1
|
Liu JY, Kuna RS, Pinheiro LV, Nguyen PTT, Welles JE, Drummond JM, Murali N, Sharma PV, Supplee JG, Shiue M, Zhao S, Farria AT, Kumar A, Ruchhoeft ML, Demetriadou C, Kantner DS, Chatoff A, Megill E, Titchenell PM, Snyder NW, Metallo CM, Wellen KE. Bempedoic acid suppresses diet-induced hepatic steatosis independently of ATP-citrate lyase. Cell Metab 2025; 37:239-254.e7. [PMID: 39471816 PMCID: PMC11711013 DOI: 10.1016/j.cmet.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/07/2024] [Accepted: 10/18/2024] [Indexed: 11/01/2024]
Abstract
ATP citrate lyase (ACLY) synthesizes acetyl-CoA for de novo lipogenesis (DNL), which is elevated in metabolic dysfunction-associated steatotic liver disease. Hepatic ACLY is inhibited by the LDL-cholesterol-lowering drug bempedoic acid (BPA), which also improves steatosis in mice. While BPA potently suppresses hepatic DNL and increases fat catabolism, it is unclear if ACLY is its primary molecular target in reducing liver triglyceride. We show that on a Western diet, loss of hepatic ACLY alone or together with the acetyl-CoA synthetase ACSS2 unexpectedly exacerbates steatosis, linked to reduced PPARα target gene expression and fatty acid oxidation. Importantly, BPA treatment ameliorates Western diet-mediated triacylglyceride accumulation in both WT and liver ACLY knockout mice, indicating that its primary effects on hepatic steatosis are ACLY independent. Together, these data indicate that hepatic ACLY plays an unexpected role in restraining diet-dependent lipid accumulation and that BPA exerts substantial effects on hepatic lipid metabolism independently of ACLY.
Collapse
Affiliation(s)
- Joyce Y Liu
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ramya S Kuna
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Laura V Pinheiro
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Phuong T T Nguyen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jaclyn E Welles
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jack M Drummond
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nivitha Murali
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Prateek V Sharma
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julianna G Supplee
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mia Shiue
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven Zhao
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aimee T Farria
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Avi Kumar
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mauren L Ruchhoeft
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christina Demetriadou
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Daniel S Kantner
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Adam Chatoff
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Emily Megill
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Paul M Titchenell
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel W Snyder
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Christian M Metallo
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Fan LC, McConn K, Plataki M, Kenny S, Williams NC, Kim K, Quirke JA, Chen Y, Sauler M, Möbius ME, Chung KP, Area Gomez E, Choi AM, Xu JF, Cloonan SM. Alveolar type II epithelial cell FASN maintains lipid homeostasis in experimental COPD. JCI Insight 2023; 8:e163403. [PMID: 37606038 PMCID: PMC10543729 DOI: 10.1172/jci.insight.163403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/10/2023] [Indexed: 08/23/2023] Open
Abstract
Alveolar epithelial type II (AEC2) cells strictly regulate lipid metabolism to maintain surfactant synthesis. Loss of AEC2 cell function and surfactant production are implicated in the pathogenesis of the smoking-related lung disease chronic obstructive pulmonary disease (COPD). Whether smoking alters lipid synthesis in AEC2 cells and whether altering lipid metabolism in AEC2 cells contributes to COPD development are unclear. In this study, high-throughput lipidomic analysis revealed increased lipid biosynthesis in AEC2 cells isolated from mice chronically exposed to cigarette smoke (CS). Mice with a targeted deletion of the de novo lipogenesis enzyme, fatty acid synthase (FASN), in AEC2 cells (FasniΔAEC2) exposed to CS exhibited higher bronchoalveolar lavage fluid (BALF) neutrophils, higher BALF protein, and more severe airspace enlargement. FasniΔAEC2 mice exposed to CS had lower levels of key surfactant phospholipids but higher levels of BALF ether phospholipids, sphingomyelins, and polyunsaturated fatty acid-containing phospholipids, as well as increased BALF surface tension. FasniΔAEC2 mice exposed to CS also had higher levels of protective ferroptosis markers in the lung. These data suggest that AEC2 cell FASN modulates the response of the lung to smoke by regulating the composition of the surfactant phospholipidome.
Collapse
Affiliation(s)
- Li-Chao Fan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Keith McConn
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Sarah Kenny
- School of Medicine, Trinity Biomedical Sciences Institute, and
| | | | - Kihwan Kim
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | - Yan Chen
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Kuei-Pin Chung
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Laboratory Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Estela Area Gomez
- Division of Neuromuscular Medicine, Department of Neurology, Columbia University Irving Medical Center, Neurological Institute, New York, New York, USA
- Center for Biological Research “Margarita Salas”, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Augustine M.K. Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Suzanne M. Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- School of Medicine, Trinity Biomedical Sciences Institute, and
| |
Collapse
|
3
|
Saito K, Sekiya M, Kainoh K, Yoshino R, Hayashi A, Han SI, Araki M, Ohno H, Takeuchi Y, Tsuyuzaki T, Yamazaki D, Wanpei C, Hada L, Watanabe S, Paramita Adi Putri PI, Murayama Y, Sugano Y, Osaki Y, Iwasaki H, Yahagi N, Suzuki H, Miyamoto T, Matsuzaka T, Shimano H. Obesity-induced metabolic imbalance allosterically modulates CtBP2 to inhibit PPAR-alpha transcriptional activity. J Biol Chem 2023:104890. [PMID: 37286039 PMCID: PMC10339064 DOI: 10.1016/j.jbc.2023.104890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023] Open
Abstract
Maintenance of metabolic homeostasis is secured by metabolite-sensing systems, which can be overwhelmed by constant macronutrient surplus in obesity. Not only the uptake processes but also the consumption of energy substrates determine the cellular metabolic burden. We herein describe a novel transcriptional system in this context comprised of peroxisome proliferator-activated receptor alpha (PPARα), a master regulator for fatty acid oxidation, and C-terminal binding protein 2 (CtBP2), a metabolite-sensing transcriptional co-repressor. CtBP2 interacts with PPARα to repress its activity, and the interaction is enhanced upon binding to malonyl-CoA, a metabolic intermediate increased in tissues in obesity and reported to suppress fatty acid oxidation through inhibition of carnitine palmitoyltransferase 1 (CPT1). In line with our preceding observations that CtBP2 adopts a monomeric configuration upon binding to acyl-CoAs, we determined that mutations in CtBP2 that shift the conformational equilibrium toward monomers increase the interaction between CtBP2 and PPARα. In contrast, metabolic manipulations that reduce malonyl-CoA decreased the formation of the CtBP2/PPARα complex. Consistent with these in vitro findings, we found that the CtBP2/PPARα interaction is accelerated in obese livers while genetic deletion of CtBP2 in the liver causes derepression of PPARα target genes. These findings support our model where CtBP2 exists primarily as a monomer in the metabolic milieu of obesity to repress PPARα, representing a liability in metabolic diseases that can be exploited to develop therapeutic approaches.
