1
|
Windham IA, Cohen S. The cell biology of APOE in the brain. Trends Cell Biol 2024; 34:338-348. [PMID: 37805344 PMCID: PMC10995109 DOI: 10.1016/j.tcb.2023.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/23/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023]
Abstract
Apolipoprotein E (APOE) traffics lipids in the central nervous system. The E4 variant of APOE is a major genetic risk factor for Alzheimer's disease (AD) and a multitude of other neurodegenerative diseases, yet the molecular mechanisms by which APOE4 drives disease are still unclear. A growing collection of studies in iPSC models, knock-in mice, and human postmortem brain tissue have demonstrated that APOE4 expression in astrocytes and microglia is associated with the accumulation of cytoplasmic lipid droplets, defects in endolysosomal trafficking, impaired mitochondrial metabolism, upregulation of innate immune pathways, and a transition into a reactive state. In this review, we collate these developments and suggest testable mechanistic hypotheses that could explain common APOE4 phenotypes.
Collapse
Affiliation(s)
- Ian A Windham
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, NC, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Zhang X, Yuan T, Chen X, Liu X, Hu J, Liu Z. Effects of DHA on cognitive dysfunction in aging and Alzheimer's disease: The mediating roles of ApoE. Prog Lipid Res 2024; 93:101256. [PMID: 37890592 DOI: 10.1016/j.plipres.2023.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
The prevalence of Alzheimer's disease (AD) continues to rise due to the increasing aging population. Among the various genetic factors associated with AD, apolipoprotein E (ApoE), a lipid transporter, stands out as the primary genetic risk factor. Specifically, individuals carrying the ApoE4 allele exhibit a significantly higher risk. However, emerging research indicates that dietary factors play a prominent role in modifying the risk of AD. Docosahexaenoic acid (DHA), a prominent ω-3 fatty acid, has garnered considerable attention for its potential to ameliorate cognitive function. The intricate interplay between DHA and the ApoE genotype within the brain, which may influence DHA's utilization and functionality, warrants further investigation. This review meticulously examines experimental and clinical studies exploring the effects of DHA on cognitive decline. Special emphasis is placed on elucidating the role of ApoE gene polymorphism and the underlying mechanisms are discussed. These studies suggest that early DHA supplementation may confer benefits to cognitively normal older adults carrying the ApoE4 gene. However, once AD develops, ApoE4 non-carriers may experience greater benefits compared to ApoE4 carriers, although the overall effectiveness of DHA supplementation at this stage is limited. Potential mechanisms underlying these differential effects may include accelerated DHA catabolism in ApoE4 carriers, impaired transport across the blood-brain barrier (BBB), and compromised lipidation and circulatory function in ApoE4 carriers. Thus, the supplementation of DHA may represent a potential intervention strategy aimed at compensating for these deficiencies in ApoE4 carriers prior to the onset of AD.
Collapse
Affiliation(s)
- Xin Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tian Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| | - Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China; Dongguan Chuangwei Precision Nutrition and Health Innovation Center, Dongguan, Guangdong 523170, China; Shaanxi Precision Nutrition and Health Research Institute, Xi'an, Shaanxi 710300, China.
| |
Collapse
|
3
|
Ringland C, Schweig JE, Paris D, Shackleton B, Lynch CE, Eisenbaum M, Mullan M, Crawford F, Abdullah L, Bachmeier C. Apolipoprotein E isoforms differentially regulate matrix metallopeptidase 9 function in Alzheimer's disease. Neurobiol Aging 2020; 95:56-68. [PMID: 32758917 DOI: 10.1016/j.neurobiolaging.2020.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 01/10/2023]
Abstract
Apolipoprotein E (APOE) has been shown to influence amyloid-β (Aβ) clearance from the brain in an isoform-specific manner. Our prior work showed that Aβ transit across the blood-brain-barrier was reduced by apoE4, compared to other apoE isoforms, due to elevated lipoprotein receptor shedding in brain endothelia. Recently, we demonstrated that matrix metallopeptidase 9 (MMP-9) induces lipoprotein receptor proteolysis in an apoE isoform-dependent manner, which impacts Aβ elimination from the brain. The current studies interrogated the relationship between apoE and MMP-9 and found that apoE impacted proMMP-9 cellular secretion from brain endothelia (apoE2 < apoE3 = apoE4). In a cell-free assay, apoE dose-dependently reduced MMP-9 activity, with apoE4 showing a significantly weaker ability to inhibit MMP-9 function than apoE2 or apoE3. Finally, we observed elevated MMP-9 expression and activity in the cerebrovasculature of both human and animal AD brain specimens with an APOE4 genotype. Collectively, these findings suggest a role for apoE in regulating MMP-9 disposition and may describe the effect of apoE4 on Aβ pathology in the AD brain.
