1
|
Ağagündüz D, Yeşildemir Ö, Koçyiğit E, Koçak T, Özen Ünaldı B, Ayakdaş G, Budán F. Oxylipins Derived from PUFAs in Cardiometabolic Diseases: Mechanism of Actions and Possible Nutritional Interactions. Nutrients 2024; 16:3812. [PMID: 39599599 PMCID: PMC11597274 DOI: 10.3390/nu16223812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Oxylipins are oxidized fatty acids, both saturated and unsaturated, formed through pathways that involve singlet oxygen or dioxygen-mediated oxygenation reactions and are primarily produced by enzyme families such as cyclooxygenases, lipoxygenases, and cytochrome P450. These lipid-based complex bioactive molecules are pivotal signal mediators, acting in a hormone-like manner in the pathophysiology of numerous diseases, especially cardiometabolic diseases via modulating plenty of mechanisms. It has been reported that omega-6 and omega-3 oxylipins are important novel biomarkers of cardiometabolic diseases. Moreover, collected literature has noted that diet and dietary components, especially fatty acids, can modulate these oxygenated lipid products since they are mainly derived from dietary omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) or linoleic acid and α-linolenic by elongation and desaturation pathways. This comprehensive review aims to examine their correlations to cardiometabolic diseases and how diets modulate oxylipins. Also, some aspects of developing new biomarkers and therapeutical utilization are detailed in this review.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Türkiye
| | - Özge Yeşildemir
- Department of Nutrition and Dietetics, Bursa Uludag University, Görükle Campus, 16059 Bursa, Türkiye;
| | - Emine Koçyiğit
- Department of Nutrition and Dietetics, Ordu University, Cumhuriyet Yerleşkesi, 52200 Ordu, Türkiye;
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Gümüşhane University, Gümüşhanevî Kampüsü, 29100 Gümüşhane, Türkiye;
| | - Buket Özen Ünaldı
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Türkiye;
| | - Gamze Ayakdaş
- Department of Nutrition and Dietetics, Acıbadem University, Kerem Aydınlar Campus, 34752 İstanbul, Türkiye;
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
2
|
Frankhouser DE, DeWess T, Snodgrass IF, Cole RM, Steck S, Thomas D, Kalu C, Belury MA, Clinton SK, Newman JW, Yee LD. Randomized dose-response trial of n-3 fatty acids in hormone receptor negative breast cancer survivors- impact on breast adipose oxylipin and DNA methylation patterns. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.16.24313691. [PMID: 39371146 PMCID: PMC11451633 DOI: 10.1101/2024.09.16.24313691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Increasing evidence suggests the unique susceptibility of estrogen receptor and progesterone receptor negative (ERPR-) breast cancer to dietary fat amount and type. Dietary n-3 polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), may modulate breast adipose fatty acid profiles and downstream bioactive metabolites to counteract pro-inflammatory, pro-carcinogenic signaling in the mammary microenvironment. Objective To determine effects of ~1 to 5 g/d EPA+DHA over 12 months on breast adipose fatty acid and oxylipin profiles in women with ERPR(-) breast cancer, a high-risk molecular subtype. Methods We conducted a 12-month randomized controlled, double-blind clinical trial of ~5g/d vs ~1g/d DHA+EPA supplementation in women within 5 years of completing standard therapy for ERPR(-) breast cancer Stages 0-III. Blood and breast adipose tissue specimens were collected every 3 months for biomarker analyses including fatty acids by gas chromatography, oxylipins by LC-MS/MS, and DNA methylation by reduced-representation bisulfite sequencing (RRBS). Results A total of 51 participants completed the 12-month intervention. Study treatments were generally well-tolerated. While both doses increased n-3 PUFAs from baseline in breast adipose, erythrocytes, and plasma, the 5g/d supplement was more potent (n =51, p <0.001). The 5g/d dose also reduced plasma triglycerides from baseline (p =0.008). Breast adipose oxylipins at 0, 6, and 12 months showed dose-dependent increases in unesterified and esterified DHA and EPA metabolites (n =28). Distinct DNA methylation patterns in adipose tissue after 12 months were identified, with effects unique to the 5g/d dose group (n =17). Conclusions Over the course of 1 year, EPA+DHA dose-dependently increased concentrations of these fatty acids and their derivative oxylipin metabolites, producing differential DNA methylation profiles of gene promoters involved in metabolism-related pathways critical to ERPR(-) breast cancer development and progression. These data provide evidence of both metabolic and epigenetic effects of n-3 PUFAs in breast adipose tissue, elucidating novel mechanisms of action for high-dose EPA+DHA-mediated prevention of ERPR(-) breast cancer.
Collapse
Affiliation(s)
- David E. Frankhouser
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA 91010
| | - Todd DeWess
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA 91010
- Department of Surgery, City of Hope, Duarte CA 91010
| | - Isabel F. Snodgrass
- University of California Davis West Coast Metabolomics Center, Genome Center, University of California Davis, Davis CA, 95616
| | - Rachel M. Cole
- Department of Food Science and Technology, The Ohio State University, Columbus OH 43210
| | - Sarah Steck
- The Ohio State University Comprehensive Cancer Center, Columbus OH 43210
| | | | - Chidimma Kalu
- Department of Surgery, City of Hope, Duarte CA 91010
| | - Martha A. Belury
- Department of Food Science and Technology, The Ohio State University, Columbus OH 43210
- The Ohio State University Comprehensive Cancer Center, Columbus OH 43210
| | - Steven K. Clinton
- The Ohio State University Comprehensive Cancer Center, Columbus OH 43210
- Department of Internal Medicine, The Ohio State University, Columbus OH 43210
| | - John W. Newman
- University of California Davis West Coast Metabolomics Center, Genome Center, University of California Davis, Davis CA, 95616
- Department of Nutrition, University of California Davis, Davis CA, 956169
- United States Department of Agriculture Agricultural Research Service, Western Human Nutrition Research Center, Davis CA, 95616
| | - Lisa D. Yee
- Department of Surgery, City of Hope, Duarte CA 91010
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| |
Collapse
|
3
|
Abbattista R, Feinberg NG, Snodgrass IF, Newman JW, Dandekar AM. Unveiling the "hidden quality" of the walnut pellicle: a precious source of bioactive lipids. FRONTIERS IN PLANT SCIENCE 2024; 15:1395543. [PMID: 38957599 PMCID: PMC11217525 DOI: 10.3389/fpls.2024.1395543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Tree nut consumption has been widely associated with various health benefits, with walnuts, in particular, being linked with improved cardiovascular and neurological health. These benefits have been attributed to walnuts' vast array of phenolic antioxidants and abundant polyunsaturated fatty acids. However, recent studies have revealed unexpected clinical outcomes related to walnut consumption, which cannot be explained simply with the aforementioned molecular hallmarks. With the goal of discovering potential molecular sources of these unexplained clinical outcomes, an exploratory untargeted metabolomics analysis of the isolated walnut pellicle was conducted. This analysis revealed a myriad of unusual lipids, including oxylipins and endocannabinoids. These lipid classes, which are likely present in the pellicle to enhance the seeds' defenses due to their antimicrobial properties, also have known potent bioactivities as mammalian signaling molecules and homeostatic regulators. Given the potential value of this tissue for human health, with respect to its "bioactive" lipid fraction, we sought to quantify the amounts of these compounds in pellicle-enriched waste by-products of mechanized walnut processing in California. An impressive repertoire of these compounds was revealed in these matrices, and in notably significant concentrations. This discovery establishes these low-value agriculture wastes promising candidates for valorization and translation into high-value, health-promoting products; as these molecules represent a potential explanation for the unexpected clinical outcomes of walnut consumption. This "hidden quality" of the walnut pellicle may encourage further consumption of walnuts, and walnut industries may benefit from a revaluation of abundant pellicle-enriched waste streams, leading to increased sustainability and profitability through waste upcycling.
Collapse
Affiliation(s)
- Ramona Abbattista
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Noah G. Feinberg
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Isabel F. Snodgrass
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
| | - John W. Newman
- Western Human Nutrition Research Center, United States Department of Agriculture, Davis, CA, United States
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
4
|
Cofán M, Checa A, Serra-Mir M, Roth I, Valls-Pedret C, Lopez-Illamola A, Doménech M, Rajaram S, Lázaro I, Sabaté J, Ros E, Wheelock CE, Sala-Vila A. A Walnut-Enriched Diet for 2 Years Changes the Serum Oxylipin Profile in Healthy Older Persons. J Nutr 2024; 154:395-402. [PMID: 38081585 DOI: 10.1016/j.tjnut.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/31/2023] Open
Abstract
BACKGROUND Oxylipins are products derived from polyunsaturated fatty acids (PUFAs) that play a role in cardiovascular disease and aging. Fish oil-derived n-3 PUFAs promote the formation of anti-inflammatory and vasodilatory oxylipins; however, there are little data on oxylipins derived from α-linolenic acid (C18:3n-3), the primary plant-derived n-3 PUFA. Walnuts are a source of C18:3n-3. OBJECTIVES To investigate the effect on serum oxylipins of a diet enriched with walnuts at 15% energy (30-60 g/d; 2.6-5.2 g C18:3n-3/d) for 2 y compared to a control diet (abstention from walnuts) in healthy older males and females (63-79 y). METHODS The red blood cell proportion of α-linolenic acid was determined by gas chromatography as a measure of compliance. Ultra-performance liquid chromatography-tandem mass spectrometry was used to measure serum concentrations of 53 oxylipins in participants randomly assigned to receive the walnut diet (n = 64) or the control diet (n = 51). Two-year concentration changes (final minus baseline) were log-transformed (base log-10) and standardized (mean-centered and divided by the standard deviation of each variable). Volcano plots were then generated (fold change ≥1.5; false discovery rate ≤0.1). For each oxylipin delta surviving multiple testing, we further assessed between-intervention group differences by analysis of covariance adjusting for age, sex, BMI, and the baseline concentration of the oxylipin. RESULTS The 2-y change in red blood cell C18:3n-3 in the walnut group was significantly higher than that in the control group (P < 0.001). Compared to the control diet, the walnut diet resulted in statistically significantly greater increases in 3 C18:3n-3-derived oxylipins (9-HOTrE, 13-HOTrE, and 12,13-EpODE) and in the C20:5n-3 derived 14,15-diHETE, and greater reductions of the C20:4n-6-derived 5-HETE, 19-HETE, and 5,6-diHETrE. CONCLUSIONS Long-term walnut consumption changes the serum oxylipin profile in healthy older persons. Our results add novel mechanistic evidence on the cardioprotective effects of walnuts. TRIAL REGISTRATION Clinicaltrials.gov Identifier: NCT01634841.
