1
|
Liang X, Guo X, Yue Y, Hui F, Tong M, Guo Y, Zheng Y, Shi B, Yan S. The Effect of Increasing the Proportion of Dietary Roughage Based on the Partial Replacement of Low-Quality Roughage with Alfalfa Hay on the Fatty Acid Profile of Donkey Milk. Animals (Basel) 2025; 15:423. [PMID: 39943193 PMCID: PMC11816063 DOI: 10.3390/ani15030423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
As a lactation source, donkey milk contains a higher percentage of n-3 polyunsaturated fatty acids in the milk fatty acid profile than cow's milk, especially the percentage of α-linolenic acid (ALA). We hypothesized that the ratio of dietary concentrate/roughage could influence the composition of the fatty acid (FA) profile of donkey milk, and that the substitution of low-quality roughage with high-quality roughage could improve the composition of the polyunsaturated fatty acid profile of donkey milk. The purpose of this experiment was to investigate the effects of the partial dietary replacement of low-quality roughage with alfalfa hay to increase the proportion of roughage in the diet on the FA profiles in the milk of lactating donkeys, with the goal of optimizing the FA profiles of donkey milk. The trial design was a single-factor randomized design. Sixteen Dezhou donkeys of similar age, weight, parity, and lactation days were selected and equally divided (n = 8 per group) into a low alfalfa hay group (LG, 40 concentrate/60 roughage, alfalfa hay: 44.85 g/kg dry matter) and a high alfalfa hay group (HG, 30 concentrate/70 roughage, alfalfa hay: 179.48 g/kg dry matter). The trial lasted 8 weeks and the energy and protein levels of the two diets were identical. The results showed that the profile of milk ALA increased (p = 0.048) and the n-6/n-3 ratio and index of thrombogenicity were decreased (p = 0.019 and p = 0.002) in the HG. Partial replacement of low-quality roughage with alfalfa hay and increasing the percentage of dietary roughage from 60% to 70% optimized the FA quality of donkey milk fat.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sumei Yan
- Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China; (X.L.); (X.G.); (Y.Y.); (F.H.); (M.T.); (Y.G.); (Y.Z.); (B.S.)
| |
Collapse
|
2
|
Peeters R, Jellusova J. Lipid metabolism in B cell biology. Mol Oncol 2024; 18:1795-1813. [PMID: 38013654 PMCID: PMC11223608 DOI: 10.1002/1878-0261.13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
In recent years, the field of immunometabolism has solidified its position as a prominent area of investigation within the realm of immunological research. An expanding body of scientific literature has unveiled the intricate interplay between energy homeostasis, signalling molecules, and metabolites in relation to fundamental aspects of our immune cells. It is now widely accepted that disruptions in metabolic equilibrium can give rise to a myriad of pathological conditions, ranging from autoimmune disorders to cancer. Emerging evidence, although sometimes fragmented and anecdotal, has highlighted the indispensable role of lipids in modulating the behaviour of immune cells, including B cells. In light of these findings, this review aims to provide a comprehensive overview of the current state of knowledge regarding lipid metabolism in the context of B cell biology.
Collapse
Affiliation(s)
- Rens Peeters
- School of Medicine and Health, Institute of Clinical Chemistry and PathobiochemistryTechnical University of MunichGermany
- TranslaTUM, Center for Translational Cancer ResearchTechnical University of MunichGermany
| | - Julia Jellusova
- School of Medicine and Health, Institute of Clinical Chemistry and PathobiochemistryTechnical University of MunichGermany
- TranslaTUM, Center for Translational Cancer ResearchTechnical University of MunichGermany
| |
Collapse
|
3
|
Amr M, Farid A. Impact of cow, buffalo, goat or camel milk consumption on oxidative stress, inflammation and immune response post weaning time. Sci Rep 2024; 14:9967. [PMID: 38693190 PMCID: PMC11063178 DOI: 10.1038/s41598-024-59959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Milk is a whitish liquid that is secreted from mammary glands; and considered as the primary source of nutrition for newborns since they are not able to digest solid food. However, it contains primary nutrients, as well as growth and immune factors. Early weaning is a critical issue that face women and their babies in developing countries. To avoid infant malnutrition, they tend to use other milk types instead of baby formula. Therefore, the present study aimed to evaluate the impact of cow, buffalo, goat or camel milk consumption on oxidative stress, inflammation and immune response in male and female Sprague Dawley rats post weaning time. The amino acids, fatty acids, minerals and vitamins in the tested milk types were evaluated. Animals were divided into 5 groups (control, cow, buffalo, goat and camel milk administrated groups) (10 rats/group); each animal was administrated by 3.4 ml/day. Rats were administered with milk for 6 weeks; at the end of the 5th week, five animals of each group were isolated and the remaining five animals were immunized with sheep red blood cells (SRBCs) and kept for another week to mount immune response. The effect of different milk types on rats' immune response towards SRBCs was evaluated through pro-inflammatory cytokines, antioxidants, ESR and CRP measurement; together, with the histopathological examination of spleen samples and hemagglutination assay. Camel milk consumption reduced oxidative stress and inflammation in spleen that resulted from SRBCs immunization; in addition to, B cell stimulation that was apparent from the high level of anti-SRBCs antibodies. Camel milk is recommended for newborn consumption, due to its high-water content, unsaturated fatty acids, and vitamin C, as well as low lactose and fat content.
Collapse
Affiliation(s)
- Maryam Amr
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Alyaa Farid
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
| |
Collapse
|
4
|
Ji X, Wu L, Marion T, Luo Y. Lipid metabolism in regulation of B cell development and autoimmunity. Cytokine Growth Factor Rev 2023; 73:40-51. [PMID: 37419766 DOI: 10.1016/j.cytogfr.2023.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
B cells play an important role in adaptive immunity and participate in the process of humoral immunity mainly by secreting antibodies. The entire development and differentiation process of B cells occurs in multiple microenvironments and is regulated by a variety of environmental factors and immune signals. Differentiation biases or disfunction of B cells participate in the process of many autoimmune diseases. Emerging studies report the impact of altered metabolism in B cell biology, including lipid metabolism. Here, we discuss how extracellular lipid environment and metabolites, membrane lipid-related components, and lipid synthesis and catabolism programs coordinate B cell biology and describe the crosstalk of lipid metabolic programs with signal transduction pathways and transcription factors. We conclude with a summary of therapeutic targets for B cell lipid metabolism and signaling in autoimmune diseases and discuss important future directions.
Collapse
Affiliation(s)
- Xing Ji
- Laboratory of Rheumatology and Immunology, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liang Wu
- Laboratory of Rheumatology and Immunology, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tony Marion
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yubin Luo
- Laboratory of Rheumatology and Immunology, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
He ZW, Wang C, Li Y, Danzeng A, Liu FB, Shi JY, Ciren P, Yuan XY, Wu CX, Lan RH, Zhang BH. Does inclusion of bioactive n-3 PUFAs in parenteral nutrition benefit postoperative patients undergoing liver surgery? A systematic review and meta-analysis of randomised control trials. BMJ Open 2023; 13:e066171. [PMID: 37709313 PMCID: PMC10503353 DOI: 10.1136/bmjopen-2022-066171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 04/28/2023] [Indexed: 09/16/2023] Open
Abstract
OBJECTIVES This meta-analysis aims to evaluate the effect of n-3 polyunsaturated fatty acids (PUFAs) as a part of parenteral nutrition in patients undergoing liver surgery. DESIGN Systematic review and meta-analysis. DATA SOURCES PubMed, the Cochrane Central Register of Controlled Trials, Springer link, Web of Science, China National Knowledge Infrastructure and VIP Database. ELIGIBILITY CRITERIA We included randomised controlled trials (RCTs) and evaluated the outcomes of liver function, inflammatory reaction, the influence of certain markers of the immune system, and specific clinical indexes for patients undergoing liver surgery and receiving parenteral nutrition with n-3 PUFAs. DATA EXTRACTION AND SYNTHESIS The Cochrane Collaboration's tool was used to assess the risk of bias for each study. Findings were summarised in Grades of Recommendation, Assessment, Development and Evaluation evidence profiles and synthesised qualitatively. RESULTS Eight RCTs, including 748 patients (trial: 374; control: 374), were included in the meta-analysis. Compared with patients in the control group, the patients in the n-3 PUFA group who underwent liver surgery had significantly lower aspartate aminotransferase (mean difference, MD -42.72 (95% CI -71.91 to -13.52); p=0.004), alanine aminotransferase (MD -38.90 (95% CI -65.44 to -12.37); p=0.004), white cell count (MD -0.93 (95% CI -1.60 to -0.26); p=0.007) and IL-6 (MD -11.37 (95% CI -14.62 to -8.13); p<0.00001) levels and a higher albumin level (MD 0.42 (95% CI 0.26 to 0.57); p<0.00001). They also had fewer infection complications (OR 0.44 (95% CI 0.28 to 0.68); p=0.0003) and a shorter duration of hospital stay (MD -2.17 (95% CI -3.04 to -1.3); p<0.00001) than the controls. However, there were no significant differences in terms of total bilirubin, TNF-α, IL-2, IgA, IgG, IgM and CD3, biliary leakage and mortality between the two groups. CONCLUSIONS We found that n-3 PUFAs can benefit patients undergoing liver surgery by improving liver function and certain clinical indexes and decreasing related inflammation factors. However, there are limited RCTs on the application of n-3 PUFAs for patients undergoing liver surgery. Further evidence of the benefit of n-3 PUFAs in these patients warrants further exploration.
Collapse
Affiliation(s)
- Zheng-Wei He
- Hepatic Surgery Center, Institute of Hepato-pancreato-biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Division of Hepato-pancreato-biliary Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Chao Wang
- Hepatic Surgery Center, Institute of Hepato-pancreato-biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Li
- Division of Hepato-pancreato-biliary Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Awang Danzeng
- Hepatic Surgery Center, Institute of Hepato-pancreato-biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fu-Bin Liu
- Division of Hepato-pancreato-biliary Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jia-Yu Shi
- Division of Hepato-pancreato-biliary Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Pingcuo Ciren
- Hepatic Surgery Center, Institute of Hepato-pancreato-biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Yin Yuan
- Division of Hepato-pancreato-biliary Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Cheng-Xian Wu
- Division of Hepato-pancreato-biliary Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Run-Hu Lan
- Division of Hepato-pancreato-biliary Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Bin-Hao Zhang
- Hepatic Surgery Center, Institute of Hepato-pancreato-biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Division of Hepato-pancreato-biliary Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Chen Z, Lu Q, Wang J, Cao X, Wang K, Wang Y, Wu Y, Yang Z. The function of omega-3 polyunsaturated fatty acids in response to cadmium exposure. Front Immunol 2022; 13:1023999. [PMID: 36248838 PMCID: PMC9558127 DOI: 10.3389/fimmu.2022.1023999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Throughout history, pollution has become a part of our daily life with the improvement of life quality and the advancement of industry and heavy industry. In recent years, the adverse effects of heavy metals, such as cadmium (Cd), on human health have been widely discussed, particularly on the immune system. Here, this review summarizes the available evidence on how Cd exposure may affect health. By analyzing the general manifestations of inflammation caused by Cd exposure, we find that the role of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) in vivo can counteract Cd-induced harm. Additionally, we elucidate the effects of n-3 PUFAs on the immune system, and analyze their prophylactic and therapeutic effects on Cd exposure. Overall, this review highlights the role of n-3 PUFAs in the pathological changes induced by Cd exposure. Although n-3 PUFAs remain to be verified whether they can be used as therapeutic agents, as rehabilitation therapy, supplementation with n-3 PUFAs is reliable and effective.