Collapse
Affiliation(s)
- Charis Ringland
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK.
| | | | | | | | | | - Maxwell Eisenbaum
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK
| | - Michael Mullan
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK
| | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK; James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Laila Abdullah
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK; James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Corbin Bachmeier
- The Roskamp Institute, Sarasota, FL, USA; The Open University, Milton Keynes, UK; Bay Pines VA Healthcare System, Bay Pines, FL, USA
| |
Collapse
|
4
|
Yassine HN, Finch CE. APOE Alleles and Diet in Brain Aging and Alzheimer's Disease. Front Aging Neurosci 2020; 12:150. [PMID: 32587511 PMCID: PMC7297981 DOI: 10.3389/fnagi.2020.00150] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The APOE gene alleles modify human aging and the response to the diet at many levels with diverse pleotropic effects from gut to brain. To understand the interactions of APOE isoforms and diet, we analyze how cellular trafficking of apoE proteins affects energy metabolism, the immune system, and reproduction. The age-accelerating APOE4 allele alters the endosomal trafficking of cell surface receptors that mediate lipid and glucose metabolism. The APOE4 allele is the ancestral human allele, joined by APOE3 and then APOE2 in the human species. Under conditions of high infection, uncertain food, and shorter life expectancy, APOE4 may be adaptive for reducing mortality. As humans transitioned into modern less-infectious environments and longer life spans, APOE4 increased risks of aging-related diseases, particularly impacting arteries and the brain. The association of APOE4 with glucose dysregulation and body weight promotes many aging-associated diseases. Additionally, the APOE gene locus interacts with adjacent genes on chromosome 19 in haplotypes that modify neurodegeneration and metabolism, for which we anticipate complex gene-environment interactions. We summarize how diet and Alzheimer's disease (AD) risk are altered by APOE genotype in both animal and human studies and identify gaps. Much remains obscure in how APOE alleles modify nutritional factors in human aging. Identifying risk variant haplotypes in the APOE gene complex will clarify homeostatic adaptive responses to environmental conditions.
Collapse
Affiliation(s)
- Hussein N. Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Caleb E. Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Zhao W, Fan J, Kulic I, Koh C, Clark A, Meuller J, Engkvist O, Barichievy S, Raynoschek C, Hicks R, Maresca M, Wang Q, Brown DG, Lok A, Parro C, Robert J, Chou HY, Zuhl AM, Wood MW, Brandon NJ, Wellington CL. Axl receptor tyrosine kinase is a regulator of apolipoprotein E. Mol Brain 2020; 13:66. [PMID: 32366277 PMCID: PMC7197143 DOI: 10.1186/s13041-020-00609-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is a chronic neurodegenerative disease. Apolipoprotein E (apoE), which carries lipids in the brain in the form of lipoproteins, plays an undisputed role in AD pathophysiology. A high-throughput phenotypic screen was conducted using a CCF-STTG1 human astrocytoma cell line to identify small molecules that could upregulate apoE secretion. AZ7235, a previously discovered Axl kinase inhibitor, was identified to have robust apoE activity in brain microglia, astrocytes and pericytes. AZ7235 also increased expression of ATP-binding cassette protein A1 (ABCA1), which is involved in the lipidation and secretion of apoE. Moreover, AZ7235 did not exhibit Liver-X-Receptor (LXR) activity and stimulated apoE and ABCA1 expression in the absence of LXR. Target validation studies using AXL-/- CCF-STTG1 cells showed that Axl is required to mediate AZ7235 upregulation of apoE and ABCA1. Intriguingly, apoE expression and secretion was significantly attenuated in AXL-deficient CCF-STTG1 cells and reconstitution of Axl or kinase-dead Axl significantly restored apoE baseline levels, demonstrating that Axl also plays a role in maintaining apoE homeostasis in astrocytes independent of its kinase activity. Lastly, these effects may require human apoE regulatory sequences, as AZ7235 exhibited little stimulatory activity toward apoE and ABCA1 in primary murine glia derived from neonatal human APOE3 targeted-replacement mice. Collectively, we identified a small molecule that exhibits robust apoE and ABCA1 activity independent of the LXR pathway in human cells and elucidated a novel relationship between Axl and apoE homeostasis in human astrocytes.