Collapse
Affiliation(s)
- Kenji Saito
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Motohiro Sekiya
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575.
| | - Kenta Kainoh
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Ryunosuke Yoshino
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Akio Hayashi
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Song-Iee Han
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Masaya Araki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Hiroshi Ohno
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Yoshinori Takeuchi
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Tomomi Tsuyuzaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Daichi Yamazaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Chen Wanpei
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Lisa Hada
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Sho Watanabe
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Putu Indah Paramita Adi Putri
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Yuki Murayama
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Yoko Sugano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Yoshinori Osaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Hitoshi Iwasaki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Naoya Yahagi
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Hiroaki Suzuki
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575; Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan, 305-8575
| |
Collapse
|
4
|
Qian Z, Chen L, Liu J, Jiang Y, Zhang Y. The emerging role of PPAR-alpha in breast cancer. Biomed Pharmacother 2023; 161:114420. [PMID: 36812713 DOI: 10.1016/j.biopha.2023.114420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer has been confirmed to have lipid disorders in the tumour microenvironment. Peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcriptional factor that belongs to the family of nuclear receptors. PPARα regulates the expression of genes involved in fatty acid homeostasis and is a major regulator of lipid metabolism. Because of its effects on lipid metabolism, an increasing number of studies have investigated the relationship of PPARα with breast cancer. PPARα has been shown to impact the cell cycle and apoptosis in normal cells and tumoral cells through regulating genes of the lipogenic pathway, fatty acid oxidation, fatty acid activation, and uptake of exogenous fatty acids. Besides, PPARα is involved in the regulation of the tumour microenvironment (anti-inflammation and inhibition of angiogenesis) by modulating different signal pathways such as NF-κB and PI3K/AKT/mTOR. Some synthetic PPARα ligands are used in adjuvant therapy for breast cancer. PPARα agonists are reported to reduce the side effects of chemotherapy and endocrine therapy. In addition, PPARα agonists enhance the curative effects of targeted therapy and radiation therapy. Interestingly, with the emerging role of immunotherapy, attention has been focused on the tumour microenvironment. The dual functions of PPARα agonists in immunotherapy need further research. This review aims to consolidate the operations of PPARα in lipid-related and other ways, as well as discuss the current and potential applications of PPARα agonists in tackling breast cancer.
Collapse
Affiliation(s)
- Zhiwen Qian
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China.
| | - Lingyan Chen
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China.
| | - Jiayu Liu
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China.
| | - Ying Jiang
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China.
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China; Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China.
| |
Collapse
|
5
|
Trub AG, Wagner GR, Anderson KA, Crown SB, Zhang GF, Thompson JW, Ilkayeva OR, Stevens RD, Grimsrud PA, Kulkarni RA, Backos DS, Meier JL, Hirschey MD. Statin therapy inhibits fatty acid synthase via dynamic protein modifications. Nat Commun 2022; 13:2542. [PMID: 35538051 PMCID: PMC9090928 DOI: 10.1038/s41467-022-30060-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Statins are a class of drug widely prescribed for the prevention of cardiovascular disease, with pleiotropic cellular effects. Statins inhibit HMG-CoA reductase (HMGCR), which converts the metabolite HMG-CoA into mevalonate. Recent discoveries have shown HMG-CoA is a reactive metabolite that can non-enzymatically modify proteins and impact their activity. Therefore, we predicted that inhibition of HMGCR by statins might increase HMG-CoA levels and protein modifications. Upon statin treatment, we observe a strong increase in HMG-CoA levels and modification of only a single protein. Mass spectrometry identifies this protein as fatty acid synthase (FAS), which is modified on active site residues and, importantly, on non-lysine side-chains. The dynamic modifications occur only on a sub-pool of FAS that is located near HMGCR and alters cellular signaling around the ER and Golgi. These results uncover communication between cholesterol and lipid biosynthesis by the substrate of one pathway inhibiting another in a rapid and reversible manner.
Collapse
Affiliation(s)
- Alec G Trub
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Pharmacology & Cancer Biology, Durham, NC, USA
| | - Gregory R Wagner
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Durham, NC, USA
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Durham, NC, USA
| | - Kristin A Anderson
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Pharmacology & Cancer Biology, Durham, NC, USA
| | - Scott B Crown
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Durham, NC, USA
| | - Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Durham, NC, USA
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Durham, NC, USA
| | - J Will Thompson
- Department of Pharmacology & Cancer Biology, Durham, NC, USA
- Duke Proteomics and Metabolomics Shared Resource, Duke University Medical Center, Durham, NC, 27710, USA
| | - Olga R Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Durham, NC, USA
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Durham, NC, USA
| | - Robert D Stevens
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Durham, NC, USA
| | - Paul A Grimsrud
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Durham, NC, USA
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Durham, NC, USA
| | - Rhushikesh A Kulkarni
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Donald S Backos
- Computational Chemistry and Biology Core Facility, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Matthew D Hirschey
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Durham, NC, USA.
- Department of Pharmacology & Cancer Biology, Durham, NC, USA.
