1
|
Cheng Q, Cheung Y, Xu C, Chan EWC, Chan KF, Chen S. Overall mutational scanning unveils the essential active residues for the mechanistic action of MCR-1. Microbiol Res 2025; 291:127982. [PMID: 39608179 DOI: 10.1016/j.micres.2024.127982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Polymyxins, including colistin and polymyxin B, serve as crucial last-resort antibiotics for managing infections caused by carbapenem-resistant Enterobacterales (CRE). However, the rapid spread of the mobilized colistin resistance gene (mcr-1) challenged the efficacy of treatment by polymyxins. The mcr-1 gene encoded a transmembrane phosphoethanolamine (PEA) transferase enzyme, MCR-1. MCR-1 could catalyze the transfer of PEA moiety of phosphatidylethanolamine (PE) to the 1' (or 4')-phosphate group of the lipid A. Despite the determination of several structures of the soluble domain of MCR-1, the structural and biochemical mechanisms of integral MCR-1 remain less understood. In this study, we utilized an alanine scanning mutagenesis approach to systematically investigate the functional attributes of distinct regions within MCR-1. We identified fifteen critical residues that are indispensable for the enzymatic activity of MCR-1 and are pivotal for its ability to confer resistance to colistin. Furthermore, molecular docking of MCR-1 complexed with the phosphoethanolamine (PE) substrate revealed the presence of a channel-shaped cavity, a characteristic feature shared with other phosphoethanolamine transferases. Despite MCR-1 exhibiting a low sequence identity with both MCR homologues and other phosphoethanolamine (PEA) transferases, several conserved sites were identified, including Y97, M105, K333, H395, L477, and H478, suggesting a potentially shared catalytic mechanism among them for modifying LPS-lipid A. Overall, these findings provide a deep understanding of the catalytic mechanism of MCR-1 for colistin resistance. Moreover, these findings provide a robust structural and functional foundation, enabling the rational design of targeted inhibitors and restoring colistin activity against serious infections with carbapenem-resistant Enterobacterales (CRE).
Collapse
Affiliation(s)
- Qipeng Cheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China; State Key Laboratory of Chemical Biology and Drug Discovery, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yanchu Cheung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chen Xu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Kin Fai Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
2
|
Fathy Mohamed Y, Fernandez RC. Programming Bordetella pertussis lipid A to promote adjuvanticity. Microb Cell Fact 2024; 23:250. [PMID: 39272136 PMCID: PMC11401268 DOI: 10.1186/s12934-024-02518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Bordetella pertussis is the causative agent of whooping cough or pertussis. Although both acellular (aP) and whole-cell pertussis (wP) vaccines protect against disease, the wP vaccine, which is highly reactogenic, is better at preventing colonization and transmission. Reactogenicity is mainly attributed to the lipid A moiety of B. pertussis lipooligosaccharide (LOS). Within LOS, lipid A acts as a hydrophobic anchor, engaging with TLR4-MD2 on host immune cells to initiate both MyD88-dependent and TRIF-dependent pathways, thereby influencing adaptive immune responses. Lipid A variants, such as monophosphoryl lipid A (MPLA) can also act as adjuvants. Adjuvants may overcome the shortcomings of aP vaccines. RESULTS This work used lipid A modifying enzymes from other bacteria to produce an MPLA-like adjuvant strain in B. pertussis. We created B. pertussis strains with distinct lipid A modifications, which were validated using MALDI-TOF. We engineered a hexa-acylated monophosphorylated lipid A that markedly decreased human TLR4 activation and activated the TRIF pathway. The modified lipooligosaccharide (LOS) promoted IRF3 phosphorylation and type I interferon production, similar to MPLA responses. We generated three other variants with increased adjuvanticity properties and reduced endotoxicity. Pyrogenicity studies using the Monocyte Activation Test (MAT) revealed that these four lipid A variants significantly decreased the IL-6, a marker for fever, response in peripheral blood mononuclear cells (PBMCs). CONCLUSION These findings pave the way for developing wP vaccines that are possibly less reactogenic and designing adaptable adjuvants for current vaccine formulations, advancing more effective immunization strategies against pertussis.
Collapse
Affiliation(s)
- Yasmine Fathy Mohamed
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, British Columbia, V6T1Z3, Canada
- Department of Microbiology & Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Rachel C Fernandez
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, British Columbia, V6T1Z3, Canada.
| |
Collapse
|
3
|
Loperena-Barber M, Elizalde-Bielsa A, Salvador-Bescós M, Ruiz-Rodríguez P, Pellegrini JM, Renau-Mínguez C, Lancaster R, Zúñiga-Ripa A, Iriarte M, Bengoechea JA, Coscollá M, Gorvel JP, Moriyón I, Conde-Álvarez R. "Phylogenomic insights into brucellaceae: The Pseudochrobactrum algeriensis case". INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105625. [PMID: 38906517 DOI: 10.1016/j.meegid.2024.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
The genus Pseudochrobactrum encompasses free-living bacteria phylogenetically close to Ochrobactrum opportunistic pathogens and to Brucella, facultative intracellular parasites causing brucellosis, a worldwide-extended and grave zoonosis. Recently, Pseudochrobactrum strains were isolated from Brucella natural hosts on Brucella selective media, potentially causing diagnostic confusions. Strikingly, P. algeriensis was isolated from cattle lymph nodes, organs that are inimical to bacteria. Here, we analyse P. algeriensis potential virulence factors in comparison with Ochrobactrum and Brucella. Consistent with genomic analyses, Western-Blot analyses confirmed that P. algeriensis lacks the ability to synthesize the N-formylperosamine O-polysaccharide characteristic of the lipopolysaccharide (LPS) of smooth Brucella core species. However, unlike other Pseudochrobactrum but similar to some early diverging brucellae, P. algeriensis carries genes potentially synthetizing a rhamnose-based O-polysaccharide LPS. Lipid A analysis by MALDI-TOF demonstrated that P. algeriensis LPS bears a lipid A with a reduced pathogen-associated molecular pattern, a trait shared with Ochrobactrum and Brucella that is essential to generate a highly stable outer membrane and to delay immune activation. Also, although not able to multiply intracellularly in macrophages, the analysis of P. algeriensis cell lipid envelope revealed the presence of large amounts of cationic aminolipids, which may account for the extremely high resistance of P. algeriensis to bactericidal peptides and could favor colonization of mucosae and transient survival in Brucella hosts. However, two traits critical in Brucella pathogenicity are either significantly different (T4SS [VirB]) or absent (erythritol catabolic pathway) in P. algeriensis. This work shows that, while diverging in other characteristics, lipidic envelope features relevant in Brucella pathogenicity are conserved in Brucellaceae. The constant presence of these features strongly suggests that reinforcement of the envelope integrity as an adaptive advantage in soil was maintained in Brucella because of the similarity of some environmental challenges, such as the action of cationic peptide antibiotics and host defense peptides. This information adds knowledge about the evolution of Brucellaceae, and also underlines the taxonomical differences of the three genera compared.
Collapse
Affiliation(s)
- Maite Loperena-Barber
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Aitor Elizalde-Bielsa
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Miriam Salvador-Bescós
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Paula Ruiz-Rodríguez
- Institute for Integrative Systems Biology, Universidad de Valencia-CSIC, Valencia, Spain
| | | | - Chantal Renau-Mínguez
- Institute for Integrative Systems Biology, Universidad de Valencia-CSIC, Valencia, Spain
| | - Rebecca Lancaster
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Amaia Zúñiga-Ripa
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Maite Iriarte
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Jose A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Mireia Coscollá
- Institute for Integrative Systems Biology, Universidad de Valencia-CSIC, Valencia, Spain
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, CNRS, INSERM, Aix-Marseille University, Marseille, France
| | - Ignacio Moriyón
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain
| | - Raquel Conde-Álvarez
- Instituto de Investigación Sanitaria de Navarra (IdISNA) and Departamento de Microbiología y Parasitología, Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
4
|
Hofstaedter CE, O’Keefe IP, Met CM, Wu L, Vanderwoude J, Shin S, Diggle SP, Riquelme SA, Rasko DA, Doi Y, Harro JM, Kopp BT, Ernst RK. Pseudomonas aeruginosa Lipid A Structural Variants Induce Altered Immune Responses. Am J Respir Cell Mol Biol 2024; 71:207-218. [PMID: 38656811 PMCID: PMC11299085 DOI: 10.1165/rcmb.2024-0059oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024] Open
Abstract
Pseudomonas aeruginosa causes chronic lung infection in cystic fibrosis (CF), resulting in structural lung damage and progressive pulmonary decline. P. aeruginosa in the CF lung undergoes numerous changes, adapting to host-specific airway pressures while establishing chronic infection. P. aeruginosa undergoes lipid A structural modification during CF chronic infection that is not seen in any other disease state. Lipid A, the membrane anchor of LPS (i.e., endotoxin), comprises the majority of the outer membrane of Gram-negative bacteria and is a potent Toll-like receptor 4 (TLR4) agonist. The structure of P. aeruginosa lipid A is intimately linked with its recognition by TLR4 and subsequent immune response. Prior work has identified P. aeruginosa strains with altered lipid A structures that arise during chronic CF lung infection; however, the impact of the P. aeruginosa lipid A structure on airway disease has not been investigated. Here, we show that P. aeruginosa lipid A lacks PagL-mediated deacylation during human airway infection using a direct-from-sample mass spectrometry approach on human BAL fluid. This structure triggers increased proinflammatory cytokine production by primary human macrophages. Furthermore, alterations in lipid A 2-hydroxylation impact cytokine response in a site-specific manner, independent of CF transmembrane conductance regulator function. It is interesting that there is a CF-specific reduction in IL-8 secretion within the epithelial-cell compartment that only occurs in CF bronchial epithelial cells when infected with CF-adapted P. aeruginosa that lacks PagL-mediated lipid A deacylation. Taken together, we show that P. aeruginosa alters its lipid A structure during acute lung infection and that this lipid A structure induces stronger signaling through TLR4.
Collapse
Affiliation(s)
| | | | | | - Ling Wu
- Department of Microbiology and
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jelly Vanderwoude
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | | | - Stephen P. Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | | | - David A. Rasko
- Institute for Genome Sciences
- Department of Microbiology and Immunology, and
- Center for Pathogen Research, University of Maryland, Baltimore, Baltimore, Maryland
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | | | - Benjamin T. Kopp
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University, Atlanta, Georgia
| | | |
Collapse
|
5
|
Chakraborty A, Alsharqi L, Kostrzewa M, Armstrong-James D, Larrouy-Maumus G. Intact cell lipidomics using the Bruker MBT lipid Xtract assay allows the rapid detection of glycosyl-inositol-phospho-ceramides from Aspergillus fumigatus. Mol Omics 2024; 20:390-396. [PMID: 38623711 PMCID: PMC11228930 DOI: 10.1039/d4mo00030g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
Glycosyl-inositol-phospho-ceramides (GIPCs) or glycosylphosphatidylinositol-anchored fungal polysaccharides are major lipids in plant and fungal plasma membranes and play an important role in stress adaption. However, their analysis remains challenging due to the multiple steps involved in their extraction and purification prior to mass spectrometry analysis. To address this challenge, we report here a novel simplified method to identify GIPCs from Aspergillus fumigatus using the new Bruker MBT lipid Xtract assay. A. fumigatus reference strains and clinical isolates were cultured, harvested, heat-inactivated and suspended in double-distilled water. A fraction of this fungal preparation was then dried in a microtube, mixed with an MBT lipid Xtract matrix (Bruker Daltonik, Germany) and loaded onto a MALDI target plate. Analysis was performed using a Bruker MALDI Biotyper Sirius system in the linear negative ion mode. Mass spectra were scanned from m/z 700 to m/z 2 000. MALDI-TOF MS analysis of cultured fungi showed a clear signature of GIPCs in Aspergillus fumigatus reference strains and clinical isolates. Here, we have demonstrated that routine MALDI-TOF in the linear negative ion mode combined with the MBT lipid Xtract is able to detect Aspergillus fumigatus GIPCs.
Collapse
Affiliation(s)
- Aishani Chakraborty
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Leila Alsharqi
- Centre for Bacterial Resistance Biology, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.
| | | | - Darius Armstrong-James
- Centre for Bacterial Resistance Biology, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.
| | - Gerald Larrouy-Maumus
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
6
|
Dardelle F, Phelip C, Darabi M, Kondakova T, Warnet X, Combret E, Juranville E, Novikov A, Kerzerho J, Caroff M. Diversity, Complexity, and Specificity of Bacterial Lipopolysaccharide (LPS) Structures Impacting Their Detection and Quantification. Int J Mol Sci 2024; 25:3927. [PMID: 38612737 PMCID: PMC11011966 DOI: 10.3390/ijms25073927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Endotoxins are toxic lipopolysaccharides (LPSs), extending from the outer membrane of Gram-negative bacteria and notorious for their toxicity and deleterious effects. The comparison of different LPSs, isolated from various Gram-negative bacteria, shows a global similar architecture corresponding to a glycolipid lipid A moiety, a core oligosaccharide, and outermost long O-chain polysaccharides with molecular weights from 2 to 20 kDa. LPSs display high diversity and specificity among genera and species, and each bacterium contains a unique set of LPS structures, constituting its protective external barrier. Some LPSs are not toxic due to their particular structures. Different, well-characterized, and highly purified LPSs were used in this work to determine endotoxin detection rules and identify their impact on the host. Endotoxin detection is a major task to ensure the safety of human health, especially in the pharma and food sectors. Here, we describe the impact of different LPS structures obtained under different bacterial growth conditions on selective LPS detection methods such as LAL, HEK-blue TLR-4, LC-MS2, and MALDI-MS. In these various assays, LPSs were shown to respond differently, mainly attributable to their lipid A structures, their fatty acid numbers and chain lengths, the presence of phosphate groups, and their possible substitutions.
