1
|
Bispo P, Rodrigues PO, Bandarra NM. Dietary Oleic Acid and SCD16 and ELOVL6 Estimated Activities Can Modify Erythrocyte Membrane n-3 and n-6 HUFA Partition: A Pilot Study. Curr Issues Mol Biol 2025; 47:81. [PMID: 39996802 PMCID: PMC11854775 DOI: 10.3390/cimb47020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
In this work, we studied the relationships between the most representative fatty acids (FAs) and their ratios in red blood cell (RBC) membranes and dietary fatty acids alongside several cardiometabolic risk factors. Twenty-six individuals were enrolled with a mean age of 50.4 ± 12.7 years (16 males and 10 females). By bivariate analysis, dietary oleic acid (OA) correlated negatively with C20:4n-6 (AA) (p = 0.031) in RBCs. With multivariate regression analysis, dietary OA (p < 0.001) is an independent predictor and negatively associated with AA levels in RBCs, while the elongation of very-long-chain fatty acids 6 (ELOVL6) and stearoyl-CoA desaturase 16 (SCD16) activities (p < 0.05) was positively associated with AA levels in RBCs. The multivariate regression models also showed that dietary OA was an independent predictor and positively associated with C22:5n-3 (DPA) in RBCs. Furthermore, BMI positively correlated with SCD16, and both SCD16 and SCD18 were positively associated with triacylglycerols levels. In addition, SCD16 positively and significantly correlated with LDL-c and the LDL-c/HDL-c ratio and negatively correlated with the ApoA1/ApoB ratio, and SCD16 and ELOVL6 were significantly associated with HDL molecular subfractions. Therefore, our data underline that OA, SCD16 and ELOVL6 can interfere with n-3 and n-6 partition in biomembranes such as RBCs, suggesting an important molecular (patho)physiological regulatory mechanism role in controlling bioactive molecules' availability such as those involved in the immune-inflammatory response.
Collapse
Affiliation(s)
- Paulo Bispo
- Department of Food Tecnhology, Biotecnology and Nutrition, Escola Superior Agrária, Instituto Politécnico de Santarém, 2001-904 Santarém, Portugal
| | - Pedro O. Rodrigues
- Department of Biochemistry and CEDOC, Faculty of Medical Sciences/NOVA Medical School, Universidade Nova de Lisboa (UNL), 1169-056 Lisboa, Portugal;
| | - Narcisa M. Bandarra
- IPMA, IP, Departamento do Mar e dos Recursos Marinhos, Divisão de Aquacultura, Valorização e Biosprospeção, 1495-165 Lisboa, Portugal;
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
2
|
Ceja-Galicia ZA, Cespedes-Acuña CLA, El-Hafidi M. Protection Strategies Against Palmitic Acid-Induced Lipotoxicity in Metabolic Syndrome and Related Diseases. Int J Mol Sci 2025; 26:788. [PMID: 39859502 PMCID: PMC11765695 DOI: 10.3390/ijms26020788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Diets rich in carbohydrate and saturated fat contents, when combined with a sedentary lifestyle, contribute to the development of obesity and metabolic syndrome (MetS), which subsequently increase palmitic acid (PA) levels. At high concentrations, PA induces lipotoxicity through several mechanisms involving endoplasmic reticulum (ER) stress, mitochondrial dysfunction, inflammation and cell death. Nevertheless, there are endogenous strategies to mitigate PA-induced lipotoxicity through its unsaturation and elongation and its channeling and storage in lipid droplets (LDs), which plays a crucial role in sequestering oxidized lipids, thereby reducing oxidative damage to lipid membranes. While extended exposure to PA promotes mitochondrial reactive oxygen species (ROS) generation leading to cell damage, acute exposure of ß-cells to PA increases glucose-stimulated insulin secretion (GSIS), through the activation of free fatty acid receptors (FFARs). Subsequently, the activation of FFARs by exogenous agonists has been suggested as a potential therapeutic strategy to prevent PA-induced lipotoxicity in ß cells. Moreover, some saturated fatty acids, including oleic acid, can counteract the negative impact of PA on cellular health, suggesting a complex interaction between different dietary fats and cellular outcomes. Therefore, the challenge is to prevent the lipid peroxidation of dietary unsaturated fatty acids through the utilization of natural antioxidants. This complexity indicates the necessity for further research into the function of palmitic acid in diverse pathological conditions and to find the main therapeutic target against its lipotoxicity. The aim of this review is, therefore, to examine recent data regarding the mechanism underlying PA-induced lipotoxicity in order to identify strategies that can promote protection mechanisms against lipotoxicity, dysfunction and apoptosis in MetS and obesity.
Collapse
Affiliation(s)
- Zeltzin Alejandra Ceja-Galicia
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | | | - Mohammed El-Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| |
Collapse
|
3
|
Tai T, Shao YY, Zheng YQ, Jiang LP, Han HR, Yin N, Li HD, Ji JZ, Mi QY, Yang L, Feng L, Duan FY, Xie HG. Clopidogrel ameliorates high-fat diet-induced hepatic steatosis in mice through activation of the AMPK signaling pathway and beyond. Front Pharmacol 2024; 15:1496639. [PMID: 39508046 PMCID: PMC11537861 DOI: 10.3389/fphar.2024.1496639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Metabolic dysfunction-associated steatotic liver disease (MASLD) frequently confers an increased risk of vascular thrombosis; however, the marketed antiplatelet drugs are investigated for the prevention and treatment of MASLD in patients with these coexisting diseases. Methods To determine whether clopidogrel could ameliorate high-fat diet (HFD)-induced hepatic steatosis in mice and how it works, mice were fed on normal diet or HFD alone or in combination with or without clopidogrel for 14 weeks, and primary mouse hepatocytes were treated with palmitate/oleate alone or in combination with the compounds examined for 24 h. Body weight, liver weight, insulin resistance, triglyceride and total cholesterol content in serum and liver, histological morphology, transcriptomic analysis of mouse liver, and multiple key MASLD-associated genes and proteins were measured, respectively. Results and discussion Clopidogrel mitigated HFD-induced hepatic steatosis (as measured with oil red O staining and triglyceride kit assay) and reduced elevations in serum aminotransferases, liver weight, and the ratio of liver to body weight. Clopidogrel downregulated the expression of multiple critical lipogenic (Acaca/Acacb, Fasn, Scd1, Elovl6, Mogat1, Pparg, Cd36, and Fabp4), profibrotic (Col1a1, Col1a2, Col3a1, Col4a1, Acta2, and Mmp2), and proinflammatory (Ccl2, Cxcl2, Cxcl10, Il1a, Tlr4, and Nlrp3) genes, and enhanced phosphorylation of AMPK and ACC. However, compound C (an AMPK inhibitor) reversed enhanced phosphorylation of AMPK and ACC in clopidogrel-treated primary mouse hepatocytes and alleviated accumulation of intracellular lipids. We concluded that clopidogrel may prevent and/or reverse HFD-induced hepatic steatosis in mice, suggesting that clopidogrel could be repurposed to fight fatty liver in patients.
Collapse
Affiliation(s)
- Ting Tai
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan-Yuan Shao
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Yu-Qi Zheng
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing Medical University School of Pharmacy, Nanjing, China
| | - Li-Ping Jiang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Hao-Ru Han
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Na Yin
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Hao-Dong Li
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing Medical University School of Pharmacy, Nanjing, China
| | - Jin-Zi Ji
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qiong-Yu Mi
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Li Yang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Lei Feng
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Fu-Yang Duan
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Hong-Guang Xie
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing Medical University School of Pharmacy, Nanjing, China
| |
Collapse
|
4
|
Bai H, Wang L, Lambo MT, Li Y, Zhang Y. Effect of changing the proportion of C16:0 and cis-9 C18:1 in fat supplements on rumen fermentation, glucose and lipid metabolism, antioxidation capacity, and visceral fatty acid profile in finishing Angus bulls. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:39-48. [PMID: 39026601 PMCID: PMC11254535 DOI: 10.1016/j.aninu.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 07/20/2024]
Abstract
This study evaluated the effects of different proportions of palmitic (C16:0) and oleic (cis-9 C18:1) acids in fat supplements on rumen fermentation, glucose (GLU) and lipid metabolism, antioxidant function, and visceral fat fatty acid (FA) composition in Angus bulls. The design of the experiment was a randomized block design with 3 treatments of 10 animals each. A total of 30 finishing Angus bulls (21 ± 0.5 months) with an initial body weight of 626 ± 69 kg were blocked by weight into 10 blocks, with 3 bulls per block. The bulls in each block were randomly assigned to one of three experimental diets: (1) control diet without additional fat (CON), (2) CON + 2.5% palmitic calcium salt (PA; 90% C16:0), (3) CON + 2.5% mixed FA calcium salts (MA; 60% C16:0 + 30% cis-9 C18:1). Both fat supplements increased C18:0 and cis-9 C18:1 in visceral fat (P < 0.05) and up-regulated the expression of liver FA transport protein 5 (FATP5; P < 0.001). PA increased the insulin concentration (P < 0.001) and aspartate aminotransferase activity (AST; P = 0.030) in bull's blood while reducing the GLU concentration (P = 0.009). PA increased the content of triglycerides (TG; P = 0.014) in the liver, the content of the C16:0 in visceral fat (P = 0.004), and weight gain (P = 0.032), and up-regulated the expression of liver diacylglycerol acyltransferase 2 (DGAT2; P < 0.001) and stearoyl-CoA desaturase 1 (SCD1; P < 0.05). MA increased plasma superoxide dismutase activity (SOD; P = 0.011), reduced the concentration of acetate and total volatile FA (VFA) in rumen fluid (P < 0.05), and tended to increase plasma non-esterified FA (NEFA; P = 0.069) concentrations. Generally, high C16:0 fat supplementation increased weight gain in Angus bulls and triggered the risk of fatty liver, insulin resistance, and reduced antioxidant function. These adverse effects were alleviated by partially replacing C16:0 with cis-9 C18:1.
Collapse
Affiliation(s)
- Haixin Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Lubo Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Modinat Tolani Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Tao YF, Pan YF, Zhong CY, Wang QC, Hua JX, Lu SQ, Li Y, Dong YL, Xu P, Jiang BJ, Qiang J. Silencing the fatty acid elongase gene elovl6 induces reprogramming of nutrient metabolism in male Oreochromis niloticus. Int J Biol Macromol 2024; 271:132666. [PMID: 38806081 DOI: 10.1016/j.ijbiomac.2024.132666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Elongation of very long-chain fatty acids protein 6 (ELOVL6) plays a pivotal role in the synthesis of endogenous fatty acids, influencing energy balance and metabolic diseases. The primary objective of this study was to discover the molecular attributes and regulatory roles of ELOVL6 in male Nile tilapia, Oreochromis niloticus. The full-length cDNA of elovl6 was cloned from male Nile tilapia, and was determined to be 2255-bp long, including a 5'-untranslated region of 193 bp, a 3'-untranslated region of 1252 bp, and an open reading frame of 810 bp encoding 269 amino acids. The putative protein had typical features of ELOVL proteins. The transcript levels of elovl6 differed among various tissues and among fish fed with different dietary lipid sources. Knockdown of elovl6 in Nile tilapia using antisense RNA technology resulted in significant alterations in hepatic morphology, long-chain fatty acid synthesis, and fatty acid oxidation, and led to increased fat deposition in the liver and disrupted glucose/lipid metabolism. A comparative transcriptomic analysis (elovl6 knockdown vs. the negative control) identified 5877 differentially expressed genes with significant involvement in key signaling pathways including the peroxisome proliferator-activated receptor signaling pathway, fatty acid degradation, glycolysis/gluconeogenesis, and the insulin signaling pathway, all of which are crucial for lipid and glucose metabolism. qRT-PCR analyses verified the transcript levels of 13 differentially expressed genes within these pathways. Our findings indicate that elovl6 knockdown in male tilapia impedes oleic acid synthesis, culminating in aberrant nutrient metabolism.
Collapse
Affiliation(s)
- Yi-Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yi-Fan Pan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Chun-Yi Zhong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Qing-Chun Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Ji-Xiang Hua
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Si-Qi Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Ya-Lun Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Bing-Jie Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.
| |
Collapse
|
6
|
Zeng T, Lv J, Liang J, Xie B, Liu L, Tan Y, Zhu J, Jiang J, Xie H. Zebrafish cobll1a regulates lipid homeostasis via the RA signaling pathway. Front Cell Dev Biol 2024; 12:1381362. [PMID: 38699158 PMCID: PMC11063382 DOI: 10.3389/fcell.2024.1381362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Background The COBLL1 gene has been implicated in human central obesity, fasting insulin levels, type 2 diabetes, and blood lipid profiles. However, its molecular mechanisms remain largely unexplored. Methods In this study, we established cobll1a mutant lines using the CRISPR/Cas9-mediated gene knockout technique. To further dissect the molecular underpinnings of cobll1a during early development, transcriptome sequencing and bioinformatics analysis was employed. Results Our study showed that compared to the control, cobll1a -/- zebrafish embryos exhibited impaired development of digestive organs, including the liver, intestine, and pancreas, at 4 days post-fertilization (dpf). Transcriptome sequencing and bioinformatics analysis results showed that in cobll1a knockout group, the expression level of genes in the Retinoic Acid (RA) signaling pathway was affected, and the expression level of lipid metabolism-related genes (fasn, scd, elovl2, elovl6, dgat1a, srebf1 and srebf2) were significantly changed (p < 0.01), leading to increased lipid synthesis and decreased lipid catabolism. The expression level of apolipoprotein genes (apoa1a, apoa1b, apoa2, apoa4a, apoa4b, and apoea) genes were downregulated. Conclusion Our study suggest that the loss of cobll1a resulted in disrupted RA metabolism, reduced lipoprotein expression, and abnormal lipid transport, therefore contributing to lipid accumulation and deleterious effects on early liver development.
