1
|
Saiki A, Takahashi Y, Nakamura S, Yamaoka S, Abe K, Tanaka S, Watanabe Y, Yamaguchi T, Nagayama D, Ohira M, Oshiro T, Tatsuno I, Shirai K. Relationship between Lipoprotein Lipase Derived from Subcutaneous Adipose Tissue and Cardio-Ankle Vascular Index in Japanese Patients with Severe Obesity. Obes Facts 2024; 17:255-263. [PMID: 38342095 PMCID: PMC11149971 DOI: 10.1159/000537687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/24/2024] [Indexed: 02/13/2024] Open
Abstract
INTRODUCTION Cardio-ankle vascular index (CAVI) is an arterial stiffness index that correlates inversely with body mass index (BMI) and subcutaneous fat area. Lipoprotein lipase (LPL) that catalyzes the hydrolysis of serum triglycerides is produced mainly in adipocytes. Serum LPL mass reflects LPL expression in adipose tissue, and its changes correlate inversely with changes in CAVI. We hypothesized that LPL derived from subcutaneous adipose tissue (SAT) suppresses the progression of arteriosclerosis and examined the relationship of LPL gene expression in different adipose tissues and serum LPL mass with CAVI in Japanese patients with severe obesity undergoing laparoscopic sleeve gastrectomy (LSG). METHODS This study was a single-center retrospective database analysis. Fifty Japanese patients who underwent LSG and had 1-year postoperative follow-up data were enrolled (mean age 47.5 years, baseline BMI 46.6 kg/m2, baseline HbA1c 6.7%). SAT and visceral adipose tissue (VAT) samples were obtained during LSG surgery. LPL gene expression was analyzed by real-time PCR. Serum LPL mass was measured by ELISA using a specific monoclonal antibody against LPL. RESULTS At baseline, LPL mRNA expression in SAT correlated positively with serum LPL mass, but LPL mRNA expression in VAT did not. LPL mRNA expression in SAT was correlated, and serum LPL mass tended to correlate inversely with the number of metabolic syndrome symptoms, but LPL mRNA expression in VAT did not. LPL mRNA expression in SAT and CAVI tended to correlate inversely in the group with visceral-to-subcutaneous fat ratio of 0.4 or higher, which is considered metabolically severe. Serum LPL mass increased 1 year after LSG. Change in serum LPL mass at 1 year after LSG tended to be an independent factor inversely associated with change in CAVI. CONCLUSIONS Serum LPL mass reflected LPL mRNA expression in SAT in Japanese patients with severe obesity, and LPL mRNA expression in SAT was associated with CAVI in patients with visceral obesity. The change in serum LPL mass after LSG tended to independently contribute inversely to the change in CAVI. This study suggests that LPL derived from SAT may suppress the progression of arteriosclerosis.
Collapse
Affiliation(s)
- Atsuhito Saiki
- Center of Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Yuka Takahashi
- Center of Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Shoko Nakamura
- Center of Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Shuhei Yamaoka
- Center of Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Kazuki Abe
- Center of Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Sho Tanaka
- Center of Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Yasuhiro Watanabe
- Center of Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Takashi Yamaguchi
- Center of Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
| | - Daiji Nagayama
- Center of Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
- Nagayama Clinic, Tochigi, Japan
| | - Masahiro Ohira
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Takashi Oshiro
- Department of Surgery, Toho University Sakura Medical Center, Chiba, Japan
| | - Ichiro Tatsuno
- Center of Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
- Chiba Prefectural University of Health Sciences, Chiba, Japan
| | - Kohji Shirai
- Center of Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Chiba, Japan
- Department of Internal Medicine, Mihama Hospital, Chiba, Japan
| |
Collapse
|
2
|
Johnston EK, Abbott RD. Adipose Tissue Paracrine-, Autocrine-, and Matrix-Dependent Signaling during the Development and Progression of Obesity. Cells 2023; 12:407. [PMID: 36766750 PMCID: PMC9913478 DOI: 10.3390/cells12030407] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Obesity is an ever-increasing phenomenon, with 42% of Americans being considered obese (BMI ≥ 30) and 9.2% being considered morbidly obese (BMI ≥ 40) as of 2016. With obesity being characterized by an abundance of adipose tissue expansion, abnormal tissue remodeling is a typical consequence. Importantly, this pathological tissue expansion is associated with many alterations in the cellular populations and phenotypes within the tissue, lending to cellular, paracrine, mechanical, and metabolic alterations that have local and systemic effects, including diabetes and cardiovascular disease. In particular, vascular dynamics shift during the progression of obesity, providing signaling cues that drive metabolic dysfunction. In this review, paracrine-, autocrine-, and matrix-dependent signaling between adipocytes and endothelial cells is discussed in the context of the development and progression of obesity and its consequential diseases, including adipose fibrosis, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
L-Arginine increases AMPK phosphorylation and the oxidation of energy substrates in hepatocytes, skeletal muscle cells, and adipocytes. Amino Acids 2022; 54:1553-1568. [PMID: 35972552 DOI: 10.1007/s00726-022-03195-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/01/2022] [Indexed: 12/16/2022]
Abstract
Previous work has shown that dietary L-arginine (Arg) supplementation reduced white fat mass in obese rats. The present study was conducted with cell models to define direct effects of Arg on energy-substrate oxidation in hepatocytes, skeletal muscle cells, and adipocytes. BNL CL.2 mouse hepatocytes, C2C12 mouse myotubes, and 3T3-L1 mouse adipocytes were treated with different extracellular concentrations of Arg (0, 15, 50, 100 and 400 µM) or 400 µM Arg + 0.5 mM NG-nitro-L-arginine methyl ester (L-NAME; an NOS inhibitor) for 48 h. Increasing Arg concentrations in culture medium dose-dependently enhanced (P < 0.05) the oxidation of glucose and oleic acid to CO2 in all three cell types, lactate release from C2C12 cells, and the incorporation of oleic acid into esterified lipids in BNL CL.2 and 3T3-L1 cells. Arg at 400 µM also stimulated (P < 0.05) the phosphorylation of AMP-activated protein kinase (AMPK) in all three cell types and increased (P < 0.05) NO production in C2C12 and BNL CL.2 cells. The inhibition of NOS by L-NAME moderately reduced (P < 0.05) glucose and oleic acid oxidation, lactate release, and the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) in BNL CL.2 cells, but had no effect (P > 0.05) on these variables in C2C12 or 3T3-L1 cells. Collectively, these results indicate that Arg increased AMPK activity and energy-substrate oxidation in BNL CL.2, C2C12, and 3T3-L1 cells through both NO-dependent and NO-independent mechanisms.
Collapse
|
4
|
Jobgen WS, Wu G. Dietary L-arginine supplementation increases the hepatic expression of AMP-activated protein kinase in rats. Amino Acids 2022; 54:1569-1584. [PMID: 35972553 DOI: 10.1007/s00726-022-03194-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/01/2022] [Indexed: 12/16/2022]
Abstract
The goal of this study was to elucidate the molecular mechanisms responsible for the anti-obesity effect of L-arginine supplementation in diet-induced obese rats. Male Sprague-Dawley rats were fed either a low-fat or high-fat diet for 15 weeks. Thereafter, lean or obese rats were pair-fed their same respective diets and received drinking water containing either 1.51% L-arginine-HCl or 2.55% L-alanine (isonitrogenous control) for 12 weeks. Gene and protein expression of key enzymes in the metabolism of energy substrates were determined using real-time polymerase-chain reaction and western blotting techniques. The mRNA levels of hepatic fatty acid synthase and stearoyl-CoA desaturase were reduced (P < 0.05) but those of hepatic AMP-activated protein kinase-α (AMPKα), peroxisome proliferator activator receptor γ coactivator-1α, and carnitine palmitoyltransferase I (CPT-I), as well as skeletal muscle CPT-I were increased (P < 0.05) by L-arginine treatment. The protein expression and activity of hepatic AMPKα markedly increased (P < 0.05) but the activity of hepatic acetyl-CoA carboxylase (ACC) decreased (P < 0.05) in response to dietary L-arginine supplementation. Collectively, our results indicate that liver is the major target for the action of dietary L-arginine supplementation on reducing white-fat mass in diet-induced obese rats by inhibiting fatty acid synthesis and increasing fatty acid oxidation via the AMPK-ACC signaling pathway. Additionally, increased CPT-I expression in skeletal muscle may also contribute to the enhanced oxidation of long-chain fatty acids in L-arginine-supplemented rats.
Collapse
Affiliation(s)
- Wenjuan S Jobgen
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
5
|
Chen CW, Chen LK, Huang TY, Yang DM, Liu SY, Tsai PJ, Chen TH, Lin HF, Juan CC. Nitric Oxide Mobilizes Intracellular Zn2+ via the GC/cGMP/PKG Signaling Pathway and Stimulates Adipocyte Differentiation. Int J Mol Sci 2022; 23:ijms23105488. [PMID: 35628299 PMCID: PMC9143299 DOI: 10.3390/ijms23105488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 12/10/2022] Open
Abstract
Plasma and tissue zinc ion levels are associated with the development of obesity. Previous studies have suggested that zinc ions may regulate adipocyte metabolism and that nitric oxide (NO) plays a pivotal role in the regulation of adipocyte physiology. Our previous study showed that chronic NO deficiency causes a significant decrease in adipose tissue mass in rats. Studies also suggested that zinc ions play an important modulatory role in regulating NO function. This study aims to explore the role of zinc ions in NO-regulated adipocyte differentiation. We hypothesized that NO could increase intracellular Zn2+ level and then stimulate adipocyte differentiation. ZnCl2 and the NO donor, NONOate, were used to explore the effects of Zn2+ and NO on adipocyte differentiation. Regulatory mechanisms of NO on intracellular Zn2+ mobilization were determined by detection. Then, Zn2+-selective chelator TPEN was used to clarify the role of intracellular Zn2+ on NO-regulated adipocyte differentiation. Furthermore, the relationship between adipocyte size, Zn2+ level, and NOS expression in human subcutaneous fat tissue was elucidated. Results showed that both ZnCl2 and NO stimulated adipocyte differentiation in a dose-dependent manner. NO stimulated intracellular Zn2+ mobilization in adipocytes through the guanylate cyclase (GC)/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) pathway, and NO-stimulated adipocyte differentiation was Zn2+-dependent. In human subcutaneous adipose tissue, adipocyte size was negatively correlated with expression of eNOS. In conclusion, NO treatment stimulates intracellular Zn2+ mobilization through the GC/cGMP/PKG pathway, subsequently stimulating adipocyte differentiation.
