1
|
Stan SI, Biciuşcă V, Clenciu D, Mitrea A, Boldeanu MV, Durand P, Dănoiu S. Future therapeutic perspectives in nonalcoholic fatty liver disease: a focus on nuclear receptors, a promising therapeutic target. Med Pharm Rep 2024; 97:111-119. [PMID: 38746033 PMCID: PMC11090283 DOI: 10.15386/mpr-2628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/05/2023] [Accepted: 10/24/2023] [Indexed: 05/16/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major public health problem worldwide, with an increasing incidence, secondary to the increasing incidence of obesity and diabetes, from a very young age. It is associated with metabolic and cardiovascular disorders, as components of the metabolic syndrome (MS). NAFLD is the hepatic manifestation of MS. The pathogenesis of the disease is multifactorial and complex, involving genetic, metabolic, but also environmental factors. Currently, nuclear receptors (NRs) represent a promising therapeutic target in the treatment of non-alcoholic steatohepatitis (NASH). Of these, the most studied receptor was the liver X receptor (LXR), which would have great potential in the treatment of metabolic diseases, namely hypercholesterolemia, atherosclerosis, and NAFLD. However, the therapeutic use of NRs is restricted in medical practice for two reasons: limited knowledge of the structure of the receptor and its inability to modulate certain actions in the target organs and genes. One problem is the understanding of the function and structure of the N-terminal domain which has a major transcriptional activation function (AF1).
Collapse
Affiliation(s)
- Sorina Ionelia Stan
- Department of Internal Medicine, Emergency County Hospital, Craiova, Romania
- Doctoral School, University of Medicine and Pharmacy of Craiova, Romania
| | - Viorel Biciuşcă
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Diana Clenciu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Adina Mitrea
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Mihai-Virgil Boldeanu
- Department Laboratory of Immunology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Patricia Durand
- Doctoral School, University of Medicine and Pharmacy of Craiova, Romania
- Department of Internal Medicine, Filantropia Clinic Hospital, Craiova, Romania
| | - Suzana Dănoiu
- Department of Pathophysiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
2
|
Kim H, Park C, Kim TH. Targeting Liver X Receptors for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells 2023; 12:cells12091292. [PMID: 37174692 PMCID: PMC10177243 DOI: 10.3390/cells12091292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/29/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) refers to a range of conditions in which excess lipids accumulate in the liver, possibly leading to serious hepatic manifestations such as steatohepatitis, fibrosis/cirrhosis and cancer. Despite its increasing prevalence and significant impact on liver disease-associated mortality worldwide, no medication has been approved for the treatment of NAFLD yet. Liver X receptors α/β (LXRα and LXRβ) are lipid-activated nuclear receptors that serve as master regulators of lipid homeostasis and play pivotal roles in controlling various metabolic processes, including lipid metabolism, inflammation and immune response. Of note, NAFLD progression is characterized by increased accumulation of triglycerides and cholesterol, hepatic de novo lipogenesis, mitochondrial dysfunction and augmented inflammation, all of which are highly attributed to dysregulated LXR signaling. Thus, targeting LXRs may provide promising strategies for the treatment of NAFLD. However, emerging evidence has revealed that modulating the activity of LXRs has various metabolic consequences, as the main functions of LXRs can distinctively vary in a cell type-dependent manner. Therefore, understanding how LXRs in the liver integrate various signaling pathways and regulate metabolic homeostasis from a cellular perspective using recent advances in research may provide new insights into therapeutic strategies for NAFLD and associated metabolic diseases.
Collapse
Affiliation(s)
- Hyejin Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Chaewon Park
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Tae Hyun Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Drug Information Research Institute, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
3
|
Ackerman HD, Gerhard GS. Bile Acids Induce Neurite Outgrowth in Nsc-34 Cells via TGR5 and a Distinct Transcriptional Profile. Pharmaceuticals (Basel) 2023; 16:174. [PMID: 37259326 PMCID: PMC9963315 DOI: 10.3390/ph16020174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 09/24/2024] Open
Abstract
Increasing evidence supports a neuroprotective role for bile acids in major neurodegenerative disorders. We studied major human bile acids as signaling molecules for their two cellular receptors, farnesoid X receptor (FXR or NR1H4) and G protein-coupled bile acid receptor 1 (GPBAR1 or TGR5), as potential neurotrophic agents. Using quantitative image analysis, we found that 20 μM deoxycholic acid (DCA) could induce neurite outgrowth in NSC-34 cells that was comparable to the neurotrophic effects of the culture control 1 μM retinoic acid (RA), with lesser effects observed for chenodexoycholic acid (CDCA) at 20 μM, and similar though less robust neurite outgrowth in SH-SY5Y cells. Using chemical agonists and antagonists of FXR, LXR, and TGR5, we found that TGR5 agonism was comparable to DCA stimulation and stronger than RA, and that neither FXR nor liver X receptor (LXR) inhibition could block bile acid-induced neurite growth. RNA sequencing identified a core set of genes whose expression was regulated by DCA, CDCA, and RA. Our data suggest that bile acid signaling through TGR5 may be a targetable pathway to stimulate neurite outgrowth.
Collapse
Affiliation(s)
- Hayley D Ackerman
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Glenn S Gerhard
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
4
|
Yang TM, Miao M, Yu WQ, Wang X, Xia FJ, Li YJ, Guo SD. Targeting macrophages in atherosclerosis using nanocarriers loaded with liver X receptor agonists: A narrow review. Front Mol Biosci 2023; 10:1147699. [PMID: 36936982 PMCID: PMC10018149 DOI: 10.3389/fmolb.2023.1147699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Macrophages are involved in the whole process of atherosclerosis, which is characterized by accumulation of lipid and inflammation. Presently, clinically used lipid-lowering drugs cannot completely retard the progress of atherosclerosis. Liver X receptor (LXR) plays a key role in regulation of lipid metabolism and inflammation. Accumulating evidence have demonstrated that synthetic LXR agonists can significantly retard the development of atherosclerosis. However, these agonists induce sever hypertriglyceridemia and liver steatosis. These side effects have greatly limited their potential application for therapy of atherosclerosis. The rapid development of drug delivery system makes it possible to delivery interested drugs to special organs or cells using nanocarriers. Macrophages express various receptors which can recognize and ingest specially modified nanocarriers loaded with LXR agonists. In the past decades, a great progress has been made in this field. These macrophage-targeted nanocarriers loaded with LXR agonists are found to decrease atherosclerosis by reducing cholesterol accumulation and inflammatory reactions. Of important, these nanocarriers can alleviate side effects of LXR agonists. In this article, we briefly review the roles of macrophages in atherosclerosis, mechanisms of action of LXR agonists, and focus on the advances of macrophage-targeted nanocarriers loaded with LXR agonists. This work may promote the potential clinical application of these nanocarriers.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan-Jie Li
- *Correspondence: Yan-Jie Li, ; Shou-Dong Guo,
| | | |
Collapse
|
5
|
May L, Bartolo B, Harrison D, Guzik T, Drummond G, Figtree G, Ritchie R, Rye KA, de Haan J. Translating atherosclerosis research from bench to bedside: navigating the barriers for effective preclinical drug discovery. Clin Sci (Lond) 2022; 136:1731-1758. [PMID: 36459456 PMCID: PMC9727216 DOI: 10.1042/cs20210862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. An ongoing challenge remains the development of novel pharmacotherapies to treat CVD, particularly atherosclerosis. Effective mechanism-informed development and translation of new drugs requires a deep understanding of the known and currently unknown biological mechanisms underpinning atherosclerosis, accompanied by optimization of traditional drug discovery approaches. Current animal models do not precisely recapitulate the pathobiology underpinning human CVD. Accordingly, a fundamental limitation in early-stage drug discovery has been the lack of consensus regarding an appropriate experimental in vivo model that can mimic human atherosclerosis. However, when coupled with a clear understanding of the specific advantages and limitations of the model employed, preclinical animal models remain a crucial component for evaluating pharmacological interventions. Within this perspective, we will provide an overview of the mechanisms and modalities of atherosclerotic drugs, including those in the preclinical and early clinical development stage. Additionally, we highlight recent preclinical models that have improved our understanding of atherosclerosis and associated clinical consequences and propose model adaptations to facilitate the development of new and effective treatments.
Collapse
Affiliation(s)
- Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN, U.S.A
| | - Tomasz Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Gemma A. Figtree
- Kolling Research Institute, University of Sydney, Sydney, Australia
- Imaging and Phenotyping Laboratory, Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Rebecca H. Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney 2052, Australia
| | - Judy B. de Haan
- Cardiovascular Inflammation and Redox Biology Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Department Cardiometabolic Health, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
6
|
Current Options and Future Perspectives in the Treatment of Dyslipidemia. J Clin Med 2022; 11:jcm11164716. [PMID: 36012957 PMCID: PMC9410330 DOI: 10.3390/jcm11164716] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 12/22/2022] Open
Abstract
Low-density lipoprotein cholesterol (LDL-C) plays a crucial role in the development of atherosclerosis. Statin therapy is the standard treatment for lowering LDL-C in primary and secondary prevention. However, some patients do not reach optimal LDL-C target levels or do not tolerate statins, especially when taking high doses long-term. Combining statins with different therapeutic approaches and testing other new drugs is the future key to reducing the burden of cardiovascular disease (CVD). Recently, several new cholesterol-lowering drugs have been developed and approved; others are promising results, enriching the pharmacological armamentarium beyond statins. Triglycerides also play an important role in the development of CVD; new therapeutic approaches are also very promising for their treatment. Familial hypercholesterolemia (FH) can lead to CVD early in life. These patients respond poorly to conventional therapies. Recently, however, new and promising pharmacological strategies have become available. This narrative review provides an overview of the new drugs for the treatment of dyslipidemia, their current status, ongoing clinical or preclinical trials, and their prospects. We also discuss the new alternative therapies for the treatment of dyslipidemia and their relevance to practice.
Collapse
|
7
|
Potential Therapeutic Agents That Target ATP Binding Cassette A1 (ABCA1) Gene Expression. Drugs 2022; 82:1055-1075. [PMID: 35861923 DOI: 10.1007/s40265-022-01743-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
The cholesterol efflux protein ATP binding cassette protein A1 (ABCA) and apolipoprotein A1 (apo A1) are key constituents in the process of reverse-cholesterol transport (RCT), whereby excess cholesterol in the periphery is transported to the liver where it can be converted primarily to bile acids for either use in digestion or excreted. Due to their essential roles in RCT, numerous studies have been conducted in cells, mice, and humans to more thoroughly understand the pathways that regulate their expression and activity with the goal of developing therapeutics that enhance RCT to reduce the risk of cardiovascular disease. Many of the drugs and natural compounds examined target several transcription factors critical for ABCA1 expression in both macrophages and the liver. Likewise, several miRNAs target not only ABCA1 but also the same transcription factors that are critical for its high expression. However, after years of research and many preclinical and clinical trials, only a few leads have proven beneficial in this regard. In this review we discuss the various transcription factors that serve as drug targets for ABCA1 and provide an update on some important leads.