Collapse
Affiliation(s)
- Ting Zeng
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Jinrui Lv
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Jiaxin Liang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Binling Xie
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Ling Liu
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Yuanyuan Tan
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Junwei Zhu
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Jifan Jiang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| | - Huaping Xie
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Changsha, Hunan, China
| |
Collapse
|
7
|
Bae S, Moon YA. Deletion of Elovl5 leads to dyslipidemia and atherosclerosis in LDLR-deficient mice. Biochem Biophys Res Commun 2024; 690:149292. [PMID: 38000296 DOI: 10.1016/j.bbrc.2023.149292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease for which hepatic steatosis and atherogenic dyslipidemia are significant risk factors. We investigated the effects of endogenously generated very-long-chain polyunsaturated fatty acids (VL-PUFAs) on dyslipidemia and atherosclerosis development using mice that lack ELOVL5, a PUFA elongase that is required for the synthesis of arachidonic acid, EPA, and DHA from the essential fatty acids linoleic and linolenic acids, and the LDL receptor (LDLR). Elovl5-/-;Ldlr-/- mice manifest increased liver triglyceride and cholesterol concentrations due to the activation of sterol regulatory element binding protein-1, a transcription factor that activates enzymes required for de novo lipogenesis. Plasma levels of triglycerides and cholesterol in VLDL, IDL, and LDL were markedly elevated in Elovl5-/-;Ldlr-/- mice fed a chow and the mice exhibited marked aortic atherosclerotic plaques. Bone marrow-derived monocytes from wild-type (WT) and Elovl5-/- mice were polarized to M1 and M2 macrophages, and the effects of ELOVL5 on inflammatory activity were determined. There were no differences in most of the markers tested for M1 and M2 polarized cells between WT and Elovl5-/- cells, except for a slight increase in PGE2 secretion in Elovl5-/- cells, likely due to elevated Cox-2 expression. These results suggest that the deletion of Elovl5 leads to hepatic steatosis and dyslipidemia, which are the major factors in severe atherosclerosis in Elovl5-/-;Ldlr-/- mice.
Collapse
Affiliation(s)
- Sijeong Bae
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea.
| |
Collapse
|
8
|
Ganzetti GS, Parolini C. Microarray analysis identifies human apoA-I Milano and apoA-II as determinants of the liver gene expression related to lipid and energy metabolism. Exp Cell Res 2023; 433:113826. [PMID: 37858836 DOI: 10.1016/j.yexcr.2023.113826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
The phenotype of individuals carrying the apolipoprotein A-IMilano (apoA-IM), the mutant form of human apoA-I (apoA-I), is characterized by very low concentrations of HDL and apoA-I, and hypertriglyceridemia. Paradoxically, these subjects are not found to be at increased risk of premature cardiovascular disease compared to controls. Besides, various in vitro and in vivo studies have demonstrated that apoA-IM possesses greater anti-atherosclerotic activity compared to apoA-I. The molecular mechanisms explaining the apoA-IM carrier's phenotype and the apoA-IM higher efficacy are still not fully elucidated. To investigate such mechanisms, we crossed previously generated apoA-I (A-I k-in) or apoA-IM knock-in mice (A-IM k-in) with transgenic mice expressing human apoA-II but lacking murine apoA-I (hA-II) to generate hA-II/A-I k-in, and hA-II/A-IM k-in, respectively. These genetically modified mice completely reproduced the apoA-IM carrier's phenotype, including hypoalphalipoproteinemia and hypertriglyceridemia. Furthermore, by using the microarray methodology, we investigated the intrinsic differences in hepatic gene expression among these k-in mouse lines. The expression of 871, 1,018, 1129 and 764 genes was significantly altered between 1) hA-II/A-I and hA-II/A-IM k-in; 2) A-IM and hA-II/A-IM k-in; 3) A-I and A-IM; 4) A-I and hA-II/A-I k-in liver samples, respectively. Bioinformatics analysis highlighted that the hepatic expression of two genes, Elovl6 and Gatm, related to fatty acid/lipid and energy metabolism, respectively, is influenced by the presence of the apoA-IM natural variant and/or apoA-II.
Collapse
Affiliation(s)
- Giulia S Ganzetti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, via Balzaretti 9, 20133, Milano, Italy
| | - Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, via Balzaretti 9, 20133, Milano, Italy.
| |
Collapse
|
9
|
Jiang X, Hu R, Huang Y, Xu Y, Zheng Z, Shi Y, Miao J, Liu Y. Fructose aggravates copper-deficiency-induced non-alcoholic fatty liver disease. J Nutr Biochem 2023; 119:109402. [PMID: 37311490 PMCID: PMC11186518 DOI: 10.1016/j.jnutbio.2023.109402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/28/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), is the most common cause of chronic liver disease, affecting 24% of the global population. Accumulating evidence demonstrates that copper deficiency (CuD) is implicated in the development of NAFLD, besides, high fructose consumption by promoting inflammation contributes to NAFLD. However, how CuD and/or fructose (Fru) causes NAFLD is not clearly delineated. The present study aims to investigate the role of CuD and/or fructose supplement on hepatic steatosis and hepatic injury. We established a CuD rat model by feeding weaning male Sprague-Dawley rats for 4 weeks with CuD diet. Fructose was supplemented in drinking water. We found the promoting role of CuD or Fructose (Fru) in the progress of NAFLD, which was aggravated by combination of the two. Furthermore, we presented the alteration of hepatic lipid profiles (including content, composition, and saturation), especially ceramide (Cer), cardiolipin (CL), phosphatidylcholine (PC) and phosphatidylethanolamine (PE) was closely associated with CuD and/or Fru fed induced-NAFLD in rat models. In conclusion, insufficient copper intake or excessive fructose supplement resulted in adverse effects on the hepatic lipid profile, and fructose supplement causes a further hepatic injury in CuD-induced NAFLD, which illuminated a better understanding of NAFLD.
Collapse
Affiliation(s)
- Xin Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Ruixiang Hu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| | - Yipu Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Yi Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Zhirui Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Yuansen Shi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Ji Miao
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| | - Yun Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China.
| |
Collapse
|
10
|
Jeon YG, Kim YY, Lee G, Kim JB. Physiological and pathological roles of lipogenesis. Nat Metab 2023; 5:735-759. [PMID: 37142787 DOI: 10.1038/s42255-023-00786-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Lipids are essential metabolites, which function as energy sources, structural components and signalling mediators. Most cells are able to convert carbohydrates into fatty acids, which are often converted into neutral lipids for storage in the form of lipid droplets. Accumulating evidence suggests that lipogenesis plays a crucial role not only in metabolic tissues for systemic energy homoeostasis but also in immune and nervous systems for their proliferation, differentiation and even pathophysiological roles. Thus, excessive or insufficient lipogenesis is closely associated with aberrations in lipid homoeostasis, potentially leading to pathological consequences, such as dyslipidaemia, diabetes, fatty liver, autoimmune diseases, neurodegenerative diseases and cancers. For systemic energy homoeostasis, multiple enzymes involved in lipogenesis are tightly controlled by transcriptional and post-translational modifications. In this Review, we discuss recent findings regarding the regulatory mechanisms, physiological roles and pathological importance of lipogenesis in multiple tissues such as adipose tissue and the liver, as well as the immune and nervous systems. Furthermore, we briefly introduce the therapeutic implications of lipogenesis modulation.
Collapse
Affiliation(s)
- Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Young Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Gung Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
11
|
Siddiqui AJ, Jahan S, Chaturvedi S, Siddiqui MA, Alshahrani MM, Abdelgadir A, Hamadou WS, Saxena J, Sundararaj BK, Snoussi M, Badraoui R, Adnan M. Therapeutic Role of ELOVL in Neurological Diseases. ACS OMEGA 2023; 8:9764-9774. [PMID: 36969404 PMCID: PMC10034982 DOI: 10.1021/acsomega.3c00056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Fatty acids play an important role in controlling the energy balance of mammals. De novo lipogenesis also generates a significant amount of lipids that are endogenously produced in addition to their ingestion. Fatty acid elongation beyond 16 carbons (palmitic acid), which can lead to the production of very long chain fatty acids (VLCFA), can be caused by the rate-limiting condensation process. Seven elongases, ELOVL1-7, have been identified in mammals and each has a unique substrate specificity. Researchers have recently developed a keen interest in the elongation of very long chain fatty acids protein 1 (ELOVL1) enzyme as a potential treatment for a variety of diseases. A number of neurological disorders directly or indirectly related to ELOVL1 involve the elongation of monounsaturated (C20:1 and C22:1) and saturated (C18:0-C26:0) acyl-CoAs. VLCFAs and ELOVL1 have a direct impact on the neurological disease. Other neurological symptoms such as ichthyotic keratoderma, spasticity, and hypomyelination have also been linked to the major enzyme (ELOVL1). Recently, ELOVL1 has also been heavily used to treat a number of diseases. The current review focuses on in-depth unique insights regarding the role of ELOVL1 as a therapeutic target and associated neurological disorders.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Sadaf Jahan
- Department
of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Swati Chaturvedi
- Department
of Pharmaceutics and Pharmacokinetics, Pre-Clinical North, Lab-106, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Maqsood Ahmed Siddiqui
- Department
of Zoology, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department
of Clinical Laboratory Sciences, Faculty of Applied Medial Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Abdelmushin Abdelgadir
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Walid Sabri Hamadou
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Juhi Saxena
- Department
of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, NH-95, Chandigarh State Hwy, Ludhiana, Punjab 140413, India
| | - Bharath K. Sundararaj
- School
of Dental Medicine, Department of Cellular and Molecular Biology, Boston University, Medical Campus Boston, Boston, Massachusetts 02215, United States
| | - Mejdi Snoussi
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Riadh Badraoui
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| | - Mohd Adnan
- Department
of Biology, College of Science, University
of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Molecular
Diagnostics and Personalized Therapeutics Unit, University of Ha’il, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| |
Collapse
|
12
|
Kiyoki Y, Kato T, Kito S, Matsuzaka T, Morioka S, Sasaki J, Makishima K, Sakamoto T, Nishikii H, Obara N, Sakata-Yanagimoto M, Sasaki T, Shimano H, Chiba S. The fatty acid elongase Elovl6 is crucial for hematopoietic stem cell engraftment and leukemia propagation. Leukemia 2023; 37:910-913. [PMID: 36890291 PMCID: PMC10079543 DOI: 10.1038/s41375-023-01842-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 03/10/2023]
Affiliation(s)
- Yusuke Kiyoki
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takayasu Kato
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan. .,Department of Laboratory Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Sakura Kito
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takashi Matsuzaka
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shin Morioka
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Department of Lipid Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Junko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Department of Lipid Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Department of Cellular and Molecular Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kenichi Makishima
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tatsuhiro Sakamoto
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hidekazu Nishikii
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Naoshi Obara
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Mamiko Sakata-Yanagimoto
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Division of Advanced Hemato-Oncology, Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takehiko Sasaki
- Department of Biochemical Pathophysiology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Department of Lipid Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shigeru Chiba
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
13
|
Patrick K, Tian X, Cartwright D, Heising S, Glover MS, Northall EN, Cazares L, Hess S, Baker D, Church C, Davies G, Lavery G, Naylor AJ. Sex-specific effects of CD248 on metabolism and the adipose tissue lipidome. PLoS One 2023; 18:e0284012. [PMID: 37115796 PMCID: PMC10146461 DOI: 10.1371/journal.pone.0284012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Cd248 has recently been associated with adipose tissue physiology, demonstrated by reduced weight gain in high fat diet-fed mice with genetic deletion of Cd248 relative to controls. Here we set out to determine the metabolic consequences of loss of Cd248. Strikingly, we find these to be sex specific; By subjecting Cd248-/- and Cd248+/+ mice to a high fat diet and indirect calorimetry study, we identified that only male Cd248-/- mice show reduced weight gain compared to littermate control wildtype mice. In addition, male (but not female) mice showed a lower respiratory exchange ratio on both chow and high fat diets, indicating a predisposition to metabolise lipid. Lipidomic studies on specific fat depots found reduced triglyceride and diglyceride deposition in male Cd248-/- mice, and this was supported by reduced expression of lipogenic and adipogenic genes. Finally, metabolomic analysis of isolated, differentiated preadipocytes found alterations in metabolic pathways associated with lipid deposition in cells isolated from male, but not female, Cd248-/- mice. Overall, our results highlight the importance of sex controls in animal studies and point to a role for Cd248 in sex- and depot-specific regulation of lipid metabolism.
Collapse
Affiliation(s)
- Kieran Patrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Xiang Tian
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States of America
| | - David Cartwright
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Silke Heising
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Matthew S Glover
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States of America
| | - Ellie N Northall
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Lisa Cazares
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States of America
| | - Sonja Hess
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States of America
| | - David Baker
- BioPharmaceuticals R&D, Cardiovascular, Renal and Metabolism (CVRM), Cambridge, United Kingdom
| | - Christopher Church
- BioPharmaceuticals R&D, Cardiovascular, Renal and Metabolism (CVRM), Cambridge, United Kingdom
| | - Graeme Davies
- BioPharmaceuticals R&D, Cardiovascular, Renal and Metabolism (CVRM), Cambridge, United Kingdom
| | - Gareth Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Amy J Naylor
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Jiang P, Iqbal A, Cui Z, Yu H, Zhao Z. Bta-miR-33a affects gene expression and lipid levels in Chinese Holstein mammary epithelial cells. Arch Anim Breed 2022; 65:357-370. [PMID: 36304442 PMCID: PMC9594864 DOI: 10.5194/aab-65-357-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 08/29/2022] [Indexed: 11/07/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules of about 19-25 nucleotides in length that regulate different biological processes, including lipid metabolism. In this study, we explored the effect of bta-miR-33a on lipid metabolism in bovine mammary epithelial cells (BMECs) of Chinese Holstein for the first time. For this purpose, the plasmids of bta-miR-33a mimic, bta-miR-33a inhibitor and bta-miR-33a negative control were constructed to overexpress or repress bta-miR-33a in BMECs. The effects of plasmid transfection were analysed by examining the mRNA and protein expression levels of ELOVL6 and the intracellular triglycerides. The results showed that bta-miR-33a directly inhibited the expression of ELOVL6 in BMECs; decreased the mRNA levels of ELOVL5, HACD2, CPT1A and MSMO1; and increased the mRNA level of ALOX15. Sequence bta-miR-33a also increased the contents of triglycerides in the cells, presumably as a consequence of these gene expression changes. In summary, the results of the present study suggest that bta-miR-33a regulates lipid metabolism by targeting ELOVL6, which might be a potential molecular marker of milk fat composition.