Collapse
Affiliation(s)
- Montserrat Cofán
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Checa
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - M Serra-Mir
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona, Spain
| | - I Roth
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona, Spain
| | - Cinta Valls-Pedret
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona, Spain
| | - Anna Lopez-Illamola
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona, Spain
| | - Monica Doménech
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona, Spain
| | - Sujatha Rajaram
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, United States
| | - Iolanda Lázaro
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Joan Sabaté
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA, United States
| | - Emilio Ros
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clínic, Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden.
| | - Aleix Sala-Vila
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain; The Fatty Acid Research Institute, Sioux Falls, SD, United States.
| |
Collapse
|
5
|
Xing C, Tang M, Yang J, Wang S, Xu Q, Feng W, Mu Y, Li F, Zijian Zhao A. Eicosapentaenoic acid metabolites promotes the trans-differentiation of pancreatic α cells to β cells. Biochem Pharmacol 2023; 216:115775. [PMID: 37659738 DOI: 10.1016/j.bcp.2023.115775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by life-threatening absolute insulin deficiency. Although ω-3 polyunsaturated fatty acids (PUFAs) displayed significant anti-hyperglycemic activity, the insulinotropic effects of their metabolites remain unknown. In this study, we took advantage of a transgenic model, mfat-1, that overexpresses an ω-3 desaturase and can convert ω-6 PUFAs to ω-3 PUFAs. Eicosapentaenoic acid (EPA) was sharply elevated in the pancreatic tissues of mfat-1 transgenic mice compared with wild-type (WT) mice. In contrast to the WT mice, the mfat-1 transgenics did not develop overt diabetes and still maintained normal blood glucose levels and insulin secretion following streptozotocin-treatment. Furthermore, under the condition of pancreatic β-cell damage, co-incubation of the metabolites of EPA produced from the CYP 450 pathway with isolated islets promoted the overexpression of insulin as well as β-cell specific markers, pdx1 and Nkx6.1 in pancreatic α-cells. Addition of EPA metabolites to the cultured glucagon-positive α-cell lines, a series of pancreatic β-cell markers were also found significantly elevated. Combined together, these results demonstrated the effects of ω-3 PUFAs and their metabolites on the trans-differentiation from α-cells to β-cells and its potential usage in the intervention of T1DM.
Collapse
Affiliation(s)
- Chaofeng Xing
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology. Guangzhou, Guangdong Province, China
| | - Minyi Tang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology. Guangzhou, Guangdong Province, China
| | - Jianqin Yang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology. Guangzhou, Guangdong Province, China
| | - Shuai Wang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology. Guangzhou, Guangdong Province, China
| | - Qihua Xu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology. Guangzhou, Guangdong Province, China
| | - Wenbin Feng
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology. Guangzhou, Guangdong Province, China
| | - Yunping Mu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology. Guangzhou, Guangdong Province, China
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology. Guangzhou, Guangdong Province, China.
| | - Allan Zijian Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology. Guangzhou, Guangdong Province, China.
| |
Collapse
|
6
|
Czyżowska A, Brown J, Xu H, Sataranatarajan K, Kinter M, Tyrell VJ, O'Donnell VB, Van Remmen H. Elevated phospholipid hydroperoxide glutathione peroxidase (GPX4) expression modulates oxylipin formation and inhibits age-related skeletal muscle atrophy and weakness. Redox Biol 2023; 64:102761. [PMID: 37279604 PMCID: PMC10276143 DOI: 10.1016/j.redox.2023.102761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
Our previous studies support a key role for mitochondrial lipid hydroperoxides as important contributors to denervation-related muscle atrophy, including muscle atrophy associated with aging. Phospholipid hydroperoxide glutathione peroxidase 4 (GPX4) is an essential antioxidant enzyme that directly reduces phospholipid hydroperoxides and we previously reported that denervation-induced muscle atrophy is blunted in a mouse model of GPX4 overexpression. Therefore, the goal of the present study was to determine whether GPX4 overexpression can reduce the age-related increase in mitochondrial hydroperoxides in skeletal muscle and ameliorate age-related muscle atrophy and weakness (sarcopenia). Male C57Bl6 WT and GPX4 transgenic (GPX4Tg) mice were studied at 3 to 5 and 23-29 months of age. Basal mitochondrial peroxide generation was reduced by 34% in muscle fibers from aged GPX4Tg compared to old WT mice. GPX4 overexpression also reduced levels of lipid peroxidation products: 4-HNE, MDA, and LOOHs by 38%, 32%, and 84% respectively in aged GPX4Tg mice compared to aged WT mice. Muscle mass was preserved in old GPX4 Tg mice by 11% and specific force generation was 21% higher in old GPX4Tg versus age matched male WT mice. Oxylipins from lipoxygenases (LOX) and cyclooxygenase (COX), as well as less abundant non-enzymatically generated isomers, were significantly reduced by GPX4 overexpression. The expression of cPLA2, 12/15-LOX and COX-2 were 1.9-, 10.5- and 3.4-fold greater in old versus young WT muscle respectively, and 12/15-LOX and COX-2 levels were reduced by 37% and 35%, respectively in muscle from old GPX4Tg mice. Our study suggests that lipid peroxidation products may play an important role in the development of sarcopenia, and their detoxification might be an effective intervention in preventing muscle atrophy.
Collapse
Affiliation(s)
- Agnieszka Czyżowska
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Jacob Brown
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States; Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, United States
| | - Hongyang Xu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Kavitha Sataranatarajan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States
| | - Victoria J Tyrell
- Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, CF14 4XN, UK
| | - Valerie B O'Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, CF14 4XN, UK
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, United States; Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, United States.
| |
Collapse
|
7
|
Eroshchenko NN, Veselov VV, Pirogov AV, Danilova EY, Kirushin AN, Paravyan AL, Cravotto G. Development and validation of a HPLC-MS/MS method for the analysis of fatty acids - in the form of FAME ammonium adducts - in human whole blood and erythrocytes to determine omega-3 index. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1227:123799. [PMID: 37379757 DOI: 10.1016/j.jchromb.2023.123799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Recent scientific studies in the field of health and nutrition have unanimously affirmed the importance of consuming the omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), because of their cardioprotective properties. Fatty acid profiling in erythrocyte membranes allows the omega-3 index, which is a recognized indicator of the risk of developing cardiovascular disease, to be calculated. One consequence of the upward trend in healthy lifestyles and longevity is an increase in the number of studies into the omega-3 index, which requires a reliable method for the quantitative analysis of fatty acids. This article describes the development and validation of a sensitive and reproducible liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method for the quantitative analysis of 23 fatty acids (in the form of fatty acid methyl esters, FAMEs) in 40 µl of whole blood and erythrocytes. The list of acids includes saturated, omega-9 unsaturated, omega-6 unsaturated and omega-3 unsaturated fatty acids as well as their trans-isomers. The limit of quantitation was 250 ng ml-1 for C12:0, C16:0 and C18:0; and 62.5 ng ml-1 for other FAMEs, including EPA, DHA and trans-isomers of FAME C16:1, C18:1 and C18:2 n-6. Sample preparation for fatty acid (FA) esterification/methylation with boron trifluoride-methanol (BF3) has been optimized. Chromatographic separation has been carried out on a C8 column in gradient mode using a mixture of acetonitrile, isopropanol and water with the addition of 0.1% formic acid and 5 mM ammonium formate. As a result, the problem of separating the cis- and trans-isomers of FAME C16:1, C18:1 and C18:2 n-6 has been solved. The electrospray ionization mass spectrometry (ESI-MS) detection of FAMEs, in the form of ammonium adducts, has been optimized for the first time, which has made the method more sensitive that when the protonated species are used. This method has been applied to 12 samples from healthy subjects that consumed omega-3 supplements and has proven to be a reliable tool for determining the omega-3 index.
