1
|
Pan BY, Chen CS, Chen FY, Shen MY. Multifaceted Role of Apolipoprotein C3 in Cardiovascular Disease Risk and Metabolic Disorder in Diabetes. Int J Mol Sci 2024; 25:12759. [PMID: 39684468 PMCID: PMC11641554 DOI: 10.3390/ijms252312759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Apolipoprotein C3 (APOC3) plays a critical role in regulating triglyceride levels and serves as a key predictor of cardiovascular disease (CVD) risk, particularly in patients with diabetes. While APOC3 is known to inhibit lipoprotein lipase, recent findings reveal its broader influence across lipoprotein metabolism, where it modulates the structure and function of various lipoproteins. Therefore, this review examines the complex metabolic cycle of APOC3, emphasizing the impact of APOC3-containing lipoproteins on human metabolism, particularly in patients with diabetes. Notably, APOC3 affects triglyceride-rich lipoproteins and causes structural changes in high-, very low-, intermediate-, and low-density lipoproteins, thereby increasing CVD risk. Evidence suggests that elevated APOC3 levels-above the proposed safe range of 10-15 mg/dL-correlate with clinically significant CVD outcomes. Recognizing APOC3 as a promising biomarker for CVD, this review underscores the urgent need for high-throughput, clinically feasible methods to further investigate its role in lipoprotein physiology in both animal models and human studies. Additionally, we analyze the relationship between APOC3-related genes and lipoproteins, reinforcing the value of large-population studies to understand the impact of APOC3 on metabolic diseases. Ultimately, this review supports the development of therapeutic strategies targeting APOC3 reduction as a preventive approach for diabetes-related CVD.
Collapse
Affiliation(s)
- Bo-Yi Pan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (B.-Y.P.); (F.-Y.C.)
| | - Chen-Sheng Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan;
| | - Fang-Yu Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (B.-Y.P.); (F.-Y.C.)
| | - Ming-Yi Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (B.-Y.P.); (F.-Y.C.)
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Nursing, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
2
|
Pan Z, Zaman MA, Kalsoom S, Zhang Y. Messenger interference RNA therapies targeting apolipoprotein C-III and angiopoietin-like protein 3 for mixed hyperlipidemia: the future of plozasiran and zodasiran. Expert Rev Clin Pharmacol 2024; 17:1017-1023. [PMID: 39469883 DOI: 10.1080/17512433.2024.2423724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION Mixed hyperlipidemia represents a substantial public health issue and a considerable burden on healthcare systems. Although the introduction of statins and LDL-cholesterol lowering agents have significantly reduced the incidence of atherosclerotic cardiovascular diseases (ASCVD), a significant portion of the population continues to exhibit ASCVD progression due to elevated triglyceride-rich lipoprotein (TRL) levels. This persistent risk has catalyzed the development of novel pharmacological interventions targeting these lipoproteins. AREAS COVERED Our special report commenced with a targeted PubMed search using keywords such as 'plozasiran,' 'zodasiran,' and terms related to APOC3 and ANGPTL3. As the review progressed, emergent research questions guided further searches, allowing for the inclusion of additional relevant articles to comprehensively illustrate the linkage between TRLs and cardiovascular disease, discuss the roles of APOC3, ANGPTL3, and the pharmaceutical agents that target these proteins, and provide a comparison on the ARCHES-2 and MUIR trials. EXPERT OPINION The ARCHES-2 and MUIR trials demonstrated effective triglyceride reduction by these therapies, yet it is uncertain if this correlates with significant clinical benefits. Advances in antisense oligonucleotide technology, especially the GalNAc delivery platform, show promise for personalized lipid management, though challenges such as cost and safety concerns remain.
Collapse
Affiliation(s)
- Zonghao Pan
- Department of Internal Medicine, Conemaugh Health System, Johnstown, PA, USA
| | | | - Sidra Kalsoom
- Department of Cardiology, Mercy Saint Vincent Medical Center, Toledo, OH, USA
| | - Yani Zhang
- Department of Internal Medicine, MedStar Washington Hospital Center, Washington, DC, USA
| |
Collapse
|
3
|
Sun W, Huang A, Wen S, Yang R, Liu X. Temporal Assessment of Protein Stability in Dried Blood Spots. J Proteome Res 2024; 23:3585-3597. [PMID: 38950347 DOI: 10.1021/acs.jproteome.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The use of protein biomarkers in blood for clinical settings is limited by the cost and accessibility of traditional venipuncture sampling. The dried blood spot (DBS) technique offers a less invasive and more accessible alternative. However, protein stability in DBS has not been well evaluated. Herein, we deployed a quantitative LC-MS/MS system to construct proteomic atlases of whole blood, DBSs, plasma, and blood cells. Approximately 4% of detected proteins' abundance was significantly altered during blood drying into blood spots, with overwhelming disturbances in cytoplasmic fraction. We also reported a novel finding suggesting a decrease in the level of membrane/cytoskeletal proteins (SLC4A1, RHAG, DSC1, DSP, and JUP) and an increase in the level of proteins (ATG3, SEC14L4, and NRBP1) related to intracellular trafficking. Furthermore, we identified 19 temporally dynamic proteins in DBS samples stored at room temperature for up to 6 months. There were three declined cytoskeleton-related proteins (RDX, SH3BGRL3, and MYH9) and four elevated proteins (XPO7, RAN, SLC2A1, and SLC29A1) involved in cytoplasmic transport as representatives. The instability was governed predominantly by hydrophilic proteins and enhanced significantly with an increasing storage time. Our analyses provide comprehensive knowledge of both short- and long-term storage stability of DBS proteins, forming the foundation for the widespread use of DBS in clinical proteomics and other analytical applications.
Collapse
Affiliation(s)
- Weifen Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science Ministry of Justice, Shanghai 200063, China
| | - Ao Huang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science Ministry of Justice, Shanghai 200063, China
- Department of Forensic Science, Medical School of Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Shubo Wen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science Ministry of Justice, Shanghai 200063, China
- Department of Forensic Science, Medical School of Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Ruicong Yang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science Ministry of Justice, Shanghai 200063, China
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Xiling Liu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science Ministry of Justice, Shanghai 200063, China
| |
Collapse
|
4
|
Kontush A, Martin M, Brites F. Sweet swell of burning fat: emerging role of high-density lipoprotein in energy homeostasis. Curr Opin Lipidol 2023; 34:235-242. [PMID: 37797204 DOI: 10.1097/mol.0000000000000904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
PURPOSE OF REVIEW Metabolism of lipids and lipoproteins, including high-density lipoprotein (HDL), plays a central role in energy homeostasis. Mechanisms underlying the relationship between energy homeostasis and HDL however remain poorly studied. RECENT FINDINGS Available evidence reveals that HDL is implicated in energy homeostasis. Circulating high-density lipoprotein-cholesterol (HDL-C) levels are affected by energy production, raising with increasing resting metabolic rate. Lipolysis of triglycerides as a source of energy decreases plasma levels of remnant cholesterol, increases levels of HDL-C, and can be cardioprotective. Switch to preferential energy production from carbohydrates exerts opposite effects. SUMMARY Low HDL-C may represent a biomarker of inefficient energy production from fats. HDL-C-raising can be beneficial when it reflects enhanced energy production from burning fat.
Collapse
Affiliation(s)
- Anatol Kontush
- Sorbonne University, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S 1166, Paris, France
| | - Maximiliano Martin
- Laboratory of Lipids and Atherosclerosis, Department of Clinical Biochemistry, INFIBIOC, University of Buenos Aires. CONICET, Buenos Aires, Argentina
| | - Fernando Brites
- Laboratory of Lipids and Atherosclerosis, Department of Clinical Biochemistry, INFIBIOC, University of Buenos Aires. CONICET, Buenos Aires, Argentina
| |
Collapse
|
5
|
Truong CD, Ton TT. The relation between coronary artery disease and newly diagnosed dysglycemia. Perfusion 2023; 38:1428-1435. [PMID: 35817752 DOI: 10.1177/02676591221113970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION There is a known association between hyperglycemia and the presence of coronary syndrome. The purpose of this work is to study risk factors and clinical manifestations of hyperglycemia in patients diagnosed with coronary artery disease. METHODS The study was conducted in 2018-2020 among 505 patients in Ho Chi Minh city, Vietnam. Based on the results of the glucose test at 0 and 120 min, the patients were divided into the groups: with normal glucose metabolism (control, 204), patients with impaired fasting glucose levels (175 patients, group 2), and patients with impaired glucose tolerance, including diabetes mellitus (126, group 3). Anthropometric measurements were performed, and the levels of hemoglobin HbA, glucose, lipids were measured. RESULTS In the group of patients with fasting hyperinsulinemia, all variables (body weight, body mass index, waist circumference, LAP, creatinine clearance) differed considerably as compared to the control group (p ≤ 0.0001). Decrease in tissue sensitivity to insulin is already present at normal levels of glucose metabolism. CONCLUSIONS The study found that diabetes mellitus and prediabetes are more typical for patients with metabolic syndrome and acute coronary syndrome. The results obtained will allow predicting the risk of developing coronary syndrome depending on the presence of diabetes mellitus or prediabetes.