Collapse
Affiliation(s)
- Ping Jiang
- Department of Animal Breeding and Genetics, College of Coastal
Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong,
524088, PR China
| | - Ambreen Iqbal
- Department of Animal Breeding and Genetics, College of Coastal
Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong,
524088, PR China
| | - Zhiqian Cui
- College of Animal Science, Jilin University,
Changchun, 130062, PR China
| | - Haibin Yu
- Department of Animal Breeding and Genetics, College of Coastal
Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong,
524088, PR China
| | - Zhihui Zhao
- Department of Animal Breeding and Genetics, College of Coastal
Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong,
524088, PR China
| |
Collapse
|
15
|
Burchat N, Akal T, Ntambi JM, Trivedi N, Suresh R, Sampath H. SCD1 is nutritionally and spatially regulated in the intestine and influences systemic postprandial lipid homeostasis and gut-liver crosstalk. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159195. [PMID: 35718096 PMCID: PMC11287785 DOI: 10.1016/j.bbalip.2022.159195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/21/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023]
Abstract
Stearoyl-CoA desaturase-1 is an endoplasmic reticulum (ER)-membrane resident protein that inserts a double bond into saturated fatty acids, converting them into their monounsaturated counterparts. Previous studies have demonstrated an important role for SCD1 in modulating tissue and systemic health. Specifically, lack of hepatic or cutaneous SCD1 results in significant reductions in tissue esterified lipids. While the intestine is an important site of lipid esterification and assimilation into the body, the regulation of intestinal SCD1 or its impact on lipid composition in the intestine and other tissues has not been investigated. Here we report that unlike other lipogenic enzymes, SCD1 is enriched in the distal small intestine and in the colon of chow-fed mice and is robustly upregulated by acute refeeding of a high-sucrose diet. We generated a mouse model lacking SCD1 specifically in the intestine (iKO mice). These mice have significant reductions not only in intestinal lipids, but also in plasma triacylglycerols, diacylglycerols, cholesterol esters, and free cholesterol. Additionally, hepatic accumulation of diacylglycerols is significantly reduced in iKO mice. Comprehensive targeted lipidomic profiling revealed a consistent reduction in the myristoleic (14:1) to myristic (14:0) acid ratios in intestine, liver, and plasma of iKO mice. Consistent with the reduction of the monounsaturated fatty acid myristoleic acid in hepatic lipids of chow fed iKO mice, hepatic expression of Pgc-1α, Sirt1, and related fatty acid oxidation genes were reduced in chow-fed iKO mice. Further, lack of intestinal SCD1 reduced expression of de novo lipogenic genes in distal intestine of chow-fed mice and in the livers of mice fed a lipogenic high-sucrose diet. Taken together, these studies reveal a novel pattern of expression of SCD1 in the intestine. They also demonstrate that intestinal SCD1 modulates lipid content and composition of not only intestinal tissues, but also that of plasma and liver. Further, these data point to intestinal SCD1 as a modulator of gut-liver crosstalk, potentially through the production of novel signaling lipids such as myristoleic acid. These data have important implications to understanding how intestinal SCD1 may modulate risk for post-prandial lipemia, hepatic steatosis, and related pathologies.
Collapse
Affiliation(s)
- Natalie Burchat
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, United States of America
| | - Tasleenpal Akal
- Department of Nutritional Sciences, Rutgers University, United States of America
| | - James M Ntambi
- Departments of Biochemistry and Nutritional Sciences, University of Wisconsin-Madison, United States of America
| | - Nirali Trivedi
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, United States of America
| | - Ranjita Suresh
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, United States of America
| | - Harini Sampath
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, United States of America; Department of Nutritional Sciences, Rutgers University, United States of America.
| |
Collapse
|
16
|
Li P, Zhang R, Wang M, Chen Y, Chen Z, Ke X, Zuo L, Wang J. Baicalein Prevents Fructose-Induced Hepatic Steatosis in Rats: In the Regulation of Fatty Acid De Novo Synthesis, Fatty Acid Elongation and Fatty Acid Oxidation. Front Pharmacol 2022; 13:917329. [PMID: 35847050 PMCID: PMC9280198 DOI: 10.3389/fphar.2022.917329] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), hepatic fibrosis and even hepatocellular carcinoma, is a liver disease worldwide without approved therapeutic drugs. Baicalein (BAL), a flavonoid compound extracted from the Traditional Chinese Medicine (TCM) Scutellariae Radix (Scutellaria baicalensis Georgi.), has been used in TCM clinical practice for thousands of years to treat liver diseases due to its "hepatoprotective effect". However, the underlying liver-protecting mechanisms remain largely unknown. Here, we found that oral administration of BAL significantly decreased excess serum levels of triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST) as well as hepatic TG in fructose-fed rats. Attenuation of the increased vacuolization and Oil Red O staining area was evident on hepatic histological examination in BAL-treated rats. Mechanistically, results of RNA-sequencing, western-blot, real-time quantitative PCR (RT-qPCR) and hepatic metabolomics analyses indicated that BAL decreased fructose-induced excessive nuclear expressions of mature sterol regulatory element-binding protein 1c (mSREBP1c) and carbohydrate response element-binding protein (ChREBP), which led to the decline of lipogenic molecules [including fatty acid synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), elongation of very long chain fatty acids 6 (ELOVL6), acetyl-CoA carboxylase (ACC)], accompanying with the alternation of hepatic fatty acids composition. Meanwhile, BAL enhanced fatty acid oxidation by activating AMPK/PGC1α signaling axis and PPARα signal pathway, which elicited high expression of carnitine palmitoyl transferase 1α (CPT1α) and Acyl-CoA oxidase 1 (ACO1) in livers of fructose-fed rats, respectively. BAL ameliorated fructose-induced hepatic steatosis, which is associated with regulating fatty acid synthesis, elongation and oxidation.
Collapse
Affiliation(s)
- Pan Li
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Ruoyu Zhang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Meng Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Yuwei Chen
- The Pharmacy Department, the Second People’s Hospital of Jiulongpo District, Chongqing, China
| | - Zhiwei Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xiumei Ke
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Ling Zuo
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Duckett SK, Greene MA. Identification of microRNA Transcriptome Involved in Bovine Intramuscular Fat Deposition. Front Vet Sci 2022; 9:883295. [PMID: 35498736 PMCID: PMC9051433 DOI: 10.3389/fvets.2022.883295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background Intramuscular fat deposition in beef is a major determinant of carcass quality and value in the USA. The objective of this study was to examine changes in microRNA (miRNA) transcriptome that are involved with intramuscular fat deposition with time-on-concentrates (TOC). Yearling steers were individually fed a high concentrate diet and changes in intramuscular fat deposition were monitored by real-time ultrasound at 28 to 33 d intervals. Longissimus muscle biopsies collected on d 0, 92 and 124 TOC to examine changes in miRNA transcriptome that are involved in intramuscular fat deposition. Results Steer body weight increased (P < 0.0001) at each weigh day during TOC. Fat thickness increased (P < 0.005) from d 28 to 124. Ribeye area was larger (P < 0.001) on d 124 than d 61, which was larger than d 0 and 28. Ultrasound intramuscular fat content was greater (P < 0.001) on d 92 and 124 compared to d 0, 28 or 61. Sequencing of the muscle biopsy samples identified one miRNA, bta-miR-122, that was up-regulated (P < 0.005) at d 92 and 124 compared to d 0. At d 92 TOC, mRNA expression levels of fatty acid binding protein 4 (FABP4) and elongase 6 (ELOVL6) were up-regulated (P < 0.01) compared to d 0; whereas at d 124, lipogenic genes involved in de novo fatty acid synthesis, fatty acid transport, elongation and desaturation were highly up-regulated compared to d0. Conclusions Small RNA sequencing identified bta-miR-122 as a potential miRNA of interest that may be involved in intramuscular fat deposition with increasing TOC. Increased intramuscular fat content, as measured by real-time ultrasound, combined with differential gene expression suggests that preadipocyte differentiation may be stimulated first, which is followed by a global up-regulation of lipogenic genes involved in de novo fatty acid synthesis that provide fatty acids for subsequent hypertrophy.
Collapse
|
18
|
Cisbani G, Koppel A, Metherel AH, Smith ME, Aji KN, Andreazza AC, Mizrahi R, Bazinet RP. Serum lipid analysis and isotopic enrichment is suggestive of greater lipogenesis in young long-term cannabis users: A secondary analysis of a case-control study. Lipids 2022; 57:125-140. [PMID: 35075659 PMCID: PMC8923992 DOI: 10.1002/lipd.12336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023]
Abstract
Cannabis is now legal in many countries and while numerous studies have reported on its impact on cognition and appetite regulation, none have examined fatty acid metabolism in young cannabis users. We conducted an exploratory analysis to evaluate cannabis impact on fatty acid metabolism in cannabis users (n = 21) and non-cannabis users (n = 16). Serum levels of some saturated and monounsaturated fatty acids, including palmitic, palmitoleic, and oleic acids were higher in cannabis users compared to nonusers. As palmitic acid can be derived from diet or lipogenesis from sugars, we evaluated lipogenesis using a de novo lipogenesis index (palmitate/linoleic acid) and carbon-specific isotope analysis, which allows for the determination of fatty acid 13 C signature. The significantly higher de novo lipogenesis index in the cannabis users group along with a more enriched 13 C signature of palmitic acid suggested an increase in lipogenesis. In addition, while serum glucose concentration did not differ between groups, pyruvate and lactate were lower in the cannabis user group, with pyruvate negatively correlating with palmitic acid. Furthermore, the endocannabinoid 2-arachidonoylglycerol was elevated in cannabis users and could contribute to lipogenesis by activating the cannabinoid receptor 1. Because palmitic acid has been suggested to increase inflammation, we measured peripheral cytokines and observed no changes in inflammatory cytokines. Finally, an anti-inflammatory metabolite of palmitic acid, palmitoylethanolamide was elevated in cannabis users. Our results suggest that lipogenic activity is increased in cannabis users; however, future studies, including prospective studies that control dietary intake are required.
Collapse
Affiliation(s)
- Giulia Cisbani
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Alex Koppel
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario
| | - Adam H. Metherel
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Mackenzie E. Smith
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Kankana N. Aji
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario
| | - Ana C. Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario
| | - Romina Mizrahi
- Department of Psychiatry, McGill University, Montreal, Canada,Douglas Research Center, Montreal, Canada,Corresponding author: Richard P. Bazinet, Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada, Medical Sciences Building, 5th Floor, Room 5358, 1 King’s College Circle, Toronto, ON, M5S 1A8, , Phone number: (416) 946-8276, Romina Mizrahi, Department of Psychiatry, McGill University, 6875 Boulevard Lasalle, Montréal, QC H4H 1R3,
| | - Richard P. Bazinet
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada,Corresponding author: Richard P. Bazinet, Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Canada, Medical Sciences Building, 5th Floor, Room 5358, 1 King’s College Circle, Toronto, ON, M5S 1A8, , Phone number: (416) 946-8276, Romina Mizrahi, Department of Psychiatry, McGill University, 6875 Boulevard Lasalle, Montréal, QC H4H 1R3,
| |
Collapse
|
19
|
Moriyama K, Masuda Y, Suzuki N, Yamada C, Kishimoto N, Takashimizu S, Kubo A, Nishizaki Y. Estimated Elovl6 and delta-5 desaturase activities might represent potential markers for insulin resistance in Japanese adults. J Diabetes Metab Disord 2022; 21:197-207. [PMID: 35673485 PMCID: PMC9167368 DOI: 10.1007/s40200-021-00958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/07/2021] [Indexed: 01/31/2023]
Abstract
Purpose Results from a recent study indicated that lower stearic acid/palmitic acid (SA/PA) and arachidonic acid/dihomo-γ-linolenic acid (AA/DGLA) ratios were associated with metabolically unhealthy obesity. However, this has not been extensively studied in the Japanese population. Methods We recruited 291 Japanese subjects with serum free fatty acid profiles undergoing health examinations. Whole serum desaturase activity was estimated as the product: precursor ratio -SA/PA ratio for elongation of long-chain fatty acid family member 6 (Elovl6) and AA/DGLA for delta-5 desaturase (D5D). The determinants of Elovl6 and D5D activity were investigated using multiple regression analyses. Results The Elovl6 and D5D activities exhibited a negative correlation with the logmatic-transformed TG/HDL-C ratio and TyG index. Multiple regression analyses revealed that the TG/HDL-C ratio and TyG index were negatively associated with Elovl6 and D5D activities. Most atherogenic markers were worse in the low Elovl6 or D5D activity group than in the high Elovl6 or D5D activity group. When study subjects were further stratified by TG levels, most atherogenic markers were the worst in the highest TG group in either the lowest Elovl6 or lowest D5D activity groups. Conclusion The estimated Elovl6 and D5D activities might be useful markers of insulin resistance in Japanese subjects.