Collapse
Affiliation(s)
- Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Qinyue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiacheng Wang
- College of Medical, Yangzhou University, Yangzhou, China
| | - Xiang Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kun Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yuhao Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanni Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- *Correspondence: Zhangping Yang,
| |
Collapse
|
7
|
A Pilot Study to Examine If Dietary Habits Can Affect Symptomology in Mild Pre-Vaccination COVID-19 Cases. BIOLOGY 2022; 11:biology11091274. [PMID: 36138753 PMCID: PMC9495586 DOI: 10.3390/biology11091274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
Abstract
The heterogeneity of the severity of symptoms of COVID-19 experienced by the young and healthy individuals is poorly understood. The present study was undertaken to mainly examine whether the respective diets and the type of symptoms experienced by patients are predictive of having long COVID-19. Disease severity was assessed with a symptomatology questionnaire and used to group 55 participants in asymptomatic (AS), mild symptoms (S) and long COVID (LC). We found that experiencing a higher number of symptoms as well as fatigue were predictors of developing LC whereas those who experienced rhinorrhea were less likely to develop LC. Blood samples were also taken to measure vitamin D [25(OH)D] concentrations and duration of spike IgG antibodies. In this study, serum 25(OH)D was not significantly different between 3 symptom groups with median (IQR) ng/mL levels of 22.0 (12.3) in the AS, 22.3 (7.5) in S, and 24.9 (9.4) in the LC group (p ≥ 0.05). The duration of IgG antibody response was found to vary greatly, with some individuals showing raised IgG over a year after infection. To examine whether dietary factors can influence the severity of symptoms, diet was analysed using 4–7-day food diaries as well as a Food Frequency Questionnaire (FFQ). Some nutrients such as vitamin E, polyunsaturated fatty acids, fibre, and iron were associated with lower severity of COVID-19. Lower intake of vitamin E was associated with having LC with a median (IQR) intake of 6.2 mg (3.8) seen in LC vs. 8.6 mg (7.2) in the AS group (p = 0.047). This pilot study has highlighted a few differences in the number and type of symptoms experienced by the young non-hospitalised individuals with mild and long COVID-19 and identified a few dietary components for their potential protective role against long COVID-19, however, the findings need to be confirmed with further large scale studies.
Collapse
|
8
|
Shaikh SR, MacIver NJ, Beck MA. Obesity Dysregulates the Immune Response to Influenza Infection and Vaccination Through Metabolic and Inflammatory Mechanisms. Annu Rev Nutr 2022; 42:67-89. [PMID: 35995048 PMCID: PMC10880552 DOI: 10.1146/annurev-nutr-062320-115937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The COVID-19 pandemic demonstrates that obesity alone, independent of comorbidities, is a significant risk factor for severe outcomes from infection. This susceptibility mirrors a similar pattern with influenza infection; that is, obesity is a unique risk factor for increased morbidity and mortality. Therefore, it is critical to understand how obesity contributes to a reduced ability to respond to respiratory viral infections. Herein, we discuss human and animal studies with influenza infection and vaccination that show obesity impairs immunity. We cover several key mechanisms for the dysfunction. These mechanisms include systemic and cellular level changes that dysregulate immune cell metabolism and function in addition to how obesity promotes deficiencies in metabolites that control the resolution of inflammation and infection. Finally, we discuss major gaps in knowledge, particularly as they pertain to diet and mechanisms, which will drive future efforts to improve outcomes in response to respiratory viral infections in an increasingly obese population.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; , ,
| | - Nancie J MacIver
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; , ,
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Melinda A Beck
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; , ,
| |
Collapse
|
9
|
Liotti F, Marotta M, Melillo RM, Prevete N. The Impact of Resolution of Inflammation on Tumor Microenvironment: Exploring New Ways to Control Cancer Progression. Cancers (Basel) 2022; 14:3333. [PMID: 35884394 PMCID: PMC9316558 DOI: 10.3390/cancers14143333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/23/2022] Open
Abstract
Non-resolving inflammation is an enabling feature of cancer. A novel super-family of lipid mediators termed Specialized Pro-resolving Mediators (SPMs) have a role as bioactive molecules mediating the resolution of inflammation in cancer biology. SPMs are derived from ω-3 and ω-6 polyunsaturated fatty acids through the activity of lipoxygenases. SPMs have been described to directly modulate cancer progression by interfering with the epithelial to mesenchymal transition and invasion of cancer cells. SPMs have also been demonstrated to act on several components of the tumor microenvironment (TME). Consistently with their natural immunomodulatory and anti-inflammatory properties, SPMs are able to reprogram macrophages to favor phagocytosis of cell debris, which are an important source of pro-inflammatory and pro-angiogenic signals; sustain a direct cytotoxic immune response against cancer cells; stimulate neutrophils anti-tumor activities; and inhibit the development of regulatory T and B cells, thus indirectly leading to enhanced anti-tumor immunity. Furthermore, the resolution pathways exert crucial anti-angiogenic functions in lung, liver, and gastrointestinal cancers, and inhibit cancer-associated fibroblast differentiation and functions in hepatocellular carcinoma and pancreatic cancer. The present review will be focused on the potential protective effects of resolution pathways against cancer, exerted by modulating different components of the TME.
Collapse
Affiliation(s)
- Federica Liotti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (F.L.); (M.M.)
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, 80131 Naples, Italy
| | - Maria Marotta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (F.L.); (M.M.)
| | - Rosa Marina Melillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (F.L.); (M.M.)
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, 80131 Naples, Italy
| | - Nella Prevete
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, 80131 Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
10
|
Dubé L, Spahis S, Lachaîne K, Lemieux A, Monhem H, Poulin SM, Randoll C, Travaillaud E, Ould-Chikh NEH, Marcil V, Delvin E, Levy E. Specialized Pro-Resolving Mediators Derived from N-3 Polyunsaturated Fatty Acids: Role in Metabolic Syndrome and Related Complications. Antioxid Redox Signal 2022; 37:54-83. [PMID: 35072542 DOI: 10.1089/ars.2021.0156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Metabolic syndrome (MetS) prevalence continues to grow and represents a serious public health issue worldwide. This multifactorial condition carries the risk of hastening the development of type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVD). Another troubling aspect of MetS is the requirement of poly-pharmacological therapy not devoid of side effects. Therefore, there is an urgent need for prospecting alternative nutraceuticals as effective therapeutic agents for MetS. Recent Advances: Currently, there is an increased interest in understanding the regulation of metabolic derangements by specialized pro-resolving lipid mediators (SPMs), especially those derived from the long chain n-3 polyunsaturated fatty acids. Critical Issues: The SPMs are recognized as efficient modulators that are capable of inhibiting the production of pro-inflammatory cytokines, blocking neutrophil activation/recruitment, and inducing non-phlogistic (anti-inflammatory) activation of macrophage engulfment and removal of apoptotic inflammatory cells and debris. The aim of the present review is precisely to first underline key concepts relative to SPM functions before focusing on their status and actions on MetS components (e.g., obesity, glucose dysmetabolism, hyperlipidemia, hypertension) and complications such as T2D, NAFLD, and CVD. Future Directions: Valuable data from preclinical and clinical investigations have emphasized the SPM functions and influence on oxidative stress- and inflammation-related MetS. Despite these promising findings obtained without compromising host defense, additional efforts are needed to evaluate their potential therapeutic applications and further develop practical tools to monitor their bioavailability to cope with cardiometabolic disorders. Antioxid. Redox Signal. 37, 54-83.
Collapse
Affiliation(s)
- Laurent Dubé
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada
| | - Schohraya Spahis
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Karelle Lachaîne
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | | | - Hanine Monhem
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | | | - Carolane Randoll
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | - Eva Travaillaud
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | | | - Valérie Marcil
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Edgard Delvin
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Biochemistry, Université de Montréal, Montreal, Canada
| | - Emile Levy
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada.,Department of Pediatrics, Gastroenterology & Hepatology Unit, Université de Montréal, Montreal, Canada
| |
Collapse
|
11
|
Fisk HL, Childs CE, Miles EA, Ayres R, Noakes PS, Paras-Chavez C, Kuda O, Kopecký J, Antoun E, Lillycrop KA, Calder PC. Modification of subcutaneous white adipose tissue inflammation by omega-3 fatty acids is limited in human obesity-a double blind, randomised clinical trial. EBioMedicine 2022; 77:103909. [PMID: 35247847 PMCID: PMC8894262 DOI: 10.1016/j.ebiom.2022.103909] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Obesity is associated with enhanced inflammation. However, investigation in human subcutaneous white adipose tissue (scWAT) is limited and the mechanisms by which inflammation occurs have not been well elucidated. Marine long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) have anti-inflammatory actions and may reduce scWAT inflammation. METHODS Subcutaneous white adipose tissue (scWAT) biopsies were collected from individuals living with obesity (n=45) and normal weight individuals (n=39) prior to and following a 12-week intervention with either 3 g/day of a fish oil concentrate (providing 1.1 g eicosapentaenoic acid (EPA) + 0.8 g docosahexaenoic acid (DHA)) or 3 g/day of corn oil. ScWAT fatty acid, oxylipin, and transcriptome profiles were assessed by gas chromatography, ultra-pure liquid chromatography tandem mass spectrometry, RNA sequencing and qRT-PCR, respectively. FINDINGS Obesity was associated with greater scWAT inflammation demonstrated by lower concentrations of specialised pro-resolving mediators (SPMs) and hydroxy-DHA metabolites and an altered transcriptome with differential expression of genes involved in LC n-3 PUFA activation, oxylipin synthesis, inflammation, and immune response. Intervention with LC n-3 PUFAs increased their respective metabolites including the SPM precursor 14-hydroxy-DHA in normal weight individuals and decreased arachidonic acid derived metabolites and expression of genes involved in immune and inflammatory response with a greater effect in normal weight individuals. INTERPRETATION Downregulated expression of genes responsible for fatty acid activation and metabolism may contribute to an inflammatory oxylipin profile and limit the effects of LC n-3 PUFAs in obesity. There may be a need for personalised LC n-3 PUFA supplementation based on obesity status. FUNDING European Commission Seventh Framework Programme (Grant Number 244995) and Czech Academy of Sciences (Lumina quaeruntur LQ200111901).
Collapse
Affiliation(s)
- Helena L Fisk
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, IDS Building, MP887, Tremona Road, Southampton SO16 6YD, United Kingdom.
| | - Caroline E Childs
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, IDS Building, MP887, Tremona Road, Southampton SO16 6YD, United Kingdom
| | - Elizabeth A Miles
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, IDS Building, MP887, Tremona Road, Southampton SO16 6YD, United Kingdom
| | - Robert Ayres
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, IDS Building, MP887, Tremona Road, Southampton SO16 6YD, United Kingdom
| | - Paul S Noakes
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, IDS Building, MP887, Tremona Road, Southampton SO16 6YD, United Kingdom; Medical School, University of Notre Dame Australia, Fremantle, Australia
| | - Carolina Paras-Chavez
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, IDS Building, MP887, Tremona Road, Southampton SO16 6YD, United Kingdom
| | - Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kopecký
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Elie Antoun
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, IDS Building, MP887, Tremona Road, Southampton SO16 6YD, United Kingdom
| | - Karen A Lillycrop
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, IDS Building, MP887, Tremona Road, Southampton SO16 6YD, United Kingdom; School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, IDS Building, MP887, Tremona Road, Southampton SO16 6YD, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| |
Collapse
|
12
|
Beneficial effects of eicosapentaenoic acid on the metabolic profile of obese female mice entails upregulation of HEPEs and increased abundance of enteric Akkermansia muciniphila. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159059. [PMID: 34619367 PMCID: PMC8627244 DOI: 10.1016/j.bbalip.2021.159059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/30/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
Eicosapentaenoic acid (EPA) ethyl esters are of interest given their clinical approval for lowering circulating triglycerides and cardiometabolic disease risk. EPA ethyl esters prevent metabolic complications driven by a high fat diet in male mice; however, their impact on female mice is less studied. Herein, we first investigated how EPA influences the metabolic profile of female C57BL/6J mice consuming a high fat diet. EPA lowered murine fat mass accumulation, potentially through increased biosynthesis of 8-hydroxyeicosapentaenoic acid (HEPE), as revealed by mass spectrometry and cell culture studies. EPA also reversed the effects of a high fat diet on circulating levels of insulin, glucose, and select inflammatory/metabolic markers. Next, we studied if the improved metabolic profile of obese mice consuming EPA was associated with a reduction in the abundance of key gut Gram-negative bacteria that contribute toward impaired glucose metabolism. Using fecal 16S-ribosomal RNA gene sequencing, we found EPA restructured the gut microbiota in a time-dependent manner but did not lower the levels of key Gram-negative bacteria. Interestingly, EPA robustly increased the abundance of the Gram-negative Akkermansia muciniphila, which controls glucose homeostasis. Finally, predictive functional profiling of microbial communities revealed EPA-mediated reversal of high fat diet-associated changes in a wide range of genes related to pathways such as Th-17 cell differentiation and PI3K-Akt signaling. Collectively, these results show that EPA ethyl esters prevent some of the deleterious effects of a high fat diet in female mice, which may be mediated mechanistically through 8-HEPE and the upregulation of intestinal Akkermansia muciniphila.