Collapse
Affiliation(s)
- Flavien Dardelle
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Capucine Phelip
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Maryam Darabi
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Tatiana Kondakova
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Xavier Warnet
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Edyta Combret
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Eugenie Juranville
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Alexey Novikov
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Jerome Kerzerho
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Martine Caroff
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| |
Collapse
|
7
|
Hofstaedter CE, Chandler CE, Met CM, Gillespie JJ, Harro JM, Goodlett DR, Rasko DA, Ernst RK. Divergent Pseudomonas aeruginosa LpxO enzymes perform site-specific lipid A 2-hydroxylation. mBio 2024; 15:e0282323. [PMID: 38131669 PMCID: PMC10865791 DOI: 10.1128/mbio.02823-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Pseudomonas aeruginosa can survive in a myriad of environments, partially due to modifications of its lipid A, the membrane anchor of lipopolysaccharide. We previously demonstrated that divergent late acyltransferase paralogs, HtrB1 and HtrB2, add acyloxyacyl laurate to lipid A 2- and 2'-acyl chains, respectively. The genome of P. aeruginosa also has genes which encode two dioxygenase enzymes, LpxO1 and LpxO2, that individually hydroxylate a specific secondary laurate. LpxO1 acts on the 2'-acyloxyacyl laurate (added by HtrB2), whereas LpxO2 acts on the 2-acyloxyacyl laurate (added by HtrB1) in a site-specific manner. Furthermore, while both enzyme pairs are evolutionarily linked, phylogenomic analysis suggests the LpxO1/HtrB2 enzyme pair as being of ancestral origin, present throughout the Pseudomonas lineage, whereas the LpxO2/HtrB1 enzyme pair likely arose via horizontal gene transfer and has been retained in P. aeruginosa over time. Using a murine pulmonary infection model, we showed that both LpxO1 and LpxO2 enzymes are functional in vivo, as direct analysis of in vivo lipid A structure from bronchoalveolar lavage fluid revealed 2-hydroxylated lipid A. Gene expression analysis reveals increased lpxO2 but unchanged lpxO1 expression in vivo, suggesting differential regulation of these enzymes during infection. We also demonstrate that loss-of-function mutations arise in lpxO1 and lpxO2 during chronic lung infection in people with cystic fibrosis (CF), indicating a potential role for pathogenesis and airway adaptation. Collectively, our study characterizes lipid A 2-hydroxylation during P. aeruginosa airway infection that is regulated by two distinct lipid A dioxygenase enzymes.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen that causes severe infection in hospitalized and chronically ill individuals. During infection, P. aeruginosa undergoes adaptive changes to evade host defenses and therapeutic interventions, increasing mortality and morbidity. Lipid A structural alteration is one such change that P. aeruginosa isolates undergo during chronic lung infection in CF. Investigating genetic drivers of this lipid A structural variation is crucial in understanding P. aeruginosa adaptation during infection. Here, we describe two lipid A dioxygenases with acyl-chain site specificity, each with different evolutionary origins. Further, we show that loss of function in these enzymes occurs in CF clinical isolates, suggesting a potential pathoadaptive phenotype. Studying these bacterial adaptations provides insight into selection pressures of the CF airway on P. aeruginosa phenotypes that persist during chronic infection. Understanding these adaptive changes may ultimately provide clinicians better control over bacterial populations during chronic infection.
Collapse
Affiliation(s)
- Casey E. Hofstaedter
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, Maryland, USA
- Medical Scientist Training Program, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - Courtney E. Chandler
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - Charles M. Met
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Janette M. Harro
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - David R. Goodlett
- Departments of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - David A. Rasko
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland, Baltimore, Baltimore, Maryland, USA
- Center for Pathogen Research, University of Maryland, Baltimore, Baltimore, Maryland, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, Maryland, USA
- Center for Pathogen Research, University of Maryland, Baltimore, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Park S, Choi J, Shin D, Kwon KT, Kim SH, Wi YM, Ko KS. Conversion to colistin susceptibility by tigecycline exposure in colistin-resistant Klebsiella pneumoniae and its implications to combination therapy. Int J Antimicrob Agents 2024; 63:107017. [PMID: 37884228 DOI: 10.1016/j.ijantimicag.2023.107017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
OBJECTIVES This study investigated the effect of tigecycline exposure on susceptibility of colistin-resistant Klebsiella pneumoniae isolates to colistin and explored the possibility of antibiotic combination at low concentrations to treat colistin-resistant K. pneumoniae isolates. METHODS Twelve tigecycline-resistant (TIR) mutants were induced in vitro from wild-type, colistin-resistant, and tigecycline-susceptible K. pneumoniae isolates. Antibiotic susceptibility was determined using the broth microdilution method. The deduced amino acid alterations were identified for genes associated with colistin resistance, lipid A biosynthesis, and tigecycline resistance. Expression levels of genes were compared between wild-type stains and TIR mutants using quantitative real-time polymerase chain reaction (PCR). Lipid A modification was explored using MALDI-TOF mass spectrometry. Time-killing assay was performed to assess the efficiency of combination therapy using low concentrations of colistin and tigecycline. RESULTS All TIR mutants except one were converted to be susceptible to colistin. These TIR mutants had mutations in the ramR gene and increased expression levels of ramA. Three genes associated with lipid A biosynthesis, lpxC, lpxL, and lpxO, were also overexpressed in TIR mutants, although no mutation was observed. Additional polysaccharides found in colistin-resistant, wild-type strains were modified in TIR mutants. Colistin-resistant K. pneumoniae strains were eliminated in vitro by combining tigecycline and colistin at 2 mg/L. In this study, we found that tigecycline exposure resulted in reduced resistance of colistin-resistant K. pneumoniae to colistin. Such an effect was mediated by regulation of lipid A modification involving ramA and lpx genes. CONCLUSION Because of such reduced resistance, a combination of colistin and tigecycline in low concentrations could effectively eradicate colistin-resistant K. pneumoniae strains.
Collapse
Affiliation(s)
- Suyeon Park
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jihyun Choi
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Dongwoo Shin
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ki Tae Kwon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Si-Ho Kim
- Division of Infectious Diseases, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Yu Mi Wi
- Division of Infectious Diseases, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
9
|
Di Lorenzo F, Paparo L, Pisapia L, Oglio F, Pither MD, Cirella R, Nocerino R, Carucci L, Silipo A, de Filippis F, Ercolini D, Molinaro A, Berni Canani R. The chemistry of gut microbiome-derived lipopolysaccharides impacts on the occurrence of food allergy in the pediatric age. Front Mol Biosci 2023; 10:1266293. [PMID: 37900913 PMCID: PMC10606559 DOI: 10.3389/fmolb.2023.1266293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction: Food allergy (FA) in children is a major health concern. A better definition of the pathogenesis of the disease could facilitate effective preventive and therapeutic measures. Gut microbiome alterations could modulate the occurrence of FA, although the mechanisms involved in this phenomenon are poorly characterized. Gut bacteria release signaling byproducts from their cell wall, such as lipopolysaccharides (LPSs), which can act locally and systemically, modulating the immune system function. Methods: In the current study gut microbiome-derived LPS isolated from fecal samples of FA and healthy children was chemically characterized providing insights into the carbohydrate and lipid composition as well as into the LPS macromolecular nature. In addition, by means of a chemical/MALDI-TOF MS and MS/MS approach we elucidated the gut microbiome-derived lipid A mass spectral profile directly on fecal samples. Finally, we evaluated the pro-allergic and pro-tolerogenic potential of these fecal LPS and lipid A by harnessing peripheral blood mononuclear cells from healthy donors. Results: By analyzing fecal samples, we have identified different gut microbiome-derived LPS chemical features comparing FA children and healthy controls. We also have provided evidence on a different immunoregulatory action elicited by LPS on peripheral blood mononuclear cells collected from healthy donors suggesting that LPS from healthy individuals could be able to protect against the occurrence of FA, while LPS from children affected by FA could promote the allergic response. Discussion: Altogether these data highlight the relevance of gut microbiome-derived LPSs as potential biomarkers for FA and as a target of intervention to limit the disease burden.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University Federico II, Naples, Italy
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
| | - Lorella Paparo
- Department of Translational Medical Science, University Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Biotechnologies Research Center, University Federico II, Naples, Italy
- European Laboratory for Investigation of Food Induced Diseases, University Federico II, Naples, Italy
| | - Laura Pisapia
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Franca Oglio
- Department of Translational Medical Science, University Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Biotechnologies Research Center, University Federico II, Naples, Italy
| | | | - Roberta Cirella
- Department of Chemical Sciences, University Federico II, Naples, Italy
| | - Rita Nocerino
- Department of Translational Medical Science, University Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Biotechnologies Research Center, University Federico II, Naples, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Biotechnologies Research Center, University Federico II, Naples, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University Federico II, Naples, Italy
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
| | - Francesca de Filippis
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
- Department of Agriculture, University Federico II, Naples, Italy
| | - Danilo Ercolini
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
- Department of Agriculture, University Federico II, Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University Federico II, Naples, Italy
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
- Department of Chemistry, School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Roberto Berni Canani
- Task Force on Microbiome Studies, University Federico II, Naples, Italy
- Department of Translational Medical Science, University Federico II, Naples, Italy
- ImmunoNutritionLab at CEINGE Biotechnologies Research Center, University Federico II, Naples, Italy
- European Laboratory for Investigation of Food Induced Diseases, University Federico II, Naples, Italy
| |
Collapse
|
10
|
Ye X, Wang J, Xu P, Yang X, Shi Q, Liu G, Bai Z, Zhou C, Ma L. Peptide MSI-1 inhibited MCR-1 and regulated outer membrane vesicles to combat immune evasion of Escherichia coli. Microb Biotechnol 2023; 16:1755-1773. [PMID: 37329166 PMCID: PMC10443334 DOI: 10.1111/1751-7915.14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023] Open
Abstract
Polymyxin resistance is conferred by MCR-1 (mobile colistin resistance 1)-induced lipopolysaccharide (LPS) modification of G- bacteria. However, the peptide MSI-1 exerts potent antimicrobial activity against mcr-1-carrying bacteria. To further investigate the potential role of MCR-1 in improving bacterial virulence and facilitating immune evasion, and the immunomodulatory effect of peptide MSI-1, we first explored outer membrane vesicle (OMV) alterations of mcr-1-carrying bacteria in the presence and absence of sub-MIC MSI-1, and host immune activation during bacterial infection and OMV stimulation. Our results demonstrated that LPS remodelling induced by MCR-1 negatively affected OMV formation and protein cargo by E. coli. In addition, MCR-1 diminished LPS-stimulated pyroptosis but facilitated mitochondrial dysfunction, further aggravating apoptosis in macrophages induced by OMVs of E. coli. Similarly, TLR4-mediated NF-κB activation was markedly alleviated once LPS was modified by MCR-1. However, peptide MSI-1 at the sub-MIC level inhibited the expression of MCR-1, further partly rescuing OMV alteration and attenuation of immune responses in the presence of MCR-1 during both infection and OMV stimulation, which can be exploited for anti-infective therapy.
Collapse
Affiliation(s)
- Xinyue Ye
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Jian Wang
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Pengfei Xu
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Xiaoqian Yang
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Qixue Shi
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Genyan Liu
- Department of Laboratory MedicineFirst Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Zhaoshi Bai
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer ResearchThe Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Changlin Zhou
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Lingman Ma
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| |
Collapse
|
11
|
Chandler CE, Hofstaedter CE, Hazen TH, Rasko DA, Ernst RK. Genomic and Functional Characterization of Longitudinal Pseudomonas aeruginosa Isolates from Young Patients with Cystic Fibrosis. Microbiol Spectr 2023; 11:e0155623. [PMID: 37358436 PMCID: PMC10433850 DOI: 10.1128/spectrum.01556-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
Individuals with cystic fibrosis (CF) suffer from frequent and recurring microbial airway infections. The Gram-negative bacterium Pseudomonas aeruginosa is one of the most common organisms isolated from CF patient airways. P. aeruginosa establishes chronic infections that persist throughout a patient's lifetime and is a major cause of morbidity and mortality. Throughout the course of infection, P. aeruginosa must evolve and adapt from an initial state of early, transient colonization to chronic colonization of the airways. Here, we examined isolates of P. aeruginosa from children under the age of 3 years old with CF to determine genetic adaptations the bacterium undergoes during this early stage of colonization and infection. These isolates were collected when early aggressive antimicrobial therapy was not the standard of care and therefore highlight strain evolution under limited antibiotic pressure. Examination of specific phenotypic adaptations, such as lipid A palmitoylation, antibiotic resistance, and loss of quorum sensing, did not reveal a clear genetic basis for such changes. Additionally, we demonstrate that the geography of patient origin, within the United States or among other countries, does not appear to significantly influence genetic adaptation. In summary, our results support the long-standing model that patients acquire individual isolates of P. aeruginosa that subsequently become hyperadapted to the patient-specific airway environment. This study provides a multipatient genomic analysis of isolates from young CF patients in the United States and contributes data regarding early colonization and adaptation to the growing body of research about P. aeruginosa evolution in the context of CF airway disease. IMPORTANCE Chronic lung infection with Pseudomonas aeruginosa is of major concern for patients with cystic fibrosis (CF). During infection, P. aeruginosa undergoes genomic and functional adaptation to the hyperinflammatory CF airway, resulting in worsening lung function and pulmonary decline. All studies that describe these adaptations use P. aeruginosa obtained from older children or adults during late chronic lung infection; however, children with CF can be infected with P. aeruginosa as early as 3 months of age. Therefore, it is unclear when these genomic and functional adaptations occur over the course of CF lung infection, as access to P. aeruginosa isolates in children during early infection is limited. Here, we present a unique cohort of CF patients who were identified as being infected with P. aeruginosa at an early age prior to aggressive antibiotic therapy. Furthermore, we performed genomic and functional characterization of these isolates to address whether chronic CF P. aeruginosa phenotypes are present during early infection.