Collapse
Affiliation(s)
- N N Eroshchenko
- Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya ul, 119991 Moscow, Russia.
| | - V V Veselov
- Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya ul, 119991 Moscow, Russia
| | - A V Pirogov
- Chemistry Department, M.V. Lomonosov Moscow State University, Lenih Hills, d. 1, str. 3., 119991 Moscow, Russia
| | - E Y Danilova
- Chemistry Department, M.V. Lomonosov Moscow State University, Lenih Hills, d. 1, str. 3., 119991 Moscow, Russia
| | - A N Kirushin
- Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya ul, 119991 Moscow, Russia
| | - A L Paravyan
- Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya ul, 119991 Moscow, Russia
| | - G Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| |
Collapse
|
8
|
Sarparast M, Pourmand E, Hinman J, Vonarx D, Reason T, Zhang F, Paithankar S, Chen B, Borhan B, Watts JL, Alan J, Lee KSS. Dihydroxy-Metabolites of Dihomo-γ-linolenic Acid Drive Ferroptosis-Mediated Neurodegeneration. ACS CENTRAL SCIENCE 2023; 9:870-882. [PMID: 37252355 PMCID: PMC10214511 DOI: 10.1021/acscentsci.3c00052] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 05/31/2023]
Abstract
Even after decades of research, the mechanism of neurodegeneration remains understudied, hindering the discovery of effective treatments for neurodegenerative diseases. Recent reports suggest that ferroptosis could be a novel therapeutic target for neurodegenerative diseases. While polyunsaturated fatty acid (PUFA) plays an important role in neurodegeneration and ferroptosis, how PUFAs may trigger these processes remains largely unknown. PUFA metabolites from cytochrome P450 and epoxide hydrolase metabolic pathways may modulate neurodegeneration. Here, we test the hypothesis that specific PUFAs regulate neurodegeneration through the action of their downstream metabolites by affecting ferroptosis. We find that the PUFA dihomo-γ-linolenic acid (DGLA) specifically induces ferroptosis-mediated neurodegeneration in dopaminergic neurons. Using synthetic chemical probes, targeted metabolomics, and genetic mutants, we show that DGLA triggers neurodegeneration upon conversion to dihydroxyeicosadienoic acid through the action of CYP-EH (CYP, cytochrome P450; EH, epoxide hydrolase), representing a new class of lipid metabolites that induce neurodegeneration via ferroptosis.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Elham Pourmand
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jennifer Hinman
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Derek Vonarx
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tommy Reason
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Fan Zhang
- Department
of Pharmacology and Toxicology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Shreya Paithankar
- Department
of Pediatrics and Human Development, Michigan
State University, Grand Rapids, Michigan 49503, United States
| | - Bin Chen
- Department
of Pharmacology and Toxicology, Michigan
State University, East Lansing, Michigan 48824, United States
- Department
of Pediatrics and Human Development, Michigan
State University, Grand Rapids, Michigan 49503, United States
| | - Babak Borhan
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jennifer L. Watts
- School
of Molecular Biosciences, Washington State
University, Pullman, Washington 99164, United States
| | - Jamie Alan
- Department
of Pharmacology and Toxicology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Kin Sing Stephen Lee
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Pharmacology and Toxicology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
9
|
de Marco Castro E, Kampschulte N, Murphy CH, Schebb NH, Roche HM. Oxylipin status, before and after LC n-3 PUFA supplementation, has little relationship with skeletal muscle biology in older adults at risk of sarcopenia. Prostaglandins Leukot Essent Fatty Acids 2023; 189:102531. [PMID: 36645979 DOI: 10.1016/j.plefa.2022.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Oxylipins form endogenously via the oxygenation of long-chain polyunsaturated fatty acids (LC PUFA). Several oxylipins are highly bioactive molecules and are believed to be key mediators of LC PUFA metabolism in the body. However, little is known in relation to whether oxylipins mediate alterations in skeletal muscle mass and function. The objective of this study was to determine if a relationship exists between the oxylipin profile and skeletal muscle biology in healthy older adults at risk of sarcopenia and determine if this changes in response to LC n-3 PUFA supplementation. MATERIALS AND METHODS This exploratory study investigated the baseline correlations between LC n-3, n-6 and n-9 PUFA-derived oxylipins and markers of muscle biology. For this, the concentration of 79 free (i.e., non-esterified) oxylipins was quantified in human plasma by liquid chromatography-mass spectrometry (LC-MS) and retrospectively correlated to phenotypic outcomes obtained pre-intervention from the NUTRIMAL study (n = 49). After examining the baseline relationship, the potential effect of supplementation (LC n-3 PUFA or an isoenergetic control made of high-oleic sunflower and corn oil) was evaluated by correlating the change in oxylipins concentration and the change in markers of skeletal muscle biology. The relationship between oxylipins pre- and post-intervention and their parent PUFA were also examined. RESULTS At baseline, the hydroxy product of mead acid (n-9 PUFA), 5-HETrE, was negatively correlated to the phenotypic parameters appendicular lean mass index (ALMI) (p = 0.003, r=-0.41), skeletal muscle mass index (SMMI) (p = 0.001, r=-0.46), handgrip strength (HGS) (p<0.001, r = 0.48) and isometric knee extension (p<0.001, r=-0.48). Likewise, LC n-6 PUFA hydroxy‑PUFA were negatively correlated to HGS (i.e., 12-HETrE, p = 0.002, r=-0.42, and 5- and 11-HETE, p = 0.006, r=-0.47 and p<0.001, r=-0.50 respectively), single leg stand time (i.e., 12-HETrE, p = 0.006, r=-0.39 and 16-HETE, p = 0.002, r=-0.43), and five-time-sit-to-stand test (FTST) performance (16-HETE, p = 0.006, r = 0.39), and positively correlated to gait speed (i.e., 12-HETrE, p = 0.007, r = 0.38 and 16-HETE, p = 0.006, r = 0.39). LC n-3 PUFA supplementation increased eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) derived oxylipins and reduced n-6 PUFA derived oxylipins. Parameters of skeletal muscle mass and strength were not significantly altered in either LC n-3 PUFA or placebo groups. Changes in plasma oxylipins concentrations were closely related to changes in their parent PUFA, assessed in the erythrocyte membrane, but were not associated with any changes in skeletal muscle parameters. DISCUSSION AND CONCLUSION At baseline, the status n-9 (5-HETrE) and n-6 PUFA derivates [12-HETrE, and 5-, 11- and 16-HETE], but not n-3 PUFA derived oxylipins, were associated with poor skeletal muscle health parameters (i.e., mass and strength). However, these correlations were no longer present when correlating relative changes from pre to post timepoints. An independent cohort validation is needed to explore baseline correlations further. Further research is warranted to assess other biological mechanisms by which LC n-3 PUFA might affect muscle biology.
Collapse
Affiliation(s)
- E de Marco Castro
- UCD Conway Institute & UCD Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - N Kampschulte
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - C H Murphy
- Agrifood Business and Spatial Analysis, Teagasc Food Research Centre, Ashtown, Dublin, 15, Ireland
| | - N H Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - H M Roche
- UCD Conway Institute & UCD Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland; The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Belfast, UK.
| |
Collapse
|
10
|
Lindqvist HM, Winkvist A, Gjertsson I, Calder PC, Armando AM, Quehenberger O, Coras R, Guma M. Influence of Dietary n-3 Long Chain Polyunsaturated Fatty Acid Intake on Oxylipins in Erythrocytes of Women with Rheumatoid Arthritis. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020717. [PMID: 36677774 PMCID: PMC9863541 DOI: 10.3390/molecules28020717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Oxylipins derived from n-3 fatty acids are suggested as the link between these fatty acids and reduced inflammation. The aim of the present study was to explore the effect of a randomized controlled cross-over intervention on oxylipin patterns in erythrocytes. Twenty-three women with rheumatoid arthritis completed 2 × 11-weeks exchanging one cooked meal per day, 5 days a week, for a meal including 75 g blue mussels (source for n-3 fatty acids) or 75 g meat. Erythrocyte oxylipins were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results were analyzed with multivariate data analysis. Orthogonal projections to latent structures (OPLS) with effect projections and with discriminant analysis were performed to compare the two diets' effects on oxylipins. Wilcoxon signed rank test was used to test pre and post values for each dietary period as well as post blue-mussel vs. post meat. The blue-mussel diet led to significant changes in a few oxylipins from the precursor fatty acids arachidonic acid and dihomo-ɣ-linolenic acid. Despite significant changes in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and free EPA in erythrocytes in the mussel group, no concurrent changes in their oxylipins were seen. Further research is needed to study the link between n-3 fatty-acid intake, blood oxylipins, and inflammation.