Collapse
Affiliation(s)
- Cam Dinh Truong
- Cardiovascular Department, Military Hospital 175, Ho Chi Minh, Vietnam
| | - Tung Thanh Ton
- Emergency Department, Military Hospital 175, Ho Chi Minh, Vietnam
| |
Collapse
|
6
|
Zvintzou E, Xepapadaki E, Skroubis G, Mparnia V, Giannatou K, Benabdellah K, Kypreos KE. High-Density Lipoprotein in Metabolic Disorders and Beyond: An Exciting New World Full of Challenges and Opportunities. Pharmaceuticals (Basel) 2023; 16:855. [PMID: 37375802 DOI: 10.3390/ph16060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
High-density lipoprotein (HDL) is an enigmatic member of the plasma lipid and lipoprotein transport system, best known for its ability to promote the reverse cholesterol efflux and the unloading of excess cholesterol from peripheral tissues. More recently, data in experimental mice and humans suggest that HDL may play important novel roles in other physiological processes associated with various metabolic disorders. Important parameters in the HDL functions are its apolipoprotein and lipid content, further reinforcing the principle that HDL structure defines its functionality. Thus, based on current evidence, low levels of HDL-cholesterol (HDL-C) or dysfunctional HDL particles contribute to the development of metabolic diseases such as morbid obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease. Interestingly, low levels of HDL-C and dysfunctional HDL particles are observed in patients with multiple myeloma and other types of cancer. Therefore, adjusting HDL-C levels within the optimal range and improving HDL particle functionality is expected to benefit such pathological conditions. The failure of previous clinical trials testing various HDL-C-raising pharmaceuticals does not preclude a significant role for HDL in the treatment of atherosclerosis and related metabolic disorders. Those trials were designed on the principle of "the more the better", ignoring the U-shape relationship between HDL-C levels and morbidity and mortality. Thus, many of these pharmaceuticals should be retested in appropriately designed clinical trials. Novel gene-editing-based pharmaceuticals aiming at altering the apolipoprotein composition of HDL are expected to revolutionize the treatment strategies, improving the functionality of dysfunctional HDL.
Collapse
Affiliation(s)
- Evangelia Zvintzou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Eva Xepapadaki
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - George Skroubis
- Morbid Obesity Unit, Department of Surgery, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Victoria Mparnia
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Katerina Giannatou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Karim Benabdellah
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Avda. de la Ilustración 114, 18016 Granada, Spain
| | - Kyriakos E Kypreos
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| |
Collapse
|
7
|
Yang Y, Lu M, Qian J, Xu Y, Li B, Le G, Xie Y. Dietary Methionine Restriction Promotes Fat Browning and Attenuates Hepatic Lipid Accumulation in High-Choline-Fed Mice Associated with the Improvement of Thyroid Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1447-1463. [PMID: 36632677 DOI: 10.1021/acs.jafc.2c05535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study aims to explore the influences of a methionine-restricted diet (MRD) on fat browning and hepatic lipid accumulation in mice fed with a high-choline diet (HCD) and their possible mechanisms. ICR mice were randomly divided into three groups and fed with a normal diet (0.86% methionine + 0.20% choline, ND), HCD (0.86% methionine + 1.20% choline), or MRD (0.17% methionine + 1.20% choline) for 90 consecutive days. We found that MRD reduced body weight and fat mass; increased heat production and ambulatory locomotor activity; reduced hepatic and plasma lipid levels, hepatic fatty infiltration area, and adipocyte volume in white and brown adipose tissue; promoted fat browning, especially upregulated gene and protein expression levels of uncoupling protein 1 (UCP1); and promoted fat catabolism and inhibited fat anabolism in the liver and adipose tissue. Moreover, MRD increased antioxidant defenses and reduced inflammatory cytokine levels in the thyroid, blood, and liver. Furthermore, MRD improved thyroid morphological structure, promoted the synthesis and secretion of thyroid hormones, and enhanced the actions of thyroid hormones on its receptor organs (liver and adipose tissue). These findings suggested that MRD promoted fat browning and attenuated hepatic lipid accumulation in HCD mice associated with the improvement of thyroid function.
Collapse
Affiliation(s)
- Yuhui Yang
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Manman Lu
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Jing Qian
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yuncong Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bowen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yanli Xie
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| |
Collapse
|
8
|
Kim JY, Kim NH. New Therapeutic Approaches to the Treatment of Dyslipidemia 1: ApoC-III and ANGPTL3. J Lipid Atheroscler 2023; 12:23-36. [PMID: 36761060 PMCID: PMC9884553 DOI: 10.12997/jla.2023.12.1.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/26/2023] Open
Abstract
Low-density lipoprotein cholesterol (LDL-C)-lowering therapy that increases LDL receptor expression in several ways robustly reduces the risk of atherosclerotic cardiovascular disease (CVD). However, a substantial risk of CVD still remains after intensive LDL-C reduction, which requires new treatment modalities for dyslipidemia and cardiovascular risk management. Triglycerides (TGs) and triglyceride-rich lipoproteins (TRLs) have received attention as indicators of residual cardiovascular risk and as direct causal factors for atherosclerosis and CVDs. Advances in understanding TG and TRL metabolism and their association with clinically evident CVDs have led to the development of novel therapeutic targets, including apolipoprotein C-III (apoC-III) and angiopoietin-like protein 3 (ANGPTL3). Genetic association studies have indicated that both apoC-III and ANGPTL3 play a causal role in the development of atherosclerotic CVD. Both molecules contribute to lipid dysregulation and atherosclerosis primarily by inhibiting lipoprotein lipase; however, recent evidence has shown that novel pathways exist in relation to their lipid-modifying activities. Notably, recent progress in therapeutic approaches, such as monoclonal antibodies or antisense oligonucleotides, has led to several novel therapeutics targeting apoC-III and ANGPTL3. This review summarized the recent updates and discussions related to apoC-III and ANGPTL3 expression.
Collapse
Affiliation(s)
- Ji Yoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Rouland A, Masson D, Lagrost L, Vergès B, Gautier T, Bouillet B. Role of apolipoprotein C1 in lipoprotein metabolism, atherosclerosis and diabetes: a systematic review. Cardiovasc Diabetol 2022; 21:272. [PMID: 36471375 PMCID: PMC9724408 DOI: 10.1186/s12933-022-01703-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Apolipoprotein C1 (apoC1) is a small size apolipoprotein whose exact role is not totally clarified but which seems to modulate significantly the metabolism of lipoproteins. ApoC1 is involved in the metabolism of triglyceride-rich lipoproteins by inhibiting the binding of very low density lipoproteins (VLDL) to VLDL-receptor (VLDL-R), to low density lipoprotein receptor (LDL-R) and to LDL receptor related protein (LRP), by reducing the activity of lipoprotein lipase (LPL) and by stimulating VLDL production, all these effects leading to increase plasma triglycerides. ApoC1 takes also part in the metabolism of high density lipoproteins (HDL) by inhibiting Cholesterol Ester Transfer Protein (CETP). The functionality of apoC1 on CETP activity is impaired in diabetes that might account, at least in part, for the increased plasma CETP activity observed in patients with diabetes. Its different effects on lipoprotein metabolism with a possible role in the modulation of inflammation makes the net impact of apoC1 on cardiometabolic risk difficult to figure out and apoC1 might be considered as pro-atherogenic or anti-atherogenic depending on the overall metabolic context. Making the link between total plasma apoC1 levels and the risk of cardio-metabolic diseases is difficult due to the high exchangeability of this small protein whose biological effects might depend essentially on its association with VLDL or HDL. The role of apoC1 in humans is not entirely elucidated and further studies are needed to determine its precise role in lipid metabolism and its possible pleiotropic effects on inflammation and vascular wall biology. In this review, we will present data on apoC1 structure and distribution among lipoproteins, on the effects of apoC1 on VLDL metabolism and HDL metabolism and we will discuss the possible links between apoC1, atherosclerosis and diabetes.