Collapse
Affiliation(s)
- Courtney E. Chandler
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Baltimore, Maryland, USA
| | - Casey E. Hofstaedter
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Baltimore, Maryland, USA
- Medical Scientist Training Program, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tracy H. Hazen
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland—Baltimore, Baltimore, Maryland, USA
| | - David A. Rasko
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland—Baltimore, Baltimore, Maryland, USA
- Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Baltimore, Maryland, USA
- Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Frantz R, Gwozdzinski K, Gisch N, Doijad SP, Hudel M, Wille M, Abu Mraheil M, Schwudke D, Imirzalioglu C, Falgenhauer L, Ehrmann M, Chakraborty T. A Single Residue within the MCR-1 Protein Confers Anticipatory Resilience. Microbiol Spectr 2023; 11:e0359222. [PMID: 37071007 PMCID: PMC10269488 DOI: 10.1128/spectrum.03592-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/21/2023] [Indexed: 04/19/2023] Open
Abstract
The envelope stress response (ESR) of Gram-negative enteric bacteria senses fluctuations in nutrient availability and environmental changes to avert damage and promote survival. It has a protective role toward antimicrobials, but direct interactions between ESR components and antibiotic resistance genes have not been demonstrated. Here, we report interactions between a central regulator of ESR viz., the two-component signal transduction system CpxRA (conjugative pilus expression), and the recently described mobile colistin resistance protein (MCR-1). Purified MCR-1 is specifically cleaved within its highly conserved periplasmic bridge element, which links its N-terminal transmembrane domain with the C-terminal active-site periplasmic domain, by the CpxRA-regulated serine endoprotease DegP. Recombinant strains harboring cleavage site mutations in MCR-1 are either protease resistant or degradation susceptible, with widely differing consequences for colistin resistance. Transfer of the gene encoding a degradation-susceptible mutant to strains that lack either DegP or its regulator CpxRA restores expression and colistin resistance. MCR-1 production in Escherichia coli imposes growth restriction in strains lacking either DegP or CpxRA, effects that are reversed by transactive expression of DegP. Excipient allosteric activation of the DegP protease specifically inhibits growth of isolates carrying mcr-1 plasmids. As CpxRA directly senses acidification, growth of strains at moderately low pH dramatically increases both MCR-1-dependent phosphoethanolamine (PEA) modification of lipid A and colistin resistance levels. Strains expressing MCR-1 are also more resistant to antimicrobial peptides and bile acids. Thus, a single residue external to its active site induces ESR activity to confer resilience in MCR-1-expressing strains to commonly encountered environmental stimuli, such as changes in acidity and antimicrobial peptides. Targeted activation of the nonessential protease DegP can lead to the elimination of transferable colistin resistance in Gram-negative bacteria. IMPORTANCE The global presence of transferable mcr genes in a wide range of Gram-negative bacteria from clinical, veterinary, food, and aquaculture environments is disconcerting. Its success as a transmissible resistance factor remains enigmatic, because its expression imposes fitness costs and imparts only moderate levels of colistin resistance. Here, we show that MCR-1 triggers regulatory components of the envelope stress response, a system that senses fluctuations in nutrient availability and environmental changes, to promote bacterial survival in low pH environments. We identify a single residue within a highly conserved structural element of mcr-1 distal to its catalytic site that modulates resistance activity and triggers the ESR. Using mutational analysis, quantitative lipid A profiling and biochemical assays, we determined that growth in low pH environments dramatically increases colistin resistance levels and promotes resistance to bile acids and antimicrobial peptides. We exploited these findings to develop a targeted approach that eliminates mcr-1 and its plasmid carriers.
Collapse
Affiliation(s)
- Renate Frantz
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| | - Konrad Gwozdzinski
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Swapnil Prakash Doijad
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| | - Martina Hudel
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Maria Wille
- Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Mobarak Abu Mraheil
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research, Partner Site: Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Airway Research Center North, Partner Site: Research Center Borstel, Borstel, Germany
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- Hessian University Competence Center for Hospital Hygiene, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| | - Linda Falgenhauer
- Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Giessen, Germany
- Hessian University Competence Center for Hospital Hygiene, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- Hessian University Competence Center for Hospital Hygiene, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| |
Collapse
|
13
|
Ko SY, Kim N, Park SY, Kim SY, Shin M, Lee JC. Acinetobacter baumannii under Acidic Conditions Induces Colistin Resistance through PmrAB Activation and Lipid A Modification. Antibiotics (Basel) 2023; 12:antibiotics12050813. [PMID: 37237716 DOI: 10.3390/antibiotics12050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Colistin is a last-resort antimicrobial agent for treating carbapenem-resistant Acinetobacter baumannii infections. The activation of PmrAB by several environmental signals induces colistin resistance in Gram-negative bacteria. This study investigated the molecular mechanisms of colistin resistance in A. baumannii under acidic conditions using wild-type (WT) A. baumannii 17978, ΔpmrA and ΔpmrB mutants, and pmrA-complemented strains. The pmrA or pmrB deletion did not affect the growth of A. baumannii under acidic or aerobic conditions. A. baumannii under acidic (pH 5.5) and high-iron (1 mM) conditions showed 32- and 8-fold increases in the minimum inhibitory concentrations (MICs) of colistin, respectively. The ΔpmrA and ΔpmrB mutants at pH 5.5 showed a significant decrease in colistin MICs compared to the WT strain at pH 5.5. No difference in colistin MICs was observed between WT and mutant strains under high-iron conditions. The pmrCAB expression significantly increased in the WT strain at pH 5.5 compared to the WT strain at pH 7.0. The pmrC expression significantly decreased in two mutant strains at pH 5.5 compared to the WT strain at pH 5.5. The PmrA protein was expressed in the ΔpmrA strain carrying ppmrA_FLAG plasmids at pH 5.5 but not at pH 7.0. Lipid A modification by the addition of phosphoethanolamine was observed in the WT strain at pH 5.5. In conclusion, this study demonstrated that A. baumannii under acidic conditions induces colistin resistance via the activation of pmrCAB operon and subsequent lipid A modification.
Collapse
Affiliation(s)
- Seo-Yeon Ko
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Nayeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Seong-Yong Park
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Seong-Yeop Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Je-Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
14
|
Polymyxin Resistance and Heteroresistance Are Common in Clinical Isolates of Achromobacter Species and Correlate with Modifications of the Lipid A Moiety of Lipopolysaccharide. Microbiol Spectr 2023; 11:e0372922. [PMID: 36519943 PMCID: PMC9927164 DOI: 10.1128/spectrum.03729-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Achromobacter genus includes opportunistic pathogens that can cause chronic infections in immunocompromised patients, especially in people with cystic fibrosis (CF). Treatment of Achromobacter infections is complicated by antimicrobial resistance. In this study, a collection of Achromobacter clinical isolates, from CF and non-CF sources, was investigated for polymyxin B (PmB) resistance. Additionally, the effect of PmB challenge in a subset of isolates was examined and the presence of PmB-resistant subpopulations within the isolates was described. Further, chemical and mass spectrometry analyses of the lipid A of Achromobacter clinical isolates enabled the determination of the most common structures and showed that PmB challenge was associated with lipid A modifications that included the addition of glucosamine and palmitoylation and the concomitant loss of the free phosphate at the C-1 position. This study demonstrates that lipid A modifications associated with PmB resistance are prevalent in Achromobacter and that subresistant populations displaying the addition of positively charged residues and additional acyl chains to lipid A can be selected for and isolated from PmB-sensitive Achromobacter clinical isolates. IMPORTANCE Achromobacter species can cause chronic and potentially severe infections in immunocompromised patients, especially in those with cystic fibrosis. Bacteria cannot be eradicated due to Achromobacter's intrinsic multidrug resistance. We report that intrinsic resistance to polymyxin B (PmB), a last-resort antimicrobial peptide used to treat infections by multiresistant bacteria, is prevalent in Achromobacter clinical isolates; many isolates also display increased resistance upon PmB challenge. Analysis of the lipopolysaccharide lipid A moiety of several Achromobacter species reveals a penta-acylated lipid A, which in the PmB-resistant isolates was modified by the incorporation of glucosamine residues, an additional acyl chain, loss of phosphates, and hydroxylation of acyl chains, all of which can enhance PmB resistance in other bacteria. We conclude that PmB resistance, particularly in Achromobacter isolates from chronic respiratory infections, is a common phenomenon, and that Achromobacter lipid A displays modifications that may confer increased resistance to polymyxins and potentially other antimicrobial peptides.
Collapse
|
15
|
Doijad SP, Gisch N, Frantz R, Kumbhar BV, Falgenhauer J, Imirzalioglu C, Falgenhauer L, Mischnik A, Rupp J, Behnke M, Buhl M, Eisenbeis S, Gastmeier P, Gölz H, Häcker GA, Käding N, Kern WV, Kola A, Kramme E, Peter S, Rohde AM, Seifert H, Tacconelli E, Vehreschild MJGT, Walker SV, Zweigner J, Schwudke D, Chakraborty T, Thoma N, Weber A, Vavra M, Schuster S, Peyerl-Hoffmann G, Hamprecht A, Proske S, Stelzer Y, Wille J, Lenke D, Bader B, Dinkelacker A, Hölzl F, Kunstle L, Chakraborty T. Resolving colistin resistance and heteroresistance in Enterobacter species. Nat Commun 2023; 14:140. [PMID: 36627272 PMCID: PMC9832134 DOI: 10.1038/s41467-022-35717-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Species within the Enterobacter cloacae complex (ECC) include globally important nosocomial pathogens. A three-year study of ECC in Germany identified Enterobacter xiangfangensis as the most common species (65.5%) detected, a result replicated by examining a global pool of 3246 isolates. Antibiotic resistance profiling revealed widespread resistance and heteroresistance to the antibiotic colistin and detected the mobile colistin resistance (mcr)-9 gene in 19.2% of all isolates. We show that resistance and heteroresistance properties depend on the chromosomal arnBCADTEF gene cassette whose products catalyze transfer of L-Ara4N to lipid A. Using comparative genomics, mutational analysis, and quantitative lipid A profiling we demonstrate that intrinsic lipid A modification levels are genospecies-dependent and governed by allelic variations in phoPQ and mgrB, that encode a two-component sensor-activator system and specific inhibitor peptide. By generating phoPQ chimeras and combining them with mgrB alleles, we show that interactions at the pH-sensing interface of the sensory histidine kinase phoQ dictate arnBCADTEF expression levels. To minimize therapeutic failures, we developed an assay that accurately detects colistin resistance levels for any ECC isolate.
Collapse
Affiliation(s)
- Swapnil Prakash Doijad
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Renate Frantz
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany
| | - Bajarang Vasant Kumbhar
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Vile Parle, Mumbai, India
| | - Jane Falgenhauer
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany
| | - Can Imirzalioglu
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany
| | - Linda Falgenhauer
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany.,Institute of Hygiene and Environmental Medicine, Justus Liebig University, Gießen, Germany
| | - Alexander Mischnik
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Michael Behnke
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Michael Buhl
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology and Hygiene, Tübingen University, Tübingen, Germany.,Division of Infectious Diseases, Department of Internal Medicine I, Tübingen University, Tübingen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Paracelsus Medical University, Klinikum Nürnberg, Nürnberg, Germany
| | - Simone Eisenbeis
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Division of Infectious Diseases, Department of Internal Medicine I, Tübingen University, Tübingen, Germany
| | - Petra Gastmeier
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Hanna Gölz
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute for Medical Microbiology and Hygiene, Albert-Ludwigs-University, Freiburg, Germany
| | - Georg Alexander Häcker
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute for Medical Microbiology and Hygiene, Albert-Ludwigs-University, Freiburg, Germany
| | - Nadja Käding
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Winfried V Kern
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Division of Infectious Diseases, Department of Medicine II, Faculty of Medicine and University Hospital and Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| | - Axel Kola
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Evelyn Kramme
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Silke Peter
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute of Medical Microbiology and Hygiene, Tübingen University, Tübingen, Germany
| | - Anna M Rohde
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin and Berlin Institute of Health, Institute of Hygiene and Environmental Medicine, Berlin, Germany
| | - Harald Seifert
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Evelina Tacconelli
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Division of Infectious Diseases, Department of Internal Medicine I, Tübingen University, Tübingen, Germany
| | - Maria J G T Vehreschild
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Sarah V Walker
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Janine Zweigner
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Dominik Schwudke
- German Center for Infection Research (DZIF), Braunschweig, Germany.,Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Site: Research Center Borstel, Borstel, Germany
| | | | - Trinad Chakraborty
- German Center for Infection Research (DZIF), Braunschweig, Germany. .,Institute of Medical Microbiology, Justus Liebig University, Gießen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dixon B, Ahmed WM, Felton T, Fowler SJ. Molecular phenotyping approaches for the detection and monitoring of carbapenem-resistant Enterobacteriaceae by mass spectrometry. J Mass Spectrom Adv Clin Lab 2022; 26:9-19. [PMID: 36105942 PMCID: PMC9464899 DOI: 10.1016/j.jmsacl.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Breanna Dixon
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, United Kingdom
| | - Waqar M Ahmed
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, United Kingdom
| | - Tim Felton
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
- NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Stephen J Fowler
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
- NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
- Corresponding author at: Education and Research Centre, Wythenshawe Hospital, Manchester M23 9LT, United Kingdom.
| |
Collapse
|
17
|
“Omic” Approaches to Bacteria and Antibiotic Resistance Identification. Int J Mol Sci 2022; 23:ijms23179601. [PMID: 36077000 PMCID: PMC9455953 DOI: 10.3390/ijms23179601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022] Open
Abstract
The quick and accurate identification of microorganisms and the study of resistance to antibiotics is crucial in the economic and industrial fields along with medicine. One of the fastest-growing identification methods is the spectrometric approach consisting in the matrix-assisted laser ionization/desorption using a time-of-flight analyzer (MALDI-TOF MS), which has many advantages over conventional methods for the determination of microorganisms presented. Thanks to the use of a multiomic approach in the MALDI-TOF MS analysis, it is possible to obtain a broad spectrum of data allowing the identification of microorganisms, understanding their interactions and the analysis of antibiotic resistance mechanisms. In addition, the literature data indicate the possibility of a significant reduction in the time of the sample preparation and analysis time, which will enable a faster initiation of the treatment of patients. However, it is still necessary to improve the process of identifying and supplementing the existing databases along with creating new ones. This review summarizes the use of “-omics” approaches in the MALDI TOF MS analysis, including in bacterial identification and antibiotic resistance mechanisms analysis.
