); and (4) healthy controls (HCs). We also explored associations between gray matter volume and measures of cannabis and tobacco use. RESULTS A significant group effect was observed in the left putamen, thalamus, right precentral gyrus, and left cerebellum. Compared to HCs, the Cs, CTs, and Ts exhibited larger gray matter volumes in the left putamen. Cs also had larger gray matter volume than HCs in the right precentral gyrus. Cs and CTs exhibited smaller gray matter volume than HCs in the thalamus, and CTs and Ts had smaller left cerebellar gray matter volume than HCs. CONCLUSIONS This study extends previous research that independently examined the effects of cannabis or tobacco use on brain structure by including an examination of co-occurring cannabis and tobacco use, and provides evidence that cannabis and tobacco exposure are associated with alterations in brain regions associated with addiction.
Collapse
Affiliation(s)
- Reagan R Wetherill
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA (Drs Wetherill, Jagannathan, Childress, Rao, and Franklin, and Mr Hager).
| | - Kanchana Jagannathan
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA (Drs Wetherill, Jagannathan, Childress, Rao, and Franklin, and Mr Hager)
| | - Nathan Hager
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA (Drs Wetherill, Jagannathan, Childress, Rao, and Franklin, and Mr Hager)
| | - Anna Rose Childress
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA (Drs Wetherill, Jagannathan, Childress, Rao, and Franklin, and Mr Hager)
| | - Hengyi Rao
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA (Drs Wetherill, Jagannathan, Childress, Rao, and Franklin, and Mr Hager)
| | - Teresa R Franklin
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA (Drs Wetherill, Jagannathan, Childress, Rao, and Franklin, and Mr Hager)
| |
Collapse
|
15
|
Vukadinovic Z. Elevated striatal dopamine attenuates nigrothalamic inputs and impairs transthalamic cortico-cortical communication in schizophrenia: A hypothesis. Med Hypotheses 2015; 84:47-52. [DOI: 10.1016/j.mehy.2014.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/28/2014] [Accepted: 11/11/2014] [Indexed: 12/12/2022]
|
16
|
Schwitzer T, Schwan R, Angioi-Duprez K, Ingster-Moati I, Lalanne L, Giersch A, Laprevote V. The cannabinoid system and visual processing: a review on experimental findings and clinical presumptions. Eur Neuropsychopharmacol 2015; 25:100-12. [PMID: 25482685 DOI: 10.1016/j.euroneuro.2014.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/19/2014] [Accepted: 11/04/2014] [Indexed: 01/27/2023]
Abstract
Cannabis is one of the most prevalent drugs used worldwide. Regular cannabis use is associated with impairments in highly integrative cognitive functions such as memory, attention and executive functions. To date, the cerebral mechanisms of these deficits are still poorly understood. Studying the processing of visual information may offer an innovative and relevant approach to evaluate the cerebral impact of exogenous cannabinoids on the human brain. Furthermore, this knowledge is required to understand the impact of cannabis intake in everyday life, and especially in car drivers. Here we review the role of the endocannabinoids in the functioning of the visual system and the potential involvement of cannabis use in visual dysfunctions. This review describes the presence of the endocannabinoids in the critical stages of visual information processing, and their role in the modulation of visual neurotransmission and visual synaptic plasticity, thereby enabling them to alter the transmission of the visual signal. We also review several induced visual changes, together with experimental dysfunctions reported in cannabis users. In the discussion, we consider these results in relation to the existing literature. We argue for more involvement of public health research in the study of visual function in cannabis users, especially because cannabis use is implicated in driving impairments.
Collapse
Affiliation(s)
- Thomas Schwitzer
- EA7298, INGRES, Université de Lorraine, Vandœuvre-lès-Nancy F-54000, France; Maison des Addictions, CHU Nancy, Nancy F-54000, France; Centre Psychothérapique de Nancy, Nancy F-54000, France; INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg F-67000, France
| | - Raymund Schwan
- EA7298, INGRES, Université de Lorraine, Vandœuvre-lès-Nancy F-54000, France; Maison des Addictions, CHU Nancy, Nancy F-54000, France; Centre d׳Investigation Clinique CIC-INSERM 9501, CHU Nancy, Nancy F-54000, France; Centre Psychothérapique de Nancy, Nancy F-54000, France
| | | | | | - Laurence Lalanne
- Clinique Psychiatrique, CHRU Strasbourg, FTMS, Strasbourg, F-67000, France; INSERM U1114, Physiopathologie et Psychopathologie Cognitive de la Schizophrénie, Hôpitaux Universitaires de Strasbourg, Strasbourg F-67000, France
| | - Anne Giersch
- INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Département de Psychiatrie, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg F-67000, France
| | - Vincent Laprevote
- EA7298, INGRES, Université de Lorraine, Vandœuvre-lès-Nancy F-54000, France; Maison des Addictions, CHU Nancy, Nancy F-54000, France; Centre d׳Investigation Clinique CIC-INSERM 9501, CHU Nancy, Nancy F-54000, France; Centre Psychothérapique de Nancy, Nancy F-54000, France.
