1
|
Hong L, Zahradka P, Taylor CG. Differential Modulation by Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) of Mesenteric Fat and Macrophages and T Cells in Adipose Tissue of Obese fa/ fa Zucker Rats. Nutrients 2024; 16:1311. [PMID: 38732558 PMCID: PMC11085824 DOI: 10.3390/nu16091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Polyunsaturated fatty acids (PUFAs) can alter adipose tissue function; however, the relative effects of plant and marine n3-PUFAs are less clear. Our objective was to directly compare the n3-PUFAs, plant-based α-linolenic acid (ALA) in flaxseed oil, and marine-based eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) in high-purity oils versus n6-PUFA containing linoleic acid (LA) for their effects on the adipose tissue and oral glucose tolerance of obese rats. Male fa/fa Zucker rats were assigned to faALA, faEPA, faDHA, and faLA groups and compared to baseline fa/fa rats (faBASE) and lean Zucker rats (lnLA). After 8 weeks, faEPA and faDHA had 11-14% lower body weight than faLA. The oral glucose tolerance and total body fat were unchanged, but faEPA had less mesenteric fat. faEPA and faDHA had fewer large adipocytes compared to faLA and faALA. EPA reduced macrophages in the adipose tissue of fa/fa rats compared to ALA and DHA, while faLA had the greatest macrophage infiltration. DHA decreased (~10-fold) T-cell infiltration compared to faBASE and faEPA, whereas faALA and faLA had an ~40% increase. The n3-PUFA diets attenuated tumour necrosis factor-α in adipose tissue compared to faBASE, while it was increased by LA in both genotypes. In conclusion, EPA and DHA target different aspects of inflammation in adipose tissue.
Collapse
Affiliation(s)
- Lena Hong
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
| | - Peter Zahradka
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Carla G. Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
2
|
Sherratt SCR, Mason RP, Libby P, Steg PG, Bhatt DL. Do patients benefit from omega-3 fatty acids? Cardiovasc Res 2024; 119:2884-2901. [PMID: 38252923 PMCID: PMC10874279 DOI: 10.1093/cvr/cvad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 01/24/2024] Open
Abstract
Omega-3 fatty acids (O3FAs) possess beneficial properties for cardiovascular (CV) health and elevated O3FA levels are associated with lower incident risk for CV disease (CVD.) Yet, treatment of at-risk patients with various O3FA formulations has produced disparate results in large, well-controlled and well-conducted clinical trials. Prescription formulations and fish oil supplements containing low-dose mixtures of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have routinely failed to prevent CV events in primary and secondary prevention settings when added to contemporary care, as shown most recently in the STRENGTH and OMEMI trials. However, as observed in JELIS, REDUCE-IT, and RESPECT-EPA, EPA-only formulations significantly reduce CVD events in high-risk patients. The CV mechanism of action of EPA, while certainly multifaceted, does not depend solely on reductions of circulating lipids, including triglycerides (TG) and LDL, and event reduction appears related to achieved EPA levels suggesting that the particular chemical and biological properties of EPA, as compared to DHA and other O3FAs, may contribute to its distinct clinical efficacy. In vitro and in vivo studies have shown different effects of EPA compared with DHA alone or EPA/DHA combination treatments, on atherosclerotic plaque morphology, LDL and membrane oxidation, cholesterol distribution, membrane lipid dynamics, glucose homeostasis, endothelial function, and downstream lipid metabolite function. These findings indicate that prescription-grade, EPA-only formulations provide greater benefit than other O3FAs formulations tested. This review summarizes the clinical findings associated with various O3FA formulations, their efficacy in treating CV disease, and their underlying mechanisms of action.
Collapse
Affiliation(s)
- Samuel C R Sherratt
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Elucida Research LLC, Beverly, MA, USA
| | - R Preston Mason
- Elucida Research LLC, Beverly, MA, USA
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ph Gabriel Steg
- Université Paris-Cité, INSERM_UMR1148/LVTS, FACT (French Alliance for Cardiovascular Trials), Assistance Publique–Hôpitaux de Paris, Hôpital Bichat, Paris, France
| | - Deepak L Bhatt
- Mount Sinai Fuster Heart Hospital, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, NewYork 10029-5674, NY, USA
| |
Collapse
|
3
|
Iizuka Y, Hirako S, Kim H, Wada N, Ohsaki Y, Yanagisawa N. Fish oil-derived n-3 polyunsaturated fatty acids downregulate aquaporin 9 protein expression of liver and white adipose tissues in diabetic KK mice and 3T3-L1 adipocytes. J Nutr Biochem 2024; 124:109514. [PMID: 37918450 DOI: 10.1016/j.jnutbio.2023.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Aquaporin 9 (AQP9) is an integral membrane protein that facilitates glycerol transport in hepatocytes and adipocytes. Glycerol is necessary as a substrate for gluconeogenesis in the physiological fasted state, suggesting that inhibiting AQP9 function may be beneficial for treating type 2 diabetes associated with fasting hyperglycemia. The n-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are rich in fish oil and lower the risk of metabolic syndrome; however, the effects of EPA and DHA on AQP9 expression in obese and type 2 diabetes are unclear. The KK mouse is an animal model of obesity and type 2 diabetes because of the polymorphisms on leptin receptor gene, which results in a part of cause for obese and diabetic conditions. In this study, we determined the effect of fish oil-derived n-3 PUFA on AQP9 protein expression in the liver and white adipose tissue (WAT) of KK mice and mouse 3T3-L1 adipocytes. The expression of AQP9 protein in the liver, epididymal WAT, and inguinal WAT were markedly decreased following fish oil administration. We also demonstrated that n-3 PUFAs, such as DHA, and to a lesser extent EPA, downregulated AQP9 protein expression in 3T3-L1 adipocytes. Our results suggest that fish oil-derived n-3 PUFAs may regulate the protein expressions of AQP9 in glycerol metabolism-related organs in KK mice and 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Yuzuru Iizuka
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan.
| | - Satoshi Hirako
- Department of Health and Nutrition, University of Human Arts and Sciences, Saitama, Japan
| | - Hyounju Kim
- Department of Nutrition and Health Sciences, Faculty of Food and Nutritional Sciences, Toyo University, Gunma, Japan
| | - Nobuhiro Wada
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Ohsaki
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoko Yanagisawa
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Megawati G, Syahruddin SS, Tjandra W, Kusumawati M, Herawati DMD, Gurnida DA, Musfiroh I. Effects of Indonesian Shortfin Eel ( Anguilla bicolor) By-Product Oil Supplementation on HOMA-IR and Lipid Profile in Obese Male Wistar Rats. Nutrients 2023; 15:3904. [PMID: 37764688 PMCID: PMC10534436 DOI: 10.3390/nu15183904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The prevalence of people being overweight and obese has increased globally over the past decades. The use of omega-3 fatty acids-a compound usually primarily found in fish oil-has been known to improve the metabolic profile of obese patients. As the demand for eels increases, the number of waste products from the eels increases and creates environmental problems. This study was conducted to investigate the effect of a newly discovered Indonesian Shortfin eel by-product oil supplementation on the Homeostasis Model Assessment-Estimated Insulin Resistance (HOMA-IR) and lipid profiles of obese male (Lee index ≥ 0.3) Wistar rats (Rattus norvegicus). The oil was extracted from waste products (heads). Fifteen obese rats were divided into three groups and were administered NaCl (C), commercial fish oil (CO), and Indonesian shortfin eel by-product oil (EO). All groups had statistically significant differences in total cholesterol, LDL, and triglyceride levels (p < 0.05). The CO and EO group showed a significant decrease in total cholesterol, LDL, and triglyceride after treatment. However, no significant difference was found in HDL levels and HOMA-IR. The supplementation of Indonesian shortfin eel by-product oil significantly improved lipid profile while effectively mitigating environmental challenges.
Collapse
Affiliation(s)
- Ginna Megawati
- Doctoral Study Program, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia;
- Division of Medical Nutrition, Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Siti Shofiah Syahruddin
- Medical Undergraduate Program, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Winona Tjandra
- Medical Undergraduate Program, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Maya Kusumawati
- Department of Internal Medicine, Faculty of Medicine, Hasan Sadikin Hospital, Universitas Padjadjaran, Bandung 40161, Indonesia
| | - Dewi Marhaeni Diah Herawati
- Division of Medical Nutrition, Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dida Achmad Gurnida
- Department of Child Health, Faculty of Medicine, Hasan Sadikin Hospital, Universitas Padjadjaran, Bandung 40161, Indonesia
| | - Ida Musfiroh
- Department of Pharmaceutical Analysis dan Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
5
|
Egalini F, Guardamagna O, Gaggero G, Varaldo E, Giannone B, Beccuti G, Benso A, Broglio F. The Effects of Omega 3 and Omega 6 Fatty Acids on Glucose Metabolism: An Updated Review. Nutrients 2023; 15:2672. [PMID: 37375575 PMCID: PMC10301273 DOI: 10.3390/nu15122672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Massive changes have occurred in our diet. A growing consumption of vegetal oils rich in omega-6 (ω-6) and a depletion of omega-3 (ω-3) fatty acids (FAs) in our food has led to an imbalance between ω-3 and ω-6. In particular, eicosapentaenoic (EPA)/arachidonic acid (AA) ratio seems to be an indicator of this derangement, whose reduction is associated to the development of metabolic diseases, such as diabetes mellitus. Our aim was therefore to investigate the literature on the effects of ω-3 and ω-6 FAs on glucose metabolism. We discussed emerging evidence from pre-clinical studies and from clinical trials. Notably, conflicting results emerged. Source of ω-3, sample size, ethnicity, study duration and food cooking method may be responsible for the lack of univocal results. High EPA/AA ratio seems to be a promising indicator of better glycemic control and reduced inflammation. On the other hand, linoleic acid (LA) appears to be also associated to a minor incidence of type 2 diabetes mellitus, although it is still not clear if the outcome is related to a reduced production of AA or to its intrinsic effect. More data derived from multicenter, prospective randomized clinical trials are needed.
Collapse
Affiliation(s)
- Filippo Egalini
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, 10126 Turin, Italy (G.B.)
| | - Ornella Guardamagna
- Paediatric Endocrinology, Department of Public Health and Paediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Giulia Gaggero
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, 10126 Turin, Italy (G.B.)
| | - Emanuele Varaldo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, 10126 Turin, Italy (G.B.)
| | - Beatrice Giannone
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, 10126 Turin, Italy (G.B.)
| | - Guglielmo Beccuti
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, 10126 Turin, Italy (G.B.)
| | - Andrea Benso
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, 10126 Turin, Italy (G.B.)
| | - Fabio Broglio
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, 10126 Turin, Italy (G.B.)
| |
Collapse
|
6
|
Wang C, Hucik B, Sarr O, Brown LH, Wells KRD, Brunt KR, Nakamura MT, Harasim-Symbor E, Chabowski A, Mutch DM. Delta-6 desaturase (Fads2) deficiency alters triacylglycerol/fatty acid cycling in murine white adipose tissue. J Lipid Res 2023; 64:100376. [PMID: 37085033 PMCID: PMC10323924 DOI: 10.1016/j.jlr.2023.100376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023] Open
Abstract
The Δ-6 desaturase (D6D) enzyme is not only critical for the synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from α-linolenic acid (ALA), but recent evidence suggests that it also plays a role in adipocyte lipid metabolism and body weight; however, the mechanisms remain largely unexplored. The goal of this study was to investigate if a D6D deficiency would inhibit triacylglycerol storage and alter lipolytic and lipogenic pathways in mouse white adipose tissue (WAT) depots due to a disruption in EPA and DHA production. Male C57BL/6J D6D knockout (KO) and wild-type (WT) mice were fed either a 7% w/w lard or flax (ALA rich) diet for 21 weeks. Energy expenditure, physical activity, and substrate utilization were measured with metabolic caging. Inguinal and epididymal WAT depots were analyzed for changes in tissue weight, fatty acid composition, adipocyte size, and markers of lipogenesis, lipolysis, and insulin signaling. KO mice had lower body weight, higher serum nonesterified fatty acids, smaller WAT depots, and reduced adipocyte size compared to WT mice without altered food intake, energy expenditure, or physical activity, regardless of the diet. Markers of lipogenesis and lipolysis were more highly expressed in KO mice compared to WT mice in both depots, regardless of the diet. These changes were concomitant with lower basal insulin signaling in WAT. Collectively, a D6D deficiency alters triacylglycerol/fatty acid cycling in WAT by promoting lipolysis and reducing fatty acid re-esterification, which may be partially attributed to a reduction in WAT insulin signaling.