Collapse
|
18
|
Pither MD, Sun ML, Speciale I, Silipo A, Zhang YZ, Molinaro A, Di Lorenzo F. Structural determination of the lipid A from the deep-sea bacterium Zunongwangia profunda SM-A87: a small-scale approach. Glycoconj J 2022; 39:565-578. [PMID: 35930130 PMCID: PMC9470727 DOI: 10.1007/s10719-022-10076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 11/10/2022]
Abstract
Zunongwangia profunda SM-A87 is a deep-sea sedimentary bacterium from the phylum Bacteroidetes, representing a new genus of Flavobacteriaceae. It was previously investigated for its capability of yielding high quantities of capsular polysaccharides (CPS) with interesting rheological properties, including high viscosity and tolerance to high salinities and temperatures. However, as a Gram-negative, Z. profunda SM-A87 also expresses lipopolysaccharides (LPS) as the main components of the external leaflet of its outer membrane. Here, we describe the isolation and characterization of the glycolipid part of this LPS, i.e. the lipid A, which was achieved by-passing the extraction procedure of the full LPS and by working on the ethanol precipitation product, which contained both the CPS fraction and bacterial cells. To this aim a dual approach was adopted and all analyses confirmed the isolation of Z. profunda SM-A87 lipid A that turned out to be a blend of species with high levels of heterogeneity both in the acylation and phosphorylation pattern, as well as in the hydrophilic backbone composition. Mono-phosphorylated tetra- and penta-acylated lipid A species were identified and characterized by a high content of branched, odd-numbered, and unsaturated fatty acid chains as well as, for some species, by the presence of a hybrid disaccharide backbone.
Collapse
Affiliation(s)
- Molly Dorothy Pither
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 80126, Naples, Italy
| | - Mei-Ling Sun
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| | - Immacolata Speciale
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 80055, Portici, Naples, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 80126, Naples, Italy
| | - Yu-Zhong Zhang
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, People's Republic of China
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 80126, Naples, Italy
| | - Flaviana Di Lorenzo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 80055, Portici, Naples, Italy.
| |
Collapse
|
19
|
Zik JJ, Yoon SH, Guan Z, Stankeviciute Skidmore G, Gudoor RR, Davies KM, Deutschbauer AM, Goodlett DR, Klein EA, Ryan KR. Caulobacter lipid A is conditionally dispensable in the absence of fur and in the presence of anionic sphingolipids. Cell Rep 2022; 39:110888. [PMID: 35649364 PMCID: PMC9393093 DOI: 10.1016/j.celrep.2022.110888] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/29/2022] [Accepted: 05/06/2022] [Indexed: 01/12/2023] Open
Abstract
Lipid A, the membrane-anchored portion of lipopolysaccharide (LPS), is an essential component of the outer membrane (OM) of nearly all Gram-negative bacteria. Here we identify regulatory and structural factors that together render lipid A nonessential in Caulobacter crescentus. Mutations in the ferric uptake regulator fur allow Caulobacter to survive in the absence of either LpxC, which catalyzes an early step of lipid A synthesis, or CtpA, a tyrosine phosphatase homolog we find is needed for wild-type lipid A structure and abundance. Alterations in Fur-regulated processes, rather than iron status per se, underlie the ability to survive when lipid A synthesis is blocked. Fitness of lipid A-deficient Caulobacter requires an anionic sphingolipid, ceramide phosphoglycerate (CPG), which also mediates sensitivity to the antibiotic colistin. Our results demonstrate that, in an altered regulatory landscape, anionic sphingolipids can support the integrity of a lipid A-deficient OM. Lipid A, the membrane-anchoring segment of lipopolysaccharide, is generally considered to be an essential component of the Gram-negative bacterial outer membrane. Zik et al. show that deletion of the transcriptional regulator fur and synthesis of the anionic sphingolipid ceramide phosphoglycerate enable Caulobacter crescentus to survive without lipid A.
Collapse
Affiliation(s)
- Justin J Zik
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sung Hwan Yoon
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Gabriele Stankeviciute Skidmore
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ridhi R Gudoor
- Molecular Biosciences and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Karen M Davies
- Molecular Biosciences and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Adam M Deutschbauer
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David R Goodlett
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada; University of Victoria-Genome BC Proteomics Centre, Victoria, BC V8Z 7X8, Canada
| | - Eric A Klein
- Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ 08102, USA; Biology Department, Rutgers University-Camden, Camden, NJ 08102, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Kathleen R Ryan
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
20
|
Wong Fok Lung T, Charytonowicz D, Beaumont KG, Shah SS, Sridhar SH, Gorrie CL, Mu A, Hofstaedter CE, Varisco D, McConville TH, Drikic M, Fowler B, Urso A, Shi W, Fucich D, Annavajhala MK, Khan IN, Oussenko I, Francoeur N, Smith ML, Stockwell BR, Lewis IA, Hachani A, Upadhyay Baskota S, Uhlemann AC, Ahn D, Ernst RK, Howden BP, Sebra R, Prince A. Klebsiella pneumoniae induces host metabolic stress that promotes tolerance to pulmonary infection. Cell Metab 2022; 34:761-774.e9. [PMID: 35413274 PMCID: PMC9081115 DOI: 10.1016/j.cmet.2022.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/18/2022] [Accepted: 03/22/2022] [Indexed: 12/21/2022]
Abstract
K. pneumoniae sequence type 258 (Kp ST258) is a major cause of healthcare-associated pneumonia. However, it remains unclear how it causes protracted courses of infection in spite of its expression of immunostimulatory lipopolysaccharide, which should activate a brisk inflammatory response and bacterial clearance. We predicted that the metabolic stress induced by the bacteria in the host cells shapes an immune response that tolerates infection. We combined in situ metabolic imaging and transcriptional analyses to demonstrate that Kp ST258 activates host glutaminolysis and fatty acid oxidation. This response creates an oxidant-rich microenvironment conducive to the accumulation of anti-inflammatory myeloid cells. In this setting, metabolically active Kp ST258 elicits a disease-tolerant immune response. The bacteria, in turn, adapt to airway oxidants by upregulating the type VI secretion system, which is highly conserved across ST258 strains worldwide. Thus, much of the global success of Kp ST258 in hospital settings can be explained by the metabolic activity provoked in the host that promotes disease tolerance.
Collapse
Affiliation(s)
| | - Daniel Charytonowicz
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Shivang S Shah
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Shwetha H Sridhar
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Claire L Gorrie
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Andre Mu
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Casey E Hofstaedter
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - David Varisco
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | | | - Marija Drikic
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada
| | - Brandon Fowler
- Microbiome & Pathogen Genomics Collaborative Center, Columbia University, New York, NY 10032, USA
| | - Andreacarola Urso
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Wei Shi
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Dario Fucich
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Medini K Annavajhala
- Department of Medicine, Columbia University, New York, NY 10032, USA; Microbiome & Pathogen Genomics Collaborative Center, Columbia University, New York, NY 10032, USA
| | - Ibrahim N Khan
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Irina Oussenko
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Nancy Francoeur
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Melissa L Smith
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Ian A Lewis
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | | | - Anne-Catrin Uhlemann
- Department of Medicine, Columbia University, New York, NY 10032, USA; Microbiome & Pathogen Genomics Collaborative Center, Columbia University, New York, NY 10032, USA
| | - Danielle Ahn
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Mt. Sinai Icahn School of Medicine, New York, NY 10029, USA; Sema4: A Mount Sinai Venture, Stamford, CT 06902, USA
| | - Alice Prince
- Department of Pediatrics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
21
|
Gerster T, Wröbel M, Hofstaedter CE, Schwudke D, Ernst RK, Ranf S, Gisch N. Remodeling of Lipid A in Pseudomonas syringae pv. phaseolicola In Vitro. Int J Mol Sci 2022; 23:1996. [PMID: 35216122 PMCID: PMC8876380 DOI: 10.3390/ijms23041996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas species infect a variety of organisms, including mammals and plants. Mammalian pathogens of the Pseudomonas family modify their lipid A during host entry to evade immune responses and to create an effective barrier against different environments, for example by removal of primary acyl chains, addition of phosphoethanolamine (P-EtN) to primary phosphates, and hydroxylation of secondary acyl chains. For Pseudomonas syringae pv. phaseolicola (Pph) 1448A, an economically important pathogen of beans, we observed similar lipid A modifications by mass spectrometric analysis. Therefore, we investigated predicted proteomes of various plant-associated Pseudomonas spp. for putative lipid A-modifying proteins using the well-studied mammalian pathogen Pseudomonas aeruginosa as a reference. We generated isogenic mutant strains of candidate genes and analyzed their lipid A. We show that the function of PagL, LpxO, and EptA is generally conserved in Pph 1448A. PagL-mediated de-acylation occurs at the distal glucosamine, whereas LpxO hydroxylates the secondary acyl chain on the distal glucosamine. The addition of P-EtN catalyzed by EptA occurs at both phosphates of lipid A. Our study characterizes lipid A modifications in vitro and provides a useful set of mutant strains relevant for further functional studies on lipid A modifications in Pph 1448A.
Collapse
Affiliation(s)
- Tim Gerster
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising-Weihenstephan, Germany;
| | - Michelle Wröbel
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany; (M.W.); (D.S.)
| | - Casey E. Hofstaedter
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (C.E.H.); (R.K.E.)
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany; (M.W.); (D.S.)
- German Center for Infection Research (DZIF), Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
- Airway Research Center North, Member of the German Center for Lung Research (DZL), Site Research Center Borstel, 23845 Borstel, Germany
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (C.E.H.); (R.K.E.)
| | - Stefanie Ranf
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising-Weihenstephan, Germany;
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany; (M.W.); (D.S.)
| |
Collapse
|
22
|
Yoon EJ, Jeong SH. MALDI-TOF Mass Spectrometry Technology as a Tool for the Rapid Diagnosis of Antimicrobial Resistance in Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10080982. [PMID: 34439032 PMCID: PMC8388893 DOI: 10.3390/antibiotics10080982] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
Species identification by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a routine diagnostic process for infectious diseases in current clinical settings. The rapid, low-cost, and simple to conduct methodology is expanding its application in clinical microbiology laboratories to diagnose the antimicrobial resistance (AMR) in microorganisms. Primarily, antimicrobial susceptibility testing is able to be carried out either by comparing the area under curve of MALDI spectra of bacteria grown in media with antimicrobial drugs or by identifying the shift peaks of bacteria grown in media including 13C isotope with antimicrobial drugs. Secondly, the antimicrobial resistance is able to be determined through identifying (i) the antimicrobial-resistant clonal groups based on the fingerprints of the clone, (ii) the shift peak of the modified antimicrobial drug, which is inactivated by the resistance determinant, (iii) the shift peak of the modified antimicrobial target, (iv) the peak specific for the antimicrobial determinant, and (v) the biomarkers that are coproduced proteins with AMR determinants. This review aims to present the current usage of the MALDI-TOF MS technique for diagnosing antimicrobial resistance in bacteria, varied approaches for AMR diagnostics using the methodology, and the future applications of the methods for the accurate and rapid identification of AMR in infection-causing bacterial pathogens.
Collapse
Affiliation(s)
- Eun-Jeong Yoon
- Division of Antimicrobial Resistance, Center for Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Korea;
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
- Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence:
| |
Collapse
|
23
|
Larrouy-Maumus G. Shotgun Bacterial Lipid A Analysis Using Routine MALDI-TOF Mass Spectrometry. Methods Mol Biol 2021; 2306:275-283. [PMID: 33954953 DOI: 10.1007/978-1-0716-1410-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Detection of bacterial lipids and particularly the lipid A, the lipid anchor of the lipopolysaccharide, can be very challenging and requires a certain level of expertise. Here, this chapter describes a straightforward and simple method for the analysis of bacterial lipid A. In addition, such approach, lipid fingerprint, has the potential to be applied to other bacteria such as mycobacteria.