Collapse
Affiliation(s)
- Chien-Wei Chen
- College of Human Development and Health, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan;
| | - Luen-Kui Chen
- Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (L.-K.C.); (T.-Y.H.); (S.-Y.L.)
| | - Tai-Ying Huang
- Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (L.-K.C.); (T.-Y.H.); (S.-Y.L.)
| | - De-Ming Yang
- Institute of Biophotonics, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Shui-Yu Liu
- Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (L.-K.C.); (T.-Y.H.); (S.-Y.L.)
| | - Pei-Jiun Tsai
- Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (P.-J.T.); (T.-H.C.)
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Trauma Center, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Tien-Hua Chen
- Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (P.-J.T.); (T.-H.C.)
- Trauma Center, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Heng-Fu Lin
- Division of Trauma, Department of Surgery, Far-Eastern Memorial Hospital, New Taipei City 220216, Taiwan
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan 320315, Taiwan
- Correspondence: (H.-F.L.); (C.-C.J.)
| | - Chi-Chang Juan
- Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (L.-K.C.); (T.-Y.H.); (S.-Y.L.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei 103212, Taiwan
- Correspondence: (H.-F.L.); (C.-C.J.)
| |
Collapse
|
6
|
Barrea L, Caprio M, Watanabe M, Cammarata G, Feraco A, Muscogiuri G, Verde L, Colao A, Savastano S. Could very low-calorie ketogenic diets turn off low grade inflammation in obesity? Emerging evidence. Crit Rev Food Sci Nutr 2022; 63:8320-8336. [PMID: 35373658 DOI: 10.1080/10408398.2022.2054935] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is an emerging non-communicable disease associated with chronic low-grade inflammation and oxidative stress, compounded by the development of many obesity-related diseases, such as cardiovascular disease, type 2 diabetes mellitus, and a range of cancers. Originally developed for the treatment of epilepsy in drug non-responder children, the ketogenic diet (KD) is being increasingly used in the treatment of many diseases, including obesity and obesity-related conditions. The KD is a dietary pattern characterized by high fat intake, moderate to low protein consumption, and very low carbohydrate intake (<50 g) that has proved to be an effective and weight-loss tool. In addition, it also appears to be a dietary intervention capable of improving the inflammatory state and oxidative stress in individuals with obesity by means of several mechanisms. The main activity of the KD has been linked to improving mitochondrial function and decreasing oxidative stress. β-hydroxybutyrate, the most studied ketone body, has been shown to reduce the production of reactive oxygen species, improving mitochondrial respiration. In addition, KDs exert anti-inflammatory activity through several mechanisms, e.g., by inhibiting activation of the nuclear factor kappa-light-chain-enhancer of activated B cells, and the inflammatory nucleotide-binding, leucine-rich-containing family, pyrin domain-containing-3, and inhibiting histone deacetylases. Given the rising interest in the topic, this review looks at the underlying anti-inflammatory and antioxidant mechanisms of KDs and their possible recruitment in the treatment of obesity and obesity-related disorders.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Napoli, Italy
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Cammarata
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI) and Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | - Alessandra Feraco
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Ludovica Verde
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
- Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", University Federico II, Naples, Italy
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy
| |
Collapse
|
7
|
Qin A, Chen S, Wang P, Huang X, Zhang Y, Liang L, Du LR, Lai DH, Ding L, Yu X, Xiang AP. Knockout of NOS2 Promotes Adipogenic Differentiation of Rat MSCs by Enhancing Activation of JAK/STAT3 Signaling. Front Cell Dev Biol 2021; 9:638518. [PMID: 33816486 PMCID: PMC8017136 DOI: 10.3389/fcell.2021.638518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are a heterogeneous population of cells that possess multilineage differentiation potential and extensive immunomodulatory properties. In mice and rats, MSCs produce nitric oxide (NO), as immunomodulatory effector molecule that exerts an antiproliferative effect on T cells, while the role of NO in differentiation was less clear. Here, we investigated the role of NO synthase 2 (NOS2) on adipogenic and osteogenic differentiation of rat MSCs. MSCs isolated from NOS2-null (NOS2–/–) and wild type (WT) Sprague–Dawley (SD) rats exhibited homogenous fibroblast-like morphology and characteristic phenotypes. However, after induction, adipogenic differentiation was found significantly promoted in NOS2–/– MSCs compared to WT MSCs, but not in osteogenic differentiation. Accordingly, qRT-PCR revealed that the adipogenesis-related genes PPAR-γ, C/EBP-α, LPL and FABP4 were markedly upregulated in NOS2–/– MSCs, but not for osteogenic transcription factors or marker genes. Further investigations revealed that the significant enhancement of adipogenic differentiation in NOS2–/– MSCs was due to overactivation of the STAT3 signaling pathway. Both AG490 and S3I-201, small molecule inhibitors that selectively inhibit STAT3 activation, reversed this adipogenic effect. Furthermore, after high-fat diet (HFD) feeding, knockout of NOS2 in rat MSCs resulted in significant obesity. In summary, NOS2 is involved in the regulation of rat MSC adipogenic differentiation via the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Aiping Qin
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Sheng Chen
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ping Wang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaotao Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yu Zhang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lu Liang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ling-Ran Du
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - De-Hua Lai
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li Ding
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiyong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Porwal K, Pal S, Bhagwati S, Siddiqi MI, Chattopadhyay N. Therapeutic potential of phosphodiesterase inhibitors in the treatment of osteoporosis: Scopes for therapeutic repurposing and discovery of new oral osteoanabolic drugs. Eur J Pharmacol 2021; 899:174015. [PMID: 33711307 DOI: 10.1016/j.ejphar.2021.174015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 01/05/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are ubiquitously expressed enzymes that hydrolyze phosphodiester bond in the second messenger molecules including cAMP and cGMP. A wide range of drugs blocks one or more PDEs thereby preventing the inactivation of cAMP/cGMP. PDEs are differentially expressed in bone cells including osteoblasts, osteoclasts and chondrocytes. Intracellular increases in cAMP/cGMP levels in osteoblasts result in osteogenic response. Acting via the type 1 PTH receptor, teriparatide and abaloparatide increase intracellular cAMP and induce osteoanabolic effect, and many PDE inhibitors mimic this effect in preclinical studies. Since all osteoanabolic drugs are injectable and that oral drugs are considered to improve the treatment adherence and persistence, osteogenic PDE inhibitors could be a promising alternative to the currently available osteogenic therapies and directly assessed clinically in drug repurposing mode. Similar to teriparatide/abaloparatide, PDE inhibitors while stimulating osteoblast function also promote osteoclast function through stimulation of receptor activator of nuclear factor kappa-B ligand production from osteoblasts. In this review, we critically discussed the effects of PDE inhibitors in bone cells from cellular signalling to a variety of preclinical models that evaluated the bone formation mechanisms. We identified pentoxifylline (a non-selective PDE inhibitor) and rolipram (a PDE4 selective inhibitor) being the most studied inhibitors with osteogenic effect in preclinical models of bone loss at ≤ human equivalent doses, which suggest their potential for post-menopausal osteoporosis treatment through therapeutic repurposing. Subsequently, we treated pentoxifylline and rolipram as prototypical osteogenic PDEs to predict new chemotypes via the computer-aided design strategies for new drugs, based on the structural biology of PDEs.
Collapse
Affiliation(s)
- Konica Porwal
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), India
| | - Subhashis Pal
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), India
| | - Sudha Bhagwati
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Sector 10/1 Jankipuram Extension, Sitapur Road, Lucknow, 226 031, India
| | - Mohd Imran Siddiqi
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Sector 10/1 Jankipuram Extension, Sitapur Road, Lucknow, 226 031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), India.
| |
Collapse
|
9
|
Rosendo-Silva D, Matafome P. Gut-adipose tissue crosstalk: A bridge to novel therapeutic targets in metabolic syndrome? Obes Rev 2021; 22:e13130. [PMID: 32815267 DOI: 10.1111/obr.13130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022]
Abstract
The gut is one of the main endocrine organs in our body, producing hormones acknowledged to play determinant roles in controlling appetite, energy balance and glucose homeostasis. One of the targets of such hormones is the adipose tissue, a major energetic reservoir, which governs overall metabolism through the secretion of adipokines. Disturbances either in nutrient and metabolic sensing and consequent miscommunication between these organs constitute a key driver to the metabolic complications clustered in metabolic syndrome. Thus, it is essential to understand how the disruption of this crosstalk might trigger adipose tissue dysfunction, a strong characteristic of obesity and insulin resistance. The beneficial effects of metabolic surgery in the amelioration of glucose homeostasis and body weight reduction allowed to understand the potential of gut signals modulation as a treatment for metabolic syndrome-related obesity and type 2 diabetes. In this review, we cover the effects of gut hormones in the modulation of adipose tissue metabolic and endocrine functions, as well as their impact in tissue plasticity. Furthermore, we discuss how the modulation of gut secretome, either through surgical procedures or pharmacological approaches, might improve adipose tissue function in obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Daniela Rosendo-Silva
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Paulo Matafome
- Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| |
Collapse
|
10
|
Dermal fibroblast-like cells reprogrammed directly from adipocytes in mouse. Sci Rep 2020; 10:21467. [PMID: 33293623 PMCID: PMC7722719 DOI: 10.1038/s41598-020-78523-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/20/2020] [Indexed: 11/08/2022] Open
Abstract
In deep burns, early wound closure is important for healing, and skin grafting is mainly used for wound closure. However, it is difficult to achieve early wound closure in extensive total body surface area deep burns due to the lack of donor sites. Dermal fibroblasts, responsible for dermis formation, may be lost in deep burns. However, fat layers composed of adipocytes, lying underneath the dermis, are retained even in such cases. Direct reprogramming is a novel method for directly reprograming some cells into other types by introducing specific master regulators; it has exhibited appreciable success in various fields. In this study, we aimed to assess whether the transfection of master regulators (ELF4, FOXC2, FOXO1, IRF1, PRRX1, and ZEB1) could reprogram mouse adipocytes into dermal fibroblast-like cells. Our results indicated the shrinkage of fat droplets in reprogrammed mouse adipocytes and their transformation into spindle-shaped dermal fibroblasts. Reduced expression of PPAR-2, c/EBP, aP2, and leptin, the known markers of adipocytes, in RT-PCR, and enhanced expression of anti-ER-TR7, the known anti-fibroblast marker, in immunocytochemistry, were confirmed in the reprogrammed mouse adipocytes. The dermal fibroblast-like cells, reported here, may open up a new treatment mode for enabling early closure of deep burn wounds.