Collapse
Affiliation(s)
- Alexia Rouland
- grid.31151.37Endocrinology and Diabetology Unit, University Hospital, Dijon, France ,grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | - David Masson
- grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Laurent Lagrost
- grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Bruno Vergès
- grid.31151.37Endocrinology and Diabetology Unit, University Hospital, Dijon, France ,grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | - Thomas Gautier
- grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Benjamin Bouillet
- grid.31151.37Endocrinology and Diabetology Unit, University Hospital, Dijon, France ,grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,grid.31151.37Service Endocrinologie, Diabétologie et Maladies Métaboliques, Hôpital François Mitterrand, CHU Dijon, BP 77908, 21079 Dijon, France
| |
Collapse
|
10
|
Duan Y, Gong K, Xu S, Zhang F, Meng X, Han J. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduct Target Ther 2022; 7:265. [PMID: 35918332 PMCID: PMC9344793 DOI: 10.1038/s41392-022-01125-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Disturbed cholesterol homeostasis plays critical roles in the development of multiple diseases, such as cardiovascular diseases (CVD), neurodegenerative diseases and cancers, particularly the CVD in which the accumulation of lipids (mainly the cholesteryl esters) within macrophage/foam cells underneath the endothelial layer drives the formation of atherosclerotic lesions eventually. More and more studies have shown that lowering cholesterol level, especially low-density lipoprotein cholesterol level, protects cardiovascular system and prevents cardiovascular events effectively. Maintaining cholesterol homeostasis is determined by cholesterol biosynthesis, uptake, efflux, transport, storage, utilization, and/or excretion. All the processes should be precisely controlled by the multiple regulatory pathways. Based on the regulation of cholesterol homeostasis, many interventions have been developed to lower cholesterol by inhibiting cholesterol biosynthesis and uptake or enhancing cholesterol utilization and excretion. Herein, we summarize the historical review and research events, the current understandings of the molecular pathways playing key roles in regulating cholesterol homeostasis, and the cholesterol-lowering interventions in clinics or in preclinical studies as well as new cholesterol-lowering targets and their clinical advances. More importantly, we review and discuss the benefits of those interventions for the treatment of multiple diseases including atherosclerotic cardiovascular diseases, obesity, diabetes, nonalcoholic fatty liver disease, cancer, neurodegenerative diseases, osteoporosis and virus infection.
Collapse
Affiliation(s)
- Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Suowen Xu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xianshe Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China. .,College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
11
|
Romo EZ, Zivkovic AM. Glycosylation of HDL-Associated Proteins and Its Implications in Cardiovascular Disease Diagnosis, Metabolism and Function. Front Cardiovasc Med 2022; 9:928566. [PMID: 35694676 PMCID: PMC9184513 DOI: 10.3389/fcvm.2022.928566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 01/09/2023] Open
Abstract
High-density lipoprotein (HDL) particles, long known for their critical role in the prevention of cardiovascular disease (CVD), were recently identified to carry a wide array of glycosylated proteins, and the importance of this glycosylation in the structure, function and metabolism of HDL are starting to emerge. Early studies have demonstrated differential glycosylation of HDL-associated proteins in various pathological states, which may be key to understanding their etiological role in these diseases and may be important for diagnostic development. Given the vast array and specificity of glycosylation pathways, the study of HDL-associated glycosylation has the potential to uncover novel mechanisms and biomarkers of CVD. To date, no large studies examining the relationships between HDL glycosylation profiles and cardiovascular outcomes have been performed. However, small pilot studies provide promising preliminary evidence that such a relationship may exist. In this review article we discuss the current state of the evidence on the glycosylation of HDL-associated proteins, the potential for HDL glycosylation profiling in CVD diagnostics, how glycosylation affects HDL function, and the potential for modifying the glycosylation of HDL-associated proteins to confer therapeutic value.
Collapse
|
12
|
Frey K, von Eckardstein A. HDL, heart disease, and the lung. J Lipid Res 2022; 63:100217. [PMID: 35487261 PMCID: PMC9131245 DOI: 10.1016/j.jlr.2022.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kathrin Frey
- University Hospital Zurich and University of Zurich, Institute of Clinical Chemistry, Raemistrasse 100, CH 8091 ZURICH , Switzerland
| | - Arnold von Eckardstein
- University Hospital Zurich and University of Zurich, Institute of Clinical Chemistry, Raemistrasse 100, CH 8091 ZURICH , Switzerland,.
| |
Collapse
|
13
|
Xu Y, Guo J, Zhang L, Miao G, Lai P, Zhang W, Liu L, Hou X, Wang Y, Huang W, Liu G, Gao M, Xian X. Targeting ApoC3 Paradoxically Aggravates Atherosclerosis in Hamsters With Severe Refractory Hypercholesterolemia. Front Cardiovasc Med 2022; 9:840358. [PMID: 35187136 PMCID: PMC8847384 DOI: 10.3389/fcvm.2022.840358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 11/29/2022] Open
Abstract
Rationale ApoC3 plays a central role in the hydrolysis process of triglyceride (TG)-rich lipoproteins mediated by lipoprotein lipase (LPL), which levels are positively associated with the incidence of cardiovascular disease (CVD). Although targeting ApoC3 by antisense oligonucleotide (ASO), Volanesorsen markedly reduces plasma TG level and increase high-density lipoprotein cholesterol (HDL-C) in patients with hypertriglyceridemia (HTG), the cholesterol-lowering effect of ApoC3 inhibition and then the consequential outcome of atherosclerotic cardiovascular disease (ASCVD) have not been reported in patients of familial hypercholesterolemia (FH) with severe refractory hypercholesterolemia yet. Objective To investigate the precise effects of depleting ApoC3 on refractory hypercholesterolemia and atherosclerosis, we crossed ApoC3-deficient hamsters with a background of LDLR deficiency to generate a double knockout (DKO) hamster model (LDLR−/−, XApoC3−/−, DKO). Approach and Results On the standard laboratory diet, DKO hamsters had reduced levels of plasma TG and total cholesterol (TC) relative to LDLR−/− hamsters. However, upon high-cholesterol/high-fat (HCHF) diet feeding for 12 weeks, ApoC3 deficiency reduced TG level only in female animals without affecting refractory cholesterol in the circulation, whereas apolipoprotein A1 (ApoA1) levels were significantly increased in DKO hamsters with both genders. Unexpectedly, loss of ApoC3 paradoxically accelerated diet-induced atherosclerotic development in female and male LDLR−/− hamsters but ameliorated fatty liver in female animals. Further analysis of blood biological parameters revealed that lacking ApoC3 resulted in abnormal platelet (PLT) indices, which could potentially contribute to atherosclerosis in LDLR−/− hamsters. Conclusions In this study, our novel findings provide new insight into the application of ApoC3 inhibition for severe refractory hypercholesterolemia and ASCVD.
Collapse
Affiliation(s)
- Yitong Xu
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jiabao Guo
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ling Zhang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guolin Miao
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Pingping Lai
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wenxi Zhang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lili Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xinlin Hou
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wei Huang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
| |
Collapse
|
14
|
de la Parra Soto LG, Gutiérrez-Uribe JA, Sharma A, Ramírez-Jiménez AK. Is Apo-CIII the new cardiovascular target? An analysis of its current clinical and dietetic therapies. Nutr Metab Cardiovasc Dis 2022; 32:295-308. [PMID: 34895805 DOI: 10.1016/j.numecd.2021.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022]
Abstract
AIMS Recently, Apolipoprotein CIII (Apo-CIII) has gained remarkable attention since its overexpression has been strongly correlated to cardiovascular disease (CVD) occurrence. The aim of this review was to summarize the latest findings of Apo-CIII as a CVDs and diabetes risk factor, as well as the plausible mechanisms involved in the development of these pathologies, with particular emphasis on current clinical and dietetic therapies. DATA SYNTHESIS Apo-CIII is a small protein (∼8.8 kDa) that, among other functions, inhibits lipoprotein lipase, a key enzyme in lipid metabolism. Apo-CIII plays a fundamental role in the physiopathology of atherosclerosis, type-1, and type-2 diabetes. Apo-CIII has become a potential clinical target to tackle these multifactorial diseases. Dietetic (omega-3 fatty acids, stanols, polyphenols, lycopene) and non-dietetic (fibrates, statins, and antisense oligonucleotides) therapies have shown promising results to regulate Apo-CIII and triglyceride levels. However, more information from clinical trials is required to validate it as a new target for atherosclerosis and diabetes types 1 and 2. CONCLUSIONS There are still several pathways involving Apo-CIII regulation that might be affected by bioactive compounds that need further research. The mechanisms that trigger metabolic responses following bioactive compounds consumption are mainly related to higher LPL expression and PPARα activation, although the complete pathways are yet to be elucidated.