Collapse
Affiliation(s)
- Wenchen Zhao
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Jianjia Fan
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Iva Kulic
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Cheryl Koh
- Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Boston, USA
| | - Amanda Clark
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Johan Meuller
- Mechanistic Biology & Profiling, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ola Engkvist
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Carina Raynoschek
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ryan Hicks
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Marcello Maresca
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Qi Wang
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, USA
| | - Dean G Brown
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Boston, USA
| | - Alvin Lok
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Cameron Parro
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Jerome Robert
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Hsien-Ya Chou
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Andrea M Zuhl
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Boston, USA
| | - Michael W Wood
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, USA
| | | | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
6
|
Kloske CM, Wilcock DM. The Important Interface Between Apolipoprotein E and Neuroinflammation in Alzheimer's Disease. Front Immunol 2020; 11:754. [PMID: 32425941 PMCID: PMC7203730 DOI: 10.3389/fimmu.2020.00754] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent form of neurodegenerative disease, currently affecting over 5 million Americans with projections expected to rise as the population ages. The hallmark pathologies of AD are Aβ plaques composed of aggregated beta-amyloid (Aβ), and tau tangles composed of hyperphosphorylated, aggregated tau. These pathologies are typically accompanied by an increase in neuroinflammation as an attempt to ameliorate the pathology. This idea has pushed the field toward focusing on mechanisms and the influence neuroinflammation has on disease progression. The vast majority of AD cases are sporadic and therefore, researchers investigate genetic risk factors that could lead to AD. Apolipoprotein E (ApoE) is the largest genetic risk factor for developing AD. ApoE has 3 isoforms-ApoE2, ApoE3, and ApoE4. ApoE4 constitutes an increased risk of AD, with one copy increasing the risk about 4-fold and two copies increasing the risk about 15-fold compared to those with the ApoE3 allele. ApoE4 has been shown to play a role in Aβ deposition, tau tangle formation, neuroinflammation and many subsequent pathways. However, while we know that ApoE4 plays a role in these pathways and virtually all aspects of AD, the exact mechanism of how ApoE4 impacts AD progression is murky at best and therefore the role ApoE4 plays in these pathways needs to be elucidated. This review aims to discuss the current literature regarding the pathways and mechanisms of ApoE4 in AD progression with a focus on its role in neuroinflammation.
Collapse
Affiliation(s)
- Courtney M Kloske
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Donna M Wilcock
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
7
|
Chernick D, Ortiz-Valle S, Jeong A, Swaminathan SK, Kandimalla KK, Rebeck GW, Li L. High-density lipoprotein mimetic peptide 4F mitigates amyloid-β-induced inhibition of apolipoprotein E secretion and lipidation in primary astrocytes and microglia. J Neurochem 2018; 147:647-662. [PMID: 30028014 DOI: 10.1111/jnc.14554] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/26/2018] [Accepted: 07/14/2018] [Indexed: 01/06/2023]
Abstract
The apolipoprotein E (apoE) ε4 allele is the primary genetic risk factor for late-onset Alzheimer's disease (AD). ApoE in the brain is produced primarily by astrocytes; once secreted from these cells, apoE binds lipids and forms high-density lipoprotein (HDL)-like particles. Accumulation of amyloid-β protein (Aβ) in the brain is a key hallmark of AD, and is thought to initiate a pathogenic cascade leading to neurodegeneration and dementia. The level and lipidation state of apoE affect Aβ aggregation and clearance pathways. Elevated levels of plasma HDL are associated with lower risk and severity of AD; the underlying mechanisms, however, have not been fully elucidated. This study was designed to investigate the impact of an HDL mimetic peptide, 4F, on the secretion and lipidation of apoE. We found that 4F significantly increases apoE secretion and lipidation in primary human astrocytes as well as in primary mouse astrocytes and microglia. Aggregated Aβ inhibits glial apoE secretion and lipidation, causing accumulation of intracellular apoE, an effect that is counteracted by co-treatment with 4F. Pharmacological and gene editing approaches show that 4F mediates its effects partially through the secretory pathway from the endoplasmic reticulum to the Golgi apparatus and requires the lipid transporter ATP-binding cassette transporter A1. We conclude that the HDL mimetic peptide 4F promotes glial apoE secretion and lipidation and mitigates the detrimental effects of Aβ on proper cellular trafficking and functionality of apoE. These findings suggest that treatment with such an HDL mimetic peptide may provide therapeutic benefit in AD. Read the Editorial Highlight for this article on page 580.