Collapse
|
11
|
Cuadrado GA, de Andrade MFC, Ariga SK, de Lima TM, Souza HP. Inflammation Precedes Fat Deposition in an Experimental Model of Lymphedema. Lymphat Res Biol 2020; 19:116-125. [PMID: 33216672 DOI: 10.1089/lrb.2020.0061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Chronic lymphedema is a common complication of lymphatic obstruction, particularly after cancer treatment, characterized by an increased volume of the affected extremity, partly caused by the accumulation of excessive adipose tissue. The relationship between lymph vessels' obstruction and fat deposit is, however, poorly understood. Objective: Our central hypothesis was that the inflammatory process caused by lymph stasis precedes the adipocyte differentiation and fat deposition. Methods and Results: We used a modified mouse tail model to produce secondary lymphedema. Animals were treated with dexamethasone, or the procedure was performed in nitric oxide synthase 2 (NOS2)-deficient mice to evaluate the role of inflammation in lymphedema formation. Adipose tissue (Lipin) and inflammatory markers (IL-6, MCP-1, and F4-80) were analyzed in histological samples and by quantitative polymerase chain reaction. We observed an increased deposition of fat into the affected area that starts 3 weeks after lymph vessel ligation; it further increased after 6 weeks. Genes involved in the inflammatory process were upregulated before adipocyte maturation. Treatment with dexamethasone or the use of inducible nitric oxide synthase knockout mice blocked the inflammatory reaction and inhibited the accumulation of fat distal to the lymphatic obstruction. Conclusion: In the modified mouse tail lymphedema, inflammation precedes adipogenesis. Our data suggest that MCP-1 and nitric oxide may be potential targets for lymphedema management.
Collapse
Affiliation(s)
- Guilherme A Cuadrado
- Emergency Medicine Department and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Mauro F C de Andrade
- Department of Surgery, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Suely K Ariga
- Emergency Medicine Department and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Thais M de Lima
- Emergency Medicine Department and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| | - Heraldo P Souza
- Emergency Medicine Department and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Tobore TO. Towards a comprehensive theory of obesity and a healthy diet: The causal role of oxidative stress in food addiction and obesity. Behav Brain Res 2020; 384:112560. [DOI: 10.1016/j.bbr.2020.112560] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
|
13
|
Ceddia RP, Collins S. A compendium of G-protein-coupled receptors and cyclic nucleotide regulation of adipose tissue metabolism and energy expenditure. Clin Sci (Lond) 2020; 134:473-512. [PMID: 32149342 PMCID: PMC9137350 DOI: 10.1042/cs20190579] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
With the ever-increasing burden of obesity and Type 2 diabetes, it is generally acknowledged that there remains a need for developing new therapeutics. One potential mechanism to combat obesity is to raise energy expenditure via increasing the amount of uncoupled respiration from the mitochondria-rich brown and beige adipocytes. With the recent appreciation of thermogenic adipocytes in humans, much effort is being made to elucidate the signaling pathways that regulate the browning of adipose tissue. In this review, we focus on the ligand-receptor signaling pathways that influence the cyclic nucleotides, cAMP and cGMP, in adipocytes. We chose to focus on G-protein-coupled receptor (GPCR), guanylyl cyclase and phosphodiesterase regulation of adipocytes because they are the targets of a large proportion of all currently available therapeutics. Furthermore, there is a large overlap in their signaling pathways, as signaling events that raise cAMP or cGMP generally increase adipocyte lipolysis and cause changes that are commonly referred to as browning: increasing mitochondrial biogenesis, uncoupling protein 1 (UCP1) expression and respiration.
Collapse
Affiliation(s)
- Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, U.S.A
| |
Collapse
|
14
|
Zhang K, Yang X, Zhao Q, Li Z, Fu F, Zhang H, Zheng M, Zhang S. Molecular Mechanism of Stem Cell Differentiation into Adipocytes and Adipocyte Differentiation of Malignant Tumor. Stem Cells Int 2020; 2020:8892300. [PMID: 32849880 PMCID: PMC7441422 DOI: 10.1155/2020/8892300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Adipogenesis is the process through which preadipocytes differentiate into adipocytes. During this process, the preadipocytes cease to proliferate, begin to accumulate lipid droplets, and develop morphologic and biochemical characteristics of mature adipocytes. Mesenchymal stem cells (MSCs) are a type of adult stem cells known for their high plasticity and capacity to generate mesodermal and nonmesodermal tissues. Many mature cell types can be generated from MSCs, including adipocyte, osteocyte, and chondrocyte. The differentiation of stem cells into multiple mature phenotypes is at the basis for tissue regeneration and repair. Cancer stem cells (CSCs) play a very important role in tumor development and have the potential to differentiate into multiple cell lineages. Accumulating evidence has shown that cancer cells can be induced to differentiate into various benign cells, such as adipocytes, fibrocytes, osteoblast, by a variety of small molecular compounds, which may provide new strategies for cancer treatment. Recent studies have reported that tumor cells undergoing epithelial-to-mesenchymal transition can be induced to differentiate into adipocytes. In this review, molecular mechanisms, signal pathways, and the roles of various biological processes in adipose differentiation are summarized. Understanding the molecular mechanism of adipogenesis and adipose differentiation of cancer cells may contribute to cancer treatments that involve inducing differentiation into benign cells.
Collapse
Affiliation(s)
- Kexin Zhang
- 1Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- 2Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xudong Yang
- 3Tianjin Rehabilitation Center, Tianjin, China
| | - Qi Zhao
- 1Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Zugui Li
- 1Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- 4Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangmei Fu
- 1Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- 4Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Zhang
- 1Department of Pathology, Tianjin Union Medical Center, Tianjin, China
- 4Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minying Zheng
- 1Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- 1Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
15
|
Qi C, Wang X, Han F, Jia Y, Lin Z, Wang C, Lu J, Yang L, Wang X, Li E, Qin JG, Chen L. Arginine supplementation improves growth, antioxidant capacity, immunity and disease resistance of juvenile Chinese mitten crab, Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2019; 93:463-473. [PMID: 31374316 DOI: 10.1016/j.fsi.2019.07.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
To investigate the effects of arginine (Arg) on the growth, antioxidant capacity, immunity and disease resistance of juvenile Chinese mitten crab, three diets containing Arg levels at 1.72% (control), 2.73% and 3.72% were formulated and fed to Chinese mitten crab (0.22 ± 0.03 g) for eight weeks. The weight gain, ecdysterone and growth hormone in the serum, relative expression of insulin-like growth factor 2 in the hepatopancreas significantly increased in crabs fed the 2.73% and 3.72% Arg diets. The protein and lipid contents significantly increased in crabs fed the 3.72% Arg diet. The feed conversion ratios in crabs fed the diets with Arg additions were lower than in the control. Arg supplementation also enhanced the antioxidative capacity by increasing the activities of superoxide dismutase, catalase and the relative expression of Kelch-like ECH-associated protein 1 gene in the hepatopancreas, which subsequently decreased malondialdehyde content in the hepatopancreas. Besides, Arg also decreased nitric oxide content in the serum and the activity of nitric oxide synthetase in the hepatopancreas. The relative mRNA levels of crustin, relish, lysozyme and cryptocyanin genes were significantly upregulated by Arg supplementation. The activities of acid phosphatase and alkaline phosphatase in the serum significantly increased in crabs fed the 3.72% Arg diet than those in the control. Similarly, the relative mRNA levels of crustin, cryptocyanin and proPO genes were significantly upregulated in crabs fed the 2.73% Arg diet after lipopolysaccharide challenge, and in crabs fed the 3.72% Arg diet after the Poly (I:C) challenge. The crabs fed the 2.73% and 3.72% Arg diets had higher survival rate after bacterial infection than those fed the control diet. This study indicates that the addition of Arg to the diet at 2.7-3.7% can improve the growth, survival, antioxidant capacity, immunity and disease resistance in juvenile Chinese mitten crab.
Collapse
Affiliation(s)
- Changle Qi
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200062, PR China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200062, PR China
| | - Fenglu Han
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200062, PR China
| | - Yongyi Jia
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Zhideng Lin
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200062, PR China
| | - Chunling Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200062, PR China
| | - Jianting Lu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200062, PR China
| | - Lu Yang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200062, PR China
| | - Xinyue Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200062, PR China
| | - Erchao Li
- Department of Aquaculture College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, PR China.
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, 200062, PR China.
| |
Collapse
|
16
|
Sun P, Li K, Wang T, Ji J, Wang Y, Chen KX, Jia Q, Li YM, Wang HY. Procyanidin C1, a Component of Cinnamon Extracts, Is a Potential Insulin Sensitizer That Targets Adipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8839-8846. [PMID: 31334651 DOI: 10.1021/acs.jafc.9b02932] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Natural products are one of the main sources for discovering new lead compounds. We previously reported that cinnamon extract has a promising effect in regulating lipid tissue volume and insulin sensitivity in vivo. However, its effective component and the underlying mechanism are not known. In the present study, we analyzed the effect of different components of cinnamon on regulating insulin sensitivity in 3T3-L1 adipocytes. Functional assay revealed that, of the six major components of cinnamon extracts, the B-type procyanidin, procyanidin C1, improves the differentiation of 3T3-L1 cells (TG content: 1.10 ± 0.09 mM at a dosage of 25 μM vs 0.67 ± 0.02 mM in vehicle group, p < 0.001) and promotes insulin-induced glucose uptake (8.58 ± 1.43 at a dosage of 25 μM vs 3.05 ± 1.24 in vehicle group, p < 0.001). Mechanism studies further suggested that procyanidin C1 activates the AKT-eNOS pathway, thus up-regulating glucose uptake and enhancing insulin sensitivity in mature adipocytes. Taken together, our study identified B-type procyanidin C1, a component of cinnamon extract, that stimulates preadipocyte differentiation and acts as a potential insulin action enhancer through the AKT-eNOS pathway in mature adipocytes.