Collapse
Affiliation(s)
- Lorenzo G de la Parra Soto
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L., Mexico
| | - Janet A Gutiérrez-Uribe
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L., Mexico
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Av. Epigmenio González, No. 500, Fracc. San Pablo, 76130, Querétaro, Mexico
| | - Aurea K Ramírez-Jiménez
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L., Mexico.
| |
Collapse
|
15
|
Zvintzou E, Karampela DS, Vakka A, Xepapadaki E, Karavia EA, Hatziri A, Giannopoulou PC, Kypreos KE. High density lipoprotein in atherosclerosis and coronary heart disease: Where do we stand today? Vascul Pharmacol 2021; 141:106928. [PMID: 34695591 DOI: 10.1016/j.vph.2021.106928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 01/23/2023]
Abstract
Epidemiological studies during the last five years suggest that a relation between high density lipoprotein cholesterol (HDL-C) levels and the risk for cardiovascular disease (CVD) does exist but follows rather a "U-shaped" curve with an optimal range of HDL-C concentration between 40 and 70 mg/dl for men and 50-70 mg/dl for women. Moreover, as research in the field of lipoproteins progresses it becomes increasingly apparent that HDL particles possess different attributes and depending on their structural and functional characteristics, they may be "antiatherogenic" or "proatherogenic". In light of this information, it is highly doubtful that the choice of experimental drugs and the design of respective clinical trials that put the HDL-C raising hypothesis at test, were the most suitable. Here, we compile the existing literature on HDL, providing a critical up-to-date view that focuses on key data from the biochemistry, epidemiology and pharmacology of HDL, including data from clinical trials. We also discuss the most up-to-date information on the contribution of HDL structure and function to the prevention of atherosclerosis. We conclude by summarizing important differences between mouse models and humans, that may explain why pharmacological successes in mice turn out to be failures in humans.
Collapse
Affiliation(s)
- Evangelia Zvintzou
- University of Patras, School of Medicine, Department of Pharmacology, Rio Achaias, TK 26500, Greece
| | | | - Aggeliki Vakka
- University of Patras, School of Medicine, Department of Pharmacology, Rio Achaias, TK 26500, Greece
| | - Eva Xepapadaki
- University of Patras, School of Medicine, Department of Pharmacology, Rio Achaias, TK 26500, Greece
| | - Eleni A Karavia
- University of Patras, School of Medicine, Department of Pharmacology, Rio Achaias, TK 26500, Greece
| | - Aikaterini Hatziri
- University of Patras, School of Medicine, Department of Pharmacology, Rio Achaias, TK 26500, Greece
| | - Panagiota C Giannopoulou
- University of Patras, School of Medicine, Department of Pharmacology, Rio Achaias, TK 26500, Greece
| | - Kyriakos E Kypreos
- University of Patras, School of Medicine, Department of Pharmacology, Rio Achaias, TK 26500, Greece; European University Cyprus, Department of Life Sciences, School of Sciences, Nicosia, Cyprus.
| |
Collapse
|
16
|
Xepapadaki E, Nikdima I, Sagiadinou EC, Zvintzou E, Kypreos KE. HDL and type 2 diabetes: the chicken or the egg? Diabetologia 2021; 64:1917-1926. [PMID: 34255113 DOI: 10.1007/s00125-021-05509-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
HDL is a complex macromolecular cluster of various components, such as apolipoproteins, enzymes and lipids. Quality evidence from clinical and epidemiological studies led to the principle that HDL-cholesterol (HDL-C) levels are inversely correlated with the risk of CHD. Nevertheless, the failure of many cholesteryl ester transfer protein inhibitors to protect against CVD casts doubts on this principle and highlights the fact that HDL functionality, as dictated by its proteome and lipidome, also plays an important role in protecting against metabolic disorders. Recent data indicate that HDL-C levels and HDL particle functionality are correlated with the pathogenesis and prognosis of type 2 diabetes mellitus, a major risk factor for CVD. Hyperglycaemia leads to reduced HDL-C levels and deteriorated HDL functionality, via various alterations in HDL particles' proteome and lipidome. In turn, reduced HDL-C levels and impaired HDL functionality impact the performance of key organs related to glucose homeostasis, such as pancreas and skeletal muscles. Interestingly, different structural alterations in HDL correlate with distinct metabolic abnormalities, as indicated by recent data evaluating the role of apolipoprotein A1 and lecithin-cholesterol acyltransferase deficiency in glucose homeostasis. While it is becoming evident that not all HDL disturbances are causatively associated with the development and progression of type 2 diabetes, a bidirectional correlation between these two conditions exists, leading to a perpetual self-feeding cycle.
Collapse
Affiliation(s)
- Eva Xepapadaki
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece
| | - Ioanna Nikdima
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece
| | - Eleftheria C Sagiadinou
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece
| | - Evangelia Zvintzou
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece
| | - Kyriakos E Kypreos
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece.
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| |
Collapse
|
17
|
von Eckardstein A. High Density Lipoproteins: Is There a Comeback as a Therapeutic Target? Handb Exp Pharmacol 2021; 270:157-200. [PMID: 34463854 DOI: 10.1007/164_2021_536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low plasma levels of High Density Lipoprotein (HDL) cholesterol (HDL-C) are associated with increased risks of atherosclerotic cardiovascular disease (ASCVD). In cell culture and animal models, HDL particles exert multiple potentially anti-atherogenic effects. However, drugs increasing HDL-C have failed to prevent cardiovascular endpoints. Mendelian Randomization studies neither found any genetic causality for the associations of HDL-C levels with differences in cardiovascular risk. Therefore, the causal role and, hence, utility as a therapeutic target of HDL has been questioned. However, the biomarker "HDL-C" as well as the interpretation of previous data has several important limitations: First, the inverse relationship of HDL-C with risk of ASCVD is neither linear nor continuous. Hence, neither the-higher-the-better strategies of previous drug developments nor previous linear cause-effect relationships assuming Mendelian randomization approaches appear appropriate. Second, most of the drugs previously tested do not target HDL metabolism specifically so that the futile trials question the clinical utility of the investigated drugs rather than the causal role of HDL in ASCVD. Third, the cholesterol of HDL measured as HDL-C neither exerts nor reports any HDL function. Comprehensive knowledge of structure-function-disease relationships of HDL particles and associated molecules will be a pre-requisite, to test them for their physiological and pathogenic relevance and exploit them for the diagnostic and therapeutic management of individuals at HDL-associated risk of ASCVD but also other diseases, for example diabetes, chronic kidney disease, infections, autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Lee CK, Liao CW, Meng SW, Wu WK, Chiang JY, Wu MS. Lipids and Lipoproteins in Health and Disease: Focus on Targeting Atherosclerosis. Biomedicines 2021; 9:biomedicines9080985. [PMID: 34440189 PMCID: PMC8393881 DOI: 10.3390/biomedicines9080985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Despite advances in pharmacotherapy, intervention devices and techniques, residual cardiovascular risks still cause a large burden on public health. Whilst most guidelines encourage achieving target levels of specific lipids and lipoproteins to reduce these risks, increasing evidence has shown that molecular modification of these lipoproteins also has a critical impact on their atherogenicity. Modification of low-density lipoprotein (LDL) by oxidation, glycation, peroxidation, apolipoprotein C-III adhesion, and the small dense subtype largely augment its atherogenicity. Post-translational modification by oxidation, carbamylation, glycation, and imbalance of molecular components can reduce the capacity of high-density lipoprotein (HDL) for reverse cholesterol transport. Elevated levels of triglycerides (TGs), apolipoprotein C-III and lipoprotein(a), and a decreased level of apolipoprotein A-I are closely associated with atherosclerotic cardiovascular disease. Pharmacotherapies aimed at reducing TGs, lipoprotein(a), and apolipoprotein C-III, and enhancing apolipoprotein A-1 are undergoing trials, and promising preliminary results have been reported. In this review, we aim to update the evidence on modifications of major lipid and lipoprotein components, including LDL, HDL, TG, apolipoprotein, and lipoprotein(a). We also discuss examples of translating findings from basic research to potential therapeutic targets for drug development.
Collapse
Affiliation(s)
- Chih-Kuo Lee
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 300, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Che-Wei Liao
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Department of Internal Medicine, National Taiwan University Cancer Center, Taipei 106, Taiwan
| | - Shih-Wei Meng
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 300, Taiwan
| | - Wei-Kai Wu
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Jiun-Yang Chiang
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei 100, Taiwan
- Correspondence: (J.-Y.C.); (M.-S.W.)
| | - Ming-Shiang Wu
- College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-K.L.); (C.-W.L.); (S.-W.M.); (W.-K.W.)