Collapse
|
13
|
Julliard WA, Myo YPA, Perelas A, Jackson PD, Thatcher TH, Sime PJ. Specialized pro-resolving mediators as modulators of immune responses. Semin Immunol 2022; 59:101605. [PMID: 35660338 PMCID: PMC9962762 DOI: 10.1016/j.smim.2022.101605] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023]
Abstract
Specialized pro-resolving mediators (SPMs) are endogenous small molecules produced mainly from dietary omega-3 polyunsaturated fatty acids by both structural cells and cells of the active and innate immune systems. Specialized pro-resolving mediators have been shown to both limit acute inflammation and promote resolution and return to homeostasis following infection or injury. There is growing evidence that chronic immune disorders are characterized by deficiencies in resolution and SPMs have significant potential as novel therapeutics to prevent and treat chronic inflammation and immune system disorders. This review focuses on important breakthroughs in understanding how SPMs are produced by, and act on, cells of the adaptive immune system, specifically macrophages, B cells and T cells. We also highlight recent evidence demonstrating the potential of SPMs as novel therapeutic agents in topics including immunization, autoimmune disease and transplantation.
Collapse
Affiliation(s)
- Walker A Julliard
- Department of Surgery, Virginia Commonwealth University, Richmond VA, USA
| | - Yu Par Aung Myo
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond VA, USA
| | - Apostolos Perelas
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Peter D. Jackson
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Thomas H. Thatcher
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Patricia J Sime
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
14
|
Mavrommatis A, Theodorou G, Politis I, Tsiplakou E. Schizochytrium sp. Dietary supplementation modify Toll-like receptor 4 (TLR4) transcriptional regulation in monocytes and neutrophils of dairy goats. Cytokine 2021; 148:155588. [PMID: 34403896 DOI: 10.1016/j.cyto.2021.155588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 12/29/2022]
Abstract
Animals protect themselves against pathogens or abiotic factors by innate or adaptive mechanisms. Long-chain polyunsaturated fatty acids (ω3) of microalgae modify both human and mice' immune systems resulting in a beneficial balance between pro-inflammatory and anti-inflammatory pathways. However, scarce information exists on their impact on lactating animals' immunity. The objective of this study was to investigate the impact of dietary inclusion of Schizochytrium sp. (rich in docosapentaenoic and docosahexaenoic acid), on the expression of several genes involved in the innate immunity of goats. Twenty-four dairy goats were divided into four homogeneous sub-groups (n = 6). All goats were fed individually with alfalfa hay and concentrate. The concentrate of the control group (CON) had no microalgae while those of the treated groups were supplemented daily with 20 (ALG20), 40 (ALG40), and 60 (ALG60) g Schizochytrium sp. Monocytes and neutrophils were isolated from goats' blood in the 20th, 40th, and 60th days from the beginning of the experimental period. The relative transcript levels of TLR4, MYD88, MAPK, IRF3, IFNG, and pro-inflammatory cytokines (IL1B, IL2, IL8, TNF), and chemokines (CCL5 and CXCL16) were decreased in monocytes of microalgae treated goats compared to the CON. In contrast, MAPK and IL1B relative transcript levels were increased in neutrophils of ALG40 and ALG60 groups. In conclusion, the supplementation of goats' diet with 20 g Schizochytrium sp. resulted in a downregulation of the pro-inflammatory transcriptions, and following further research could be considered as a sustainable alternative strategy to improve immune function.
Collapse
Affiliation(s)
- Alexandros Mavrommatis
- Department of Animal Science, Laboratory of Nutritional Physiology and Feeding, Agricultural University of Athens, Iera Odos 75, Athens GR-11855, Greece
| | - Georgios Theodorou
- Department of Animal Science, Laboratory of Animal Breeding & Husbandry, Agricultural University of Athens, Greece, Iera Odos 75, Athens GR-11855, Greece
| | - Ioannis Politis
- Department of Animal Science, Laboratory of Animal Breeding & Husbandry, Agricultural University of Athens, Greece, Iera Odos 75, Athens GR-11855, Greece
| | - Eleni Tsiplakou
- Department of Animal Science, Laboratory of Nutritional Physiology and Feeding, Agricultural University of Athens, Iera Odos 75, Athens GR-11855, Greece.
| |
Collapse
|
15
|
Kobayashi A, Ito A, Shirakawa I, Tamura A, Tomono S, Shindou H, Hedde PN, Tanaka M, Tsuboi N, Ishimoto T, Akashi-Takamura S, Maruyama S, Suganami T. Dietary Supplementation With Eicosapentaenoic Acid Inhibits Plasma Cell Differentiation and Attenuates Lupus Autoimmunity. Front Immunol 2021; 12:650856. [PMID: 34211460 PMCID: PMC8240640 DOI: 10.3389/fimmu.2021.650856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence suggests that cholesterol accumulation in leukocytes is causally associated with the development of autoimmune diseases. However, the mechanism by which fatty acid composition influences autoimmune responses remains unclear. To determine whether the fatty acid composition of diet modulates leukocyte function and the development of systemic lupus erythematosus, we examined the effect of eicosapentaenoic acid (EPA) on the pathology of lupus in drug-induced and spontaneous mouse models. We found that dietary EPA supplementation ameliorated representative lupus manifestations, including autoantibody production and immunocomplex deposition in the kidneys. A combination of lipidomic and membrane dynamics analyses revealed that EPA remodels the lipid composition and fluidity of B cell membranes, thereby preventing B cell differentiation into autoantibody-producing plasma cells. These results highlight a previously unrecognized mechanism by which fatty acid composition affects B cell differentiation into autoantibody-producing plasma cells during autoimmunity, and imply that EPA supplementation may be beneficial for therapy of lupus.
Collapse
Affiliation(s)
- Azusa Kobayashi
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayaka Ito
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ibuki Shirakawa
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Susumu Tomono
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Per Niklas Hedde
- Laboratory for Fluorescence Dynamics, Beckman Laser Institute and Medical Clinic, Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, United States
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naotake Tsuboi
- Department of Nephrology, Fujita Health University Graduate School of Medicine, Toyoake, Japan
| | - Takuji Ishimoto
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sachiko Akashi-Takamura
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
16
|
Tourkochristou E, Triantos C, Mouzaki A. The Influence of Nutritional Factors on Immunological Outcomes. Front Immunol 2021; 12:665968. [PMID: 34135894 PMCID: PMC8201077 DOI: 10.3389/fimmu.2021.665968] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Through food intake, humans obtain a variety of nutrients that are essential for growth, cellular function, tissue development, energy, and immune defense. A special interaction between nutrients and gut-associated lymphoid tissue occurs in the intestinal tract. Enterocytes of the intestinal barrier act as sensors for antigens from nutrients and the intestinal microbiota, which they deliver to the underlying immune system of the lamina propria, triggering an immune response. Studies investigating the mechanism of influence of nutrition on immunological outcomes have highlighted an important role of macronutrients (proteins, carbohydrates, fatty acids) and micronutrients (vitamins, minerals, phytochemicals, antioxidants, probiotics) in modulating immune homeostasis. Nutrients exert their role in innate immunity and inflammation by regulating the expression of TLRs, pro- and anti-inflammatory cytokines, thus interfering with immune cell crosstalk and signaling. Chemical substrates derived from nutrient metabolism may act as cofactors or blockers of enzymatic activity, influencing molecular pathways and chemical reactions associated with microbial killing, inflammation, and oxidative stress. Immune cell function appears to be influenced by certain nutrients that form parts of the cell membrane structure and are involved in energy production and prevention of cytotoxicity. Nutrients also contribute to the initiation and regulation of adaptive immune responses by modulating B and T lymphocyte differentiation, proliferation and activation, and antibody production. The purpose of this review is to present the available data from the field of nutritional immunology to elucidate the complex and dynamic relationship between nutrients and the immune system, the delineation of which will lead to optimized nutritional regimens for disease prevention and patient care.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
17
|
Kobayashi S, Phung HT, Tayama S, Kagawa Y, Miyazaki H, Yamamoto Y, Maruyama T, Ishii N, Owada Y. Fatty acid-binding protein 3 regulates differentiation of IgM-producing plasma cells. FEBS J 2021; 288:1130-1141. [PMID: 32578350 DOI: 10.1111/febs.15460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/26/2020] [Accepted: 06/09/2020] [Indexed: 01/02/2023]
Abstract
Plasma cells (PCs), which aim to protect host health, produce various subsets of immunoglobulin (Ig) in response to extracellular pathogens. Blimp-1 (encoded by Prdm1)-a protein that is highly expressed by PCs-is important for PC functions, including the generation of Igs. Fatty acid-binding protein 3 (FABP3) is a carrier protein of polyunsaturated fatty acids (PUFAs) and participates in multiple cellular functions. Although the functions of FABP3 in neurons and cardiac myocytes are well-noted, their roles in immune cells remain to be fully elucidated. In this study, we demonstrate that FABP3 is expressed in activated B cells and that FABP3 promotes PC development and IgM secretion. Moreover, we provide the first evidence that FABP3 is necessary for Blimp-1 expression, by regulating the histone modification of its promoter region. Taken together, our findings reveal that FABP3 acts as a positive regulator of B-cell activation by controlling histone acetylation of the Blimp-1 gene, thereby playing a role in host defense against pathogens.
Collapse
Affiliation(s)
- Shuhei Kobayashi
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hai The Phung
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shunichi Tayama
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yui Yamamoto
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Maruyama
- Mucosal Immunology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
18
|
Crouch M, Al-Shaer A, Shaikh SR. Hormonal Dysregulation and Unbalanced Specialized Pro-Resolving Mediator Biosynthesis Contribute toward Impaired B Cell Outcomes in Obesity. Mol Nutr Food Res 2021; 65:e1900924. [PMID: 32112513 PMCID: PMC8627245 DOI: 10.1002/mnfr.201900924] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/09/2020] [Indexed: 12/16/2022]
Abstract
Diet-induced obesity is associated with impaired B-cell-driven humoral immunity, which coincides with chronic inflammation and has consequences for responses to infections and vaccinations. Key nutritional, cellular, and molecular mechanisms by which obesity may impair aspects of humoral immunity such as B cell development, class switch recombination, and formation of long-lived antibody secreting cells are reviewed. A key theme to emerge is the central role of white adipose tissue on the formation and function of pro-inflammatory B cell subsets that exacerbate insulin resistance. The underlying role of select hormones such as leptin is highlighted, which may be driving the formation of pro-inflammatory B cells in the absence of antigen stimulation. This review also extensively covers the regulatory role of lipid metabolites such as prostaglandins and specialized pro-resolving mediators (SPMs) that are synthesized from polyunsaturated fatty acids. Notably, SPM biosynthesis is impaired in obesity and contributes toward impaired antibody production. Future directions for research, including avenues for therapeutic intervention, are included.