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Durham, NC, USA.
| |
Collapse
|
6
|
Coenzyme A Restriction as a Factor Underlying Pre-Eclampsia with Polycystic Ovary Syndrome as a Risk Factor. Int J Mol Sci 2022; 23:ijms23052785. [PMID: 35269927 PMCID: PMC8911031 DOI: 10.3390/ijms23052785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Pre-eclampsia is the most common pregnancy complication affecting 1 in 20 pregnancies, characterized by high blood pressure and signs of organ damage, most often to the liver and kidneys. Metabolic network analysis of published lipidomic data points to a shortage of Coenzyme A (CoA). Gene expression profile data reveal alterations to many areas of metabolism and, crucially, to conflicting cellular regulatory mechanisms arising from the overproduction of signalling lipids driven by CoA limitation. Adverse feedback loops appear, forming sphingosine-1-phosphate (a cause of hypertension, hypoxia and inflammation), cytotoxic isoketovaleric acid (inducing acidosis and organ damage) and a thrombogenic lysophosphatidyl serine. These also induce mitochondrial and oxidative stress, leading to untimely apoptosis, which is possibly the cause of CoA restriction. This work provides a molecular basis for the signs of pre-eclampsia, why polycystic ovary syndrome is a risk factor and what might be done to treat and reduce the risk of disease.
Collapse
|
7
|
Fatty Acid Synthase: An Emerging Target in Cancer. Molecules 2020; 25:molecules25173935. [PMID: 32872164 PMCID: PMC7504791 DOI: 10.3390/molecules25173935] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
In recent years, lipid metabolism has garnered significant attention as it provides the necessary building blocks required to sustain tumor growth and serves as an alternative fuel source for ATP generation. Fatty acid synthase (FASN) functions as a central regulator of lipid metabolism and plays a critical role in the growth and survival of tumors with lipogenic phenotypes. Accumulating evidence has shown that it is capable of rewiring tumor cells for greater energy flexibility to attain their high energy requirements. This multi-enzyme protein is capable of modulating the function of subcellular organelles for optimal function under different conditions. Apart from lipid metabolism, FASN has functional roles in other cellular processes such as glycolysis and amino acid metabolism. These pivotal roles of FASN in lipid metabolism make it an attractive target in the clinic with several new inhibitors currently being tested in early clinical trials. This article aims to present the current evidence on the emergence of FASN as a target in human malignancies.
Collapse
|
8
|
Zangouei AS, Barjasteh AH, Rahimi HR, Mojarrad M, Moghbeli M. Role of tyrosine kinases in bladder cancer progression: an overview. Cell Commun Signal 2020; 18:127. [PMID: 32795296 PMCID: PMC7427778 DOI: 10.1186/s12964-020-00625-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
Background Bladder cancer (BCa) is a frequent urothelial malignancy with a high ratio of morbidity and mortality. Various genetic and environmental factors are involved in BCa progression. Since, majority of BCa cases are diagnosed after macroscopic clinical symptoms, it is required to find efficient markers for the early detection. Receptor tyrosine-kinases (RTKs) and non-receptor tyrosine-kinases (nRTKs) have pivotal roles in various cellular processes such as growth, migration, differentiation, and metabolism through different signaling pathways. Tyrosine-kinase deregulations are observed during tumor progressions via mutations, amplification, and chromosomal abnormalities which introduces these factors as important candidates of anti-cancer therapies. Main body For the first time in present review we have summarized all of the reported tyrosine-kinases which have been significantly associated with the clinicopathological features of BCa patients. Conclusions This review highlights the importance of tyrosine-kinases as critical markers in early detection and therapeutic purposes among BCa patients and clarifies the molecular biology of tyrosine-kinases during BCa progression and metastasis. Video abstract
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Barjasteh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Wallace M, Metallo CM. Tracing insights into de novo lipogenesis in liver and adipose tissues. Semin Cell Dev Biol 2020; 108:65-71. [PMID: 32201132 DOI: 10.1016/j.semcdb.2020.02.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Lipids play important roles in biology that include structural compartmentation as membranes, energy storage, and regulatory functions as signaling molecules. These molecules can be obtained via the surrounding environment (e.g. diet) or synthesized de novo. Fatty acid synthesis is an energetically demanding process and must therefore be tightly regulated to balance fatty acid availability with the functional and energetic needs of cells and tissues. Here we review key aspects of de novo lipogenesis (DNL) in mammalian systems. We highlight key nodes in the pathway that are used for quantitation of lipogenic fluxes and regulation of fatty acid diversity across tissues. Next, we discuss key aspects of DNL function in the major lipogenic tissues of mammals: liver, white adipose tissue (WAT), and brown adipose tissue (BAT), highlighting recent molecular discoveries that suggest potential roles for tissue specific DNL. Finally, we propose critical questions that will be important to address using the advanced approaches for DNL quantitation described herein.
Collapse
Affiliation(s)
- Martina Wallace
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
10
|
Abdelrahman AE, Rashed HE, Elkady E, Elsebai EA, El-Azony A, Matar I. Fatty acid synthase, Her2/neu, and E2F1 as prognostic markers of progression in non-muscle invasive bladder cancer. Ann Diagn Pathol 2019; 39:42-52. [PMID: 30684846 DOI: 10.1016/j.anndiagpath.2019.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/25/2018] [Accepted: 01/15/2019] [Indexed: 12/29/2022]
Abstract
Non-muscle-invasive bladder cancer (NMIBC) is a heterogeneous disease which has an unpredictable risk of progression to muscle-invasive bladder cancer (MIBC). The selection of patients who may benefit from early radical intervention is a challenge. To define the useful prognostic markers for progression, we analyzed the immunohistochemical expression of fatty acid synthase (FASN), Her2/neu, and E2F1 in 60 cases of NMIBC who underwent TURBT and adjuvant intravesical bacillus-Calmette-Guérin (BCG). Their predicting role for tumor recurrence, progression, recurrence-free survival (RFS) and progression-free survival (PFS) was analyzed. High FASN expression was observed in 56.7% (34/60) of NMIBC cases, and FASN expression was significantly associated with the tumor size, grade, and tumor stage (p = 0.003, p < 0.001, p < 0.0001 respectively). Positive Her2/neu was noted in 18.3% (11/60) of the cases, and its expression was significantly associated with the tumor size, histologic grade, and tumor stage (p = 0.001, p = 0.002, p = 0.011 respectively). High E2F1 expression was detected in 40% of the cases, and it was associated with tumor size, histologic grade, and tumor stage (p < 0.001 for each). Analysis of follow-up period revealed that NMIBC with high FASN, positive Her2/neu, and high E2F1 expression exhibited a potent relation with tumor progression, shorter RFS, and poor PFS. Conclusions: High FASN, Her2/neu, and E2F1 are considered as adverse prognostic factors of tumor recurrence and progression in NMIBC and these patients should be followed carefully. Therefore, we suggest that FASN, Her2/neu, and E2F1 should be considered and evaluated during the selection of the appropriate management strategy for NMIBC patients.