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Correspondence: (J.-Y.C.); (M.-S.W.)
| |
Collapse
|
19
|
Rohatgi A, Westerterp M, von Eckardstein A, Remaley A, Rye KA. HDL in the 21st Century: A Multifunctional Roadmap for Future HDL Research. Circulation 2021; 143:2293-2309. [PMID: 34097448 PMCID: PMC8189312 DOI: 10.1161/circulationaha.120.044221] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Low high-density lipoprotein cholesterol (HDL-C) characterizes an atherogenic dyslipidemia that reflects adverse lifestyle choices, impaired metabolism, and increased cardiovascular risk. Low HDL-C is also associated with increased risk of inflammatory disorders, malignancy, diabetes, and other diseases. This epidemiologic evidence has not translated to raising HDL-C as a viable therapeutic target, partly because HDL-C does not reflect high-density lipoprotein (HDL) function. Mendelian randomization analyses that have found no evidence of a causal relationship between HDL-C levels and cardiovascular risk have decreased interest in increasing HDL-C levels as a therapeutic target. HDLs comprise distinct subpopulations of particles of varying size, charge, and composition that have several dynamic and context-dependent functions, especially with respect to acute and chronic inflammatory states. These functions include reverse cholesterol transport, inhibition of inflammation and oxidation, and antidiabetic properties. HDLs can be anti-inflammatory (which may protect against atherosclerosis and diabetes) and proinflammatory (which may help clear pathogens in sepsis). The molecular regulation of HDLs is complex, as evidenced by their association with multiple proteins, as well as bioactive lipids and noncoding RNAs. Clinical investigations of HDL biomarkers (HDL-C, HDL particle number, and apolipoprotein A through I) have revealed nonlinear relationships with cardiovascular outcomes, differential relationships by sex and ethnicity, and differential patterns with coronary versus noncoronary events. Novel HDL markers may also have relevance for heart failure, cancer, and diabetes. HDL function markers (namely, cholesterol efflux capacity) are associated with coronary disease, but they remain research tools. Therapeutics that manipulate aspects of HDL metabolism remain the holy grail. None has proven to be successful, but most have targeted HDL-C, not metrics of HDL function. Future therapeutic strategies should focus on optimizing HDL function in the right patients at the optimal time in their disease course. We provide a framework to help the research and clinical communities, as well as funding agencies and stakeholders, obtain insights into current thinking on these topics, and what we predict will be an exciting future for research and development on HDLs.
Collapse
Affiliation(s)
- Anand Rohatgi
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Marit Westerterp
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Alan Remaley
- Section Chief of Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch; National Heart, Lung and Blood Institute, National Institutes of Health; Bethesda, MD
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Australia, 2052
| |
Collapse
|
20
|
Lazaris V, Hatziri A, Symeonidis A, Kypreos KE. The Lipoprotein Transport System in the Pathogenesis of Multiple Myeloma: Advances and Challenges. Front Oncol 2021; 11:638288. [PMID: 33842343 PMCID: PMC8032975 DOI: 10.3389/fonc.2021.638288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/10/2021] [Indexed: 01/02/2023] Open
Abstract
Multiple myeloma (MM) is an incurable neoplastic hematologic disorder characterized by malignant plasma cells, mainly in the bone marrow. MM is associated with multiple factors, such as lipid metabolism, obesity, and age-associated disease development. Although, the precise pathogenetic mechanisms remain unknown, abnormal lipid and lipoprotein levels have been reported in patients with MM. Interestingly, patients with higher APOA1 levels, the major apolipoprotein of high density lipoprotein (HDL), have better overall survival. The limited existing studies regarding serum lipoproteins in MM are inconclusive, and often contradictory. Nevertheless, it appears that deregulation of the lipoprotein transport system may facilitate the development of the disease. Here, we provide a critical review of the literature on the role of lipids and lipoproteins in MM pathophysiology. We also propose novel mechanisms, linking the development and progression of MM to the metabolism of blood lipoproteins. We anticipate that proteomic and lipidomic analyses of serum lipoproteins along with analyses of their functionality may improve our understanding and shed light on novel mechanistic aspects of MM pathophysiology.
Collapse
Affiliation(s)
- Vasileios Lazaris
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece.,Hematology Clinic, Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece
| | - Aikaterini Hatziri
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece
| | - Argiris Symeonidis
- Hematology Clinic, Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece
| | - Kyriakos E Kypreos
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Patras, Greece.,Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
21
|
Valladolid-Acebes I, Åvall K, Recio-López P, Moruzzi N, Bryzgalova G, Björnholm M, Krook A, Alonso EF, Ericsson M, Landfors F, Nilsson SK, Berggren PO, Juntti-Berggren L. Lowering apolipoprotein CIII protects against high-fat diet-induced metabolic derangements. SCIENCE ADVANCES 2021; 7:7/11/eabc2931. [PMID: 33712458 PMCID: PMC7954448 DOI: 10.1126/sciadv.abc2931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 01/27/2021] [Indexed: 02/05/2023]
Abstract
Increased levels of apolipoprotein CIII (apoCIII), a key regulator of lipid metabolism, result in obesity-related metabolic derangements. We investigated mechanistically whether lowering or preventing high-fat diet (HFD)–induced increase in apoCIII protects against the detrimental metabolic consequences. Mice, first fed HFD for 10 weeks and thereafter also given an antisense (ASO) to lower apoCIII, already showed reduced levels of apoCIII and metabolic improvements after 4 weeks, despite maintained obesity. Prolonged ASO treatment reversed the metabolic phenotype due to increased lipase activity and receptor-mediated hepatic uptake of lipids. Fatty acids were transferred to the ketogenic pathway, and ketones were used in brown adipose tissue (BAT). This resulted in no fat accumulation and preserved morphology and function of liver and BAT. If ASO treatment started simultaneously with the HFD, mice remained lean and metabolically healthy. Thus, lowering apoCIII protects against and reverses the HFD-induced metabolic phenotype by promoting physiological insulin sensitivity.
Collapse
Affiliation(s)
- Ismael Valladolid-Acebes
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, SE-171 76 Stockholm, Sweden
| | - Karin Åvall
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, SE-171 76 Stockholm, Sweden
| | - Patricia Recio-López
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, SE-171 76 Stockholm, Sweden
| | - Noah Moruzzi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, SE-171 76 Stockholm, Sweden
| | - Galyna Bryzgalova
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, SE-171 76 Stockholm, Sweden
| | - Marie Björnholm
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, C3, Integrative Physiology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Elena Fauste Alonso
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, SE-171 76 Stockholm, Sweden.,Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Madelene Ericsson
- Department of Medical Biosciences, Unit of Physiological Chemistry 6M, Umeå University, SE-901 85 Umeå, Sweden
| | - Fredrik Landfors
- Department of Medical Biosciences, Unit of Physiological Chemistry 6M, Umeå University, SE-901 85 Umeå, Sweden
| | - Stefan K Nilsson
- Department of Medical Biosciences, Unit of Physiological Chemistry 6M, Umeå University, SE-901 85 Umeå, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, SE-171 76 Stockholm, Sweden.,Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea.,Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637553, Singapore.,Center for Diabetes and Metabolism Research, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Lisa Juntti-Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital L1, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
22
|
Akoumianakis I, Zvintzou E, Kypreos K, Filippatos TD. ANGPTL3 and Apolipoprotein C-III as Novel Lipid-Lowering Targets. Curr Atheroscler Rep 2021; 23:20. [PMID: 33694000 DOI: 10.1007/s11883-021-00914-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Despite significant progress in plasma lipid lowering strategies, recent clinical trials highlight the existence of residual cardiovascular risk. Angiopoietin-like protein 3 (ANGPTL3) and apolipoprotein C-III (Apo C-III) have been identified as novel lipid-lowering targets. RECENT FINDINGS Apo C-III and ANGPTL3 have emerged as novel regulators of triglyceride (TG) and low-density lipoprotein-cholesterol (LDL-C) levels. ANGPTL3 is an inhibitor of lipoprotein lipase (LPL), reducing lipolysis of Apo B-containing lipoproteins. Loss-of-function ANGPLT3 mutations are associated with reduced plasma cholesterol and TG, while novel ANGPLT3 inhibition strategies, including monoclonal antibodies (evinacumab), ANGPLT3 antisense oligonucleotides (IONIS-ANGPTL3-LRx), and small interfering RNA (siRNA) silencing techniques (ARO-ANG3), result in increased lipolysis and significant reductions of LDL-C and TG levels in phase I and II clinical trials. Similarly, Apo C-III inhibits LPL while promoting the hepatic secretion of TG-rich lipoproteins and preventing their clearance. Loss-of-function APOC3 mutations have been associated with reduced TG levels. Targeting of Apo C-III with volanesorsen, an APOC3 siRNA, results in significant reduction in plasma TG levels but possibly also increased risk for thrombocytopenia, as recently demonstrated in phase I, II, and III clinical trials. ARO-APOC3 is a novel siRNA-based agent targeting Apo C-III which is currently under investigation with regard to its lipid-lowering efficiency. ANGPTL3 and Apo C-III targeting agents have demonstrated striking lipid-lowering effects in recent clinical trials; however, more thorough safety and efficacy data are required. Here, we evaluate the role of ANGPLT3 and Apo C-III in lipid metabolism, present the latest clinical advances targeting those molecules, and outline the remaining scientific challenges on residual lipid-associated cardiovascular risk.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Department of Internal Medicine, School of Medicine, University Hospital of Heraklion, University of Crete, Heraklion, Crete, Greece.,Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Evangelia Zvintzou
- Department of Medicine, Pharmacology Laboratory, School of Health Sciences, University of Patras, Achaias, Rio, Greece
| | - Kyriakos Kypreos
- Department of Medicine, Pharmacology Laboratory, School of Health Sciences, University of Patras, Achaias, Rio, Greece.,Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Theodosios D Filippatos
- Department of Internal Medicine, School of Medicine, University Hospital of Heraklion, University of Crete, Heraklion, Crete, Greece. .,Metabolic Diseases Research Unit, Internal Medicine Laboratory, School of Sciences, Faculty of Medicine, University of Crete, P.O. Box 2208, Heraklion, Crete, Greece.