Collapse
Affiliation(s)
- Peng Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
- Key Laboratory of Human Functional Genomics of Jiangsu Province , Nanjing Medical University , Nanjing 211166 , China
| | - Kai Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province , Nanjing Medical University , Nanjing 211166 , China
| | - Ting Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Jun Ji
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Yan Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province , Nanjing Medical University , Nanjing 211166 , China
| | - Kai-Xian Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , 1200 Cailun Road , Shanghai 201203 , China
| | - Qi Jia
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , 1200 Cailun Road , Shanghai 201203 , China
| | - Yi-Ming Li
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , 1200 Cailun Road , Shanghai 201203 , China
| | - He-Yao Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
| |
Collapse
|
17
|
Yi X, Liu J, Wu P, Gong Y, Xu X, Li W. The whole transcriptional profiling of cellular metabolism during adipogenesis from hMSCs. J Cell Physiol 2019; 235:349-363. [DOI: 10.1002/jcp.28974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/29/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Xia Yi
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Jianyun Liu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Ping Wu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Ying Gong
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Xiaoyuan Xu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Weidong Li
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| |
Collapse
|
18
|
Liu J, Lu W, Shi B, Klein S, Su X. Peroxisomal regulation of redox homeostasis and adipocyte metabolism. Redox Biol 2019; 24:101167. [PMID: 30921635 PMCID: PMC6434164 DOI: 10.1016/j.redox.2019.101167] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 12/26/2022] Open
Abstract
Peroxisomes are ubiquitous cellular organelles required for specific pathways of fatty acid oxidation and lipid synthesis, and until recently their functions in adipocytes have not been well appreciated. Importantly, peroxisomes host many oxygen-consumption reactions and play a major role in generation and detoxification of reactive oxygen species (ROS) and reactive nitrogen species (RNS), influencing whole cell redox status. Here, we review recent progress in peroxisomal functions in lipid metabolism as related to ROS/RNS metabolism and discuss the roles of peroxisomal redox homeostasis in adipogenesis and adipocyte metabolism. We provide a framework for understanding redox regulation of peroxisomal functions in adipocytes together with testable hypotheses for developing therapies for obesity and the related metabolic diseases.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Biochemistry and Molecular Biology, Soochow University College of Medicine, Suzhou, 215123, China
| | - Wen Lu
- Department of Biochemistry and Molecular Biology, Soochow University College of Medicine, Suzhou, 215123, China; Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Bimin Shi
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University College of Medicine, Suzhou, 215123, China; Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
19
|
Atawia RT, Bunch KL, Toque HA, Caldwell RB, Caldwell RW. Mechanisms of obesity-induced metabolic and vascular dysfunctions. FRONT BIOSCI-LANDMRK 2019; 24:890-934. [PMID: 30844720 PMCID: PMC6689231 DOI: 10.2741/4758] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity has reached epidemic proportions and its prevalence is climbing. Obesity is characterized by hypertrophied adipocytes with a dysregulated adipokine secretion profile, increased recruitment of inflammatory cells, and impaired metabolic homeostasis that eventually results in the development of systemic insulin resistance, a phenotype of type 2 diabetes. Nitric oxide synthase (NOS) is an enzyme that converts L-arginine to nitric oxide (NO), which functions to maintain vascular and adipocyte homeostasis. Arginase is a ureohydrolase enzyme that competes with NOS for L-arginine. Arginase activity/expression is upregulated in obesity, which results in diminished bioavailability of NO, impairing both adipocyte and vascular endothelial cell function. Given the emerging role of NO in the regulation of adipocyte physiology and metabolic capacity, this review explores the interplay between arginase and NO, and their effect on the development of metabolic disorders, cardiovascular diseases, and mitochondrial dysfunction in obesity. A comprehensive understanding of the mechanisms involved in the development of obesity-induced metabolic and vascular dysfunction is necessary for the identification of more effective and tailored therapeutic avenues for their prevention and treatment.
Collapse
Affiliation(s)
- Reem T Atawia
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Katharine L Bunch
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Haroldo A Toque
- Department of Pharmacology and Toxicology,and Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Robert W Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904,USA,
| |
Collapse
|
20
|
Yang S, Guo L, Su Y, Wen J, Du J, Li X, Liu Y, Feng J, Xie Y, Bai Y, Wang H, Liu Y. Nitric oxide balances osteoblast and adipocyte lineage differentiation via the JNK/MAPK signaling pathway in periodontal ligament stem cells. Stem Cell Res Ther 2018; 9:118. [PMID: 29716662 PMCID: PMC5930947 DOI: 10.1186/s13287-018-0869-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/28/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background Critical tissues that undergo regeneration in periodontal tissue are of mesenchymal origin; thus, investigating the regulatory mechanisms underlying the fate of periodontal ligament stem cells could be beneficial for application in periodontal tissue regeneration. Nitric oxide (NO) regulates many biological processes in developing embryos and adult stem cells. The present study was designed to investigate the effects of NO on the function of human periodontal ligament stem cells (PDLSCs) as well as to elucidate the underlying molecular mechanisms. Methods Immunofluorescent staining and flow cytometry were used for stem cell identification. Western blot, reverse transcription polymerase chain reaction (RT-PCR), immunofluorescent staining, and flow cytometry were used to examine the expression of NO-synthesizing enzymes. The proliferative capacity of PDLSCs was determined by EdU assays. The osteogenic potential of PDLSCs was tested using alkaline phosphatase (ALP) staining, Alizarin Red staining, and calcium concentration detection. Oil Red O staining was used to analyze the adipogenic ability. Western blot, RT-PCR, and staining were used to examine the signaling pathway. Results Human PDLSCs expressed both inducible NO synthase (iNOS) and endothelial NO synthase (eNOS) and produced NO. Blocking the generation of NO with the NOS inhibitor l-NG-monomethyl arginine (l-NMMA) had no influence on PDLSC proliferation and apoptosis but significantly attenuated the osteogenic differentiation capacity and stimulated the adipogenic differentiation capacity of PDLSCs. Increasing the physiological level of NO with NO donor sodium nitroprusside (SNP) significantly promoted the osteogenic differentiation capacity but reduced the adipogenic differentiation capacity of PDLSCs. NO balances the osteoblast and adipocyte lineage differentiation in periodontal ligament stem cells via the c-Jun N-terminal kinase (JNK)/mitogen-activated protein kinase (MAPK) signaling pathway. Conclusions NO is essential for maintaining the balance between osteoblasts and adipocytes in PDLSCs via the JNK/MAPK signaling pathway. Graphical Abstract NO balances osteoblast and adipocyte lineage differentiation via JNK/MAPK signaling pathway![]() Electronic supplementary material The online version of this article (10.1186/s13287-018-0869-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shan Yang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Lijia Guo
- Department of Orthodontics, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Yingying Su
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jing Wen
- Department of Orthodontics, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Jie Feng
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yongmei Xie
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yuxing Bai
- Department of Orthodontics, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Hao Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| |
Collapse
|
21
|
Liu D, Ceddia RP, Collins S. Cardiac natriuretic peptides promote adipose 'browning' through mTOR complex-1. Mol Metab 2018; 9:192-198. [PMID: 29396369 PMCID: PMC5870104 DOI: 10.1016/j.molmet.2017.12.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Activation of thermogenesis in brown adipose tissue (BAT) and the ability to increase uncoupling protein 1 (UCP1) levels and mitochondrial biogenesis in white fat (termed 'browning'), has great therapeutic potential to treat obesity and its comorbidities because of the net increase in energy expenditure. β-adrenergic-cAMP-PKA signaling has long been known to regulate these processes. Recently PKA-dependent activation of mammalian target of rapamycin complex 1 (mTORC1) was shown to be necessary for adipose 'browning' as well as proper development of the interscapular BAT. In addition to cAMP-PKA signaling pathways, cGMP-PKG signaling also promotes this browning process; however, it is unclear whether or not mTORC1 is also necessary for cGMP-PKG induced browning. METHOD Activation of mTORC1 by natriuretic peptides (NP), which bind to and activate the membrane-bound guanylyl cyclase, NP receptor A (NPRA), was assessed in mouse and human adipocytes in vitro and mouse adipose tissue in vivo. RESULTS Activation of mTORC1 by NP-cGMP signaling was observed in both mouse and human adipocytes. We show that NP-NPRA-PKG signaling activate mTORC1 by direct PKG phosphorylation of Raptor at Serine 791. Administration of B-type natriuretic peptide (BNP) to mice induced Ucp1 expression in inguinal adipose tissue in vivo, which was completely blocked by the mTORC1 inhibitor rapamycin. CONCLUSION Our results demonstrate that NP-cGMP signaling activates mTORC1 via PKG, which is a component in the mechanism of adipose browning.
Collapse
Affiliation(s)
- Dianxin Liu
- Integrative Metabolism Program, Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Ryan P Ceddia
- Integrative Metabolism Program, Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA
| | - Sheila Collins
- Integrative Metabolism Program, Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827, USA.
| |
Collapse
|
22
|
de Villiers D, Potgieter M, Ambele MA, Adam L, Durandt C, Pepper MS. The Role of Reactive Oxygen Species in Adipogenic Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1083:125-144. [PMID: 29139087 DOI: 10.1007/5584_2017_119] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interest in reactive oxygen species and adipocyte differentiation/adipose tissue function is steadily increasing. This is due in part to a search for alternative avenues for combating obesity, which results from the excess accumulation of adipose tissue. Obesity is a major risk factor for complex disorders such as cancer, type 2 diabetes, and cardiovascular diseases. The ability of mesenchymal stromal/stem cells (MSCs) to differentiate into adipocytes is often used as a model for studying adipogenesis in vitro. A key focus is the effect of both intra- and extracellular reactive oxygen species (ROS) on adipogenesis. The consensus from the majority of studies is that ROS, irrespective of the source, promote adipogenesis.The effect of ROS on adipogenesis is suppressed by antioxidants or ROS scavengers. Reactive oxygen species are generated during the process of adipocyte differentiation as well as by other cell metabolic processes. Despite many studies in this field, it is still not possible to state with certainty whether ROS measured during adipocyte differentiation are a cause or consequence of this process. In addition, it is still unclear what the exact sources are of the ROS that initiate and/or drive adipogenic differentiation in MSCs in vivo. This review provides an overview of our understanding of the role of ROS in adipocyte differentiation as well as how certain ROS scavengers and antioxidants might affect this process.