Collapse
Affiliation(s)
- Chenxuan Wang
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Barbora Hucik
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Ousseynou Sarr
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Liam H Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Kyle R D Wells
- Department of Pharmacology, Dalhousie University, Saint John, NB, Canada
| | - Keith R Brunt
- Department of Pharmacology, Dalhousie University, Saint John, NB, Canada
| | - Manabu T Nakamura
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
7
|
Gambari L, Cellamare A, Grassi F, Grigolo B, Panciera A, Ruffilli A, Faldini C, Desando G. Targeting the Inflammatory Hallmarks of Obesity-Associated Osteoarthritis: Towards Nutraceutical-Oriented Preventive and Complementary Therapeutic Strategies Based on n-3 Polyunsaturated Fatty Acids. Int J Mol Sci 2023; 24:ijms24119340. [PMID: 37298291 DOI: 10.3390/ijms24119340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity (Ob), which has dramatically increased in the last decade, is one of the main risk factors that contribute to the incidence and progression of osteoarthritis (OA). Targeting the characteristics of obesity-associated osteoarthritis (ObOA) may offer new chances for precision medicine strategies in this patient cohort. First, this review outlines how the medical perspective of ObOA has shifted from a focus on biomechanics to the significant contribution of inflammation, mainly mediated by changes in the adipose tissue metabolism through the release of adipokines and the modification of fatty acid (FA) compositions in joint tissues. Preclinical and clinical studies on n-3 polyunsaturated FAs (PUFAs) are critically reviewed to outline the strengths and weaknesses of n-3 PUFAs' role in alleviating inflammatory, catabolic and painful processes. Emphasis is placed on potential preventive and therapeutic nutritional strategies based on n-3 PUFAs, with a focus on ObOA patients who could specifically benefit from reformulating the dietary composition of FAs towards a protective phenotype. Finally, tissue engineering approaches that involve the delivery of n-3 PUFAs directly into the joint are explored to address the perspectives and current limitations, such as safety and stability issues, for implementing preventive and therapeutic strategies based on dietary compounds in ObOA patients.
Collapse
Affiliation(s)
- Laura Gambari
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Antonella Cellamare
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Francesco Grassi
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Brunella Grigolo
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alessandro Panciera
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Alberto Ruffilli
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Cesare Faldini
- 1st Orthopedic and Traumatology Clinic, IRCCS Istituto Ortopedico Rizzoli, via G.C. Pupilli 1, 40136 Bologna, Italy
| | - Giovanna Desando
- Laboratorio Ramses, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
8
|
Ide T. γ-Linolenic Acid-Rich Oil- and Fish Oil-Induced Alterations of Hepatic Lipogenesis, Fatty Acid Oxidation, and Adipose Tissue mRNA Expression in Obese KK-A y Mice. J Oleo Sci 2023; 72:313-327. [PMID: 36878585 DOI: 10.5650/jos.ess22341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The physiological activity of γ-linolenic acid (GLA)-rich evening primrose oil and eicosapentaenoic and doxosahexaenoic acids-rich fish oil, which affect hepatic fatty acid oxidation and synthesis, and adipose tissue mRNA expression were compared in diabetic obese KK-A y mice. The mice were fed diets containing 100 g/kg of either palm oil (saturated fat), GLA oil, or fish oil for 21 days. These oils, compared with palm oil, greatly increased the activity and mRNA levels of hepatic fatty acid oxidation enzymes. These oils also increased the carnitine concentrations and mRNA levels of carnitine transporter (solute carrier family 22, member 5) in the liver. In general, these effects were comparable between GLA and fish oils. In contrast, GLA and fish oils, compared with palm oil, reduced the activity and mRNA levels of the proteins related to hepatic lipogenesis, except for those of malic enzyme. The reducing effect was stronger for fish oil than for GLA oil. These changes were accompanied by reductions in the triacylglycerol levels in the serum and liver. The reduction in the liver was stronger for fish oil than for GLA oil. These oils also reduced epididymal adipose tissue weight accompanied by a reduction in the mRNA levels of several proteins that regulate adipocyte functions; these effects were stronger for fish oil than for GLA oil. These oils were also effective in reducing serum glucose levels. Therefore, both fish oil and GLA-rich oil were effective at ameliorating metabolic disorders related to obesity and diabetes mellitus.
Collapse
Affiliation(s)
- Takashi Ide
- Institute of International Nutrition and Health, Jumonji University
| |
Collapse
|
9
|
Shaikh SR, Virk R, Van Dyke TE. Potential Mechanisms by Which Hydroxyeicosapentaenoic Acids Regulate Glucose Homeostasis in Obesity. Adv Nutr 2022; 13:2316-2328. [PMID: 35709423 PMCID: PMC9776734 DOI: 10.1093/advances/nmac073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023] Open
Abstract
Dysregulation of glucose metabolism in response to diet-induced obesity contributes toward numerous complications, such as insulin resistance and hepatic steatosis. Therefore, there is a need to develop effective strategies to improve glucose homeostasis. In this review, we first discuss emerging evidence from epidemiological studies and rodent experiments that increased consumption of EPA (either as oily fish, or dietary/pharmacological supplements) may have a role in preventing impairments in insulin and glucose homeostasis. We then review the current evidence on how EPA-derived metabolites known as hydroxyeicosapentaenoic acids (HEPEs) may be a major mode of action by which EPA exerts its beneficial effects on glucose and lipid metabolism. Notably, cell culture and rodent studies show that HEPEs prevent fat accumulation in metabolic tissues through peroxisome proliferator activated receptor (PPAR)-mediated mechanisms. In addition, activation of the resolvin E1 pathway, either by administration of EPA in the diet or via intraperitoneal administration of resolvin E1, improves hyperglycemia, hyperinsulinemia, and liver steatosis through multiple mechanisms. These mechanisms include shifting immune cell phenotypes toward resolution of inflammation and preventing dysbiosis of the gut microbiome. Finally, we present the next steps for this line of research that will drive future precision randomized clinical trials with EPA and its downstream metabolites. These include dissecting the variables that drive heterogeneity in the response to EPA, such as the baseline microbiome profile and fatty acid status, circadian rhythm, genetic variation, sex, and age. In addition, there is a critical need to further investigate mechanisms of action for HEPEs and to establish the concentration of HEPEs in differing tissues, particularly in response to consumption of oily fish and EPA-enriched supplements.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School
of Medicine, The University of North Carolina at Chapel Hill, Chapel
Hill, NC, USA
| | - Rafia Virk
- Department of Nutrition, Gillings School of Global Public Health and School
of Medicine, The University of North Carolina at Chapel Hill, Chapel
Hill, NC, USA
| | - Thomas E Van Dyke
- Center for Clinical and Translational Research, The Forsyth
Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of
Dental Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Yu EYW, Ren Z, Mehrkanoon S, Stehouwer CDA, van Greevenbroek MMJ, Eussen SJPM, Zeegers MP, Wesselius A. Plasma metabolomic profiling of dietary patterns associated with glucose metabolism status: The Maastricht Study. BMC Med 2022; 20:450. [PMID: 36414942 PMCID: PMC9682653 DOI: 10.1186/s12916-022-02653-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Glucose metabolism has been reported to be affected by dietary patterns, while the underlying mechanisms involved remain unclear. This study aimed to investigate the potential mediation role of circulating metabolites in relation to dietary patterns for prediabetes and type 2 diabetes. METHODS Data was derived from The Maastricht Study that comprised of 3441 participants (mean age of 60 years) with 28% type 2 diabetes patients by design. Dietary patterns were assessed using a validated food frequency questionnaire (FFQ), and the glucose metabolism status (GMS) was defined according to WHO guidelines. Both cross-sectional and prospective analyses were performed for the circulating metabolome to investigate their associations and mediations with responses to dietary patterns and GMS. RESULTS Among 226 eligible metabolite measures obtained from targeted metabolomics, 14 were identified to be associated and mediated with three dietary patterns (i.e. Mediterranean Diet (MED), Dietary Approaches to Stop Hypertension Diet (DASH), and Dutch Healthy Diet (DHD)) and overall GMS. Of these, the mediation effects of 5 metabolite measures were consistent for all three dietary patterns and GMS. Based on a 7-year follow-up, a decreased risk for apolipoprotein A1 (APOA1) and docosahexaenoic acid (DHA) (RR 0.60, 95% CI 0.55, 0.65; RR 0.89, 95% CI 0.83, 0.97, respectively) but an increased risk for ratio of ω-6 to ω-3 fatty acids (RR 1.29, 95% CI 1.05, 1.43) of type 2 diabetes were observed from prediabetes, while APOA1 showed a decreased risk of type 2 diabetes from normal glucose metabolism (NGM; RR 0.82, 95% CI 0.75, 0.89). CONCLUSIONS In summary, this study suggests that adherence to a healthy dietary pattern (i.e. MED, DASH, or DHD) could affect the GMS through circulating metabolites, which provides novel insights into understanding the biological mechanisms of diet on glucose metabolism and leads to facilitating prevention strategy for type 2 diabetes.
Collapse
Affiliation(s)
- Evan Yi-Wen Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing, 210009, China. .,Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Universiteitssingel 40 (Room C5.570), Maastricht, 6229ER, The Netherlands.
| | - Zhewen Ren
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Universiteitssingel 40 (Room C5.570), Maastricht, 6229ER, The Netherlands
| | - Siamak Mehrkanoon
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, 6229ER, The Netherlands
| | - Coen D A Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, The Netherlands.,Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, 6229HX, The Netherlands
| | - Marleen M J van Greevenbroek
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, The Netherlands.,Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, 6229HX, The Netherlands
| | - Simone J P M Eussen
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Universiteitssingel 40 (Room C5.570), Maastricht, 6229ER, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, 6229ER, The Netherlands
| | - Maurice P Zeegers
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Universiteitssingel 40 (Room C5.570), Maastricht, 6229ER, The Netherlands.,School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 40 (Room C5.564), Maastricht, 6229ER, The Netherlands
| | - Anke Wesselius
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Universiteitssingel 40 (Room C5.570), Maastricht, 6229ER, The Netherlands. .,School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 40 (Room C5.564), Maastricht, 6229ER, The Netherlands.
| |
Collapse
|
11
|
Sherratt SCR, Libby P, Bhatt DL, Mason RP. A biological rationale for the disparate effects of omega-3 fatty acids on cardiovascular disease outcomes. Prostaglandins Leukot Essent Fatty Acids 2022; 182:102450. [PMID: 35690002 DOI: 10.1016/j.plefa.2022.102450] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 12/29/2022]
Abstract
The omega-3 fatty acids (n3-FAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) rapidly incorporate into cell membranes where they modulate signal transduction pathways, lipid raft formation, and cholesterol distribution. Membrane n3-FAs also form specialized pro-resolving mediators and other intracellular oxylipins that modulate inflammatory pathways, including T-cell differentiation and gene expression. Cardiovascular (CV) trials have shown that EPA, administered as icosapent ethyl (IPE), reduces composite CV events, along with plaque volume, in statin-treated, high-risk patients. Mixed EPA/DHA regimens have not shown these benefits, perhaps as the result of differences in formulation, dosage, or potential counter-regulatory actions of DHA. Indeed, EPA and DHA have distinct, tissue-specific effects on membrane structural organization and cell function. This review summarizes: (1) results of clinical outcome and imaging trials using n3-FA formulations; (2) membrane interactions of n3-FAs; (3) effects of n3-FAs on membrane oxidative stress and cholesterol crystalline domain formation during hyperglycemia; (4) n3-FA effects on endothelial function; (5) role of n3-FA-generated metabolites in inflammation; and (6) ongoing and future clinical investigations exploring treatment targets for n3-FAs, including COVID-19.