Collapse
Affiliation(s)
| | - Hayam E Rashed
- Pathology Department, Faculty of Medicine, Zagazig University, Egypt
| | - Ehab Elkady
- Urology Department, Faculty of Medicine, Zagazig University, Egypt
| | - Eman A Elsebai
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Zagazig University, Egypt
| | - Ahmed El-Azony
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Zagazig University, Egypt
| | - Ihab Matar
- Surgical Oncology Department, Al-Ahrar Zagazig Teaching Hospital, Egypt
| |
Collapse
|
11
|
Krzysiak TC, Thomas L, Choi YJ, Auclair S, Qian Y, Luan S, Krasnow SM, Thomas LL, Koharudin LMI, Benos PV, Marks DL, Gronenborn AM, Thomas G. An Insulin-Responsive Sensor in the SIRT1 Disordered Region Binds DBC1 and PACS-2 to Control Enzyme Activity. Mol Cell 2018; 72:985-998.e7. [PMID: 30415949 PMCID: PMC6309500 DOI: 10.1016/j.molcel.2018.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/13/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Current models of SIRT1 enzymatic regulation primarily consider the effects of fluctuating levels of its co-substrate NAD+, which binds to the stably folded catalytic domain. By contrast, the roles of the sizeable disordered N- and C-terminal regions of SIRT1 are largely unexplored. Here we identify an insulin-responsive sensor in the SIRT1 N-terminal region (NTR), comprising an acidic cluster (AC) and a 3-helix bundle (3HB), controlling deacetylase activity. The allosteric assistor DBC1 removes a distal N-terminal shield from the 3-helix bundle, permitting PACS-2 to engage the acidic cluster and the transiently exposed helix 3 of the 3-helix bundle, disrupting its structure and inhibiting catalysis. The SIRT1 activator (STAC) SRT1720 binds and stabilizes the 3-helix bundle, protecting SIRT1 from inhibition by PACS-2. Identification of the SIRT1 insulin-responsive sensor and its engagement by the DBC1 and PACS-2 regulatory hub provides important insight into the roles of disordered regions in enzyme regulation and the mode by which STACs promote metabolic fitness.
Collapse
Affiliation(s)
- Troy C Krzysiak
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Laurel Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - You-Jin Choi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Sylvain Auclair
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yiqi Qian
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Shan Luan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Stephanie M Krasnow
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Laura L Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Leonardus M I Koharudin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Daniel L Marks
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
12
|
Grunt TW. Interacting Cancer Machineries: Cell Signaling, Lipid Metabolism, and Epigenetics. Trends Endocrinol Metab 2018; 29:86-98. [PMID: 29203141 DOI: 10.1016/j.tem.2017.11.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022]
Abstract
Cancer-specific perturbations of signaling, metabolism, and epigenetics can be a cause and/or consequence of malignant transformation. Evidence indicates that these regulatory systems interact with each other to form highly flexible and robust cybernetic networks that promote malignant growth and confer treatment resistance. Deciphering these plexuses using holistic approaches known from systems biology can be instructive for the future design of novel anticancer strategies. In this review, I discuss novel findings elucidating the multiple molecular interdependence among cancer-specific signaling, cell metabolism, and epigenetics to provide an insightful understanding of how major cancer machineries interact with each other during cancer development and progression, and how this knowledge may be used for future co-targeting strategies.
Collapse
Affiliation(s)
- Thomas W Grunt
- Signaling Networks Program, Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
13
|
Buckley D, Duke G, Heuer TS, O'Farrell M, Wagman AS, McCulloch W, Kemble G. Fatty acid synthase – Modern tumor cell biology insights into a classical oncology target. Pharmacol Ther 2017; 177:23-31. [DOI: 10.1016/j.pharmthera.2017.02.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Semenkovich CF. We Know More Than We Can Tell About Diabetes and Vascular Disease: The 2016 Edwin Bierman Award Lecture. Diabetes 2017; 66:1735-1741. [PMID: 28637825 PMCID: PMC5482089 DOI: 10.2337/db17-0093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023]
Abstract
The Edwin Bierman Award Lecture is presented in honor of the memory of Edwin L. Bierman, MD, an exemplary scientist, mentor, and leader in the field of diabetes, obesity, hyperlipidemia, and atherosclerosis. The award and lecture recognizes a leading scientist in the field of macrovascular complications and contributing risk factors in diabetes. Clay F. Semenkovich, MD, the Irene E. and Michael M. Karl Professor and Chief of the Division of Endocrinology, Metabolism and Lipid Research at Washington University School of Medicine in St. Louis, St. Louis, MO, received the prestigious award at the American Diabetes Association's 76th Scientific Sessions, 10-14 June 2016, in New Orleans, LA. He presented the Edwin Bierman Award Lecture, "We Know More Than We Can Tell About Diabetes and Vascular Disease," on Sunday, 12 June 2016.Diabetes is a disorder of abnormal lipid metabolism, a notion strongly supported by the work of Edwin Bierman, for whom this eponymous lecture is named. This abnormal lipid environment continues to be associated with devastating vascular complications in diabetes despite current therapies, suggesting that our understanding of the pathophysiology of blood vessel disease in diabetes is limited. In this review, potential new insights into the nature of diabetic vasculopathy will be discussed. Recent observations suggest that while the concept of distinct macrovascular and microvascular complications of diabetes has been useful, vascular diseases in diabetes may be more interrelated than previously appreciated. Moreover, the intermediary metabolic pathway of de novo lipogenesis, which synthesizes lipids from simple precursors, is robustly sensitive to insulin and may contribute to these complications. De novo lipogenesis requires fatty acid synthase, and recent studies of this enzyme suggest that endogenously produced lipids are channeled to specific intracellular sites to affect physiology. These findings raise the possibility that novel approaches to treating diabetes and its complications could be based on altering the intracellular lipid milieu.