Collapse
Affiliation(s)
- Helen M. Lindqvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
- Correspondence: (H.M.L.); (P.C.C.)
| | - Anna Winkvist
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
- Correspondence: (H.M.L.); (P.C.C.)
| | - Aaron M. Armando
- Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Oswald Quehenberger
- Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Roxana Coras
- Department of Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Monica Guma
- Department of Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Sarparast M, Pourmand E, Hinman J, Vonarx D, Reason T, Zhang F, Paithankar S, Chen B, Borhan B, Watts JL, Alan J, Lee KSS. Dihydroxy-Metabolites of Dihomo-gamma-linolenic Acid Drive Ferroptosis-Mediated Neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522933. [PMID: 36711920 PMCID: PMC9881903 DOI: 10.1101/2023.01.05.522933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Even after decades of research, the mechanism of neurodegeneration remains understudied, hindering the discovery of effective treatments for neurodegenerative diseases. Recent reports suggest that ferroptosis could be a novel therapeutic target for neurodegenerative diseases. While polyunsaturated fatty acid (PUFA) plays an important role in neurodegeneration and ferroptosis, how PUFAs may trigger these processes remains largely unknown. PUFA metabolites from cytochrome P450 and epoxide hydrolase metabolic pathways may modulate neurodegeneration. Here, we test the hypothesis that specific PUFAs regulate neurodegeneration through the action of their downstream metabolites by affecting ferroptosis. We find that the PUFA, dihomo gamma linolenic acid (DGLA), specifically induces ferroptosis-mediated neurodegeneration in dopaminergic neurons. Using synthetic chemical probes, targeted metabolomics, and genetic mutants, we show that DGLA triggers neurodegeneration upon conversion to dihydroxyeicosadienoic acid through the action of CYP-EH, representing a new class of lipid metabolite that induces neurodegeneration via ferroptosis.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Elham Pourmand
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jennifer Hinman
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Derek Vonarx
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Tommy Reason
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Fan Zhang
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Shreya Paithankar
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, USA
| | - Bin Chen
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA,Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI, USA
| | - Babak Borhan
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jennifer L. Watts
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Jamie Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA,Corresponding Authors
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, MI, USA,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA,Corresponding Authors
| |
Collapse
|
12
|
Monirujjaman M, Bathe OF, Mazurak VC. Dietary EPA+DHA Mitigate Hepatic Toxicity and Modify the Oxylipin Profile in an Animal Model of Colorectal Cancer Treated with Chemotherapy. Cancers (Basel) 2022; 14:cancers14225703. [PMID: 36428795 PMCID: PMC9688617 DOI: 10.3390/cancers14225703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Irinotecan (CPT-11) and 5-fluorouracil (5-FU) are commonly used to treat metastatic colorectal cancer, but chemotherapy-associated steatosis/steatohepatitis (CASSH) frequently accompanies their use. The objective of this study was to determine effect of CPT-11+5-FU on liver toxicity, liver oxylipins, and cytokines, and to explore whether these alterations could be modified by dietary eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the form of fish oil (EPA+DHA). Tumor-bearing animals were administered CPT-11+5-FU and maintained on a control diet or a diet containing EPA+DHA (2.3 g/100 g). Livers were collected one week after chemotherapy for the analysis of oxylipins, cytokines, and markers of liver pathology (oxidized glutathione, GSSH; 4-hydroxynonenal, 4-HNE, and type-I collagen fiber). Dietary EPA+DHA prevented the chemotherapy-induced increases in liver GSSH (p < 0.011) and 4-HNE (p < 0.006). Compared with the tumor-bearing animals, ten oxylipins were altered (three/ten n-6 oxylipins were elevated while seven/ten n-3 oxylipins were reduced) following chemotherapy. Reductions in the n-3 fatty-acid-derived oxylipins that were evident following chemotherapy were restored by dietary EPA+DHA. Liver TNF-α, IL-6 and IL-10 were elevated (p < 0.05) following chemotherapy; dietary EPA+DHA reduced IL-6 (p = 0.09) and eotaxin (p = 0.007) levels. Chemotherapy-induced liver injury results in distinct alterations in oxylipins and cytokines, and dietary EPA+DHA attenuates these pathophysiological effects.
Collapse
Affiliation(s)
- Md Monirujjaman
- Division of Human Nutrition, Department of Agricultural Food and Nutritional Science, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Oliver F. Bathe
- Department of Surgery and Oncology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Vera C. Mazurak
- Division of Human Nutrition, Department of Agricultural Food and Nutritional Science, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Correspondence: ; Tel.: +1-780-492-8048
| |
Collapse
|
13
|
Watkins BA, Friedman AN, Kim J, Borkowski K, Kaiser S, Fiehn O, Newman JW. Blood Levels of Endocannabinoids, Oxylipins, and Metabolites Are Altered in Hemodialysis Patients. Int J Mol Sci 2022; 23:ijms23179781. [PMID: 36077177 PMCID: PMC9456435 DOI: 10.3390/ijms23179781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Hemodialysis patients (HDPs) have higher blood pressure, higher levels of inflammation, a higher risk of cardiovascular disease, and unusually low plasma n-3 polyunsaturated fatty acid (PUFA) levels compared to healthy subjects. The objective of our investigation was to examine the levels of endocannabinoids (eCBs) and oxylipins (OxLs) in female HDPs compared to healthy matched female controls, with the underlying hypothesis that differences in specific PUFA levels in hemodialysis patients would result in changes in eCBs and OxLs. Plasma phospholipid fatty acids were analyzed by gas chromatography. Plasma was extracted and analyzed using ultra-performance liquid chromatography followed by electrospray ionization and tandem MS for eCBs and OxLs. The global untargeted metabolite profiling of plasma was performed by GCTOF MS. Compared to the controls, HDPs showed lower levels of plasma EPA and the associated OxL metabolites 5- and 12-HEPE, 14,15-DiHETE, as well as DHA derived 19(20)-EpDPE. Meanwhile, no changes in arachidonylethanolamide or 2-arachidonylglycerol in the open circulation were detected. Higher levels of multiple N-acylethanolamides, monoacylglycerols, biomarkers of progressive kidney disease, the nitric oxide metabolism-linked citrulline, and the uremic toxins kynurenine and creatine were observed in HDP. These metabolic differences in cCBs and OxLs help explain the severe inflammatory and cardiovascular disease manifested by HDPs, and they should be explored in future studies.
Collapse
Affiliation(s)
- Bruce A. Watkins
- Department of Nutrition, University of California, Davis, CA 95616, USA
- Correspondence:
| | - Allon N. Friedman
- University Hospital, Suite 6100, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jeffrey Kim
- Department of Internal Medicine, University of California, Davis, CA 95616, USA
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California, Davis, CA 95616, USA
| | | | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA
| | - John W. Newman
- Obesity and Metabolism Research Unit, USDA-ARS Agriculture Research Service, Davis, CA 95616, USA
| |
Collapse
|
14
|
Angelotti A, Snoke DB, Ormiston K, Cole RM, Borkowski K, Newman JW, Orchard TS, Belury MA. Potential Cardioprotective Effects and Lipid Mediator Differences in Long-Chain Omega-3 Polyunsaturated Fatty Acid Supplemented Mice Given Chemotherapy. Metabolites 2022; 12:metabo12090782. [PMID: 36144189 PMCID: PMC9505633 DOI: 10.3390/metabo12090782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Many commonly used chemotherapies induce mitochondrial dysfunction in cardiac muscle, which leads to cardiotoxicity and heart failure later in life. Dietary long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) have demonstrated cardioprotective function in non-chemotherapy models of heart failure, potentially through the formation of LC n-3 PUFA-derived bioactive lipid metabolites. However, it is unknown whether dietary supplementation with LC n-3 PUFA can protect against chemotherapy-induced cardiotoxicity. To test this, 36 female ovariectomized C57BL/6J mice were randomized in a two-by-two factorial design to either a low (0 g/kg EPA + DHA) or high (12.2 g/kg EPA + DHA) LC n-3 PUFA diet, and received either two vehicle or two chemotherapy (9 mg/kg anthracycline + 90 mg/kg cyclophosphamide) tail vein injections separated by two weeks. Body weight and food intake were measured as well as heart gene expression and fatty acid composition. Heart mitochondria were isolated using differential centrifugation. Mitochondrial isolate oxylipin and N-acylethanolamide levels were measured by mass spectrometry after alkaline hydrolysis. LC n-3 PUFA supplementation attenuated some chemotherapy-induced differences (Myh7, Col3a1) in heart gene expression, and significantly altered various lipid species in cardiac mitochondrial preparations including several epoxy fatty acids [17(18)-EpETE] and N-acylethanolamines (arachidonoylethanolamine, AEA), suggesting a possible functional link between heart lipids and cardiotoxicity.
Collapse
Affiliation(s)
- Austin Angelotti
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Deena B. Snoke
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
- Department of Medicine, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Kate Ormiston
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Rachel M. Cole
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA
| | - John W. Newman
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA
- Western Human Nutrition Research Center, United States Department of Agriculture-Agriculture Research Service, Davis, CA 95616, USA
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA
| | - Tonya S. Orchard
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Martha A. Belury
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
- Correspondence:
| |
Collapse
|
15
|
Richardson CE, Krishnan S, Gray IJ, Keim NL, Newman JW. The Omega-3 Index Response to an 8 Week Randomized Intervention Containing Three Fatty Fish Meals Per Week Is Influenced by Adiposity in Overweight to Obese Women. Front Nutr 2022; 9:810003. [PMID: 35187036 PMCID: PMC8855121 DOI: 10.3389/fnut.2022.810003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/12/2022] [Indexed: 01/13/2023] Open
Abstract
BackgroundThe Dietary Guidelines for Americans (DGA) recommends consuming ~225 g/wk of a variety of seafood providing >1.75 g/wk of long-chain omega-3 fatty acids to reduce cardiovascular disease risk, however individual responses to treatment vary.ObjectiveThis study had three main objectives. First, to determine if a DGA-conforming diet (DGAD), in comparison to a typical American diet (TAD), can increase the omega-3 index (OM3I), i.e., the red blood cell mol% of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA). Second, to identify factors explaining variability in the OM3I response to dietary treatment. Third to identify factors associated with the baseline OM3I.DesignThis is a secondary analysis of a randomized, double-blind 8 wk dietary intervention of overweight/obese women fed an 8d rotating TAD (n = 20) or DGAD (n = 22) registered at www.clinicaltrials.gov as NCT02298725. The DGAD-group consumed 240 g/wk of Atlantic farmed salmon and albacore tuna in three meals with an estimated EPA + DHA of 3.7 ± 0.6 g/wk. The TAD-group consumed ~160 g/wk of farmed white shrimp and a seafood salad containing imitation crab in three meal with an estimated EPA + DHA of 0.45 ± 0.05 g/wk. Habitual diet was determined at baseline, and body composition was determined at 0 and 8wks. Red blood cell fatty acids were measured at 0, 2 and 8 wk.ResultsAt 8 wk, the TAD-group OM3I was unchanged (5.90 ± 1.35–5.80 ± 0.76%), while the DGAD-group OM3I increased (5.63 ± 1.27–7.33 ± 1.36%; p < 0.001). In the DGAD-group 9 of 22 participants achieved an OM3I >8%. Together, body composition and the baseline OM3I explained 83% of the response to treatment variability. Baseline OM3I (5.8 ± 1.3%; n = 42) was negatively correlated to the android fat mass (p = 0.0007) and positively correlated to the FFQ estimated habitual (EPA+DHA) when expressed as a ratio to total dietary fat (p = 0.006).ConclusionsAn 8 wk TAD did not change the OM3I of ~6%, while a DGAD with 240 g/wk of salmon and albacore tuna increased the OM3I. Body fat distribution and basal omega-3 status are primary factors influencing the OM3I response to dietary intake in overweight/obese women.