Collapse
Affiliation(s)
- Samuel C R Sherratt
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03823, USA; Elucida Research LLC, Beverly, MA 01915-0091, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-6110, USA
| | - Deepak L Bhatt
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-6110, USA
| | - R Preston Mason
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115-6110, USA; Elucida Research LLC, Beverly, MA 01915-0091, USA.
| |
Collapse
|
12
|
Inhibition of Δ-6 desaturase reduces fatty acid re-esterification in 3T3-L1 adipocytes independent of changes in n3-PUFA cellular content. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159160. [DOI: 10.1016/j.bbalip.2022.159160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022]
|
13
|
Beneficial effects of eicosapentaenoic acid on the metabolic profile of obese female mice entails upregulation of HEPEs and increased abundance of enteric Akkermansia muciniphila. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159059. [PMID: 34619367 PMCID: PMC8627244 DOI: 10.1016/j.bbalip.2021.159059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/30/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
Eicosapentaenoic acid (EPA) ethyl esters are of interest given their clinical approval for lowering circulating triglycerides and cardiometabolic disease risk. EPA ethyl esters prevent metabolic complications driven by a high fat diet in male mice; however, their impact on female mice is less studied. Herein, we first investigated how EPA influences the metabolic profile of female C57BL/6J mice consuming a high fat diet. EPA lowered murine fat mass accumulation, potentially through increased biosynthesis of 8-hydroxyeicosapentaenoic acid (HEPE), as revealed by mass spectrometry and cell culture studies. EPA also reversed the effects of a high fat diet on circulating levels of insulin, glucose, and select inflammatory/metabolic markers. Next, we studied if the improved metabolic profile of obese mice consuming EPA was associated with a reduction in the abundance of key gut Gram-negative bacteria that contribute toward impaired glucose metabolism. Using fecal 16S-ribosomal RNA gene sequencing, we found EPA restructured the gut microbiota in a time-dependent manner but did not lower the levels of key Gram-negative bacteria. Interestingly, EPA robustly increased the abundance of the Gram-negative Akkermansia muciniphila, which controls glucose homeostasis. Finally, predictive functional profiling of microbial communities revealed EPA-mediated reversal of high fat diet-associated changes in a wide range of genes related to pathways such as Th-17 cell differentiation and PI3K-Akt signaling. Collectively, these results show that EPA ethyl esters prevent some of the deleterious effects of a high fat diet in female mice, which may be mediated mechanistically through 8-HEPE and the upregulation of intestinal Akkermansia muciniphila.
Collapse
|
14
|
Alves-de-Oliveira DS, Bloise AMNLG, Silva LML, Rocha-Junior RL, Lima-Júnior NC, Menezes LGS, Silva EGS, De Oliveira Y, Wanderley AG, de-Brito-Alves JL, Souza VON, Costa-Silva JH. Maternal consumption of ɷ3 attenuates metabolic disruption elicited by saturated fatty acids-enriched diet in offspring rats. Nutr Metab Cardiovasc Dis 2022; 32:279-289. [PMID: 34893407 DOI: 10.1016/j.numecd.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIMS High-fat diet (HFD) intake during gestation and lactation has been associated with an increased risk of developing cardiometabolic disorders in adult offspring. We investigated whether metabolic alterations resulting from the maternal consumption of HFD are prevented by the addition of omega-3 (ɷ3) in the diet. METHODS AND RESULTS Wistar rat dams were fed a control (C: 19% of lipids and ɷ6:ɷ3 = 12), HF (HF: 33% lipids and ɷ6:ɷ3 = 21), or HF enriched with ɷ3 (HFω3: 33% lipids and ɷ6:ɷ3 = 9) diet during gestation and lactation, and their offspring food consumption, murinometric measurements, serum levels of metabolic markers, insulin and pyruvate sensitivity tests were evaluated. The maternal HFD increased body weight at birth, dyslipidemia, and elevated fasting glucose levels in the HF group. The enrichment of ɷ3 in the maternal HFD led to lower birth weight and improved lipid, glycemic, and transaminase biochemical profile of the HFω3 group until the beginning of adulthood. However, at later adulthood of the offspring, there was no improvement in these biochemical parameters. CONCLUSION Our findings show the maternal consumption of high-fat ɷ3-rich diet is able to attenuate or prevent metabolic disruption elicited by HFD in offspring until 90 days old, but not in the long term, as observed at 300 days old of the offspring.
Collapse
Affiliation(s)
- Debora S Alves-de-Oliveira
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Aline M N L G Bloise
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Laura M L Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Reginaldo L Rocha-Junior
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Nelson C Lima-Júnior
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Luiza G S Menezes
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Elionay G S Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Yohanna De Oliveira
- Department of Nutrition, Universidade Federal da Paraíba, UFPB, João Pessoa, PB, 58051-900, Brazil
| | - Almir G Wanderley
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, UFPE, Recife, PE, 50760-901, Brazil
| | - José L de-Brito-Alves
- Department of Nutrition, Universidade Federal da Paraíba, UFPB, João Pessoa, PB, 58051-900, Brazil
| | - Viviane O N Souza
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - João H Costa-Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Department of Physical Education and Sport Sciences, Universidade Federal de Pernambuco, UFPE, Vitória de Santo Antão, PE, 55608-680, Brazil.
| |
Collapse
|
15
|
Adipose Tissue Dysfunctions in Response to an Obesogenic Diet Are Reduced in Mice after Transgenerational Supplementation with Omega 3 Fatty Acids. Metabolites 2021; 11:metabo11120838. [PMID: 34940596 PMCID: PMC8706165 DOI: 10.3390/metabo11120838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
Obesity is characterized by profound alterations in adipose tissue (AT) biology, leading to whole body metabolic disturbances such as insulin resistance and cardiovascular diseases. These alterations are related to the development of a local inflammation, fibrosis, hypertrophy of adipocytes, and dysregulation in energy homeostasis, notably in visceral adipose tissue (VAT). Omega 3 (n-3) fatty acids (FA) have been described to possess beneficial effects against obesity-related disorders, including in the AT; however, the long-term effect across generations remains unknown. The current study was conducted to identify if supplementation with n-3 polyunsaturated FA (PUFA) for three generations could protect from the consequences of an obesogenic diet in VAT. Young mice from the third generation of a lineage receiving a daily supplementation (1% of the diet) with fish oil rich in eicosapentaenoic acid (EPA) or an isocaloric amount of sunflower oil, were fed a high-fat, high-sugar content diet for 4 months. We explore the transcriptomic adaptations in each lineage using DNA microarray in VAT and bioinformatic exploration of biological regulations using online databases. Transgenerational intake of EPA led to a reduced activation of inflammatory processes, perturbation in metabolic homeostasis, cholesterol metabolism, and mitochondrial functions in response to the obesogenic diet as compared to control mice from a control lineage. This suggests that the continuous intake of long chain n-3 PUFA could be preventive in situations of oversupply of energy-dense, nutrient-poor foods.
Collapse
|
16
|
Vander Ploeg M, Quinn K, Armstrong M, Manke J, Reisdorph N, Shaikh SR. SPM pathway marker analysis of the brains of obese mice in the absence and presence of eicosapentaenoic acid ethyl esters. Prostaglandins Leukot Essent Fatty Acids 2021; 175:102360. [PMID: 34743051 PMCID: PMC8633202 DOI: 10.1016/j.plefa.2021.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 10/19/2022]
Abstract
Obesity drives an imbalanced signature of specialized pro-resolving mediators (SPM). Herein, we investigated if high fat diet-induced obesity dysregulates the concentration of SPM intermediates in the brains of C57BL/6 J mice. Furthermore, given the benefits of EPA for cardiometabolic diseases, major depression, and cognition, we probed the effect of an EPA supplemented high fat diet on brain SPM intermediates. Mass spectrometry revealed no effect of the high fat diet on PUFA-derived brain metabolites. EPA also did not have an effect on most brain PUFA-derived metabolites except an increase of 12-hydroxyeicosapentaenoic acid (12-HEPE). In contrast, EPA dramatically increased serum HEPEs and lowered several PUFA-derived metabolites. Finally, untargeted mass spectrometry showed no effects of the high fat diet, with or without EPA, on the brain metabolome. Collectively, these results show the murine brain resists a deficiency in SPM pathway markers in response to a high fat diet and that EPA supplementation increases 12-HEPE levels.
Collapse
Affiliation(s)
- Matthew Vander Ploeg
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kevin Quinn
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, CO , United States
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, CO , United States
| | - Jonathan Manke
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, CO , United States
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, CO , United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
17
|
Zhuang P, Li H, Jia W, Shou Q, Zhu Y, Mao L, Wang W, Wu F, Chen X, Wan X, Wu Y, Liu X, Li Y, Zhu F, He L, Chen J, Zhang Y, Jiao J. Eicosapentaenoic and docosahexaenoic acids attenuate hyperglycemia through the microbiome-gut-organs axis in db/db mice. MICROBIOME 2021; 9:185. [PMID: 34507608 PMCID: PMC8434703 DOI: 10.1186/s40168-021-01126-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/08/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been suggested to prevent the development of metabolic disorders. However, their individual role in treating hyperglycemia and the mechanism of action regarding gut microbiome and metabolome in the context of diabetes remain unclear. RESULTS Supplementation of DHA and EPA attenuated hyperglycemia and insulin resistance without changing body weight in db/db mice while the ameliorative effect appeared to be more pronounced for EPA. DHA/EPA supplementation reduced the abundance of the lipopolysaccharide-containing Enterobacteriaceae whereas elevated the family Coriobacteriaceae negatively correlated with glutamate level, genera Barnesiella and Clostridium XlVa associated with bile acids production, beneficial Bifidobacterium and Lactobacillus, and SCFA-producing species. The gut microbiome alterations co-occurred with the shifts in the metabolome, including glutamate, bile acids, propionic/butyric acid, and lipopolysaccharide, which subsequently relieved β cell apoptosis, suppressed hepatic gluconeogenesis, and promoted GLP-1 secretion, white adipose beiging, and insulin signaling. All these changes appeared to be more evident for EPA. Furthermore, transplantation with DHA/EPA-mediated gut microbiota mimicked the ameliorative effect of DHA/EPA on glucose homeostasis in db/db mice, together with similar changes in gut metabolites. In vitro, DHA/EPA treatment directly inhibited the growth of Escherichia coli (Family Enterobacteriaceae) while promoted Coriobacterium glomerans (Family Coriobacteriaceae), demonstrating a causal effect of DHA/EPA on featured gut microbiota. CONCLUSIONS DHA and EPA dramatically attenuated hyperglycemia and insulin resistance in db/db mice, which was mediated by alterations in gut microbiome and metabolites linking gut to adipose, liver and pancreas. These findings shed light into the gut-organs axis as a promising target for restoring glucose homeostasis and also suggest a better therapeutic effect of EPA for treating diabetes. Video abstract.