Collapse
|
8
|
Lewandowski CT, Laham MS, Thatcher GR. Remembering your A, B, C's: Alzheimer's disease and ABCA1. Acta Pharm Sin B 2022; 12:995-1018. [PMID: 35530134 PMCID: PMC9072248 DOI: 10.1016/j.apsb.2022.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
The function of ATP binding cassette protein A1 (ABCA1) is central to cholesterol mobilization. Reduced ABCA1 expression or activity is implicated in Alzheimer's disease (AD) and other disorders. Therapeutic approaches to boost ABCA1 activity have yet to be translated successfully to the clinic. The risk factors for AD development and progression, including comorbid disorders such as type 2 diabetes and cardiovascular disease, highlight the intersection of cholesterol transport and inflammation. Upregulation of ABCA1 can positively impact APOE lipidation, insulin sensitivity, peripheral vascular and blood–brain barrier integrity, and anti-inflammatory signaling. Various strategies towards ABCA1-boosting compounds have been described, with a bias toward nuclear hormone receptor (NHR) agonists. These agonists display beneficial preclinical effects; however, important side effects have limited development. In particular, ligands that bind liver X receptor (LXR), the primary NHR that controls ABCA1 expression, have shown positive effects in AD mouse models; however, lipogenesis and unwanted increases in triglyceride production are often observed. The longstanding approach, focusing on LXRβ vs. LXRα selectivity, is over-simplistic and has failed. Novel approaches such as phenotypic screening may lead to small molecule NHR modulators that elevate ABCA1 function without inducing lipogenesis and are clinically translatable.
Collapse
|
9
|
Wang K, Gao H, Zhang Y, Yan H, Si J, Mi X, Xia S, Feng X, Liu D, Kong D, Wang T, Ding D. Highly Bright AIE Nanoparticles by Regulating the Substituent of Rhodanine for Precise Early Detection of Atherosclerosis and Drug Screening. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106994. [PMID: 34921573 DOI: 10.1002/adma.202106994] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Fluorescent probes capable of precise detection of atherosclerosis (AS) at an early stage and fast assessment of anti-AS drugs in animal level are particularly valuable. Herein, a highly bright aggregation-induced emission (AIE) nanoprobe is introduced by regulating the substituent of rhodanine for early detection of atherosclerotic plaque and screening of anti-AS drugs in a precise, sensitive, and rapid manner. With dicyanomethylene-substituted rhodanine as the electron-withdrawing unit, the AIE luminogen named TPE-T-RCN shows the highest molar extinction coefficient, the largest photoluminescence quantum yield, and the most redshifted absorption/emission spectra simultaneously as compared to the control compounds. The nanoprobes are obtained with an amphiphilic copolymer as the matrix encapsulating TPE-T-RCN molecules, which are further surface functionalized with anti-CD47 antibody for specifically binding to CD47 overexpressed in AS plaques. Such nanoprobes allow efficient recognition of AS plaques at different stages in apolipoprotein E-deficient (apoE-/- ) mice, especially for the recognition of early-stage AS plaques prior to micro-computed tomography (CT) and magnetic resonance imaging (MRI). These features impel to apply the nanoprobes in monitoring the therapeutic effects of anti-AS drugs, providing a powerful tool for anti-AS drug screening. Their potential use in targeted imaging of human carotid plaque is further demonstrated.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Heqi Gao
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yuwen Zhang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Hongyu Yan
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jianghua Si
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xingyan Mi
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Shuang Xia
- Department of Radiology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Xuequan Feng
- Department of Neurosurgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, 300071, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Dan Ding
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China
| |
Collapse
|
10
|
Lee H, Shin E, Kang H, Youn H, Youn B. Soybean-Derived Peptides Attenuate Hyperlipidemia by Regulating Trans-Intestinal Cholesterol Excretion and Bile Acid Synthesis. Nutrients 2021; 14:95. [PMID: 35010970 PMCID: PMC8747086 DOI: 10.3390/nu14010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
Increased triglyceride, cholesterol, and low-density lipoprotein (LDL) levels cause hyperlipidemia. Despite the availability of statin-based drugs to reduce LDL levels, additional effective treatments for reducing blood lipid concentrations are required. Herein, soybean hydrolysate prepared via peptic and tryptic hydrolysis promoted trans-intestinal cholesterol excretion (TICE) by increasing ATP-binding cassette subfamily G member 5 (ABCG5) and ABCG8 expression. The peptide sequence capable of promoting TICE was determined via HPLC and LC-MS/MS. Based on this, pure artificial peptides were synthesized, and the efficacy of the selected peptides was verified using cellular and hyperlipidemic mouse models. Soybean hydrolysates, including two bioactive peptides (ALEPDHRVESEGGL and SLVNNDDRDSYRLQSGDAL), promoted TICE via the expression of ABCG5 and ABCG8 in enterocytes. They downregulated expression of hepatic cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and CYP8B1 via expression of fibroblast growth factor 19 (FGF19) in a liver X receptor α (LXRa)-dependent pathway. Administration of bioactive peptides to hyperlipidemic mouse models by oral gavage reduced cholesterol levels in serum via upregulation of ABCG5 and ABCG8 expression in the proximal intestine and through fecal cholesterol excretion, upregulated FGF 15/19 expression, and suppressed hepatic bile acid synthesis. Oral administration of soybean-derived bioactive peptides elicited hypolipidemic effects by increasing TICE and decreasing hepatic cholesterol synthesis.
Collapse
Affiliation(s)
- Haksoo Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.L.); (E.S.); (H.K.)
| | - Eunguk Shin
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.L.); (E.S.); (H.K.)
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.L.); (E.S.); (H.K.)
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.L.); (E.S.); (H.K.)
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea
| |
Collapse
|
11
|
Kosmas CE, Pantou D, Sourlas A, Papakonstantinou EJ, Echavarria Uceta R, Guzman E. New and emerging lipid-modifying drugs to lower LDL cholesterol. Drugs Context 2021; 10:dic-2021-8-3. [PMID: 34795777 PMCID: PMC8565402 DOI: 10.7573/dic.2021-8-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease (CVD) represents the leading cause of death worldwide. The role of low-density lipoprotein-cholesterol (LDL-C) in the pathophysiology of atherosclerosis and CVD has been well recognized. Statins are the standard of care for the management of hypercholesterolaemia, and their effectiveness in lowering LDL-C and reducing CVD risk in both primary and secondary prevention has been well established. However, several patients fail to attain optimal LDL-C goals or are intolerant to statins, especially at high doses. PCSK9 inhibitors, bempedoic acid, inclisiran, ANGPTL3 inhibitors, PPARβ/δ agonists and LXR agonists are novel or upcoming LDL-C-lowering agents that have shown promising beneficial results. This review aims to present and discuss the current clinical and scientific data pertaining to the new and emerging lipid-modifying LDL-C-lowering drugs.
Collapse
Affiliation(s)
- Constantine E Kosmas
- Department of Medicine, Division of Cardiology, Montefiore Medical Center, Bronx, NY, USA.,Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| | - Dafni Pantou
- School of Medicine, University of Nicosia, Nicosia, Cyprus
| | | | | | | | - Eliscer Guzman
- Department of Medicine, Division of Cardiology, Montefiore Medical Center, Bronx, NY, USA.,Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| |
Collapse
|
12
|
Lang JM, Sedgeman LR, Cai L, Layne JD, Wang Z, Pan C, Lee R, Temel RE, Lusis AJ. Dietary and Pharmacologic Manipulations of Host Lipids and Their Interaction With the Gut Microbiome in Non-human Primates. Front Med (Lausanne) 2021; 8:646710. [PMID: 34513856 PMCID: PMC8426918 DOI: 10.3389/fmed.2021.646710] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome influences nutrient processing as well as host physiology. Plasma lipid levels have been associated with the microbiome, although the underlying mechanisms are largely unknown, and the effects of dietary lipids on the gut microbiome in humans are not well-studied. We used a compilation of four studies utilizing non-human primates (Chlorocebus aethiops and Macaca fascicularis) with treatments that manipulated plasma lipid levels using dietary and pharmacological techniques, and characterized the microbiome using 16S rDNA. High-fat diets significantly reduced alpha diversity (Shannon) and the Firmicutes/Bacteroidetes ratio compared to chow diets, even when the diets had different compositions and were applied in different orders. When analyzed for differential abundance using DESeq2, Bulleidia, Clostridium, Ruminococcus, Eubacterium, Coprocacillus, Lachnospira, Blautia, Coprococcus, and Oscillospira were greater in both chow diets while Succinivibrio, Collinsella, Streptococcus, and Lactococcus were greater in both high-fat diets (oleic blend or lard fat source). Dietary cholesterol levels did not affect the microbiome and neither did alterations of plasma lipid levels through treatments of miR-33 antisense oligonucleotide (anti-miR-33), Niemann-Pick C1-Like 1 (NPC1L1) antisense oligonucleotide (ASO), and inducible degrader of LDLR (IDOL) ASO. However, a liver X receptor (LXR) agonist shifted the microbiome and decreased bile acid levels. Fifteen genera increased with the LXR agonist, while seven genera decreased. Pseudomonas increased on the LXR agonist and was negatively correlated to deoxycholic acid, cholic acid, and total bile acids while Ruminococcus was positively correlated with taurolithocholic acid and taurodeoxycholic acid. Seven of the nine bile acids identified in the feces significantly decreased due to the LXR agonist, and total bile acids (nmol/g) was reduced by 62%. These results indicate that plasma lipid levels have, at most, a modest effect on the microbiome, whereas bile acids, derived in part from plasma lipids, are likely responsible for the indirect relationship between lipid levels and the microbiome.