Collapse
Affiliation(s)
- Gérald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK.
| |
Collapse
|
24
|
Loss of RND-type multidrug efflux pumps triggers iron starvation and lipid A modifications in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2021; 65:e0059221. [PMID: 34252310 DOI: 10.1128/aac.00592-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transporters belonging to the Resistance-Nodulation-Division (RND) superfamily of proteins are invariably present in the genomes of Gram-negative bacteria and are largely responsible for the intrinsic antibiotic resistance of these organisms. The number of genes encoding RND transporters per genome vary from one to sixteen and correlates with environmental versatilities of bacterial species. Pseudomonas aeruginosa PAO1 strain, a ubiquitous nosocomial pathogen, possesses twelve RND pumps, which are implicated in development of clinical multidrug resistance and known to contribute to virulence, quorum sensing and many other physiological functions. In this study, we analyzed how P. aeruginosa physiology adapts to the lack of RND-mediated efflux activities. A combination of transcriptomics, metabolomics, genetic and analytical approaches showed that the P. aeruginosa PΔ6 strain lacking six best characterized RND pumps activates a specific adaptation response that involves significant changes in abundance and activities of several transport systems, quorum sensing, iron acquisition and lipid A modifications. Our results demonstrate that these cells accumulate large quantities of pseudomonas quorum signal (PQS), which triggers iron starvation and activation of siderophore biosynthesis and acquisition pathways. The accumulation of iron in turn activates lipid A modification and membrane protection pathways. A transcriptionally regulated RND pump MuxABC-OpmB contributes to these transformations by controlling concentrations of coumarins. Our results suggest that these changes reduce the permeability barrier of the outer membrane and are needed to protect the cell envelope of efflux-deficient P. aeruginosa.
Collapse
|
25
|
Jackie J, Chua CK, Chong DC, Lim SY, Li SFY. Rapid and Sensitive Direct Detection of Endotoxins by Pyrolysis-Gas Chromatography-Mass Spectrometry. ACS OMEGA 2021; 6:15192-15198. [PMID: 34151098 PMCID: PMC8210429 DOI: 10.1021/acsomega.1c01446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
The capability of pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) for the direct analysis of endotoxins is demonstrated in this research article using the lipopolysaccharides of Pseudomonas aeruginosa 10. Analytical methods based on evolved gas analysis-MS, single-shot (SS) Py-GC-MS, and multishot heart cut Py-GC-MS were investigated. Among the various methods developed, the SS Py-GC-MS method shows superior potential for identifying bacterial endotoxins effectively through their biomarkers. The results obtained were validated with conventional mass spectral analysis after hydrolysis. The method was also evaluated for its robustness based on quality control criteria indicated by the U.S. EPA Method 8270D. When applied onto endotoxins of different Gram-negative bacteria, this method produced vastly distinct pyrograms. The results show that rapid and sensitive direct detection of endotoxins is possible with the Py-GC-MS method developed.
Collapse
Affiliation(s)
- Jackie Jackie
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Shimadzu
(Asia Pacific) Pte Ltd, 79 Science Park Drive, #02-01/08 Cintech IV Science Park 1, Singapore 118264, Singapore
| | - Chun Kiang Chua
- Shimadzu
(Asia Pacific) Pte Ltd, 79 Science Park Drive, #02-01/08 Cintech IV Science Park 1, Singapore 118264, Singapore
| | - Douglas Chiang
Yon Chong
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Si Ying Lim
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- NUS
Environmental Research Institute, National
University of Singapore, T-Lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Sam Fong Yau Li
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- NUS
Environmental Research Institute, National
University of Singapore, T-Lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
26
|
Ahn D, Bhushan G, McConville TH, Annavajhala MK, Soni RK, Wong Fok Lung T, Hofstaedter CE, Shah SS, Chong AM, Castano VG, Ernst RK, Uhlemann AC, Prince A. An acquired acyltransferase promotes Klebsiella pneumoniae ST258 respiratory infection. Cell Rep 2021; 35:109196. [PMID: 34077733 PMCID: PMC8283688 DOI: 10.1016/j.celrep.2021.109196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/12/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Klebsiella pneumoniae ST258 is a human pathogen associated with poor outcomes worldwide. We identify a member of the acyltransferase superfamily 3 (atf3), enriched within the ST258 clade, that provides a major competitive advantage for the proliferation of these organisms in vivo. Comparison of a wild-type ST258 strain (KP35) and a Δatf3 isogenic mutant generated by CRISPR-Cas9 targeting reveals greater NADH:ubiquinone oxidoreductase transcription and ATP generation, fueled by increased glycolysis. The acquisition of atf3 induces changes in the bacterial acetylome, promoting lysine acetylation of multiple proteins involved in central metabolism, specifically Zwf (glucose-6 phosphate dehydrogenase). The atf3-mediated metabolic boost leads to greater consumption of glucose in the host airway and increased bacterial burden in the lung, independent of cytokine levels and immune cell recruitment. Acquisition of this acyltransferase enhances fitness of a K. pneumoniae ST258 isolate and may contribute to the success of this clonal complex as a healthcare-associated pathogen.
Collapse
Affiliation(s)
- Danielle Ahn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Gitanjali Bhushan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Thomas H McConville
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Medini K Annavajhala
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tania Wong Fok Lung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Casey E Hofstaedter
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Shivang S Shah
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexander M Chong
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Victor G Castano
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Anne-Catrin Uhlemann
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alice Prince
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
27
|
Gauthier AE, Chandler CE, Poli V, Gardner FM, Tekiau A, Smith R, Bonham KS, Cordes EE, Shank TM, Zanoni I, Goodlett DR, Biller SJ, Ernst RK, Rotjan RD, Kagan JC. Deep-sea microbes as tools to refine the rules of innate immune pattern recognition. Sci Immunol 2021; 6:eabe0531. [PMID: 33712473 PMCID: PMC8367048 DOI: 10.1126/sciimmunol.abe0531] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/11/2021] [Indexed: 01/04/2023]
Abstract
The assumption of near-universal bacterial detection by pattern recognition receptors is a foundation of immunology. The limits of this pattern recognition concept, however, remain undefined. As a test of this hypothesis, we determined whether mammalian cells can recognize bacteria that they have never had the natural opportunity to encounter. These bacteria were cultivated from the deep Pacific Ocean, where the genus Moritella was identified as a common constituent of the culturable microbiota. Most deep-sea bacteria contained cell wall lipopolysaccharide (LPS) structures that were expected to be immunostimulatory, and some deep-sea bacteria activated inflammatory responses from mammalian LPS receptors. However, LPS receptors were unable to detect 80% of deep-sea bacteria examined, with LPS acyl chain length being identified as a potential determinant of immunosilence. The inability of immune receptors to detect most bacteria from a different ecosystem suggests that pattern recognition strategies may be defined locally, not globally.
Collapse
Affiliation(s)
- Anna E Gauthier
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Program in Virology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Courtney E Chandler
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Valentina Poli
- Harvard Medical School, and Boston Children's Hospital, Division of Immunology, Division of Gastroenterology, Boston, MA 02115, USA
| | - Francesca M Gardner
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | | | - Richard Smith
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Kevin S Bonham
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481, USA
| | - Erik E Cordes
- Department of Biology, Temple University, 1900 N. 12th St., Philadelphia, PA 19122, USA
| | - Timothy M Shank
- Biology Department, MS33, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Ivan Zanoni
- Harvard Medical School, and Boston Children's Hospital, Division of Immunology, Division of Gastroenterology, Boston, MA 02115, USA
| | - David R Goodlett
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Steven J Biller
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Randi D Rotjan
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA.
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Solntceva V, Kostrzewa M, Larrouy-Maumus G. Detection of Species-Specific Lipids by Routine MALDI TOF Mass Spectrometry to Unlock the Challenges of Microbial Identification and Antimicrobial Susceptibility Testing. Front Cell Infect Microbiol 2021; 10:621452. [PMID: 33634037 PMCID: PMC7902069 DOI: 10.3389/fcimb.2020.621452] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
MALDI-TOF mass spectrometry has revolutionized clinical microbiology diagnostics by delivering accurate, fast, and reliable identification of microorganisms. It is conventionally based on the detection of intracellular molecules, mainly ribosomal proteins, for identification at the species-level and/or genus-level. Nevertheless, for some microorganisms (e.g., for mycobacteria) extensive protocols are necessary in order to extract intracellular proteins, and in some cases a protein-based approach cannot provide sufficient evidence to accurately identify the microorganisms within the same genus (e.g., Shigella sp. vs E. coli and the species of the M. tuberculosis complex). Consequently lipids, along with proteins are also molecules of interest. Lipids are ubiquitous, but their structural diversity delivers complementary information to the conventional protein-based clinical microbiology matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) based approaches currently used. Lipid modifications, such as the ones found on lipid A related to polymyxin resistance in Gram-negative pathogens (e.g., phosphoethanolamine and aminoarabinose), not only play a role in the detection of microorganisms by routine MALDI-TOF mass spectrometry but can also be used as a read-out of drug susceptibility. In this review, we will demonstrate that in combination with proteins, lipids are a game-changer in both the rapid detection of pathogens and the determination of their drug susceptibility using routine MALDI-TOF mass spectrometry systems.
Collapse
Affiliation(s)
- Vera Solntceva
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | | | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
Colistin Heteroresistance Is Largely Undetected among Carbapenem-Resistant Enterobacterales in the United States. mBio 2021; 12:mBio.02881-20. [PMID: 33500343 PMCID: PMC7858057 DOI: 10.1128/mbio.02881-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heteroresistance is an underappreciated phenomenon that may be the cause of some unexplained antibiotic treatment failures. Misclassification of heteroresistant isolates as susceptible may lead to inappropriate therapy. Heteroresistance is a form of antibiotic resistance where a bacterial strain is comprised of a minor resistant subpopulation and a majority susceptible subpopulation. We showed previously that colistin heteroresistance can mediate the failure of colistin therapy in an in vivo infection model, even for isolates designated susceptible by clinical diagnostics. We sought to characterize the extent of colistin heteroresistance among the highly drug-resistant carbapenem-resistant Enterobacterales (CRE). We screened 408 isolates for colistin heteroresistance. These isolates were collected between 2012 and 2015 in eight U.S. states as part of active surveillance for CRE. Colistin heteroresistance was detected in 10.1% (41/408) of isolates, and it was more common than conventional homogenous resistance (7.1%, 29/408). Most (93.2%, 38/41) of these heteroresistant isolates were classified as colistin susceptible by standard clinical diagnostic testing. The frequency of colistin heteroresistance was greatest in 2015, the last year of the study. This was especially true among Enterobacter isolates, of which specific species had the highest rates of heteroresistance. Among Klebsiella pneumoniae isolates, which were the majority of isolates tested, there was a closely related cluster of colistin-heteroresistant ST-258 isolates found mostly in Georgia. However, cladistic analysis revealed that, overall, there was significant diversity in the genetic backgrounds of heteroresistant K. pneumoniae isolates. These findings suggest that due to being largely undetected in the clinic, colistin heteroresistance among CRE is underappreciated in the United States.
Collapse
|
30
|
Colistin Dependence in Extensively Drug-Resistant Acinetobacter baumannii Strain Is Associated with IS Ajo2 and IS Aba13 Insertions and Multiple Cellular Responses. Int J Mol Sci 2021; 22:ijms22020576. [PMID: 33430070 PMCID: PMC7827689 DOI: 10.3390/ijms22020576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
The nosocomial opportunistic Gram-negative bacterial pathogen Acinetobacter baumannii is resistant to multiple antimicrobial agents and an emerging global health problem. The polymyxin antibiotic colistin, targeting the negatively charged lipid A component of the lipopolysaccharide on the bacterial cell surface, is often considered as the last-resort treatment, but resistance to colistin is unfortunately increasing worldwide. Notably, colistin-susceptible A. baumannii can also develop a colistin dependence after exposure to this drug in vitro. Colistin dependence might represent a stepping stone to resistance also in vivo. However, the mechanisms are far from clear. To address this issue, we combined proteogenomics, high-resolution microscopy, and lipid profiling to characterize and compare A. baumannii colistin-susceptible clinical isolate (Ab-S) of to its colistin-dependent subpopulation (Ab-D) obtained after subsequent passages in moderate colistin concentrations. Incidentally, in the colistin-dependent subpopulation the lpxA gene was disrupted by insertion of ISAjo2, the lipid A biosynthesis terminated, and Ab-D cells displayed a lipooligosaccharide (LOS)-deficient phenotype. Moreover, both mlaD and pldA genes were perturbed by insertions of ISAjo2 and ISAba13, and LOS-deficient bacteria displayed a capsule with decreased thickness as well as other surface imperfections. The major changes in relative protein abundance levels were detected in type 6 secretion system (T6SS) components, the resistance-nodulation-division (RND)-type efflux pumps, and in proteins involved in maintenance of outer membrane asymmetry. These findings suggest that colistin dependence in A. baumannii involves an ensemble of mechanisms seen in resistance development and accompanied by complex cellular events related to insertional sequences (ISs)-triggered LOS-deficiency. To our knowledge, this is the first study demonstrating the involvement of ISAjo2 and ISAba13 IS elements in the modulation of the lipid A biosynthesis and associated development of dependence on colistin.
Collapse
|
31
|
Evolution of Colistin Resistance in the Klebsiella pneumoniae Complex Follows Multiple Evolutionary Trajectories with Variable Effects on Fitness and Virulence Characteristics. Antimicrob Agents Chemother 2020; 65:AAC.01958-20. [PMID: 33139278 DOI: 10.1128/aac.01958-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022] Open
Abstract
The increasing prevalence of multidrug-resistant Klebsiella pneumoniae has led to a resurgence in the use of colistin as a last-resort drug. Colistin is a cationic antibiotic that selectively acts on Gram-negative bacteria through electrostatic interactions with anionic phosphate groups of the lipid A moiety of lipopolysaccharides (LPSs). Colistin resistance in K. pneumoniae is mediated through loss of these phosphate groups, their modification by cationic groups, and by the hydroxylation of acyl groups of lipid A. Here, we study the in vitro evolutionary trajectories toward colistin resistance in four clinical K. pneumoniae complex strains and their impact on fitness and virulence characteristics. Through population sequencing during in vitro evolution, we found that colistin resistance develops through a combination of single nucleotide polymorphisms, insertions and deletions, and the integration of insertion sequence elements, affecting genes associated with LPS biosynthesis and modification and capsule structures. Colistin resistance decreased the maximum growth rate of one K. pneumoniae sensu stricto strain, but not those of the other three K. pneumoniae complex strains. Colistin-resistant strains had lipid A modified through hydroxylation, palmitoylation, and l-Ara4N addition. K. pneumoniae sensu stricto strains exhibited cross-resistance to LL-37, in contrast to the Klebsiella variicola subsp. variicola strain. Virulence, as determined in a Caenorhabditis elegans survival assay, was increased in two colistin-resistant strains. Our study suggests that nosocomial K. pneumoniae complex strains can rapidly develop colistin resistance through diverse evolutionary trajectories upon exposure to colistin. This effectively shortens the life span of this last-resort antibiotic for the treatment of infections with multidrug-resistant Klebsiella.