Collapse
Affiliation(s)
- Pan Zhuang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Haoyu Li
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Wei Jia
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Qiyang Shou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310005, Zhejiang, China
| | - Ya'er Zhu
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Lei Mao
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Wenqiao Wang
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Fei Wu
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Xiaoqian Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xuzhi Wan
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yuqi Wu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaohui Liu
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yin Li
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Fanghuan Zhu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Lilin He
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingnan Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
18
|
Miller EK, Pahlavani M, Ramalingam L, Scoggin S, Moustaid-Moussa N. Uncoupling protein 1-independent effects of eicosapentaenoic acid in brown adipose tissue of diet-induced obese female mice. J Nutr Biochem 2021; 98:108819. [PMID: 34271101 DOI: 10.1016/j.jnutbio.2021.108819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/29/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Brown adipose tissue (BAT) plays a key role in energy expenditure through its thermogenic function, making its activation a popular target to reduce obesity. We recently reported that male mice housed at thermoneutrality with uncoupling protein 1 (UCP1) deficiency had increased weight gain and glucose intolerance, but eicosapentaenoic acid (EPA) ameliorated these effects. Whether female mice respond similarly to lack of UCP1 and to EPA remains unknown. We hypothesize that the effects of EPA on BAT activation are independent of UCP1 expression. We used female wild type (WT) and UCP1 knockout (KO) mice housed at thermoneutrality (30°C) as an obesogenic environment and fed them high fat (HF) diets with or without EPA for up to 14 weeks. Body weight (BW), body composition, and insulin and glucose tolerance tests were performed during the feeding trial. At termination, serum and BAT were harvested for further analyses. Mice in the KO-EPA group had significantly lower BW than KO-HF mice. In addition, KO-HF mice displayed significantly impaired glucose tolerance compared to their WT-HF littermates. However, EPA significantly enhanced glucose clearance in the KO mice compared to KO-HF mice. Protein levels of the mitochondrial cytochrome C oxidase subunits I, II, and IV were significantly lower in KO mice compared to WT. Our findings support that ablation of UCP1 is detrimental to energy metabolism of female mice in thermoneutral conditions. However, unexpectedly, EPA's protective effects against diet-induced obesity and glucose intolerance in these mice were independent of UCP1.
Collapse
Affiliation(s)
- Emily K Miller
- Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University, Lubbock, Texas
| | - Mandana Pahlavani
- Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University, Lubbock, Texas
| | - Latha Ramalingam
- Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University, Lubbock, Texas; Department of Nutrition and Food Studies, Syracuse University, Syracuse, New York ,13210
| | - Shane Scoggin
- Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University, Lubbock, Texas
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University, Lubbock, Texas.
| |
Collapse
|
19
|
Ma APY, Yeung CLS, Tey SK, Mao X, Wong SWK, Ng TH, Ko FCF, Kwong EML, Tang AHN, Ng IOL, Cai SH, Yun JP, Yam JWP. Suppression of ACADM-Mediated Fatty Acid Oxidation Promotes Hepatocellular Carcinoma via Aberrant CAV1/SREBP1 Signaling. Cancer Res 2021; 81:3679-3692. [PMID: 33975883 DOI: 10.1158/0008-5472.can-20-3944] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/24/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022]
Abstract
Lipid accumulation exacerbates tumor development, as it fuels the proliferative growth of cancer cells. The role of medium-chain acyl-CoA dehydrogenase (ACADM), an enzyme that catalyzes the first step of mitochondrial fatty acid oxidation, in tumor biology remains elusive. Therefore, investigating its mode of dysregulation can shed light on metabolic dependencies in cancer development. In hepatocellular carcinoma (HCC), ACADM was significantly underexpressed, correlating with several aggressive clinicopathologic features observed in patients. Functionally, suppression of ACADM promoted HCC cell motility with elevated triglyceride, phospholipid, and cellular lipid droplet levels, indicating the tumor suppressive ability of ACADM in HCC. Sterol regulatory element-binding protein-1 (SREBP1) was identified as a negative transcriptional regulator of ACADM. Subsequently, high levels of caveolin-1 (CAV1) were observed to inhibit fatty acid oxidation, which revealed its role in regulating lipid metabolism. CAV1 expression negatively correlated with ACADM and its upregulation enhanced nuclear accumulation of SREBP1, resulting in suppressed ACADM activity and contributing to increased HCC cell aggressiveness. Administration of an SREBP1 inhibitor in combination with sorafenib elicited a synergistic antitumor effect and significantly reduced HCC tumor growth in vivo. These findings indicate that deregulation of fatty acid oxidation mediated by the CAV1/SREBP1/ACADM axis results in HCC progression, which implicates targeting fatty acid metabolism to improve HCC treatment. SIGNIFICANCE: This study identifies tumor suppressive effects of ACADM in hepatocellular carcinoma and suggests promotion of β-oxidation to diminish fatty acid availability to cancer cells could be used as a therapeutic strategy.
Collapse
Affiliation(s)
- Angel P Y Ma
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cherlie L S Yeung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sze Keong Tey
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaowen Mao
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Samuel W K Wong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tung Him Ng
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Frankie C F Ko
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ernest M L Kwong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alexander H N Tang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Irene Oi-Lin Ng
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Shao Hang Cai
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Ping Yun
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Judy W P Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China. .,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
High-Intensity Interval Training and α-Linolenic Acid Supplementation Improve DHA Conversion and Increase the Abundance of Gut Mucosa-Associated Oscillospira Bacteria. Nutrients 2021; 13:nu13030788. [PMID: 33673609 PMCID: PMC7997329 DOI: 10.3390/nu13030788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity, a major public health problem, is the consequence of an excess of body fat and biological alterations in the adipose tissue. Our aim was to determine whether high-intensity interval training (HIIT) and/or α-linolenic acid supplementation (to equilibrate the n-6/n-3 polyunsaturated fatty acids (PUFA) ratio) might prevent obesity disorders, particularly by modulating the mucosa-associated microbiota. Wistar rats received a low fat diet (LFD; control) or high fat diet (HFD) for 16 weeks to induce obesity. Then, animals in the HFD group were divided in four groups: HFD (control), HFD + linseed oil (LO), HFD + HIIT, HFD + HIIT + LO. In the HIIT groups, rats ran on a treadmill, 4 days.week-1. Erythrocyte n-3 PUFA content, body composition, inflammation, and intestinal mucosa-associated microbiota composition were assessed after 12 weeks. LO supplementation enhanced α-linolenic acid (ALA) to docosahexaenoic acid (DHA) conversion in erythrocytes, and HIIT potentiated this conversion. Compared with HFD, HIIT limited weight gain, fat mass accumulation, and adipocyte size, whereas LO reduced systemic inflammation. HIIT had the main effect on gut microbiota β-diversity, but the HIIT + LO association significantly increased Oscillospira relative abundance. In our conditions, HIIT had a major effect on body fat mass, whereas HIIT + LO improved ALA conversion to DHA and increased the abundance of Oscillospira bacteria in the microbiota.
Collapse
|
21
|
Pinel A, Rigaudière JP, Jouve C, Montaurier C, Jousse C, LHomme M, Morio B, Capel F. Transgenerational supplementation with eicosapentaenoic acid reduced the metabolic consequences on the whole body and skeletal muscle in mice receiving an obesogenic diet. Eur J Nutr 2021; 60:3143-3157. [PMID: 33543364 DOI: 10.1007/s00394-021-02502-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/22/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE The effect of manipulating the fatty acid profile of the diet over generations could affect the susceptibility to develop obesity and metabolic disorders. Although some acute effects were described, the impact of transgenerational continuous supplementation with omega 3 fatty acids on metabolic homeostasis and skeletal muscle metabolic flexibility during a nutritional stress is unknown. METHODS We analyzed the effect of an obesogenic diet in mice after transgenerational supplementation with an omega-3 rich oil (mainly EPA) or a control oil. Young F3 animals received a high fat and high sucrose diet for 4 months. Whole-body biometric data were recorded and lipidomic/transcriptomic adaptations were explored in the skeletal muscle. RESULTS F3 mice from the lineage supplemented with EPA gained less weight, fat mass, and exhibited better metabolic parameters after the obesogenic diet compared to mice from the control lineage. Transcriptomic exploration of skeletal muscle showed differential regulation of biological processes such as fibrosis, fatty acid catabolism, and inflammation between lineages. These adaptations were associated to subtle lipid remodeling of cellular membranes with an enrichment in phospholipids with omega 3 fatty acid in mice from the EPA lineage. CONCLUSION Transgenerational and continuous intake of EPA could help to reduce cardiovascular and metabolic risks related to an unbalanced diet by the modulation of insulin sensitivity, fatty acid metabolism, and fibrosis in skeletal muscle.
Collapse
Affiliation(s)
- Alexandre Pinel
- Unité de Nutrition Humaine (UNH), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Clermont Auvergne, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Jean Paul Rigaudière
- Unité de Nutrition Humaine (UNH), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Clermont Auvergne, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Chrystèle Jouve
- Unité de Nutrition Humaine (UNH), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Clermont Auvergne, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Christophe Montaurier
- Unité de Nutrition Humaine (UNH), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Clermont Auvergne, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Céline Jousse
- Unité de Nutrition Humaine (UNH), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Clermont Auvergne, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Marie LHomme
- ICANalytics Lipidomic, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Béatrice Morio
- CarMeN Laboratory, INSERM U1060, INRAE U1397, University Lyon 1, 69310, Pierre-Bénite, France
| | - Frédéric Capel
- Unité de Nutrition Humaine (UNH), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Clermont Auvergne, CRNH Auvergne, 63000, Clermont-Ferrand, France. .,UFR de Medecine, UMR1019, Equipe ASMS, 28 Place Henri Dunant, BP 38, Clermont-Ferrand Cedex 1, 63001, Clermont-Ferrand, France.
| |
Collapse
|
22
|
Corral-Jara KF, Cantini L, Poupin N, Ye T, Rigaudière JP, Vincent SDS, Pinel A, Morio B, Capel F. An Integrated Analysis of miRNA and Gene Expression Changes in Response to an Obesogenic Diet to Explore the Impact of Transgenerational Supplementation with Omega 3 Fatty Acids. Nutrients 2020; 12:E3864. [PMID: 33348802 PMCID: PMC7765958 DOI: 10.3390/nu12123864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
Insulin resistance decreases the ability of insulin to inhibit hepatic gluconeogenesis, a key step in the development of metabolic syndrome. Metabolic alterations, fat accumulation, and fibrosis in the liver are closely related and contribute to the progression of comorbidities, such as hypertension, type 2 diabetes, or cancer. Omega 3 (n-3) polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA), were identified as potent positive regulators of insulin sensitivity in vitro and in animal models. In the current study, we explored the effects of a transgenerational supplementation with EPA in mice exposed to an obesogenic diet on the regulation of microRNAs (miRNAs) and gene expression in the liver using high-throughput techniques. We implemented a comprehensive molecular systems biology approach, combining statistical tools, such as MicroRNA Master Regulator Analysis pipeline and Boolean modeling to integrate these biochemical processes. We demonstrated that EPA mediated molecular adaptations, leading to the inhibition of miR-34a-5p, a negative regulator of Irs2 as a master regulatory event leading to the inhibition of gluconeogenesis by insulin during the fasting-feeding transition. Omics data integration provided greater biological insight and a better understanding of the relationships between biological variables. Such an approach may be useful for deriving innovative data-driven hypotheses and for the discovery of molecular-biochemical mechanistic links.