Collapse
Affiliation(s)
- Miranda Crouch
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Abrar Al-Shaer
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
19
|
Pal A, Gowdy KM, Oestreich KJ, Beck M, Shaikh SR. Obesity-Driven Deficiencies of Specialized Pro-resolving Mediators May Drive Adverse Outcomes During SARS-CoV-2 Infection. Front Immunol 2020; 11:1997. [PMID: 32983141 PMCID: PMC7438933 DOI: 10.3389/fimmu.2020.01997] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity is a major independent risk factor for increased morbidity and mortality upon infection with Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), which is responsible for the current coronavirus disease pandemic (COVID-19). Therefore, there is a critical need to identify underlying metabolic factors associated with obesity that could be contributing toward increased susceptibility to SARS-CoV-2 in this vulnerable population. Here, we focus on the critical role of potent endogenous lipid metabolites known as specialized pro-resolving mediators (SPMs) that are synthesized from polyunsaturated fatty acids. SPMs are generated during the transition of inflammation to resolution and have a vital role in directing damaged tissues to homeostasis; furthermore, SPMs display anti-viral activity in the context of influenza infection without being immunosuppressive. We cover evidence from rodent and human studies to show that obesity, and its co-morbidities, induce a signature of SPM deficiency across immunometabolic tissues. We further discuss how the effects of obesity upon SARS-CoV-2 infection are likely exacerbated with environmental exposures that promote chronic pulmonary inflammation and augment SPM deficits. Finally, we highlight potential approaches to overcome the loss of SPMs using dietary and pharmacological interventions. Collectively, this mini-review underscores the need for mechanistic studies on how SPM deficiencies driven by obesity and environmental exposures may exacerbate the response to SARS-CoV-2.
Collapse
Affiliation(s)
- Anandita Pal
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Kenneth J. Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, United States
| | - Melinda Beck
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
20
|
Pauls SD, Ragheb M, Winter T, Leng S, Taylor CG, Zahradka P, Aukema HM. Spleen Oxylipin and Polyunsaturated Fatty Acid Profiles are Altered by Dietary Source of Polyunsaturated Fatty Acid and by Sex. Lipids 2020; 55:261-270. [PMID: 32255511 DOI: 10.1002/lipd.12235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 01/03/2023]
Abstract
As the largest secondary lymphoid organ, the spleen plays an important role in immune responses. The role of arachidonic acid (ARA) and its 20-carbon eicosanoids in modulating immune function has long been of interest. However, recent advances have enabled the identification of numerous other n-6 and n-3 polyunsaturated fatty acid (PUFA)-derived oxylipins. Here, we investigate the effects of diet and sex on the spleen nonesterified oxylipin profiles and phospholipid and neutral lipid PUFA composition in Sprague-Dawley rats supplemented with oils rich in α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or linoleic acid. Dietary ALA, EPA, and DHA resulted in lower levels of ARA and ARA oxylipins. Oxylipins derived from other n-6 PUFA were also reduced despite no or opposite effect on their PUFA levels. Each diet also resulted in higher levels of oxylipins almost exclusively derived from the supplemented PUFA, despite PUFA in the same biosynthetic pathway also often being increased. Further, while oxylipin differences often reflected changes to phospholipid PUFA, there were instances where they corresponded more closely to changes in neutral lipid PUFA. With respect to sex effects, >50% of lipoxygenase ARA-derived oxylipins were higher in males in at least one diet group, while multiple DHA oxylipins were lower in males only in rats provided the DHA diet. This fundamental description of oxylipin composition in the spleen, including the influence of diet and sex and the relationship to PUFA composition, will help inform future studies examining the functions of these oxylipins under physiological and pathological conditions.
Collapse
Affiliation(s)
- Samantha D Pauls
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Mariam Ragheb
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Tanja Winter
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Shan Leng
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carla G Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Harold M Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
21
|
Radzikowska U, Rinaldi AO, Çelebi Sözener Z, Karaguzel D, Wojcik M, Cypryk K, Akdis M, Akdis CA, Sokolowska M. The Influence of Dietary Fatty Acids on Immune Responses. Nutrients 2019; 11:E2990. [PMID: 31817726 PMCID: PMC6950146 DOI: 10.3390/nu11122990] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
Diet-derived fatty acids (FAs) are essential sources of energy and fundamental structural components of cells. They also play important roles in the modulation of immune responses in health and disease. Saturated and unsaturated FAs influence the effector and regulatory functions of innate and adaptive immune cells by changing membrane composition and fluidity and by acting through specific receptors. Impaired balance of saturated/unsaturated FAs, as well as n-6/n-3 polyunsaturated FAs has significant consequences on immune system homeostasis, contributing to the development of many allergic, autoimmune, and metabolic diseases. In this paper, we discuss up-to-date knowledge and the clinical relevance of the influence of dietary FAs on the biology, homeostasis, and functions of epithelial cells, macrophages, dendritic cells, neutrophils, innate lymphoid cells, T cells and B cells. Additionally, we review the effects of dietary FAs on the pathogenesis of many diseases, including asthma, allergic rhinitis, food allergy, atopic dermatitis, rheumatoid arthritis, multiple sclerosis as well as type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Arturo O Rinaldi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| | - Zeynep Çelebi Sözener
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Department of Chest Disease, Division of Allergy and Clinical Immunology, Ankara University School of Medicine, 06100 Ankara, Turkey
| | - Dilara Karaguzel
- Department of Biology, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| | - Marzena Wojcik
- Department of Structural Biology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Katarzyna Cypryk
- Department of Internal Medicine and Diabetology, Medical University of Lodz, 90-549 Lodz, Poland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| |
Collapse
|
22
|
Gutiérrez S, Svahn SL, Johansson ME. Effects of Omega-3 Fatty Acids on Immune Cells. Int J Mol Sci 2019; 20:ijms20205028. [PMID: 31614433 PMCID: PMC6834330 DOI: 10.3390/ijms20205028] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
Alterations on the immune system caused by omega-3 fatty acids have been described for 30 years. This family of polyunsaturated fatty acids exerts major alterations on the activation of cells from both the innate and the adaptive immune system, although the mechanisms for such regulation are diverse. First, as a constitutive part of the cellular membrane, omega-3 fatty acids can regulate cellular membrane properties, such as membrane fluidity or complex assembly in lipid rafts. In recent years, however, a new role for omega-3 fatty acids and their derivatives as signaling molecules has emerged. In this review, we describe the latest findings describing the effects of omega-3 fatty acids on different cells from the immune system and their possible molecular mechanisms.
Collapse
Affiliation(s)
- Saray Gutiérrez
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Sara L Svahn
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Maria E Johansson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
23
|
Crouch MJ, Kosaraju R, Guesdon W, Armstrong M, Reisdorph N, Jain R, Fenton J, Shaikh SR. Frontline Science: A reduction in DHA-derived mediators in male obesity contributes toward defects in select B cell subsets and circulating antibody. J Leukoc Biol 2019; 106:241-257. [PMID: 30576001 PMCID: PMC10020993 DOI: 10.1002/jlb.3hi1017-405rr] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/20/2018] [Accepted: 12/11/2018] [Indexed: 01/25/2023] Open
Abstract
Obesity dysregulates B cell populations, which contributes toward poor immunological outcomes. We previously reported that differing B cell subsets are lowered in the bone marrow of obese male mice. Here, we focused on how lipid metabolites synthesized from docosahexaenoic acid (DHA) known as specialized pro-resolving lipid mediators (SPMs) influence specific B cell populations in obese male mice. Metabololipidomics revealed that splenic SPM precursors 14-hydroxydocosahexaenoic acid (14-HDHA), 17-hydroxydocosahexaenoic acid (17-HDHA), and downstream protectin DX (PDX) were decreased in obese male C57BL/6J mice. Simultaneous administration of these mediators to obese mice rescued major decrements in bone marrow B cells, modest impairments in the spleen, and circulating IgG2c, which is pro-inflammatory in obesity. In vitro studies with B cells, flow cytometry experiments with ALOX5-/- mice, and lipidomic analyses revealed the lowering of 14-HDHA/17-HDHA/PDX and dysregulation of B cell populations in obesity was driven indirectly via B cell extrinsic mechanisms. Notably, the lowering of lipid mediators was associated with an increase in the abundance of n-6 polyunsaturated fatty acids, which have a high affinity for SPM-generating enzymes. Subsequent experiments revealed female obese mice generally maintained the levels of SPM precursors, B cell subsets, and antibody levels. Finally, obese human females had increased circulating plasma cells accompanied by ex vivo B cell TNFα and IL-10 secretion. Collectively, the data demonstrate that DHA-derived mediators of the SPM pathway control the number of B cell subsets and pro-inflammatory antibody levels in obese male but not female mice through a defect that is extrinsic to B cells.
Collapse
Affiliation(s)
- Miranda J Crouch
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA.,Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rasagna Kosaraju
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - William Guesdon
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, University of Colorado, Denver, Colorado, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado, Denver, Colorado, USA
| | - Raghav Jain
- The College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Jenifer Fenton
- The College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
24
|
Duffney PF, Falsetta ML, Rackow AR, Thatcher TH, Phipps RP, Sime PJ. Key roles for lipid mediators in the adaptive immune response. J Clin Invest 2018; 128:2724-2731. [PMID: 30108196 DOI: 10.1172/jci97951] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammation is an underlying feature of many diseases, including chronic obstructive pulmonary disease, rheumatoid arthritis, asthma, and multiple sclerosis. There is an increasing appreciation of the dysregulation of adaptive immunity in chronic inflammatory and allergic diseases. The discovery of specialized pro-resolving lipid mediators (SPMs) that actively promote the resolution of inflammation has opened new avenues for the treatment of chronic inflammatory diseases. Much work has been done focusing on the impact of SPMs on innate immune cells. However, much less is known about the influence of SPMs on the development of antigen-specific adaptive immune responses. This Review highlights the important breakthroughs concerning the effects of SPMs on the key cell types involved in the development of adaptive immunity, namely dendritic cells, T cells, and B cells.
Collapse
Affiliation(s)
- Parker F Duffney
- Department of Environmental Medicine.,Lung Biology and Disease Program, and
| | - Megan L Falsetta
- Department of Environmental Medicine.,Lung Biology and Disease Program, and
| | - Ashley R Rackow
- Department of Environmental Medicine.,Lung Biology and Disease Program, and
| | - Thomas H Thatcher
- Lung Biology and Disease Program, and.,Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Richard P Phipps
- Department of Environmental Medicine.,Lung Biology and Disease Program, and.,Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Patricia J Sime
- Department of Environmental Medicine.,Lung Biology and Disease Program, and.,Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
25
|
Wassall SR, Leng X, Canner SW, Pennington ER, Kinnun JJ, Cavazos AT, Dadoo S, Johnson D, Heberle FA, Katsaras J, Shaikh SR. Docosahexaenoic acid regulates the formation of lipid rafts: A unified view from experiment and simulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1985-1993. [PMID: 29730243 DOI: 10.1016/j.bbamem.2018.04.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/02/2023]
Abstract
Docosahexaenoic acid (DHA, 22:6) is an n-3 polyunsaturated fatty acid (n-3 PUFA) that influences immunological, metabolic, and neurological responses through complex mechanisms. One structural mechanism by which DHA exerts its biological effects is through its ability to modify the physical organization of plasma membrane signaling assemblies known as sphingomyelin/cholesterol (SM/chol)-enriched lipid rafts. Here we studied how DHA acyl chains esterified in the sn-2 position of phosphatidylcholine (PC) regulate the formation of raft and non-raft domains in mixtures with SM and chol on differing size scales. Coarse grained molecular dynamics simulations showed that 1-palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) enhances segregation into domains more than the monounsaturated control, 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC). Solid state 2H NMR and neutron scattering experiments provided direct experimental evidence that substituting PDPC for POPC increases the size of raft-like domains on the nanoscale. Confocal imaging of giant unilamellar vesicles with a non-raft fluorescent probe revealed that POPC had no influence on phase separation in the presence of SM/chol whereas PDPC drove strong domain segregation. Finally, monolayer compression studies suggest that PDPC increases lipid-lipid immiscibility in the presence of SM/chol compared to POPC. Collectively, the data across model systems provide compelling support for the emerging model that DHA acyl chains of PC lipids tune the size of lipid rafts, which has potential implications for signaling networks that rely on the compartmentalization of proteins within and outside of rafts.