| |
Collapse
|
17
|
Ganzola R, Maziade M, Duchesne S. Hippocampus and amygdala volumes in children and young adults at high-risk of schizophrenia: research synthesis. Schizophr Res 2014; 156:76-86. [PMID: 24794883 DOI: 10.1016/j.schres.2014.03.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Studies have reported hippocampal and amygdala volume abnormalities in schizophrenic patients. It is necessary to explore the potential for these structures as early disease markers in subjects at high risk (HR) of schizophrenia. METHODS We performed a review of 29 magnetic resonance imaging (MRI) studies measuring hippocampal and amygdala volumes in subjects at HR for schizophrenia. We reclassified subjects in 3 new HR categories: presence of only risk symptoms (psychotic moderate symptoms), presence of only risk factors (genetic, developmental or environmental), and presence of combined risk symptoms/factors. RESULTS Hippocampal volume reductions were detected in subjects with first episode (FE) of psychosis, in all young adults and in adolescents at HR of schizophrenia. The loss of tissue was mainly located in the posterior part of hippocampus and the right side seems more vulnerable in young adults with only risk symptoms. Instead, the anterior sector seems more involved in HR subjects with genetic risks. Abnormal amygdala volumes were found in FE subjects, in children with combined risk symptoms/factors and in older subjects using different inclusion criteria, but not in young adults. CONCLUSION Hippocampal and amygdala abnormalities may be present before schizophrenia onset. Further studies should be conducted to clarify whether these abnormalities are causally or effectually related to neurodevelopment. Shape analysis could clarify the impact of environmental, genetic, and developmental factors on the medial temporal structures during the evolution of this disease.
Collapse
Affiliation(s)
- Rossana Ganzola
- Institut universitaire en santé mentale de Québec, Québec, Canada.
| | - Michel Maziade
- Institut universitaire en santé mentale de Québec, Québec, Canada; Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Québec, Canada
| | - Simon Duchesne
- Institut universitaire en santé mentale de Québec, Québec, Canada; Départment de Radiologie, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
18
|
Smith MJ, Cobia DJ, Wang L, Alpert KI, Cronenwett WJ, Goldman MB, Mamah D, Barch DM, Breiter HC, Csernansky JG. Cannabis-related working memory deficits and associated subcortical morphological differences in healthy individuals and schizophrenia subjects. Schizophr Bull 2014; 40:287-99. [PMID: 24342821 PMCID: PMC3932091 DOI: 10.1093/schbul/sbt176] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cannabis use is associated with working memory (WM) impairments; however, the relationship between cannabis use and WM neural circuitry is unclear. We examined whether a cannabis use disorder (CUD) was associated with differences in brain morphology between control subjects with and without a CUD and between schizophrenia subjects with and without a CUD, and whether these differences related to WM and CUD history. Subjects group-matched on demographics included 44 healthy controls, 10 subjects with a CUD history, 28 schizophrenia subjects with no history of substance use disorders, and 15 schizophrenia subjects with a CUD history. Large-deformation high-dimensional brain mapping with magnetic resonance imaging was used to obtain surface-based representations of the striatum, globus pallidus, and thalamus, compared across groups, and correlated with WM and CUD history. Surface maps were generated to visualize morphological differences. There were significant cannabis-related parametric decreases in WM across groups. Similar cannabis-related shape differences were observed in the striatum, globus pallidus, and thalamus in controls and schizophrenia subjects. Cannabis-related striatal and thalamic shape differences correlated with poorer WM and younger age of CUD onset in both groups. Schizophrenia subjects demonstrated cannabis-related neuroanatomical differences that were consistent and exaggerated compared with cannabis-related differences found in controls. The cross-sectional results suggest that both CUD groups were characterized by WM deficits and subcortical neuroanatomical differences. Future longitudinal studies could help determine whether cannabis use contributes to these observed shape differences or whether they are biomarkers of a vulnerability to the effects of cannabis that predate its misuse.