Collapse
Affiliation(s)
- Clay F Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
15
|
Heuer TS, Ventura R, Mordec K, Lai J, Fridlib M, Buckley D, Kemble G. FASN Inhibition and Taxane Treatment Combine to Enhance Anti-tumor Efficacy in Diverse Xenograft Tumor Models through Disruption of Tubulin Palmitoylation and Microtubule Organization and FASN Inhibition-Mediated Effects on Oncogenic Signaling and Gene Expression. EBioMedicine 2016; 16:51-62. [PMID: 28159572 PMCID: PMC5474427 DOI: 10.1016/j.ebiom.2016.12.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
Palmitate, the enzymatic product of FASN, and palmitate-derived lipids support cell metabolism, membrane architecture, protein localization, and intracellular signaling. Tubulins are among many proteins that are modified post-translationally by acylation with palmitate. We show that FASN inhibition with TVB-3166 or TVB-3664 significantly reduces tubulin palmitoylation and mRNA expression. Disrupted microtubule organization in tumor cells is an additional consequence of FASN inhibition. FASN inhibition combined with taxane treatment enhances inhibition of in vitro tumor cell growth compared to treatment with either agent alone. In lung, ovarian, prostate, and pancreatic tumor xenograft studies, FASN inhibition and paclitaxel or docetaxel combine to inhibit xenograft tumor growth with significantly enhanced anti-tumor activity. Tumor regression was observed in 3 of 6 tumor xenograft models. FASN inhibition does not affect cellular taxane concentration in vitro. Our data suggest a mechanism of enhanced anti-tumor activity of the FASN and taxane drug combination that includes inhibition of tubulin palmitoylation and disruption of microtubule organization in tumor cells, as well as a sensitization of tumor cells to FASN inhibition-mediated effects that include gene expression changes and inhibition of β-catenin. Together, the results strongly support investigation of combined FASN inhibition and taxane treatment as a therapy for a variety of human cancers. FASN inhibition decreases tubulin palmitoylation and disrupts microtubules in tumor cells but not non-tumor cells Combined FASN inhibition and taxane treatment increases inhibition of in vitro tumor cell colony growth FASN inhibition does not affect intracellular paclitaxel concentrations Combined FASN inhibition and taxane treatment significantly increases inhibition of tumor growth or causes regression of diverse xenograft tumors Taxane treatment sensitizes xenograft tumors to FASN inhibition-mediated beta-catenin blockade and gene expression changes
Fatty acid synthase (FASN) is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition combines with taxane treatment to enhance tumor growth inhibition and induce tumor regression in varied preclinical tumor models. Mechanism-of-action studies indicate that the increased activity of the combination results from the effects of both drugs. The results support clinical investigation of combined FASN inhibition and taxane treatment as an anti-cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Julie Lai
- 3-V Biosciences, Menlo Park, CA, USA
| | | | | | | |
Collapse
|
16
|
C13orf31 (FAMIN) is a central regulator of immunometabolic function. Nat Immunol 2016; 17:1046-56. [PMID: 27478939 DOI: 10.1038/ni.3532] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/01/2016] [Indexed: 12/15/2022]
Abstract
Single-nucleotide variations in C13orf31 (LACC1) that encode p.C284R and p.I254V in a protein of unknown function (called 'FAMIN' here) are associated with increased risk for systemic juvenile idiopathic arthritis, leprosy and Crohn's disease. Here we set out to identify the biological mechanism affected by these coding variations. FAMIN formed a complex with fatty acid synthase (FASN) on peroxisomes and promoted flux through de novo lipogenesis to concomitantly drive high levels of fatty-acid oxidation (FAO) and glycolysis and, consequently, ATP regeneration. FAMIN-dependent FAO controlled inflammasome activation, mitochondrial and NADPH-oxidase-dependent production of reactive oxygen species (ROS), and the bactericidal activity of macrophages. As p.I254V and p.C284R resulted in diminished function and loss of function, respectively, FAMIN determined resilience to endotoxin shock. Thus, we have identified a central regulator of the metabolic function and bioenergetic state of macrophages that is under evolutionary selection and determines the risk of inflammatory and infectious disease.