Collapse
Affiliation(s)
- Jennifer M. Lang
- Departments of Medicine, Microbiology and Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Leslie R. Sedgeman
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lei Cai
- Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
| | - Joseph D. Layne
- Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
- Cardiovascular and Metabolic Diseases, Novartis Institutes for Biomedical Research, Cambridge, MA, United States
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Calvin Pan
- Departments of Medicine, Microbiology and Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Richard Lee
- Ionis Pharmaceuticals, Carlsbad, CA, United States
| | - Ryan E. Temel
- Cardiovascular and Metabolic Diseases, Novartis Institutes for Biomedical Research, Cambridge, MA, United States
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Aldons J. Lusis
- Departments of Medicine, Microbiology and Human Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
13
|
Buñay J, Fouache A, Trousson A, de Joussineau C, Bouchareb E, Zhu Z, Kocer A, Morel L, Baron S, Lobaccaro JMA. Screening for liver X receptor modulators: Where are we and for what use? Br J Pharmacol 2020; 178:3277-3293. [PMID: 33080050 DOI: 10.1111/bph.15286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Liver X receptors (LXRs) are members of the nuclear receptor superfamily that are canonically activated by oxidized derivatives of cholesterol. Since the mid-90s, numerous groups have identified LXRs as endocrine receptors that are involved in the regulation of various physiological functions. As a result, when their expression is genetically modified in mice, phenotypic analyses reveal endocrine disorders ranging from infertility to diabetes and obesity, nervous system pathologies such Alzheimer's or Parkinson's disease, immunological disturbances, inflammatory response, and enhancement of tumour development. Based on such findings, it appears that LXRs could constitute good pharmacological targets to prevent and/or to treat these diseases. This review discusses the various aspects of LXR drug discovery, from the tools available for the screening of potential LXR modulators to the current situational analysis of the drugs in development. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Julio Buñay
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Allan Fouache
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Amalia Trousson
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Cyrille de Joussineau
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Erwan Bouchareb
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Zhekun Zhu
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Ayhan Kocer
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Laurent Morel
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Silvere Baron
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Jean-Marc A Lobaccaro
- Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d'Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
14
|
Zeng J, Wu D, Hu H, Young JAT, Yan Z, Gao L. Activation of the Liver X Receptor Pathway Inhibits HBV Replication in Primary Human Hepatocytes. Hepatology 2020; 72:1935-1948. [PMID: 32145089 DOI: 10.1002/hep.31217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/19/2019] [Accepted: 02/19/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV) infection is ranked among the top health priorities worldwide. Accumulating evidence suggests that HBV infection and replication are closely associated with liver metabolism. The liver X receptors (LXRs), which belong to the superfamily of nuclear hormone receptors, are important physiological regulators of lipid and cholesterol metabolism. However, the association between the LXR pathway and HBV infection remains largely unclear. APPROACH AND RESULTS In this study, the antiviral activity of LXR agonists was investigated using multiple HBV cellular models. We observed that in HBV-infected primary human hepatocytes (PHHs), synthetic LXR agonists (T0901317, GW3965, and LXR-623), but not an LXR antagonist (SR9238), potently inhibited HBV replication and gene expression, as demonstrated by substantial reductions in viral RNA, DNA, and antigen production following agonist treatment. However, covalently closed circular DNA (cccDNA) levels were not significantly reduced by the agonists. In addition, no rebound in viral replication was observed after treatment withdrawal, indicating a long-lasting inhibitory effect. These results suggest that LXR agonists decrease the transcriptional activity of cccDNA. In contrast, no significant anti-HBV effect was observed in HepG2-derived cell lines. Interestingly, LXR agonist treatment strongly reduced cholesterol 7α-hydroxylase 1 (CYP7A1) mRNA levels. Knockdown of CYP7A1 gene expression with small interfering RNA inhibited HBV activity in PHHs, suggesting CYP7A1 as a potential factor contributing to the antiviral effects of LXR agonists. CONCLUSIONS We found that activation of the LXR pathway with synthetic LXR agonists could elicit potent anti-HBV activity in PHHs, possibly through sustained suppression of cccDNA transcription. Our work highlights the therapeutic potential of targeting the LXR pathway for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Jing Zeng
- Roche Innovation Center Shanghai, Shanghai, China
| | - Daitze Wu
- Roche Innovation Center Shanghai, Shanghai, China
| | - Hui Hu
- Roche Innovation Center Shanghai, Shanghai, China
| | | | - Zhipeng Yan
- Roche Innovation Center Shanghai, Shanghai, China
| | - Lu Gao
- Roche Innovation Center Shanghai, Shanghai, China
| |
Collapse
|
15
|
Lee S, Youn B. Hypolipidemic Roles of Casein-Derived Peptides by Regulation of Trans-Intestinal Cholesterol Excretion and Bile Acid Synthesis. Nutrients 2020; 12:nu12103058. [PMID: 33036208 PMCID: PMC7600240 DOI: 10.3390/nu12103058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
Hyperlipidemia, a syndrome characterized by an abnormal elevation of blood lipids, causes chronic lethal metabolic disorders. Although statins are regularly prescribed to patients, an alternative to treat the burden of excessive lipids is required for cholesterol control. In this study, it was found that the treatment of casein hydrolyzed by pepsin and trypsin induced trans-intestinal cholesterol excretion (TICE) through ATP-binding cassette subfamily G members 5 (ABCG5) expression. Next, we analyzed sequences of the peptides responsible for TICE induction, synthesized artificial peptides based on the sequences, and the hypolipidemic effects of the peptide treatments were assessed in both in vitro and in vivo models. We determined that two bioactive peptides contained in casein hydrolysates (SQSKVLPVPQK and HPHPHLSF) induced TICE through the expression of ABCG5 in enterocytes and suppressed hepatic mRNA expression of cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and CYP8B1by ileal FGF19 expression both in an liver X receptor α (LXRα)-mediated manner. In the hyperlipidemic mouse models, the oral administration of peptides reduced serum cholesterol levels through elevation of the ABCG5 expression in proximal intestine and fecal cholesterol secretion. Besides this, peptides induced ileal expression of fibroblast growth factor 15/19 (FGF15/19) and inhibited hepatic bile acid synthesis. We found that the oral treatment of casein-derived bioactive peptides could improve hyperlipidemia by regulating intestinal excretion and hepatic synthesis of cholesterols.
Collapse
Affiliation(s)
- Sungmin Lee
- Nuclear Science Research Institute, Pusan National University, Busan 46241, Korea;
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2264; Fax: +82-51-581-2962
| |
Collapse
|
16
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Pontini L, Marinozzi M. Shedding light on the roles of liver X receptors in cancer by using chemical probes. Br J Pharmacol 2020; 178:3261-3276. [PMID: 32673401 DOI: 10.1111/bph.15200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Nuclear receptors, liver X receptor-α (LXRα; NR1H3) and liver X receptor-β (LXRβ; NR1H2), are considered master regulators of lipid homeostasis. During the last couple of decades, their pivotal roles in several physiological and pathological processes ranging from energy supply, immunity, cardiovascular, neurodegenerative disorders and cancer have been highlighted. In this review, the main results achieved during more recent years about our understanding of the LXR involvement in cancer has been mainly obtained using small-molecule chemical probes. Remarkably, all these probes, albeit having different structure and biological properties, have a well demonstrated anti-tumoral activity arising from LXR modulation, indicating a high potential of LXR targeting for the treatment of cancer. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Lorenzo Pontini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maura Marinozzi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
18
|
Belorusova AY, Evertsson E, Hovdal D, Sandmark J, Bratt E, Maxvall I, Schulman IG, Åkerblad P, Lindstedt EL. Structural analysis identifies an escape route from the adverse lipogenic effects of liver X receptor ligands. Commun Biol 2019; 2:431. [PMID: 31799433 PMCID: PMC6874530 DOI: 10.1038/s42003-019-0675-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023] Open
Abstract
Liver X receptors (LXRs) are attractive drug targets for cardiovascular disease treatment due to their role in regulating cholesterol homeostasis and immunity. The anti-atherogenic properties of LXRs have prompted development of synthetic ligands, but these cause major adverse effects-such as increased lipogenesis-which are challenging to dissect from their beneficial activities. Here we show that LXR compounds displaying diverse functional responses in animal models induce distinct receptor conformations. Combination of hydrogen/deuterium exchange mass spectrometry and multivariate analysis allowed identification of LXR regions differentially correlating with anti-atherogenic and lipogenic activities of ligands. We show that lipogenic compounds stabilize active states of LXRα and LXRβ while the anti-atherogenic expression of the cholesterol transporter ABCA1 is associated with the ligand-induced stabilization of LXRα helix 3. Our data indicates that avoiding ligand interaction with the activation helix 12 while engaging helix 3 may provide directions for development of ligands with improved therapeutic profiles.
Collapse
Affiliation(s)
- Anna Y. Belorusova
- Medicinal Chemistry, Respiratory, Inflammation and Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Emma Evertsson
- Medicinal Chemistry, Respiratory, Inflammation and Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Hovdal
- Preclinical and Translational PK & PKPD, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jenny Sandmark
- Structure, Biophysics & Fragment Based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Emma Bratt
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ingela Maxvall
- Translational Science and Experimental Medicine, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
| | - Ira G. Schulman
- Department of Pharmacology, University of Virginia, Charlottesville, VA USA
| | - Peter Åkerblad
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
- Present Address: Albireo Pharma, Gothenburg, Sweden
| | - Eva-Lotte Lindstedt
- Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
19
|
Li C, Chen H, Chen X, Li Y, Hua P, Wei J, Song C, Gu Q, Zhou H, Zhang J, Xu J. Discovery of tissue selective liver X receptor agonists for the treatment of atherosclerosis without causing hepatic lipogenesis. Eur J Med Chem 2019; 182:111647. [PMID: 31499362 DOI: 10.1016/j.ejmech.2019.111647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/02/2019] [Accepted: 08/26/2019] [Indexed: 01/21/2023]
Abstract
Liver X Receptor (LXR) is a potential drug target for atherosclerosis. One of the major challenges in taking LXR modulators to the clinic is steatosis. It was reported that sterol LXR agonists selectively activate LXR in the intestine and macrophage cells rather than in the liver. We hypothesize that sterol LXR agonists may selectively inhibit atherosclerosis without causing hepatic lipogenesis. Thus, based on LXR structure, 12 sterol compounds were designed and tested in a dual-luciferase reporter gene experiment. It was confirmed that compounds 4 and 6 were LXR agonists. Further experiments demonstrated that compounds 4 and 6 inhibit the formation of macrophage foam cells without inducing triglyceride accumulation in either hepatocytes or adipocytes. In vivo studies demonstrated that compound 4 promotes reverse cholesterol transport without inducing hepatic lipogenesis. Thus, we report that these compounds with sterol scaffolds can be promising leads for the treatment of atherosclerosis without inducing steatosis.