Collapse
Affiliation(s)
- Matthew J. Smith
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL;,*To whom correspondence should be addressed; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 710 N. Lake Shore Drive, 13th Floor, Abbott Hall, Chicago, IL 60611, US; tel: 1-312-503-2542, fax: 1-312-503-0527, e-mail:
| | - Derin J. Cobia
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL;,Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Kathryn I. Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Will J. Cronenwett
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Morris B. Goldman
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Daniel Mamah
- Department of Psychiatry, Washington University, St Louis, MO
| | | | - Hans C. Breiter
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL;,Warren Wright Adolescent Center, Northwestern University Feinberg School of Medicine, Chicago, IL,Denotes shared senior authorship on this article
| | - John G. Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL;,Denotes shared senior authorship on this article
| |
Collapse
|
19
|
Cannabis use and brain structural alterations of the cingulate cortex in early psychosis. Psychiatry Res 2013; 214:102-8. [PMID: 24054726 DOI: 10.1016/j.pscychresns.2013.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 02/07/2023]
Abstract
As cannabis use is more frequent in patients with psychosis than in the general population and is known to be a risk factor for psychosis, the question arises whether cannabis contributes to recently detected brain volume reductions in schizophrenic psychoses. This study is the first to investigate how cannabis use is related to the cingulum volume, a brain region involved in the pathogenesis of schizophrenia, in a sample of both at-risk mental state (ARMS) and first episode psychosis (FEP) subjects. A cross-sectional magnetic resonance imaging (MRI) study of manually traced cingulum in 23 FEP and 37 ARMS subjects was performed. Cannabis use was assessed with the Basel Interview for Psychosis. By using repeated measures analyses of covariance, we investigated whether current cannabis use is associated with the cingulum volume, correcting for age, gender, alcohol consumption, whole brain volume and antipsychotic medication. There was a significant three-way interaction between region (anterior/posterior cingulum), hemisphere (left/right cingulum) and cannabis use (yes/no). Post-hoc analyses revealed that this was due to a significant negative effect of cannabis use on the volume of the posterior cingulum which was independent of the hemisphere and diagnostic group and all other covariates we controlled for. In the anterior cingulum, we found a significant negative effect only for the left hemisphere, which was again independent of the diagnostic group. Overall, we found negative associations of current cannabis use with grey matter volume of the cingulate cortex, a region rich in cannabinoid CB1 receptors. As this finding has not been consistently found in healthy controls, it might suggest that both ARMS and FEP subjects are particularly sensitive to exogenous activation of these receptors.
Collapse
|
20
|
van Nierop M, Janssens M, Bruggeman R, Cahn W, de Haan L, Kahn RS, Meijer CJ, Myin-Germeys I, van Os J, Wiersma D. Evidence that transition from health to psychotic disorder can be traced to semi-ubiquitous environmental effects operating against background genetic risk. PLoS One 2013; 8:e76690. [PMID: 24223116 PMCID: PMC3819353 DOI: 10.1371/journal.pone.0076690] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/23/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In order to assess the importance of environmental and genetic risk on transition from health to psychotic disorder, a prospective study of individuals at average (n = 462) and high genetic risk (n = 810) was conducted. METHOD A three-year cohort study examined the rate of transition to psychotic disorder. Binary measures indexing environmental exposure (combining urban birth, cannabis use, ethnicity and childhood trauma) and proxy genetic risk (high-risk sibling status) were used to model transition. RESULTS The majority of high-risk siblings (68%) and healthy comparison subjects (60%) had been exposed to one or more environmental risks. The risk of transition in siblings (n = 9, 1.1%) was higher than the risk in healthy comparison subjects (n = 2, 0.4%; OR(adj) = 2.2,95%CI:5-10.3). All transitions (100%) were associated with environmental exposure, compared to 65% of non-transitions (p = 0.014), with the greatest effects for childhood trauma (OR(adj) = 34.4,95%CI:4.4-267.4), cannabis use (OR = 4.1,95%CI:1.1, 15.4), minority ethnic group (OR = 3.8,95%CI:1.2,12.8) and urban birth (OR = 3.7,95%CI:0.9,15.4). The proportion of transitions in the population attributable to environmental and genetic risk ranged from 28% for minority ethnic group, 45% for urban birth, 57% for cannabis use, 86% for childhood trauma, and 50% for high-risk sibling status. Nine out of 11 transitions (82%) were exposed to both genetic and environmental risk, compared to only 43% of non-transitions (p = 0.03). CONCLUSION Environmental risk associated with transition to psychotic disorder is semi-ubiquitous regardless of genetic high risk status. Careful prospective documentation suggests most transitions can be attributed to powerful environmental effects that become detectable when analysed against elevated background genetic risk, indicating gene-environment interaction.