Collapse
Affiliation(s)
- Karla Fabiola Corral-Jara
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (J.P.R.); (S.D.S.V.); (A.P.)
| | - Laura Cantini
- Computational Systems Biology Team, Institut de Biologie de l’Ecole Normale Supérieure, CNRS, INSERM, Ecole Normale Supérieure, Université PSL, 75005 Paris, France;
| | - Nathalie Poupin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France;
| | - Tao Ye
- GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries/BP 10142/, 67404 Illkirch, France;
| | - Jean Paul Rigaudière
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (J.P.R.); (S.D.S.V.); (A.P.)
| | - Sarah De Saint Vincent
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (J.P.R.); (S.D.S.V.); (A.P.)
| | - Alexandre Pinel
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (J.P.R.); (S.D.S.V.); (A.P.)
| | - Béatrice Morio
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69310 Pierre Bénite, France;
| | - Frédéric Capel
- Unité de Nutrition Humaine (UNH), Université Clermont Auvergne, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Faculté de Médecine, F-63000 Clermont-Ferrand, France; (K.F.C.-J.); (J.P.R.); (S.D.S.V.); (A.P.)
| |
Collapse
|
23
|
Pal A, Al-Shaer AE, Guesdon W, Torres MJ, Armstrong M, Quinn K, Davis T, Reisdorph N, Neufer PD, Spangenburg EE, Carroll I, Bazinet RP, Halade GV, Clària J, Shaikh SR. Resolvin E1 derived from eicosapentaenoic acid prevents hyperinsulinemia and hyperglycemia in a host genetic manner. FASEB J 2020; 34:10640-10656. [PMID: 32579292 PMCID: PMC7497168 DOI: 10.1096/fj.202000830r] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Eicosapentaenoic acid (EPA) has garnered attention after the success of the REDUCE‐IT trial, which contradicted previous conclusions on EPA for cardiovascular disease risk. Here we first investigated EPA's preventative role on hyperglycemia and hyperinsulinemia. EPA ethyl esters prevented obesity‐induced glucose intolerance, hyperinsulinemia, and hyperglycemia in C57BL/6J mice. Supporting NHANES analyses showed that fasting glucose levels of obese adults were inversely related to EPA intake. We next investigated how EPA improved murine hyperinsulinemia and hyperglycemia. EPA overturned the obesity‐driven decrement in the concentration of 18‐hydroxyeicosapentaenoic acid (18‐HEPE) in white adipose tissue and liver. Treatment of obese inbred mice with RvE1, the downstream immunoresolvant metabolite of 18‐HEPE, but not 18‐HEPE itself, reversed hyperinsulinemia and hyperglycemia through the G‐protein coupled receptor ERV1/ChemR23. To translate the findings, we determined if the effects of RvE1 were dependent on host genetics. RvE1's effects on hyperinsulinemia and hyperglycemia were divergent in diversity outbred mice that model human genetic variation. Secondary SNP analyses further confirmed extensive genetic variation in human RvE1/EPA‐metabolizing genes. Collectively, the data suggest EPA prevents hyperinsulinemia and hyperglycemia, in part, through RvE1's activation of ERV1/ChemR23 in a host genetic manner. The studies underscore the need for personalized administration of RvE1 based on genetic/metabolic enzyme profiles.
Collapse
Affiliation(s)
- Anandita Pal
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Abrar E Al-Shaer
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William Guesdon
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Maria J Torres
- Department of Physiology, East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Kevin Quinn
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Traci Davis
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - P Darrell Neufer
- Department of Physiology, East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Espen E Spangenburg
- Department of Physiology, East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Ian Carroll
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Medicine, The University of South Florida, Tampa, FL, USA
| | - Joan Clària
- Department of Biochemistry and Molecular Genetics, University of Barcelona, Hospital Clínic, Barcelona, Spain
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
24
|
Interplay of Dietary Fatty Acids and Cholesterol Impacts Brain Mitochondria and Insulin Action. Nutrients 2020; 12:nu12051518. [PMID: 32456175 PMCID: PMC7284591 DOI: 10.3390/nu12051518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Overconsumption of high-fat and cholesterol-containing diets is detrimental for metabolism and mitochondrial function, causes inflammatory responses and impairs insulin action in peripheral tissues. Dietary fatty acids can enter the brain to mediate the nutritional status, but also to influence neuronal homeostasis. Yet, it is unclear whether cholesterol-containing high-fat diets (HFDs) with different combinations of fatty acids exert metabolic stress and impact mitochondrial function in the brain. To investigate whether cholesterol in combination with different fatty acids impacts neuronal metabolism and mitochondrial function, C57BL/6J mice received different cholesterol-containing diets with either high concentrations of long-chain saturated fatty acids or soybean oil-derived poly-unsaturated fatty acids. In addition, CLU183 neurons were stimulated with combinations of palmitate, linoleic acid and cholesterol to assess their effects on metabolic stress, mitochondrial function and insulin action. The dietary interventions resulted in a molecular signature of metabolic stress in the hypothalamus with decreased expression of occludin and subunits of mitochondrial electron chain complexes, elevated protein carbonylation, as well as c-Jun N-terminal kinase (JNK) activation. Palmitate caused mitochondrial dysfunction, oxidative stress, insulin and insulin-like growth factor-1 (IGF-1) resistance, while cholesterol and linoleic acid did not cause functional alterations. Finally, we defined insulin receptor as a novel negative regulator of metabolically stress-induced JNK activation.
Collapse
|
25
|
Pahlavani M, Ramalingam L, Miller EK, Davis H, Scoggin S, Moustaid-Moussa N. Discordant Dose-Dependent Metabolic Effects of Eicosapentanoic Acid in Diet-Induced Obese Mice. Nutrients 2020; 12:E1342. [PMID: 32397139 PMCID: PMC7284763 DOI: 10.3390/nu12051342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is a widespread epidemic that increases the risk for several metabolic diseases. Despite several beneficial health effects of eicosapentaenoic acid (C20:5n-3, EPA), previous studies have used very high doses of EPA. In this study, dose-dependent effects of EPA on metabolic outcomes were determined in diet-induced obese mice. We used B6 male mice, fed high-fat diet (HF, 45% kcal fat) or HF diet supplemented with 9, 18, and 36 g/kg of EPA-enriched fish oil for 14 weeks. We conducted metabolic phenotyping during the feeding period, and harvested tissues and blood at termination. Only mice fed 36 g/kg of EPA significantly (p < 0.05) lowered body weight, fat content and epididymal fat pad weight, compared to HF. Both 18 and 36 g/kg doses of EPA significantly increased glucose clearance and insulin sensitivity, compared to HF or 9 g/kg of EPA. Locomotor activity was significantly increased with both 18 and 36 g/kg doses of EPA. Interestingly, all doses of EPA compared to HF, significantly increased energy expenditure and oxygen consumption and significantly reduced serum insulin, leptin, and triglycerides levels. These results demonstrate weight- and adiposity-independent metabolic benefits of EPA, at doses comparable to those currently used to treat hypertriglyceridemia.
Collapse
Affiliation(s)
| | | | | | | | | | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, and Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (M.P.); (L.R.); (E.K.M.); (H.D.); (S.S.)
| |
Collapse
|
26
|
Zhuang P, Zhang Y, Shou Q, Li H, Zhu Y, He L, Chen J, Jiao J. Eicosapentaenoic and Docosahexaenoic Acids Differentially Alter Gut Microbiome and Reverse High-Fat Diet-Induced Insulin Resistance. Mol Nutr Food Res 2020; 64:e1900946. [PMID: 32298529 DOI: 10.1002/mnfr.201900946] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/10/2020] [Indexed: 12/23/2022]
Abstract
SCOPE To assess the individual effects of dietary eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on insulin resistance (IR), gut microbiome, and gut metabolites in high-fat-diet-induced obese (DIO) mice. METHODS AND RESULTS DIO mice are fed an either high-fat diet (HFD), EPA (1% w/w) enriched HFD, or DHA (1% wt/wt) enriched HFD for 15 weeks. Both EPA and DHA supplements reverse hyperglycemia and IR but do not affect body weight in DIO mice while DHA exhibits a more pronounced ameliorative effect in male mice. Both EPA- and DHA-enriched Lactobacillus and short-chain fatty acids (SCFAs)-producing species from Lachnospiraceae while reduced lipopolysaccharide (LPS)-producing Bilophila and Escherichia/Shigella. Compared with EPA, DHA-supplemented mice have more abundant propionic/butyric acid-producing bacteria, including Coprococcus, Butyricimonas synergistica, Bacteroides acidifaciens, and Intestinimonas, and less-abundant LPS-correlated species Streptococcus and p-75-a5. The shifts in gut microbiome co-occurred with the changes in levels of propionic/butyric acid, circulating LPS, and serotonin. Additionally, EPA/DHA supplementation attenuates adipose inflammation with upregulated glucose transporter 4 and Akt phosphorylation, indicating the improvement of insulin signaling. CONCLUSION EPA and DHA differentially reverse IR and relieve adipose inflammation while modulating gut microbiome and SCFAs/LPS production, underscoring the gut-adipose axis as a primary target of EPA/DHA.
Collapse
Affiliation(s)
- Pan Zhuang
- Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yu Zhang
- Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qiyang Shou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, China
| | - Haoyu Li
- Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ya'er Zhu
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lilin He
- Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jingnan Chen
- Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
27
|
Molina TL, Stoll B, Mohammad M, Mohila CA, Call L, Cui L, Guthrie G, Kunichoff D, Lin S, Welch-Jernigan R, Nielsen J, Premkumar M, Robinson J, Smith V, Teets H, Obelitz-Ryom K, Hagan J, Cruz S, Lau P, Puyau M, Shypailo R, Manjarin R, Butte N, Fang Z, Olutoye O, Thymann T, Sangild P, Burrin D. New generation lipid emulsions increase brain DHA and improve body composition, but not short-term neurodevelopment in parenterally-fed preterm piglets. Brain Behav Immun 2020; 85:46-56. [PMID: 31026499 PMCID: PMC6813879 DOI: 10.1016/j.bbi.2019.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022] Open
Abstract
New generation, multicomponent parenteral lipid emulsions provide key fatty acids for brain growth and development, such as docosahexaenoic acid (DHA) and arachidonic acid (AA), yet the content may be suboptimal for preterm infants. Our aim was to test whether DHA and AA-enriched lipid emulsions would increase activity, growth, and neurodevelopment in preterm piglets and limit brain inflammation. Cesarean-delivered preterm pigs were given three weeks of either enteral preterm infant formula (ENT) or TPN with one of three parenteral lipid emulsions: Intralipid (IL), SMOFlipid (SMOF) or an experimental emulsion (EXP). Activity was continuously monitored and weekly blood sampling and behavioral field testing performed. At termination of the study, whole body and tissue metrics were collected. Neuronal density was assessed in sections of hippocampus (HC), thalamus, and cortex. Frontal cortex (FC) and HC tissue were assayed for fatty acid profiles and expression of genes of neuronal growth and inflammation. After 3 weeks of treatment, brain DHA content in SMOF, EXP and ENT pigs was higher (P < 0.01) in FC but not HC vs. IL pigs. There were no differences in brain weight or neuron density among treatment groups. Inflammatory cytokine TNFα and IL-1β expression in brain regions were increased in IL pigs (P < 0.05) compared to other groups. Overall growth velocity was similar among groups, but IL pigs had higher percent body fat and increased insulin resistance compared to other treatments (P < 0.05). ENT pigs spent more time in higher physical activity levels compared to all TPN groups, but there were no differences in exploratory behavior among groups. We conclude that a soybean oil emulsion increased select brain inflammatory cytokines and multicomponent lipid emulsions enriched with DHA and AA in parenteral lipids results in increased cortical DHA and improved body composition without affecting short term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Tiffany L. Molina
- Baylor College of Medicine, Department of Pediatrics, Section of Neonatology, 6621 Fannin St. MS W6104. Houston, TX 77030
| | - Barbara Stoll
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030
| | - Mahmoud Mohammad
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030
| | - Carrie A. Mohila
- Baylor College of Medicine, Department of Pathology & Immunology, Texas Children’s Hospital, Department of Pathology, 6621 Fannin St. Suite AB1195 Houston, TX 77030
| | - Lee Call
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030
| | - Liwei Cui
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030
| | - Gregory Guthrie
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030
| | - Dennis Kunichoff
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030
| | - Sen Lin
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
| | | | - Jon Nielsen
- Dept of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, DK
| | - Muralidhar Premkumar
- Baylor College of Medicine, Department of Pediatrics, Section of Neonatology, 6621 Fannin St. MS W6104. Houston, TX 77030
| | - Jason Robinson
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030
| | - Victoria Smith
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Haley Teets
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Karina Obelitz-Ryom
- Comparative Pediatrics and Nutrition, University of Copenhagen, 68 Dyrlægevej, DK-1870 Frederiskberg C., Copenhagen, Denmark
| | - Joseph Hagan
- Baylor College of Medicine, Department of Pediatrics, Section of Neonatology, 6621 Fannin St. MS W6104. Houston, TX 77030
| | - Stephanie Cruz
- Baylor College of Medicine, Department of Pediatric Surgery, 6701 Fannin St. Houston, TX 77030
| | - Patricio Lau
- Baylor College of Medicine, Department of Pediatric Surgery, 6701 Fannin St. Houston, TX 77030
| | - Maurice Puyau
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030
| | - Roman Shypailo
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030
| | - Rodrigo Manjarin
- Department of Animal Science, California Polytechnic State University, San Luis Obispo, California
| | - Nancy Butte
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St. Houston, TX 77030
| | - Zhengfeng Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, People’s Republic of China
| | - Oluyinka Olutoye
- Baylor College of Medicine, Department of Pediatric Surgery, 6701 Fannin St. Houston, TX 77030
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, University of Copenhagen, 68 Dyrlægevej, DK-1870 Frederiskberg C., Copenhagen, Denmark
| | - Per Sangild
- Comparative Pediatrics and Nutrition, University of Copenhagen, 68 Dyrlægevej, DK-1870 Frederiskberg C., Copenhagen, Denmark
| | - Douglas Burrin
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St., Houston, TX 77030, United States.