Collapse
Affiliation(s)
- Stephen R Wassall
- Department of Physics, Indiana University-Purdue University Indianapolis, United States.
| | - Xiaoling Leng
- Department of Physics, Indiana University-Purdue University Indianapolis, United States
| | - Samuel W Canner
- Department of Physics, Indiana University-Purdue University Indianapolis, United States; Department of Computer and Information Science, Indiana University-Purdue University Indianapolis, United States
| | - Edward Ross Pennington
- Department of Biochemistry & Molecular Biology, East Carolina University, United States; Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, United States
| | - Jacob J Kinnun
- Department of Physics, Indiana University-Purdue University Indianapolis, United States
| | - Andres T Cavazos
- Department of Physics, Indiana University-Purdue University Indianapolis, United States
| | - Sahil Dadoo
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, United States
| | - Dylan Johnson
- Department of Biochemistry & Molecular Biology, East Carolina University, United States
| | - Frederick A Heberle
- Joint Institute for Biological Sciences, University of Tennessee, Knoxville, TN, United States; Large Scale Structures Group, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - John Katsaras
- Large Scale Structures Group, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, United States; Shull Wollan Center-Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
26
|
Petta I, Fraussen J, Somers V, Kleinewietfeld M. Interrelation of Diet, Gut Microbiome, and Autoantibody Production. Front Immunol 2018; 9:439. [PMID: 29559977 PMCID: PMC5845559 DOI: 10.3389/fimmu.2018.00439] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
B cells possess a predominant role in adaptive immune responses via antibody-dependent and -independent functions. The microbiome of the gastrointestinal tract is currently being intensively investigated due to its profound impact on various immune responses, including B cell maturation, activation, and IgA antibody responses. Recent findings have demonstrated the interplay between dietary components, gut microbiome, and autoantibody production. "Western" dietary patterns, such as high fat and high salt diets, can induce alterations in the gut microbiome that in turn affects IgA responses and the production of autoantibodies. This could contribute to multiple pathologies including autoimmune and inflammatory diseases. Here, we summarize current knowledge on the influence of various dietary components on B cell function and (auto)antibody production in relation to the gut microbiota, with a particular focus on the gut-brain axis in the pathogenesis of multiple sclerosis.
Collapse
Affiliation(s)
- Ioanna Petta
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium.,Biomedical Research Institute, Hasselt University, and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt, Belgium
| | - Judith Fraussen
- Biomedical Research Institute, Hasselt University, and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt, Belgium
| | - Veerle Somers
- Biomedical Research Institute, Hasselt University, and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt, Belgium
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium.,Biomedical Research Institute, Hasselt University, and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt, Belgium
| |
Collapse
|
27
|
Ghasemi Fard S, Wang F, Sinclair AJ, Elliott G, Turchini GM. How does high DHA fish oil affect health? A systematic review of evidence. Crit Rev Food Sci Nutr 2018; 59:1684-1727. [PMID: 29494205 DOI: 10.1080/10408398.2018.1425978] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The health benefits of fish oil, and its omega-3 long chain polyunsaturated fatty acid content, have attracted much scientific attention in the last four decades. Fish oils that contain higher amounts of eicosapentaenoic acid (EPA; 20:5n-3) than docosahexaenoic acid (DHA; 22:6n-3), in a distinctive ratio of 18/12, are typically the most abundantly available and are commonly studied. Although the two fatty acids have traditionally been considered together, as though they were one entity, different physiological effects of EPA and DHA have recently been reported. New oils containing a higher quantity of DHA compared with EPA, such as fractionated and concentrated fish oil, tuna oil, calamari oil and microalgae oil, are increasingly becoming available on the market, and other oils, including those extracted from genetically modified oilseed crops, soon to come. This systematic review focuses on the effects of high DHA fish oils on various human health conditions, such as the heart and cardiovascular system, the brain and visual function, inflammation and immune function and growth/Body Mass Index. Although inconclusive results were reported in several instances, and inconsistent outcomes observed in others, current data provides substantiated evidence in support of DHA being a beneficial bioactive compound for heart, cardiovascular and brain function, with different, and at times complementary, effects compared with EPA. DHA has also been reported to be effective in slowing the rate of cognitive decline, while its possible effects on depression disorders are still unclear. Interestingly, gender- and age- specific divergent roles for DHA have also been reported. This review provides a comprehensive collection of evidence and a critical summary of the documented physiological effects of high DHA fish oils for human health.
Collapse
Affiliation(s)
- Samaneh Ghasemi Fard
- a School of Medicine, Deakin University , Geelong , Australia.,b Nu-Mega Ingredients Pty Ltd , Altona North , Melbourne , Australia
| | - Fenglei Wang
- c Department of Food Science and Nutrition , Zhejiang University , Hangzhou , China
| | - Andrew J Sinclair
- a School of Medicine, Deakin University , Geelong , Australia.,e Department of Nutrition , Dietetics and Food, Monash University , Clayton , Australia
| | - Glenn Elliott
- b Nu-Mega Ingredients Pty Ltd , Altona North , Melbourne , Australia
| | - Giovanni M Turchini
- d School of Life and Environmental Sciences , Deakin University , Geelong , Australia
| |
Collapse
|
28
|
Guesdon W, Kosaraju R, Brophy P, Clark A, Dillingham S, Aziz S, Moyer F, Willson K, Dick JR, Patil SP, Balestrieri N, Armstrong M, Reisdroph N, Shaikh SR. Effects of fish oils on ex vivo B-cell responses of obese subjects upon BCR/TLR stimulation: a pilot study. J Nutr Biochem 2017; 53:72-80. [PMID: 29195133 DOI: 10.1016/j.jnutbio.2017.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 10/06/2017] [Accepted: 10/16/2017] [Indexed: 12/29/2022]
Abstract
The long-chain n-3 polyunsaturated fatty acids (LC-PUFAs) eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) in fish oil have immunomodulatory properties. B cells are a poorly studied target of EPA/DHA in humans. Therefore, in this pilot study, we tested how n-3 LC-PUFAs influence B-cell responses of obese humans. Obese men and women were assigned to consume four 1-g capsules per day of olive oil (OO, n=12), fish oil (FO, n=12) concentrate or high-DHA-FO concentrate (n=10) for 12 weeks in a parallel design. Relative to baseline, FO (n=9) lowered the percentage of circulating memory and plasma B cells, whereas the other supplements had no effect. There were no postintervention differences between the three supplements. Next, ex vivo B-cell cytokines were assayed after stimulation of Toll-like receptors (TLRs) and/or the B-cell receptor (BCR) to determine if the effects of n-3 LC-PUFAs were pathway-dependent. B-cell IL-10 and TNFα secretion was respectively increased with high DHA-FO (n=10), relative to baseline, with respective TLR9 and TLR9+BCR stimulation. OO (n=12) and FO (n=12) had no influence on B-cell cytokines compared to baseline, and there were no differences in postintervention cytokine levels between treatment groups. Finally, ex vivo antibody levels were assayed with FO (n=7) after TLR9+BCR stimulation. Compared to baseline, FO lowered IgM but not IgG levels accompanied by select modifications to the plasma lipidome. Altogether, the results suggest that n-3 LC-PUFAs could modulate B-cell activity in humans, which will require further testing in a larger cohort.
Collapse
Affiliation(s)
- William Guesdon
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University; East Carolina Diabetes & Obesity Institute, East Carolina University
| | - Rasagna Kosaraju
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University; East Carolina Diabetes & Obesity Institute, East Carolina University
| | - Patricia Brophy
- East Carolina Diabetes & Obesity Institute, East Carolina University
| | - Angela Clark
- East Carolina Diabetes & Obesity Institute, East Carolina University
| | | | - Shahnaz Aziz
- Department of Psychology, East Carolina University
| | - Fiona Moyer
- Department of Psychology, East Carolina University
| | - Kate Willson
- Department of Nutrition Science, East Carolina University
| | - James R Dick
- Institute of Aquaculture, University of Stirling, UK
| | | | - Nicholas Balestrieri
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, University of Colorado, Denver, CO
| | - Nichole Reisdroph
- Department of Pharmaceutical Sciences, University of Colorado, Denver, CO
| | - Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University; East Carolina Diabetes & Obesity Institute, East Carolina University; Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill.
| |
Collapse
|
29
|
Fuentes NR, Salinas ML, Kim E, Chapkin RS. Emerging role of chemoprotective agents in the dynamic shaping of plasma membrane organization. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2017; 1859:1668-1678. [PMID: 28342710 PMCID: PMC5501766 DOI: 10.1016/j.bbamem.2017.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 12/22/2022]
Abstract
In the context of an organism, epithelial cells by nature are designed to be the defining barrier between self and the outside world. This is especially true for the epithelial cells that form the lining of the digestive tract, which absorb nutrients and serve as a barrier against harmful substances. These cells are constantly bathed by a complex mixture of endogenous (bile acids, mucus, microbial metabolites) and exogenous (food, nutrients, drugs) bioactive compounds. From a cell biology perspective, this type of exposure would directly impact the plasma membrane, which consists of a myriad of complex lipids and proteins. The plasma membrane not only functions as a barrier but also as the medium in which cellular signaling complexes form and function. This property is mediated by the organization of the plasma membrane, which is exquisitely temporally (nanoseconds to minutes) and spatially (nanometers to micrometers) regulated. Since numerous bioactive compounds found in the intestinal lumen can directly interact with lipid membranes, we hypothesize that the dynamic reshaping of plasma membrane organization underlies the chemoprotective effect of select membrane targeted dietary bioactives (MTDBs). This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA
| | - Michael L Salinas
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA
| | - Eunjoo Kim
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Molecular and Cellular Medicine, Texas A&M University, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA; Center for Translational Environmental Health Research, Texas A&M University, USA.
| |
Collapse
|
30
|
Kosaraju R, Guesdon W, Crouch MJ, Teague HL, Sullivan EM, Karlsson EA, Schultz-Cherry S, Gowdy K, Bridges LC, Reese LR, Neufer PD, Armstrong M, Reisdorph N, Milner JJ, Beck M, Shaikh SR. B Cell Activity Is Impaired in Human and Mouse Obesity and Is Responsive to an Essential Fatty Acid upon Murine Influenza Infection. THE JOURNAL OF IMMUNOLOGY 2017; 198:4738-4752. [PMID: 28500069 DOI: 10.4049/jimmunol.1601031] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 04/10/2017] [Indexed: 02/06/2023]
Abstract
Obesity is associated with increased risk for infections and poor responses to vaccinations, which may be due to compromised B cell function. However, there is limited information about the influence of obesity on B cell function and underlying factors that modulate B cell responses. Therefore, we studied B cell cytokine secretion and/or Ab production across obesity models. In obese humans, B cell IL-6 secretion was lowered and IgM levels were elevated upon ex vivo anti-BCR/TLR9 stimulation. In murine obesity induced by a high fat diet, ex vivo IgM and IgG were elevated with unstimulated B cells. Furthermore, the high fat diet lowered bone marrow B cell frequency accompanied by diminished transcripts of early lymphoid commitment markers. Murine B cell responses were subsequently investigated upon influenza A/Puerto Rico/8/34 infection using a Western diet model in the absence or presence of docosahexaenoic acid (DHA). DHA, an essential fatty acid with immunomodulatory properties, was tested because its plasma levels are lowered in obesity. Relative to controls, mice consuming the Western diet had diminished Ab titers whereas the Western diet plus DHA improved titers. Mechanistically, DHA did not directly target B cells to elevate Ab levels. Instead, DHA increased the concentration of the downstream specialized proresolving lipid mediators (SPMs) 14-hydroxydocosahexaenoic acid, 17-hydroxydocosahexaenoic acid, and protectin DX. All three SPMs were found to be effective in elevating murine Ab levels upon influenza infection. Collectively, the results demonstrate that B cell responses are impaired across human and mouse obesity models and show that essential fatty acid status is a factor influencing humoral immunity, potentially through an SPM-mediated mechanism.