Collapse
Affiliation(s)
- Martine van Nierop
- Maastricht University Medical Centre, South Limburg Mental Health Research and Teaching Network, EURON, Maastricht, The Netherlands
| | - Mayke Janssens
- Maastricht University Medical Centre, South Limburg Mental Health Research and Teaching Network, EURON, Maastricht, The Netherlands
| | | | - Richard Bruggeman
- University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands
| | - Wiepke Cahn
- University Medical Center Utrecht, Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, Utrecht, The Netherlands
| | - Lieuwe de Haan
- Academic Medical Centre, University of Amsterdam, Department of Psychiatry, Amsterdam, The Netherlands
| | - René S. Kahn
- University Medical Center Utrecht, Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, Utrecht, The Netherlands
| | - Carin J. Meijer
- Academic Medical Centre, University of Amsterdam, Department of Psychiatry, Amsterdam, The Netherlands
| | - Inez Myin-Germeys
- Maastricht University Medical Centre, South Limburg Mental Health Research and Teaching Network, EURON, Maastricht, The Netherlands
| | - Jim van Os
- Maastricht University Medical Centre, South Limburg Mental Health Research and Teaching Network, EURON, Maastricht, The Netherlands
- King's College London, King's Health Partners, Department of Psychosis Studies, Institute of Psychiatry, London, United Kingdom
| | - Durk Wiersma
- University Medical Center Groningen, Department of Psychiatry, Groningen, The Netherlands
| |
Collapse
|
21
|
Malchow B, Hasan A, Schneider-Axmann T, Jatzko A, Gruber O, Schmitt A, Falkai P, Wobrock T. Effects of cannabis and familial loading on subcortical brain volumes in first-episode schizophrenia. Eur Arch Psychiatry Clin Neurosci 2013; 263 Suppl 2:S155-68. [PMID: 24085610 DOI: 10.1007/s00406-013-0451-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 09/16/2013] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a severe neuropsychiatric disorder with familial loading as heritable risk factor and cannabis abuse as the most relevant environmental risk factor up to date. Cannabis abuse has been related to an earlier onset of the disease and persisting cannabis consumption is associated with reduced symptom improvement. However, the underlying morphological and biochemical brain alterations due to these risk factors as well as the effects of gene-environmental interaction are still unclear. In this magnetic resonance imaging (MRI) study in 47 first-episode schizophrenia patients and 30 healthy control subjects, we investigated effects of previous cannabis abuse and increased familial risk on subcortical brain regions such as hippocampus, amygdala, caudate nucleus, putamen, thalamus and subsegments of the corpus callosum (CC). In a subsequent single-volume (1)H-magnetic resonance spectroscopy study, we investigated spectra in the left hippocampus and putamen to detect metabolic alterations. Compared to healthy controls, schizophrenia patients displayed decreased volumes of the left hippocampus, bilateral amygdala and caudate nucleus as well as an increased area of the midsagittal CC1 segment of the corpus callosum. Patients fulfilling the criteria for cannabis abuse at admission showed an increased area of the CC2 segment compared to those who did not fulfill the criteria. Patients with a family history of schizophrenia combined with previous cannabis abuse showed lower volumes of the bilateral caudate nucleus compared to all other patients, implicating an interaction between the genetic background and cannabis abuse as environmental factor. Patients with cannabis abuse also had higher ratios of N-acetyl aspartate/choline in the left putamen, suggesting a possible neuroprotective effect in this area. However, antipsychotic medication prior to MRI acquisition and gender effects may have influenced our results. Future longitudinal studies in first-episode patients with quantification of cannabis abuse and assessment of schizophrenia risk genes are warranted.
Collapse
Affiliation(s)
- Berend Malchow
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University (LMU) Munich, Nußbaumstraße 7, 80336, Munich, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Welch KA, Moorhead TW, McIntosh AM, Owens DGC, Johnstone EC, Lawrie SM. Tensor-based morphometry of cannabis use on brain structure in individuals at elevated genetic risk of schizophrenia. Psychol Med 2013; 43:2087-2096. [PMID: 23190458 DOI: 10.1017/s0033291712002668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Schizophrenia is associated with various brain structural abnormalities, including reduced volume of the hippocampi, prefrontal lobes and thalami. Cannabis use increases the risk of schizophrenia but reports of brain structural abnormalities in the cannabis-using population have not been consistent. We used automated image analysis to compare brain structural changes over time in people at elevated risk of schizophrenia for familial reasons who did and did not use cannabis. METHOD Magnetic resonance imaging (MRI) scans were obtained from subjects at high familial risk of schizophrenia at entry to the Edinburgh High Risk Study (EHRS) and approximately 2 years later. Differential grey matter (GM) loss in those exposed (n=23) and not exposed to cannabis (n=32) in the intervening period was compared using tensor-based morphometry (TBM). RESULTS Cannabis exposure was associated with significantly greater loss of right anterior hippocampal (pcorrected=0.029, t=3.88) and left superior frontal lobe GM (pcorrected=0.026, t=4.68). The former finding remained significant even after the exclusion of individuals who had used other drugs during the inter-scan interval. CONCLUSIONS Using an automated analysis of longitudinal data, we demonstrate an association between cannabis use and GM loss in currently well people at familial risk of developing schizophrenia. This observation may be important in understanding the link between cannabis exposure and the subsequent development of schizophrenia.