| |
Collapse
|
28
|
Mak IL, Lavery P, Agellon S, Rauch F, Murshed M, Weiler HA. Arachidonic acid exacerbates diet-induced obesity and reduces bone mineral content without impacting bone strength in growing male rats. J Nutr Biochem 2019; 73:108226. [PMID: 31520815 DOI: 10.1016/j.jnutbio.2019.108226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 08/09/2019] [Indexed: 12/30/2022]
Abstract
Long-chain polyunsaturated fatty acids modulate bone mass and adipocyte metabolism. Arachidonic acid (AA, C20:4 n-6) is elevated in obesity and postulated to stimulate bone resorption. This study aimed to determine the effect of AA on bone mass, quality, and adiposity in diet-induced obesity during growth. Male Sprague-Dawley rats (n=42, 4-week) were randomized into groups fed a control diet (CTRL, AIN-93G), high-fat diet (HFD, 35% kcal fat) or HFD + AA (1% w/w diet) for 6 weeks. Body composition, bone mineral density and microarchitecture were measured using dual-energy X-ray absorptiometry and micro-computed tomography. Red blood cell fatty acid profile was measured with gas chromatography. Group differences were evaluated using repeated measures two-way analysis of variance with Tukey-Kramer post hoc testing. Total energy intake did not differ among diet groups. At week 6, HFD + AA had significantly greater body fat % (12%), body weight (6%) and serum leptin concentrations (125%) than CTRL, whereas visceral fat (mass and %, assessed with micro-computed tomography) was increased in both HFD and HFD + AA groups. HFD + AA showed reduced whole body bone mineral content and femur mid-diaphyseal cortical bone cross-sectional area than HFD and CTRL, without impairment in bone strength. Contrarily, HFD + AA had greater femur metaphyseal trabecular vBMD (35%) and bone volume fraction (5%) compared to controls. Inclusion of AA elevated leptin concentrations in male rats. The early manifestations of diet-induced obesity on bone mass were accelerated with AA. Studies of longer duration are needed to clarify the effect of AA on peak bone mass following growth cessation.
Collapse
Affiliation(s)
- Ivy L Mak
- School of Human Nutrition, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, Canada H9X 3V9
| | - Paula Lavery
- School of Human Nutrition, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, Canada H9X 3V9
| | - Sherry Agellon
- School of Human Nutrition, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, Canada H9X 3V9
| | - Frank Rauch
- Shriners' Hospital for Children, 1003 Decarie Boulevard, Montreal, QC, Canada H4A 0A9
| | - Monzur Murshed
- Shriners' Hospital for Children, 1003 Decarie Boulevard, Montreal, QC, Canada H4A 0A9; Faculty of Dentistry, McGill University, 3640 rue University, Montreal, QC, Canada H3A 0C7
| | - Hope A Weiler
- School of Human Nutrition, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC, Canada H9X 3V9.
| |
Collapse
|
29
|
Zhuang P, Lu Y, Shou Q, Mao L, He L, Wang J, Chen J, Zhang Y, Jiao J. Differential Anti-Adipogenic Effects of Eicosapentaenoic and Docosahexaenoic Acids in Obesity. Mol Nutr Food Res 2019; 63:e1801135. [PMID: 31140724 DOI: 10.1002/mnfr.201801135] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/25/2019] [Indexed: 12/19/2022]
Abstract
SCOPE To assess the associations of plasma eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) with body fat in a population-based sample and explore the mechanism of action based on browning of white adipose tissue (WAT) in high-fat-diet-induced obese (DIO) mice and 3T3-L1 adipocytes. METHODS AND RESULTS Plasma EPA and DHA of 1719 adults in the National Health and Nutrition Examination Survey (2003-2004) are determined by gas chromatography mass spectrometry, while total body fat is measured by dual-energy X-ray absorptiometry. DIO mice are fed a high-fat diet supplemented with EPA or DHA (1% wt/wt) for 15 weeks and 3T3-L1 preadipocytes are treated with EPA or DHA during differentiation. Plasma DHA but not EPA is associated with lower body fat mass (ptrend < 0.0001), which persists in overweight/obese subjects (ptrend = 0.02). DHA supplementation reduces inguinal WAT and exhibits a more pronounced thermogenic effect than EPA in DIO mice. In vitro, the browning process is induced after 2-day and 6-day treatment with DHA and EPA, respectively. CONCLUSION Plasma DHA but not EPA is inversely associated with body fat mass. The more potent anti-adipogenic effect of DHA than EPA may involve a better capability of inducing browning of WAT for DHA.
Collapse
Affiliation(s)
- Pan Zhuang
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yanhua Lu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 311121, Zhejiang, China
| | - Qiyang Shou
- Experimental Animal Research Center & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Lei Mao
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Lilin He
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jun Wang
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingnan Chen
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yu Zhang
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| |
Collapse
|
30
|
Lavrador MSF, Afonso MS, Cintra DE, Koike M, Nunes VS, Demasi M, Lin CJ, Beda LMM, Gioielli LA, Bombo RDPA, Machado RM, Catanozi S, Nakandakare ER, Lottenberg AM. Interesterified Fats Induce Deleterious Effects on Adipose Tissue and Liver in LDLr-KO Mice. Nutrients 2019; 11:nu11020466. [PMID: 30813339 PMCID: PMC6412707 DOI: 10.3390/nu11020466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/03/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Interesterified fats are being widely used by the food industry in an attempt to replace trans fatty acids. The effect of interesterified fats containing palmitic or stearic acids on lipid metabolism and inflammatory signaling pathways in adipose and hepatic tissues was evaluated. Male LDLr-KO mice were fed a high-fat diet containing polyunsaturated (PUFA), palmitic (PALM), palmitic interesterified (PALM INTER), stearic (STEAR), or stearic interesterified (STEAR INTER) fats for 16 weeks. The expression of genes and protein levels involved in lipid metabolism and inflammatory processes in liver and white adipose tissue was determined by quantitative RT-PCR and by Western blot, respectively. The infiltration of inflammatory cells in hepatic and adipose tissues was determined by eosin and hematoxylin, while liver collagen content was determined by Sirius Red staining. Both interesterified fats increased liver collagen content and JNK phosphorylation. Additionally, the STEAR INTER group developed nonalcoholic steatohepatitis (NASH) associated with higher neutrophil infiltration. PALM INTER induced adipose tissue expansion and enlargement of adipocytes. Furthermore, PALM INTER triggered increased IKK phosphorylation and TNFα protein content, conditions associated with the upstream activation of the NFkB signaling pathway. STEAR INTER induced NASH, while PALM INTER triggered hepatic fibrosis and adipocyte hypertrophy with inflammatory response in LDLr-KO mice.
Collapse
Affiliation(s)
- Maria Silvia Ferrari Lavrador
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Milessa Silva Afonso
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics-School of Applied Science, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil.
| | - Marcia Koike
- Emergency Care Research Unit Laboratory (LIM51), Faculty of Medical Sciences of the University of São Paulo, São Paulo 01246-903, Brazil.
| | - Valeria Sutti Nunes
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Marina Demasi
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Chin Jia Lin
- Laboratory of Molecular Biology (LIM22), Department of Pathology, Faculty of Medical Sciences of the University of São Paulo, São Paulo 01246-903, Brazil.
| | - Lis Mie Masuzawa Beda
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Luiz Antonio Gioielli
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences of the University of São Paulo, São Paulo 05508-000, Brazil.
| | - Renata de Paula Assis Bombo
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Roberta Marcondes Machado
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Sergio Catanozi
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Edna Regina Nakandakare
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
| | - Ana Maria Lottenberg
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR 01246-903, Brazil.
- Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, SP, BR 05521-200, Brazil.
| |
Collapse
|
31
|
Colson C, Ghandour RA, Dufies O, Rekima S, Loubat A, Munro P, Boyer L, Pisani DF. Diet Supplementation in ω3 Polyunsaturated Fatty Acid Favors an Anti-Inflammatory Basal Environment in Mouse Adipose Tissue. Nutrients 2019; 11:nu11020438. [PMID: 30791540 PMCID: PMC6412622 DOI: 10.3390/nu11020438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/17/2022] Open
Abstract
Oxylipins are metabolized from dietary ω3 and ω6 polyunsaturated fatty acids and are involved in an inflammatory response. Adipose tissue inflammatory background is a key factor of metabolic disorders and it is accepted that dietary fatty acids, in terms of quality and quantity, modulate oxylipin synthesis in this tissue. Moreover, it has been reported that diet supplementation in ω3 polyunsaturated fatty acids resolves some inflammatory situations. Thus, it is crucial to assess the influence of dietary polyunsaturated fatty acids on oxylipin synthesis and their impact on adipose tissue inflammation. To this end, mice fed an ω6- or ω3-enriched standard diet (ω6/ω3 ratio of 30 and 3.75, respectively) were analyzed for inflammatory phenotype and adipose tissue oxylipin content. Diet enrichment with an ω3 polyunsaturated fatty acid induced an increase in the oxylipins derived from ω6 linoleic acid, ω3 eicosapentaenoic, and ω3 docosahexaenoic acids in brown and white adipose tissues. Among these, the level of pro-resolving mediator intermediates, as well as anti-inflammatory metabolites, were augmented. Concomitantly, expressions of M2 macrophage markers were increased without affecting inflammatory cytokine contents. In vitro, these metabolites did not activate macrophages but participated in macrophage polarization by inflammatory stimuli. In conclusion, we demonstrated that an ω3-enriched diet, in non-obesogenic non-inflammatory conditions, induced synthesis of oxylipins which were involved in an anti-inflammatory response as well as enhancement of the M2 macrophage molecular signature, without affecting inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Cecilia Colson
- Université Côte d'Azur, CNRS, Inserm, iBV, 06107 Nice, France.
| | | | - Océane Dufies
- Université Côte d'Azur, Inserm, C3M, 06107 Nice, France.
| | - Samah Rekima
- Université Côte d'Azur, CNRS, Inserm, iBV, 06107 Nice, France.
| | - Agnès Loubat
- Université Côte d'Azur, CNRS, Inserm, iBV, 06107 Nice, France.
| | - Patrick Munro
- Université Côte d'Azur, Inserm, C3M, 06107 Nice, France.
| | - Laurent Boyer
- Université Côte d'Azur, Inserm, C3M, 06107 Nice, France.
| | - Didier F Pisani
- Université Côte d'Azur, CNRS, Inserm, iBV, 06107 Nice, France.