Collapse
Affiliation(s)
- Rasagna Kosaraju
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834
| | - William Guesdon
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834
| | - Miranda J Crouch
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834
| | - Heather L Teague
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834
| | - E Madison Sullivan
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834
| | - Erik A Karlsson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Kymberly Gowdy
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| | - Lance C Bridges
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834
| | - Lauren R Reese
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834.,Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834.,Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, University of Colorado, Denver, CO 80045; and
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado, Denver, CO 80045; and
| | - J Justin Milner
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Melinda Beck
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Saame Raza Shaikh
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; .,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834
| |
Collapse
|
31
|
Pětrošová H, Eshghi A, Anjum Z, Zlotnikov N, Cameron CE, Moriarty TJ. Diet-Induced Obesity Does Not Alter Tigecycline Treatment Efficacy in Murine Lyme Disease. Front Microbiol 2017; 8:292. [PMID: 28286500 PMCID: PMC5323460 DOI: 10.3389/fmicb.2017.00292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/13/2017] [Indexed: 01/22/2023] Open
Abstract
Obese individuals more frequently suffer from infections, as a result of increased susceptibility to a number of bacterial pathogens. Furthermore, obesity can alter antibiotic treatment efficacy due to changes in drug pharmacokinetics which can result in under-dosing. However, studies on the treatment of bacterial infections in the context of obesity are scarce. To address this research gap, we assessed efficacy of antibiotic treatment in diet-induced obese mice infected with the Lyme disease pathogen, Borrelia burgdorferi. Diet-induced obese C3H/HeN mice and normal-weight controls were infected with B. burgdorferi, and treated during the acute phase of infection with two doses of tigecycline, adjusted to the weights of diet-induced obese and normal-weight mice. Antibiotic treatment efficacy was assessed 1 month after the treatment by cultivating bacteria from tissues, measuring severity of Lyme carditis, and quantifying bacterial DNA clearance in ten tissues. In addition, B. burgdorferi-specific IgG production was monitored throughout the experiment. Tigecycline treatment was ineffective in reducing B. burgdorferi DNA copies in brain. However, diet-induced obesity did not affect antibiotic-dependent bacterial DNA clearance in any tissues, regardless of the tigecycline dose used for treatment. Production of B. burgdorferi-specific IgGs was delayed and attenuated in mock-treated diet-induced obese mice compared to mock-treated normal-weight animals, but did not differ among experimental groups following antibiotic treatment. No carditis or cultivatable B. burgdorferi were detected in any antibiotic-treated group. In conclusion, obesity was associated with attenuated and delayed humoral immune responses to B. burgdorferi, but did not affect efficacy of antibiotic treatment.
Collapse
Affiliation(s)
- Helena Pětrošová
- Matrix Dynamics Group, Faculty of Dentistry, University of TorontoToronto, ON, Canada
| | - Azad Eshghi
- Matrix Dynamics Group, Faculty of Dentistry, University of TorontoToronto, ON, Canada
| | - Zoha Anjum
- Matrix Dynamics Group, Faculty of Dentistry, University of TorontoToronto, ON, Canada
| | - Nataliya Zlotnikov
- Matrix Dynamics Group, Faculty of Dentistry, University of TorontoToronto, ON, Canada
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of VictoriaVictoria, BC, Canada
| | - Tara J. Moriarty
- Matrix Dynamics Group, Faculty of Dentistry, University of TorontoToronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of TorontoToronto, ON, Canada
| |
Collapse
|
32
|
Immune dysfunction and increased oxidative stress state in diet-induced obese mice are reverted by nutritional supplementation with monounsaturated and n-3 polyunsaturated fatty acids. Eur J Nutr 2017; 57:1123-1135. [DOI: 10.1007/s00394-017-1395-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/02/2017] [Indexed: 12/28/2022]
|
33
|
Epigenetic Mechanisms of Integrative Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4365429. [PMID: 28316635 PMCID: PMC5339524 DOI: 10.1155/2017/4365429] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/13/2016] [Accepted: 01/15/2017] [Indexed: 12/20/2022]
Abstract
Since time immemorial humans have utilized natural products and therapies for their healing properties. Even now, in the age of genomics and on the cusp of regenerative medicine, the use of complementary and alternative medicine (CAM) approaches represents a popular branch of health care. Furthermore, there is a trend towards a unified medical philosophy referred to as Integrative Medicine (IM) that represents the convergence of CAM and conventional medicine. The IM model not only considers the holistic perspective of the physiological components of the individual, but also includes psychological and mind-body aspects. Justification for and validation of such a whole-systems approach is in part dependent upon identification of the functional pathways governing healing, and new data is revealing relationships between therapies and biochemical effects that have long defied explanation. We review this data and propose a unifying theme: IM's ability to affect healing is due at least in part to epigenetic mechanisms. This hypothesis is based on a mounting body of evidence that demonstrates a correlation between the physical and mental effects of IM and modulation of gene expression and epigenetic state. Emphasis on mapping, deciphering, and optimizing these effects will facilitate therapeutic delivery and create further benefits.
Collapse
|
34
|
Splenic Immune Response Is Down-Regulated in C57BL/6J Mice Fed Eicosapentaenoic Acid and Docosahexaenoic Acid Enriched High Fat Diet. Nutrients 2017; 9:nu9010050. [PMID: 28075380 PMCID: PMC5295094 DOI: 10.3390/nu9010050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/16/2016] [Accepted: 01/05/2017] [Indexed: 12/26/2022] Open
Abstract
Dietary n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with reduction of inflammation, although the mechanisms are poorly understood, especially how the spleen, as a secondary lymphoid organ, is involved. To investigate the effects of EPA and DHA on spleen gene expression, male C57BL/6J mice were fed high fat diets (HFD) differing in fatty acid composition, either based on corn oil (HFD-CO), or CO enriched with 2 g/100 g EPA and DHA (HFD-ED), for eight weeks. Spleen tissue was analyzed using transcriptomics and for fatty acids profiling. Biological processes (BPs) related to the immune response, including T-cell receptor signaling pathway, T-cell differentiation and co-stimulation, myeloid dendritic cell differentiation, antigen presentation and processing, and the toll like receptor pathway were downregulated by HFD-ED compared with control and HFD-CO. These findings were supported by the down-regulation of NF-κB in HFD-ED compared with HFD-CO fed mice. Lower phospholipid arachidonic acid levels in HFD-ED compared with HFD-CO, and control mice suggest attenuation of pathways via prostaglandins and leukotrienes. The HFD-ED also upregulated BPs related to erythropoiesis and hematopoiesis compared with control and HFD-CO fed mice. Our findings suggest that EPA and DHA down-regulate the splenic immune response induced by HFD-CO, supporting earlier work that the spleen is a target organ for the anti-inflammatory effects of these n-3 fatty acids.
Collapse
|
35
|
Basson A, Trotter A, Rodriguez-Palacios A, Cominelli F. Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Front Immunol 2016; 7:290. [PMID: 27531998 PMCID: PMC4970383 DOI: 10.3389/fimmu.2016.00290] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
Numerous reviews have discussed gut microbiota composition changes during inflammatory bowel diseases (IBD), particularly Crohn’s disease (CD). However, most studies address the observed effects by focusing on studying the univariate connection between disease and dietary-induced alterations to gut microbiota composition. The possibility that these effects may reflect a number of other interconnected (i.e., pantropic) mechanisms, activated in parallel, particularly concerning various bacterial metabolites, is in the process of being elucidated. Progress seems, however, hampered by various difficult-to-study factors interacting at the mucosal level. Here, we highlight some of such factors that merit consideration, namely: (1) the contribution of host genetics and diet in altering gut microbiome, and in turn, the crosstalk among secondary metabolic pathways; (2) the interdependence between the amount of dietary fat, the fatty acid composition, the effects of timing and route of administration on gut microbiota community, and the impact of microbiota-derived fatty acids; (3) the effect of diet on bile acid composition, and the modulator role of bile acids on the gut microbiota; (4) the impact of endogenous and exogenous intestinal micronutrients and metabolites; and (5) the need to consider food associated toxins and chemicals, which can introduce confounding immune modulating elements (e.g., antioxidant and phytochemicals in oils and proteins). These concepts, which are not mutually exclusive, are herein illustrated paying special emphasis on physiologically inter-related processes.
Collapse
Affiliation(s)
- Abigail Basson
- Digestive Health Research Institute, Case Western Reserve University , Cleveland, OH , USA
| | - Ashley Trotter
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| | | | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
36
|
Hintze KJ, Tawzer J, Ward RE. Concentration and ratio of essential fatty acids influences the inflammatory response in lipopolysaccharide challenged mice. Prostaglandins Leukot Essent Fatty Acids 2016; 111:37-44. [PMID: 27021356 DOI: 10.1016/j.plefa.2016.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/01/2016] [Indexed: 12/31/2022]
Abstract
The goal of this study was to evaluate the role of both the % of dietary, 18-carbon PUFA (2.5%, 5% and 10%) and the n-6:n-3 ratio (1:1, 10:1 and 20:1) on the acute inflammatory response. Mice were fed diets for 8 weeks and injected intraperitoneally with LPS to induce acute inflammation. After 24h mice were sacrificed and plasma cytokines measured. Diets significantly affected the erythrocyte PUFA composition and the effect of PUFA ratio was more prominent than of PUFA concentration. The % dietary PUFA affected feed efficiency (p<0.05) and there was a PUFA×ratio interaction with body fat (p<0.01). In mice fed high %kcal from PUFA, those given a low n-6:n-3 ratio had more body fat than those fed a high ratio. Of the twelve cytokines measured, eleven were significantly affected by the % PUFA (p<0.05), whereas five were affected by the ratio (p<0.05). For seven cytokines, there was a significant PUFA×ratio interaction according to a two way ANOVA (p<0.05). These data indicate that dietary polyunsaturated fatty acids can affect LPS induced-inflammation.
Collapse
Affiliation(s)
- K J Hintze
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, UMC 8700, Logan, UT 84322, USA; Applied Nutrition Research, Utah Science Technology and Research Initiative (USTAR), Logan, UT 84322, USA
| | - J Tawzer
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, UMC 8700, Logan, UT 84322, USA
| | - R E Ward
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, UMC 8700, Logan, UT 84322, USA; Applied Nutrition Research, Utah Science Technology and Research Initiative (USTAR), Logan, UT 84322, USA.
| |
Collapse
|
37
|
López-Vicario C, Rius B, Alcaraz-Quiles J, García-Alonso V, Lopategi A, Titos E, Clària J. Pro-resolving mediators produced from EPA and DHA: Overview of the pathways involved and their mechanisms in metabolic syndrome and related liver diseases. Eur J Pharmacol 2016; 785:133-143. [DOI: 10.1016/j.ejphar.2015.03.092] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/02/2015] [Accepted: 03/05/2015] [Indexed: 12/18/2022]
|
38
|
Bashir S, Sharma Y, Elahi A, Khan F. Amelioration of obesity-associated inflammation and insulin resistance in c57bl/6 mice via macrophage polarization by fish oil supplementation. J Nutr Biochem 2016; 33:82-90. [DOI: 10.1016/j.jnutbio.2016.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/28/2016] [Accepted: 02/23/2016] [Indexed: 01/14/2023]
|
39
|
Harris M, Kinnun JJ, Kosaraju R, Leng X, Wassall SR, Shaikh SR. Membrane Disordering by Eicosapentaenoic Acid in B Lymphomas Is Reduced by Elongation to Docosapentaenoic Acid as Revealed with Solid-State Nuclear Magnetic Resonance Spectroscopy of Model Membranes. J Nutr 2016; 146:1283-9. [PMID: 27306897 PMCID: PMC4926856 DOI: 10.3945/jn.116.231639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/29/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Plasma membrane organization is a mechanistic target of n-3 (ω-3) polyunsaturated fatty acids. Previous studies show that eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) differentially disrupt plasma membrane molecular order to enhance the frequency and function of B lymphocytes. However, it is not known whether EPA and DHA affect the plasma membrane organization of B lymphomas differently to influence their function. OBJECTIVE We tested whether EPA and DHA had different effects on membrane order in B lymphomas and liposomes and studied their effects on B-lymphoma growth. METHODS B lymphomas were treated with 25 μmol EPA, DHA, or serum albumin control/L for 24 h. Membrane order was measured with fluorescence polarization, and cellular fatty acids (FAs) were analyzed with GC. Growth was quantified with a viability assay. (2)H nuclear magnetic resonance (NMR) studies were conducted on deuterated phospholipid bilayers. RESULTS Treating Raji, Ramos, and RPMI lymphomas for 24 h with 25 μmol EPA or DHA/L lowered plasma membrane order by 10-40% relative to the control. There were no differences between EPA and DHA on membrane order for the 3 cell lines. FA analyses revealed complex changes in response to EPA or DHA treatment and a large fraction of EPA was converted to docosapentaenoic acid (DPA; 22:5n-3). NMR studies, which were used to understand why EPA and DHA had similiar membrane effects, showed that phospholipids containing DPA, similar to DHA, were more ordered than those containing EPA. Finally, treating B lymphomas with 25 μmol EPA or DHA/L did not increase the frequency of B lymphomas compared with controls. CONCLUSIONS The results establish that 25 μmol EPA and DHA/L equally disrupt membrane order and do not promote B lymphoma growth. The data open a new area of investigation, which is how EPA's conversion to DPA substantially moderates its influence on membrane properties.