Collapse
Affiliation(s)
- Danielle de Villiers
- Department of Immunology and Institute for Cellular and Molecular Medicine; SAMRC Extramural Unit for Stem Cell Research and Therapy; Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Marnie Potgieter
- Department of Immunology and Institute for Cellular and Molecular Medicine; SAMRC Extramural Unit for Stem Cell Research and Therapy; Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Center for Microbial Ecology and Genomics, Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Melvin A Ambele
- Department of Immunology and Institute for Cellular and Molecular Medicine; SAMRC Extramural Unit for Stem Cell Research and Therapy; Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Oral Pathology and Oral Biology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ladislaus Adam
- Department of Immunology and Institute for Cellular and Molecular Medicine; SAMRC Extramural Unit for Stem Cell Research and Therapy; Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Chrisna Durandt
- Department of Immunology and Institute for Cellular and Molecular Medicine; SAMRC Extramural Unit for Stem Cell Research and Therapy; Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael S Pepper
- Department of Immunology and Institute for Cellular and Molecular Medicine; SAMRC Extramural Unit for Stem Cell Research and Therapy; Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
23
|
Lin SC, Gou GH, Hsia CW, Ho CW, Huang KL, Wu YF, Lee SY, Chen YH. Simulated Microgravity Disrupts Cytoskeleton Organization and Increases Apoptosis of Rat Neural Crest Stem Cells Via Upregulating CXCR4 Expression and RhoA-ROCK1-p38 MAPK-p53 Signaling. Stem Cells Dev 2016; 25:1172-93. [PMID: 27269634 DOI: 10.1089/scd.2016.0040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neural crest stem cells (NCSCs) are a population of multipotent stem cells that are distributed broadly in many tissues and organs and are capable of differentiating into a variety of cell types that are dispersed throughout three germ layers. We are interested in studying the effects of simulated microgravity on the survival and self-renewal of NCSCs. NCSCs extracted from the hair follicle bulge region of the rat whisker pad were cultured in vitro, respectively, in a 2D adherent environment and a 3D suspension environment using the rotatory cell culture system (RCCS) to simulate microgravity. We found that rat NCSCs (rNCSCs) cultured in the RCCS for 24 h showed disrupted organization of filamentous actin, increased globular actin level, formation of plasma membrane blebbing and neurite-like artifact, as well as decreased levels of cortactin and vimentin. Interestingly, ∼70% of RCCS-cultured rNCSCs co-expressed cleaved (active) caspase-3 and neuronal markers microtubule-associated protein 2 (MAP2) and Tuj1 instead of NCSC markers, suggesting stress-induced formation of neurite-like artifact in rNCSCs. In addition, rNCSCs showed increased C-X-C chemokine receptor 4 (CXCR4) expression, RhoA GTPase activation, Rho-associated kinase 1 (ROCK1) and p38 mitogen-activated protein kinase (MAPK) phosphorylation, and p53 expression in the nucleus. Incubation of rNCSCs with the Gα protein inhibitor pertussis toxin or CXCR4 siRNA during RCCS-culturing prevented cytoskeleton disorganization and plasma membrane blebbing, and it suppressed apoptosis of rNCSCs. Taken together, we demonstrate for the first time that simulated microgravity disrupts cytoskeleton organization and increases apoptosis of rNCSCs via upregulating CXCR4 expression and the RhoA-ROCK1-p38 MAPK-p53 signaling pathway.
Collapse
Affiliation(s)
- Shing-Chen Lin
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Guo-Hau Gou
- 2 Graduate Institute of Medical Sciences, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Ching-Wu Hsia
- 2 Graduate Institute of Medical Sciences, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Cheng-Wen Ho
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan .,3 Division of Rehabilitation Medicine, Taoyuan Armed Forces General Hospital , Longtan Township, Taoyuan County, Taiwan
| | - Kun-Lun Huang
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan .,4 Department of Undersea and Hyperbaric Medicine, Tri-Service General Hospital , Neihu District, Taipei City, Taiwan
| | - Yung-Fu Wu
- 5 Department of Medical Research, Tri-Service General Hospital , Neihu District, Taipei City, Taiwan
| | - Shih-Yu Lee
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| | - Yi-Hui Chen
- 1 Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center , Neihu District, Taipei City, Taiwan
| |
Collapse
|
24
|
Choi MS, Jung JY, Kim HJ, Ham MR, Lee TR, Shin DW. S-nitrosylation of fatty acid synthase regulates its activity through dimerization. J Lipid Res 2016; 57:607-15. [PMID: 26851298 DOI: 10.1194/jlr.m065805] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Indexed: 12/21/2022] Open
Abstract
NO regulates a variety of physiological processes, including cell proliferation, differentiation, and inflammation. S-nitrosylation, a NO-mediated reversible protein modification, leads to changes in the activity and function of proteins. In particular, the role of S-nitrosylation during adipogenesis is largely unknown. We hypothesized that the normal physiological levels of NO, but not the excess levels generated under severe conditions, such as inflammation, may be critically involved in the proper regulation of adipogenesis. We found that endogenous S-nitrosylation of proteins was required for adipocyte differentiation. By performing a biotin-switch assay, we identified FAS, a key lipogenic enzyme in adipocytes, as a target of S-nitrosylation during adipogenesis. Interestingly, we also observed that the dimerization of FAS increased in parallel with the amount of S-nitrosylated FAS during adipogenesis. In addition, we found that exogenous NO enhanced the dimerization and the enzymatic activity of FAS. Moreover, site-directed mutagenesis of three predicted S-nitrosylation sites indicated that S-nitrosylation of FAS at Cys(1471)and Cys(2091), but not at Cys(1127), increased its enzymatic activity. Taken together, these results suggest that the S-nitrosylation of FAS at normal physiological levels of NO increases its activity through dimerization and may contribute to the proper regulation of adipogenesis.
Collapse
Affiliation(s)
- Min Sik Choi
- Basic Research and Innovation Division, Amorepacific Corporation R&D Center, 314-1, Bora-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Ji-Yong Jung
- Basic Research and Innovation Division, Amorepacific Corporation R&D Center, 314-1, Bora-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Hyoung-June Kim
- Basic Research and Innovation Division, Amorepacific Corporation R&D Center, 314-1, Bora-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Mi Ra Ham
- Basic Research and Innovation Division, Amorepacific Corporation R&D Center, 314-1, Bora-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Tae Ryong Lee
- Basic Research and Innovation Division, Amorepacific Corporation R&D Center, 314-1, Bora-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Dong Wook Shin
- Basic Research and Innovation Division, Amorepacific Corporation R&D Center, 314-1, Bora-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| |
Collapse
|
25
|
Hallenborg P, Petersen RK, Kouskoumvekaki I, Newman JW, Madsen L, Kristiansen K. The elusive endogenous adipogenic PPARγ agonists: Lining up the suspects. Prog Lipid Res 2016; 61:149-62. [DOI: 10.1016/j.plipres.2015.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 02/07/2023]
|
26
|
Shcherbakov AB, Zholobak NM, Spivak NY, Ivanov VK. Advances and prospects of using nanocrystalline ceria in prolongation of lifespan and healthy aging. RUSS J INORG CHEM+ 2015. [DOI: 10.1134/s0036023615130057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
27
|
Wang X, Hai C. Redox modulation of adipocyte differentiation: hypothesis of "Redox Chain" and novel insights into intervention of adipogenesis and obesity. Free Radic Biol Med 2015; 89:99-125. [PMID: 26187871 DOI: 10.1016/j.freeradbiomed.2015.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 02/08/2023]
Abstract
In view of the global prevalence of obesity and obesity-associated disorders, it is important to clearly understand how adipose tissue forms. Accumulating data from various laboratories implicate that redox status is closely associated with energy metabolism. Thus, biochemical regulation of the redox system may be an attractive alternative for the treatment of obesity-related disorders. In this work, we will review the current data detailing the role of the redox system in adipocyte differentiation, as well as identifying areas for further research. The redox system affects adipogenic differentiation in an extensive way. We propose that there is a complex and interactive "redox chain," consisting of a "ROS-generating enzyme chain," "combined antioxidant chain," and "transcription factor chain," which contributes to fine-tune the regulation of ROS level and subsequent biological consequences. The roles of the redox system in adipocyte differentiation are paradoxical. The redox system exerts a "tridimensional" mechanism in the regulation of adipocyte differentiation, including transcriptional, epigenetic, and posttranslational modulations. We suggest that redoxomic techniques should be extensively applied to understand the biological effects of redox alterations in a more integrated way. A stable and standardized "redox index" is urgently needed for the evaluation of the general redox status. Therefore, more effort should be made to establish and maintain a general redox balance rather than to conduct simple prooxidant or antioxidant interventions, which have comprehensive implications.
Collapse
Affiliation(s)
- Xin Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Chunxu Hai
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
28
|
Minakuchi H, Wakino S, Hosoya K, Sueyasu K, Hasegawa K, Shinozuka K, Yoshifuji A, Futatsugi K, Komatsu M, Kanda T, Tokuyama H, Hayashi K, Itoh H. The role of adipose tissue asymmetric dimethylarginine/dimethylarginine dimethylaminohydrolase pathway in adipose tissue phenotype and metabolic abnormalities in subtotally nephrectomized rats. Nephrol Dial Transplant 2015; 31:413-23. [DOI: 10.1093/ndt/gfv367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/09/2015] [Indexed: 01/12/2023] Open
|
29
|
Johlfs MG, Gorjala P, Urasaki Y, Le TT, Fiscus RR. Capillary Isoelectric Focusing Immunoassay for Fat Cell Differentiation Proteomics. PLoS One 2015; 10:e0132105. [PMID: 26132171 PMCID: PMC4489199 DOI: 10.1371/journal.pone.0132105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/10/2015] [Indexed: 01/09/2023] Open
Abstract
Profiling cellular proteome is critical to understanding signal integration during cell fate determination. In this study, the capability of capillary isoelectric focusing (cIEF) immunoassays to detect post-translational modifications (PTM) of protein isoforms is demonstrated. cIEF immunoassays exhibit protein detection sensitivity at up to 5 orders of magnitude higher than traditional methods. This detection ultra-sensitivity permits proteomic profiling of several nanograms of tissue samples. cIEF immunoassays are employed to simultaneously profile three protein kinases during fat cell differentiation: cGMP-dependent protein kinase type I (PKG-I) of the nitric oxide (NO) signaling pathway, protein kinase B (Akt) of the insulin signaling pathway, and extracellular signal-regulated kinase (ERK) of the mitogen-activated protein kinase (MAPK) signaling pathway. Interestingly, a switch in the expression level of PKG- isoforms is observed during fat cell differentiation. While both PKG-Iα and PKG-Iβ isoforms are present in preadipocytes, only PKG-Iβ isoform is expressed in adipocytes. On the other hand, the phosphorylation level increases for Akt while decreases for ERK1 and ERK2 following the maturation of preadipocytes into adipocytes. Taken together, cIEF immunoassay provides a highly sensitive means to study fat cell differentiation proteomics. cIEF immunoassay should be a powerful proteomics tool to study complex protein signal integration in biological systems.