Collapse
Affiliation(s)
| | - Sridevi Krishnan
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Ira J. Gray
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS) Western Human Nutrition Research Center, Davis, CA, United States
| | - Nancy L. Keim
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS) Western Human Nutrition Research Center, Davis, CA, United States
| | - John W. Newman
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- West Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, CA, United States
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS) Western Human Nutrition Research Center, Davis, CA, United States
- *Correspondence: John W. Newman
| |
Collapse
|
16
|
Nutritional Status Predicts Fatty Acid Uptake from Fish and Soybean Oil Supplements for Treatment of Cancer-Related Fatigue: Results from a Phase II Nationwide Study. Nutrients 2021; 14:nu14010184. [PMID: 35011059 PMCID: PMC8747418 DOI: 10.3390/nu14010184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer-related fatigue is a prevalent and debilitating condition that persists for years into survivorship. Studies evaluating both fish oil supplementation on fatigue and associations between fish oil consumption and fatigue have shown mixed effects; it is unknown what factors contribute to these differential effects. Herein, we investigate whether the nutritional status of cancer survivors was associated with serum omega-3 concentration or change in serum omega-3s throughout a fish oil supplementation study, and then if any of these factors were associated with fatigue. Breast cancer survivors 4-36 months post-treatment with moderate-severe fatigue were randomized to take 6 g fish oil, 6 g soybean oil, or 3 g of each daily for 6 weeks. Baseline nutritional status was calculated using the Controlling Nutritional Status tool (serum albumin, lymphocytes, cholesterol). At baseline and post-intervention, serum fatty acids were quantified and fatigue was assessed using the Multidimensional Fatigue Symptom Inventory. Participants (n = 85) were 61.2 ± 9.7 years old with a body mass index of 31.9 ± 6.7 kg/m2; 69% had a good nutritional score and 31% had light-moderate malnutrition. Those with good nutritional status had greater total serum omega-3s at baseline (p = 0.013) and a greater increase in serum omega-3s with supplementation (p = 0.003). Among those who were supplemented with fish oil, greater increases in serum omega-3s were associated with greater improvements in fatigue. In conclusion, good nutritional status may increase uptake of fatty acid supplements, increasing their ability to improve fatigue.
Collapse
|
17
|
Liakh I, Janczy A, Pakiet A, Korczynska J, Proczko-Stepaniak M, Kaska L, Sledzinski T, Mika A. One-anastomosis gastric bypass modulates the serum levels of pro- and anti-inflammatory oxylipins, which may contribute to the resolution of inflammation. Int J Obes (Lond) 2021; 46:408-416. [PMID: 34732836 DOI: 10.1038/s41366-021-01013-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES Oxylipins are polyunsaturated fatty acid derivatives involved in the regulation of various processes, including chronic inflammation, insulin resistance and hepatic steatosis. They can be synthesized in various tissues, including adipose tissue. There is some evidence that obesity is associated with the deregulation of serum oxylipin levels. The aim of this study was to evaluate the effect of bariatric surgery (one-anastomosis gastric bypass) on the serum levels of selected oxylipins and their fatty acid precursors and to verify the hypothesis that their changes after surgery can contribute to the resolution of inflammation. Moreover, we compared the oxylipin levels (prostaglandin E2, 13-HODE, maresin 1 and resolvin E1), fatty acids and the expression of enzymes that synthesize oxylipins in adipose tissue of lean controls and subjects with severe obesity. SUBJECTS/METHODS The study included 50 patients with severe obesity that underwent bariatric surgery and 41 subjects in lean, control group. Fatty acid content was analyzed by GC-MS, oxylipin concentrations were measured with immunoenzymatic assay kits and real-time PCR analysis was used to assess mRNA levels in adipose tissue. RESULTS Our results show increased expression of some enzymes that synthesize oxylipins in adipose tissue and alterations in the levels of oxylipins in both adipose tissue and serum of subjects with obesity. After bariatric surgery, the levels of anti-inflammatory oxylipins increased, whereas pro-inflammatory oxylipins decreased. CONCLUSIONS In patients with obesity, the metabolism of oxylipins is deregulated in adipose tissue, and their concentrations in serum are altered. Bariatric surgery modulates the serum levels of pro- and anti-inflammatory oxylipins, which may contribute to the resolution of inflammation.
Collapse
Affiliation(s)
- Ivan Liakh
- Department of Toxicology, Medical University of Gdansk, Gdansk, Poland
| | - Agata Janczy
- Department of Clinical Nutrition, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Justyna Korczynska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Monika Proczko-Stepaniak
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Lukasz Kaska
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
18
|
Saleh RNM, West AL, Ostermann AI, Schebb NH, Calder PC, Minihane AM. APOE Genotype Modifies the Plasma Oxylipin Response to Omega-3 Polyunsaturated Fatty Acid Supplementation in Healthy Individuals. Front Nutr 2021; 8:723813. [PMID: 34604280 PMCID: PMC8484638 DOI: 10.3389/fnut.2021.723813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/17/2021] [Indexed: 01/10/2023] Open
Abstract
The omega-3 polyunsaturated fatty acids (n-3 PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), mediate inflammation in large part by affecting pro-inflammatory and anti-inflammatory/pro-resolving oxylipin concentrations. Common gene variants are thought to underlie the large inter-individual variation in oxylipin levels in response to n-3 PUFA supplementation, which in turn is likely to contribute to the overall heterogeneity in response to n-3 PUFA intervention. Given its known role in inflammation and as a modulator of the physiological response to EPA and DHA, here we explore, for the first time, the differential response of plasma hydroxy-, epoxy- and dihydroxy-arachidonic acid, EPA and DHA oxylipins according to apolipoprotein E (APOE) genotype using samples from a dose-response parallel design RCT. Healthy participants were given doses of EPA+DHA equivalent to intakes of 1, 2, and 4 portions of oily fish per week for 12 months. There was no difference in the plasma levels of EPA, DHA or ARA between the wildtype APOE3/E3 and APOE4 carrier groups after 3 or 12 months of n-3 PUFA supplementation. At 12 months, hydroxy EPAs (HEPEs) and hydroxy-DHAs (HDHAs) were higher in APOE4 carriers, with the difference most evident at the highest EPA+DHA intake. A significant APOE*n-3 PUFA dose effect was observed for the CYP-ω hydroxylase products 19-HEPE (p = 0.027) and 20-HEPE (p = 0.011). 8-HEPE, which, along with several other plasma oxylipins, is an activator of peroxisome proliferator activated receptors (PPARs), showed the highest fold change in APOE4 carriers (14-fold) compared to APOE3/E3 (4-fold) (p = 0.014). Low basal plasma EPA levels (EPA < 0.85% of total fatty acids) were associated with a greater change in 5-HEPE, 9-HEPE, 11-HEPE, and 20-HEPE compared to high basal EPA levels (EPA > 1.22% of total fatty acids). In conclusion, APOE genotype modulated the plasma oxylipin response to increased EPA+DHA intake, with APOE4 carriers presenting with the greatest increases following high dose n-3 PUFA supplementation for 12 months.