Collapse
Affiliation(s)
- Dustin Chernick
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Angela Jeong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Suresh K Swaminathan
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Karunya K Kandimalla
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Ling Li
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Fan J, Zhao RQ, Parro C, Zhao W, Chou HY, Robert J, Deeb TZ, Raynoschek C, Barichievy S, Engkvist O, Maresca M, Hicks R, Meuller J, Moss SJ, Brandon NJ, Wood MW, Kulic I, Wellington CL. Small molecule inducers of ABCA1 and apoE that act through indirect activation of the LXR pathway. J Lipid Res 2018; 59:830-842. [PMID: 29563219 DOI: 10.1194/jlr.m081851] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/13/2018] [Indexed: 01/01/2023] Open
Abstract
apoE is the primary lipid carrier within the CNS and the strongest genetic risk factor for late onset Alzheimer's disease (AD). apoE is primarily lipidated via ABCA1, and both are under transcriptional regulation by the nuclear liver X receptor (LXR). Considerable evidence from genetic (using ABCA1 overexpression) and pharmacological (using synthetic LXR agonists) studies in AD mouse models suggests that increased levels of lipidated apoE can improve cognitive performance and, in some strains, can reduce amyloid burden. However, direct synthetic LXR ligands have hepatotoxic side effects that limit their clinical use. Here, we describe a set of small molecules, previously annotated as antagonists of the purinergic receptor, P2X7, which enhance ABCA1 expression and activity as well as apoE secretion, and are not direct LXR ligands. Furthermore, P2X7 is not required for these molecules to induce ABCA1 upregulation and apoE secretion, demonstrating that the ABCA1 and apoE effects are mechanistically independent of P2X7 inhibition. Hence, we have identified novel dual activity compounds that upregulate ABCA1 across multiple CNS cell types, including human astrocytes, pericytes, and microglia, through an indirect LXR mechanism and that also independently inhibit P2X7 receptor activity.
Collapse
Affiliation(s)
- Jianjia Fan
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rui Qi Zhao
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cameron Parro
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wenchen Zhao
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hsien-Ya Chou
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jerome Robert
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tarek Z Deeb
- Tufts-AstraZeneca Laboratory for Basic and Translational Neuroscience, Boston, MA
| | - Carina Raynoschek
- Discovery Sciences, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Samantha Barichievy
- Discovery Sciences, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ola Engkvist
- Discovery Sciences, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Marcello Maresca
- Discovery Sciences, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ryan Hicks
- Discovery Sciences, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Johan Meuller
- Discovery Sciences, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Stephen J Moss
- Tufts-AstraZeneca Laboratory for Basic and Translational Neuroscience, Boston, MA.,Department of Neuroscience, Tufts University School of Medicine, Boston, MA and Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| | - Nicholas J Brandon
- Neuroscience, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Boston, MA
| | - Michael W Wood
- Neuroscience, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca, Boston, MA
| | - Iva Kulic
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Abstract
Apolipoprotein E (apoE) is a 34-kDa glycoprotein that is secreted from many cells throughout the body. ApoE is best known for its role in lipoprotein metabolism. Recent studies underline the association of circulating lipoprotein-associated apoE levels and the development for cardiovascular disease (CVD). Besides its well-established role in pathology of CVD, it is also implicated in neurodegenerative diseases and recent new data on adipose-produced apoE point to a novel metabolic role for apoE in obesity. The regulation of apoE production and secretion is remarkably cell and tissue specific. Here, we summarize recent insights into the differential regulation apoE production and secretion by hepatocytes, monocytes/macrophages, adipocytes, and the central nervous system and relevant variations in apoE biochemistry and function.
Collapse
Affiliation(s)
- Maaike Kockx
- Concord Repatriation General Hospital, ANZAC Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Mathew Traini
- Concord Repatriation General Hospital, ANZAC Research Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Leonard Kritharides
- Concord Repatriation General Hospital, ANZAC Research Institute, Sydney, Australia.
- Sydney Medical School, University of Sydney, Sydney, Australia.
- Department of Cardiology, Concord Repatriation General Hospital, Concord, NSW, 2139, Australia.
| |
Collapse
|
10
|
Fan J, Zareyan S, Zhao W, Shimizu Y, Pfeifer TA, Tak JH, Isman MB, Van den Hoven B, Duggan ME, Wood MW, Wellington CL, Kulic I. Identification of a Chrysanthemic Ester as an Apolipoprotein E Inducer in Astrocytes. PLoS One 2016; 11:e0162384. [PMID: 27598782 PMCID: PMC5012716 DOI: 10.1371/journal.pone.0162384] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022] Open
Abstract
The apolipoprotein E (APOE) gene is the most highly associated susceptibility locus for late onset Alzheimer’s Disease (AD), and augmenting the beneficial physiological functions of apoE is a proposed therapeutic strategy. In a high throughput phenotypic screen for small molecules that enhance apoE secretion from human CCF-STTG1 astrocytoma cells, we show the chrysanthemic ester 82879 robustly increases expressed apoE up to 9.4-fold and secreted apoE up to 6-fold and is associated with increased total cholesterol in conditioned media. Compound 82879 is unique as structural analogues, including pyrethroid esters, show no effect on apoE expression or secretion. 82879 also stimulates liver x receptor (LXR) target genes including ATP binding cassette A1 (ABCA1), LXRα and inducible degrader of low density lipoprotein receptor (IDOL) at both mRNA and protein levels. In particular, the lipid transporter ABCA1 was increased by up to 10.6-fold upon 82879 treatment. The findings from CCF-STTG1 cells were confirmed in primary human astrocytes from three donors, where increased apoE and ABCA1 was observed along with elevated secretion of high-density lipoprotein (HDL)-like apoE particles. Nuclear receptor transactivation assays revealed modest direct LXR agonism by compound 82879, yet 10 μM of 82879 significantly upregulated apoE mRNA in mouse embryonic fibroblasts (MEFs) depleted of both LXRα and LXRβ, demonstrating that 82879 can also induce apoE expression independent of LXR transactivation. By contrast, deletion of LXRs in MEFs completely blocked mRNA changes in ABCA1 even at 10 μM of 82879, indicating the ability of 82879 to stimulate ABCA1 expression is entirely dependent on LXR transactivation. Taken together, compound 82879 is a novel chrysanthemic ester capable of modulating apoE secretion as well as apoE-associated lipid metabolic pathways in astrocytes, which is structurally and mechanistically distinct from known LXR agonists.