Collapse
Affiliation(s)
- Mary G. Johlfs
- Department of Biomedical Sciences, Center for Diabetes and Obesity Research, College of Medicine, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, Nevada, 89135, United States of America
| | - Priyatham Gorjala
- Department of Biomedical Sciences, Center for Diabetes and Obesity Research, College of Medicine, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, Nevada, 89135, United States of America
| | - Yasuyo Urasaki
- Department of Biomedical Sciences, Center for Diabetes and Obesity Research, College of Medicine, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, Nevada, 89135, United States of America
| | - Thuc T. Le
- Department of Biomedical Sciences, Center for Diabetes and Obesity Research, College of Medicine, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, Nevada, 89135, United States of America
- * E-mail: (TTL); (RRF)
| | - Ronald R. Fiscus
- Department of Biomedical Sciences, Center for Diabetes and Obesity Research, College of Medicine, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, Nevada, 89135, United States of America
- * E-mail: (TTL); (RRF)
| |
Collapse
|
30
|
Aquilano K, Lettieri Barbato D, Rosa CM. The multifaceted role of nitric oxide synthases in mitochondrial biogenesis and cell differentiation. Commun Integr Biol 2015; 8:e1017158. [PMID: 26479127 PMCID: PMC4594549 DOI: 10.1080/19420889.2015.1017158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 10/25/2022] Open
Abstract
Nitric oxide (NO) is physiologically synthetized by a family of enzymes called NO synthases (NOSs). NO is a pleiotropic second messenger having a fundamental role in several cellular processes including cell differentiation. Being a high reactive molecule, NO must be synthetized in close proximity to the effector/target. For this reason, the subcellular localization of NOSs is tightly regulated by different post-translation mechanisms. Recently, in murine C2C12 myoblasts, we have demonstrated that mitochondrial biogenesis, an essential event for cell differentiation, can be effective only if the site of NO production is located at nuclear level, where NO favors the CREB-dependent expression of PGC-1α gene. The increase of NO flux in nuclei is elicited by the up-regulation and redistribution of neuronal NOS (nNOS) toward nuclei. Herein we show that an upregulation of endothelial NOS (eNOS) occurs during adipocyte differentiation in 3T3-L1 cells. However, differently to differentiating myocytes, a concomitant redistribution of eNOS toward nuclei was not detected. We also observed that, upon treatment with the NO synthesis inhibitor L-NAME, mitochondrial biogenesis as well as triglyceride accumulation that normally occurs during adipogenesis were not impeded. The absence of eNOS in nuclei together with the ineffectiveness of L-NAME suggest that, at least during 3T3-L1 differentiation, NO is not fundamental for the induction of mitochondrial biogenesis and adipogenesis.
Collapse
Affiliation(s)
- Katia Aquilano
- Department of Biology; University of Rome "Tor Vergata" ; Rome, Italy ; IRCCS San Raffaele ; Rome, Italy
| | | | - Ciriolo Maria Rosa
- Department of Biology; University of Rome "Tor Vergata" ; Rome, Italy ; IRCCS San Raffaele ; Rome, Italy
| |
Collapse
|
31
|
Beltran-Povea A, Caballano-Infantes E, Salguero-Aranda C, Martín F, Soria B, Bedoya FJ, Tejedo JR, Cahuana GM. Role of nitric oxide in the maintenance of pluripotency and regulation of the hypoxia response in stem cells. World J Stem Cells 2015; 7:605-617. [PMID: 25914767 PMCID: PMC4404395 DOI: 10.4252/wjsc.v7.i3.605] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/13/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Stem cell pluripotency and differentiation are global processes regulated by several pathways that have been studied intensively over recent years. Nitric oxide (NO) is an important molecule that affects gene expression at the level of transcription and translation and regulates cell survival and proliferation in diverse cell types. In embryonic stem cells NO has a dual role, controlling differentiation and survival, but the molecular mechanisms by which it modulates these functions are not completely defined. NO is a physiological regulator of cell respiration through the inhibition of cytochrome c oxidase. Many researchers have been examining the role that NO plays in other aspects of metabolism such as the cellular bioenergetics state, the hypoxia response and the relationship of these areas to stem cell stemness.
Collapse
|
32
|
Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev 2015; 24:1150-63. [PMID: 25603196 PMCID: PMC4424969 DOI: 10.1089/scd.2014.0484] [Citation(s) in RCA: 454] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising candidates for tissue engineering and regenerative medicine. The multipotent stem cell component of MSC isolates is able to differentiate into derivatives of the mesodermal lineage including adipocytes, osteocytes, chondrocytes, and myocytes. Many common pathways have been described in the regulation of adipogenesis and osteogenesis. However, stimulation of osteogenesis appears to suppress adipogenesis and vice-versa. Increasing evidence implicates a tight regulation of these processes by reactive oxygen species (ROS). ROS are short-lived oxygen-containing molecules that display high chemical reactivity toward DNA, RNA, proteins, and lipids. Mitochondrial complexes I and III, and the NADPH oxidase isoform NOX4 are major sources of ROS production during MSC differentiation. ROS are thought to interact with several pathways that affect the transcription machinery required for MSC differentiation including the Wnt, Hedgehog, and FOXO signaling cascades. On the other hand, elevated levels of ROS, defined as oxidative stress, lead to arrest of the MSC cell cycle and apoptosis. Tightly regulated levels of ROS are therefore critical for MSC terminal differentiation, although the precise sources, localization, levels and the exact species of ROS implicated remain to be determined. This review provides a detailed overview of the influence of ROS on adipogenic and osteogenic differentiation in MSCs.
Collapse
Affiliation(s)
- Fatemeh Atashi
- 1 Department of Plastic, Reconstructive & Aesthetic Surgery, University Hospitals of Geneva , University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
33
|
Puthanveetil P, Wan A, Rodrigues B. Lipoprotein lipase and angiopoietin-like 4 – Cardiomyocyte secretory proteins that regulate metabolism during diabetic heart disease. Crit Rev Clin Lab Sci 2015; 52:138-49. [DOI: 10.3109/10408363.2014.997931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Colombo G, Colombo MDHP, Schiavon LDL, d'Acampora AJ. Phosphodiesterase 5 as target for adipose tissue disorders. Nitric Oxide 2013; 35:186-92. [PMID: 24177060 DOI: 10.1016/j.niox.2013.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/26/2013] [Accepted: 10/21/2013] [Indexed: 01/19/2023]
|
35
|
Choi SH, Chung KY, Johnson BJ, Go GW, Kim KH, Choi CW, Smith SB. Co-culture of bovine muscle satellite cells with preadipocytes increases PPARγ and C/EBPβ gene expression in differentiated myoblasts and increases GPR43 gene expression in adipocytes. J Nutr Biochem 2013; 24:539-43. [DOI: 10.1016/j.jnutbio.2012.01.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/14/2011] [Accepted: 01/26/2012] [Indexed: 12/01/2022]
|
36
|
The amine oxidase inhibitor phenelzine limits lipogenesis in adipocytes without inhibiting insulin action on glucose uptake. J Neural Transm (Vienna) 2012; 120:997-1003. [DOI: 10.1007/s00702-012-0951-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/04/2012] [Indexed: 12/22/2022]
|
37
|
Liu GS, Chan EC, Higuchi M, Dusting GJ, Jiang F. Redox mechanisms in regulation of adipocyte differentiation: beyond a general stress response. Cells 2012; 1:976-93. [PMID: 24710538 PMCID: PMC3901142 DOI: 10.3390/cells1040976] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 10/26/2012] [Accepted: 10/31/2012] [Indexed: 02/07/2023] Open
Abstract
In this review, we summarize advances in our understanding of redox-sensitive mechanisms that regulate adipogenesis. Current evidence indicates that reactive oxygen species may act to promote both the initiation of adipocyte lineage commitment of precursor or stem cells, and the terminal differentiation of preadipocytes to mature adipose cells. These can involve redox regulation of pathways mediated by receptor tyrosine kinases, peroxisome proliferator-activated receptor γ (PPARγ), PPARγ coactivator 1α (PGC-1α), AMP-activated protein kinase (AMPK), and CCAAT/enhancer binding protein β (C/EBPβ). However, the precise roles of ROS in adipogenesis in vivo remain controversial. More studies are needed to delineate the roles of reactive oxygen species and redox signaling mechanisms, which could be either positive or negative, in the pathogenesis of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Guei-Sheung Liu
- Centre for Eye Research Australia, University of Melbourne, Victoria 3002, Australia.
| | - Elsa C Chan
- Centre for Eye Research Australia, University of Melbourne, Victoria 3002, Australia.
| | - Masayoshi Higuchi
- Centre for Eye Research Australia, University of Melbourne, Victoria 3002, Australia.
| | - Gregory J Dusting
- Centre for Eye Research Australia, University of Melbourne, Victoria 3002, Australia.
| | - Fan Jiang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250-012, Shandong, China.
| |
Collapse
|
38
|
Hemmrich K, Paul NE, Pallua N. The nitric oxide system--cure for shortcomings in adipose tissue engineering? J Tissue Eng Regen Med 2012; 6 Suppl 3:S1-3. [PMID: 22888023 DOI: 10.1002/term.1541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/04/2012] [Accepted: 04/18/2012] [Indexed: 11/07/2022]
Abstract
Adipose tissue engineering aims to grow fat tissue for soft tissue reconstruction after tumour resection or trauma. However, insufficient progenitor cell differentiation and poor vascularization compromise the generation of clinically applicable adipose tissue. The desired process of neo-adipogenesis seems to be difficult to mimic, even though it takes place in all of us, inevitably and rapidly, as soon as we start consuming high-caloric diets. It has previously been proposed that inflammation and its key regulator, nitric oxide (NO), may play a relevant part in neo-adipogenesis. We here discuss how a controlled activation of the nitric oxide system on various levels may represent a cure for several current shortcomings in adipose tissue engineering.