Collapse
|
32
|
Sorensen M, Chandler CE, Gardner FM, Ramadan S, Khot PD, Leung LM, Farrance CE, Goodlett DR, Ernst RK, Nilsson E. Rapid microbial identification and colistin resistance detection via MALDI-TOF MS using a novel on-target extraction of membrane lipids. Sci Rep 2020; 10:21536. [PMID: 33299017 PMCID: PMC7725828 DOI: 10.1038/s41598-020-78401-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
Rapid infection diagnosis is critical to improving patient treatment and outcome. Recent studies have shown microbial lipids to be sensitive and selective biomarkers for identifying bacterial and fungal species and antimicrobial resistance. Practical procedures for microbial lipid biomarker analysis will therefore improve patient outcomes and antimicrobial stewardship. However, current lipid extraction methods require significant hands-on time and are thus not suited for direct adoption as a clinical assay for microbial identification. Here, we have developed a method for lipid extraction directly on the surface of stainless-steel matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) plates, termed fast lipid analysis technique or FLAT, which facilitates the identification of bacterial and fungal species using a sub-60-minute workflow. Additionally, our method detects lipid A modifications in Gram-negative bacteria that are associated with antimicrobial resistance, including to colistin.
Collapse
Affiliation(s)
| | - Courtney E Chandler
- Pataigin, LLC, Seattle, WA, USA
- University of Maryland, Baltimore, Baltimore, MD, 21201, USA
- Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Francesca M Gardner
- Pataigin, LLC, Seattle, WA, USA
- University of Maryland, Baltimore, Baltimore, MD, 21201, USA
| | | | | | - Lisa M Leung
- Maryland Department of Health and Mental Hygiene, Baltimore, MD, 21205, USA
- U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | | | - David R Goodlett
- University of Maryland, Baltimore, Baltimore, MD, 21201, USA
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdańsk, Poland
| | - Robert K Ernst
- University of Maryland, Baltimore, Baltimore, MD, 21201, USA.
| | | |
Collapse
|
33
|
Leus IV, Adamiak J, Trinh AN, Smith RD, Smith L, Richardson S, Ernst RK, Zgurskaya HI. Inactivation of AdeABC and AdeIJK efflux pumps elicits specific nonoverlapping transcriptional and phenotypic responses in Acinetobacter baumannii. Mol Microbiol 2020; 114:1049-1065. [PMID: 32858760 DOI: 10.1111/mmi.14594] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Indexed: 12/24/2022]
Abstract
Multidrug resistant (MDR) strains of Acinetobacter baumannii present a serious clinical challenge. The development of antibiotic resistance in this species is enabled by efflux pumps of the Resistance-Nodulation-Division (RND) superfamily of proteins creating an efficient permeability barrier for antibiotics. At least three RND pumps, AdeABC, AdeIJK, and AdeFGH are encoded in the A. baumannii genome and are reported to contribute to antibiotic resistance in clinical isolates. In this study, we analyzed the contributions of AdeABC and AdeIJK in antibiotic resistance and growth physiology of the two MDR strains, AYE and AB5075. We found that not only the two pumps have nonoverlapping substrate specificities, their inactivation leads to specific nonoverlapping changes in gene expression as determined by RNA sequencing and confirmed by gene knockouts and growth phenotypes. Our results suggest that inactivation of AdeIJK elicits broader changes in the abundances of mRNAs and this response is modified in the absence of AdeB. In contrast, inactivation of AdeB leads to a focused cellular response, which is not sensitive to the activity of AdeIJK. We identified additional efflux pumps and transcriptional regulators that contribute to MDR phenotype of clinical A. baumannii isolates.
Collapse
Affiliation(s)
- Inga V Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Justyna Adamiak
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Anhthu N Trinh
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Richard D Smith
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Lauren Smith
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Sophie Richardson
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
34
|
Saromi K, England P, Tang W, Kostrzewa M, Corran A, Woscholski R, Larrouy-Maumus G. Rapid glycosyl-inositol-phospho-ceramide fingerprint from filamentous fungal pathogens using the MALDI Biotyper Sirius system. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8904. [PMID: 32700347 DOI: 10.1002/rcm.8904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Glycosyl-inositol-phospho-ceramides (GIPCs) or glycosylphosphatidylinositol-anchored fungal polysaccharides are known to be major lipids in plant and fungal plasma membranes and to play an important role in stress adaption. However, their analysis remains challenging due to the several steps involved for their extractions and purifications prior to mass spectrometric analysis. To address this challenge, we developed a rapid and sensitive method to identify GIPCs from the four common fungal plant pathogens Botrytis cinerea, Fusarium graminearium, Neurospora crassa and Ustilago maydis. METHODS Fungal plant pathogens were cultured, harvested, heat-inactivated and washed three times with double-distilled water. Intact fungi were deposited on a matrix-assisted laser desorption ionization (MALDI) target plate, mixed with the matrix consisting of a 9:1 mixture of 2,5-dihydroxybenzoic acid and 2-hydroxy-5-methoxybenzoic acid solubilized at 10 mg/mL in chloroform-methanol (9:1 v/v) and analyzed using a Bruker MALDI Biotyper Sirius system in the linear negative ion mode. Mass spectra were acquired from m/z 700 to 2000. RESULTS MALDI time-of-flight (TOF) mass spectrometric analysis of cultured fungi showed clear signature of GIPCs in B. cinerea, F. graminearium, N. crassa and U. maydis. CONCLUSIONS We have demonstrated that routine MALDI-TOF in the linear negative ion mode combined with an apolar solvent system to solubilize the matrix is applicable to the detection of filamentous fungal GIPCs.
Collapse
Affiliation(s)
- Kofo Saromi
- Department of Chemistry, Faculty of Natural Sciences and Institute of Chemical Biology (ICB), Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Philippa England
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Wenhao Tang
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
| | | | - Andy Corran
- Syngenta Group, Bioscience, Jealott's Hill Research Station, Bracknell RG42 6EY, UK
| | - Rudiger Woscholski
- Department of Chemistry, Faculty of Natural Sciences and Institute of Chemical Biology (ICB), Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
35
|
Hassan HM, Fadel MA, Soliman MA. Evaluation of a modified method of extraction, purification, and characterization of lipopolysaccharide (O antigen) from Salmonella Typhimurium. Vet World 2020; 13:2338-2345. [PMID: 33363324 PMCID: PMC7750214 DOI: 10.14202/vetworld.2020.2338-2345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/23/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND AIM Lipopolysaccharide (LPS) is an integral part of the outer cell membrane complex of Gram-negative bacteria. It plays an important role in the induction and stimulation of the immune system. Various LPS purification protocols have been developed. However, analysis of their efficacy is limited by contamination during downstream applications or the public health hazard of LPS. The aim of this study was to evaluate a modified method for extracting LPS as well as assess the purity of the extracted LPS by high-performance liquid chromatography (HPLC) analysis. Further, we evaluated its immunopotentiating function by measuring the relative RNA expression levels of splenic immune-related genes such as interleukin 1β (IL-1β) and interferon-γ (IFN-γ), after intramuscular injection of increasing concentrations of the extracted LPS in specific pathogen-free (SPF) chick. MATERIALS AND METHODS Isolation, identification, and serotyping of Salmonella Typhimurium were performed using chicken flocks. We then performed molecular typing of Salmonella isolates using conventional polymerase chain reaction (PCR). A new protocol for purification of LPS from Salmonella isolate (S. Typhimurium) was conducted. HPLC analysis of the extracted LPS in the current study was compared to existing methods. An in vivo study was performed to evaluate the ability of LPS to induce an immune response by measuring relative IFN-γ and IL-1β gene expression after injecting increasing concentrations of the extracted LPS into SPF chicks. RESULTS Isolation and serotyping revealed that Salmonella enterica was of the serovar Typhimurium. Confirmation was conducted by molecular typing through conventional PCR. Fractionation of the LPS extract by HPLC revealed a high degree of purity comparable with standard commercial LPS. These results demonstrate the high purity of extracted LPS based on our modified method using propanol and sodium hydroxide mixture. Intramuscular injection of the extracted LPS in 22 day-old SPF chicks, compared to the negative control, revealed significant upregulation of IFN-γ and slight downregulation of IL-1β. CONCLUSION The new modified method can be used for high purity LPS extraction and demonstrates effective immunopotentiating activity.
Collapse
Affiliation(s)
- Heba M. Hassan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center ARC, Dokki, Giza, Egypt
| | - Mai A. Fadel
- Pharmacology and Pyrogen Unit, Department of Chemistry, Toxicology and Food Deficiency, Animal Health Research Institute, Agriculture Research Center, Dokki, Giza, Egypt
| | - Mohamed A. Soliman
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center ARC, Dokki, Giza, Egypt
| |
Collapse
|
36
|
Yang H, Chandler CE, Jackson SN, Woods AS, Goodlett DR, Ernst RK, Scott AJ. On-Tissue Derivatization of Lipopolysaccharide for Detection of Lipid A Using MALDI-MSI. Anal Chem 2020; 92:13667-13671. [PMID: 32902263 DOI: 10.1021/acs.analchem.0c02566] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We developed a method to directly detect and map the Gram-negative bacterial virulence factor lipid A derived from lipopolysaccharide (LPS) by coupling acid hydrolysis with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). As the structure of lipid A (endotoxin) determines the innate immune outcome during infection, the ability to map its location within an infected organ or animal is needed to understand localized inflammatory responses that results during host-pathogen interactions. We previously demonstrated detection of free lipid A from infected tissue; however detection of lipid A derived from intact (smooth) LPS from host-pathogen MSI studies, proved elusive. Here, we detected LPS-derived lipid A from the Gram-negative pathogens, Escherichia coli (Ec, m/z 1797) and Pseudomonas aeruginosa (Pa, m/z 1446) using on-tissue acid hydrolysis to cleave the glycosidic linkage between the polysaccharide (core and O-antigen) and lipid A moieties of LPS. Using accurate mass methods, the ion corresponding to the major Ec and Pa lipid A species (m/z 1797 and 1446, respectively) were unambiguously discriminated from complex tissue substrates. Further, we evaluated potential delocalization and signal loss of other tissue lipids and found no evidence for either, making this LPS-to-Lipid A-MSI (LLA-MSI) method, compatible with simultaneous host-pathogen lipid imaging following acid hydrolysis. This spatially sensitive technique is the first step in mapping host-influenced de novo lipid A modifications, such as those associated with antimicrobial resistance phenotypes, during Gram-negative bacterial infection and will advance our understanding of the host-pathogen interface.
Collapse
Affiliation(s)
- Hyojik Yang
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, United States
| | - Courtney E Chandler
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, United States
| | - Shelley N Jackson
- Structural Biology Core, NIDA IRP, NIH, 333 Cassell Drive, Room 1120, Baltimore, Maryland 21224, United States
| | - Amina S Woods
- Structural Biology Core, NIDA IRP, NIH, 333 Cassell Drive, Room 1120, Baltimore, Maryland 21224, United States.,Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine. Baltimore, Maryland 21205, United States
| | - David R Goodlett
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, United States.,University of Gdansk, International Centre for Cancer Vaccine Science, Gdansk, Poland
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, United States
| | - Alison J Scott
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland 21201, United States.,Maastricht Multimodal Molecular Imaging (M4I) Institute, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
37
|
Jabbar Siddiqui A, Le Sénéchal C, Vilain S, Buré C. Effect of matrices and additives on phosphorylated and ketodeoxyoctonic acid lipids A analysis by matrix-assisted laser desorption ionization-mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4600. [PMID: 32720737 DOI: 10.1002/jms.4600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Lipid A is a major compound of the outer membrane of gram-negative bacteria and is a key factor of bacterial virulence. As lipid A's structure differs among bacterial species and varies between strains of the same species, knowing its modifications is essential to understand its implications in the infectious process. To analyze these lipids, matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) is a well-suited method that is fast and efficient. However, there are limitations with the matrix and additives used, such as the suppression of signal or prompt fragmentations that could give a false overview of lipid A composition in biological samples. For a comprehensive analysis of the entire lipid A species present in a sample, we tested 16 matrices and 11 additives on two commercial lipids A. The first commercial one contains single phosphorylation group, and the second contains two phosphorylation and two ketodeoxyoctonic acid (KDO) groups. The lipid A containing KDO groups was essentially detected by the 3-hydroxypicolinic acid (3-HPA) matrix, whereas the monophosphorylated lipid A could be detected by 13 matrices out of the 16. We also demonstrated that the signal of diphosphorylated lipid A can be enhanced with the use of additives in the matrix. Our study indicated that the best conditions to obtain a clear signal of both lipids A without prompt fragmentation was the use of 3-HPA with 10mM trifluoroacetic acid (TFA).