Collapse
Affiliation(s)
- Jianjia Fan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| | - Shahab Zareyan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| | - Wenchen Zhao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| | - Yoko Shimizu
- Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Tom A. Pfeifer
- Centre for Drug Research and Development, Vancouver, British Columbia, Canada
| | - Jun-Hyung Tak
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Murray B. Isman
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Mark E. Duggan
- AstraZeneca, Cambridge, Massachusetts, United States of America
| | - Michael W. Wood
- AstraZeneca, Cambridge, Massachusetts, United States of America
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
- * E-mail:
| | - Iva Kulic
- Department of Pathology and Laboratory Medicine, University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW This article evaluates recent experimental and human evidence regarding the involvement of lipids, lipoproteins, and apolipoproteins in neurodegenerative diseases, and reviews the current literature of the effects of cholesterol-lowering treatment on cognition. RECENT FINDINGS Plasma levels of traditional lipids and lipoproteins are not consistently associated with risk of dementia even though low plasma levels of apolipoprotein E, through unknown mechanisms, robustly predict future dementia. Experimental evidence suggests neuroprotective roles of several brain and cerebrospinal fluid apolipoproteins. Whether plasma levels of apolipoprotein E, or any other apolipoprotein with possible central nervous system and/or blood-brain barrier functions (apolipoproteins J, A-I, A-II, A-IV, D, C-I, and C-III) may become accessible biomarker components that improve risk prediction for dementia together with genetic risk variants and cardiovascular risk factors remains to be determined. SUMMARY Apolipoproteins with well established functions in peripheral lipid metabolism may play important roles for brain vascular health and Alzheimer's disease pathophysiology. Experimental work on lipids, lipoproteins, and apolipoproteins in the central nervous system together with robust prospective human studies will help to substantiate the drug target potential of these lipid components.
Collapse
Affiliation(s)
- Cheryl L Wellington
- aDepartment of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada bDepartment of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospitals cFaculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
12
|
Fitz NF, Castranio EL, Carter AY, Kodali R, Lefterov I, Koldamova R. Improvement of memory deficits and amyloid-β clearance in aged APP23 mice treated with a combination of anti-amyloid-β antibody and LXR agonist. J Alzheimers Dis 2015; 41:535-49. [PMID: 24643138 DOI: 10.3233/jad-132789] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Passive amyloid-β (Aβ) vaccination has shown significant effects on amyloid pathology in pre-depositing amyloid-β protein precursor (AβPP) mice but the results in older mice are inconsistent. A therapeutic effect of LXR and RXR agonists consisting of improved memory deficits and Aβ pathology has been demonstrated in different Alzheimer's disease (AD) mouse models. Here, we report the effect of a combination of N-terminal Aβ antibody and synthetic LXR agonist T0901317 (T0) on AD-like phenotype of APP23 mice. To examine the therapeutic potential of this combination, the treatment of mice started at 11 months of age, when amyloid phenotype in this model is fully developed, and continued for 50 days. We show that Aβ immunization with or without LXR agonist restored the performance of APP23 transgenic mice in two behavior paradigms without affecting the existing amyloid plaques. Importantly, we did not observe an increase of brain microhemorrhage which is considered a significant side effect of Aβ vaccination. Target engagement was confirmed by increased Abca1 and ApoE protein level as well as increased ApoE lipidation in soluble brain extract. In interstitial fluid obtained by microdialysis, we demonstrate that immunization and T0 significantly reduced Aβ levels, indicating an increased Aβ clearance. We found no interaction between the immunotherapy and T0, suggesting no synergism, at least with these doses. The results of our study demonstrate that anti-Aβ treatments can ameliorate cognitive deficits in AβPP mice with advanced AD-like phenotype in conjunction with a decrease of Aβ in brain interstitium and increase of ApoE lipidation without affecting the existing amyloid plaques.