Collapse
Affiliation(s)
- Mitchell Harris
- Department of Biochemistry and Molecular Biology,,East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC; and
| | - Jacob J Kinnun
- Department of Physics, Indiana University–Purdue University Indianapolis, Indianapolis, IN
| | - Rasagna Kosaraju
- Department of Biochemistry and Molecular Biology,,East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC; and
| | - Xiaoling Leng
- Department of Physics, Indiana University–Purdue University Indianapolis, Indianapolis, IN
| | - Stephen R Wassall
- Department of Physics, Indiana University–Purdue University Indianapolis, Indianapolis, IN
| | - Saame Raza Shaikh
- Department of Biochemistry and Molecular Biology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC; and
| |
Collapse
|
40
|
Teague H, Harris M, Whelan J, Comstock SS, Fenton JI, Shaikh SR. Short-term consumption of n-3 PUFAs increases murine IL-5 levels, but IL-5 is not the mechanistic link between n-3 fatty acids and changes in B-cell populations. J Nutr Biochem 2015; 28:30-6. [PMID: 26878780 DOI: 10.1016/j.jnutbio.2015.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 12/31/2022]
Abstract
N-3 polyunsaturated fatty acids (PUFAs) exert immunomodulatory effects on B cells. We previously demonstrated that n-3 PUFAs enhanced the relative percentage and/or frequency of select B2 cell subsets. The objectives here were to determine if n-3 PUFAs (a) could boost cytokines that target B-cell frequency, (b) enhance the frequency of the B1 population and (c) to identify the mechanism by which n-3 PUFAs modify the proportion of B cells. Administration of n-3 PUFAs as fish oil to C57BL/6 mice enhanced secretion of the Th2 cytokine IL-5 but not IL-9 or IL-13. N-3 PUFAs had no influence on the percentage or frequency of peritoneal B1 or B2 cells. Subsequent experiments with IL-5(-/-) knockout mice showed n-3 PUFAs decreased the percentage of bone marrow B220(lo)IgM(hi) cells and increased the proportion and number of splenic IgM(+)IgD(lo)CD21(lo) cells compared to the control. These results, when compared with our previous findings with wild-type mice, suggested IL-5 had no role in mediating the effect of n-3 PUFAs on B-cell populations. To confirm this conclusion, we assayed IL-5 secretion in a diet-induced obesity model in which n-3 PUFAs enhanced the frequency of select B-cell subsets. N-3 PUFA supplementation as ethyl esters to obesogenic diets did not alter circulating IL-5 levels. Altogether, the data establish that n-3 PUFAs as fish oil can increase circulating IL-5 in lean mice, which has implications for several disease end points, but this increase in IL-5 is not the mechanistic link between n-3 PUFAs and changes in B-cell populations.
Collapse
Affiliation(s)
- Heather Teague
- Department of Biochemistry & Molecular Biology, East Carolina University; East Carolina Diabetes & Obesity Institute, East Carolina University
| | - Mitchel Harris
- Department of Biochemistry & Molecular Biology, East Carolina University; East Carolina Diabetes & Obesity Institute, East Carolina University
| | - Jarrett Whelan
- Department of Biochemistry & Molecular Biology, East Carolina University; East Carolina Diabetes & Obesity Institute, East Carolina University
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI; College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, East Carolina University; East Carolina Diabetes & Obesity Institute, East Carolina University; Department of Microbiology & Immunology, East Carolina University.
| |
Collapse
|
41
|
Omega-3 Polyunsaturated Fatty Acids: The Way Forward in Times of Mixed Evidence. BIOMED RESEARCH INTERNATIONAL 2015; 2015:143109. [PMID: 26301240 PMCID: PMC4537707 DOI: 10.1155/2015/143109] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/18/2015] [Accepted: 05/28/2015] [Indexed: 12/18/2022]
Abstract
Almost forty years ago, it was first hypothesized that an increased dietary intake of omega-3 polyunsaturated fatty acids (PUFA) from fish fat could exert protective effects against several pathologies. Decades of intense preclinical investigation have supported this hypothesis in a variety of model systems. Several clinical cardiovascular studies demonstrated the beneficial health effects of omega-3 PUFA, leading medical institutions worldwide to publish recommendations for their increased intake. However, particularly in recent years, contradictory results have been obtained in human studies focusing on cardiovascular disease and the clinical evidence in other diseases, particularly chronic inflammatory and neoplastic diseases, was never established to a degree that led to clear approval of treatment with omega-3 PUFA. Recent data not in line with the previous findings have sparked a debate on the health efficacy of omega-3 PUFA and the usefulness of increasing their intake for the prevention of a number of pathologies. In this review, we aim to examine the controversies on the possible use of these fatty acids as preventive/curative tools against the development of cardiovascular, metabolic, and inflammatory diseases, as well as several kinds of cancer.
Collapse
|
42
|
Duriancik DM, Comstock SS, Langohr IM, Fenton JI. High levels of fish oil enhance neutrophil development and activation and influence colon mucus barrier function in a genetically susceptible mouse model. J Nutr Biochem 2015; 26:1261-72. [PMID: 26297475 DOI: 10.1016/j.jnutbio.2015.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 05/28/2015] [Accepted: 06/04/2015] [Indexed: 12/23/2022]
Abstract
Dietary fatty acids influence immunologic homeostasis, but their effect on initiation of colitis, an immune-mediated disease, is not well established. Previously, our laboratory demonstrated that high doses of dietary fish oil (FO) increased colon inflammation and dysplasia in a model of infection-induced colitis. In the current study, we assessed the effects of high-dose dietary FO, 6% by weight, on colon inflammation, neutrophil recruitment and function, and mucus layer integrity in a genetically susceptible, colitis-prone mouse model in the absence of infection. FO-fed SMAD3(-/-) mice had increased colon inflammation evidenced by increased numbers of systemic and local neutrophils and increased neutrophil chemoattractant and inflammatory cytokine gene expression in the colon. Mucus layer thickness in the cecum and goblet cell numbers in the cecum and colon in FO-fed mice were reduced compared to control. FO consumption affected colitis in male and female mice differently. Compared to female control mice, neutrophils from FO-fed female mice had reduced reactive oxygen species (ROS) upon ex vivo stimulation with phorbol myristate acetate while FO-fed male mice produced increased ROS compared to control-fed male mice. In summary, dietary FO impaired mucus layer integrity and was associated with colon inflammation characterized by increased neutrophil numbers and altered neutrophil function. High-dose FO may have detrimental effects in populations genetically susceptible for inflammatory bowel disease and these effects may differ between males and females.
Collapse
Affiliation(s)
- David M Duriancik
- Department of Food Science & Human Nutrition, Michigan State University East Lansing, MI, 48824
| | - Sarah S Comstock
- Department of Food Science & Human Nutrition, Michigan State University East Lansing, MI, 48824
| | - Ingeborg M Langohr
- Department of Pathobiological Sciences Louisiana State University, Baton Rouge, LA, 70803
| | - Jenifer I Fenton
- Department of Food Science & Human Nutrition, Michigan State University East Lansing, MI, 48824.
| |
Collapse
|
43
|
Tsai S, Clemente-Casares X, Revelo XS, Winer S, Winer DA. Are obesity-related insulin resistance and type 2 diabetes autoimmune diseases? Diabetes 2015; 64:1886-97. [PMID: 25999531 DOI: 10.2337/db14-1488] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity and associated insulin resistance predispose individuals to develop chronic metabolic diseases, such as type 2 diabetes and cardiovascular disease. Although these disorders affect a significant proportion of the global population, the underlying mechanisms of disease remain poorly understood. The discovery of elevated tumor necrosis factor-α in adipose tissue as an inducer of obesity-associated insulin resistance marked a new era of understanding that a subclinical inflammatory process underlies the insulin resistance and metabolic dysfunction that precedes type 2 diabetes. Advances in the field identified components of both the innate and adaptive immune response as key players in regulating such inflammatory processes. As antigen specificity is a hallmark of an adaptive immune response, its role in modulating the chronic inflammation that accompanies obesity and type 2 diabetes begs the question of whether insulin resistance and type 2 diabetes can have autoimmune components. In this Perspective, we summarize current data that pertain to the activation and perpetuation of adaptive immune responses during obesity and discuss key missing links and potential mechanisms for obesity-related insulin resistance and type 2 diabetes to be considered as potential autoimmune diseases.
Collapse
Affiliation(s)
- Sue Tsai
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xavier Clemente-Casares
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xavier S Revelo
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Shawn Winer
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Daniel A Winer
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada Department of Pathology, University Health Network, Toronto, Ontario, Canada Division of Endocrinology and Metabolism, Department of Medicine, University Health Network, Toronto, Ontario, Canada Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Whelan J, Gowdy KM, Shaikh SR. N-3 polyunsaturated fatty acids modulate B cell activity in pre-clinical models: Implications for the immune response to infections. Eur J Pharmacol 2015; 785:10-17. [PMID: 26022530 DOI: 10.1016/j.ejphar.2015.03.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/15/2015] [Accepted: 03/05/2015] [Indexed: 12/12/2022]
Abstract
B cell antigen presentation, cytokine production, and antibody production are targets of pharmacological intervention in inflammatory and infectious diseases. Here we review recent pre-clinical evidence demonstrating that pharmacologically relevant levels of n-3 polyunsaturated fatty acids (PUFA) derived from marine fish oils influence key aspects of B cell function through multiple mechanisms. N-3 PUFAs modestly diminish B cell mediated stimulation of classically defined naïve CD4(+) Th1 cells through the major histocompatibility complex (MHC) class II pathway. This is consistent with existing data showing that n-3 PUFAs suppress the activation of Th1/Th17 cells through direct effects on helper T cells and indirect effects on antigen presenting cells. Mechanistically, n-3 PUFAs lower antigen presentation and T cell signaling by disrupting the formation of lipid microdomains within the immunological synapse. We then review data to show that n-3 PUFAs boost B cell activation and antibody production in the absence and presence of antigen stimulation. This has potential benefits for several clinical populations such as the aged and obese that have poor humoral immunity. The mode of action by which n-3 PUFA boost B cell activation and antibody production remains unclear, but may involve Th2 cytokines, enhanced production of specialized proresolving lipid mediators, and targeting of protein lateral organization in lipid microdomains. Finally, we highlight evidence to show that different n-3 PUFAs are not biologically equivalent, which has implications for the development of future interventions to target B cell activity.