Collapse
Affiliation(s)
- Karsten Hemmrich
- Department of Plastic Surgery and Hand Surgery, Burn Centre, University Hospital of RWTH Aachen University of Technology, Aachen, Germany.
| | | | | |
Collapse
|
39
|
Imaging immune and metabolic cells of visceral adipose tissues with multimodal nonlinear optical microscopy. PLoS One 2012; 7:e38418. [PMID: 22701636 PMCID: PMC3372513 DOI: 10.1371/journal.pone.0038418] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/09/2012] [Indexed: 12/27/2022] Open
Abstract
Visceral adipose tissue (VAT) inflammation is recognized as a mechanism by which obesity is associated with metabolic diseases. The communication between adipose tissue macrophages (ATMs) and adipocytes is important to understanding the interaction between immunity and energy metabolism and its roles in obesity-induced diseases. Yet visualizing adipocytes and macrophages in complex tissues is challenging to standard imaging methods. Here, we describe the use of a multimodal nonlinear optical (NLO) microscope to characterize the composition of VATs of lean and obese mice including adipocytes, macrophages, and collagen fibrils in a label-free manner. We show that lipid metabolism processes such as lipid droplet formation, lipid droplet microvesiculation, and free fatty acids trafficking can be dynamically monitored in macrophages and adipocytes. With its versatility, NLO microscopy should be a powerful imaging tool to complement molecular characterization of the immunity-metabolism interface.
Collapse
|
40
|
Tan B, Li X, Yin Y, Wu Z, Liu C, Tekwe CD, Wu G. Regulatory roles for L-arginine in reducing white adipose tissue. FRONT BIOSCI-LANDMRK 2012; 17:2237-46. [PMID: 22652774 PMCID: PMC3422877 DOI: 10.2741/4047] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As the nitrogenous precursor of nitric oxide, L-arginine regulates multiple metabolic pathways involved in the metabolism of fatty acids, glucose, amino acids, and proteins through cell signaling and gene expression. Specifically, arginine stimulates lipolysis and the expression of key genes responsible for activation of fatty acid oxidation to CO2 and water. The underlying mechanisms involve increases in the expression of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha), mitochondrial biogenesis, and the growth of brown adipose tissue growth. Furthermore, arginine regulates adipocyte-muscle crosstalk and energy partitioning via the secretion of cytokines and hormones. In addition, arginine enhances AMP-activated protein kinase (AMPK) expression and activity, thereby modulating lipid metabolism and energy balance toward the loss of triacylglycerols. Growing evidence shows that dietary supplementation with arginine effectively reduces white adipose tissue in Zucker diabetic fatty rats, diet-induced obese rats, growing-finishing pigs, and obese patients with type II diabetes. Thus, arginine can be used to prevent and treat adiposity and the associated metabolic syndrome.
Collapse
Affiliation(s)
- Bi’e Tan
- Research Center of Healthy Breeding of Livestock and Poultry and Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China 410125
| | - Xinguo Li
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, Hunan, China 410131
| | - Yulong Yin
- Research Center of Healthy Breeding of Livestock and Poultry and Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China 410125
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China 100193
| | - Chuang Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China 100193
| | - Carmen D. Tekwe
- Department of Statistics, Texas A and M University, College Station, TX, USA 77843-3143
| | - Guoyao Wu
- Research Center of Healthy Breeding of Livestock and Poultry and Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China 410125
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China 100193
- Department of Animal Science, Texas A&M University, College Station, TX, USA 77843-2471
| |
Collapse
|
41
|
Towards amino acid recommendations for specific physiological and patho-physiological states in pigs. Proc Nutr Soc 2012; 71:425-32. [DOI: 10.1017/s0029665112000560] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective of this review is to provide an overview of the implication of amino acids (AA) in important physiological functions. This is done in the context of pig production where the competition for AA utilisation is exacerbated by constraints to maximise productive responses and the necessity to reduce dietary protein input for environmental, economic and sanitary issues. Therefore, there is an opportunity to refine the nutritional recommendations by exploring the physiological roles of AA. For example, methionine and cysteine, either in selenised or sulfur forms, are directly involved in the regulation of the glutathione antioxidative system. In sows, glutathione antioxidative system may contribute to improving ovulation conditions through control of oxidative pressure. Supplementation of sow diets withl-arginine, a precursor of NO and polyamines, may stimulate placental growth, promoting conceptus survival, growth and tissue development. The beneficial effect of arginine supplementation has been also suggested to improve lactation performance. Feed intake is usually the first response that is impacted by an inadequate AA supply. Valine and tryptophan imbalances may act as signals for decreasing feed intake. AA are also important nutrients for maintaining the animal's defence systems. Threonine, one of the main constituents of mucin protein, is important for gut development during the postnatal period. It may exert a protective effect that reduces the impact of weaning on gut morphology and associated disturbances. Finally, tryptophan is involved in the regulation of the defence system through its action as a precursor of antioxidants and its effect on the inflammatory response.
Collapse
|
42
|
Armani A, Marzolla V, Rosano GMC, Fabbri A, Caprio M. Phosphodiesterase type 5 (PDE5) in the adipocyte: a novel player in fat metabolism? Trends Endocrinol Metab 2011; 22:404-11. [PMID: 21741267 DOI: 10.1016/j.tem.2011.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/18/2011] [Accepted: 05/25/2011] [Indexed: 12/19/2022]
Abstract
Phosphodiesterase type 5 (PDE5) is expressed in many tissues (e.g. heart, lung, pancreas, penis) and plays a specific role in hydrolyzing cyclic guanosine monophosphate (cGMP). In adipocytes, cGMP regulates crucial functions by activating cGMP-dependent protein kinase (PKG). Interestingly, PDE5 was recently identified in adipose tissue, although its role remains unclear. Its inhibition, however, was recently shown to affect adipose differentiation and aromatase function. This review summarizes evidence supporting a role for the PDE5-regulated cGMP/PKG system in adipose tissue and its effects on adipocyte function. A better elucidation of the role of PDE5 in the adipocyte could reveal new therapeutic strategies for fighting obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Andrea Armani
- Center for Clinical and Basic Research, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) San Raffaele Pisana, Rome, Italy
| | | | | | | | | |
Collapse
|
43
|
Handa P, Tateya S, Rizzo NO, Cheng AM, Morgan-Stevenson V, Han CY, Clowes AW, Daum G, O'Brien KD, Schwartz MW, Chait A, Kim F. Reduced vascular nitric oxide-cGMP signaling contributes to adipose tissue inflammation during high-fat feeding. Arterioscler Thromb Vasc Biol 2011; 31:2827-35. [PMID: 21903940 DOI: 10.1161/atvbaha.111.236554] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Obesity is characterized by chronic inflammation of adipose tissue, which contributes to insulin resistance and diabetes. Although nitric oxide (NO) signaling has antiinflammatory effects in the vasculature, whether reduced NO contributes to adipose tissue inflammation is unknown. We sought to determine whether (1) obesity induced by high-fat (HF) diet reduces endothelial nitric oxide signaling in adipose tissue, (2) reduced endothelial nitric oxide synthase (eNOS) signaling is sufficient to induce adipose tissue inflammation independent of diet, and (3) increased cGMP signaling can block adipose tissue inflammation induced by HF feeding. METHODS AND RESULTS Relative to mice fed a low-fat diet, an HF diet markedly reduced phospho-eNOS and phospho-vasodilator-stimulated phosphoprotein (phospho-VASP), markers of vascular NO signaling. Expression of proinflammatory cytokines was increased in adipose tissue of eNOS-/- mice. Conversely, enhancement of signaling downstream of NO by phosphodiesterase-5 inhibition using sildenafil attenuated HF-induced proinflammatory cytokine expression and the recruitment of macrophages into adipose tissue. Finally, we implicate a role for VASP, a downstream mediator of NO-cGMP signaling in mediating eNOS-induced antiinflammatory effects because VASP-/- mice recapitulated the proinflammatory phenotype displayed by eNOS-/- mice. CONCLUSIONS These results imply a physiological role for endothelial NO to limit obesity-associated inflammation in adipose tissue and hence identify the NO-cGMP-VASP pathway as a potential therapeutic target in the treatment of diabetes.
Collapse
Affiliation(s)
- Priya Handa
- Department of Medicine, 815 Mercer St, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tan B, Yin Y, Liu Z, Tang W, Xu H, Kong X, Li X, Yao K, Gu W, Smith SB, Wu G. Dietary l-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle. J Nutr Biochem 2011; 22:441-5. [DOI: 10.1016/j.jnutbio.2010.03.012] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 03/09/2010] [Accepted: 03/18/2010] [Indexed: 11/16/2022]
|
45
|
Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, Rodford J, Slater-Jefferies JL, Garratt E, Crozier SR, Emerald BS, Gale CR, Inskip HM, Cooper C, Hanson MA. Epigenetic gene promoter methylation at birth is associated with child's later adiposity. Diabetes 2011; 60:1528-34. [PMID: 21471513 PMCID: PMC3115550 DOI: 10.2337/db10-0979] [Citation(s) in RCA: 487] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Fixed genomic variation explains only a small proportion of the risk of adiposity. In animal models, maternal diet alters offspring body composition, accompanied by epigenetic changes in metabolic control genes. Little is known about whether such processes operate in humans. RESEARCH DESIGN AND METHODS Using Sequenom MassARRAY we measured the methylation status of 68 CpGs 5' from five candidate genes in umbilical cord tissue DNA from healthy neonates. Methylation varied greatly at particular CpGs: for 31 CpGs with median methylation ≥5% and a 5-95% range ≥10%, we related methylation status to maternal pregnancy diet and to child's adiposity at age 9 years. Replication was sought in a second independent cohort. RESULTS In cohort 1, retinoid X receptor-α (RXRA) chr9:136355885+ and endothelial nitric oxide synthase (eNOS) chr7:150315553+ methylation had independent associations with sex-adjusted childhood fat mass (exponentiated regression coefficient [β] 17% per SD change in methylation [95% CI 4-31], P = 0.009, n = 64, and β = 20% [9-32], P < 0.001, n = 66, respectively) and %fat mass (β = 10% [1-19], P = 0.023, n = 64 and β =12% [4-20], P = 0.002, n = 66, respectively). Regression analyses including sex and neonatal epigenetic marks explained >25% of the variance in childhood adiposity. Higher methylation of RXRA chr9:136355885+, but not of eNOS chr7:150315553+, was associated with lower maternal carbohydrate intake in early pregnancy, previously linked with higher neonatal adiposity in this population. In cohort 2, cord eNOS chr7:150315553+ methylation showed no association with adiposity, but RXRA chr9:136355885+ methylation showed similar associations with fat mass and %fat mass (β = 6% [2-10] and β = 4% [1-7], respectively, both P = 0.002, n = 239). CONCLUSIONS Our findings suggest a substantial component of metabolic disease risk has a prenatal developmental basis. Perinatal epigenetic analysis may have utility in identifying individual vulnerability to later obesity and metabolic disease.