Collapse
Affiliation(s)
- Nicholas F Fitz
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emilie L Castranio
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexis Y Carter
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ravindra Kodali
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Iliya Lefterov
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Radosveta Koldamova
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Bachmeier C, Shackleton B, Ojo J, Paris D, Mullan M, Crawford F. Apolipoprotein E isoform-specific effects on lipoprotein receptor processing. Neuromolecular Med 2014; 16:686-96. [PMID: 25015123 PMCID: PMC4280344 DOI: 10.1007/s12017-014-8318-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/01/2014] [Indexed: 01/24/2023]
Abstract
Recent findings indicate an isoform-specific role for apolipoprotein E (apoE) in the elimination of beta-amyloid (Aβ) from the brain. ApoE is closely associated with various lipoprotein receptors, which contribute to Aβ brain removal via metabolic clearance or transit across the blood–brain barrier (BBB). These receptors are subject to ectodomain shedding at the cell surface, which alters endocytic transport and mitigates Aβ elimination. To further understand the manner in which apoE influences Aβ brain clearance, these studies investigated the effect of apoE on lipoprotein receptor shedding. Consistent with prior reports, we observed an increased shedding of the low-density lipoprotein receptor (LDLR) and the LDLR-related protein 1 (LRP1) following Aβ exposure in human brain endothelial cells. When Aβ was co-treated with each apoE isoform, there was a reduction in Aβ-induced shedding with apoE2 and apoE3, while lipoprotein receptor shedding in the presence of apoE4 remained increased. Likewise, intracranial administration of Aβ to apoE-targeted replacement mice (expressing the human apoE isoforms) resulted in an isoform-dependent effect on lipoprotein receptor shedding in the brain (apoE4 > apoE3 > apoE2). Moreover, these results show a strong inverse correlation with our prior work in apoE transgenic mice in which apoE4 animals showed reduced Aβ clearance across the BBB compared to apoE3 animals. Based on these results, apoE4 appears less efficient than other apoE isoforms in regulating lipoprotein receptor shedding, which may explain the differential effects of these isoforms in removing Aβ from the brain.
Collapse
Affiliation(s)
- Corbin Bachmeier
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, Florida 34243, USA
| | - Ben Shackleton
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, Florida 34243, USA
| | - Joseph Ojo
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, Florida 34243, USA
| | - Daniel Paris
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, Florida 34243, USA
| | - Michael Mullan
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, Florida 34243, USA
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, Florida 34243, USA
| |
Collapse
|
14
|
Stukas S, Freeman L, Lee M, Wilkinson A, Ossoli A, Vaisman B, Demosky S, Chan J, Hirsch-Reinshagen V, Remaley AT, Wellington CL. LCAT deficiency does not impair amyloid metabolism in APP/PS1 mice. J Lipid Res 2014; 55:1721-9. [PMID: 24950691 DOI: 10.1194/jlr.m049940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Indexed: 12/31/2022] Open
Abstract
A key step in plasma HDL maturation from discoidal to spherical particles is the esterification of cholesterol to cholesteryl ester, which is catalyzed by LCAT. HDL-like lipoproteins in cerebrospinal fluid (CSF) are also spherical, whereas nascent lipoprotein particles secreted from astrocytes are discoidal, suggesting that LCAT may play a similar role in the CNS. In plasma, apoA-I is the main LCAT activator, while in the CNS, it is believed to be apoE. apoE is directly involved in the pathological progression of Alzheimer's disease, including facilitating β-amyloid (Aβ) clearance from the brain, a function that requires its lipidation by ABCA1. However, whether apoE particle maturation by LCAT is also required for Aβ clearance is unknown. Here we characterized the impact of LCAT deficiency on CNS lipoprotein metabolism and amyloid pathology. Deletion of LCAT from APP/PS1 mice resulted in a pronounced decrease of apoA-I in plasma that was paralleled by decreased apoA-I levels in CSF and brain tissue, whereas apoE levels were unaffected. Furthermore, LCAT deficiency did not increase Aβ or amyloid in APP/PS1 LCAT(-/-) mice. Finally, LCAT expression and plasma activity were unaffected by age or the onset of Alzheimer's-like pathology in APP/PS1 mice. Taken together, these results suggest that apoE-containing discoidal HDLs do not require LCAT-dependent maturation to mediate efficient Aβ clearance.