Collapse
|
17
|
Imbalanced insulin action in chronic over nutrition: Clinical harm, molecular mechanisms, and a way forward. Atherosclerosis 2016; 247:225-82. [PMID: 26967715 DOI: 10.1016/j.atherosclerosis.2016.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/31/2015] [Accepted: 02/02/2016] [Indexed: 02/08/2023]
Abstract
The growing worldwide prevalence of overnutrition and underexertion threatens the gains that we have made against atherosclerotic cardiovascular disease and other maladies. Chronic overnutrition causes the atherometabolic syndrome, which is a cluster of seemingly unrelated health problems characterized by increased abdominal girth and body-mass index, high fasting and postprandial concentrations of cholesterol- and triglyceride-rich apoB-lipoproteins (C-TRLs), low plasma HDL levels, impaired regulation of plasma glucose concentrations, hypertension, and a significant risk of developing overt type 2 diabetes mellitus (T2DM). In addition, individuals with this syndrome exhibit fatty liver, hypercoagulability, sympathetic overactivity, a gradually rising set-point for body adiposity, a substantially increased risk of atherosclerotic cardiovascular morbidity and mortality, and--crucially--hyperinsulinemia. Many lines of evidence indicate that each component of the atherometabolic syndrome arises, or is worsened by, pathway-selective insulin resistance and responsiveness (SEIRR). Individuals with SEIRR require compensatory hyperinsulinemia to control plasma glucose levels. The result is overdrive of those pathways that remain insulin-responsive, particularly ERK activation and hepatic de-novo lipogenesis (DNL), while carbohydrate regulation deteriorates. The effects are easily summarized: if hyperinsulinemia does something bad in a tissue or organ, that effect remains responsive in the atherometabolic syndrome and T2DM; and if hyperinsulinemia might do something good, that effect becomes resistant. It is a deadly imbalance in insulin action. From the standpoint of human health, it is the worst possible combination of effects. In this review, we discuss the origins of the atherometabolic syndrome in our historically unprecedented environment that only recently has become full of poorly satiating calories and incessant enticements to sit. Data are examined that indicate the magnitude of daily caloric imbalance that causes obesity. We also cover key aspects of healthy, balanced insulin action in liver, endothelium, brain, and elsewhere. Recent insights into the molecular basis and pathophysiologic harm from SEIRR in these organs are discussed. Importantly, a newly discovered oxide transport chain functions as the master regulator of the balance amongst different limbs of the insulin signaling cascade. This oxide transport chain--abbreviated 'NSAPP' after its five major proteins--fails to function properly during chronic overnutrition, resulting in this harmful pattern of SEIRR. We also review the origins of widespread, chronic overnutrition. Despite its apparent complexity, one factor stands out. A sophisticated junk food industry, aided by subsidies from willing governments, has devoted years of careful effort to promote overeating through the creation of a new class of food and drink that is low- or no-cost to the consumer, convenient, savory, calorically dense, yet weakly satiating. It is past time for the rest of us to overcome these foes of good health and solve this man-made epidemic.
Collapse
|
18
|
Ohol YM, Wang Z, Kemble G, Duke G. Direct Inhibition of Cellular Fatty Acid Synthase Impairs Replication of Respiratory Syncytial Virus and Other Respiratory Viruses. PLoS One 2015; 10:e0144648. [PMID: 26659560 PMCID: PMC4684246 DOI: 10.1371/journal.pone.0144648] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/20/2015] [Indexed: 02/06/2023] Open
Abstract
Fatty acid synthase (FASN) catalyzes the de novo synthesis of palmitate, a fatty acid utilized for synthesis of more complex fatty acids, plasma membrane structure, and post-translational palmitoylation of host and viral proteins. We have developed a potent inhibitor of FASN (TVB-3166) that reduces the production of respiratory syncytial virus (RSV) progeny in vitro from infected human lung epithelial cells (A549) and in vivo from mice challenged intranasally with RSV. Addition of TVB-3166 to the culture medium of RSV-infected A549 cells reduces viral spread without inducing cytopathic effects. The antiviral effect of the FASN inhibitor is a direct consequence of reducing de novo palmitate synthesis; similar doses are required for both antiviral activity and inhibition of palmitate production, and the addition of exogenous palmitate to TVB-3166-treated cells restores RSV production. TVB-3166 has minimal effect on RSV entry but significantly reduces viral RNA replication, protein levels, viral particle formation and infectivity of released viral particles. TVB-3166 substantially impacts viral replication, reducing production of infectious progeny 250-fold. In vivo, oral administration of TVB-3166 to RSV-A (Long)-infected BALB/c mice on normal chow, starting either on the day of infection or one day post-infection, reduces RSV lung titers 21-fold and 9-fold respectively. Further, TVB-3166 also inhibits the production of RSV B, human parainfluenza 3 (PIV3), and human rhinovirus 16 (HRV16) progeny from A549, HEp2 and HeLa cells respectively. Thus, inhibition of FASN and palmitate synthesis by TVB-3166 significantly reduces RSV progeny both in vitro and in vivo and has broad-spectrum activity against other respiratory viruses. FASN inhibition may alter the composition of regions of the host cell membrane where RSV assembly or replication occurs, or change the membrane composition of RSV progeny particles, decreasing their infectivity.
Collapse
Affiliation(s)
- Yamini M. Ohol
- 3-V Biosciences, Menlo Park, California, United States of America
| | - Zhaoti Wang
- 3-V Biosciences, Menlo Park, California, United States of America
| | - George Kemble
- 3-V Biosciences, Menlo Park, California, United States of America
| | - Gregory Duke
- 3-V Biosciences, Menlo Park, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Ritchie MK, Johnson LC, Clodfelter JE, Pemble CW, Fulp BE, Furdui CM, Kridel SJ, Lowther WT. Crystal Structure and Substrate Specificity of Human Thioesterase 2: INSIGHTS INTO THE MOLECULAR BASIS FOR THE MODULATION OF FATTY ACID SYNTHASE. J Biol Chem 2015; 291:3520-30. [PMID: 26663084 DOI: 10.1074/jbc.m115.702597] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Indexed: 01/12/2023] Open
Abstract
The type I fatty acid synthase (FASN) is responsible for the de novo synthesis of palmitate. Chain length selection and release is performed by the C-terminal thioesterase domain (TE1). FASN expression is up-regulated in cancer, and its activity levels are controlled by gene dosage and transcriptional and post-translational mechanisms. In addition, the chain length of fatty acids produced by FASN is controlled by a type II thioesterase called TE2 (E.C. 3.1.2.14). TE2 has been implicated in breast cancer and generates a broad lipid distribution within milk. The molecular basis for the ability of the TE2 to compete with TE1 for the acyl chain attached to the acyl carrier protein (ACP) domain of FASN is unknown. Herein, we show that human TE1 efficiently hydrolyzes acyl-CoA substrate mimetics. In contrast, TE2 prefers an engineered human acyl-ACP substrate and readily releases short chain fatty acids from full-length FASN during turnover. The 2.8 Å crystal structure of TE2 reveals a novel capping domain insert within the α/β hydrolase core. This domain is reminiscent of capping domains of type II thioesterases involved in polyketide synthesis. The structure also reveals that the capping domain had collapsed onto the active site containing the Ser-101-His-237-Asp-212 catalytic triad. This observation suggests that the capping domain opens to enable the ACP domain to dock and to place the acyl chain and 4'-phosphopantetheinyl-linker arm correctly for catalysis. Thus, the ability of TE2 to prematurely release fatty acids from FASN parallels the role of editing thioesterases involved in polyketide and non-ribosomal peptide synthase synthases.