Collapse
Affiliation(s)
- Rasha N M Saleh
- Nutrition and Preventive Medicine Group, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Annette L West
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Annika I Ostermann
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Anne Marie Minihane
- Nutrition and Preventive Medicine Group, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
19
|
Rodway LA, Pauls SD, Aukema HM, Zahradka P, Taylor CG. Rationale and design of a randomized controlled trial examining the effects of marine- and plant-sourced omega-3 fatty acid supplements on octadecanoid profiles and inflammation in females with obesity (OXBIO trial). Prostaglandins Leukot Essent Fatty Acids 2021; 170:102284. [PMID: 34051428 DOI: 10.1016/j.plefa.2021.102284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Consumption of omega-3 polyunsaturated fatty acids (n-3 PUFAs) has been reported to provide health benefits, but it remains unknown whether the fatty acids themselves or their oxygenated metabolites, oxylipins, are responsible for the beneficial effects. PURPOSE This paper describes the design and rationale of a randomized, double-blinded, cross-over study comparing the effects of α-linolenic acid (ALA)-rich flax oil and docosahexaenoic acid (DHA)-rich fish oil supplementation on circulating oxylipin profiles in females with obesity, in relation to obesity-induced inflammation. METHODS AND ANALYSIS Pre-menopausal females (n = 24) aged 20-55 with a BMI ≥30, will consume capsules containing flaxseed oil (4 g ALA/day) or fish oil (4 g DHA + 0.8 g EPA/day) during 4-week supplementation phases, with a minimum 4-week washout. The primary outcome is alterations in plasma oxylipin profiles. Secondary outcomes include effects of supplementation on circulating markers of inflammation, adipokines, plasma fatty acid composition, blood lipid profile, anthropometrics, oxylipin and cytokine profiles of stimulated immune cells, monocyte glucose metabolism, blood pressure and pulse wave velocity. ETHICS AND SIGNIFICANCE This trial has been approved by the University of Manitoba Biomedical Research Ethics Board and the St. Boniface Hospital Research Review Committee. The study will provide information regarding the effects of ALA and DHA supplementation on oxylipin profiles in obese but otherwise healthy females. Additionally, it will improve our understanding of the response of circulating inflammatory mediators originating from immune cells, adipose tissue and the liver to n-3 PUFA supplementation in relation to the metabolic features of obesity.
Collapse
Affiliation(s)
- Lisa A Rodway
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0T5, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada
| | - Samantha D Pauls
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada; Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Harold M Aukema
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada; Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Peter Zahradka
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0T5, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada; Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Carla G Taylor
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0T5, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, R2H 2A6, Canada; Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
20
|
Predictors of oxylipins in a healthy pediatric population. Pediatr Res 2021; 89:1530-1540. [PMID: 32726799 PMCID: PMC7855434 DOI: 10.1038/s41390-020-1084-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oxylipins are formed from oxidation of omega-6 (n6) and omega-3 (n3) fatty acids (FAs). Evidence for inflammatory effects comes mostly from adults. METHODS Oxylipins from n6 FA (27 n6-oxylipins) and n3 FA (12 n3-oxylipins) were measured through ultra-high-performance liquid chromatography-mass spectrometry (LC-MS/MS) in plasma from 111 children at risk of type 1 diabetes (age 1-17 years) studied longitudinally. Oxylipin precursor FAs (arachidonic acid, linoleic acid, alpha-linolenic acid, docosahexaenoic acid, eicosapentaenoic acid) were measured in red blood cell (RBC) membrane and plasma. Precursor FAs dietary intake was measured through food frequency questionnaire and environmental tobacco smoke (ETS) through questionnaires. Linear mixed models were used to test oxylipins with predictors. RESULTS Age associated with 15 n6- and 6 n3-oxylipins; race/ethnicity associated with 3 n6- and 1 n3-oxylipins; sex associated with 2 n6-oxylipins. ETS associated with lipoxin-A4. Oxylipins associated with precursor FAs in plasma more often than RBC. RBC levels and dietary intake of precursor FAs more consistently associated with n3-oxylipins than with n6-oxylipins. CONCLUSIONS In healthy children, oxylipin levels change with age. Oxylipins associated with precursor FAs more often in plasma than RBC or diet, suggesting that inflammatory regulation leading to FA release into plasma may also be a determinant of oxylipin generation. IMPACT This is the first study to examine predictors of oxylipins in healthy children at risk of type 1 diabetes. In healthy children at risk of type 1 diabetes, many oxylipins change with age, and most oxylipins do not differ by sex or race/ethnicity. Environmental tobacco smoke exposure was associated with the presence of lipoxin A4. Omega-6- and omega-3-related oxylipin levels were consistently associated with their respective precursor fatty acid levels measured in the plasma. Proportionally more omega-3 compared to omega-6 oxylipins were associated with dietary intake and red blood cell membrane levels of the respective precursor fatty acid.
Collapse
|
21
|
Walker RE, Savinova OV, Pedersen TL, Newman JW, Shearer GC. Effects of inflammation and soluble epoxide hydrolase inhibition on oxylipin composition of very low-density lipoproteins in isolated perfused rat livers. Physiol Rep 2021; 9:e14480. [PMID: 33625776 PMCID: PMC7903942 DOI: 10.14814/phy2.14480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Oxylipins are metabolites of polyunsaturated fatty acids that mediate cardiovascular health by attenuation of inflammation, vascular tone, hemostasis, and thrombosis. Very low-density lipoproteins (VLDL) contain oxylipins, but it is unknown whether the liver regulates their concentrations. In this study, we used a perfused liver model to observe the effect of inflammatory lipopolysaccharide (LPS) challenge and soluble epoxide hydrolase inhibition (sEHi) on VLDL oxylipins. A compartmental model of deuterium-labeled linoleic acid and palmitic acid incorporation into VLDL was also developed to assess the dependence of VLDL oxylipins on fatty acid incorporation rates. LPS decreased the total fatty acid VLDL content by 30% [6%,47%], and decreased final concentration of several oxylipins by a similar amount (13-HOTrE, 35% [4%,55%], -1.3 nM; 9(10)-EpODE, 29% [3%,49%], -2.0 nM; 15(16)-EpODE, 29% [2%,49%], -1.6 nM; AA-derived diols, 32% [5%,52%], -2.4 nM; 19(20)-DiHDPA, 31% [7%,50%], -1.0 nM). However, the EPA-derived epoxide, 17(18)-EpETE, was decreased by 75% [49%,88%], (-0.52 nM) with LPS, double the suppression of other oxylipins. sEHi increased final concentration of DHA epoxide, 16(17)-EpDPE, by 99% [35%,193%], (2.0 nM). Final VLDL-oxylipin concentrations with LPS treatment were not correlated with linoleic acid kinetics, suggesting they were independently regulated under inflammatory conditions. We conclude that the liver regulates oxylipin incorporation into VLDL, and the oxylipin content is altered by LPS challenge and by inhibition of the epoxide hydrolase pathway. This provides evidence for delivery of systemic oxylipin signals by VLDL transport.
Collapse
Affiliation(s)
- Rachel E. Walker
- Department of Nutritional SciencesThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Olga V. Savinova
- Department of Biomedical SciencesNew York Institute of Technology College of Osteopathic MedicineOld WestburyNYUSA
- Sanford ResearchUniversity of South DakotaSioux FallsSDUSA
| | - Theresa L. Pedersen
- Advanced AnalyticsDavisCAUSA
- Department of Food Science and TechnologyUniversity of CaliforniaDavisCAUSA
| | - John W. Newman
- Department of Food Science and TechnologyUniversity of CaliforniaDavisCAUSA
- Obesity and Metabolism Research UnitWestern Human Nutrition Research CenterAgricultural Research ServiceUS Department of AgricultureDavisCAUSA
| | - Gregory C. Shearer
- Department of Nutritional SciencesThe Pennsylvania State UniversityUniversity ParkPAUSA
- Sanford ResearchUniversity of South DakotaSioux FallsSDUSA
- Sanford School of MedicineUniversity of South DakotaSioux FallsSDUSA
| |
Collapse
|
22
|
Tu M, Wang W, Zhang G, Hammock BD. ω-3 Polyunsaturated Fatty Acids on Colonic Inflammation and Colon Cancer: Roles of Lipid-Metabolizing Enzymes Involved. Nutrients 2020; 12:nu12113301. [PMID: 33126566 PMCID: PMC7693568 DOI: 10.3390/nu12113301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
Substantial human and animal studies support the beneficial effects of ω-3 polyunsaturated fatty acids (PUFAs) on colonic inflammation and colorectal cancer (CRC). However, there are inconsistent results, which have shown that ω-3 PUFAs have no effect or even detrimental effects, making it difficult to effectively implement ω-3 PUFAs for disease prevention. A better understanding of the molecular mechanisms for the anti-inflammatory and anticancer effects of ω-3 PUFAs will help to clarify their potential health-promoting effects, provide a scientific base for cautions for their use, and establish dietary recommendations. In this review, we summarize recent studies of ω-3 PUFAs on colonic inflammation and CRC and discuss the potential roles of ω-3 PUFA-metabolizing enzymes, notably the cytochrome P450 monooxygenases, in mediating the actions of ω-3 PUFAs.
Collapse
Affiliation(s)
- Maolin Tu
- Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA; (M.T.); (G.Z.)
- Department of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Weicang Wang
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA;
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA; (M.T.); (G.Z.)