Collapse
Affiliation(s)
- Sophie Stukas
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Lita Freeman
- National Institutes of Health, Bethesda, MD 20892-1508
| | - Michael Lee
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Anna Wilkinson
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Alice Ossoli
- National Institutes of Health, Bethesda, MD 20892-1508
| | - Boris Vaisman
- National Institutes of Health, Bethesda, MD 20892-1508
| | | | - Jeniffer Chan
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | - Veronica Hirsch-Reinshagen
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | | | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| |
Collapse
|
15
|
Hauser PS, Ryan RO. Impact of apolipoprotein E on Alzheimer's disease. Curr Alzheimer Res 2014; 10:809-17. [PMID: 23919769 DOI: 10.2174/15672050113109990156] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 05/10/2013] [Accepted: 05/12/2013] [Indexed: 11/22/2022]
Abstract
A key feature of Alzheimer's disease (AD) is deposition of extracellular amyloid plaque comprised chiefly of the amyloid β (Aβ) peptide. Studies of Aβ have shown that it may be catabolized by proteolysis or cleared from brain via members of the low-density lipoprotein receptor family. Alternatively, Aβ can undergo a conformational transition from α-helix to β-sheet, a conformer that displays a propensity to self-associate, oligomerize and form fibrils. Furthermore, β- sheet conformers catalyze conversion of other α-helical Aβ peptides to β-sheet, feeding the oligomer and fibril assembly process. A factor that influences the fate of Aβ in the extracellular space is apolipoprotein (apo) E. Polymorphism at position 112 or 158 in apoE give rise to three major isoforms. One isoform in particular, apoE4 (Arg at 112 and 158), has generated considerable interest since the discovery that it is the major genetic risk factor for development of late onset AD. Despite this striking correlation, the molecular mechanism underlying apoE4's association with AD remains unclear. A tertiary structural feature distinguishing apoE4 from apoE2 and apoE3, termed domain interaction, is postulated to affect the conformation and orientation of its' two independently folded domains. This feature has the potential to influence apoE4's interaction with Aβ, its sensitivity to proteolysis or its lipid accrual and receptor binding activities. Thus, domain interaction may constitute the principal molecular feature of apoE4 that predisposes carriers to late onset AD. By understanding the contribution of apoE4 to AD at the molecular level new therapeutic or prevention strategies will emerge.
Collapse
Affiliation(s)
- Paul S Hauser
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609 USA.
| | | |
Collapse
|
16
|
Fan J, Shimizu Y, Chan J, Wilkinson A, Ito A, Tontonoz P, Dullaghan E, Galea LAM, Pfeifer T, Wellington CL. Hormonal modulators of glial ABCA1 and apoE levels. J Lipid Res 2013; 54:3139-50. [PMID: 23999864 DOI: 10.1194/jlr.m042473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein E (apoE) is the major lipid carrier in the central nervous system. As apoE plays a major role in the pathogenesis of Alzheimer disease (AD) and also mediates repair pathways after several forms of acute brain injury, modulating the expression, secretion, or function of apoE may provide potential therapeutic approaches for several neurological disorders. Here we show that progesterone and a synthetic progestin, lynestrenol, significantly induce apoE secretion from human CCF-STTG1 astrocytoma cells, whereas estrogens and the progesterone metabolite allopregnanolone have negligible effects. Intriguingly, lynestrenol also increases expression of the cholesterol transporter ABCA1 in CCF-STTG1 astrocytoma cells, primary murine glia, and immortalized murine astrocytes that express human apoE3. The progesterone receptor inhibitor RU486 attenuates the effect of progestins on apoE expression in CCF-STTG1 astrocytoma cells but has no effect on ABCA1 expression in all glial cell models tested, suggesting that the progesterone receptor (PR) may participate in apoE but does not affect ABCA1 regulation. These results suggest that selective reproductive steroid hormones have the potential to influence glial lipid homeostasis through liver X receptor-dependent and progesterone receptor-dependent pathways.