Collapse
Affiliation(s)
- Jarrett Whelan
- Department of Biochemistry & Molecular Biology, East Carolina Diabetes & Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Kymberly M Gowdy
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, East Carolina Diabetes & Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Department of Microbiology & Immunology, East Carolina Diabetes & Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| |
Collapse
|
45
|
Shaikh SR, Wassall SR, Brown DA, Kosaraju R. N-3 Polyunsaturated Fatty Acids, Lipid Microclusters, and Vitamin E. CURRENT TOPICS IN MEMBRANES 2015; 75:209-31. [PMID: 26015284 DOI: 10.1016/bs.ctm.2015.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increased consumption of long-chain marine n-3 polyunsaturated fatty acids (PUFA) has potential health benefits for the general population and for select clinical populations. However, several key limitations remain in making adequate dietary recommendations on n-3 PUFAs in addition to translating the fatty acids into clinical trials for select diseases. One major constraint is an incomplete understanding of the underlying mechanisms of action of n-3 PUFAs. In this review, we highlight studies to show n-3 PUFA acyl chains reorganize the molecular architecture of plasma membrane sphingolipid-cholesterol-enriched lipid rafts and potentially sphingolipid-rich cholesterol-free domains and cardiolipin-protein scaffolds in the inner mitochondrial membrane. We also discuss the possibility that the effects of n-3 PUFAs on membrane organization could be regulated by the presence of vitamin E (α-tocopherol), which is necessary to protect highly unsaturated acyl chains from oxidation. Finally, we propose the integrated hypothesis, based predominately on studies in lymphocytes, cancer cells, and model membranes, that the mechanism by which n-3 PUFAs disrupt signaling microclusters is highly dependent on the type of lipid species that incorporate n-3 PUFA acyl chains. The current evidence suggests that n-3 PUFA acyl chains disrupt lipid raft formation by incorporating primarily into phosphatidylethanolamines but can also incorporate into other lipid species of the lipidome.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, East Carolina University, Greenville, NC, USA; Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - David A Brown
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Rasagna Kosaraju
- Department of Biochemistry & Molecular Biology, East Carolina University, Greenville, NC, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| |
Collapse
|
46
|
Milner JJ, Rebeles J, Dhungana S, Stewart DA, Sumner SCJ, Meyers MH, Mancuso P, Beck MA. Obesity Increases Mortality and Modulates the Lung Metabolome during Pandemic H1N1 Influenza Virus Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2015; 194:4846-59. [PMID: 25862817 DOI: 10.4049/jimmunol.1402295] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 03/11/2015] [Indexed: 01/20/2023]
Abstract
Obese individuals are at greater risk for hospitalization and death from infection with the 2009 pandemic H1N1 influenza virus (pH1N1). In this study, diet-induced and genetic-induced obese mouse models were used to uncover potential mechanisms by which obesity increases pH1N1 severity. High-fat diet-induced and genetic-induced obese mice exhibited greater pH1N1 mortality, lung inflammatory responses, and excess lung damage despite similar levels of viral burden compared with lean control mice. Furthermore, obese mice had fewer bronchoalveolar macrophages and regulatory T cells during infection. Obesity is inherently a metabolic disease, and metabolic profiling has found widespread usage in metabolic and infectious disease models for identifying biomarkers and enhancing understanding of complex mechanisms of disease. To further characterize the consequences of obesity on pH1N1 infection responses, we performed global liquid chromatography-mass spectrometry metabolic profiling of lung tissue and urine. A number of metabolites were perturbed by obesity both prior to and during infection. Uncovered metabolic signatures were used to identify changes in metabolic pathways that were differentially altered in the lungs of obese mice such as fatty acid, phospholipid, and nucleotide metabolism. Taken together, obesity induces distinct alterations in the lung metabolome, perhaps contributing to aberrant pH1N1 immune responses.
Collapse
Affiliation(s)
- J Justin Milner
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jenny Rebeles
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Suraj Dhungana
- Systems and Translational Science Center, RTI International, Research Triangle Park, NC 27709; and
| | - Delisha A Stewart
- Systems and Translational Science Center, RTI International, Research Triangle Park, NC 27709; and
| | - Susan C J Sumner
- Systems and Translational Science Center, RTI International, Research Triangle Park, NC 27709; and
| | - Matthew H Meyers
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Peter Mancuso
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Melinda A Beck
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599;
| |
Collapse
|
47
|
Georgieva R, Chachaty C, Hazarosova R, Tessier C, Nuss P, Momchilova A, Staneva G. Docosahexaenoic acid promotes micron scale liquid-ordered domains. A comparison study of docosahexaenoic versus oleic acid containing phosphatidylcholine in raft-like mixtures. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1424-35. [PMID: 25767038 DOI: 10.1016/j.bbamem.2015.02.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/24/2015] [Accepted: 02/26/2015] [Indexed: 12/19/2022]
Abstract
The understanding of the functional role of the lipid diversity in biological membranes is a major challenge. Lipid models have been developed to address this issue by using lipid mixtures generating liquid-ordered (Lo)/liquid-disordered (Ld) immiscibility. The present study examined mixtures comprising Egg sphingomyelin (SM), cholesterol (chol) and phosphatidylcholine (PC) either containing docosahexaenoic (PDPC) or oleic acid (POPC). The mixtures were examined in terms of their capability to induce phase separation at the micron- and nano-scales. Fluorescence microscopy, electron spin resonance (ESR), X-ray diffraction (XRD) and calorimetry methods were used to analyze the lateral organization of the mixtures. Fluorescence microscopy of giant vesicles could show that the temperature of the micron-scale Lo/Ld miscibility is higher for PDPC than for POPC ternary mixtures. At 37°C, no micron-scale Lo/Ld phase separation could be identified in the POPC containing mixtures while it was evident for PDPC. In contrast, a phase separation was distinguished for both PC mixtures by ESR and XRD, indicative that PDPC and POPC mixtures differed in micron vs nano domain organization. Compared to POPC, the higher line tension of the Lo domains observed in PDPC mixtures is assumed to result from the higher difference in Lo/Ld order parameter rather than hydrophobic mismatch.
Collapse
Affiliation(s)
- R Georgieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - C Chachaty
- Universite Pierre et Marie Curie-Paris 6, INSERM U893, CHU St. Antoine, 27 rue Chaligny, 75012 Paris, France
| | - R Hazarosova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - C Tessier
- UMR 7203, INSERM ERL 1057 - Bioactive Molecules Laboratory, Pierre et Marie Curie University, Paris, France; Department of Psychiatry, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - P Nuss
- UMR 7203, INSERM ERL 1057 - Bioactive Molecules Laboratory, Pierre et Marie Curie University, Paris, France; Department of Psychiatry, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - A Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - G Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria.
| |
Collapse
|
48
|
Shaikh SR, Haas KM, Beck MA, Teague H. The effects of diet-induced obesity on B cell function. Clin Exp Immunol 2015; 179:90-9. [PMID: 25169121 DOI: 10.1111/cei.12444] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2014] [Indexed: 12/12/2022] Open
Abstract
B-1 and B-2 B cell subsets carry out a diverse array of functions that range broadly from responding to innate stimuli, antigen presentation, cytokine secretion and antibody production. In this review, we first cover the functional roles of the major murine B cell subsets. We then highlight emerging evidence, primarily in preclinical rodent studies, to show that select B cell subsets are a therapeutic target in obesity and its associated co-morbidities. High fat diets promote accumulation of select murine B cell phenotypes in visceral adipose tissue. As a consequence, B cells exacerbate inflammation and thereby insulin sensitivity through the production of autoantibodies and via cross-talk with select adipose resident macrophages, CD4(+) and CD8(+) T cells. In contrast, interleukin (IL)-10-secreting regulatory B cells counteract the proinflammatory profile and improve glucose sensitivity. We subsequently review data from rodent studies that show pharmacological supplementation of obesogenic diets with long chain n-3 polyunsaturated fatty acids or specialized pro-resolving lipid mediators synthesized from endogenous n-3 polyunsaturated fatty acids boost B cell activation and antibody production. This may have potential benefits for improving inflammation in addition to combating the increased risk of viral infection that is an associated complication of obesity and type II diabetes. Finally, we propose potential underlying mechanisms throughout the review by which B cell activity could be differentially regulated in response to high fat diets.
Collapse
Affiliation(s)
- S R Shaikh
- Department of Biochemistry and Molecular Biology, East Carolina Diabetes and Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC, USA; Department of Microbiology and Immunology, East Carolina Diabetes and Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | | | | | | |
Collapse
|
49
|
Gurzell EA, Teague H, Duriancik D, Clinthorne J, Harris M, Shaikh SR, Fenton JI. Marine fish oils are not equivalent with respect to B-cell membrane organization and activation. J Nutr Biochem 2014; 26:369-77. [PMID: 25616447 DOI: 10.1016/j.jnutbio.2014.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 12/29/2022]
Abstract
We previously reported that docosahexaenoic-acid (DHA)-enriched fish oil (DFO) feeding altered B-cell membrane organization and enhanced B-cell function. The purpose of this study was to evaluate whether menhaden oil (MO) and eicosapentaenoic-acid (EPA)-enriched fish oil (EFO) alters B-cell function/phenotype similarly. Mice were fed control (CON), MO, EFO or DFO diets for 5weeks. We evaluated the fatty acid composition of B-cell phospholipids, membrane microdomain organization, ex vivo B-cell functionality and in vivo B-cell subsets. Red blood cells and B cells were found to be strongly (r>0.85) and significantly (P<.001) correlated for major n-3 and n-6 long-chain polyunsaturated fatty acids (LCPUFAs). Compared to CON, MO and DFO resulted in decreased clustering of membrane microdomains, whereas EFO increased clustering. All fish oil treatments had 1.12-1.60 times higher CD40 expression following stimulation; however, we observed 0.86 times lower major histocompatibility complex class II expression and 0.7 times lower interleukin (IL)-6 production from EFO, but 3.25 times higher interferon-γ from MO and 1.5 times higher IL-6 from DFO. By 90min of incubation, MO had 1.11 times higher antigen uptake compared to CON, whereas EFO was 0.86 times lower. All fish oil treatments resulted in decreasingly mature splenic and bone marrow B-cell subsets. We conclude that diets high in n-3 LCPUFAs may elicit similar B-cell phenotypes but different organizational and functional outcomes. More specifically, these data suggest that the EPA and DHA content of a diet influences immunological outcomes, highlighting the importance of understanding how specific n-3 LCPUFAs modulate B-cell development and function.
Collapse
Affiliation(s)
- Eric A Gurzell
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824
| | - Heather Teague
- Department of Biochemistry & Molecular Biology, Department of Microbiology & Immunology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834
| | - David Duriancik
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824
| | - Jonathan Clinthorne
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824
| | - Mitchel Harris
- Department of Biochemistry & Molecular Biology, Department of Microbiology & Immunology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834
| | - Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, Department of Microbiology & Immunology, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824; College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824.
| |
Collapse
|
50
|
Teague H, Harris M, Fenton J, Lallemand P, Shewchuk BM, Shaikh SR. Eicosapentaenoic and docosahexaenoic acid ethyl esters differentially enhance B-cell activity in murine obesity. J Lipid Res 2014; 55:1420-33. [PMID: 24837990 DOI: 10.1194/jlr.m049809] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Indexed: 01/06/2023] Open
Abstract
EPA and DHA are not biologically equivalent; however, their individual activity on B cells is unknown. We previously reported fish oil enhanced murine B-cell activity in obesity. To distinguish between the effects of EPA and DHA, we studied the ethyl esters of EPA and DHA on murine B-cell function as a function of time. We first demonstrate that EPA and DHA maintained the obese phenotype, with no improvements in fat mass, adipose inflammatory cytokines, fasting insulin, or glucose clearance. We then tested the hypothesis that EPA and DHA would increase the frequency of splenic B cells. EPA and DHA differentially enhanced the frequency and/or percentage of select B-cell subsets, correlating with increased natural serum IgM and cecal IgA. We next determined the activities of EPA and DHA on ex vivo production of cytokines upon lipopolysaccharide stimulation of B cells. EPA and DHA, in a time-dependent manner, enhanced B-cell cytokines with DHA notably increasing IL-10. At the molecular level, EPA and DHA differentially enhanced the formation of ordered microdomains but had no effect on Toll-like receptor 4 mobility. Overall, the results establish differential effects of EPA and DHA in a time-dependent manner on B-cell activity in obesity, which has implications for future clinical studies.
Collapse
Affiliation(s)
- Heather Teague
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Mitchel Harris
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Jenifer Fenton
- Department of Food Science and Nutrition, Michigan State University, East Lansing, MI
| | - Perrine Lallemand
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Brian M Shewchuk
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Saame Raza Shaikh
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| |
Collapse
|