Collapse
Affiliation(s)
- Amna Jabbar Siddiqui
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bordeaux, F-33600, France
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Caroline Le Sénéchal
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bordeaux, F-33600, France
| | - Sébastien Vilain
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bordeaux, F-33600, France
| | - Corinne Buré
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bordeaux, F-33600, France
| |
Collapse
|
38
|
Kelly M, Cambray S, McCarthy KA, Wang W, Geisinger E, Ortiz-Marquez J, van Opijnen T, Gao J. Peptide Probes of Colistin Resistance Discovered via Chemically Enhanced Phage Display. ACS Infect Dis 2020; 6:2410-2418. [PMID: 32786283 DOI: 10.1021/acsinfecdis.0c00206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Colistin is an antibiotic of last resort used to treat infections caused by multidrug-resistant Gram-negative bacterial pathogens. The recent surge in reported cases of colistin-resistant infections urgently calls for fast and reliable diagnostic methods, which can be used for the facile detection and proper treatment of these challenging infections. A major mechanism of colistin resistance involves phosphoethanolamine (PE) modification of lipopolysaccharide (LPS), the molecular target of colistin. This LPS modification mechanism has been recently reported to be transferrable via a plasmid-carried mcr-1 gene, which is particularly concerning as it may readily confer colistin resistance to a wide array of bacterial pathogens. To develop molecular tools to allow facile detection of colistin resistance, we have herein enlisted a novel phage library that incorporates dynamic covalent warheads to recognize PE modifications on bacterial cells. Screening of this chemically modified phage library against colistin-resistant pathogens revealed a number of peptide probes that readily differentiate colistin-resistant bacterial strains from their colistin-susceptible counterparts. With a fluorophore label, these peptide probes selectively stain colistin-resistant bacteria at sub-to-low micromolar concentrations. The bacterial staining is minimally inhibited by the presence of serum proteins or even blood serum. Mechanistic studies indicate that our peptide probes bind colistin-resistant bacteria primarily by targeting PE-modified lipids. However, some species-specific features of the cell surface can also contribute to the peptides' association to bacterial cells. Further elucidation of such cell surface features may give molecular probes with improved species and strain specificity, which will enable bacterial infection diagnosis with high precision.
Collapse
Affiliation(s)
- Michael Kelly
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Samantha Cambray
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Kelly A. McCarthy
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wenjian Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Edward Geisinger
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Juan Ortiz-Marquez
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tim van Opijnen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jianmin Gao
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
39
|
Mushtaq S, Reynolds R, Gilmore MC, Esho O, Adkin R, García-Romero I, Chaudhry A, Horner C, Bartholomew TL, Valvano MA, Dry M, Murray J, Pichon B, Livermore DM. Inherent colistin resistance in genogroups of the Enterobacter cloacae complex: epidemiological, genetic and biochemical analysis from the BSAC Resistance Surveillance Programme. J Antimicrob Chemother 2020; 75:2452-2461. [DOI: 10.1093/jac/dkaa201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/25/2020] [Accepted: 04/21/2020] [Indexed: 01/19/2023] Open
Abstract
AbstractBackgroundPolymyxins have re-entered use against problem Gram-negative bacteria. Resistance rates are uncertain, with estimates confounded by selective testing.MethodsThe BSAC Resistance Surveillance Programme has routinely tested colistin since 2010; we reviewed data up to 2017 for relevant Enterobacterales (n = 10 914). Unexpectedly frequent resistance was seen among the Enterobacter cloacae complex isolates (n = 1749); for these, we investigated relationships to species, genome, carbon source utilization and LPS structure.ResultsAnnual colistin resistance rates among E. cloacae complex isolates were 4.4%–20%, with a rising trend among bloodstream organisms; in contrast, annual rates for Escherichia coli and Klebsiella spp. (including K. aerogenes) generally remained <2%. WGS split the E. cloacae complex isolates into seven genogroup clusters, designated A–G. Among isolates assigned to genogroups A–D, 47/50 sequenced were colistin resistant, and many of those belonging to genogroups A–C identified as E. asburiae. Isolates belonging to genogroups E–G consistently identified as E. cloacae and were rarely (only 3/45 representatives sequenced) colistin resistant. Genogroups F and G, the predominant colistin-susceptible clusters, were metabolically distinct from other clusters, notably regarding utilization or not of l-fucose, formic acid, d-serine, adonitol, myo-inositol, l-lyxose and polysorbates. LPS from resistant organisms grown without colistin pressure lacked substitutions with 4-amino-arabinose or ethanolamine but was more structurally complex, with more molecular species present.ConclusionsColistin resistance is frequent in the E. cloacae complex and increasing among bloodstream isolates. It is associated with: (i) particular genomic and metabolic clusters; (ii) identification as E. asburiae; and (iii) with more complex LPS architectures.
Collapse
Affiliation(s)
- Shazad Mushtaq
- Antimicrobial Resistance & Healthcare Associated Infection Reference Unit, Public Health England, Colindale, London
| | - Rosy Reynolds
- British Society for Antimicrobial Chemotherapy, Birmingham, UK
- Department of Medical Microbiology, Southmead Hospital, Bristol, UK
- University of Bristol Medical School (Population Health Sciences), Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK
| | - Michael C Gilmore
- The Wellcome-Wolfson Institute for Experimental Medicine, Queens University, Belfast, UK
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Olubukola Esho
- Department of Medical Microbiology, Norfolk and Norwich University Hospital, Norwich, UK
- Department of Clinical Microbiology and Infection Control, Royal Gwent Hospital, Cardiff Road, Newport, Gwent NP20 2UB, UK
| | - Rachael Adkin
- Antimicrobial Resistance & Healthcare Associated Infection Reference Unit, Public Health England, Colindale, London
| | | | - Aiysha Chaudhry
- Antimicrobial Resistance & Healthcare Associated Infection Reference Unit, Public Health England, Colindale, London
| | - Carolyne Horner
- British Society for Antimicrobial Chemotherapy, Birmingham, UK
| | - Toby L Bartholomew
- The Wellcome-Wolfson Institute for Experimental Medicine, Queens University, Belfast, UK
- Excerpta Medica BV, 90 Southwark Street, London SE1 0SW, UK
| | - Miguel A Valvano
- The Wellcome-Wolfson Institute for Experimental Medicine, Queens University, Belfast, UK
| | - Magdalena Dry
- Quotient Bio Analytical Sciences and HFL Sport Science, LGC Group, Fordham, UK
| | - John Murray
- Quotient Bio Analytical Sciences and HFL Sport Science, LGC Group, Fordham, UK
- Fisher Scientific Ltd, Bishop Meadow Road, Loughborough LE1 5RG, UK
| | - Bruno Pichon
- Antimicrobial Resistance & Healthcare Associated Infection Reference Unit, Public Health England, Colindale, London
| | - David M Livermore
- Antimicrobial Resistance & Healthcare Associated Infection Reference Unit, Public Health England, Colindale, London
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
40
|
Choi Y, Lee JY, Lee H, Park M, Kang K, Lim SK, Shin D, Ko KS. Comparison of Fitness Cost and Virulence in Chromosome- and Plasmid-Mediated Colistin-Resistant Escherichia coli. Front Microbiol 2020; 11:798. [PMID: 32477288 PMCID: PMC7238749 DOI: 10.3389/fmicb.2020.00798] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
Five types of Escherichia coli strains were obtained and sequenced: colistin-susceptible (CL-S) strains, in vitro induced colistin-resistant (CL-IR) strains, mcr-1-negative colistin-resistant strains from livestock (CL-chrR), mcr-1-positive colistin-resistant strains (CL-mcrR), and mcr-1-transferred transconjugants (TC-mcr). Amino acid alterations of PmrAB, PhoPQ, and EptA were identified, and their mRNA expression was measured. Their growth rate was evaluated, and an in vitro competition assay was performed. Virulence was compared through serum resistance and survival in macrophages and Drosophila melanogaster. CL-IR and CL-chrR strains were colistin-resistant due to amino acid alterations in PmrAB, PhoPQ, or EptA, and their overexpression. All colistin-resistant strains did not show reduced growth rates compared with CL-S strains. CL-IR and CL-chrR strains were less competitive than the susceptible strain, but CL-mcrR strains were not. In addition, TC-mcr strains were also significantly more competitive than their respective parental susceptible strain. CL-IR strains had similar or decreased survival rates in human serum, macrophages, and fruit flies, compared with their parental, susceptible strains. CL-chrR strains were also less virulent than CL-S strains. Although CL-mcrR strains showed similar survival rates in human serum and fruit fly to CL-S strains, the survival rates of TC-mcr strains decreased significantly in human serum, macrophages, and fruit flies, compared with their susceptible recipient strain (J53). Chromosome-mediated, colistin-resistant E. coli strains have a fitness cost, but plasmids bearing mcr-1 do not increase the fitness burden of E. coli. Along with high usage of polymyxins, the no fitness cost of mcr-1-positive strains may facilitate rapid spread of colistin resistance.
Collapse
Affiliation(s)
- Yujin Choi
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Ji-Young Lee
- Division of Antimicrobial Resistance, Korea Centers for Disease Control and Prevention, Cheongju, South Korea
| | - Haejeong Lee
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - KyeongJin Kang
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, South Korea
| | - Dongwoo Shin
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Kwan Soo Ko
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| |
Collapse
|
41
|
The Efflux Pump MexXY/OprM Contributes to the Tolerance and Acquired Resistance of Pseudomonas aeruginosa to Colistin. Antimicrob Agents Chemother 2020; 64:AAC.02033-19. [PMID: 31964794 DOI: 10.1128/aac.02033-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022] Open
Abstract
The intrinsic resistance of Pseudomonas aeruginosa to polymyxins in part relies on the addition of 4-amino-4-deoxy-l-arabinose (Ara4N) molecules to the lipid A of lipopolysaccharide (LPS), through induction of operon arnBCADTEF-ugd (arn) expression. As demonstrated previously, at least three two-component regulatory systems (PmrAB, ParRS, and CprRS) are able to upregulate this operon when bacteria are exposed to colistin. In the present study, gene deletion experiments with the bioluminescent strain PAO1::lux showed that ParRS is a key element in the tolerance of P. aeruginosa to this last-resort antibiotic (i.e., resistance to early drug killing). Other loci of the ParR regulon, such as those encoding the efflux proteins MexXY (mexXY), the polyamine biosynthetic pathway PA4773-PA4774-PA4775, and Ara4N LPS modification process (arnBCADTEF-ugd), also contribute to the bacterial tolerance in an intricate way with ParRS. Furthermore, we found that both stable upregulation of the arn operon and drug-induced ParRS-dependent overexpression of the mexXY genes accounted for the elevated resistance of pmrB mutants to colistin. Deletion of the mexXY genes in a constitutively activated ParR mutant of PAO1 was associated with significantly increased expression of the genes arnA, PA4773, and pmrA in the absence of colistin exposure, thereby highlighting a functional link between the MexXY/OprM pump, the PA4773-PA4774-PA4775 pathway, and Ara4N-based modification of LPS. The role played by MexXY/OprM in the adaptation of P. aeruginosa to polymyxins opens new perspectives for restoring the susceptibility of resistant mutants through the use of efflux inhibitors.
Collapse
|
42
|
Recent applications of mass spectrometry in bacterial lipidomics. Anal Bioanal Chem 2020; 412:5935-5943. [DOI: 10.1007/s00216-020-02541-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
|
43
|
Janssen AB, Bartholomew TL, Marciszewska NP, Bonten MJM, Willems RJL, Bengoechea JA, van Schaik W. Nonclonal Emergence of Colistin Resistance Associated with Mutations in the BasRS Two-Component System in Escherichia coli Bloodstream Isolates. mSphere 2020; 5:e00143-20. [PMID: 32161146 PMCID: PMC7067592 DOI: 10.1128/msphere.00143-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Infections by multidrug-resistant Gram-negative bacteria are increasingly common, prompting the renewed interest in the use of colistin. Colistin specifically targets Gram-negative bacteria by interacting with the anionic lipid A moieties of lipopolysaccharides, leading to membrane destabilization and cell death. Here, we aimed to uncover the mechanisms of colistin resistance in nine colistin-resistant Escherichia coli strains and one Escherichia albertii strain. These were the only colistin-resistant strains of 1,140 bloodstream Escherichia isolates collected in a tertiary hospital over a 10-year period (2006 to 2015). Core-genome phylogenetic analysis showed that each patient was colonized by a unique strain, suggesting that colistin resistance was acquired independently in each strain. All colistin-resistant strains had lipid A that was modified with phosphoethanolamine. In addition, two E. coli strains had hepta-acylated lipid A species, containing an additional palmitate compared to the canonical hexa-acylated E. coli lipid A. One E. coli strain carried the mobile colistin resistance (mcr) gene mcr-1.1 on an IncX4-type plasmid. Through construction of chromosomal transgene integration mutants, we experimentally determined that mutations in basRS, encoding a two-component signal transduction system, contributed to colistin resistance in four strains. We confirmed these observations by reversing the mutations in basRS to the sequences found in reference strains, resulting in loss of colistin resistance. While the mcr genes have become a widely studied mechanism of colistin resistance in E. coli, sequence variation in basRS is another, potentially more prevalent but relatively underexplored, cause of colistin resistance in this important nosocomial pathogen.IMPORTANCE Multidrug resistance among Gram-negative bacteria has led to the use of colistin as a last-resort drug. The cationic colistin kills Gram-negative bacteria through electrostatic interaction with the anionic lipid A moiety of lipopolysaccharides. Due to increased use in clinical and agricultural settings, colistin resistance has recently started to emerge. In this study, we used a combination of whole-genome sequence analysis and experimental validation to characterize the mechanisms through which Escherichia coli strains from bloodstream infections can develop colistin resistance. We found no evidence of direct transfer of colistin-resistant isolates between patients. The lipid A of all isolates was modified by the addition of phosphoethanolamine. In four isolates, colistin resistance was experimentally verified to be caused by mutations in the basRS genes, encoding a two-component regulatory system. Our data show that chromosomal mutations are an important cause of colistin resistance among clinical E. coli isolates.