Collapse
Affiliation(s)
- Chanjuan Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle Road at University City, Guangzhou, 510006, China
| | - Hao Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle Road at University City, Guangzhou, 510006, China
| | - Xinying Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle Road at University City, Guangzhou, 510006, China
| | - Yanwen Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle Road at University City, Guangzhou, 510006, China
| | - Pei Hua
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle Road at University City, Guangzhou, 510006, China
| | - Junkang Wei
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle Road at University City, Guangzhou, 510006, China
| | - Ching Song
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qiong Gu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle Road at University City, Guangzhou, 510006, China
| | - Huihao Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle Road at University City, Guangzhou, 510006, China
| | - Jingxia Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle Road at University City, Guangzhou, 510006, China.
| | - Jun Xu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle Road at University City, Guangzhou, 510006, China.
| |
Collapse
|
20
|
Promoting intestinal lymphatic transport targets a liver-X receptor (LXR) agonist (WAY-252,623) to lymphocytes and enhances immunomodulation. J Control Release 2019; 296:29-39. [PMID: 30611901 DOI: 10.1016/j.jconrel.2019.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 12/28/2022]
Abstract
Lymphocytes play a central role in the pathology of a range of chronic conditions such as autoimmune disease, transplant rejection, leukemia, lymphoma HIV/AIDs and cardiometabolic diseases such as atherosclerosis. Current treatments for lymphocyte-associated conditions are incompletely effective and/or complicated by a range of off-target toxicities. One major challenge is poor drug access to lymphocytes via the systemic blood and this may be attributed, at least in part, to the fact that lymphocytes are concentrated within lymph fluid and lymphoid tissues, particularly in gut-associated lymphatics. Here we demonstrate that promoting drug uptake into the intestinal lymphatics with a long chain fatty acid, thereby increasing lymphocyte access, enhances the pharmacodynamic effect of a highly lipophilic liver X receptor (LXR) agonist, WAY-252623, that has been suggested as a potential treatment for atherosclerosis. This has been exemplified by: (1) increased mRNA expression of key markers of LXR activation (ABCA1) and regulatory T cells (Foxp3) in local lymphatic lymphocytes and (2) enhanced numbers of CD4+CD25+Foxp3+ regulatory T cells in the systemic circulation, after administration of a 5-fold lower dose with a lymph directing lipid formulation when compared with a non-lipid containing formulation. These data suggest that combining lipophilic, lymphotropic drug candidates such as WAY-252,623, with lymph-directing long chain lipid based formulations can enhance drug targeting to, and activity on, lymphocytes in lymph and that this effect persists through to the systemic circulation. This presents a promising approach to achieve more selective and effective therapeutic outcomes for the treatment of lymphocyte associated diseases.
Collapse
|
21
|
Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 2018; 73:65-91. [PMID: 30528667 DOI: 10.1016/j.plipres.2018.12.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease (CVD), is closely associated with cholesterol accumulation in the arterial intima. Excessive cholesterol is removed by the reverse cholesterol transport (RCT) pathway, representing a major antiatherogenic mechanism. In addition to the RCT, other pathways are required for maintaining the whole-body cholesterol homeostasis. Thus, we propose a working model of integrated cholesterol transport, termed the cholesterol transport system (CTS), to describe body cholesterol metabolism. The novel model not only involves the classical view of RCT but also contains other steps, such as cholesterol absorption in the small intestine, low-density lipoprotein uptake by the liver, and transintestinal cholesterol excretion. Extensive studies have shown that dysfunctional CTS is one of the major causes for hypercholesterolemia and atherosclerosis. Currently, several drugs are available to improve the CTS efficiently. There are also several therapeutic approaches that have entered into clinical trials and shown considerable promise for decreasing the risk of CVD. In recent years, a variety of novel findings reveal the molecular mechanisms for the CTS and its role in the development of atherosclerosis, thereby providing novel insights into the understanding of whole-body cholesterol transport and metabolism. In this review, we summarize the latest advances in this area with an emphasis on the therapeutic potential of targeting the CTS in CVD patients.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
22
|
Abstract
Liver X receptors α and β (LXRα and LXRβ) are nuclear receptors with pivotal roles in the transcriptional control of lipid metabolism. Transcriptional activity of LXRs is induced in response to elevated cellular levels of cholesterol. LXRs bind to and regulate the expression of genes that encode proteins involved in cholesterol absorption, transport, efflux, excretion and conversion to bile acids. The coordinated, tissue-specific actions of the LXR pathway maintain systemic cholesterol homeostasis and regulate immune and inflammatory responses. LXRs also regulate fatty acid metabolism by controlling the lipogenic transcription factor sterol regulatory element-binding protein 1c and regulate genes that encode proteins involved in fatty acid elongation and desaturation. LXRs exert important effects on the metabolism of phospholipids, which, along with cholesterol, are major constituents of cellular membranes. LXR activation preferentially drives the incorporation of polyunsaturated fatty acids into phospholipids by inducing transcription of the remodelling enzyme lysophosphatidylcholine acyltransferase 3. The ability of the LXR pathway to couple cellular sterol levels with the saturation of fatty acids in membrane phospholipids has implications for several physiological processes, including lipoprotein production, dietary lipid absorption and intestinal stem cell proliferation. Understanding how LXRs regulate membrane composition and function might provide new therapeutic insight into diseases associated with dysregulated lipid metabolism, including atherosclerosis, diabetes mellitus and cancer.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
23
|
The Role of PPAR and Its Cross-Talk with CAR and LXR in Obesity and Atherosclerosis. Int J Mol Sci 2018; 19:ijms19041260. [PMID: 29690611 PMCID: PMC5979375 DOI: 10.3390/ijms19041260] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023] Open
Abstract
The prevalence of obesity and atherosclerosis has substantially increased worldwide over the past several decades. Peroxisome proliferator-activated receptors (PPARs), as fatty acids sensors, have been therapeutic targets in several human lipid metabolic diseases, such as obesity, atherosclerosis, diabetes, hyperlipidaemia, and non-alcoholic fatty liver disease. Constitutive androstane receptor (CAR) and liver X receptors (LXRs) were also reported as potential therapeutic targets for the treatment of obesity and atherosclerosis, respectively. Further clarification of the internal relationships between these three lipid metabolic nuclear receptors is necessary to enable drug discovery. In this review, we mainly summarized the cross-talk of PPARs-CAR in obesity and PPARs-LXRs in atherosclerosis.
Collapse
|
24
|
Fessler MB. The challenges and promise of targeting the Liver X Receptors for treatment of inflammatory disease. Pharmacol Ther 2017; 181:1-12. [PMID: 28720427 DOI: 10.1016/j.pharmthera.2017.07.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Liver X Receptors (LXRs) are oxysterol-activated transcription factors that upregulate a suite of genes that together promote coordinated mobilization of excess cholesterol from cells and from the body. The LXRs, like other nuclear receptors, are anti-inflammatory, inhibiting signal-dependent induction of pro-inflammatory genes by nuclear factor-κB, activating protein-1, and other transcription factors. Synthetic LXR agonists have been shown to ameliorate atherosclerosis and a wide range of inflammatory disorders in preclinical animal models. Although this has suggested potential for application to human disease, systemic LXR activation is complicated by hepatic steatosis and hypertriglyceridemia, consequences of lipogenic gene induction in the liver by LXRα. The past several years have seen the development of multiple advanced LXR therapeutics aiming to avoid hepatic lipogenesis, including LXRβ-selective agonists, tissue-selective agonists, and transrepression-selective agonists. Although several synthetic LXR agonists have made it to phase I clinical trials, none have progressed due to unforeseen adverse reactions or undisclosed reasons. Nonetheless, several sophisticated pharmacologic strategies, including structure-guided drug design, cell-specific drug targeting, as well as non-systemic drug routes have been initiated and remain to be comprehensively explored. In addition, recent studies have identified potential utility for targeting the LXRs during therapy with other agents, such as glucocorticoids and rexinoids. Despite the pitfalls encountered to date in translation of LXR agonists to human disease, it appears likely that this accelerating field will ultimately yield effective and safe applications for LXR targeting in humans.
Collapse
Affiliation(s)
- Michael B Fessler
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
25
|
Schulman IG. Liver X receptors link lipid metabolism and inflammation. FEBS Lett 2017; 591:2978-2991. [PMID: 28555747 DOI: 10.1002/1873-3468.12702] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/23/2017] [Indexed: 12/14/2022]
Abstract
The response of immune cells to pathogens is often associated with changes in the flux through basic metabolic pathways. Indeed, in many cases changes in metabolism appear to be necessary for a robust immune response. The Liver X receptors (LXRs) are members of the nuclear hormone receptor superfamily that regulate gene networks controlling cholesterol and lipid metabolism. In immune cells, particularly in macrophages, LXRs also inhibit proinflammatory gene expression. This Review will highlight recent studies that connect LXR-dependent control of lipid metabolism to regulation of the immune response.
Collapse
Affiliation(s)
- Ira G Schulman
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
26
|
Li N, Wang X, Xu Y, Lin Y, Zhu N, Liu P, Lu D, Si S. Identification of a Novel Liver X Receptor Agonist that Regulates the Expression of Key Cholesterol Homeostasis Genes with Distinct Pharmacological Characteristics. Mol Pharmacol 2017; 91:264-276. [PMID: 28087808 DOI: 10.1124/mol.116.105213] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 01/06/2017] [Indexed: 11/22/2022] Open
Abstract
Activation of liver X receptor (LXR) is associated with cholesterol metabolism and anti-inflammatory processes, which makes it beneficial to antiatherosclerosis therapy. Nevertheless, existing agonists that target LXR, for example TO901317, are related to unwanted side effects. In the present study, using a screening method we identified IMB-808, which displayed potent dual LXRα/β agonistic activity. In vitro, IMB-808 effectively increased the expressing quantity of genes related to reverse cholesterol transport process as well as those associated with cholesterol metabolism pathway in multiple cell lines. Additionally, IMB-808 remarkably promoted cholesterol efflux from RAW264.7 as well as THP-1 macrophage cells and reduced cellular lipid accumulation accordingly. Interestingly, compared with TO901317, IMB-808 almost did not increase the expressing quantity of genes related to lipogenesis in HepG2 cells, which indicated that IMB-808 could exhibit fewer internal lipogenic side effects with a characteristic of selective LXR agonist. Furthermore, in comparison with the full LXR agonist TO901317, IMB-808 recruits coregulators differently and possesses a distinct predictive binding pattern for the LXR ligand-binding domain. In summary, our study demonstrated that IMB-808 could act as an innovative partial LXR agonist that avoids common lipogenic side effects, providing insight for the design of novel LXR modulators. Our data indicate that this compound might be used as a promising therapeutic agent for the prospective treatment of atherosclerosis in the future.