Collapse
Affiliation(s)
- Keith M Godfrey
- Institute of Developmental Sciences, University of Southampton, Southampton, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wu L, Fang Y, Guo X. DietaryL-arginine supplementation beneficially regulates body fat deposition of meat-type ducks. Br Poult Sci 2011; 52:221-6. [DOI: 10.1080/00071668.2011.559452] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- L.Y. Wu
- a Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University , Wuhan , Hubei 430023 , P.R. China
| | - Y.J. Fang
- a Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University , Wuhan , Hubei 430023 , P.R. China
| | - X.Y. Guo
- a Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University , Wuhan , Hubei 430023 , P.R. China
| |
Collapse
|
47
|
Gondret F, Perruchot MH, Tacher S, Bérard J, Bee G. Differential gene expressions in subcutaneous adipose tissue pointed to a delayed adipocytic differentiation in small pig fetuses compared to their heavier siblings. Differentiation 2011; 81:253-60. [PMID: 21354690 DOI: 10.1016/j.diff.2011.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 01/20/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
Abstract
Intra-uterine growth retardation in piglets is associated to neonatal losses and a greater susceptibility to fat deposition in the long term. Dietary l-arginine supplementation to gilts during early gestation has been proposed as a way to enhance fetal survival. This study aims to investigate the effects of variation in fetal growth within litters and dietary l-arginine treatment during early gestation in pregnant sows on expression levels of several genes involved in early adipose tissue development and lipid deposition in the fetuses. At day 75 of pregnancy, sows fed a standard gestation diet throughout pregnancy and sows fed 26g L-arginine daily from days 14 to 28 of gestation in supplement to the standard diet were sacrificed. Six pairs of littermates in each dietary group with the smallest or the heaviest fetal weights within each litter were collected (total: 24 fetuses). Expression levels of DLK1/PREF1 and FZD7 were significantly greater in subcutaneous backfat of the smallest fetuses. Conversely, transcriptional adipogenic regulators PPARG, SREBP1, and CEBPA, and genes involved in terminal adipocytic differentiation LPL, ME1, and FABP4 were less expressed in those piglets. Fetal weight has no effect on expression levels of genes involved in cell cycle progression and DNA content in subcutaneous adipose tissue. Maternal dietary L-arginine treatment did not affect subcutaneous adipose tissue features in 75-day old fetuses. The gene expression changes observed in the smallest fetuses are likely associated to a lower body fat content at birth, and could predispose to catch-up fat growth during the postnatal period.
Collapse
Affiliation(s)
- F Gondret
- INRA, UMR1079 Systèmes d'Elevage, Nutrition Animale et Humaine (SENAH), F-35590 Saint-Gilles, France; AgroCampus-Ouest, UMR1079 SENAH, 65 rue de St Brieuc, F-35000 Rennes, France
| | | | | | | | | |
Collapse
|
48
|
Fujita K, Wada K, Nozaki Y, Yoneda M, Endo H, Takahashi H, Kirikoshi H, Inamori M, Kobayashi N, Kubota K, Saito S, Nakajima A. Serum nitric oxide metabolite as a biomarker of visceral fat accumulation: clinical significance of measurement for nitrate/nitrite. Med Sci Monit 2011; 17:CR123-31. [PMID: 21358598 PMCID: PMC3524723 DOI: 10.12659/msm.881445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/01/2010] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND A visceral fat area of more than 100 cm2 as measured by computed tomography (CT) at the umbilical level has been included as a criterion for obesity in all the proposed criteria for metabolic syndrome. However, CT cannot be used frequently because of radiation exposure. We evaluated the usefulness of measurement of the serum levels of nitric oxide (NO), instead of CT and the waist circumference, as a marker of abdominal visceral fat accumulation. MATERIAL/METHODS The study was carried out in 80 subjects. The serum levels of NO metabolites (nitrate/nitrite) were measured using the Griess reagent. RESULTS Simple and multiple regression analysis revealed that the serum levels of NO metabolites showed the greatest degree of correlation with the visceral fat area (r = 0.743, p<0.0001), and corresponded to a visceral fat area of 100 cm2, as determined using the ROC curve, was 21.0 µmol/ml (sensitivity 88%, specificity 82%); this method was more sensitive than the waist circumference for evaluation of the visceral fat accumulation. CONCLUSIONS Measurement of the serum levels of NO metabolites may be a simple, safe, convenient and reliable method for the evaluation of visceral fat accumulation in clinical diagnostic screening.
Collapse
Affiliation(s)
- Koji Fujita
- Division of Gastroenterology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Koichiro Wada
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| | - Yuichi Nozaki
- Division of Gastroenterology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Masato Yoneda
- Division of Gastroenterology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Hiroki Endo
- Division of Gastroenterology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Hirokazu Takahashi
- Division of Gastroenterology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Hiroyuki Kirikoshi
- Division of Gastroenterology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Masahiko Inamori
- Division of Gastroenterology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Noritoshi Kobayashi
- Division of Gastroenterology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Kensuke Kubota
- Division of Gastroenterology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Satoru Saito
- Division of Gastroenterology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| | - Atsushi Nakajima
- Division of Gastroenterology, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama, Japan
| |
Collapse
|
49
|
Hemmrich K, Gummersbach C, Paul NE, Goy D, Suschek CV, Kröncke KD, Pallua N. Nitric oxide and downstream second messenger cGMP and cAMP enhance adipogenesis in primary human preadipocytes. Cytotherapy 2011; 12:547-53. [PMID: 20370354 DOI: 10.3109/14653241003695042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND AIMS Obesity is correlated with chronic low-grade inflammation. Thus the induction of inflammation could be used to stimulate adipose tissue formation in tissue-engineering approaches. As nitric oxide (NO) is a key regulator of inflammation, we investigated the effect of NO and its downstream signaling molecule guanosine 3',5'-cyclic monophosphate (cGMP) as well as adenosine 3',5'-cyclic monophosphate (cAMP) on preadipocytes in vitro. METHODS Preadipocytes were isolated from human subcutaneous adipose tissue, cultured until confluence, and differentiated. The NO donor diethylenetriamine (DETA)/NO (30-150 microm) was added during proliferation and differentiation. Additionally, cGMP/cAMP analogs 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP), 8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphate (8-pCPT-cGMP) and 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP), and the adenylyl cyclase activator forskolin, specific guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and adenylyl cyclase inhibitor 2'-5'-dideoxyadenosine (ddA), were applied. Proliferation and differentiation were evaluated. RESULTS DETA/NO in combination with the standard differentiation procedure significantly enhanced maturation of precursor cells to adipocytes. Proliferation, in contrast, was inhibited in the presence of NO. The application of cGMP and cAMP, respectively, increased pre-adipocyte differentiation to an even higher extent than NO. Inhibitors of the underlying pathways caused a significant decrease in adipogenic conversion. CONCLUSIONS Our results support the application of NO donors during transplantation of preadipocytes in a 3-dimensional setting to accelerate and optimize differentiation. The results suggest that, instead of the rather instable and reactive molecule NO, the application of cGMP and cAMP would be even more effective because these substances have a stronger adipogenic effect on preadipocytes and a longer half-life than NO. Also, by applying inhibitors of the underlying pathways, the induced inflammatory condition could be regulated to the desired level.
Collapse
Affiliation(s)
- Karsten Hemmrich
- Department of Plastic Surgery, University Hospital of the RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
Honaker RW, Dhiman RK, Narayanasamy P, Crick DC, Voskuil MI. DosS responds to a reduced electron transport system to induce the Mycobacterium tuberculosis DosR regulon. J Bacteriol 2010; 192:6447-55. [PMID: 20952575 PMCID: PMC3008535 DOI: 10.1128/jb.00978-10] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 10/01/2010] [Indexed: 01/14/2023] Open
Abstract
The DosR regulon in Mycobacterium tuberculosis is involved in respiration-limiting conditions, its induction is controlled by two histidine kinases, DosS and DosT, and recent experimental evidence indicates DosS senses either molecular oxygen or a redox change. Under aerobic conditions, induction of the DosR regulon by DosS, but not DosT, was observed after the addition of ascorbate, a powerful cytochrome c reductant, demonstrating that DosS responds to a redox signal even in the presence of high oxygen tension. During hypoxic conditions, regulon induction was attenuated by treatment with compounds that occluded electron flow into the menaquinone pool or decreased the size of the menaquinone pool itself. Increased regulon expression during hypoxia was observed when exogenous menaquinone was added, demonstrating that the menaquinone pool is a limiting factor in regulon induction. Taken together, these data demonstrate that a reduced menaquinone pool directly or indirectly triggers induction of the DosR regulon via DosS. Biochemical analysis of menaquinones upon entry into hypoxic/anaerobic conditions demonstrated the disappearance of the unsaturated species and low-level maintenance of the mono-saturated menaquinone. Relative to the unsaturated form, an analog of the saturated form is better able to induce signaling via DosS and rescue inhibition of menaquinone synthesis and is less toxic. The menaquinone pool is central to the electron transport system (ETS) and therefore provides a mechanistic link between the respiratory state of the bacilli and DosS signaling. Although this report demonstrates that DosS responds to a reduced ETS, it does not rule out a role for oxygen in silencing signaling.
Collapse
Affiliation(s)
- Ryan W. Honaker
- University of Colorado Denver, School of Medicine, Department of Microbiology, P18-9115, 12800 East 19th Avenue, P.O. Box 6511, Aurora, Colorado 80045, Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 1682 Campus Delivery, Fort Collins, Colorado 80523
| | - Rakesh K. Dhiman
- University of Colorado Denver, School of Medicine, Department of Microbiology, P18-9115, 12800 East 19th Avenue, P.O. Box 6511, Aurora, Colorado 80045, Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 1682 Campus Delivery, Fort Collins, Colorado 80523
| | - Prabagaran Narayanasamy
- University of Colorado Denver, School of Medicine, Department of Microbiology, P18-9115, 12800 East 19th Avenue, P.O. Box 6511, Aurora, Colorado 80045, Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 1682 Campus Delivery, Fort Collins, Colorado 80523
| | - Dean C. Crick
- University of Colorado Denver, School of Medicine, Department of Microbiology, P18-9115, 12800 East 19th Avenue, P.O. Box 6511, Aurora, Colorado 80045, Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 1682 Campus Delivery, Fort Collins, Colorado 80523
| | - Martin I. Voskuil
- University of Colorado Denver, School of Medicine, Department of Microbiology, P18-9115, 12800 East 19th Avenue, P.O. Box 6511, Aurora, Colorado 80045, Colorado State University, Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, 1682 Campus Delivery, Fort Collins, Colorado 80523
| |
Collapse
|