| |
Collapse
|
23
|
Xepapadaki E, Nikdima I, Zvintzou E, Karavia EA, Kypreos KE. Tissue-specific functional interaction between apolipoproteins A1 and E in cold-induced adipose organ mitochondrial energy metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158859. [PMID: 33309975 DOI: 10.1016/j.bbalip.2020.158859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 11/27/2022]
Abstract
White (WAT) and brown (BAT) adipose tissue, the two main types of adipose organ, are responsible for lipid storage and non-shivering thermogenesis, respectively. Thermogenesis is a process mediated by mitochondrial uncoupling protein 1 (UCP1) which uncouples oxidative phosphorylation from ATP production, leading to the conversion of free fatty acids to heat. This process can be triggered by exposure to low ambient temperatures, caloric excess, and the immune system. Recently mitochondrial thermogenesis has also been associated with plasma lipoprotein transport system. Specifically, apolipoprotein (APO) E3 is shown to have a bimodal effect on WAT thermogenesis that is highly dependent on its site of expression. Similarly, APOE2 and APOE4 differentially affect BAT and WAT mitochondrial metabolic activity in processes highly modulated by APOA1. Furthermore, the absence of classical APOA1 containing HDL (APOA1-HDL), is associated with no measurable non-shivering thermogenesis in WAT of mice fed high fat diet. Based on these previous observations which indicate important regulatory roles for both APOA1 and APOE in adipose tissue mitochondrial metabolic activity, here we sought to investigate the potential roles of these apolipoproteins in BAT and WAT metabolic activation in mice, following stimulation by cold exposure (7 °C). Our data indicate that APOA1-HDL promotes metabolic activation of BAT only in the presence of very low levels (virtually undetectable) of APOE3-containing HDL (APOE3-HDL), which acts as an inhibitor in this process. In contrast, induction of WAT thermogenesis is subjected to a more complicated regulation which requires the combined presence of both APOA1-HDL and APOE3-HDL.
Collapse
Affiliation(s)
- Eva Xepapadaki
- University of Patras School of Health Sciences, Department of Medicine, Pharmacology Laboratory, Panepistimioupolis, Rio, Greece
| | - Ioanna Nikdima
- University of Patras School of Health Sciences, Department of Medicine, Pharmacology Laboratory, Panepistimioupolis, Rio, Greece
| | - Evangelia Zvintzou
- University of Patras School of Health Sciences, Department of Medicine, Pharmacology Laboratory, Panepistimioupolis, Rio, Greece
| | - Eleni A Karavia
- University of Patras School of Health Sciences, Department of Medicine, Pharmacology Laboratory, Panepistimioupolis, Rio, Greece
| | - Kyriakos E Kypreos
- University of Patras School of Health Sciences, Department of Medicine, Pharmacology Laboratory, Panepistimioupolis, Rio, Greece; European University Cyprus, School of Sciences, Department of Life Sciences, Nicosia, Cyprus.
| |
Collapse
|
24
|
Striukova E, Maksimov V, Ragino Y, Polonskaya Y, Murashov I, Volkov A, Kurguzov A, Chernjavskii A, Kashtanova E. Polymorphisms in the CETP, APOC3 and APOE genes in men with unstable atherosclerotic plaques in the coronary arteries. Meta Gene 2021. [DOI: 10.1016/j.mgene.2020.100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
Valladolid-Acebes I, Berggren PO, Juntti-Berggren L. Apolipoprotein CIII Is an Important Piece in the Type-1 Diabetes Jigsaw Puzzle. Int J Mol Sci 2021; 22:ijms22020932. [PMID: 33477763 PMCID: PMC7832341 DOI: 10.3390/ijms22020932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/05/2022] Open
Abstract
It is well known that type-2 diabetes mellitus (T2D) is increasing worldwide, but also the autoimmune form, type-1 diabetes (T1D), is affecting more people. The latest estimation from the International Diabetes Federation (IDF) is that 1.1 million children and adolescents below 20 years of age have T1D. At present, we have no primary, secondary or tertiary prevention or treatment available, although many efforts testing different strategies have been made. This review is based on the findings that apolipoprotein CIII (apoCIII) is increased in T1D and that in vitro studies revealed that healthy β-cells exposed to apoCIII became apoptotic, together with the observation that humans with higher levels of the apolipoprotein, due to mutations in the gene, are more susceptible to developing T1D. We have summarized what is known about apoCIII in relation to inflammation and autoimmunity in in vitro and in vivo studies of T1D. The aim is to highlight the need for exploring this field as we still are only seeing the top of the iceberg.
Collapse
|
26
|
Shuwen H, Xi Y, Qing Z, Jing Z, Wei W. Predicting biomarkers from classifier for liver metastasis of colorectal adenocarcinomas using machine learning models. Cancer Med 2020. [PMCID: PMC7520257 DOI: 10.1002/cam4.3289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Han Shuwen
- Department of Oncology Huzhou Central HospitalAffiliated Central Hospital Huzhou University Huzhou China
| | - Yang Xi
- Department of Oncology Huzhou Central HospitalAffiliated Central Hospital Huzhou University Huzhou China
| | - Zhou Qing
- Department of Nursing Huzhou Central HospitalAffiliated Central Hospital Huzhou University Huzhou China
| | - Zhuang Jing
- Graduate School of Nursing Huzhou university Huzhou China
| | - Wu Wei
- Department of Gastroenterology Huzhou Central Hospital Affiliated Central Hospital Huzhou University Huzhou China
| |
Collapse
|
27
|
Pappa E, Elisaf MS, Kostara C, Bairaktari E, Tsimihodimos VK. Cardioprotective Properties of HDL: Structural and Functional Considerations. Curr Med Chem 2020; 27:2964-2978. [PMID: 30714519 DOI: 10.2174/0929867326666190201142321] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND As Mendelian Randomization (MR) studies showed no effect of variants altering HDL-cholesterol (HDL-C) levels concerning Cardiovascular Disease (CVD) and novel therapeutic interventions aiming to raise HDL-C resulted to futility, the usefulness of HDL-C is unclear. OBJECTIVE As the role of HDL-C is currently doubtful, it is suggested that the atheroprotective functions of HDLs can be attributed to the number of HDL particles, and their characteristics including their lipid and protein components. Scientific interest has focused on HDL function and on the causes of rendering HDL particles dysfunctional, whereas the relevance of HDL subclasses with CVD remains controversial. METHODS The present review discusses changes in quality as much as in quantity of HDL in pathological conditions and the connection between HDL particle concentration and cardiovascular disease and mortality. Emphasis is given to the recently available data concerning the cholesterol efflux capacity and the parameters that determine HDL functionality, as well as to recent investigations concerning the associations of HDL subclasses with cardiovascular mortality. RESULTS MR studies or pharmacological interventions targeting HDL-C are not in favor of the hypothesis of HDL-C levels and the relationship with CVD. The search of biomarkers that relate with HDL functionality is needed. Similarly, HDL particle size and number exhibit controversial data in the context of CVD and further studies are needed. CONCLUSION There is no room for the old concept of HDL as a silver bullet,as HDL-C cannot be considered a robust marker and does not reflect the importance of HDL particle size and number. Elucidation of the complex HDL system, as well as the finding of biomarkers, will allow the development of any HDL-targeted therapy.