- Didier Pisani, Laboratoire de PhysioMédecine Moléculaire-LP2M, Univ. Nice Sophia Antipolis, 28 Avenue de Valombrose, 06107 Nice CEDEX 2, France.
| |
Collapse
|
32
|
Ferguson JF, Roberts-Lee K, Borcea C, Smith HM, Midgette Y, Shah R. Omega-3 polyunsaturated fatty acids attenuate inflammatory activation and alter differentiation in human adipocytes. J Nutr Biochem 2018; 64:45-49. [PMID: 30428424 DOI: 10.1016/j.jnutbio.2018.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids, specifically the fish-oil-derived eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been proposed as inflammation-resolving agents via their effects on adipose tissue. OBJECTIVE We proposed to determine the effects of EPA and DHA on human adipocyte differentiation and inflammatory activation in vitro. METHODS Primary human subcutaneous adipocytes from lean and obese subjects were treated with 100 μM EPA and/or DHA throughout differentiation (differentiation studies) or for 72 h postdifferentiation (inflammatory studies). THP-1 monocytes were added to adipocyte wells for co-culture experiments. Subcutaneous and visceral adipose explants from obese subjects were treated for 72 h with EPA and DHA. Oil Red O staining was performed on live cells. Cells were collected for mRNA analysis by quantitative polymerase chain reaction, and media were collected for protein quantification by enzyme-linked immunosorbent assay. RESULTS Incubation with EPA and/or DHA attenuated inflammatory response to lipopolysaccharide (LPS) and monocyte co-culture with reduction in post-LPS mRNA expression and protein levels of IL6, CCL2 and CX3CL1. Expression of inflammatory genes was also reduced in the endogenous inflammatory response in obese adipose. Both DHA and EPA reduced lipid droplet formation and lipogenic gene expression without alteration in expression of adipogenic genes or adiponectin secretion. CONCLUSIONS EPA and DHA attenuate inflammatory activation of in vitro human adipocytes and reduce lipogenesis.
Collapse
Affiliation(s)
- Jane F Ferguson
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kailey Roberts-Lee
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cristina Borcea
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Holly M Smith
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yasmeen Midgette
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rachana Shah
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Pinel A, Rigaudière JP, Jouve C, Capel F. Modulation of Insulin Resistance and the Adipocyte-Skeletal Muscle Cell Cross-Talk by LCn-3PUFA. Int J Mol Sci 2018; 19:ijms19092778. [PMID: 30223577 PMCID: PMC6164755 DOI: 10.3390/ijms19092778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/03/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022] Open
Abstract
The cross-talk between skeletal muscle and adipose tissue is involved in the development of insulin resistance (IR) in skeletal muscle, leading to the decrease in the anabolic effect of insulin. We investigated if the long chain polyunsaturated n-3 fatty acids (LCn-3PUFA), eicosapentaenoic and docosapentaenoic acids (EPA and DPA, respectively) could (1) regulate the development of IR in 3T3-L1 adipocytes and C2C12 muscle cells and (2) inhibit IR in muscle cells exposed to conditioned media (CM) from insulin-resistant adipocytes. Chronic insulin (CI) treatment of adipocytes and palmitic acid (PAL) exposure of myotubes were used to induce IR in the presence, or not, of LCn-3PUFA. EPA (50 µM) and DPA (10 µM) improved PAL-induced IR in myotubes, but had only a partial effect in adipocytes. CM from adipocytes exposed to CI induced IR in C2C12 myotubes. Although DPA increased the mRNA levels of genes involved in fatty acid (FA) beta-oxidation and insulin signaling in adipocytes, it was not sufficient to reduce the secretion of inflammatory cytokines and prevent the induction of IR in myotubes exposed to adipocyte’s CM. Treatment with DPA was able to increase the release of adiponectin by adipocytes into CM. In conclusion, DPA is able to protect myotubes from PAL-induced IR, but not from IR induced by CM from adipocytes.
Collapse
Affiliation(s)
- Alexandre Pinel
- Unité de Nutrition Humaine (UNH), INRA/Université Clermont Auvergne, 63009 Clermont-Ferrand, France.
| | - Jean-Paul Rigaudière
- Unité de Nutrition Humaine (UNH), INRA/Université Clermont Auvergne, 63009 Clermont-Ferrand, France.
| | - Chrystèle Jouve
- Unité de Nutrition Humaine (UNH), INRA/Université Clermont Auvergne, 63009 Clermont-Ferrand, France.
| | - Frédéric Capel
- Unité de Nutrition Humaine (UNH), INRA/Université Clermont Auvergne, 63009 Clermont-Ferrand, France.
| |
Collapse
|
34
|
Lei CX, Tian JJ, Ji H, Li Y. EPA plays multiple roles in regulating lipid accumulation of grass carp Ctenopharyngodon idella adipose tissue in vitro and in vivo. JOURNAL OF FISH BIOLOGY 2018; 93:290-301. [PMID: 29968318 DOI: 10.1111/jfb.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
This study was conducted to assess the effect of eicosapentaenoic acid (20:5n-3, EPA) on lipid accumulation in grass carp Ctenopharyngodon idella adipose tissue both in vitro and in vivo. EPA was observed to inhibit the adipocyte viability in a time and dose-dependent manner. EPA was also found to induce reactive oxygen species accumulation in vitro. The mRNA levels of caspase 3a and caspase 3b, as well as the activity of Caspase 3 increased significantly in vitro and in vivo, whereas the value of B cell leukemia 2-Bcl-2 associated X protein decreased significantly. Besides, the pro-apoptotic effect was relieved by α-tocopherol. Dietary 0.52% EPA had no apparent effect on intraperitoneal fat index. Moreover, EPA promoted the hydrolytic gene expressions in vitro and in vivo, including adipose triglyceride lipase and hormone sensitive lipase-a. Meanwhile, the lipogenic gene expressions of liver X receptor α, sterol regulatory element binding protein-1c and fatty-acid synthase were down-regulated by EPA in vitro and in vivo. However, EPA also acted to promote the marker gene expressions of adipogenesis, including peroxisome proliferator-activated receptor γ and lipoprotein lipase in vitro and in vivo. Contents of EPA increased significantly in the treatment groups in vitro and in vivo. These results support that EPA affects multiple aspects of lipid metabolism, including hydrolysis, lipogenesis, adipogenesis and apoptosis. However, it barely functioned in decreasing the lipid accumulation of Ctenopharyngodon idella under the current culture conditions.
Collapse
Affiliation(s)
- Cai X Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, P. R. China
- College of Marine Sciences, South China Agriculture University, Guangzhou, P. R. China
| | - Jing J Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, P. R. China
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture; Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, P. R. China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, P. R. China
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, P. R. China
| |
Collapse
|
35
|
Sullivan EM, Pennington ER, Green WD, Beck MA, Brown DA, Shaikh SR. Mechanisms by Which Dietary Fatty Acids Regulate Mitochondrial Structure-Function in Health and Disease. Adv Nutr 2018; 9:247-262. [PMID: 29767698 PMCID: PMC5952932 DOI: 10.1093/advances/nmy007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/02/2018] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are the energy-producing organelles within a cell. Furthermore, mitochondria have a role in maintaining cellular homeostasis and proper calcium concentrations, building critical components of hormones and other signaling molecules, and controlling apoptosis. Structurally, mitochondria are unique because they have 2 membranes that allow for compartmentalization. The composition and molecular organization of these membranes are crucial to the maintenance and function of mitochondria. In this review, we first present a general overview of mitochondrial membrane biochemistry and biophysics followed by the role of different dietary saturated and unsaturated fatty acids in modulating mitochondrial membrane structure-function. We focus extensively on long-chain n-3 (ω-3) polyunsaturated fatty acids and their underlying mechanisms of action. Finally, we discuss implications of understanding molecular mechanisms by which dietary n-3 fatty acids target mitochondrial structure-function in metabolic diseases such as obesity, cardiac-ischemia reperfusion injury, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and select cancers.
Collapse
Affiliation(s)
- E Madison Sullivan
- Department of Biochemistry and Molecular Biology and
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Edward Ross Pennington
- Department of Biochemistry and Molecular Biology and
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - William D Green
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - Melinda A Beck
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech Corporate Research Center, Blacksburg, VA
| | - Saame Raza Shaikh
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| |
Collapse
|
36
|
Leger T, Hininger-Favier I, Capel F, Geloen A, Rigaudière JP, Jouve C, Pitois E, Pineau G, Vaysse C, Chardigny JM, Michalski MC, Malpuech-Brugère C, Demaison L. Dietary canolol protects the heart against the deleterious effects induced by the association of rapeseed oil, vitamin E and coenzyme Q10 in the context of a high-fat diet. Nutr Metab (Lond) 2018; 15:15. [PMID: 29456586 PMCID: PMC5809903 DOI: 10.1186/s12986-018-0252-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/06/2018] [Indexed: 01/23/2023] Open
Abstract
Background Obesity progressively leads to cardiac failure. Omega-3 polyunsaturated fatty acids (PUFA) have been shown to have cardio-protective effects in numerous pathological situations. It is not known whether rapeseed oil, which contains α-linolenic acid (ALA), has a similar protective effect. Omega-3 PUFAs are sensitive to attack by reactive oxygen species (ROS), and lipid peroxidation products could damage cardiac cells. We thus tested whether dietary refined rapeseed oil (RSO) associated with or without different antioxidants (vitamin E, coenzyme Q10 and canolol) is cardio-protective in a situation of abdominal obesity. Methods Sixty male Wistar rats were subdivided into 5 groups. Each group was fed a specific diet for 11 weeks: a low-fat diet (3% of lipids, C diet) with compositionally-balanced PUFAs; a high-fat diet rich in palm oil (30% of lipids, PS diet); the PS diet in which 40% of lipids were replaced by RSO (R diet); the R diet supplemented with coenzyme Q10 (CoQ10) and vitamin E (RTC diet); and the RTC diet supplemented with canolol (RTCC diet). At the end of the diet period, the rats were sacrificed and the heart was collected and immediately frozen. Fatty acid composition of cardiac phospholipids was then determined. Several features of cardiac function (fibrosis, inflammation, oxidative stress, apoptosis, metabolism, mitochondrial biogenesis) were also estimated. Results Abdominal obesity reduced cardiac oxidative stress and apoptosis rate by increasing the proportion of arachidonic acid (AA) in membrane phospholipids. Dietary RSO had the same effect, though it normalized the proportion of AA. Adding vitamin E and CoQ10 in the RSO-rich high fat diet had a deleterious effect, increasing fibrosis by increasing angiotensin-2 receptor-1b (Ag2R-1b) mRNA expression. Overexpression of these receptors triggers coronary vasoconstriction, which probably induced ischemia. Canolol supplementation counteracted this deleterious effect by reducing coronary vasoconstriction. Conclusion Canolol was found to counteract the fibrotic effects of vitamin E + CoQ10 on cardiac fibrosis in the context of a high-fat diet enriched with RSO. This effect occurred through a restoration of cardiac Ag2R-1b mRNA expression and decreased ischemia.