Collapse
Affiliation(s)
- Ni Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, People's Republic of China (N.L., Y.L., D.L.); and Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China (N.L., X.W., Y.X., N.Z., P.L., S.S.)
| | - Xiao Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, People's Republic of China (N.L., Y.L., D.L.); and Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China (N.L., X.W., Y.X., N.Z., P.L., S.S.)
| | - Yanni Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, People's Republic of China (N.L., Y.L., D.L.); and Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China (N.L., X.W., Y.X., N.Z., P.L., S.S.)
| | - Yuan Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, People's Republic of China (N.L., Y.L., D.L.); and Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China (N.L., X.W., Y.X., N.Z., P.L., S.S.)
| | - Ningyu Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, People's Republic of China (N.L., Y.L., D.L.); and Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China (N.L., X.W., Y.X., N.Z., P.L., S.S.)
| | - Peng Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, People's Republic of China (N.L., Y.L., D.L.); and Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China (N.L., X.W., Y.X., N.Z., P.L., S.S.)
| | - Duo Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, People's Republic of China (N.L., Y.L., D.L.); and Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China (N.L., X.W., Y.X., N.Z., P.L., S.S.)
| | - Shuyi Si
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, People's Republic of China (N.L., Y.L., D.L.); and Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China (N.L., X.W., Y.X., N.Z., P.L., S.S.)
| |
Collapse
|
27
|
Komati R, Spadoni D, Zheng S, Sridhar J, Riley KE, Wang G. Ligands of Therapeutic Utility for the Liver X Receptors. Molecules 2017; 22:molecules22010088. [PMID: 28067791 PMCID: PMC5373669 DOI: 10.3390/molecules22010088] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 12/21/2022] Open
Abstract
Liver X receptors (LXRs) have been increasingly recognized as a potential therapeutic target to treat pathological conditions ranging from vascular and metabolic diseases, neurological degeneration, to cancers that are driven by lipid metabolism. Amidst intensifying efforts to discover ligands that act through LXRs to achieve the sought-after pharmacological outcomes, several lead compounds are already being tested in clinical trials for a variety of disease interventions. While more potent and selective LXR ligands continue to emerge from screening of small molecule libraries, rational design, and empirical medicinal chemistry approaches, challenges remain in minimizing undesirable effects of LXR activation on lipid metabolism. This review provides a summary of known endogenous, naturally occurring, and synthetic ligands. The review also offers considerations from a molecular modeling perspective with which to design more specific LXRβ ligands based on the interaction energies of ligands and the important amino acid residues in the LXRβ ligand binding domain.
Collapse
Affiliation(s)
- Rajesh Komati
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Dominick Spadoni
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Shilong Zheng
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Jayalakshmi Sridhar
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Kevin E Riley
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Guangdi Wang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| |
Collapse
|
28
|
Kick EK, Busch BB, Martin R, Stevens WC, Bollu V, Xie Y, Boren BC, Nyman MC, Nanao MH, Nguyen L, Plonowski A, Schulman IG, Yan G, Zhang H, Hou X, Valente MN, Narayanan R, Behnia K, Rodrigues AD, Brock B, Smalley J, Cantor GH, Lupisella J, Sleph P, Grimm D, Ostrowski J, Wexler RR, Kirchgessner T, Mohan R. Discovery of Highly Potent Liver X Receptor β Agonists. ACS Med Chem Lett 2016; 7:1207-1212. [PMID: 27994765 PMCID: PMC5150697 DOI: 10.1021/acsmedchemlett.6b00234] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/27/2016] [Indexed: 12/13/2022] Open
Abstract
![]()
Introducing a uniquely substituted
phenyl sulfone into a series
of biphenyl imidazole liver X receptor (LXR) agonists afforded a dramatic
potency improvement for induction of ATP binding cassette transporters,
ABCA1 and ABCG1, in human whole blood. The agonist series demonstrated
robust LXRβ activity (>70%) with low partial LXRα agonist
activity (<25%) in cell assays, providing a window between desired
blood cell ABCG1 gene induction in cynomolgus monkeys and modest elevation
of plasma triglycerides for agonist 15. The addition
of polarity to the phenyl sulfone also reduced binding to the plasma
protein, human α-1-acid glycoprotein. Agonist 15 was selected for clinical development based on the favorable combination
of in vitro properties, excellent pharmacokinetic
parameters, and a favorable lipid profile.
Collapse
Affiliation(s)
| | - Brett B. Busch
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - Richard Martin
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - William C. Stevens
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - Venkataiah Bollu
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - Yinong Xie
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - Brant C. Boren
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - Michael C. Nyman
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - Max H. Nanao
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - Lam Nguyen
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - Artur Plonowski
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - Ira G. Schulman
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | - Grace Yan
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Raju Mohan
- Exelixis Inc., 210 East Grand
Avenue, South San Francisco, California 94080, United States
| |
Collapse
|
29
|
Villa GR, Hulce JJ, Zanca C, Bi J, Ikegami S, Cahill GL, Gu Y, Lum KM, Masui K, Yang H, Rong X, Hong C, Turner KM, Liu F, Hon GC, Jenkins D, Martini M, Armando AM, Quehenberger O, Cloughesy TF, Furnari FB, Cavenee WK, Tontonoz P, Gahman TC, Shiau AK, Cravatt BF, Mischel PS. An LXR-Cholesterol Axis Creates a Metabolic Co-Dependency for Brain Cancers. Cancer Cell 2016; 30:683-693. [PMID: 27746144 PMCID: PMC5479636 DOI: 10.1016/j.ccell.2016.09.008] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/19/2016] [Accepted: 09/17/2016] [Indexed: 12/11/2022]
Abstract
Small-molecule inhibitors targeting growth factor receptors have failed to show efficacy for brain cancers, potentially due to their inability to achieve sufficient drug levels in the CNS. Targeting non-oncogene tumor co-dependencies provides an alternative approach, particularly if drugs with high brain penetration can be identified. Here we demonstrate that the highly lethal brain cancer glioblastoma (GBM) is remarkably dependent on cholesterol for survival, rendering these tumors sensitive to Liver X receptor (LXR) agonist-dependent cell death. We show that LXR-623, a clinically viable, highly brain-penetrant LXRα-partial/LXRβ-full agonist selectively kills GBM cells in an LXRβ- and cholesterol-dependent fashion, causing tumor regression and prolonged survival in mouse models. Thus, a metabolic co-dependency provides a pharmacological means to kill growth factor-activated cancers in the CNS.
Collapse
Affiliation(s)
- Genaro R Villa
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA; Medical Scientist Training Program, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA; Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Jonathan J Hulce
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ciro Zanca
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Junfeng Bi
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Shiro Ikegami
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Gabrielle L Cahill
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Yuchao Gu
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA; Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Kenneth M Lum
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Huijun Yang
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Xin Rong
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cynthia Hong
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kristen M Turner
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Feng Liu
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Gary C Hon
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - David Jenkins
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael Martini
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aaron M Armando
- Department of Pharmacology, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Oswald Quehenberger
- Department of Pharmacology, UCSD School of Medicine, La Jolla, CA 92093, USA; Department of Medicine, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA; Department of Pathology, UCSD School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, UCSD School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy C Gahman
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew K Shiau
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Benjamin F Cravatt
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093, USA; Department of Pathology, UCSD School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
30
|
Kirchgessner TG, Sleph P, Ostrowski J, Lupisella J, Ryan CS, Liu X, Fernando G, Grimm D, Shipkova P, Zhang R, Garcia R, Zhu J, He A, Malone H, Martin R, Behnia K, Wang Z, Barrett YC, Garmise RJ, Yuan L, Zhang J, Gandhi MD, Wastall P, Li T, Du S, Salvador L, Mohan R, Cantor GH, Kick E, Lee J, Frost RJA. Beneficial and Adverse Effects of an LXR Agonist on Human Lipid and Lipoprotein Metabolism and Circulating Neutrophils. Cell Metab 2016; 24:223-33. [PMID: 27508871 DOI: 10.1016/j.cmet.2016.07.016] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/21/2016] [Accepted: 07/21/2016] [Indexed: 01/20/2023]
Abstract
The development of LXR agonists for the treatment of coronary artery disease has been challenged by undesirable properties in animal models. Here we show the effects of an LXR agonist on lipid and lipoprotein metabolism and neutrophils in human subjects. BMS-852927, a novel LXRβ-selective compound, had favorable profiles in animal models with a wide therapeutic index in cynomolgus monkeys and mice. In healthy subjects and hypercholesterolemic patients, reverse cholesterol transport pathways were induced similarly to that in animal models. However, increased plasma and hepatic TG, plasma LDL-C, apoB, apoE, and CETP and decreased circulating neutrophils were also evident. Furthermore, similar increases in LDL-C were observed in normocholesterolemic subjects and statin-treated patients. The primate model markedly underestimated human lipogenic responses and did not predict human neutrophil effects. These studies demonstrate both beneficial and adverse LXR agonist clinical responses and emphasize the importance of further translational research in this area.
Collapse
Affiliation(s)
| | - Paul Sleph
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Jacek Ostrowski
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - John Lupisella
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Carol S Ryan
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Xiaoqin Liu
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Gayani Fernando
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Denise Grimm
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Petia Shipkova
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Rongan Zhang
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Ricardo Garcia
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Jun Zhu
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Aiqing He
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Harold Malone
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | | | - Kamelia Behnia
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Zhaoqing Wang
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Yu Chen Barrett
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Robert J Garmise
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Long Yuan
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Jane Zhang
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Mohit D Gandhi
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Philip Wastall
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Tong Li
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Shuyan Du
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Lisa Salvador
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Raju Mohan
- Exelixis, Inc., South San Francisco, CA 94080, USA
| | - Glenn H Cantor
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Ellen Kick
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - John Lee
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Robert J A Frost
- Research and Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| |
Collapse
|
31
|
Francisco V, Figueirinha A, Costa G, Liberal J, Ferreira I, Lopes MC, García-Rodríguez C, Cruz MT, Batista MT. The Flavone Luteolin Inhibits Liver X Receptor Activation. JOURNAL OF NATURAL PRODUCTS 2016; 79:1423-1428. [PMID: 27135143 DOI: 10.1021/acs.jnatprod.6b00146] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Luteolin is a dietary flavonoid with medicinal properties including antioxidant, antimicrobial, anticancer, antiallergic, and anti-inflammatory. However, the effect of luteolin on liver X receptors (LXRs), oxysterol sensors that regulate cholesterol homeostasis, lipogenesis, and inflammation, has yet to be studied. To unveil the potential of luteolin as an LXRα/β modulator, we investigated by real-time RT-PCR the expression of LXR-target genes, namely, sterol regulatory element binding protein 1c (SREBP-1c) in hepatocytes and ATP-binding cassette transporter (ABC)A1 in macrophages. The lipid content of hepatocytes was evaluated by Oil Red staining. The results demonstrated, for the first time, that luteolin abrogated the LXRα/β agonist-induced LXRα/β transcriptional activity and, consequently, inhibited SREBP-1c expression, lipid accumulation, and ABCA1 expression. Therefore, luteolin could abrogate hypertriglyceridemia associated with LXR activation, thus presenting putative therapeutic effects in diseases associated with deregulated lipid metabolism, such as hepatic steatosis, cardiovascular diseases, and diabetes.