Collapse
Affiliation(s)
- K A Welch
- Division of Psychiatry, School of Molecular and Clinical Medicine, University of Edinburgh, Royal Edinburgh Hospital, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Thoma P, Daum I. Comorbid substance use disorder in schizophrenia: a selective overview of neurobiological and cognitive underpinnings. Psychiatry Clin Neurosci 2013; 67:367-83. [PMID: 23890122 DOI: 10.1111/pcn.12072] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/21/2013] [Accepted: 05/29/2013] [Indexed: 01/06/2023]
Abstract
Although individuals with schizophrenia show a lifetime prevalence of 50% for suffering from a comorbid substance use disorder, substance abuse usually represents an exclusion criterion for studies on schizophrenia. This implies that surprisingly little is known about a large group of patients who are particularly difficult to treat. The aim of the present work is to provide a brief and non-exhaustive overview of the current knowledgebase about neurobiological and cognitive underpinnings for dual diagnosis schizophrenia patients. Studies published within the last 20 years were considered using computerized search engines. The focus was on nicotine, caffeine, alcohol, cannabis and cocaine being among the most common substances of abuse. All drugs of abuse target dopaminergic, glutamatergic and GABAergic transmission which are also involved in the pathophysiology of schizophrenia. Current literature suggests that neurocognitive function might beless disrupted in substance-abusing compared to non-abusing schizophrenia patients, but in particular the neuroimaging database on this topic is sparse. Detrimental effects on brain structure and function were shown for patients for whom alcohol is the main substance of abuse. It is as yet unclear whether this finding might be an artifact of age differences of patient subgroups with different substance abuse patterns. More research is warranted on the specific neurocognitive underpinnings of schizophrenia patients abusing distinct psychoactive substances. Treatment programs might either benefit from preserved cognitive function as a resource or specifically target cognitive impairment in different subgroups of addicted schizophrenia patients.
Collapse
Affiliation(s)
- Patrizia Thoma
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, Bochum, Germany.
| | | |
Collapse
|
24
|
Parakh P, Basu D. Cannabis and psychosis: have we found the missing links? Asian J Psychiatr 2013; 6:281-7. [PMID: 23810133 DOI: 10.1016/j.ajp.2013.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 03/10/2013] [Accepted: 03/30/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The association between cannabis and psychosis has long been a matter of debate, with cannabis widely perceived as a harmless recreational drug. METHODS Electronic bibliographic databases like PubMed and Google Scholar were searched using the format "(psychosis or schizophrenia or synonyms) and (cannabis or synonyms)". Cross-linked searches were made taking the lead from key articles. Recent articles and those exploring the genetic factors or gene-environment interaction between cannabis use and psychosis were focussed upon. RESULTS Heavy cannabis use at a n young age, in association with genetic liability to psychosis and exposure to environmental stressors like childhood trauma and urban upbringing increases the risk of psychotic outcome in later life. CONCLUSION Cannabis acts as a component cause of psychosis, that is, it increases the risk of psychosis in people with certain genetic or environmental vulnerabilities, though by itself, it is neither a sufficient nor a necessary cause of psychosis. Although significant progress has been made over the last few years, we are yet to find all the missing links. Further work is necessary to identify all the factors that underlie individual vulnerability to cannabis-related psychosis and to elucidate the biological mechanisms underlying this risk.
Collapse
Affiliation(s)
- Preeti Parakh
- Department of Psychiatry, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India.