Collapse
Affiliation(s)
- Kengo Moriyama
- Department of Clinical Health Science, Tokai University School of Medicine, Tokai University Hachioji Hospital, 1838 Ishikawa-machi, Hachioji, Tokyo 192-0032 Japan
| | - Yumi Masuda
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
| | - Nana Suzuki
- Department of Clinical Health Science, Tokai University School of Medicine, Tokai University Hospital, 143 Shimokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Chizumi Yamada
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
- Tokai University Tokyo Hospital, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
| | - Noriaki Kishimoto
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
- Tokai University Tokyo Hospital, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
| | - Shinji Takashimizu
- Department of Clinical Health Science, Tokai University School of Medicine, Tokai University Hospital, 143 Shimokasuya, Isehara, Kanagawa 259-1193 Japan
| | - Akira Kubo
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
- Tokai University Tokyo Hospital, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
| | - Yasuhiro Nishizaki
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
- Tokai University Tokyo Hospital, 1-2-5, Yoyogi, Tokyo 151-0053 Japan
| |
Collapse
|
20
|
Wang H, Yang W, Liu J, Leng J, Li W, Yu Z, Li J, Ma RCW, Hu G, Fang Z, Wang Y, Yang X. Serum concentrations of SFAs and CDKAL1 single-nucleotide polymorphism rs7747752 are related to an increased risk of gestational diabetes mellitus. Am J Clin Nutr 2021; 114:1698-1707. [PMID: 34192303 DOI: 10.1093/ajcn/nqab225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Interactions between genetic and nutritional factors can contribute to the risk of gestational diabetes mellitus (GDM). OBJECTIVES We aimed to explore the associations of cyclin-dependent kinase 5 regulatory subunit associated protein 1-like 1 (CDKAL1) single-nucleotide polymorphism (SNP) rs7747752 and serum concentrations of SFAs with the risk of GDM in Chinese women. METHODS We conducted a 1:1 case-control study in a prospective cohort of pregnant women in Tianjin, China. Serum SFA data were collected from a total of 243 women with GDM and their controls matched by maternal age (±1 y). Among them, 207 case-control pairs had high-quality sequencing data. P/L and S/P ratios were defined as palmitic acid (16:0)/lauric acid (12:0) and stearic acid (18:0)/palmitic acid, respectively. Conditional logistic regression analysis was performed to estimate associations of CDKAL1 SNP rs7747752 and serum concentrations of SFAs with the risk of GDM. An additive interaction between rs7747752 and palmitic acid was analyzed to test the contribution of their interaction to the risk of GDM. RESULTS Among the 5 tested SFAs, palmitic acid was positively whereas lauric acid was negatively associated with the risk of GDM. A P/L ratio ≥12.2 and an S/P ratio ≤0.71 were independently and synergistically associated with an increased risk of GDM. The CDKAL1 rs7747752 G > C variant was significantly associated with an increased risk of GDM (P < 0.05). Furthermore, the presence of the rs7747752 G > C variant increased the OR (95% CI) of high palmitic acid concentration from 1.55 (0.61, 3.97) to 4.34 (2.04, 9.23), with a significant additive interaction. CONCLUSIONS The interaction between high serum palmitic acid concentration and the CDKAL1 rs7747752 G > C variant played a critical role in GDM. Given that a hypocaloric low-carbohydrate diet can lower palmitic acid concentrations, it is worthwhile to test whether such a diet is effective in reducing the risk of GDM, especially among women who have both risk factors.
Collapse
Affiliation(s)
- Hui Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Wen Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jinnan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Junhong Leng
- Project Office, Tianjin Women and Children's Health Center, Tianjin, China
| | - Weiqin Li
- Project Office, Tianjin Women and Children's Health Center, Tianjin, China
| | - Zhijie Yu
- Population Cancer Research Program, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.,Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Zhongze Fang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.,Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China.,Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ying Wang
- Scientific Research Platform of the Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong, China.,Key Laboratory of 3D Printing Technology in Stomatology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Xilin Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.,Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
21
|
Bandres-Meriz J, Majali-Martinez A, Hoch D, Morante M, Glasner A, van Poppel MNM, Desoye G, Herrera E. Maternal C-Peptide and Insulin Sensitivity, but Not BMI, Associate with Fatty Acids in the First Trimester of Pregnancy. Int J Mol Sci 2021; 22:10422. [PMID: 34638763 PMCID: PMC8508886 DOI: 10.3390/ijms221910422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/19/2022] Open
Abstract
Maternal obesity in pregnancy is a pro-inflammatory condition exposing the fetus to an adverse environment. Here, we tested associations of maternal obesity (primary exposures: BMI, leptin) and metabolic parameters (secondary exposures: glucose, C-peptide, and insulin sensitivity) with total serum concentrations of fatty acids in the first trimester of human pregnancy. This cross-sectional study included 123 non-smoking women with singleton pregnancy. In maternal serum, cotinine, leptin, and C-peptide (ELISA), glucose (hexokinase-based test) and fatty acids (gas chromatography) were quantified, and the insulin sensitivity index (ISHOMA) was calculated. Concentrations of fatty acid classes and total fatty acids did not differ between BMI or leptin categories. However, n-3 polyunsaturated fatty acids (PUFA) were decreased in the category with the highest C-peptide concentration (n-3 PUFA: CI -35.82--6.28, p < 0.006) and in the lowest ISHOMA category (n-3 PUFA: CI -36.48--5.61, p < 0.008). In a subcohort, in which fetal sex was determined (RT-qPCR of placental tissue), C-peptide was significantly associated with docosahexaenoic acid (DHA) in mothers bearing a female (n = 46), but not male (n = 37) fetus. In conclusion, pregnant women with high fasting C-peptide and low ISHOMA had decreased n-3 PUFA, and DHA was lower with higher C-peptide only in mothers bearing a female fetus.
Collapse
Affiliation(s)
- Julia Bandres-Meriz
- Department of Obstetrics and Gynaecology, Medical University of Graz, 8036 Graz, Austria; (A.M.-M.); (D.H.)
| | - Alejandro Majali-Martinez
- Department of Obstetrics and Gynaecology, Medical University of Graz, 8036 Graz, Austria; (A.M.-M.); (D.H.)
| | - Denise Hoch
- Department of Obstetrics and Gynaecology, Medical University of Graz, 8036 Graz, Austria; (A.M.-M.); (D.H.)
| | - Milagros Morante
- Faculty of Pharmacy, Universidad San Pablo CEU, 28668 Madrid, Spain; (M.M.); (E.H.)
| | | | | | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, 8036 Graz, Austria; (A.M.-M.); (D.H.)
| | - Emilio Herrera
- Faculty of Pharmacy, Universidad San Pablo CEU, 28668 Madrid, Spain; (M.M.); (E.H.)
| |
Collapse
|
22
|
Complex Alterations of Fatty Acid Metabolism and Phospholipidome Uncovered in Isolated Colon Cancer Epithelial Cells. Int J Mol Sci 2021; 22:ijms22136650. [PMID: 34206240 PMCID: PMC8268957 DOI: 10.3390/ijms22136650] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
The development of colon cancer, one of the most common malignancies, is accompanied with numerous lipid alterations. However, analyses of whole tumor samples may not always provide an accurate description of specific changes occurring directly in tumor epithelial cells. Here, we analyzed in detail the phospholipid (PL), lysophospholipid (lysoPL), and fatty acid (FA) profiles of purified EpCAM+ cells, isolated from tumor and adjacent non-tumor tissues of colon cancer patients. We found that a number of FAs increased significantly in isolated tumor cells, which also included a number of long polyunsaturated FAs. Higher levels of FAs were associated with increased expression of FA synthesis genes, as well as with altered expression of enzymes involved in FA elongation and desaturation, including particularly fatty acid synthase, stearoyl-CoA desaturase, fatty acid desaturase 2 and ELOVL5 fatty acid elongase 5 We identified significant changes in ratios of specific lysoPLs and corresponding PLs. A number of lysophosphatidylcholine and lysophosphatidylethanolamine species, containing long-chain and very-long chain FAs, often with high numbers of double bonds, were significantly upregulated in tumor cells. Increased de novo synthesis of very long-chain FAs, or, altered uptake or incorporation of these FAs into specific lysoPLs in tumor cells, may thus contribute to reprogramming of cellular phospholipidome and membrane alterations observed in colon cancer.
Collapse
|
23
|
Macášek J, Zeman M, Žák A, Staňková B, Vecka M. Altered Indices of Fatty Acid Elongases ELOVL6, ELOVL5, and ELOVL2 Activities in Patients with Impaired Fasting Glycemia. Metab Syndr Relat Disord 2021; 19:386-392. [PMID: 33983851 DOI: 10.1089/met.2021.0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Dysregulation of fatty acids (FA) seems to participate in the pathogenesis of disorders such as metabolic syndrome (MetS), cardiovascular diseases, or some cancers. Activities of enzymes FA desaturases and elongases [elongation of very long-chain fatty acid (ELOVL)] significantly influence FA profile in different body compartments. Although the impact of activities of desaturases on cardiometabolic diseases was broadly studied, relatively little attention was devoted to the role of elongases. Methods: Case-control study was carried out in 36 patients (18 men/18 women) with impaired fasting glycemia (IFG) without MetS and 36 age and gender-matched healthy controls. FA profiles in plasma phospholipids (PL) were assessed using gas chromatograph-flame ionization detector and indices of desaturase and elongase activities were calculated. Results: In the IFG group, we observed decreased estimated activities of ELOVL2 and ELOVL5, whereas higher estimated activities of elongase ELOVL6 were noted. IFG group was also characterized by altered composition of plasma PL FA, above all by lower percentage of cis-vaccenic acid (cVA; 18:1n-7) and of total polyunsaturated FA n-6, especially linoleic acid, and by higher proportion of stearic acid and gamma-linolenic acid. Concurrently, elevated estimated activities of desaturases delta-9-desaturase (D9D), D6D were found. Conclusions: Lower estimated activities of ELOVL2 and ELOVL5 with lowered proportion of PL cVA could be associated with disturbances of glucose homeostasis development and their corresponding indices could serve as biomarkers of such risk.
Collapse
Affiliation(s)
- Jaroslav Macášek
- 4th Department of Medicine, First Medical Faculty, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Miroslav Zeman
- 4th Department of Medicine, First Medical Faculty, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Aleš Žák
- 4th Department of Medicine, First Medical Faculty, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Barbora Staňková
- 4th Department of Medicine, First Medical Faculty, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Marek Vecka
- 4th Department of Medicine, First Medical Faculty, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
24
|
Valenzuela L, Pacheco S, Rincón G, Pavez L, Lam N, Hernández AJ, Dantagnan P, González F, Jilberto F, Ravanal MC, Ramos C, Garcia H, Araneda C, Ulloa PE. Intestinal Transcriptome Analysis Reveals Enrichment of Genes Associated with Immune and Lipid Mechanisms, Favoring Soybean Meal Tolerance in High-Growth Zebrafish ( Danio Rerio). Genes (Basel) 2021; 12:genes12050700. [PMID: 34066767 PMCID: PMC8151431 DOI: 10.3390/genes12050700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/10/2023] Open
Abstract
The molecular mechanisms underlying fish tolerance to soybean meal (SBM) remain unclear. Identifying these mechanisms would be beneficial, as this trait favors growth. Two fish replicates from 19 experimental families were fed fishmeal-(100FM) or SBM-based diets supplemented with saponin (50SBM + 2SPN) from juvenile to adult stages. Individuals were selected from families with a genotype-by-environment interaction higher (HG-50SBM + 2SPN, 170 ± 18 mg) or lower (LG-50SBM + 2SPN, 76 ± 10 mg) weight gain on 50SBM + 2SPN for intestinal transcriptomic analysis. A histological evaluation confirmed middle intestinal inflammation in the LG- vs. HG-50SBM + 2SPN group. Enrichment analysis of 665 differentially expressed genes (DEGs) identified pathways associated with immunity and lipid metabolism. Genes linked to intestinal immunity were downregulated in HG fish (mpx, cxcr3.2, cftr, irg1l, itln2, sgk1, nup61l, il22), likely dampening inflammatory responses. Conversely, genes involved in retinol signaling were upregulated (rbp4, stra6, nr2f5), potentially favoring growth by suppressing insulin responses. Genes associated with lipid metabolism were upregulated, including key components of the SREBP (mbtps1, elov5l, elov6l) and cholesterol catabolism (cyp46a1), as well as the downregulation of cyp7a1. These results strongly suggest that transcriptomic changes in lipid metabolism mediate SBM tolerance. Genotypic variations in DEGs may become biomarkers for improving early selection of fish tolerant to SMB or others plant-based diets.
Collapse
Affiliation(s)
- Luis Valenzuela
- Omics Lab, Villavicencio 378, Oficina 32, Santiago 8320164, Chile;
| | - Sebastian Pacheco
- Programa de Doctorado en Inmunología y Microbiología, Universidad San Sebastian, Lota 2465, Santiago 7510157, Chile;
| | - Gonzalo Rincón
- Zoetis, VMRD Genetics R&D, 333 Portage Street, Kalamazoo, MI 49007, USA;
| | - Leonardo Pavez
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de Las Américas, Avenida Manuel Montt 948, Santiago 7500975, Chile; (L.P.); (F.G.); (C.R.)
| | - Natalia Lam
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, Santiago 8820808, Chile; (N.L.); (F.J.); (C.A.)
| | - Adrián J. Hernández
- Laboratorio de Nutrición y Fisiología de Peces, Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile; (A.J.H.); (P.D.)
| | - Patricio Dantagnan
- Laboratorio de Nutrición y Fisiología de Peces, Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile; (A.J.H.); (P.D.)
| | - Felipe González
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de Las Américas, Avenida Manuel Montt 948, Santiago 7500975, Chile; (L.P.); (F.G.); (C.R.)
| | - Felipe Jilberto
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, Santiago 8820808, Chile; (N.L.); (F.J.); (C.A.)
| | - M. Cristina Ravanal
- Instituto de Ciencia y Tecnología de los Alimentos (ICYTAL), Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Avda. Julio Sarrazín s/n, Isla Teja, Valdivia 5090000, Chile;
| | - Cecilia Ramos
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de Las Américas, Avenida Manuel Montt 948, Santiago 7500975, Chile; (L.P.); (F.G.); (C.R.)
| | - Héctor Garcia
- Laboratorios Diagnofruit Ltd.a., Depto. Fitopatología Molecular, Santiago 7770273, Chile;
| | - Cristian Araneda
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, Santiago 8820808, Chile; (N.L.); (F.J.); (C.A.)
| | - Pilar E. Ulloa
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de Las Américas, Avenida Manuel Montt 948, Santiago 7500975, Chile; (L.P.); (F.G.); (C.R.)