Collapse
Affiliation(s)
- Vera Francisco
- Center for Neurosciences and Cell Biology, University of Coimbra , 3000-214 Coimbra, Portugal
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Artur Figueirinha
- Center for Neurosciences and Cell Biology, University of Coimbra , 3000-214 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Gustavo Costa
- Center for Neurosciences and Cell Biology, University of Coimbra , 3000-214 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Joana Liberal
- Center for Neurosciences and Cell Biology, University of Coimbra , 3000-214 Coimbra, Portugal
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Isabel Ferreira
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria C Lopes
- Center for Neurosciences and Cell Biology, University of Coimbra , 3000-214 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carmen García-Rodríguez
- Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC , C/Sanz y Forés 3, 47003 Valladolid, Spain
| | - Maria T Cruz
- Center for Neurosciences and Cell Biology, University of Coimbra , 3000-214 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria T Batista
- Center for Neurosciences and Cell Biology, University of Coimbra , 3000-214 Coimbra, Portugal
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra , Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
32
|
Stachel SJ, Zerbinatti C, Rudd MT, Cosden M, Suon S, Nanda KK, Wessner K, DiMuzio J, Maxwell J, Wu Z, Uslaner JM, Michener MS, Szczerba P, Brnardic E, Rada V, Kim Y, Meissner R, Wuelfing P, Yuan Y, Ballard J, Holahan M, Klein DJ, Lu J, Fradera X, Parthasarathy G, Uebele VN, Chen Z, Li Y, Li J, Cooke AJ, Bennett DJ, Bilodeau MT, Renger J. Identification and in Vivo Evaluation of Liver X Receptor β-Selective Agonists for the Potential Treatment of Alzheimer’s Disease. J Med Chem 2016; 59:3489-98. [DOI: 10.1021/acs.jmedchem.6b00176] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Zhongguo Chen
- WuXi AppTec Company, Ltd., Shanghai 200131, P. R. China
| | - Yingjie Li
- WuXi AppTec Company, Ltd., Shanghai 200131, P. R. China
| | - Jian Li
- WuXi AppTec Company, Ltd., Shanghai 200131, P. R. China
| | | | | | | | | |
Collapse
|
33
|
Yu S, Li S, Henke A, Muse ED, Cheng B, Welzel G, Chatterjee AK, Wang D, Roland J, Glass CK, Tremblay M. Dissociated sterol-based liver X receptor agonists as therapeutics for chronic inflammatory diseases. FASEB J 2016; 30:2570-9. [PMID: 27025962 DOI: 10.1096/fj.201600244r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/21/2016] [Indexed: 12/26/2022]
Abstract
Liver X receptor (LXR), a nuclear hormone receptor, is an essential regulator of immune responses. Activation of LXR-mediated transcription by synthetic agonists, such as T0901317 and GW3965, attenuates progression of inflammatory disease in animal models. However, the adverse effects of these conventional LXR agonists in elevating liver lipids have impeded exploitation of this intriguing mechanism for chronic therapy. Here, we explore the ability of a series of sterol-based LXR agonists to alleviate inflammatory conditions in mice without hepatotoxicity. We show that oral treatment with sterol-based LXR agonists in mice significantly reduces dextran sulfate sodium colitis-induced body weight loss, which is accompanied by reduced expression of inflammatory markers in the large intestine. The anti-inflammatory property of these agonists is recapitulated in vitro in mouse lamina propria mononuclear cells, human colonic epithelial cells, and human peripheral blood mononuclear cells. In addition, treatment with LXR agonists dramatically suppresses inflammatory cytokine expression in a model of traumatic brain injury. Importantly, in both disease models, the sterol-based agonists do not affect the liver, and the conventional agonist T0901317 results in significant liver lipid accumulation and injury. Overall, these results provide evidence for the development of sterol-based LXR agonists as novel therapeutics for chronic inflammatory diseases.-Yu, S., Li, S., Henke, A., Muse, E. D., Cheng, B., Welzel, G., Chatterjee, A. K., Wang, D., Roland, J., Glass, C. K., Tremblay, M. Dissociated sterol-based liver X receptor agonists as therapeutics for chronic inflammatory diseases.
Collapse
Affiliation(s)
- Shan Yu
- California Institute for Biomedical Research, La Jolla, California, USA
| | - Sijia Li
- California Institute for Biomedical Research, La Jolla, California, USA
| | - Adam Henke
- California Institute for Biomedical Research, La Jolla, California, USA
| | - Evan D Muse
- Department of Cellular and Molecular Medicine and Scripps Translational Science Institute, Scripps Health, La Jolla, California, USA and
| | - Bo Cheng
- California Institute for Biomedical Research, La Jolla, California, USA
| | - Gustav Welzel
- California Institute for Biomedical Research, La Jolla, California, USA
| | | | - Danling Wang
- California Institute for Biomedical Research, La Jolla, California, USA
| | - Jason Roland
- California Institute for Biomedical Research, La Jolla, California, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine and Department of Medicine, University of California, San Diego, La Jolla, California, USA; and
| | - Matthew Tremblay
- California Institute for Biomedical Research, La Jolla, California, USA;
| |
Collapse
|
34
|
Abstract
The role of low-density lipoprotein cholesterol (LDL-C) in the pathophysiology of atherosclerosis is well recognized, and the use of LDL-C lowering medications has led to a significant reduction of cardiovascular risk in both primary and secondary prevention. Statins are the standard of care and their use is supported by extensive evidence demonstrating their effectiveness in lowering LDL-C and in reducing the risk for cardiovascular disease. However, many individuals at risk for cardiovascular disease fail to achieve LDL-C goals. In addition, several patients are intolerant to statins due to side effects, mostly myalgia and weakness, especially at high statin doses. However, until recently, the efficacy of other non-statin LDL-C-lowering drugs was modest, not exceeding a LDL-C reduction of 20%. In view of the above, extensive research is being carried out to identify new LDL-C-lowering agents with an acceptable side effect profile, which, used alone or in combination with statins, would improve our ability to achieve LDL-C goals and reduce cardiovascular risk. This review aims to provide the current evidence regarding the newly approved LDL-C-lowering agents, as well as the clinical and scientific data pertaining to promising new and emerging LDL-C-lowering drugs on the horizon.
Collapse
|
35
|
Korach-André M, Gustafsson JÅ. Liver X receptors as regulators of metabolism. Biomol Concepts 2016; 6:177-90. [PMID: 25945723 DOI: 10.1515/bmc-2015-0007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/01/2015] [Indexed: 11/15/2022] Open
Abstract
The liver X receptors (LXR) are crucial regulators of metabolism. After ligand binding, they regulate gene transcription and thereby mediate changes in metabolic pathways. Modulation of LXR and their downstream targets has appeared to be a promising treatment for metabolic diseases especially atherosclerosis and cholesterol metabolism. However, the complexity of LXR action in various metabolic tissues and the liver side effect of LXR activation have slowed down the interest for LXR drugs. In this review, we summarized the role of LXR in the main metabolically active tissues with a special focus on obesity and associated diseases in mammals. We will also discuss the dual interplay between the two LXR isoforms suggesting that they may collaborate to establish a fine and efficient system for the maintenance of metabolism homeostasis.
Collapse
|
36
|
Barkas F, Elisaf M, Rizos CV, Klouras E, Kostapanos MS, Liberopoulos E. Proton pump inhibitors and statins: a possible interaction that favors low-density lipoprotein cholesterol reduction? Hippokratia 2015; 19:332-337. [PMID: 27688698 PMCID: PMC5033144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND Proton pump inhibitors (PPIs) might influence the metabolism of cholesterol and statins in the liver. AIM The impact of PPIs on low-density lipoprotein cholesterol (LDL-C) levels in statin-treated patients. METHODS Retrospective observational study including consecutive statin-treated individuals followed for ≥3 years in a university hospital lipid clinic. Demographic characteristics as well as clinical and laboratory data were recorded at baseline and the most recent visit. High, moderate and low-intensity statin therapy was defined according to the expected LDL-C reduction (≥50%, 30-50%, and <30%, respectively). We compared the LDL-C reduction in subjects receiving statin + PPI with those on statin alone and assessed the overall effect of PPI administration on LDL-C lowering. RESULTS Of 648 statin-treated subjects, 7% were also taking a PPI. There was no difference between PPI vs. non-PPI group regarding baseline characteristics and intensity of lipid-lowering therapy. Stepwise linear regression analysis showed that PPI use was significantly associated with LDL-C reduction (b =0.104, p =0.005) along with baseline LDL-C levels (b =0.482, p <0.001), treatment with ezetimibe (b =0.198, p <0.001), presence of diabetes (b =0.168, p <0.001), compliance with treatment (b =0.205, p <0.001), intensity of statin treatment (b =0.101, p =0.005) and cardiovascular risk (b =0.082, p =0.049). Subjects receiving statin + PPI had a higher LDL-C reduction by 6.4% compared with those taking a statin alone (fully adjusted p =0.005). CONCLUSIONS PPIs may modestly boost the statin-mediated LDL-C reduction. This effect should be confirmed by prospective clinical studies. Hippokratia 2015; 19 (4): 332-337.
Collapse
Affiliation(s)
- F Barkas
- Department of Internal Medicine, School of Medicine, University Hospital of Ioannina, Ioannina, Greece
| | - M Elisaf
- Department of Internal Medicine, School of Medicine, University Hospital of Ioannina, Ioannina, Greece
| | - C V Rizos
- Department of Internal Medicine, School of Medicine, University Hospital of Ioannina, Ioannina, Greece
| | - E Klouras
- Department of Internal Medicine, School of Medicine, University Hospital of Ioannina, Ioannina, Greece
| | - M S Kostapanos
- Clinical Pharmacology Unit, Addenbrooke's Hospital Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - E Liberopoulos
- Department of Internal Medicine, School of Medicine, University Hospital of Ioannina, Ioannina, Greece
| |
Collapse
|
37
|
Nian S, Gan X, Tan X, Yu Z, Wang P, Chen X, Wang G. Discovery and Synthesis of a Novel Series of Liver X Receptor Antagonists. Chem Pharm Bull (Tokyo) 2015; 63:628-35. [PMID: 26062802 DOI: 10.1248/cpb.c15-00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fourteen novel compounds were prepared and their antagonistic activities against liver X receptors (LXR) α/β were tested in vitro. Compound 26 had an IC50 value of 6.4 µM against LXRα and an IC50 value of 5.6 µM against LXRβ. Docking studies and the results of structure-activity relationships support the further development of this chemical series as LXRα/β antagonists.