| | | |
Collapse
|
25
|
Jeong HS, Lee S, Yoon S, Jung JJ, Cho HB, Kim BN, Ma J, Ko E, Im JJ, Ban S, Renshaw PF, Lyoo IK. Morphometric abnormalities of the lateral ventricles in methamphetamine-dependent subjects. Drug Alcohol Depend 2013; 131:222-9. [PMID: 23769159 PMCID: PMC5510466 DOI: 10.1016/j.drugalcdep.2013.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 04/12/2013] [Accepted: 05/06/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND The presence of morphometric abnormalities of the lateral ventricles, which can reflect focal or diffuse atrophic changes of nearby brain structures, is not well characterized in methamphetamine dependence. The current study was aimed to examine the size and shape alterations of the lateral ventricles in methamphetamine-dependent subjects. METHODS High-resolution brain structural images were obtained from 37 methamphetamine-dependent subjects and 25 demographically matched healthy individuals. Using a combined volumetric and surface-based morphometric approach, the structural variability of the lateral ventricles, with respect to extent and location, was examined. RESULTS Methamphetamine-dependent subjects had an enlarged right lateral ventricle compared with healthy individuals. Morphometric analysis revealed a region-specific pattern of lateral ventricular expansion associated with methamphetamine dependence, which was mainly distributed in the areas adjacent to the ventral striatum, medial prefrontal cortex, and thalamus. CONCLUSIONS Patterns of shape decomposition in the lateral ventricles may have relevance to the structural vulnerability of the prefrontal-ventral striatal-thalamic circuit to methamphetamine-induced neurotoxicity.
Collapse
Affiliation(s)
- Hyeonseok S. Jeong
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, 103 Daehak-ro, Jongno-gu, Seoul 110–799, South Korea
| | - Sunho Lee
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, 103 Daehak-ro, Jongno-gu, Seoul 110–799, South Korea
| | - Sujung Yoon
- Department of Psychiatry, Catholic University of Korea School of Medicine, 505 Banpo-dong, Seocho-gu, Seoul 137–701, South Korea,The Brain Institute and Department of Psychiatry, University of Utah, 383 Colorow Dr, Salt Lake City, UT 84108, USA
| | - Jiyoung J. Jung
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, 103 Daehak-ro, Jongno-gu, Seoul 110–799, South Korea
| | - Han Byul Cho
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, 103 Daehak-ro, Jongno-gu, Seoul 110–799, South Korea
| | - Binna N. Kim
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, 103 Daehak-ro, Jongno-gu, Seoul 110–799, South Korea
| | - Jiyoung Ma
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, 103 Daehak-ro, Jongno-gu, Seoul 110–799, South Korea
| | - Eun Ko
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, 103 Daehak-ro, Jongno-gu, Seoul 110–799, South Korea
| | - Jooyeon Jamie Im
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, 103 Daehak-ro, Jongno-gu, Seoul 110–799, South Korea
| | - Soonhyun Ban
- Department of Brain and Cognitive Sciences, Ewha University Graduate School, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 120–750, South Korea
| | - Perry F. Renshaw
- The Brain Institute and Department of Psychiatry, University of Utah, 383 Colorow Dr, Salt Lake City, UT 84108, USA
| | - In Kyoon Lyoo
- Ewha Brain Institute & College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha W. University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120–750, South Korea,Corresponding author. Tel.: +82 2 3277 3045; fax: +82 2 3277 3044. (I.K. Lyoo)
| |
Collapse
|
26
|
Cannabis, psychosis and the thalamus: A theoretical review. Neurosci Biobehav Rev 2013; 37:658-67. [DOI: 10.1016/j.neubiorev.2013.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 01/21/2013] [Accepted: 02/19/2013] [Indexed: 11/18/2022]
|
27
|
Batalla A, Bhattacharyya S, Yücel M, Fusar-Poli P, Crippa JA, Nogué S, Torrens M, Pujol J, Farré M, Martin-Santos R. Structural and functional imaging studies in chronic cannabis users: a systematic review of adolescent and adult findings. PLoS One 2013; 8:e55821. [PMID: 23390554 PMCID: PMC3563634 DOI: 10.1371/journal.pone.0055821] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/02/2013] [Indexed: 12/18/2022] Open
Abstract
Background The growing concern about cannabis use, the most commonly used illicit drug worldwide, has led to a significant increase in the number of human studies using neuroimaging techniques to determine the effect of cannabis on brain structure and function. We conducted a systematic review to assess the evidence of the impact of chronic cannabis use on brain structure and function in adults and adolescents. Methods Papers published until August 2012 were included from EMBASE, Medline, PubMed and LILACS databases following a comprehensive search strategy and pre-determined set of criteria for article selection. Only neuroimaging studies involving chronic cannabis users with a matched control group were considered. Results One hundred and forty-two studies were identified, of which 43 met the established criteria. Eight studies were in adolescent population. Neuroimaging studies provide evidence of morphological brain alterations in both population groups, particularly in the medial temporal and frontal cortices, as well as the cerebellum. These effects may be related to the amount of cannabis exposure. Functional neuroimaging studies suggest different patterns of resting global and brain activity during the performance of several cognitive tasks both in adolescents and adults, which may indicate compensatory effects in response to chronic cannabis exposure. Limitations However, the results pointed out methodological limitations of the work conducted to date and considerable heterogeneity in the findings. Conclusion Chronic cannabis use may alter brain structure and function in adult and adolescent population. Further studies should consider the use of convergent methodology, prospective large samples involving adolescent to adulthood subjects, and data-sharing initiatives.