Collapse
Affiliation(s)
- Axel B Janssen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Toby L Bartholomew
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Natalia P Marciszewska
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marc J M Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jose A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
44
|
Crépin S, Ottosen EN, Chandler CE, Sintsova A, Ernst RK, Mobley HLT. The UDP-GalNAcA biosynthesis genes gna-gne2 are required to maintain cell envelope integrity and in vivo fitness in multi-drug resistant Acinetobacter baumannii. Mol Microbiol 2020; 113:153-172. [PMID: 31680352 PMCID: PMC7007346 DOI: 10.1111/mmi.14407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acinetobacter baumannii infects a wide range of anatomic sites including the respiratory tract and bloodstream. Despite its clinical importance, little is known about the molecular basis of A. baumannii pathogenesis. We previously identified the UDP-N-acetyl-d-galactosaminuronic acid (UDP-GalNAcA) biosynthesis genes, gna-gne2, as being critical for survival in vivo. Herein, we demonstrate that Gna-Gne2 are part of a complex network connecting in vivo fitness, cell envelope homeostasis and resistance to antibiotics. The ∆gna-gne2 mutant exhibits a severe fitness defect during bloodstream infection. Capsule production is abolished in the mutant strain, which is concomitant with its inability to survive in human serum. In addition, the ∆gna-gne2 mutant was more susceptible to vancomycin and unable to grow on MacConkey plates, indicating an alteration in cell envelope integrity. Analysis of lipid A by mass spectrometry showed that the hexa- and hepta-acylated species were affected in the gna-gne2 mutant. Finally, the ∆gna-gne2 mutant was more susceptible to several classes of antibiotics. Together, this study demonstrates the importance of UDP-GalNAcA in the pathobiology of A. baumannii. By interrupting its biosynthesis, we showed that this molecule plays a critical role in capsule biosynthesis and maintaining the cell envelope homeostasis.
Collapse
Affiliation(s)
- Sébastien Crépin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Elizabeth N Ottosen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Courtney E Chandler
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Anna Sintsova
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
45
|
Olagnon C, Monjaras Feria J, Grünwald‐Gruber C, Blaukopf M, Valvano MA, Kosma P. Synthetic Phosphodiester-Linked 4-Amino-4-deoxy-l-arabinose Derivatives Demonstrate that ArnT is an Inverting Aminoarabinosyl Transferase. Chembiochem 2019; 20:2936-2948. [PMID: 31233657 PMCID: PMC6902282 DOI: 10.1002/cbic.201900349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 12/22/2022]
Abstract
4-Amino-4-deoxy-l-arabinopyranose (Ara4N) residues have been linked to antibiotic resistance due to reduction of the negative charge in the lipid A and core regions of the bacterial lipopolysaccharide (LPS). To study the enzymatic transfer of Ara4N onto lipid A, which is catalysed by the ArnT transferase, we chemically synthesised a series of anomeric phosphodiester-linked lipid Ara4N derivatives containing linear aliphatic chains as well as E- and Z-configured monoterpene units. Coupling reactions were based on sugar-derived H-phosphonates, followed by oxidation and global deprotection. The enzymatic Ara4N transfer was performed in vitro with crude membranes from a deep-rough mutant from Escherichia coli as acceptor. Product formation was detected by TLC and LC-ESI-QTOF mass spectrometry. Out of seven analogues tested, only the α-neryl derivative was accepted by the Burkholderia cenocepacia ArnT protein, leading to substitution of the Kdo2 -lipid A acceptor and thus affording evidence that ArnT is an inverting glycosyl transferase that requires the Z-configured double bond next to the anomeric phosphate moiety. This approach provides an easily accessible donor substrate for biochemical studies relating to modifications of bacterial LPS that modulate antibiotic resistance and immune recognition.
Collapse
Affiliation(s)
- Charlotte Olagnon
- Department of ChemistryUniversity of Natural Resources and Life Sciences–ViennaMuthgasse 181190ViennaAustria
| | - Julia Monjaras Feria
- Wellcome-Wolfson Institute of Experimental MedicineQueen's University Belfast97 Lisburn RoadBT9 7BLBelfastUK
| | - Clemens Grünwald‐Gruber
- Department of ChemistryUniversity of Natural Resources and Life Sciences–ViennaMuthgasse 181190ViennaAustria
| | - Markus Blaukopf
- Department of ChemistryUniversity of Natural Resources and Life Sciences–ViennaMuthgasse 181190ViennaAustria
| | - Miguel A. Valvano
- Wellcome-Wolfson Institute of Experimental MedicineQueen's University Belfast97 Lisburn RoadBT9 7BLBelfastUK
| | - Paul Kosma
- Department of ChemistryUniversity of Natural Resources and Life Sciences–ViennaMuthgasse 181190ViennaAustria
| |
Collapse
|
46
|
Welker M, van Belkum A. One System for All: Is Mass Spectrometry a Future Alternative for Conventional Antibiotic Susceptibility Testing? Front Microbiol 2019; 10:2711. [PMID: 31849870 PMCID: PMC6901965 DOI: 10.3389/fmicb.2019.02711] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022] Open
Abstract
The two main pillars of clinical microbiological diagnostics are the identification of potentially pathogenic microorganisms from patient samples and the testing for antibiotic susceptibility (AST) to allow efficient treatment with active antimicrobial agents. While routine microbial species identification is increasingly performed with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), routine AST still largely relies on conventional and molecular techniques such as broth microdilution or disk and gradient diffusion tests, PCR and automated variants thereof. However, shortly after the introduction of MALDI-TOF MS based routine identification, first attempts to perform AST on the same instruments were reported. Today, a number of different approaches to perform AST with MALDI-TOF MS and other MS techniques have been proposed, some restricted to particular microbial taxa and resistance mechanisms while others being more generic. Further, while some of the methods are in a stage of proof of principles, others are already commercialized. In this review we discuss the different principal approaches of mass spectrometry based AST and evaluate the advantages and disadvantages compared to conventional and molecular techniques. At present, the possibility that MS will soon become a routine tool for AST seems unlikely – still, the same was true for routine microbial identification a mere 15 years ago.
Collapse
Affiliation(s)
- Martin Welker
- Microbiology Research Unit, BioMérieux SA, La Balme-les-Grottes, France
| | - Alex van Belkum
- Microbiology Research Unit, BioMérieux SA, La Balme-les-Grottes, France
| |
Collapse
|
47
|
Efflux Pumps of Burkholderia thailandensis Control the Permeability Barrier of the Outer Membrane. Antimicrob Agents Chemother 2019; 63:AAC.00956-19. [PMID: 31383661 DOI: 10.1128/aac.00956-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/28/2019] [Indexed: 01/27/2023] Open
Abstract
Burkholderia comprises species that are significant biothreat agents and common contaminants of pharmaceutical production facilities. Their extreme antibiotic resistance affects all classes of antibiotics, including polycationic polymyxins and aminoglycosides. The major underlying mechanism is the presence of two permeability barriers, the outer membrane with modified lipid A moieties and active drug efflux pumps. The two barriers are thought to be mechanistically independent and act synergistically to reduce the intracellular concentrations of antibiotics. In this study, we analyzed the interplay between active efflux pumps and the permeability barrier of the outer membrane in Burkholderia thailandensis We found that three efflux pumps, AmrAB-OprA, BpeEF-OprC, and BpeAB-OprB, of B. thailandensis are expressed under standard laboratory conditions and provide protection against multiple antibiotics, including polycationic polymyxins. Our results further suggest that the inactivation of AmrAB-OprA or BpeAB-OprB potentiates the antibacterial activities of antibiotics not only by reducing their efflux, but also by increasing their uptake into cells. Mass spectrometry analyses showed that in efflux-deficient B. thailandensis cells, lipid A species modified with 4-amino-4-deoxy-l-aminoarabinose are significantly less abundant than in the parent strain. Taken together, our results suggest that changes in the outer membrane permeability due to alterations in lipid A structure could be contributing factors in antibiotic hypersusceptibilities of B. thailandensis cells lacking AmrAB-OprA and BpeAB-OprB efflux pumps.
Collapse
|
48
|
Ryu SY, Wendt GA, Chandler CE, Ernst RK, Goodlett DR. Model-Based Spectral Library Approach for Bacterial Identification via Membrane Glycolipids. Anal Chem 2019; 91:11482-11487. [PMID: 31369253 DOI: 10.1021/acs.analchem.9b03340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
By circumventing the need for a pure colony, MALDI-TOF mass spectrometry of bacterial membrane glycolipids (lipid A) has the potential to identify microbes more rapidly than protein-based methods. However, currently available bioinformatics algorithms (e.g., dot products) do not work well with glycolipid mass spectra such as those produced by lipid A, the membrane anchor of lipopolysaccharide. To address this issue, we propose a spectral library approach coupled with a machine learning technique to more accurately identify microbes. Here, we demonstrate the performance of the model-based spectral library approach for microbial identification using approximately a thousand mass spectra collected from multi-drug-resistant bacteria. At false discovery rates < 1%, our approach identified many more bacterial species than the existing approaches such as the Bruker Biotyper and characterized over 97% of their phenotypes accurately. As the diversity in our glycolipid mass spectral library increases, we anticipate that it will provide valuable information to more rapidly treat infected patients.
Collapse
Affiliation(s)
- So Young Ryu
- School of Community Health Sciences , University of Nevada Reno , Reno , Nevada 89557 , United States
| | - George A Wendt
- School of Community Health Sciences , University of Nevada Reno , Reno , Nevada 89557 , United States.,Department of Epidemiology, School of Public Health , University of California Berkeley , Berkeley , California 94720 , United States
| | - Courtney E Chandler
- Department of Microbial Pathogenesis, School of Dentistry , University of Maryland , Baltimore , Maryland 21201 , United States
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry , University of Maryland , Baltimore , Maryland 21201 , United States
| | - David R Goodlett
- Department of Microbial Pathogenesis, School of Dentistry , University of Maryland , Baltimore , Maryland 21201 , United States.,International Centre for Cancer Vaccine Science , University of Gdansk , 80-308 Gdansk , Poland
| |
Collapse
|
49
|
Welker M, Van Belkum A, Girard V, Charrier JP, Pincus D. An update on the routine application of MALDI-TOF MS in clinical microbiology. Expert Rev Proteomics 2019; 16:695-710. [PMID: 31315000 DOI: 10.1080/14789450.2019.1645603] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has entered clinical diagnostics and is today a generally accepted and integral part of the workflow for microbial identification. MALDI-TOF MS identification systems received approval from national and international institutions, such as the USA-FDA, and are continuously improved and adopted to other fields like veterinary and industrial microbiology. The question is whether MALDI-TOF MS also has the potential to replace other conventional and molecular techniques operated in routine diagnostic laboratories. Areas covered: We give an overview of new advancements of mass spectral analysis in the context of microbial diagnostics. In particular, the expansion of databases to increase the range of readily identifiable bacteria and fungi, the refined discrimination of species complexes, subspecies, and types, the testing for antibiotic resistance or susceptibility, progress in sample preparation including automation, and applications of other mass spectrometry techniques are discussed. Expert opinion: Although many new approaches of MALDI-TOF MS are still in the stage of proof of principle, it is expectable that MALDI-TOF MS will expand its role in the clinical microbiology laboratory of the future. New databases, instruments and analytical software modules will continue to be developed to further improve diagnostic efficacy.
Collapse
Affiliation(s)
- Martin Welker
- bioMérieux, Microbiology R&D , La Balme Les Grottes , France
| | - Alex Van Belkum
- bioMérieux, Microbiology R&D , La Balme Les Grottes , France
| | - Victoria Girard
- bioMérieux, Microbiology R&D , La Balme Les Grottes , France
| | | | - David Pincus
- bioMérieux, Microbiology Innovation , Hazelwood , MO , USA
| |
Collapse
|
50
|
2-Hydroxylation of Acinetobacter baumannii Lipid A Contributes to Virulence. Infect Immun 2019; 87:IAI.00066-19. [PMID: 30745327 PMCID: PMC6434125 DOI: 10.1128/iai.00066-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
Acinetobacter baumannii causes a wide range of nosocomial infections. This pathogen is considered a threat to human health due to the increasingly frequent isolation of multidrug-resistant strains. Acinetobacter baumannii causes a wide range of nosocomial infections. This pathogen is considered a threat to human health due to the increasingly frequent isolation of multidrug-resistant strains. There is a major gap in knowledge on the infection biology of A. baumannii, and only a few virulence factors have been characterized, including lipopolysaccharide. The lipid A expressed by A. baumannii is hepta-acylated and contains 2-hydroxylaurate. The late acyltransferases controlling the acylation of lipid A have been already characterized. Here, we report the characterization of A. baumannii LpxO, which encodes the enzyme responsible for the 2-hydroxylation of lipid A. By genetic methods and mass spectrometry, we demonstrate that LpxO catalyzes the 2-hydroxylation of the laurate transferred by A. baumannii LpxL. LpxO-dependent lipid A 2-hydroxylation protects A. baumannii from polymyxin B, colistin, and human β-defensin 3. LpxO contributes to the survival of A. baumannii in human whole blood and is required for pathogen survival in the waxmoth Galleria mellonella. LpxO also protects Acinetobacter from G. mellonella antimicrobial peptides and limits their expression. Further demonstrating the importance of LpxO-dependent modification in immune evasion, 2-hydroxylation of lipid A limits the activation of the mitogen-activated protein kinase Jun N-terminal protein kinase to attenuate inflammatory responses. In addition, LpxO-controlled lipid A modification mediates the production of the anti-inflammatory cytokine interleukin-10 (IL-10) via the activation of the transcriptional factor CREB. IL-10 in turn limits the production of inflammatory cytokines following A. baumannii infection. Altogether, our studies suggest that LpxO is a candidate for the development of anti-A. baumannii drugs.
Collapse
|