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, Santiago 8820808, Chile; (N.L.); (F.J.); (C.A.)
- Correspondence: ; Tel.: +56-222-531-129
| |
Collapse
|
25
|
NIMAKO C, IKENAKA Y, OKAMATSU-OGURA Y, BARIUAN JV, KOBAYASHI A, YAMAZAKI R, TAIRA K, HOSHI N, HIRANO T, NAKAYAMA SMM, ISHIZUKA M. Chronic low-dose exposure to imidacloprid potentiates high fat diet-mediated liver steatosis in C57BL/6J male mice. J Vet Med Sci 2021; 83:487-500. [PMID: 33487623 PMCID: PMC8025430 DOI: 10.1292/jvms.20-0479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022] Open
Abstract
Hepatic steatosis is known to precede a continuum of events that lead to hepatic metabolic dysfunction, inflammation and carcinogenesis. Recently, studies have linked xenobiotic exposures to hepatic steatogenesis and its associated metabolic disorders; however, the underlying mechanisms remain elusive. This study aimed to elucidate the mechanistic role of imidacloprid in the prevalence of high fat diet (HFD)-induced liver steatosis, using a C57BL/6J mice model. Mice (3 weeks old) were fed with HFD and treated with 0.6 mg/kg bw/day (one-tenth of the NOAEL) of imidacloprid through water or diet, for 24 weeks. In a controlled group, mice were fed with only HFD. At the end of the study, imidacloprid treatment significantly potentiated HFD-induced body weight gain in mice. Also, imidacloprid increased the liver weights of mice, with complimentary reductions in mesenteric and gonadal white adipose tissue weights. Histopathological analysis of liver revealed a drastic steatosis in imidacloprid treated mice. Following a real-time qPCR analysis, imidacloprid upregulated transcriptions of hepatic fatty acid biosynthesis-related transcription factors and genes. Imidacloprid also induced hepatic expression of the gene encoding pregnane X receptor; but had no significant effect on hepatic expressions of liver X receptor and aryl hydrocarbon receptor. The imidacloprid treatment further enhanced serum alanine aminotransferase levels but downregulated hepatic antioxidant mRNA expressions. Ultimately, this study suggested an imidacloprid-potentiation effects on prevalence of HFD-induced liver steatosis via transcriptional modulations of the hepatic FA biosynthesis pathway.
Collapse
Affiliation(s)
- Collins NIMAKO
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University,
Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University,
Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman Street, Potchefstroom
2531, South Africa
| | - Yuko OKAMATSU-OGURA
- Laboratory of Biochemistry, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18,
Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Jussiaea V. BARIUAN
- Laboratory of Biochemistry, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18,
Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Atsushi KOBAYASHI
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita
18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Ryo YAMAZAKI
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita
18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kumiko TAIRA
- Department of Anesthesiology, Tokyo Women’s Medical University Center East, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666,
Japan
| | - Nobuhiko HOSHI
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo
657-8501, Japan
| | - Tetsushi HIRANO
- Division of Drug and Structure Research, Life Science Research Center, University of Toyama, Sugitani 2630, Toyama 930-0194,
Japan
| | - Shouta M. M. NAKAYAMA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University,
Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Mayumi ISHIZUKA
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University,
Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
26
|
He Q, Luo J, Wu J, Li Z, Yao W, Zang S, Niu H. ELOVL6 promoter binding sites directly targeted by sterol regulatory element binding protein 1 in fatty acid synthesis of goat mammary epithelial cells. J Dairy Sci 2021; 104:6253-6266. [PMID: 33685712 DOI: 10.3168/jds.2020-19292] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/07/2021] [Indexed: 11/19/2022]
Abstract
The elongation of long-chain fatty acid family member 6 (ELOVL6) gene plays an important role in the synthesis of long-chain saturated and monounsaturated fatty acids. Although some studies have revealed that ELOVL6 is the target of sterol regulatory element binding protein 1 (SREBP1; gene name SREBF1) in rodents, the mechanism underlying ELOVL6 regulation during lactation in dairy goats remains unknown. The present study aimed to investigate the transcriptional regulation mechanism of ELOVL6 in goat mammary epithelial cells (GMEC). We used PCR to clone and sequenced a 2,370 bp fragment of the ELOVL6 5' flanking region from goat genomic DNA. Deletion analysis revealed a core promoter region located -105 to -40 bp upstream of the transcriptional start site. Mutant sterol regulatory elements (SRE) 1 and 3 significantly reduced the ELOVL6 promoter activities in GMEC. Both SRE1 and SRE3 binding sites were required for the basal transcriptional activity of ELOVL6. Luciferase reporter assays showed that SREBF1 knockdown decreased ELOVL6 promoter activities in GMEC. Furthermore, SRE1 and SRE3 sites were simultaneously mutated completely abolished the stimulatory effect of SREBF1 and the repressive effect of linoleic acid on ELOVL6 gene promoter activities. Furthermore, chromatin immunoprecipitation assays confirmed that SREBP1 directly bound to SRE sites in the ELOVL6 promoter. In conclusion, these results indicate that SREBP1 regulates ELOVL6 transcription via the SRE elements located in the ELOVL6 promoter in goat mammary gland.
Collapse
Affiliation(s)
- Qiuya He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhuang Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Saige Zang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Huimin Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
27
|
Berger JM, Moon YA. Increased Hepatic Lipogenesis Elevates Liver Cholesterol Content. Mol Cells 2021; 44:116-125. [PMID: 33658436 PMCID: PMC7941001 DOI: 10.14348/molcells.2021.2147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/17/2020] [Accepted: 02/07/2021] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cause of death in patients with nonalcoholic fatty liver disease (NAFLD) and dyslipidemia is considered at least partially responsible for the increased CVD risk in NAFLD patients. The aim of the present study is to understand how hepatic de novo lipogenesis influences hepatic cholesterol content as well as its effects on the plasma lipid levels. Hepatic lipogenesis was induced in mice by feeding a fat-free/high-sucrose (FF/HS) diet and the metabolic pathways associated with cholesterol were then analyzed. Both liver triglyceride and cholesterol contents were significantly increased in mice fed an FF/HS diet. Activation of fatty acid synthesis driven by the activation of sterol regulatory element binding protein (SREBP)-1c resulted in the increased liver triglycerides. The augmented cholesterol content in the liver could not be explained by an increased cholesterol synthesis, which was decreased by the FF/HS diet. HMGCoA reductase protein level was decreased in mice fed an FF/HS diet. We found that the liver retained more cholesterol through a reduced excretion of bile acids, a reduced fecal cholesterol excretion, and an increased cholesterol uptake from plasma lipoproteins. Very low-density lipoproteintriglyceride and -cholesterol secretion were increased in mice fed an FF/HS diet, which led to hypertriglyceridemia and hypercholesterolemia in Ldlr-/- mice, a model that exhibits a more human like lipoprotein profile. These findings suggest that dietary cholesterol intake and cholesterol synthesis rates cannot only explain the hypercholesterolemia associated with NAFLD, and that the control of fatty acid synthesis should be considered for the management of dyslipidemia.
Collapse
Affiliation(s)
- Jean-Mathieu Berger
- Departments of Internal Medicine and Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon 22212, Korea
| |
Collapse
|
28
|
Liu X, Liu Y, Cheng H, Deng Y, Xiong X, Qu X. Comparison of performance, fatty acid composition, enzymes and gene expression between overfed Xupu geese with large and small liver. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1872423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xu Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, Hunan, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Yaowen Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, Hunan, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Hao Cheng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, Hunan, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Yuying Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, Hunan, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Xiaowei Xiong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, Hunan, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| | - Xiangyong Qu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha, Hunan, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha, China
| |
Collapse
|
29
|
Goh PT, Kuah MK, Chew YS, Teh HY, Shu-Chien AC. The requirements for sterol regulatory element-binding protein (Srebp) and stimulatory protein 1 (Sp1)-binding elements in the transcriptional activation of two freshwater fish Channa striata and Danio rerio elovl5 elongase. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1349-1359. [PMID: 32239337 DOI: 10.1007/s10695-020-00793-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Fish are a major source of beneficial n-3 LC-PUFA in human diet, and there is considerable interest to elucidate the mechanism and regulatory aspects of LC-PUFA biosynthesis in farmed species. Long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis involves the activities of two groups of enzymes, the fatty acyl desaturase (Fads) and elongase of very long-chain fatty acid (Elovl). The promoters of elovl5 elongase, which catalyses the rate-limiting reaction of elongating polyunsaturated fatty acid (PUFA), have been previously described and characterized from several marine and diadromous teleost species. We report here the cloning and characterization of elovl5 promoter from two freshwater fish species, the carnivorous snakehead fish (Channa striata) and zebrafish. Results show the presence of sterol-responsive elements (SRE) in the core regulatory region of both promoters, suggesting the importance of sterol regulatory element-binding protein (Srebp) in the regulation of elovl5 for both species. Mutagenesis luciferase and electrophoretic mobility shift assays further validate the role of SRE for basal transcriptional activation. In addition, several Sp1-binding sites located in close proximity with SRE were present in the snakehead promoter, with one having a potential synergy with SRE in the regulation of elovl5 expression. The core zebrafish elovl5 promoter fragment also directed in vivo expression in the yolk syncytial layer of developing zebrafish embryos.
Collapse
Affiliation(s)
- Pei-Tian Goh
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Meng-Kiat Kuah
- Centre for Chemical Biology, Sains@USM, Blok B No. 10, Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Yen-Shan Chew
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Hui-Ying Teh
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Alexander Chong Shu-Chien
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
- Centre for Chemical Biology, Sains@USM, Blok B No. 10, Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
30
|
Matsuzaka T, Kuba M, Koyasu S, Yamamoto Y, Motomura K, Arulmozhiraja S, Ohno H, Sharma R, Shimura T, Okajima Y, Han SI, Aita Y, Mizunoe Y, Osaki Y, Iwasaki H, Yatoh S, Suzuki H, Sone H, Takeuchi Y, Yahagi N, Miyamoto T, Sekiya M, Nakagawa Y, Ema M, Takahashi S, Tokiwa H, Shimano H. Hepatocyte ELOVL Fatty Acid Elongase 6 Determines Ceramide Acyl-Chain Length and Hepatic Insulin Sensitivity in Mice. Hepatology 2020; 71:1609-1625. [PMID: 31529722 DOI: 10.1002/hep.30953] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Dysfunctional hepatic lipid metabolism is a cause of nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disorder worldwide, and is closely associated with insulin resistance and type 2 diabetes. ELOVL fatty acid elongase 6 (Elovl6) is responsible for converting C16 saturated and monounsaturated fatty acids (FAs) into C18 species. We have previously shown that Elovl6 contributes to obesity-induced insulin resistance by modifying hepatic C16/C18-related FA composition. APPROACH AND RESULTS To define the precise molecular mechanism by which hepatic Elovl6 affects energy homeostasis and metabolic disease, we generated liver-specific Elovl6 knockout (LKO) mice. Unexpectedly, LKO mice were not protected from high-fat diet-induced insulin resistance. Instead, LKO mice exhibited higher insulin sensitivity than controls when consuming a high-sucrose diet (HSD), which induces lipogenesis. Hepatic patatin-like phospholipase domain-containing protein 3 (Pnpla3) expression was down-regulated in LKO mice, and adenoviral Pnpla3 restoration reversed the enhancement in insulin sensitivity in HSD-fed LKO mice. Lipidomic analyses showed that the hepatic ceramide(d18:1/18:0) content was lower in LKO mice, which may explain the effect on insulin sensitivity. Ceramide(d18:1/18:0) enhances protein phosphatase 2A (PP2A) activity by interfering with the binding of PP2A to inhibitor 2 of PP2A, leading to Akt dephosphorylation. Its production involves the formation of an Elovl6-ceramide synthase 4 (CerS4) complex in the endoplasmic reticulum and a Pnpla3-CerS4 complex on lipid droplets. Consistent with this, liver-specific Elovl6 deletion in ob/ob mice reduced both hepatic ceramide(d18:1/18:0) and PP2A activity and ameliorated insulin resistance. CONCLUSIONS Our study demonstrates the key role of hepatic Elovl6 in the regulation of the acyl-chain composition of ceramide and that C18:0-ceramide is a potent regulator of hepatic insulin signaling linked to Pnpla3-mediated NAFLD.