Collapse
Affiliation(s)
- Albert Batalla
- Psychiatry, Institute of Neurosciences, Hospital Clínic, IDIBAPS, CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, King’s College London, Institute of Psychiatry, London, United Kingdom
| | - Murat Yücel
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, King’s College London, Institute of Psychiatry, London, United Kingdom
| | - Jose Alexandre Crippa
- Neuroscience and Cognitive Behavior Department, University of Sao Paulo, Ribeirao Preto, Brazil
- National Science and Technology Institute for Translational Medicine (INCT-TM, CNPq), Ribeirao Preto, Brazil
| | - Santiago Nogué
- Clinical Toxicology Unit, Emergency Department, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Marta Torrens
- Neuroscience Program, Pharmacology Unit and Drug Addiction Unit, IMIM-INAD-Parc de Salut Mar, Autonomous University of Barcelona, Barcelona, Spain
- Red de Trastornos Adictivos (RETIC), IMIM-INAD-Parc de Salut Mar, Barcelona, Spain
| | - Jesús Pujol
- Institut d’Alta Tecnologia-PRBB, CRC Mar, Hospital del Mar, Barcelona, Spain
| | - Magí Farré
- Neuroscience Program, Pharmacology Unit and Drug Addiction Unit, IMIM-INAD-Parc de Salut Mar, Autonomous University of Barcelona, Barcelona, Spain
- Red de Trastornos Adictivos (RETIC), IMIM-INAD-Parc de Salut Mar, Barcelona, Spain
| | - Rocio Martin-Santos
- Psychiatry, Institute of Neurosciences, Hospital Clínic, IDIBAPS, CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
- National Science and Technology Institute for Translational Medicine (INCT-TM, CNPq), Ribeirao Preto, Brazil
- * E-mail:
| |
Collapse
|
28
|
Malchow B, Hasan A, Fusar-Poli P, Schmitt A, Falkai P, Wobrock T. Cannabis abuse and brain morphology in schizophrenia: a review of the available evidence. Eur Arch Psychiatry Clin Neurosci 2013; 263:3-13. [PMID: 22907121 PMCID: PMC3560946 DOI: 10.1007/s00406-012-0346-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/24/2012] [Indexed: 11/03/2022]
Abstract
Substance abuse is the most prevalent comorbid psychiatric condition associated with schizophrenia, and cannabis is the illicit drug most often abused. Apart from worsening the course of schizophrenia, frequent cannabis use especially at an early age seems to be an important risk factor for developing schizophrenia. Although a large body of neuroimaging studies gives evidence for structural alterations in many different brain regions in schizophrenia patients, there is still limited knowledge of the impact of cannabis abuse on brain structure in schizophrenia. We performed a systematic review including structural magnetic resonance imaging studies comparing high-risk and schizophrenia patients with and without cannabis abuse and found inconclusive results. While there is some evidence that chronic cannabis abuse could alter brain morphology in schizophrenia in patients continuing their cannabis consumption, there is no convincing evidence that this alteration takes place before the onset of schizophrenia when looking at first-episode patients. There is some weak evidence that cannabis abuse could affect brain structures in high-risk subjects, but replication of these studies is needed.
Collapse
Affiliation(s)
- Berend Malchow
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Germany.
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, von-Siebold-Strasse 5, 37075 Göttingen, Germany
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry, King’s College London, London, UK
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, von-Siebold-Strasse 5, 37075 Göttingen, Germany ,Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, von-Siebold-Strasse 5, 37075 Göttingen, Germany ,Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| | - Thomas Wobrock
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, von-Siebold-Strasse 5, 37075 Göttingen, Germany ,Center of Mental Health, County Hospitals Darmstadt-Dieburg, Gross-Umstadt, Germany
| |
Collapse
|
29
|
van Dijk D, Koeter MWJ, Hijman R, Kahn RS, van den Brink W. Effect of cannabis use on the course of schizophrenia in male patients: a prospective cohort study. Schizophr Res 2012; 137:50-7. [PMID: 22313726 DOI: 10.1016/j.schres.2012.01.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/27/2011] [Accepted: 01/14/2012] [Indexed: 10/14/2022]
Abstract
BACKGROUND Findings on the impact of cannabis use on the course of schizophrenia are inconsistent and not conclusive. AIMS To study the effect of cannabis use on the course of schizophrenia taking into account the effects of the quantity of cannabis use and important confounders. METHODS Prospective cohort study with assessments of symptoms, confounders and hospitalizations at baseline, 6 month and 12 month follow up. RESULTS In a representative cohort of 145 male patients with schizophrenia, 68 (46.9%) used cannabis. Mean age at onset of schizophrenia in cannabis using patients was significantly lower than in non-cannabis using patients. No other cross-sectional demographic or clinical differences were observed between users and non-users. In a series of longitudinal analyses, cannabis use was not associated with differences in psychopathology, but relapse in terms of the number of hospitalizations was significantly higher in cannabis using patients compared to non-cannabis using patients. CONCLUSIONS Patients with schizophrenia using cannabis are more frequently hospitalized than non-cannabis using patients but do not differ with respect to psychopathology. Possible explanations for these findings are discussed.