Collapse
Affiliation(s)
- Siyun Nian
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry
| | | | | | | | | | | | | |
Collapse
|
38
|
Hijmans BS, Tiemann CA, Grefhorst A, Boesjes M, van Dijk TH, Tietge UJF, Kuipers F, van Riel NAW, Groen AK, Oosterveer MH. A systems biology approach reveals the physiological origin of hepatic steatosis induced by liver X receptor activation. FASEB J 2014; 29:1153-64. [PMID: 25477282 DOI: 10.1096/fj.14-254656] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 11/05/2014] [Indexed: 12/12/2022]
Abstract
Liver X receptor (LXR) agonists exert potent antiatherosclerotic actions but simultaneously induce excessive triglyceride (TG) accumulation in the liver. To obtain a detailed insight into the underlying mechanism of hepatic TG accumulation, we used a novel computational modeling approach called analysis of dynamic adaptations in parameter trajectories (ADAPT). We revealed that both input and output fluxes to hepatic TG content are considerably induced on LXR activation and that in the early phase of LXR agonism, hepatic steatosis results from only a minor imbalance between the two. It is generally believed that LXR-induced hepatic steatosis results from increased de novo lipogenesis (DNL). In contrast, ADAPT predicted that the hepatic influx of free fatty acids is the major contributor to hepatic TG accumulation in the early phase of LXR activation. Qualitative validation of this prediction showed a 5-fold increase in the contribution of plasma palmitate to hepatic monounsaturated fatty acids on acute LXR activation, whereas DNL was not yet significantly increased. This study illustrates that complex effects of pharmacological intervention can be translated into distinct patterns of metabolic regulation through state-of-the-art mathematical modeling.
Collapse
Affiliation(s)
- Brenda S Hijmans
- Departments of *Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and Groningen Centre for Systems Biology, University of Groningen, Groningen, The Netherlands
| | - Christian A Tiemann
- Departments of *Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and Groningen Centre for Systems Biology, University of Groningen, Groningen, The Netherlands
| | - Aldo Grefhorst
- Departments of *Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and Groningen Centre for Systems Biology, University of Groningen, Groningen, The Netherlands
| | - Marije Boesjes
- Departments of *Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and Groningen Centre for Systems Biology, University of Groningen, Groningen, The Netherlands
| | - Theo H van Dijk
- Departments of *Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and Groningen Centre for Systems Biology, University of Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Departments of *Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and Groningen Centre for Systems Biology, University of Groningen, Groningen, The Netherlands
| | - Folkert Kuipers
- Departments of *Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and Groningen Centre for Systems Biology, University of Groningen, Groningen, The Netherlands
| | - Natal A W van Riel
- Departments of *Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and Groningen Centre for Systems Biology, University of Groningen, Groningen, The Netherlands
| | - Albert K Groen
- Departments of *Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and Groningen Centre for Systems Biology, University of Groningen, Groningen, The Netherlands
| | - Maaike H Oosterveer
- Departments of *Pediatrics and Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and Groningen Centre for Systems Biology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
39
|
Kirchgessner TG, Martin R, Sleph P, Grimm D, Liu X, Lupisella J, Smalley J, Narayanan R, Xie Y, Ostrowski J, Cantor GH, Mohan R, Kick E. Pharmacological characterization of a novel liver X receptor agonist with partial LXRα activity and a favorable window in nonhuman primates. J Pharmacol Exp Ther 2014; 352:305-14. [PMID: 25467132 DOI: 10.1124/jpet.114.219923] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Liver X Receptors (LXRs) α and β are nuclear hormone receptors that regulate multiple genes involved in reverse cholesterol transport (RCT) and are potential drug targets for atherosclerosis. However, full pan agonists also activate lipogenic genes, resulting in elevated plasma and hepatic lipids. We report the pharmacology of BMS-779788 [2-(2-(1-(2-chlorophenyl)-1-methylethyl)-1-(3'-(methylsulfonyl)-4-biphenylyl)-1H-imidazol-4-yl)-2-propanol], a potent partial LXR agonist with LXRβ selectivity, which has an improved therapeutic window in the cynomolgus monkey compared with a full pan agonist. BMS-779788 induced LXR target genes in blood in vivo with an EC50 = 610 nM, a value similar to its in vitro blood gene induction potency. BMS-779788 was 29- and 12-fold less potent than the full agonist T0901317 in elevating plasma triglyceride and LDL cholesterol, respectively, with similar results for plasma cholesteryl ester transfer protein and apolipoprotein B. However, ABCA1 and ABCG1 mRNA inductions in blood, which are critical for RCT, were comparable. Increased liver triglyceride was observed after 7-day treatment with BMS-779788 at the highest dose tested and was nearly identical to the dose response for plasma triglyceride, consistent with the central role of liver LXR in these lipogenic effects. Dose-dependent increases in biliary cholesterol and decreases in phospholipid and bile acid occurred in BMS-779788-treated animals, similar to LXR agonist effects reported in mouse. In summary, BMS-779788, a partial LXRβ selective agonist, has decreased lipogenic potential compared with a full pan agonist in cynomolgus monkeys, with similar potency in the induction of genes known to stimulate RCT. This provides support in nonhuman primates for improving LXR agonist therapeutic windows by limiting LXRα activity.
Collapse
Affiliation(s)
- Todd G Kirchgessner
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - Richard Martin
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - Paul Sleph
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - Denise Grimm
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - Xiaoqin Liu
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - John Lupisella
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - James Smalley
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - Rangaraj Narayanan
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - Yinong Xie
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - Jacek Ostrowski
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - Glenn H Cantor
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - Raju Mohan
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| | - Ellen Kick
- Bristol-Myers Squibb Research and Development, Bristol-Myers Squibb, Inc., Princeton, New Jersey (T.G.K., P.S., D.G., X.L., J.L., J.S., R.N., J.O., G.H.C., E.K.); and Exelixis, Inc., South San Francisco, California (R.Ma., Y.X., R.Mo.)
| |
Collapse
|
40
|
Liver X receptor (LXR) partial agonists: biaryl pyrazoles and imidazoles displaying a preference for LXRβ. Bioorg Med Chem Lett 2014; 25:372-7. [PMID: 25435151 DOI: 10.1016/j.bmcl.2014.11.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 01/01/2023]
Abstract
A series of biaryl pyrazole and imidazole Liver X Receptor (LXR) partial agonists has been synthesized displaying LXRβ selectivity. The LXRβ selective partial agonist 18 was identified with potent induction of ATP binding transporters ABCA1 and ABCG1 in human whole blood (EC50=1.2μM, 55% efficacy). In mice 18 displayed peripheral induction of ABCA1 at 3 and 10mpk doses with no significant elevation of plasma or hepatic triglycerides at these doses, showing an improved profile compared to a full pan-agonist.
Collapse
|
41
|
Breevoort SR, Angdisen J, Schulman IG. Macrophage-independent regulation of reverse cholesterol transport by liver X receptors. Arterioscler Thromb Vasc Biol 2014; 34:1650-60. [PMID: 24947527 DOI: 10.1161/atvbaha.114.303383] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The ability of high-density lipoprotein (HDL) particles to accept cholesterol from peripheral cells, such as lipid-laden macrophages, and to transport cholesterol to the liver for catabolism and excretion in a process termed reverse cholesterol transport (RCT) is thought to underlie the beneficial cardiovascular effects of elevated HDL. The liver X receptors (LXRs; LXRα and LXRβ) regulate RCT by controlling the efflux of cholesterol from macrophages to HDL and the excretion, catabolism, and absorption of cholesterol in the liver and intestine. Importantly, treatment with LXR agonists increases RCT and decreases atherosclerosis in animal models. Nevertheless, LXRs are expressed in multiple tissues involved in RCT, and their tissue-specific contributions to RCT are still not well defined. APPROACH AND RESULTS Using tissue-specific LXR deletions together with in vitro and in vivo assays of cholesterol efflux and fecal cholesterol excretion, we demonstrate that macrophage LXR activity is neither necessary nor sufficient for LXR agonist-stimulated RCT. In contrast, the ability of LXR agonists primarily acting in the intestine to increase HDL mass and HDL function seems to underlie the ability of LXR agonists to stimulate RCT in vivo. CONCLUSIONS We demonstrate that activation of LXR in macrophages makes little or no contribution to LXR agonist-stimulated RCT. Unexpectedly, our studies suggest that the ability of macrophages to efflux cholesterol to HDL in vivo is not regulated by macrophage activity but is primarily determined by the quantity and functional activity of HDL.
Collapse
Affiliation(s)
- Sarah R Breevoort
- From the Department of Pharmacology, University of Virginia, Charlottesville
| | - Jerry Angdisen
- From the Department of Pharmacology, University of Virginia, Charlottesville
| | - Ira G Schulman
- From the Department of Pharmacology, University of Virginia, Charlottesville.
| |
Collapse
|
42
|
Barylski M, Toth PP, Nikolic D, Banach M, Rizzo M, Montalto G. Emerging therapies for raising high-density lipoprotein cholesterol (HDL-C) and augmenting HDL particle functionality. Best Pract Res Clin Endocrinol Metab 2014; 28:453-61. [PMID: 24840270 DOI: 10.1016/j.beem.2013.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
High-density lipoprotein (HDL) particles are highly complex polymolecular aggregates capable of performing a remarkable range of atheroprotective functions. Considerable research is being performed throughout the world to develop novel pharmacologic approaches to: (1) promote apoprotein A-I and HDL particle biosynthesis; (2) augment capacity for reverse cholesterol transport so as to reduce risk for the development and progression of atherosclerotic disease; and (3) modulate the functionality of HDL particles in order to increase their capacity to antagonize oxidation, inflammation, thrombosis, endothelial dysfunction, insulin resistance, and other processes that participate in arterial wall injury. HDL metabolism and the molecular constitution of HDL particles are highly complex and can change in response to both acute and chronic alterations in the metabolic milieu. To date, some of these interventions have been shown to positively impact rates of coronary artery disease progression. However, none of them have as yet been shown to significantly reduce risk for cardiovascular events. In the next 3-5 years a variety of pharmacologic interventions for modulating HDL metabolism and functionality will be tested in large, randomized, prospective outcomes trials. It is hoped that one or more of these therapeutic approaches will result in the ability to further reduce risk for cardiovascular events once low-density lipoprotein cholesterol and non-HDL-cholesterol targets have been attained.
Collapse
Affiliation(s)
- Marcin Barylski
- Department of Internal Medicine and Cardiological Rehabilitation, Medical University of Lodz, Lodz, Poland.
| | - Peter P Toth
- CGH Medical Center, Sterling, IL 61081, USA; University of Illinois School of Medicine, Peoria, IL, USA.
| | - Dragana Nikolic
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.
| | - Maciej Banach
- Nephrology and Hypertension, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland.
| | - Manfredi Rizzo
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy.