Collapse
Affiliation(s)
- Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Motoko Kuba
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Saori Koyasu
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuta Yamamoto
- Department of Chemistry, Rikkyo University, Toshima, Tokyo, Japan
| | - Kaori Motomura
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Hiroshi Ohno
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rahul Sharma
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takuya Shimura
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuka Okajima
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Song-Iee Han
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuichi Aita
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuhei Mizunoe
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshinori Osaki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitoshi Iwasaki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shigeru Yatoh
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroaki Suzuki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hirohito Sone
- Department of Internal Medicine, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Yoshinori Takeuchi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoya Yahagi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takafumi Miyamoto
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Motohiro Sekiya
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshimi Nakagawa
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Satoru Takahashi
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.,International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroaki Tokiwa
- Department of Chemistry, Rikkyo University, Toshima, Tokyo, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
31
|
Wang X, Sun S, Cao X, Gao J. Quantitative Phosphoproteomic Analysis Reveals the Regulatory Networks of Elovl6 on Lipid and Glucose Metabolism in Zebrafish. Int J Mol Sci 2020; 21:ijms21082860. [PMID: 32325903 PMCID: PMC7215441 DOI: 10.3390/ijms21082860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 11/18/2022] Open
Abstract
Elongation of very long-chain fatty acids protein 6 (Elovl6) has been reported to be associated with clinical treatments of a variety of metabolic diseases. However, there is no systematic and comprehensive study to reveal the regulatory role of Elovl6 in mRNA, protein and phosphorylation levels. We established the first knock-out (KO), elovl6−/−, in zebrafish. Compared with wild type (WT) zebrafish, KO presented significant higher whole-body lipid content and lower content of fasting blood glucose. We utilized RNA-Seq, tandem mass tag (TMT) labeling-based quantitative technology and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to perform the transcriptomic, proteomic and phosphoproteomic analyses of livers from WT and elovl6−/− zebrafish. There were 734 differentially expressed genes (DEG) and 559 differentially expressed proteins (DEP) between elovl6−/− and WT zebrafish, identified out of quantifiable 47251 transcripts and 5525 proteins. Meanwhile, 680 differentially expressed phosphoproteins (DEPP) with 1054 sites were found out of quantifiable 1230 proteins with 3604 sites. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis of the transcriptomic and proteomic data further suggested that the abnormal lipid metabolism and glucose metabolism in KO were mainly related to fatty acid degradation and biosynthesis, glycolysis/gluconeogenesis and PPAR signaling pathway. Based on phosphoproteomic analyses, some kinases critical for lipid metabolism and glucose metabolism, including ribosomal protein S6 kinase (Rps6kb), mitogen-activated protein kinase14 (Mapk14) and V-akt murine thymoma viral oncogene homolog 2-like (Akt2l), were identified. These results allowed us to catch on the regulatory networks of elovl6 on lipid and glucose metabolism in zebrafish. To our knowledge, this is the first multi-omic study of zebrafish lacking elovl6, which provides strong datasets to better understand many lipid/glucose metabolic risks posed to human health.
Collapse
Affiliation(s)
- Xueting Wang
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China; (X.W.); (S.S.); (X.C.)
| | - Shouxiang Sun
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China; (X.W.); (S.S.); (X.C.)
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China; (X.W.); (S.S.); (X.C.)
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China; (X.W.); (S.S.); (X.C.)
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-(027)-8728-2113
| |
Collapse
|
32
|
Liu R, Wang M, Li E, Yang Y, Li J, Chen S, Shen WJ, Azhar S, Guo Z, Hu Z. Dysregulation of microRNA-125a contributes to obesity-associated insulin resistance and dysregulates lipid metabolism in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158640. [PMID: 31988048 DOI: 10.1016/j.bbalip.2020.158640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/27/2019] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
Obesity is associated with an increased risk of developing insulin resistance (IR) and type 2 diabetes (T2D). A diverse group of factors including miRNA has been implicated in the pathogenesis of these two metabolic conditions, although underlying molecular mechanisms involved are not well defined. Here, we provide evidence that hepatic miR-125a levels are diminished in both genetic as well as dietary mouse models of obesity. Overexpression of miR-125a enhanced insulin signaling and attenuated cellular lipid accumulation in HepG2 cells and Hepa1-6 cells. Likewise, treatment of mice with ago-miR-125a increased insulin sensitivity, similar to overexpression of miR-125a, whereas treatment of mice with antago-miR-125a blunted the insulin sensitivity. Furthermore, overexpression of miR-125a in mice previously fed a high-fat diet (HFD), significantly improved insulin sensitivity, and attenuated obesity-linked hepatic steatosis and hepatocyte lipid accumulation. In addition, we show that ELOVL fatty acid elongase 6 (Elovl6) is a direct target of miR-125a, and participates in miR-125a mediated regulation of insulin sensitivity and lipid metabolism. These data led us to conclude that dysregulated miR-125a expression augments the development of obesity-induced IR and that miR-125a might serve as a therapeutic target for the development of new drug(s) in the clinical management of metabolic diseases.
Collapse
Affiliation(s)
- Rui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Meina Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Enjie Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Yang Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Jiaxin Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Siyu Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA; Division of Endocrinology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA; Division of Endocrinology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing 210023, China.
| |
Collapse
|
33
|
Turkmen S, Perera E, Zamorano MJ, Simó-Mirabet P, Xu H, Pérez-Sánchez J, Izquierdo M. Effects of Dietary Lipid Composition and Fatty Acid Desaturase 2 Expression in Broodstock Gilthead Sea Bream on Lipid Metabolism-Related Genes and Methylation of the fads2 Gene Promoter in Their Offspring. Int J Mol Sci 2019; 20:ijms20246250. [PMID: 31835772 PMCID: PMC6940931 DOI: 10.3390/ijms20246250] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 01/08/2023] Open
Abstract
Polyunsaturated fatty acids (PUFA) in parental diets play a key role in regulating n-3 LC-PUFA metabolism of the offspring. However, it is not clear whether this metabolic regulation is driven by the precursors presented in the diet or by the parental ability to synthesize them. To elucidate this, broodstocks of gilthead sea bream with different blood expression levels of fads2, which encodes for the rate-limiting enzyme in the n-3 LC-PUFA synthesis pathway, were fed either a diet supplemented with alpha-linolenic acid (ALA, 18:3n-3) or a control diet. The progenies obtained from these four experimental groups were then challenged with a low LC-PUFA diet at the juvenile stage. Results showed that the offspring from parents with high fads2 expression presented higher growth and improved utilization of low n-3 LC-PUFA diets compared to the offspring from parents with low fads2 expression. Besides, an ALA-rich diet during the gametogenesis caused negative effects on the growth of the offspring. The epigenetic analysis demonstrated that methylation in the promoter of fads2 of the offspring was correlated with the parental fads2 expression levels and type of the broodstock diet.
Collapse
Affiliation(s)
- Serhat Turkmen
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (M.J.Z.); (H.X.); (M.I.)
- Department of Biology, University of Alabama at Birmingham, 35294, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-(205)-212-01-04
| | - Erick Perera
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Ribera de Cabanes s/n, 12595 Castellón, Spain; (E.P.); (P.S.-M.); (J.P.-S.)
| | - Maria J. Zamorano
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (M.J.Z.); (H.X.); (M.I.)
| | - Paula Simó-Mirabet
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Ribera de Cabanes s/n, 12595 Castellón, Spain; (E.P.); (P.S.-M.); (J.P.-S.)
| | - Hanlin Xu
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (M.J.Z.); (H.X.); (M.I.)
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Ribera de Cabanes s/n, 12595 Castellón, Spain; (E.P.); (P.S.-M.); (J.P.-S.)
| | - Marisol Izquierdo
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain; (M.J.Z.); (H.X.); (M.I.)
| |
Collapse
|
34
|
Li H, Wang X, Tang J, Zhao H, Duan M. Decreased expression levels of ELOVL6 indicate poor prognosis in hepatocellular carcinoma. Oncol Lett 2019; 18:6214-6220. [PMID: 31788097 DOI: 10.3892/ol.2019.10974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to investigate the expression of elongation of very long-chain fatty acids family member 6 (ELOVL6) in hepatocellular carcinoma (HCC) tissues, and to determine its role in the development of HCC. A total of 377 HCC specimens were collected for tissue microarray and immunohistochemistry analyses. The ELOVL6 IHC score for HCC tissues was 0.97±0.71, which was significantly lower than that of the matched adjacent normal tissues (1.32±0.68; P<0.001). Patients with low levels of ELOVL6 expression were older (P=0.014) and possessed larger sized tumors (P=0.039) than patients with high expression levels. Additionally, Kaplan-Meier analysis revealed that patients with low ELOVL6 expression levels also had significantly poorer overall (P<0.001) and disease-free (P=0.029) survival times, and a greater probability of recurrence. The tumor size, tumor-node-metastasis (TNM) stage, vascular invasion and ELOVL6 expression were all shown to be prognostic variables for overall survival in patients with HCC. Multivariate analysis revealed that vascular invasion (P<0.001), TNM stage (P<0.001) and ELOVL6 expression (P=0.001) were independent prognostic variables for overall survival. In addition, vascular invasion (P=0.032) and ELOVL6 expression (P=0.041) were independent risk factors for disease-free survival, and vascular invasion (P=0.019) and ELOVL6 expression (P=0.045) were independent risk factors associated with HCC recurrence. The present study revealed that in patients with HCC, ELOVL6 expression level was reduced in HCC tissues, and that higher ELOVL6 expression levels correlated with longer survival times. This indicates that ELOVL6 may serves as an independent marker of poor patient outcome.
Collapse
Affiliation(s)
- Hui Li
- Invasive Technology Department, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Xianling Wang
- Invasive Technology Department, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Jun Tang
- Invasive Technology Department, Shandong Medical Imaging Research Institute, Jinan, Shandong 250021, P.R. China
| | - Haibo Zhao
- Invasive Technology Department, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Min Duan
- Department of Physical Examination, Jining First People's Hospital, Jining, Shandong 272000, P.R. China
| |
Collapse
|
35
|
Gerl MJ, Klose C, Surma MA, Fernandez C, Melander O, Männistö S, Borodulin K, Havulinna AS, Salomaa V, Ikonen E, Cannistraci CV, Simons K. Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. PLoS Biol 2019; 17:e3000443. [PMID: 31626640 PMCID: PMC6799887 DOI: 10.1371/journal.pbio.3000443] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/04/2019] [Indexed: 01/05/2023] Open
Abstract
Obesity is associated with changes in the plasma lipids. Although simple lipid quantification is routinely used, plasma lipids are rarely investigated at the level of individual molecules. We aimed at predicting different measures of obesity based on the plasma lipidome in a large population cohort using advanced machine learning modeling. A total of 1,061 participants of the FINRISK 2012 population cohort were randomly chosen, and the levels of 183 plasma lipid species were measured in a novel mass spectrometric shotgun approach. Multiple machine intelligence models were trained to predict obesity estimates, i.e., body mass index (BMI), waist circumference (WC), waist-hip ratio (WHR), and body fat percentage (BFP), and validated in 250 randomly chosen participants of the Malmö Diet and Cancer Cardiovascular Cohort (MDC-CC). Comparison of the different models revealed that the lipidome predicted BFP the best (R2 = 0.73), based on a Lasso model. In this model, the strongest positive and the strongest negative predictor were sphingomyelin molecules, which differ by only 1 double bond, implying the involvement of an unknown desaturase in obesity-related aberrations of lipid metabolism. Moreover, we used this regression to probe the clinically relevant information contained in the plasma lipidome and found that the plasma lipidome also contains information about body fat distribution, because WHR (R2 = 0.65) was predicted more accurately than BMI (R2 = 0.47). These modeling results required full resolution of the lipidome to lipid species level, and the predicting set of biomarkers had to be sufficiently large. The power of the lipidomics association was demonstrated by the finding that the addition of routine clinical laboratory variables, e.g., high-density lipoprotein (HDL)- or low-density lipoprotein (LDL)- cholesterol did not improve the model further. Correlation analyses of the individual lipid species, controlled for age and separated by sex, underscores the multiparametric and lipid species-specific nature of the correlation with the BFP. Lipidomic measurements in combination with machine intelligence modeling contain rich information about body fat amount and distribution beyond traditional clinical assays.