Collapse
Affiliation(s)
- Daniel van Dijk
- General Mental Health Institute Duin en Bosch, Duinenbosch 3, 1901AH, Castricum, The Netherlands.
| | | | | | | | | |
Collapse
|
30
|
Abstract
AbstractSchizophrenia is a disorder characterized by a variety of symptoms, which among others include hallucinations, delusions and passivity experiences. It has been found that individuals with schizophrenia misattribute their own thoughts and actions to an outside agency (source monitoring deficits), which could account for psychotic experiences such as that of hearing voices. In order to explain the source-monitoring deficits as well as psychosis, it has been proposed that mechanisms that enable anticipation and recognition of sensory consequences of one’s own actions are impaired in schizophrenia. Importantly, such mechanisms may require accurate cortical sensory representations such as in the primary somatosensory cortex (S1). The establishment and maintenance of cortical sensory representations has been found to utilize a sleep-related brain rhythm known as spindling. Namely, in the perinatal period in humans and animals, and possibly also thereafter, spontaneous activity in the sensory periphery drives spindle activity in the developing cortical sensory areas, which then contributes to the formation of sensory representations that match bodily features. For example, muscle twitch-spindle sequences during sleep facilitate the formation and maintenance of S1 in accordance with the layout of musculature. This process has been proposed to continue throughout the lifespan and may be particularly important during periods of bodily changes (adolescence, menopause). In schizophrenia, the amount of sleep spindle activity is markedly reduced, which would be expected to result in insufficient cortical sensory representations and have relevance for the relative inability of individuals with schizophrenia to accurately recognize self-initiated actions.
Collapse
|
31
|
Rapp C, Bugra H, Riecher-Rössler A, Tamagni C, Borgwardt S. Effects of cannabis use on human brain structure in psychosis: a systematic review combining in vivo structural neuroimaging and post mortem studies. Curr Pharm Des 2012; 18:5070-80. [PMID: 22716152 PMCID: PMC3474956 DOI: 10.2174/138161212802884861] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/12/2012] [Indexed: 11/22/2022]
Abstract
It is unclear yet whether cannabis use is a moderating or causal factor contributing to grey matter alterations in schizophrenia and the development of psychotic symptoms. We therefore systematically reviewed structural brain imaging and post mortem studies addressing the effects of cannabis use on brain structure in psychosis. Studies with schizophrenia (SCZ) and first episode psychosis (FEP) patients as well as individuals at genetic (GHR) or clinical high risk for psychosis (ARMS) were included. We identified 15 structural magnetic resonance imaging (MRI) (12 cross sectional / 3 longitudinal) and 4 post mortem studies. The total number of subjects encompassed 601 schizophrenia or first episode psychosis patients, 255 individuals at clinical or genetic high risk for psychosis and 397 healthy controls. We found evidence for consistent brain structural abnormalities in cannabinoid 1 (CB1) receptor enhanced brain areas as the cingulate and prefrontal cortices and the cerebellum. As these effects have not consistently been reported in studies examining nonpsychotic and healthy samples, psychosis patients and subjects at risk for psychosis might be particularly vulnerable to brain volume loss due to cannabis exposure.
Collapse
Affiliation(s)
- Charlotte Rapp
- Department of Psychiatry, University of Basel, 4031 Basel, Switzerland
| | - Hilal Bugra
- Department of Psychiatry, University of Basel, 4031 Basel, Switzerland
| | | | - Corinne Tamagni
- Department of Psychiatry, University of Basel, 4031 Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry, University of Basel, 4031 Basel, Switzerland
- Medical Image Analysis Centre, University of Basel, Switzerland
- King’s College London, Department of Psychosis Studies, De Crespigny Park, London SE5 8AF, United Kingdom
| |
Collapse
|