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy.
| |
Collapse
|
43
|
Sallam T, Ito A, Rong X, Kim J, van Stijn C, Chamberlain BT, Jung ME, Chao LC, Jones M, Gilliland T, Wu X, Su GL, Tangirala RK, Tontonoz P, Hong C. The macrophage LBP gene is an LXR target that promotes macrophage survival and atherosclerosis. J Lipid Res 2014; 55:1120-30. [PMID: 24671012 PMCID: PMC4031943 DOI: 10.1194/jlr.m047548] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/22/2014] [Indexed: 01/25/2023] Open
Abstract
The liver X receptors (LXRs) are members of the nuclear receptor superfamily that regulate sterol metabolism and inflammation. We sought to identify previously unknown genes regulated by LXRs in macrophages and to determine their contribution to atherogenesis. Here we characterize a novel LXR target gene, the lipopolysaccharide binding protein (LBP) gene. Surprisingly, the ability of LXRs to control LBP expression is cell-type specific, occurring in macrophages but not liver. Treatment of macrophages with oxysterols or loading with modified LDL induces LBP in an LXR-dependent manner, suggesting a potential role for LBP in the cellular response to cholesterol overload. To investigate this further, we performed bone marrow transplant studies. After 18 weeks of Western diet feeding, atherosclerotic lesion burden was assessed revealing markedly smaller lesions in the LBP(-/-) recipients. Furthermore, loss of bone marrow LBP expression increased apoptosis in atherosclerotic lesions as determined by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Supporting in vitro studies with isolated macrophages showed that LBP expression does not affect cholesterol efflux but promotes the survival of macrophages in the setting of cholesterol loading. The LBP gene is a macrophage-specific LXR target that promotes foam cell survival and atherogenesis.
Collapse
Affiliation(s)
- Tamer Sallam
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA
| | - Ayaka Ito
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA
| | - Xin Rong
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA
| | - Jason Kim
- Department of Medicine, Division of Endocrinology, University of California, Los Angeles, Los Angeles, CA
| | - Caroline van Stijn
- Department of Medicine, Division of Endocrinology, University of California, Los Angeles, Los Angeles, CA
| | - Brian T Chamberlain
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA
| | - Lily C Chao
- Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA
| | - Marius Jones
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA
| | - Thomas Gilliland
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA
| | - XiaoHui Wu
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Grace L Su
- Medical Service, Department of Veterans Affairs Medical Center, Ann Arbor, MI Department of Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Rajendra K Tangirala
- Department of Medicine, Division of Endocrinology, University of California, Los Angeles, Los Angeles, CA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA
| | - Cynthia Hong
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
44
|
Tice CM, Noto PB, Fan KY, Zhuang L, Lala DS, Singh SB. The Medicinal Chemistry of Liver X Receptor (LXR) Modulators. J Med Chem 2014; 57:7182-205. [PMID: 24832115 DOI: 10.1021/jm500442z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Colin M. Tice
- Vitae Pharmaceuticals Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Paul B. Noto
- Vitae Pharmaceuticals Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Kristi Yi Fan
- Vitae Pharmaceuticals Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Linghang Zhuang
- Vitae Pharmaceuticals Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Deepak S. Lala
- Vitae Pharmaceuticals Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Suresh B. Singh
- Vitae Pharmaceuticals Inc., 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| |
Collapse
|
45
|
Hong C, Tontonoz P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov 2014; 13:433-44. [DOI: 10.1038/nrd4280] [Citation(s) in RCA: 401] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Sene A, Apte RS. Eyeballing cholesterol efflux and macrophage function in disease pathogenesis. Trends Endocrinol Metab 2014; 25:107-14. [PMID: 24252662 PMCID: PMC3943676 DOI: 10.1016/j.tem.2013.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 12/22/2022]
Abstract
Disorders of lipid metabolism are strongly associated with cardiovascular disease. Recently, there has been significant focus on how tissues process lipid deposits. Impaired cholesterol efflux has been shown to be crucial in mediating lipid deposition in atherosclerosis. The inability of macrophages to effectively efflux cholesterol from tissues initiates inflammation, plaque neovascularization, and subsequent rupture. Recent studies suggest that inability to effectively efflux cholesterol from tissues may have global implications far beyond atherosclerosis, extending to the pathophysiology of unrelated diseases. We examine the unifying mechanisms by which impaired cholesterol efflux facilitates tissue-specific inflammation and disease progression in age-related macular degeneration (AMD), a blinding eye disease, and in atherosclerosis, a disease associated with significant cardiovascular morbidity.
Collapse
Affiliation(s)
- Abdoulaye Sene
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA
| | - Rajendra S Apte
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA; Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, Missouri 63110, USA.
| |
Collapse
|
47
|
Gomes Quinderé AL, Benevides NMB, Carbone F, Mach F, Vuilleumier N, Montecucco F. Update on selective treatments targeting neutrophilic inflammation in atherogenesis and atherothrombosis. Thromb Haemost 2013; 111:634-46. [PMID: 24285257 DOI: 10.1160/th13-08-0712] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/28/2013] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is the most common pathological process underlying cardiovascular diseases. Current therapies are largely focused on alleviating hyperlipidaemia and preventing thrombotic complications, but do not completely eliminate risk of suffering recurrent acute ischaemic events. Specifically targeting the inflammatory processes may help to reduce this residual risk of major adverse cardiovascular events in atherosclerotic patients. The involvement of neutrophils in the pathophysiology of atherosclerosis is an emerging field, where evidence for their causal contribution during various stages of atherosclerosis is accumulating. Therefore, the identification of neutrophils as a potential therapeutic target may offer new therapeutic perspective to reduce the current atherosclerotic burden. This narrative review highlights the expanding role of neutrophils in atherogenesis and discusses on the potential treatment targeting neutrophil-related inflammation and associated atherosclerotic plaque vulnerability.
Collapse
Affiliation(s)
| | | | | | | | | | - Fabrizio Montecucco
- Fabrizio Montecucco, MD, PhD, Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland, Tel: +41 22 38 27 238, Fax: +41 22 38 27 245, E mail:
| |
Collapse
|
48
|
Steffensen KR, Jakobsson T, Gustafsson JÅ. Targeting liver X receptors in inflammation. Expert Opin Ther Targets 2013; 17:977-90. [PMID: 23738533 DOI: 10.1517/14728222.2013.806490] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The two oxysterol receptors, 'liver X receptors (LXRs)' LXRα and LXRβ, are amongst the emerging newer drug targets within the nuclear receptor family and targeting LXRs represents novel strategies needed for prevention and treatment of diseases where current therapeutics is inadequate. AREAS COVERED This review discusses the current understanding of LXR biology with an emphasis on the molecular aspects of LXR signalling establishing their potential as drug targets. Recent advances of their transcriptional mechanisms in inflammatory pathways and their physiological roles in inflammation and immunity are described. EXPERT OPINION The new discoveries of LXR-regulated inflammatory pathways have ignited new promises for LXRs as drug targets. The broad physiological roles of LXRs involve a high risk of unwanted side effects. Recent insights into LXR biology of the brain indicate a highly important role in neuronal development and a clinical trial testing an LXR agonist reported adverse neurological side effects. This suggests that drug development must focus on limiting the range of LXR signalling - possibly achieved through subtype, tissue specific, promoter specific or pathway specific activation of LXRs where a successful candidate drug must be carefully studied for its effect in the central nervous system.
Collapse
Affiliation(s)
- Knut R Steffensen
- Karolinska Institutet, Center for Biosciences, Department of Biosciences and Nutrition, S-14183 Stockholm, Sweden.
| | | | | |
Collapse
|
49
|
Hafiane A, Genest J. HDL, Atherosclerosis, and Emerging Therapies. CHOLESTEROL 2013; 2013:891403. [PMID: 23781332 PMCID: PMC3678415 DOI: 10.1155/2013/891403] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/22/2013] [Accepted: 04/30/2013] [Indexed: 12/21/2022]
Abstract
This review aims to provide an overview on the properties of high-density lipoproteins (HDLs) and their cardioprotective effects. Emergent HDL therapies will be presented in the context of the current understanding of HDL function, metabolism, and protective antiatherosclerotic properties. The epidemiological association between levels of HDL-C or its major apolipoprotein (apoA-I) is strong, graded, and coherent across populations. HDL particles mediate cellular cholesterol efflux, have antioxidant properties, and modulate vascular inflammation and vasomotor function and thrombosis. A link of causality has been cast into doubt with Mendelian randomization data suggesting that genes causing HDL-C deficiency are not associated with increased cardiovascular risk, nor are genes associated with increased HDL-C, with a protective effect. Despite encouraging data from small studies, drugs that increase HDL-C levels have not shown an effect on major cardiovascular end-points in large-scale clinical trials. It is likely that the cholesterol mass within HDL particles is a poor biomarker of therapeutic efficacy. In the present review, we will focus on novel therapeutic avenues and potential biomarkers of HDL function. A better understanding of HDL antiatherogenic functions including reverse cholesterol transport, vascular protective and antioxidation effects will allow novel insight on novel, emergent therapies for cardiovascular prevention.
Collapse
Affiliation(s)
| | - Jacques Genest
- Faculty of Medicine, Center for Innovative Medicine, McGill University Health Center, Royal Victoria Hospital, McGill University, 687 Pine Avenue West, Montreal, QC, Canada H3A 1A1
| |
Collapse
|
50
|
Ignatova ID, Angdisen J, Moran E, Schulman IG. Differential regulation of gene expression by LXRs in response to macrophage cholesterol loading. Mol Endocrinol 2013; 27:1036-47. [PMID: 23686114 DOI: 10.1210/me.2013-1051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The ability of cells to precisely control gene expression in response to intracellular and extracellular signals plays an important role in both normal physiology and in pathological settings. For instance, the accumulation of excess cholesterol by macrophages initiates a genetic response mediated by the liver X receptors (LXRs)-α (NR1H3) and LXRβ (NR1H2), which facilitates the transport of cholesterol out of cells to high-density lipoprotein particles. Studies using synthetic LXR agonists have also demonstrated that macrophage LXR activation simultaneously induces a second network of genes that promotes fatty acid and triglyceride synthesis that may support the detoxification of excess free cholesterol by storage in the ester form. We now show that treatment of human THP-1 macrophages with endogenous or synthetic LXR ligands stimulates both transcriptional and posttranscriptional pathways that result in the selective recruitment of the LXRα subtype to LXR-regulated promoters. Interestingly, when human or mouse macrophages are loaded with cholesterol under conditions that mimic the development of atherogenic macrophage foam cells, a selective LXR response is generated that induces genes mediating cholesterol transport but does not coordinately regulate genes involved in fatty acid synthesis. The gene-selective response to cholesterol loading occurs, even in the presence of LXRα binding to the promoter of the gene encoding the sterol regulatory element-binding protein-1c, the master transcriptional regulator of fatty acid synthesis. The ability of promoter bound LXRα to recruit RNA polymerase to the sterol regulatory element-binding protein-1c promoter, however, appears to be ligand selective.
Collapse
Affiliation(s)
- Irena D Ignatova
- Department of Pharmacology, University of Virginia, 1300 Jefferson Park Avenue, PO Box 800735, Charlottesville, Virginia 22908, USA.
| | | | | | | |
Collapse
|