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01002, USA
| | - Bruce D. Hammock
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA;
- Correspondence: ; Tel.: +1-530-752-7519
| |
Collapse
|
23
|
Gabbs M, Zahradka P, Taylor CG, Aukema HM. Time Course and Sex Effects of α-Linolenic Acid-Rich and DHA-Rich Supplements on Human Plasma Oxylipins: A Randomized Double-Blind Crossover Trial. J Nutr 2020; 151:513-522. [PMID: 33097936 PMCID: PMC7948207 DOI: 10.1093/jn/nxaa294] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/01/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Differences in health effects of dietary α-linolenic acid (ALA) and DHA are mediated at least in part by differences in their effects on oxylipins. OBJECTIVES Time course and sex differences of plasma oxylipins in response to ALA- compared with DHA-rich supplements were examined. METHODS Healthy men and women, aged 19-34 y and BMI 18-28 kg/m2, were provided with capsules containing ∼4 g/d of ALA or DHA in a randomized double-blind crossover study with >6-wk wash-in and wash-out phases. Plasma PUFA and oxylipin (primary outcome) concentrations at days 0, 1, 3, 7, 14, and 28 of supplementation were analyzed by GC and HPLC-MS/MS, respectively. Sex differences, supplementation and time effects, and days to plateau were analyzed. RESULTS ALA supplementation doubled ALA concentrations, but had no effects on ALA oxylipins after 28 d, whereas DHA supplementation tripled both DHA and its oxylipins. Increases in DHA oxylipins were detected as early as day 1, and a plateau was reached by days 5-7 for 11 of 12 individual DHA oxylipins and for total DHA oxylipins. Nine individual DHA oxylipins reached a plateau in females with DHA supplementation, compared with only 4 in males. A similar time course and sex difference pattern occurred with EPA and its oxylipins with DHA supplementation. DHA compared with ALA supplementation also resulted in higher concentrations of 4 individual arachidonic acids, 1 linoleic acid, and 1 dihomo-γ-linolenic acid oxylipin, despite not increasing the concentrations of these fatty acids, further demonstrating that oxylipins do not always reflect their precursor PUFA. CONCLUSIONS DHA compared with a similar dose of ALA has greater effects on both n-3 and n-6 oxylipins in young, healthy adults, with differences in response to DHA supplementation occurring earlier and being greater in females. These findings can help explain differences in dietary effects of ALA and DHA.This study was registered at clinicaltrials.gov as NCT02317588.
Collapse
Affiliation(s)
- Melissa Gabbs
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada,Canadian Centre for Agri-Food Research in Health and Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada,Canadian Centre for Agri-Food Research in Health and Medicine, University of Manitoba, Winnipeg, Manitoba, Canada,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carla G Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada,Canadian Centre for Agri-Food Research in Health and Medicine, University of Manitoba, Winnipeg, Manitoba, Canada,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
24
|
Kwong SC, Abd Jamil AH, Rhodes A, Taib NA, Chung I. Fatty acid binding protein 7 mediates linoleic acid-induced cell death in triple negative breast cancer cells by modulating 13-HODE. Biochimie 2020; 179:23-31. [PMID: 32931863 DOI: 10.1016/j.biochi.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/11/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023]
Abstract
Different fatty acids have distinct effects on the survival of breast cancer cells, which could be mediated by fatty acid binding proteins (FABPs), a family of lipid chaperones. Due to the diverse structures of the members of FABP family, each FABP demonstrates distinct binding affinities to different fatty acids. Of note, FABP7 is predominantly expressed in triple negative breast cancer (TNBC), the most aggressive subtype of breast cancer. Yet, the role of FABP7 in modulating the effects of fatty acids on TNBC survival was unclear. In contrast to the high expression of FABP7 in human TNBC tumours, FABP7 protein was undetectable in TNBC cell lines. Hence, a FABP7 overexpression model was used for this study, in which the transduced TNBC cell lines (MDA-MB-231 and Hs578T) were treated with various mono- and polyunsaturated fatty acids. Oleic acid (OA), docosahexaenoic acid (DHA) and arachidonic acid (AA) inhibited TNBC cell growth at high concentrations, with no differences resulted from FABP7 overexpression. Interestingly, overexpression of FABP7 augmented linoleic acid-induced cell death in MDA-MB-231 cells. The increased cell death may be explained by a decrease in 13-HODE, a pro-tumorigenic oxidation product of linoleic acid. The phenotype was, however, attenuated with a rescue treatment using 25 nM 13-HODE. The decrease in 13-HODE was potentially due to fatty acid partitioning modulated by FABP7, as demonstrated by a 3-fold increase in fatty acid oxidation. Our findings suggest that linoleic acid could be a potential therapeutic strategy for FABP7-overexpressing TNBC patients.
Collapse
Affiliation(s)
- Soke Chee Kwong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Amira Hajirah Abd Jamil
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Anthony Rhodes
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; School of Health Sciences, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Nur Aishah Taib
- Department of Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; University of Malaya Cancer Research Institute, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; University of Malaya Cancer Research Institute, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
25
|
Mainka M, Dalle C, Pétéra M, Dalloux-Chioccioli J, Kampschulte N, Ostermann AI, Rothe M, Bertrand-Michel J, Newman JW, Gladine C, Schebb NH. Harmonized procedures lead to comparable quantification of total oxylipins across laboratories. J Lipid Res 2020; 61:1424-1436. [PMID: 32848050 DOI: 10.1194/jlr.ra120000991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oxylipins are potent lipid mediators involved in a variety of physiological processes. Their profiling has the potential to provide a wealth of information regarding human health and disease and is a promising technology for translation into clinical applications. However, results generated by independent groups are rarely comparable, which increases the need for the implementation of internationally agreed upon protocols. We performed an interlaboratory comparison for the MS-based quantitative analysis of total oxylipins. Five independent laboratories assessed the technical variability and comparability of 133 oxylipins using a harmonized and standardized protocol, common biological materials (i.e., seven quality control plasmas), standard calibration series, and analytical methods. The quantitative analysis was based on a standard calibration series with isotopically labeled internal standards. Using the standardized protocol, the technical variance was within ±15% for 73% of oxylipins; however, most epoxy fatty acids were identified as critical analytes due to high variabilities in concentrations. The comparability of concentrations determined by the laboratories was examined using consensus value estimates and unsupervised/supervised multivariate analysis (i.e., principal component analysis and partial least squares discriminant analysis). Interlaboratory variability was limited and did not interfere with our ability to distinguish the different plasmas. Moreover, all laboratories were able to identify similar differences between plasmas. In summary, we show that by using a standardized protocol for sample preparation, low technical variability can be achieved. Harmonization of all oxylipin extraction and analysis steps led to reliable, reproducible, and comparable oxylipin concentrations in independent laboratories, allowing the generation of biologically meaningful oxylipin patterns.
Collapse
Affiliation(s)
- Malwina Mainka
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Céline Dalle
- Université Clermont Auvergne, INRAe, UNH, Clermont-Ferrand, France
| | - Mélanie Pétéra
- Université Clermont Auvergne, INRAe, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Jessica Dalloux-Chioccioli
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Nadja Kampschulte
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Annika I Ostermann
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | | | - Justine Bertrand-Michel
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - John W Newman
- Obesity and Metabolism Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA.,University of California Davis Genome Center, University of California, Davis, Davis, CA, USA.,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Cécile Gladine
- Université Clermont Auvergne, INRAe, UNH, Clermont-Ferrand, France
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
26
|
Meuronen T, Lankinen MA, Fauland A, Shimizu BI, de Mello VD, Laaksonen DE, Wheelock CE, Erkkilä AT, Schwab US. Intake of Camelina Sativa Oil and Fatty Fish Alter the Plasma Lipid Mediator Profile in Subjects with Impaired Glucose Metabolism - A Randomized Controlled Trial. Prostaglandins Leukot Essent Fatty Acids 2020; 159:102143. [PMID: 32512364 DOI: 10.1016/j.plefa.2020.102143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/29/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
Abstract
n-3 and n-6 polyunsaturated fatty acids (PUFAs) and their lipid mediator metabolites are associated with inflammation. We investigated the effect of dietary intake of plant- and animal-derived n-3 PUFAs and fish protein on the circulatory concentrations of lipid mediators. Seventy-nine subjects with impaired fasting glucose who completed the controlled dietary intervention after randomization to the fatty fish (FF, n=20), lean fish (LF, n=21), Camelina sativa oil (CSO, n=18) or control group (n=20) for 12 weeks were studied. Lipid mediator profiling from fasting plasma samples before and after the intervention was performed by liquid chromatography-mass spectrometry (LC-MS/MS). The FF diet increased concentrations of 18-hydroxyeicosapentaenoic acid (18-HEPE) and 4- and 17-hydroxydocosahexaenoic acid (4-, 17-HDoHE) derived from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), respectively. Concentrations of lipid mediators derived from α-linolenic acid (ALA) increased and arachidonic acid (AA) derived 5-iso prostaglandin F2α-VI decreased in the CSO group. There were no significant changes in lipid mediators in the LF group. The dietary intake of both plant and animal-based n-3 PUFAs increased circulatory concentrations of lipid mediators with potential anti-inflammatory properties.