Collapse
Affiliation(s)
- Thibault Leger
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 58 rue Montalembert, BP 321, 63009 Clermont-Ferrand cedex 1, France
| | | | - Frédéric Capel
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 58 rue Montalembert, BP 321, 63009 Clermont-Ferrand cedex 1, France
| | - Alain Geloen
- 3Univ-Lyon, laboratoire CarMeN, INRA UMR1397, INSERM U1060, Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 69621 Villeurbanne, France
| | - Jean-Paul Rigaudière
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 58 rue Montalembert, BP 321, 63009 Clermont-Ferrand cedex 1, France
| | - Chrystèle Jouve
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 58 rue Montalembert, BP 321, 63009 Clermont-Ferrand cedex 1, France
| | - Elodie Pitois
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 58 rue Montalembert, BP 321, 63009 Clermont-Ferrand cedex 1, France
| | - Gaelle Pineau
- 3Univ-Lyon, laboratoire CarMeN, INRA UMR1397, INSERM U1060, Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 69621 Villeurbanne, France
| | - Carole Vaysse
- 4ITERG-ENMS, Université de Bordeaux, rue Léo Saignat, 33076 Bordeaux cedex, France
| | - Jean-Michel Chardigny
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 58 rue Montalembert, BP 321, 63009 Clermont-Ferrand cedex 1, France.,Present address: Centre de Recherche INRA Bourgogne Franche Comté, Bâtiment Le Magnen, 17 rue Sully, BP 86510, 21065 Dijon cedex, France
| | - Marie-Caroline Michalski
- 3Univ-Lyon, laboratoire CarMeN, INRA UMR1397, INSERM U1060, Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 69621 Villeurbanne, France
| | - Corinne Malpuech-Brugère
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 58 rue Montalembert, BP 321, 63009 Clermont-Ferrand cedex 1, France
| | - Luc Demaison
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 58 rue Montalembert, BP 321, 63009 Clermont-Ferrand cedex 1, France
| |
Collapse
|
37
|
Integrated Immunomodulatory Mechanisms through which Long-Chain n-3 Polyunsaturated Fatty Acids Attenuate Obese Adipose Tissue Dysfunction. Nutrients 2017; 9:nu9121289. [PMID: 29186929 PMCID: PMC5748740 DOI: 10.3390/nu9121289] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity is a global health concern with rising prevalence that increases the risk of developing other chronic diseases. A causal link connecting overnutrition, the development of obesity and obesity-associated co-morbidities is visceral adipose tissue (AT) dysfunction, characterized by changes in the cellularity of various immune cell populations, altered production of inflammatory adipokines that sustain a chronic state of low-grade inflammation and, ultimately, dysregulated AT metabolic function. Therefore, dietary intervention strategies aimed to halt the progression of obese AT dysfunction through any of the aforementioned processes represent an important active area of research. In this connection, fish oil-derived dietary long-chain n-3 polyunsaturated fatty acids (PUFA) in the form of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to attenuate obese AT dysfunction through multiple mechanisms, ultimately affecting AT immune cellularity and function, adipokine production, and metabolic signaling pathways, all of which will be discussed herein.
Collapse
|
38
|
Sullivan EM, Pennington ER, Sparagna GC, Torres MJ, Neufer PD, Harris M, Washington J, Anderson EJ, Zeczycki TN, Brown DA, Shaikh SR. Docosahexaenoic acid lowers cardiac mitochondrial enzyme activity by replacing linoleic acid in the phospholipidome. J Biol Chem 2017; 293:466-483. [PMID: 29162722 DOI: 10.1074/jbc.m117.812834] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/19/2017] [Indexed: 12/21/2022] Open
Abstract
Cardiac mitochondrial phospholipid acyl chains regulate respiratory enzymatic activity. In several diseases, the rodent cardiac phospholipidome is extensively rearranged; however, whether specific acyl chains impair respiratory enzyme function is unknown. One unique remodeling event in the myocardium of obese and diabetic rodents is an increase in docosahexaenoic acid (DHA) levels. Here, we first confirmed that cardiac DHA levels are elevated in diabetic humans relative to controls. We then used dietary supplementation of a Western diet with DHA as a tool to promote cardiac acyl chain remodeling and to study its influence on respiratory enzyme function. DHA extensively remodeled the acyl chains of cardiolipin (CL), mono-lyso CL, phosphatidylcholine, and phosphatidylethanolamine. Moreover, DHA lowered enzyme activities of respiratory complexes I, IV, V, and I+III. Mechanistically, the reduction in enzymatic activities were not driven by a dramatic reduction in the abundance of supercomplexes. Instead, replacement of tetralinoleoyl-CL with tetradocosahexaenoyl-CL in biomimetic membranes prevented formation of phospholipid domains that regulate enzyme activity. Tetradocosahexaenoyl-CL inhibited domain organization due to favorable Gibbs free energy of phospholipid mixing. Furthermore, in vitro substitution of tetralinoleoyl-CL with tetradocosahexaenoyl-CL blocked complex-IV binding. Finally, reintroduction of linoleic acid, via fusion of phospholipid vesicles to mitochondria isolated from DHA-fed mice, rescued the major losses in the mitochondrial phospholipidome and complexes I, IV, and V activities. Altogether, our results show that replacing linoleic acid with DHA lowers select cardiac enzyme activities by potentially targeting domain organization and phospholipid-protein binding, which has implications for the ongoing debate about polyunsaturated fatty acids and cardiac health.
Collapse
Affiliation(s)
- E Madison Sullivan
- From the Department of Biochemistry and Molecular Biology.,East Carolina Diabetes and Obesity Institute, and
| | - Edward Ross Pennington
- From the Department of Biochemistry and Molecular Biology.,East Carolina Diabetes and Obesity Institute, and.,the Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Genevieve C Sparagna
- the Department of Medicine, Division of Cardiology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045
| | | | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, and.,Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Mitchel Harris
- From the Department of Biochemistry and Molecular Biology
| | - James Washington
- From the Department of Biochemistry and Molecular Biology.,East Carolina Diabetes and Obesity Institute, and
| | - Ethan J Anderson
- the Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, and
| | - Tonya N Zeczycki
- From the Department of Biochemistry and Molecular Biology.,East Carolina Diabetes and Obesity Institute, and
| | - David A Brown
- the Department of Human Nutrition, Foods, and Exercise, Virginia Tech Corporate Research Center, Blacksburg, Virginia 24060
| | - Saame Raza Shaikh
- From the Department of Biochemistry and Molecular Biology, .,East Carolina Diabetes and Obesity Institute, and.,the Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
39
|
Polymorphisms in FFAR4 (GPR120) Gene Modulate Insulin Levels and Sensitivity after Fish Oil Supplementation. J Pers Med 2017; 7:jpm7040015. [PMID: 29113108 PMCID: PMC5748627 DOI: 10.3390/jpm7040015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/11/2017] [Accepted: 10/31/2017] [Indexed: 12/15/2022] Open
Abstract
The objective was to test whether FFAR4 single nucleotide polymorphisms (SNPs) are associated with glycemic control-related traits in humans following fish oil supplementation. A total of 210 participants were given 3 g/day of omega-3 (n-3) fatty acids (FA) (1.9–2.2 g of eicosapentaenoic acid (EPA) and 1.1 g of docosahexaenoic acid (DHA)) during six weeks. Biochemical parameters were taken before and after the supplementation. Using the HapMap database and the tagger procedure in Haploview, 12 tagging SNPs in FFAR4 were selected and then genotyped using TaqMan technology. Transcript expression levels were measured for 30 participants in peripheral mononuclear blood cells. DNA methylation levels were measured for 35 participants in leukocytes. In silico analyses were also performed. Four gene–diet interactions on fasting insulin levels and homeostatic model assessment of insulin resistance (HOMA-IR) index values were found. rs17108973 explained a significant proportion of the variance of insulin levels (3.0%) and HOMA-IR (2.03%) index values. Splice site prediction was different depending on the allele for rs11187527. rs17108973 and rs17484310 had different affinity for transcription factors depending on the allele. n-3 FAs effectively improve insulin-related traits for major allele homozygotes of four FFAR4 SNPs as opposed to carriers of the minor alleles.
Collapse
|
40
|
Fatty Acids Consumption: The Role Metabolic Aspects Involved in Obesity and Its Associated Disorders. Nutrients 2017; 9:nu9101158. [PMID: 29065507 PMCID: PMC5691774 DOI: 10.3390/nu9101158] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/01/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity and its associated disorders, such as insulin resistance, dyslipidemia, metabolic inflammation, dysbiosis, and non-alcoholic hepatic steatosis, are involved in several molecular and inflammatory mechanisms that alter the metabolism. Food habit changes, such as the quality of fatty acids in the diet, are proposed to treat and prevent these disorders. Some studies demonstrated that saturated fatty acids (SFA) are considered detrimental for treating these disorders. A high fat diet rich in palmitic acid, a SFA, is associated with lower insulin sensitivity and it may also increase atherosclerosis parameters. On the other hand, a high intake of eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids may promote positive effects, especially on triglyceride levels and increased high-density lipoprotein (HDL) levels. Moreover, polyunsaturated fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs) are effective at limiting the hepatic steatosis process through a series of biochemical events, such as reducing the markers of non-alcoholic hepatic steatosis, increasing the gene expression of lipid metabolism, decreasing lipogenic activity, and releasing adiponectin. This current review shows that the consumption of unsaturated fatty acids, MUFA, and PUFA, and especially EPA and DHA, which can be applied as food supplements, may promote effects on glucose and lipid metabolism, as well as on metabolic inflammation, gut microbiota, and hepatic metabolism.
Collapse
|
41
|
Yamada H, Umemoto T, Kakei M, Momomura SI, Kawakami M, Ishikawa SE, Hara K. Eicosapentaenoic acid shows anti-inflammatory effect via GPR120 in 3T3-L1 adipocytes and attenuates adipose tissue inflammation in diet-induced obese mice. Nutr Metab (Lond) 2017; 14:33. [PMID: 28503189 PMCID: PMC5422876 DOI: 10.1186/s12986-017-0188-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saturated fatty acids have been shown to cause insulin resistance and low-grade chronic inflammation, whereas unsaturated fatty acids suppress inflammation via G-protein coupled receptor 120 (GPR120) in macrophages. However, the anti-inflammatory effects of unsaturated fatty acids in adipocytes have yet to be elucidated. Hence, the aims of the present study were to evaluate the anti-inflammatory effects of eicosapentaenoic acid (EPA) via GPR120 in adipocytes. METHODS We used 250 μM palmitate as a representative saturated fatty acid. 3T3-L1 adipocytes were used for in vitro studies. We further evaluated the effect of EPA supplementation in a high-fat/high-sucrose (HFHS) diet-induced adipose tissue inflammatory mouse model. RESULTS EPA attenuated palmitate-induced increases in inflammatory gene expression and NF-κB phosphorylation in 3T3-L1 adipocytes. Silencing of GPR120 abolished the anti-inflammatory effects of EPA. In GPR120 downstream signal analysis, EPA was found to decrease palmitate-induced increases in TAK1/TAB1 complex expression. EPA supplementation suppressed HFHS-induced crown-like structure formation in epididymal adipose tissue and altered macrophage phenotypes from M1 to M2 in the stromal vascular fraction. Moreover, the EPA-containing diet attenuated increases in adipose p-JNK and phospho-p65 NF-κB levels. CONCLUSIONS In conclusion, the findings of the present study demonstrate that EPA suppresses palmitate-induced inflammation via GPR120 by inhibiting the TAK1/TAB1 interaction in adipocytes. EPA supplementation reduced HFHS diet-induced inflammatory changes in mouse adipose tissues. These results demonstrate adipose GPR120 as a potential therapeutic target for decreasing inflammation.
Collapse
Affiliation(s)
- Hodaka Yamada
- First Department of Comprehensive Medicine, Jichi Medical University Saitama Medical Center, 1-847 Amanumacho, Omiya, Saitama 330-8503 Japan
| | - Tomio Umemoto
- First Department of Comprehensive Medicine, Jichi Medical University Saitama Medical Center, 1-847 Amanumacho, Omiya, Saitama 330-8503 Japan
| | - Masafumi Kakei
- First Department of Comprehensive Medicine, Jichi Medical University Saitama Medical Center, 1-847 Amanumacho, Omiya, Saitama 330-8503 Japan
| | - Shin-Ichi Momomura
- First Department of Comprehensive Medicine, Jichi Medical University Saitama Medical Center, 1-847 Amanumacho, Omiya, Saitama 330-8503 Japan
| | - Masanobu Kawakami
- Internal Medicine, Nerima Hikarigaoka Hospital, 2-11-1 Hikarigaoka, Nerima, Tokyo, 179-0072 Japan
| | - San-E Ishikawa
- Division of Endocrinology and Metabolism, International University of Health and Welfare Hospital, 537-3 Iguchi, Nasushiobara, Tochigi 329-2763 Japan
| | - Kazuo Hara
- First Department of Comprehensive Medicine, Jichi Medical University Saitama Medical Center, 1-847 Amanumacho, Omiya, Saitama 330-8503 Japan
| |
Collapse
|