Collapse
Affiliation(s)
- Jianjia Fan
- Department of Pathology and Laboratory Medicine University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ulrich JD, Burchett JM, Restivo JL, Schuler DR, Verghese PB, Mahan TE, Landreth GE, Castellano JM, Jiang H, Cirrito JR, Holtzman DM. In vivo measurement of apolipoprotein E from the brain interstitial fluid using microdialysis. Mol Neurodegener 2013; 8:13. [PMID: 23601557 PMCID: PMC3640999 DOI: 10.1186/1750-1326-8-13] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/16/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The APOE4 allele variant is the strongest known genetic risk factor for developing late-onset Alzheimer's disease. The link between apolipoprotein E (apoE) and Alzheimer's disease is likely due in large part to the impact of apoE on the metabolism of amyloid β (Aβ) within the brain. Manipulation of apoE levels and lipidation within the brain has been proposed as a therapeutic target for the treatment of Alzheimer's disease. However, we know little about the dynamic regulation of apoE levels and lipidation within the central nervous system. We have developed an assay to measure apoE levels in the brain interstitial fluid of awake and freely moving mice using large molecular weight cut-off microdialysis probes. RESULTS We were able to recover apoE using microdialysis from human cerebrospinal fluid (CSF) in vitro and mouse brain parenchyma in vivo. Microdialysis probes were inserted into the hippocampus of wild-type mice and interstitial fluid was collected for 36 hours. Levels of apoE within the microdialysis samples were determined by ELISA. The levels of apoE were found to be relatively stable over 36 hours. No apoE was detected in microdialysis samples from apoE KO mice. Administration of the RXR agonist bexarotene increased ISF apoE levels while ISF Aβ levels were decreased. Extrapolation to zero-flow analysis allowed us to determine the absolute recoverable concentration of apoE3 in the brain ISF of apoE3 KI mice. Furthermore, analysis of microdialysis samples by non-denaturing gel electrophoresis determined lipidated apoE particles in microdialysis samples were consistent in size with apoE particles from CSF. Finally, we found that the concentration of apoE in the brain ISF was dependent upon apoE isoform in human apoE KI mice, following the pattern apoE2>apoE3>apoE4. CONCLUSIONS We are able to collect lipidated apoE from the brain of awake and freely moving mice and monitor apoE levels over the course of several hours from a single mouse. Our technique enables assessment of brain apoE dynamics under physiological and pathophysiological conditions and in response to therapeutic interventions designed to affect apoE levels and lipidation within the brain.
Collapse
Affiliation(s)
- Jason D Ulrich
- Department of Neurology, Saint Louis, MO, USA
- Hope Center for Neurological Disorders, Saint Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jack M Burchett
- Department of Neurology, Saint Louis, MO, USA
- Hope Center for Neurological Disorders, Saint Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jessica L Restivo
- Department of Neurology, Saint Louis, MO, USA
- Hope Center for Neurological Disorders, Saint Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Dorothy R Schuler
- Department of Neurology, Saint Louis, MO, USA
- Hope Center for Neurological Disorders, Saint Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Philip B Verghese
- Department of Neurology, Saint Louis, MO, USA
- Hope Center for Neurological Disorders, Saint Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Thomas E Mahan
- Department of Neurology, Saint Louis, MO, USA
- Hope Center for Neurological Disorders, Saint Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Gary E Landreth
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106USA
| | - Joseph M Castellano
- Department of Neurology, Saint Louis, MO, USA
- Hope Center for Neurological Disorders, Saint Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Hong Jiang
- Department of Neurology, Saint Louis, MO, USA
- Hope Center for Neurological Disorders, Saint Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - John R Cirrito
- Department of Neurology, Saint Louis, MO, USA
- Hope Center for Neurological Disorders, Saint Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - David M Holtzman
- Department of Neurology, Saint Louis, MO, USA
- Hope Center for Neurological Disorders, Saint Louis, MO, USA
- Developmental Biology, Saint Louis, MO, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
18
|
Rossello XS, Igbavboa U, Weisman GA, Sun GY, Wood WG. AP-2β regulates amyloid beta-protein stimulation of apolipoprotein E transcription in astrocytes. Brain Res 2012; 1444:87-95. [PMID: 22325097 DOI: 10.1016/j.brainres.2012.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/04/2012] [Accepted: 01/08/2012] [Indexed: 02/04/2023]
Abstract
Two key players involved in Alzheimer's disease (AD) are amyloid beta protein (Aβ) and apolipoprotein E (apoE). Aβ increases apoE protein levels in astrocytes which is associated with cholesterol trafficking, neuroinflammatory responses and Aβ clearance. The mechanism for the increase in apoE protein abundance is not understood. Based on different lines of evidence, we propose that the beta-adrenergic receptor (βAR), cAMP and the transcription factor activator protein-2 (AP-2) are contributors to the Aβ-induced increase in apoE abundance. This hypothesis was tested in mouse primary astrocytes and in cells transfected with an apoE promoter fragment with binding sites for AP-2. Aβ(42) induced a time-dependent increase in apoE mRNA and protein levels which were significantly inhibited by βAR antagonists. A novel finding was that Aβ incubation significantly reduced AP-2α levels and significantly increased AP-2β levels in the nuclear fraction. The impact of Aβ-induced translocation of AP-2 into the nucleus was demonstrated in cells expressing AP-2 and incubated with Aβ(42). AP-2 expressing cells had enhanced activation of the apoE promoter region containing AP-2 binding sites in contrast to AP-2 deficient cells. The transcriptional upregulation of apoE expression by Aβ(42) may be a neuroprotective response to Aβ-induced cytotoxicity, consistent with apoE's role in cytoprotection.
Collapse
Affiliation(s)
- Ximena S Rossello
- Department of Pharmacology, University of Minnesota School of Medicine, Geriatric Research Education and Clinical Center, VAMC, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|