Collapse
Affiliation(s)
- Melissa K Ritchie
- From the Center for Structural Biology and Department of Biochemistry
| | | | - Jill E Clodfelter
- From the Center for Structural Biology and Department of Biochemistry
| | - Charles W Pemble
- From the Center for Structural Biology and Department of Biochemistry
| | - Brian E Fulp
- Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, North Carolina 27157
| | - Cristina M Furdui
- Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, North Carolina 27157 Department of Internal Medicine, Section on Molecular Medicine, and
| | - Steven J Kridel
- Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, North Carolina 27157 Department of Cancer Biology, Wake Forest School of Medicine and
| | - W Todd Lowther
- From the Center for Structural Biology and Department of Biochemistry, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, North Carolina 27157
| |
Collapse
|
20
|
Paran CW, Zou K, Ferrara PJ, Song H, Turk J, Funai K. Lipogenesis mitigates dysregulated sarcoplasmic reticulum calcium uptake in muscular dystrophy. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1530-8. [PMID: 26361872 DOI: 10.1016/j.bbalip.2015.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/27/2015] [Accepted: 09/06/2015] [Indexed: 01/07/2023]
Abstract
Muscular dystrophy is accompanied by a reduction in activity of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) that contributes to abnormal Ca(2+) homeostasis in sarco/endoplasmic reticulum (SR/ER). Recent findings suggest that skeletal muscle fatty acid synthase (FAS) modulates SERCA activity and muscle function via its effects on SR membrane phospholipids. In this study, we examined muscle's lipid metabolism in mdx mice, a mouse model for Duchenne muscular dystrophy (DMD). De novo lipogenesis was ~50% reduced in mdx muscles compared to wildtype (WT) muscles. Gene expressions of lipogenic and other ER lipid-modifying enzymes were found to be differentially expressed between wildtype (WT) and mdx muscles. A comprehensive examination of muscles' SR phospholipidome revealed elevated phosphatidylcholine (PC) and PC/phosphatidylethanolamine (PE) ratio in mdx compared to WT mice. Studies in primary myocytes suggested that defects in key lipogenic enzymes including FAS, stearoyl-CoA desaturase-1 (SCD1), and Lipin1 are likely contributing to reduced SERCA activity in mdx mice. Triple transgenic expression of FAS, SCD1, and Lipin1 (3TG) in mdx myocytes partly rescued SERCA activity, which coincided with an increase in SR PE that normalized PC/PE ratio. These findings implicate a defect in lipogenesis to be a contributing factor for SERCA dysfunction in muscular dystrophy. Restoration of muscle's lipogenic pathway appears to mitigate SERCA function through its effects on SR membrane composition.
Collapse
Affiliation(s)
- Christopher W Paran
- Department of Kinesiology, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA; Department of Physiology, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA
| | - Kai Zou
- Department of Kinesiology, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA
| | - Patrick J Ferrara
- Department of Kinesiology, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA
| | - Haowei Song
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - John Turk
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Katsuhiko Funai
- Department of Kinesiology, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA; Department of Physiology, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, North Carolina 27834, USA.
| |
Collapse
|
21
|
Ginkgolide C Suppresses Adipogenesis in 3T3-L1 Adipocytes via the AMPK Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:298635. [PMID: 26413119 PMCID: PMC4568043 DOI: 10.1155/2015/298635] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/05/2015] [Accepted: 08/13/2015] [Indexed: 12/11/2022]
Abstract
Ginkgolide C, isolated from Ginkgo biloba leaves, is a diterpene lactone derivative [corrected] reported to have multiple biological functions, from decreased platelet aggregation to ameliorating Alzheimer disease. The study aim was to evaluate the antiadipogenic effect of ginkgolide C in 3T3-L1 adipocytes. Ginkgolide C was used to treat differentiated 3T3-L1 cells. Cell supernatant was collected to assay glycerol release, and cells were lysed to measure protein and gene expression related to adipogenesis and lipolysis by western blot and real-time PCR, respectively. Ginkgolide C significantly suppressed lipid accumulation in differentiated adipocytes. It also decreased adipogenesis-related transcription factor expression, including peroxisome proliferator-activated receptor and CCAAT/enhancer-binding protein. Furthermore, ginkgolide C enhanced adipose triglyceride lipase and hormone-sensitive lipase production for lipolysis and increased phosphorylation of AMP-activated protein kinase (AMPK), resulting in decreased activity of acetyl-CoA carboxylase for fatty acid synthesis. In coculture with an AMPK inhibitor (compound C), ginkgolide C also improved activation of sirtuin 1 and phosphorylation of AMPK in differentiated 3T3-L1 cells. The results suggest that ginkgolide C is an effective flavone for increasing lipolysis and inhibiting adipogenesis in adipocytes through the activated AMPK pathway.
Collapse
|
22
|
Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 2015; 62:720-33. [PMID: 25450203 DOI: 10.1016/j.jhep.2014.10.039] [Citation(s) in RCA: 1049] [Impact Index Per Article: 104.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/22/2014] [Accepted: 10/26/2014] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor belonging, together with PPARγ and PPARβ/δ, to the NR1C nuclear receptor subfamily. Many PPARα target genes are involved in fatty acid metabolism in tissues with high oxidative rates such as muscle, heart and liver. PPARα activation, in combination with PPARβ/δ agonism, improves steatosis, inflammation and fibrosis in pre-clinical models of non-alcoholic fatty liver disease, identifying a new potential therapeutic area. In this review, we discuss the transcriptional activation and repression mechanisms by PPARα, the spectrum of target genes and chromatin-binding maps from recent genome-wide studies, paying particular attention to PPARα-regulation of hepatic fatty acid and plasma lipoprotein metabolism during nutritional transition, and of the inflammatory response. The role of PPARα, together with other PPARs, in non-alcoholic steatohepatitis will be discussed in light of available pre-clinical and clinical data.