Collapse
Affiliation(s)
- Eleni Pappa
- Department of Internal Medicine, Medical University of Ioannina, Ioannina, Greece
| | - Moses S Elisaf
- Department of Internal Medicine, Medical University of Ioannina, Ioannina, Greece
| | - Christina Kostara
- Laboratory of Clinical Chemistry, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Eleni Bairaktari
- Laboratory of Clinical Chemistry, School of Medicine, University of Ioannina, Ioannina, Greece
| | | |
Collapse
|
28
|
Zvintzou E, Xepapadaki E, Kalogeropoulou C, Filou S, Kypreos KE. Pleiotropic effects of apolipoprotein A-Ⅱ on high-density lipoprotein functionality, adipose tissue metabolic activity and plasma glucose homeostasis. J Biomed Res 2020; 0:1-13. [PMID: 31741463 DOI: 10.7555/jbr.33.20190048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Apolipoprotein A-Ⅱ (APOA-Ⅱ) is the second most abundant apolipoprotein of high-density lipoprotein (HDL) synthesized mainly by the liver and to a much lesser extent by the intestine. Transgenic mice overexpressing human APOA-Ⅱ present abnormal lipoprotein composition and are prone to atherosclerosis, though in humans the role for APOA-Ⅱ in coronary heart disease remains controversial. Here, we investigated the effects of overexpressed APOA-Ⅱ on HDL structure and function, adipose tissue metabolic activity, glucose tolerance and insulin sensitivity. C57BL/6 mice were infected with an adenovirus expressing human APOA-Ⅱ or a control adenovirus AdGFP, and five days post-infection blood and tissue samples were isolated. APOA-Ⅱ expression resulted in distinct changes in HDL apoproteome that correlated with increased antioxidant and anti-inflammatory activities. No effects on cholesterol efflux from RAW 264.7 macrophages were observed. Molecular analyses in white adipose tissue (WAT) indicated a stimulation of oxidative phosphorylation coupled with respiration for ATP production in mice overexpressing APOA-Ⅱ. Finally, overexpressed APOA-Ⅱ improved glucose tolerance of mice but had no effect on the response to exogenously administered insulin. In summary, expression of APOA-Ⅱ in C57BL/6 mice results in pleiotropic effects with respect to HDL functionality, adipose tissue metabolism and glucose utilization, many of which are beneficial to health.
Collapse
Affiliation(s)
- Evangelia Zvintzou
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | - Eva Xepapadaki
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | | | - Serafoula Filou
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| | - Kyriakos E Kypreos
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, TK 26500, Greece
| |
Collapse
|
29
|
Zhang T, Chen J, Tang X, Luo Q, Xu D, Yu B. Interaction between adipocytes and high-density lipoprotein:new insights into the mechanism of obesity-induced dyslipidemia and atherosclerosis. Lipids Health Dis 2019; 18:223. [PMID: 31842884 PMCID: PMC6913018 DOI: 10.1186/s12944-019-1170-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
Obesity is the most common nutritional disorder worldwide and is associated with dyslipidemia and atherosclerotic cardiovascular disease. The hallmark of dyslipidemia in obesity is low high density lipoprotein (HDL) cholesterol (HDL-C) levels. Moreover, the quality of HDL is also changed in the obese setting. However, there are still some disputes on the explanations for this phenomenon. There is increasing evidence that adipose tissue, as an energy storage tissue, participates in several metabolism activities, such as hormone secretion and cholesterol efflux. It can influence overall reverse cholesterol transport and plasma HDL-C level. In obesity individuals, the changes in morphology and function of adipose tissue affect plasma HDL-C levels and HDL function, thus, adipose tissue should be the main target for the treatment of HDL metabolism in obesity. In this review, we will summarize the cross-talk between adipocytes and HDL related to cardiovascular disease and focus on the new insights of the potential mechanism underlying obesity and HDL dysfunction.
Collapse
Affiliation(s)
- Tianhua Zhang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Jin Chen
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Xiaoyu Tang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Qin Luo
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Danyan Xu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Bilian Yu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
30
|
Isoform and tissue dependent impact of apolipoprotein E on adipose tissue metabolic activation: The role of apolipoprotein A1. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158551. [PMID: 31678510 DOI: 10.1016/j.bbalip.2019.158551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 01/27/2023]
Abstract
Adipose organ is made of white (WAT) and brown (BAT) adipose tissue which are primarily responsible for lipid storage and energy production (heat and ATP) respectively. Metabolic activation of WAT may ascribe to this tissue characteristics of BAT, namely non-shivering thermogenesis and ATP production. Recent data indicate that apolipoproteins E (APOE) and A1 (APOA1) regulate WAT mitochondrial metabolic activation. Here, we investigated the functional cross-talk between natural human APOE2 and APOE4 isoforms with APOA1 in this process, using Apoe2knock-in and Apoe4knock-in mice. At baseline when Apoe2knock-in and Apoe4knock-in mice express both APOE and Apoa1, the Apoe2knock-in strain appears to have higher mitochondrial oxidative phosphorylation levels and non-shivering thermogenesis in WAT compared to Apoe4knock-in mice. When mice were switched to a high-fat diet for 18 weeks, circulating levels of endogenous Apoa1 in Apoe2knock-in mice became barely detectable though significant levels of APOE2 were still present. This change was accompanied by a significant reduction in WAT mitochondrial Ucp1 expression while BAT Ucp1 was unaffected. Ectopic APOA1 expression in Apoe2knock-in animals potently stimulated WAT but not BAT mitochondrial Ucp1 expression providing further evidence that APOA1 potently stimulates WAT non-shivering thermogenesis in the presence of APOE2. Ectopic expression of APOA1 in Apoe4knock-in mice stimulated BAT but no WAT mitochondrial Ucp1 levels, suggesting that in the presence of APOE4, APOA1 is a trigger of BAT non-shivering thermogenesis. Overall, our data identified a tissue-specific role of the natural human APOE2 and APOE4 isoforms in WAT- and BAT-metabolic activation respectively, that appears dependent on circulating APOA1 levels.
Collapse
|
31
|
Xepapadaki E, Zvintzou E, Kalogeropoulou C, Filou S, Kypreos KE. Τhe Antioxidant Function of HDL in Atherosclerosis. Angiology 2019; 71:112-121. [PMID: 31185723 DOI: 10.1177/0003319719854609] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Atherosclerosis is a multistep process that progresses over a long period of time and displays a broad range of severity. In its final form, it manifests as a lesion of the intimal layer of the arterial wall. There is strong evidence supporting that oxidative stress contributes to coronary heart disease morbidity and mortality and antioxidant high-density lipoprotein (HDL) could have a beneficial role in the prevention and prognosis of the disease. Indeed, certain subspecies of HDL may act as natural antioxidants preventing oxidation of lipids on low-density lipoprotein (LDL) and biological membranes. The antioxidant function may be attributed to inhibition of synthesis or neutralization of free radicals and reactive oxygen species by HDL lipids and associated enzymes or transfer of oxidation prone lipids from LDL and biological membranes to HDL for catabolism. A limited number of clinical trials suggest that the increased antioxidant potential of HDL correlates with decreased risk for atherosclerosis. Some nutritional interventions to increase HDL antioxidant activity have been proposed with limited success so far. The limitations in measuring and understanding HDL antioxidant function in vivo are also discussed.
Collapse
Affiliation(s)
- Eva Xepapadaki
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| | - Evangelia Zvintzou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| | | | - Serafoula Filou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| | - Kyriakos E Kypreos
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| |
Collapse
|
32
|
Xepapadaki E, Maulucci G, Constantinou C, Karavia EA, Zvintzou E, Daniel B, Sasson S, Kypreos KE. Impact of apolipoprotein A1- or lecithin:cholesterol acyltransferase-deficiency on white adipose tissue metabolic activity and glucose homeostasis in mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1351-1360. [DOI: 10.1016/j.bbadis.2019.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
|
33
|
Wagner R, Dittrich J, Thiery J, Ceglarek U, Burkhardt R. Simultaneous LC/MS/MS quantification of eight apolipoproteins in normal and hypercholesterolemic mouse plasma. J Lipid Res 2019; 60:900-908. [PMID: 30723096 PMCID: PMC6446716 DOI: 10.1194/jlr.d084301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 01/30/2019] [Indexed: 12/18/2022] Open
Abstract
Apolipoproteins are major structural and functional constituents of lipoprotein particles. As modulators of lipid metabolism, adipose tissue biology, and energy homeostasis, apolipoproteins may serve as biomarkers or potential therapeutic targets for cardiometabolic diseases. Mice are the preferred model to study metabolic disease and CVD, but a comprehensive method to quantify circulating apolipoproteins in mice is lacking. We developed and validated a targeted proteomics assay to quantify eight apolipoproteins in mice via proteotypic signature peptides and corresponding stable isotope-labeled analogs. The LC/MS/MS method requires only a 3 µl sample volume to simultaneously determine mouse apoA-I, apoA-II, apoA-IV, apoB-100, total apoB, apoC-I, apoE, and apoJ concentrations. ApoB-48 concentrations can be calculated by subtracting apoB-100 from total apoB. After we established the analytic performance (sensitivity, linearity, and imprecision) and compared results for selected apolipoproteins against immunoassays, we applied the method to profile apolipoprotein levels in plasma and isolated HDL from normocholesterolemic C57BL/6 mice and from hypercholesterolemic Ldl-receptor- and Apoe-deficient mice. In conclusion, we present a robust, quantitative LC/MS/MS method for the multiplexed analysis of eight apolipoproteins in mice. This assay can be applied to investigate the effects of genetic manipulation or dietary interventions on apolipoprotein levels in plasma and isolated lipoprotein fractions.