Collapse
Affiliation(s)
| | | | - Michal A. Surma
- Lipotype GmbH, Dresden, Germany
- Łukasiewicz Research Network—PORT Polish Center for Technology Development, Wroclaw, Poland
| | | | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Emergency and Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Satu Männistö
- Public Health Promotion Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Katja Borodulin
- National Institute for Health and Welfare, Helsinki, Finland
| | - Aki S. Havulinna
- National Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM-HiLife), Helsinki, Finland
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Carlo V. Cannistraci
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Department of Physics, Technische Universität Dresden, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- Complex Network Intelligence Lab, Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| | - Kai Simons
- Lipotype GmbH, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
36
|
Deák F, Anderson RE, Fessler JL, Sherry DM. Novel Cellular Functions of Very Long Chain-Fatty Acids: Insight From ELOVL4 Mutations. Front Cell Neurosci 2019; 13:428. [PMID: 31616255 PMCID: PMC6763723 DOI: 10.3389/fncel.2019.00428] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Abstract
Elongation of Very Long chain fatty acids-4 (ELOVL4) protein is a member of the ELOVL family of fatty acid elongases that is collectively responsible for catalyzing formation of long chain fatty acids. ELOVL4 is the only family member that catalyzes production of Very Long Chain Saturated Fatty Acids (VLC-SFA) and Very Long Chain Polyunsaturated Fatty Acids (VLC-PUFA) with chain lengths ≥28 carbons. ELOVL4 and its VLC-SFA and VLC-PUFA products are emerging as important regulators of synaptic signaling and neuronal survival in the central nervous system (CNS). Distinct sets of mutations in ELOVL4 cause three different neurological diseases in humans. Heterozygous inheritance of one set of autosomal dominant ELOVL4 mutations that leads to truncation of the ELOVL4 protein causes Stargardt-like macular dystrophy (STGD3), an aggressive juvenile-onset retinal degeneration. Heterozygous inheritance of a different set of autosomal dominant ELOVL4 mutations that leads to a full-length protein with single amino acid substitutions causes spinocerebellar ataxia 34 (SCA34), a late-onset neurodegenerative disease characterized by gait ataxia and cerebellar atrophy. Homozygous inheritance of a different set of ELOVL4 mutations causes a more severe disease with infantile onset characterized by seizures, spasticity, intellectual disability, ichthyosis, and premature death. ELOVL4 is expressed widely in the CNS and is found primarily in neurons. ELOVL4 is expressed in cell-specific patterns within different regions of the CNS that are likely to be related to disease symptoms. In the retina, ELOVL4 is expressed exclusively in photoreceptors and produces VLC-PUFA that are incorporated into phosphatidylcholine and enriched in the light sensitive membrane disks of the photoreceptor outer segments. VLC-PUFA are enzymatically converted into "elovanoid" compounds that appear to provide paracrine signals that promote photoreceptor and neuronal survival. In the brain, the main ELOVL4 products are VLC-SFA that are incorporated into sphingolipids and enriched in synaptic vesicles, where they regulate kinetics of presynaptic neurotransmitter release. Understanding the function of ELOVL4 and its VLC-SFA and VLC-PUFA products will advance our understanding of basic mechanisms in neural signaling and has potential for developing novel therapies for seizure and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ferenc Deák
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Robert E Anderson
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jennifer L Fessler
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - David M Sherry
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
37
|
Gouw AM, Margulis K, Liu NS, Raman SJ, Mancuso A, Toal GG, Tong L, Mosley A, Hsieh AL, Sullivan DK, Stine ZE, Altman BJ, Schulze A, Dang CV, Zare RN, Felsher DW. The MYC Oncogene Cooperates with Sterol-Regulated Element-Binding Protein to Regulate Lipogenesis Essential for Neoplastic Growth. Cell Metab 2019; 30:556-572.e5. [PMID: 31447321 PMCID: PMC6911354 DOI: 10.1016/j.cmet.2019.07.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 09/24/2018] [Accepted: 07/24/2019] [Indexed: 12/14/2022]
Abstract
Lipid metabolism is frequently perturbed in cancers, but the underlying mechanism is unclear. We present comprehensive evidence that oncogene MYC, in collaboration with transcription factor sterol-regulated element-binding protein (SREBP1), regulates lipogenesis to promote tumorigenesis. We used human and mouse tumor-derived cell lines, tumor xenografts, and four conditional transgenic mouse models of MYC-induced tumors to show that MYC regulates lipogenesis genes, enzymes, and metabolites. We found that MYC induces SREBP1, and they collaborate to activate fatty acid (FA) synthesis and drive FA chain elongation from glucose and glutamine. Further, by employing desorption electrospray ionization mass spectrometry imaging (DESI-MSI), we observed in vivo lipidomic changes upon MYC induction across different cancers, for example, a global increase in glycerophosphoglycerols. After inhibition of FA synthesis, tumorigenesis was blocked, and tumors regressed in both xenograft and primary transgenic mouse models, revealing the vulnerability of MYC-induced tumors to the inhibition of lipogenesis.
Collapse
Affiliation(s)
- Arvin M Gouw
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Natalie S Liu
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sudha J Raman
- Department of Biochemistry and Molecular Biology, Wurzburg University, Wurzburg, Germany
| | - Anthony Mancuso
- Department of Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Georgia G Toal
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ling Tong
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adriane Mosley
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Annie L Hsieh
- Department of Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Delaney K Sullivan
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zachary E Stine
- Department of Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian J Altman
- Department of Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Almut Schulze
- Department of Biochemistry and Molecular Biology, Wurzburg University, Wurzburg, Germany
| | - Chi V Dang
- Department of Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Ludwig Institute for Cancer Research, New York, NY 10017, USA; The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Ludwig Institute for Cancer Research, New York, NY 10017, USA.
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
38
|
Hasan MA, Ahmed S, Kim Y. Biosynthetic pathway of arachidonic acid in Spodoptera exigua in response to bacterial challenge. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 111:103179. [PMID: 31255640 DOI: 10.1016/j.ibmb.2019.103179] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Eicosanoids play crucial roles in mediating insect immune responses. In vertebrates, phospholipase A2 (PLA2) releases arachidonic acid (AA) from phospholipids (PLs) for biosynthesis of various eicosanoids. However, little AA is found in PLs of lepidopteran insects. Spodoptera exigua, a lepidopteran insect, is known to use eicosanoids to mediate immunity. Although AA was not detected in PLs of hemocytes and fat body (two immune tissues) of naïve larvae, it was detected at small but significant level after bacterial infection, suggesting induction of AA biosynthesis for immunity. Based on a mammalian AA biosynthetic pathway, this study hypothesizes that AA is synthesized from C18 polyunsaturated fatty acid (PUFA) precursor by subsequent desaturation and elongation reactions because PLs of S. exigua larvae are rich in linoleic acid. After inhibiting PLA2 activity to prevent release of free fatty acids, different PUFA precursors were injected to S. exigua larvae followed by assessment of eicosanoid-mediated cellular immune response. ω-6 PUFAs were effective in inducing immune response whereas α-linolenic acid (an ω-3 PUFA) was not. Several fatty acyl desaturases (SeDESs) have been predicted from S. exigua transcriptomes. Specific inhibitors against Δ5 or Δ6 DESs inhibited eicosanoid-mediated immune responses. Furthermore, RNA interference (RNAi) specific to Δ5 or Δ6 DES genes significantly suppressed eicosanoid-mediated immune responses. Four very long chain fatty acid elongase genes (SeEloV-A ∼ SeEloV-D) were predicted. Among respective RNAi treatments of these genes, only one RNAi treatment specific to type 5 elongase (SeEloV-B) suppressed eicosanoid-mediated immune response. These results suggest that S. exigua larvae can synthesize AA from linoleic acid via Δ5- and Δ6-desaturations by SeDESs along with chain elongation by SeEloV-B. Finally, this study showed significant fitness cost of uncontrolled AA biosynthesis. AA injection alone without bacterial challenge significantly induced both cellular and humoral immune responses. This unnecessary energy expense due to free AA resulted in reduced pupal size and decreased adult egg production. The detrimental effect of free AA explains physiological significance of little AA content in lepidopteran insects except for life-or-death situation such as pathogen infection.
Collapse
Affiliation(s)
- Md Ariful Hasan
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea
| | - Shabbir Ahmed
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea.
| |
Collapse
|
39
|
Mah MQ, Kuah MK, Ting SY, Merosha P, Janaranjani M, Goh PT, Jaya-Ram A, Shu-Chien AC. Molecular cloning, phylogenetic analysis and functional characterisation of an Elovl7-like elongase from a marine crustacean, the orange mud crab (Scylla olivacea). Comp Biochem Physiol B Biochem Mol Biol 2019; 232:60-71. [DOI: 10.1016/j.cbpb.2019.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 01/06/2023]
|
40
|
Wang Z, Wang DH, Park HG, Yan Y, Goykhman Y, Lawrence P, Kothapalli KSD, Brenna JT. Identification of genes mediating branched chain fatty acid elongation. FEBS Lett 2019; 593:1807-1817. [DOI: 10.1002/1873-3468.13451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/03/2019] [Accepted: 05/18/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Zhen Wang
- Department of Food Science Cornell University Ithaca NY USA
- Division of Nutritional Sciences Cornell University Ithaca NY USA
- Dell Pediatric Research Institute and Department of Pediatrics Dell Medical School The University of Texas at Austin TX USA
| | - Dong Hao Wang
- Department of Food Science Cornell University Ithaca NY USA
- Division of Nutritional Sciences Cornell University Ithaca NY USA
- Dell Pediatric Research Institute and Department of Pediatrics Dell Medical School The University of Texas at Austin TX USA
| | - Hui Gyu Park
- Division of Nutritional Sciences Cornell University Ithaca NY USA
- Dell Pediatric Research Institute and Department of Pediatrics Dell Medical School The University of Texas at Austin TX USA
| | - Yuanyuan Yan
- Division of Nutritional Sciences Cornell University Ithaca NY USA
- School of Public Health Shanghai Jiao Tong University School of Medicine China
| | - Yuliya Goykhman
- Division of Nutritional Sciences Cornell University Ithaca NY USA
| | - Peter Lawrence
- Department of Food Science Cornell University Ithaca NY USA
- Division of Nutritional Sciences Cornell University Ithaca NY USA
| | - Kumar S. D. Kothapalli
- Division of Nutritional Sciences Cornell University Ithaca NY USA
- Dell Pediatric Research Institute and Department of Pediatrics Dell Medical School The University of Texas at Austin TX USA
| | - J. Thomas Brenna
- Department of Food Science Cornell University Ithaca NY USA
- Division of Nutritional Sciences Cornell University Ithaca NY USA
- Dell Pediatric Research Institute and Department of Pediatrics Dell Medical School The University of Texas at Austin TX USA
| |
Collapse
|
41
|
Morigny P, Houssier M, Mairal A, Ghilain C, Mouisel E, Benhamed F, Masri B, Recazens E, Denechaud PD, Tavernier G, Caspar-Bauguil S, Virtue S, Sramkova V, Monbrun L, Mazars A, Zanoun M, Guilmeau S, Barquissau V, Beuzelin D, Bonnel S, Marques M, Monge-Roffarello B, Lefort C, Fielding B, Sulpice T, Astrup A, Payrastre B, Bertrand-Michel J, Meugnier E, Ligat L, Lopez F, Guillou H, Ling C, Holm C, Rabasa-Lhoret R, Saris WHM, Stich V, Arner P, Rydén M, Moro C, Viguerie N, Harms M, Hallén S, Vidal-Puig A, Vidal H, Postic C, Langin D. Interaction between hormone-sensitive lipase and ChREBP in fat cells controls insulin sensitivity. Nat Metab 2019; 1:133-146. [PMID: 32694809 DOI: 10.1038/s42255-018-0007-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/24/2018] [Indexed: 02/08/2023]
Abstract
Impaired adipose tissue insulin signalling is a critical feature of insulin resistance. Here we identify a pathway linking the lipolytic enzyme hormone-sensitive lipase (HSL) to insulin action via the glucose-responsive transcription factor ChREBP and its target, the fatty acid elongase ELOVL6. Genetic inhibition of HSL in human adipocytes and mouse adipose tissue results in enhanced insulin sensitivity and induction of ELOVL6. ELOVL6 promotes an increase in phospholipid oleic acid, which modifies plasma membrane fluidity and enhances insulin signalling. HSL deficiency-mediated effects are suppressed by gene silencing of ChREBP and ELOVL6. Mechanistically, physical interaction between HSL, independent of lipase activity, and the isoform activated by glucose metabolism ChREBPα impairs ChREBPα translocation into the nucleus and induction of ChREBPβ, the isoform with high transcriptional activity that is strongly associated with whole-body insulin sensitivity. Targeting the HSL-ChREBP interaction may allow therapeutic strategies for the restoration of insulin sensitivity.
Collapse
Affiliation(s)
- Pauline Morigny
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Marianne Houssier
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Aline Mairal
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Claire Ghilain
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Etienne Mouisel
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Fadila Benhamed
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1016, Institut Cochin, Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bernard Masri
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Emeline Recazens
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Pierre-Damien Denechaud
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Geneviève Tavernier
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Sylvie Caspar-Bauguil
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France
| | - Sam Virtue
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Veronika Sramkova
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Laurent Monbrun
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Anne Mazars
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Madjid Zanoun
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Sandra Guilmeau
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1016, Institut Cochin, Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Valentin Barquissau
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Diane Beuzelin
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Sophie Bonnel
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Marie Marques
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Boris Monge-Roffarello
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Corinne Lefort
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Barbara Fielding
- Department of Nutritional Sciences, University of Surrey, Guildford, Surrey, UK
| | | | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bernard Payrastre
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Justine Bertrand-Michel
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
| | - Emmanuelle Meugnier
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Lyon 1, INSA Lyon, Oullins, France
| | - Laetitia Ligat
- Pôle Technologique, Cancer Research Center of Toulouse (CRCT), Plateau Interactions Moléculaires, INSERM-UMR1037, Toulouse, France
| | - Frédéric Lopez
- Pôle Technologique, Cancer Research Center of Toulouse (CRCT), Plateau Interactions Moléculaires, INSERM-UMR1037, Toulouse, France
| | - Hervé Guillou
- Institut National de la Recherche Agronomique (INRA), UMR1331, Integrative Toxicology and Metabolism, Toulouse, France
- University of Toulouse, UMR1331, Institut National Polytechnique (INP), Paul Sabatier University, Toulouse, France
| | - Charlotte Ling
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Malmö, Sweden
| | - Cecilia Holm
- Department of Experimental Medical Science, Lund University, Biomedical Centre, Lund, Sweden
| | - Remi Rabasa-Lhoret
- Institut de Recherches Cliniques de Montréal, Montreal, Canada
- Department of nutrition, Université de Montréal, Montreal, Canada
- Montreal Diabetes Research Center (MDRC), Montreal, Canada
| | - Wim H M Saris
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Vladimir Stich
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Peter Arner
- Department of Medicine, H7, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine, H7, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Cedric Moro
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Nathalie Viguerie
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France
| | - Matthew Harms
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Stefan Hallén
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | - Hubert Vidal
- CarMeN Laboratory, Inserm U1060, INRA U1397, Université Lyon 1, INSA Lyon, Oullins, France
| | - Catherine Postic
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1016, Institut Cochin, Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Dominique Langin
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.
- University of Toulouse, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Paul Sabatier University, Toulouse, France.
- Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France.
| |
Collapse
|
42
|
Storelli G, Nam HJ, Simcox J, Villanueva CJ, Thummel CS. Drosophila HNF4 Directs a Switch in Lipid Metabolism that Supports the Transition to Adulthood. Dev Cell 2018; 48:200-214.e6. [PMID: 30554999 DOI: 10.1016/j.devcel.2018.11.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/09/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
Abstract
Animals must adjust their metabolism as they progress through development in order to meet the needs of each stage in the life cycle. Here, we show that the dHNF4 nuclear receptor acts at the onset of Drosophila adulthood to direct an essential switch in lipid metabolism. Lipid stores are consumed shortly after metamorphosis but contribute little to energy metabolism. Rather, dHNF4 directs their conversion to very long chain fatty acids and hydrocarbons, which waterproof the animal to preserve fluid homeostasis. Similarly, HNF4α is required in mouse hepatocytes for the expression of fatty acid elongases that contribute to a waterproof epidermis, suggesting that this pathway is conserved through evolution. This developmental switch in Drosophila lipid metabolism promotes lifespan and desiccation resistance in adults and suppresses hallmarks of diabetes, including elevated glucose levels and intolerance to dietary sugars. These studies establish dHNF4 as a regulator of the adult metabolic state.
Collapse
Affiliation(s)
- Gilles Storelli
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA.
| | - Hyuck-Jin Nam
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - Judith Simcox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Claudio J Villanueva
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA.
| |
Collapse
|
43
|
Gupta S, Santra L, Naskar S, Maurya SK, Rana M, Ghosh J, Dhara SK. Heterologous expression of porcine elongase 6 ( ELOVL6) gene in a human cell line. Indian J Med Res 2018; 145:563-568. [PMID: 28862191 PMCID: PMC5663173 DOI: 10.4103/ijmr.ijmr_785_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Saurabh Gupta
- Stem Cell Laboratory, Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Lakshman Santra
- Stem Cell Laboratory, Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Soumen Naskar
- School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - Sanjeev K Maurya
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Mashidur Rana
- Stem Cell Laboratory, Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Jyotirmoy Ghosh
- Division of Physiology, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka, India
| | - Sujoy K Dhara
- Stem Cell Laboratory, Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
44
|
Hepatocyte toll-like receptor 4 deficiency protects against alcohol-induced fatty liver disease. Mol Metab 2018; 14:121-129. [PMID: 29884546 PMCID: PMC6034037 DOI: 10.1016/j.molmet.2018.05.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 02/07/2023] Open
Abstract
Objective Recent studies have suggested a critical role for toll-like receptor 4 (TLR4) in the development of alcoholic liver disease. As TLR4 is widely expressed throughout the body, it is unclear which TLR4-expressing cell types contribute to alcohol-induced liver damage. Methods We selectively ablated TLR4 in hepatocytes and myeloid cells. Male mice were fed a liquid diet containing either 5% alcohol or pair-fed a control diet for 4 weeks to examine chronic alcohol intake-induced liver damage and inflammation. In addition, mice were administered a single oral gavage of alcohol to investigate acute alcohol drinking-associated liver injury. Results We found that selective hepatocyte TLR4 deletion protected mice from chronic alcohol-induced liver injury and fatty liver. This result was in part due to decreased expression of endogenous lipogenic genes and enhanced expression of genes involved in fatty acid oxidation. In addition, mice lacking hepatocyte TLR4 exhibited reduced mRNA expression of inflammatory genes in white adipose tissue. Furthermore, in an acute alcohol binge model, hepatocyte TLR4 deficient mice had significantly decreased plasma alanine transaminase (ALT) levels and attenuated hepatic triglyceride content compared to their alcohol-gavaged control mice. In contrast, deleting TLR4 in myeloid cells did not affect the development of chronic-alcohol induced fatty liver, despite the finding that mice lacking myeloid cell TLR4 had significantly reduced circulating ALT concentrations. Conclusions These findings suggest that hepatocyte TLR4 plays an important role in regulating alcohol-induced liver damage and fatty liver disease. Hepatocyte TLR4 ablated mice were protected from both chronic and acute alcohol-induced hepatic triglyceride accumulation. Hepatocyte TLR4 ablated mice showed attenuated inflammation in the fat pad and the circulation after chronic alcohol intake. Loss of TLR4 in myeloid cells did not affect alcohol-induced development of fatty liver.
Collapse
|
45
|
DeBose-Boyd RA, Ye J. SREBPs in Lipid Metabolism, Insulin Signaling, and Beyond. Trends Biochem Sci 2018; 43:358-368. [PMID: 29500098 DOI: 10.1016/j.tibs.2018.01.005] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/22/2022]
Abstract
Sterol regulatory element-binding proteins (SREBPs) are a family of membrane-bound transcription factors that activate genes encoding enzymes required for synthesis of cholesterol and unsaturated fatty acids. SREBPs are controlled by multiple mechanisms at the level of mRNA synthesis, proteolytic activation, and transcriptional activity. In this review, we summarize the recent findings that contribute to the current understanding of the regulation of SREBPs and their physiologic roles in maintenance of lipid homeostasis, insulin signaling, innate immunity, and cancer development.
Collapse
Affiliation(s)
- Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046, USA.
| | - Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046, USA.
| |
Collapse
|
46
|
Ruby MA, Massart J, Hunerdosse DM, Schönke M, Correia JC, Louie SM, Ruas JL, Näslund E, Nomura DK, Zierath JR. Human Carboxylesterase 2 Reverses Obesity-Induced Diacylglycerol Accumulation and Glucose Intolerance. Cell Rep 2017; 18:636-646. [PMID: 28099843 PMCID: PMC5276805 DOI: 10.1016/j.celrep.2016.12.070] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/18/2016] [Accepted: 12/20/2016] [Indexed: 02/01/2023] Open
Abstract
Serine hydrolases are a large family of multifunctional enzymes known to influence obesity. Here, we performed activity-based protein profiling to assess the functional level of serine hydrolases in liver biopsies from lean and obese humans in order to gain mechanistic insight into the pathophysiology of metabolic disease. We identified reduced hepatic activity of carboxylesterase 2 (CES2) and arylacetamide deacetylase (AADAC) in human obesity. In primary human hepatocytes, CES2 knockdown impaired glucose storage and lipid oxidation. In mice, obesity reduced CES2, whereas adenoviral delivery of human CES2 reversed hepatic steatosis, improved glucose tolerance, and decreased inflammation. Lipidomic analysis identified a network of CES2-regulated lipids altered in human and mouse obesity. CES2 possesses triglyceride and diacylglycerol lipase activities and displayed an inverse correlation with HOMA-IR and hepatic diacylglycerol concentrations in humans. Thus, decreased CES2 is a conserved feature of obesity and plays a causative role in the pathogenesis of obesity-related metabolic disturbances. Obesity decreases hepatic activity of AADAC and CES2 in humans CES2 depletion impairs lipid and glucose metabolism in primary human hepatocytes Human CES2 expression reverses hepatic steatosis and glucose intolerance in mice CES2 controls a hepatic lipid network dysregulated in human and mouse obesity
Collapse
Affiliation(s)
- Maxwell A Ruby
- Section for Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Julie Massart
- Section for Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Devon M Hunerdosse
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Milena Schönke
- Section for Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jorge C Correia
- Molecular and Cellular Exercise Physiology Unit, Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Sharon M Louie
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jorge L Ruas
- Molecular and Cellular Exercise Physiology Unit, Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Daniel K Nomura
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Juleen R Zierath
- Section for Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
47
|
Xu T, Cardoso F, Pineda A, Trevisi E, Shen X, Rosa F, Osorio J, Loor J. Grain challenge affects systemic and hepatic molecular biomarkers of inflammation, stress, and metabolic responses to a greater extent in Holstein than Jersey cows. J Dairy Sci 2017; 100:9153-9162. [DOI: 10.3168/jds.2017-13321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/25/2017] [Indexed: 12/16/2022]
|
48
|
Beccarelli LM, Scherr RE, Newman JW, Borkowska AG, Gray IJ, Linnell JD, Keen CL, Young HM. Associations Among Fatty Acids, Desaturase and Elongase, and Insulin Resistance in Children. J Am Coll Nutr 2017; 37:44-50. [PMID: 29043930 DOI: 10.1080/07315724.2017.1347908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Fatty acid profiles and desaturase (SCD-16, SCD018, D5D, D6D) and elongase (ELOVL6) enzyme activity have been associated with adiposity and metabolic disease. While this has been studied in adults, few studies have included children. The objective of this study was to evaluate these markers in children and identify relationships with markers of metabolic health. It was hypothesized that these lipid markers would be correlated to adiposity and metabolic disease. METHODS This study was a cross-sectional analysis of fourth- and fifth-grade children (n = 86, aged 9-12) participating in a comprehensive nutrition program. Any student enrolled in the program was eligible for inclusion in this study. Fasting plasma was collected and analyzed for total fatty acids, glucose, insulin, and full lipid panels. Insulin resistance was estimated using calculated homeostatic model assessment for insulin resistance (HOMA-IR) values. RESULTS There were no differences in lipid markers, glucose, insulin, or HOMA-IR among children classified as normal weight, overweight, or obese. SCD-16, D5D, and ELOVL6 activity was significantly correlated to HOMA-IR values (r = 0.39, p = 0.001; r = -0.33, p = 0.006; r = -0.37, p = 0.005, respectively). In regression analysis, body mass index for age percentile, D6D activity, ELOVL6 activity, and systolic blood pressure were the most significant predictors of HOMA-IR values (adjusted r2 = 0.39, p ≤ 0.001). CONCLUSIONS There was no relationship between these lipid markers and adiposity in this population; however, there were correlations with HOMA-IR. Regardless of adiposity, there may be underlying changes in fatty acid and lipid metabolism associated with the development of metabolic diseases.
Collapse
Affiliation(s)
- Lori M Beccarelli
- a University of California Davis, Nutrition , Davis , California , USA
| | | | - John W Newman
- b United States Department of Agriculture ARS, Western Human Nutrition Research Center , Davis , California , USA
| | - Alison G Borkowska
- c Pennsylvania State University, Nutritional Sciences , University Park , Pennsylvania , USA
| | - Ira J Gray
- b United States Department of Agriculture ARS, Western Human Nutrition Research Center , Davis , California , USA
| | - Jessica D Linnell
- d Oregon State Extension Service, Family and Community Health Tillamook and Lincoln Counties , Tillamook , Oregon , USA
| | - Carl L Keen
- a University of California Davis, Nutrition , Davis , California , USA
| | - Heather M Young
- e University of California Davis Health System, Betty Irene Moore School of Nursing , Sacramento , California , USA
| |
Collapse
|
49
|
Effects of the dietary carbohydrate-fat ratio on plasma phosphatidylcholine profiles in human and mouse. J Nutr Biochem 2017; 50:83-94. [PMID: 29040839 DOI: 10.1016/j.jnutbio.2017.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/25/2017] [Accepted: 08/30/2017] [Indexed: 11/23/2022]
Abstract
Phosphatidylcholines (PCs), a major class of human plasma phospholipids, are composed of highly diverse fatty acids. Because the dietary carbohydrate-fat ratio alters the hepatic fatty acid metabolism, plasma fatty acids that bind PCs, which are secreted as lipoproteins from the liver, may be affected by long-term consumption of a high-carbohydrate diet or a high-fat diet. Therefore, in this study, we profiled the plasma PC species comprehensively in formulated dieting conditions to identify those phospholipid molecules that reflect the dietary carbohydrate-fat ratio. C57BL6J mice were fed diets containing different amounts of fat for 8 weeks, and plasma PC species were analyzed under fasting conditions using liquid chromatography-mass spectrometry. In addition, a cross-sectional study of 78 middle-aged Japanese men, who participated in health checkups, was conducted. Nutrient intakes were estimated by a brief self-administered diet-history questionnaire. The plasma PC profiles changed depending on the dietary carbohydrate-fat ratio. Especially, PC (16:0/16:1) and PC (16:0/18:1) levels increased as the dietary carbohydrate-fat ratio increased in human and mouse, suggesting that these PC species reflected the increase in de novo lipogenesis and might become useful biomarkers of the dietary carbohydrate-fat ratio. Since these PCs act as ligands for peroxisome proliferator-activated receptor α, PC species reflecting the dietary carbohydrate-fat ratio may influence metabolism of glucose and lipids.
Collapse
|
50
|
Inhibition of exendin-4-induced steatosis by protein kinase A in cultured HepG2 human hepatoma cells. In Vitro Cell Dev Biol Anim 2017; 53:721-727. [PMID: 28707223 DOI: 10.1007/s11626-017-0181-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
Nonalcoholic fatty liver is characterized by the abnormal accumulation of triglycerides within hepatocytes, resulting in a steatotic liver. Glucagon-like peptide 1 and its analog exendin-4 can ameliorate certain aspects of this syndrome by inducing weight loss and reducing hepatic triglyceride accumulation, but it is unclear whether these effects result from the effects of glucagon-like peptide 1 on the pancreas, or from direct action on the liver. This study investigated the direct action and putative cellular mechanism of exendin-4 on steatotic hepatocytes in culture. Steatosis was induced in cultured HepG2 human hepatoma cells by incubation in media supplemented with 2 mM each of linoleic acid and oleic acid. Steatotic hepatocytes were then pre-incubated in the protein kinase A inhibitor H89 for 30 min, then treated with exendin-4 over a period of 24 h. Cell viability and triglyceride content were characterized by a TUNEL assay and AdipoRed staining, respectively. Our results showed that steatotic cells maintained high levels of intracellular triglycerides (80%) compared to lean controls (25%). Exendin-4 treatment caused a significant reduction in intracellular triglyceride content after 12 h that persisted through 24 h, while protein kinase A inhibitors abolished the effects of exendin-4. The results demonstrate the exendin-4 induces a partial reduction in triglycerides in steatotic hepatocytes within 12 h via the GLP-1 receptor-mediated activation of protein kinase A. Thus, the reduction in hepatocyte triglyceride accumulation is likely driven primarily by downregulation of lipogenesis and upregulation of β-oxidation of free fatty acids.
Collapse
|