Collapse
Affiliation(s)
- Michal Pawlak
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Université Lille 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Philippe Lefebvre
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Université Lille 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France
| | - Bart Staels
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; Université Lille 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; Institut Pasteur de Lille, F-59000 Lille, France.
| |
Collapse
|
23
|
Lodhi IJ, Wei X, Yin L, Feng C, Adak S, Abou-Ezzi G, Hsu FF, Link DC, Semenkovich CF. Peroxisomal lipid synthesis regulates inflammation by sustaining neutrophil membrane phospholipid composition and viability. Cell Metab 2015; 21:51-64. [PMID: 25565205 PMCID: PMC4287274 DOI: 10.1016/j.cmet.2014.12.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/26/2014] [Accepted: 12/09/2014] [Indexed: 12/31/2022]
Abstract
Fatty acid synthase (FAS) is altered in metabolic disorders and cancer. Conventional FAS null mice die in utero, so effects of whole-body inhibition of lipogenesis following development are unknown. Inducible global knockout of FAS (iFASKO) in mice was lethal due to a disrupted intestinal barrier and leukopenia. Conditional loss of FAS was associated with the selective suppression of granulopoiesis without disrupting granulocytic differentiation. Transplantation of iFASKO bone marrow into wild-type mice followed by Cre induction resulted in selective neutrophil depletion, but not death. Impaired lipogenesis increased ER stress and apoptosis in neutrophils by preferentially decreasing peroxisome-derived membrane phospholipids containing ether bonds. Inducible global knockout of PexRAP, a peroxisomal enzyme required for ether lipid synthesis, also produced neutropenia. FAS knockdown in neutrophil-like HL-60 cells caused cell loss that was partially rescued by ether lipids. Inhibiting ether lipid synthesis selectively constrains neutrophil development, revealing an unrecognized pathway in immunometabolism.
Collapse
Affiliation(s)
- Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaochao Wei
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Li Yin
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chu Feng
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sangeeta Adak
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Grazia Abou-Ezzi
- Oncology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel C Link
- Oncology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
24
|
Rudolph MC, Wellberg EA, Lewis AS, Terrell KL, Merz AL, Maluf NK, Serkova NJ, Anderson SM. Thyroid hormone responsive protein Spot14 enhances catalysis of fatty acid synthase in lactating mammary epithelium. J Lipid Res 2014; 55:1052-65. [PMID: 24771867 DOI: 10.1194/jlr.m044487] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Indexed: 12/21/2022] Open
Abstract
Thyroid hormone responsive protein Spot 14 has been consistently associated with de novo fatty acid synthesis activity in multiple tissues, including the lactating mammary gland, which synthesizes large quantities of medium chain fatty acids (MCFAs) exclusively via FASN. However, the molecular function of Spot14 remains undefined during lactation. Spot14-null mice produce milk deficient in total triglyceride and de novo MCFA that does not sustain optimal neonatal growth. The lactation defect was rescued by provision of a high fat diet to the lactating dam. Transgenic mice overexpressing Spot14 in mammary epithelium produced total milk fat equivalent to controls, but with significantly greater MCFA. Spot14-null dams have no diminution of metabolic gene expression, enzyme protein levels, or intermediate metabolites that accounts for impaired de novo MCFA. When [(13)C] fatty acid products were quantified in vitro using crude cytosolic lysates, native FASN activity was 1.6-fold greater in control relative to Spot14-null lysates, and add back of Spot14 partially restored activity. Recombinant FASN catalysis increased 1.4-fold and C = 14:0 yield was enhanced 4-fold in vitro following addition of Spot14. These findings implicate Spot14 as a direct protein enhancer of FASN catalysis in the mammary gland during lactation when maximal MCFA production is needed.
Collapse
Affiliation(s)
- Michael C Rudolph
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO Departments of Pathology University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Elizabeth A Wellberg
- Departments of Pathology University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Andrew S Lewis
- Departments of Pathology University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kristina L Terrell
- Departments of Pathology University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Andrea L Merz
- Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - N Karl Maluf
- School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Natalie J Serkova
- Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Steven M Anderson
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO Departments of Pathology University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
25
|
Schmuth M, Moosbrugger-Martinz V, Blunder S, Dubrac S. Role of PPAR, LXR, and PXR in epidermal homeostasis and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:463-73. [PMID: 24315978 DOI: 10.1016/j.bbalip.2013.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 11/18/2013] [Accepted: 11/23/2013] [Indexed: 12/19/2022]
Abstract
Epidermal lipid synthesis and metabolism are regulated by nuclear hormone receptors (NHR) and in turn epidermal lipid metabolites can serve as ligands to NHR. NHR form a large superfamily of receptors modulating gene transcription through DNA binding. A subgroup of these receptors is ligand-activated and heterodimerizes with the retinoid X receptor including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR) and pregnane X receptor (PXR). Several isotypes of these receptors exist, all of which are expressed in skin. In keratinocytes, ligand activation of PPARs and LXRs stimulates differentiation, induces lipid accumulation, and accelerates epidermal barrier regeneration. In the cutaneous immune system, ligand activation of all three receptors, PPAR, LXR, and PXR, has inhibitory properties, partially mediated by downregulation of the NF-kappaB pathway. PXR also has antifibrotic effects in the skin correlating with TGF-beta inhibition. In summary, ligands of PPAR, LXR and PXR exert beneficial therapeutic effects in skin disease and represent promising targets for future therapeutic approaches in dermatology. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Matthias Schmuth
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria.
| | | | - Stefan Blunder
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
26
|
|