Collapse
Affiliation(s)
- Richard Wagner
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Julia Dittrich
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.
| | - Ralph Burkhardt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
34
|
Christopoulou E, Tsimihodimos V, Filippatos T, Elisaf M. Apolipoprotein CIII and diabetes. Is there a link? Diabetes Metab Res Rev 2019; 35:e3118. [PMID: 30557902 DOI: 10.1002/dmrr.3118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 12/24/2022]
Abstract
Apolipoprotein CIII (ApoCIII), a small protein that resides on the surface of lipoprotein particles, is a key regulator of triglyceride metabolism. The inhibition of lipoprotein lipase (LPL), the increased assembly and secretion of very low-density lipoproteins (VLDL) and the decreased reuptake of triglyceride-rich lipoproteins (TRLs) by the liver are mechanisms associating elevated serum ApoCIII levels and hypertriglyceridemia. ApoCIII concentration is high in individuals with diabetes mellitus, indicating a possible positive correlation with impairment of glucose metabolism. The aim of this review (based on a Pubmed search until August 2018) is to present the possible mechanisms linking ApoCIII and deterioration of carbohydrate homeostasis. ApoCIII enhances pancreatic β-cells apoptosis via an increase of the cytoplasmic Ca2+ levels in the insulin-producing cells. In addition, overexpression of ApoCIII enhances non-alcoholic fatty liver disease and exacerbates inflammatory pathways in skeletal muscles, affecting insulin signalling and thereby inducing insulin resistance. Moreover, recent studies reveal a possible mechanism of body weight increase and glucose production through a potential ApoCIII-induced LPL inhibition in the hypothalamus. Also, the presence of ApoCIII on the surface of high-density lipoprotein particles is associated with impairment of their antiglycemic and atheroprotective properties. Modulating ApoCIII may be a potent therapeutic approach to manage hypertriglyceridemia and improve carbohydrate metabolism.
Collapse
Affiliation(s)
- Eliza Christopoulou
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Vasilios Tsimihodimos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Theodosios Filippatos
- Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Moses Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
35
|
Yamanishi K, Maeda S, Kuwahara-Otani S, Hashimoto T, Ikubo K, Mukai K, Nakasho K, Gamachi N, El-Darawish Y, Li W, Okuzaki D, Watanabe Y, Yamanishi H, Okamura H, Matsunaga H. Deficiency in interleukin-18 promotes differentiation of brown adipose tissue resulting in fat accumulation despite dyslipidemia. J Transl Med 2018; 16:314. [PMID: 30453990 PMCID: PMC6245626 DOI: 10.1186/s12967-018-1684-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/09/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The cytokine, interleukin-18 (IL-18), was originally identified as an interferon-γ-inducing proinflammatory factor; however, there is increasing evidence suggesting that it has non-immunological effects on physiological functions. We have previously investigated the potential pathophysiological relationship between IL-18 and dyslipidemia, non-alcoholic fatty liver disease and non-alcoholic steatohepatitis, which were mediated by lipid energy imbalance. Therefore, herein we focused on brown adipocytes (BAs) and brown adipose tissue (BAT) related to energy consumption as non-shivering thermogenesis. METHODS Il18-/- male mice were generated on the C57Bl/6 background, and littermate C57Bl/6 Il18+/+ male mice were used as controls. To reveal the direct effect of IL-18, primary cell cultures derived from both mice were established. Moreover, for molecular analysis, microarray, quantitative reverse transcription PCR and western blotting were performed using 6 and 12 weeks old mice. To evaluate the short- and long-term effects of IL-18 on BAT, recombinant IL-18 was administered for 2 and 12 weeks, respectively. RESULTS Compared with Il18+/+ mice, BAT of Il18-/- mice showed earlier differentiation and lipid accumulation. To examine the direct effect of IL-18 on BAT, BA cell cultures were established. Myogenic factor 5-expressing adipose precursor cells were extracted from Il18+/+ and Il18-/- mice. PR domain containing 16 (PRDM16), a differentiation inducer, was strongly expressed in Il18-/- BAs, and uncoupling protein 1, a thermogenic and differentiation marker, was upregulated, resulting in the promotion of BA differentiation. Moreover, PRDM16-dependent and independent molecules related to BAT function, such as fibroblast growth factor 21, were activated. These findings were confirmed by comparing Il18+/+ and Il18-/- mice at 6 and 12 weeks of age. Additional analyses of the molecular mechanisms influencing the 'Quantity of adipocytes' identified three associated genes, apolipoprotein C3 (Apoc3), insulin-induced gene 1 (Insig1) and vitamin D (1,25-dihydroxyvitamin D3) receptor (Vdr). Intravenous administration of IL-18 not only significantly improved the expression of some of these genes, but it also significantly decreased the adipocytes' size. CONCLUSIONS This study demonstrated the critical function of IL-18 in differentiation and lipid metabolism in BAs. Furthermore, IL-18 may contribute to novel treatments by improving the energy imbalance.
Collapse
Affiliation(s)
- Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Seishi Maeda
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Sachi Kuwahara-Otani
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Takuya Hashimoto
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Kaoru Ikubo
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Keiichiro Mukai
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Keiji Nakasho
- Department of Pathology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Naomi Gamachi
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yosif El-Darawish
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Wen Li
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Japan
| | - Yuko Watanabe
- Hirakata General Hospital for Developmental Disorders, 2-1-1 Tsudahigashi, Hirakata, Osaka, 573-0122, Japan
| | - Hiromichi Yamanishi
- Hirakata General Hospital for Developmental Disorders, 2-1-1 Tsudahigashi, Hirakata, Osaka, 573-0122, Japan
| | - Haruki Okamura
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan
| | - Hisato Matsunaga
- Department of Neuropsychiatry, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
36
|
Kypreos KE, Bitzur R, Karavia EA, Xepapadaki E, Panayiotakopoulos G, Constantinou C. Pharmacological Management of Dyslipidemia in Atherosclerosis: Limitations, Challenges, and New Therapeutic Opportunities. Angiology 2018; 70:197-209. [PMID: 29862840 DOI: 10.1177/0003319718779533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Clinical and epidemiological studies during the last 7 decades indicated that elevated low-density lipoprotein cholesterol (LDL-C) levels and reduced high-density lipoprotein cholesterol (HDL-C) levels correlate with the pathogenesis and progression of atherosclerotic lesions in the arterial wall. This observation led to the development of LDL-C-lowering drugs for the prevention and treatment of atherosclerosis, some with greater success than others. However, a body of recent clinical evidence shows that a substantial residual cardiovascular risk exists even at very low levels of LDL-C, suggesting that new therapeutic modalities are still needed for reduction of atherosclerosis morbidity and mortality. Unfortunately, HDL-C-raising drugs developed toward this goal had disappointing results thus far. Here, we critically review the literature presenting available evidence and challenges that need to be met and discuss possible new avenues for the development of novel lipid pharmacotherapeutics to reduce the burden of atherosclerosis.
Collapse
Affiliation(s)
- Kyriakos E Kypreos
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, Greece
| | - Rafael Bitzur
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Eleni A Karavia
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, Greece
| | - Eva Xepapadaki
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, Greece
| | | | - Caterina Constantinou
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, Greece
| |
Collapse
|
37
|
Abstract
Blood lipids are important modifiable risk factors for coronary heart disease and various drugs have been developed to target lipid fractions. Considerable efforts have been made to identify genetic variants that modulate responses to drugs in the hope of optimizing their use. Pharmacogenomics and new biotechnologies now allow for meaningful integration of human genetic findings and therapeutic development for increased efficiency and precision of lipid-lowering drugs. Polygenic predictors of disease risk are also changing how patient populations can be stratified, enabling targeted therapeutic interventions to patients more likely to derive the highest benefit, marking a shift from single variant to genomic approaches in pharmacogenomics.
Collapse
Affiliation(s)
- Marc-André Legault
- Montreal Heart Institute, Montreal, QC, H1T 1C8, Canada.,Université de Montréal, Faculté de médecine, Montreal, QC, H3T 1J4, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, H1T 1C8, QC, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, QC, H1T 1C8, Canada.,Université de Montréal, Faculté de médecine, Montreal, QC, H3T 1J4, Canada
| | - Marie-Pierre Dubé
- Montreal Heart Institute, Montreal, QC, H1T 1C8, Canada.,Université de Montréal, Faculté de médecine, Montreal, QC, H3T 1J4, Canada.,Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, H1T 1C8, QC, Canada
| |
Collapse
|