Collapse
Affiliation(s)
- Topi Meuronen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Maria A Lankinen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Alexander Fauland
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Bun-Ichi Shimizu
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Vanessa D de Mello
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - David E Laaksonen
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70029 Kuopio University Hospital, Finland; Institute of Biomedicine, Physiology, University of Eastern Finland, 70211 Kuopio, Finland
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arja T Erkkilä
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Ursula S Schwab
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland; Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70029 Kuopio University Hospital, Finland
| |
Collapse
|
27
|
Intake of Calanus finmarchicus oil for 12 weeks improves omega-3 index in healthy older subjects engaging in an exercise programme. Br J Nutr 2020; 125:432-439. [PMID: 32698912 PMCID: PMC7844606 DOI: 10.1017/s0007114520002809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The n-3 PUFA, EPA and DHA, play an important role in human health. As the intake of EPA and DHA from the diet is often inadequate, supplementation of those fatty acids is recommended. A novel source of n-3 PUFA is Calanus finmarchicus oil (CO) which contains fatty acids mainly bound in wax esters. To date, no data are available on the effects of long-term intake of this marine oil on n-3 PUFA blood levels. Therefore, the aim of this study was to evaluate the effect of CO on the n-3 PUFA blood levels using the omega-3 index (O3I). The data originate from a larger randomised controlled trial. For this analysis, samples from seventy-two participants (59·2 (sd 6·2) years, BMI 27·7 (sd 5·28) kg/m2) were analysed. Of those, thirty-six performed 2×/week exercise and received 2 g of CO, which provided 124 mg stearidonic acid (SDA), 109 mg EPA and 87 mg DHA daily (EXCO group), while the other group performed exercise only (EX group) and served as a control for this analysis. The O3I increased from 6·07 (sd 1·29) % at baseline to 7·37 (sd 1·10) % after 12 weeks within the EXCO group (P < 0·001), while there were no significant changes in the EX group (6·01 (sd 1·26)–6·15 (sd 1·32) %, P = 0·238). These data provide first evidence that wax ester-bound n-3 PUFA from CO can significantly increase the O3I despite relatively low EPA + DHA amounts. Further, the effects of exercise could be excluded.
Collapse
|
28
|
High Variability in Erythrocyte, Plasma and Whole Blood EPA and DHA Levels in Response to Supplementation. Nutrients 2020; 12:nu12041017. [PMID: 32276315 PMCID: PMC7231102 DOI: 10.3390/nu12041017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
(1) Aim: the aim of this secondary analysis was to report the variability in response to n-3 long chain polyunsaturated fatty acids (LCPUFA) supplementation in erythrocytes, plasma and whole blood of a previously published dose response study. (2) Methods: a randomized, double-blind, placebo-controlled trial of parallel design was conducted, whereby pre-menopausal women were randomly assigned to consume 0, 0.35, 0.7 or 1 g/day of supplemental eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA). Fasted blood samples were taken at baseline and after eight weeks intervention. Erythrocyte, plasma and whole blood fatty acids were extracted using the method of Lepage and Roy and analysed using gas chromatography. (3) Results: There were significant increases in EPA plus DHA levels in the 0.7 g and 1 g dose groups, with the highest increase with the 1 g dose notably: in erythrocytes (from 5.69% to 7.59%), plasma (from 2.94% to 5.48%) and in whole blood (from 3.81% to 6.03%). There was high variability in response to the supplement in erythrocytes, plasma and whole blood across the different doses. (4) Conclusion: there is high individual variability in n-3 LCPUFA levels in response to n-3 LCPUFA supplementation, which should be taken into account in clinical trials using n-3 LCPUFA supplements.
Collapse
|
29
|
Cytochrome P450 monooxygenase-mediated eicosanoid pathway: A potential mechanistic linkage between dietary fatty acid consumption and colon cancer risk. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Gladine C, Ostermann AI, Newman JW, Schebb NH. MS-based targeted metabolomics of eicosanoids and other oxylipins: Analytical and inter-individual variabilities. Free Radic Biol Med 2019; 144:72-89. [PMID: 31085232 DOI: 10.1016/j.freeradbiomed.2019.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Oxylipins, including the well-known eicosanoids, are potent lipid mediators involved in numerous physiological and pathological processes. Therefore, their quantitative profiling has gained a lot of attention during the last years notably in the active field of health biomarker discovery. Oxylipins include hundreds of structurally and stereochemically distinct lipid species which today are most commonly analyzed by (ultra) high performance liquid chromatography-mass spectrometry based ((U)HPLC-MS) methods. To maximize the utility of oxylipin profiling in clinical research, it is crucial to understand and assess the factors contributing to the analytical and biological variability of oxylipin profiles in humans. In this review, these factors and their impacts are summarized and discussed, providing a framework for recommendations expected to enhance the interlaboratory comparability and biological interpretation of oxylipin profiling in clinical research.
Collapse
Affiliation(s)
- Cécile Gladine
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France.
| | - Annika I Ostermann
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Gaußstraße 20, University of Wuppertal, 42119, Wuppertal, Germany
| | - John W Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA; University of California Davis, Department of Nutrition, Davis, CA, USA
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Gaußstraße 20, University of Wuppertal, 42119, Wuppertal, Germany
| |
Collapse
|
31
|
Ostermann AI, Koch E, Rund KM, Kutzner L, Mainka M, Schebb NH. Targeting esterified oxylipins by LC-MS - Effect of sample preparation on oxylipin pattern. Prostaglandins Other Lipid Mediat 2019; 146:106384. [PMID: 31698140 DOI: 10.1016/j.prostaglandins.2019.106384] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
A major part of oxygenated metabolites of polyunsaturated fatty acids - i.e. eicosanoids and other oxylipins - in biological samples is found in the esterified form. Yet, their biological role is only poorly understood. For quantification of esterified oxylipins in biological samples current protocols mostly apply alkaline hydrolysis with or without prior lipid extraction to release oxylipins into their free form which can be subsequently quantified via liquid chromatography-mass spectrometry. Herein, a detailed protocol for precise and reproducible quantification of esterified oxylipins in plasma is presented comprising i) extraction of lipids and removal of proteins with iso-propanol, ii) base hydrolysis with potassium hydroxide to saponify lipids and iii) solid phase extraction of the liberated oxylipins on C8/anion exchange mixed mode material. Unequal extraction of internal standards and lipid classes during lipid extraction before hydrolysis led to distorted concentrations, emphasizing that the choice of solvent used in this step is important to minimize discrimination. Regarding the hydrolysis conditions, at least 30 min incubation at 60 °C is required with 0.1 M KOH in sample. Drying of the SPE cartridges is a critical parameter since autoxidation processes of PUFA, which are present in high concentrations after cleavage, lead to artificial formation of epoxy fatty acids. With the developed protocol, inter-day, intra-day and inter-operator variance was <21% for most oxylipins including hydroxy-, dihydroxy-, and epoxy-PUFA. The applicability of the developed methodology is demonstrated by investigating the changes in the oxylipin pattern following omega-3 fatty acid feeding to rats.
Collapse
Affiliation(s)
- Annika I Ostermann
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, Wuppertal, Germany
| | - Elisabeth Koch
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, Wuppertal, Germany
| | - Katharina M Rund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, Wuppertal, Germany
| | - Laura Kutzner
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, Wuppertal, Germany
| | - Malwina Mainka
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, Wuppertal, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, Wuppertal, Germany.
| |
Collapse
|
32
|
Walker RE, Jackson KH, Tintle NL, Shearer GC, Bernasconi A, Masson S, Latini R, Heydari B, Kwong RY, Flock M, Kris-Etherton PM, Hedengran A, Carney RM, Skulas-Ray A, Gidding SS, Dewell A, Gardner CD, Grenon SM, Sarter B, Newman JW, Pedersen TL, Larson MK, Harris WS. Predicting the effects of supplemental EPA and DHA on the omega-3 index. Am J Clin Nutr 2019; 110:1034-1040. [PMID: 31396625 DOI: 10.1093/ajcn/nqz161] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Supplemental long-chain omega-3 (n-3) fatty acids (EPA and DHA) raise erythrocyte EPA + DHA [omega-3 index (O3I)] concentrations, but the magnitude or variability of this effect is unclear. OBJECTIVE The purpose of this study was to model the effects of supplemental EPA + DHA on the O3I. METHODS Deidentified data from 1422 individuals from 14 published n-3 intervention trials were included. Variables considered included dose, baseline O3I, sex, age, weight, height, chemical form [ethyl ester (EE) compared with triglyceride (TG)], and duration of treatment. The O3I was measured by the same method in all included studies. Variables were selected by stepwise regression using the Bayesian information criterion. RESULTS Individuals supplemented with EPA + DHA (n = 846) took a mean ± SD of 1983 ± 1297 mg/d, and the placebo controls (n = 576) took none. The mean duration of supplementation was 13.6 ± 6.0 wk. The O3I increased from 4.9% ± 1.7% to 8.1% ± 2.7% in the supplemented individuals ( P < 0.0001). The final model included dose, baseline O3I, and chemical formulation type (EE or TG), and these explained 62% of the variance in response (P < 0.0001). The model predicted that the final O3I (and 95% CI) for a population like this, with a baseline concentration of 4.9%, given 850 mg/d of EPA + DHA EE would be ∼6.5% (95% CI: 6.3%, 6.7%). Gram for gram, TG-based supplements increased the O3I by about 1 percentage point more than EE products. CONCLUSIONS Of the factors tested, only baseline O3I, dose, and chemical formulation were significant predictors of O3I response to supplementation. The model developed here can be used by researchers to help estimate the O3I response to a given EPA + DHA dose and chemical form.
Collapse
Affiliation(s)
- Rachel E Walker
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | - Nathan L Tintle
- Department of Mathematics and Statistics, Dordt College, Sioux Center, IA, USA
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Aldo Bernasconi
- Global Organization for EPA and DHA, Salt Lake City, UT, USA
| | - Serge Masson
- Department of Cardiovascular Research, Institute of Pharmacological Research "Mario Negri," Milan, Italy
| | - Roberto Latini
- Department of Cardiovascular Research, Institute of Pharmacological Research "Mario Negri," Milan, Italy
| | - Bobak Heydari
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Raymond Y Kwong
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael Flock
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Anne Hedengran
- Department of Ophthalmology, Rigshospitalet, Glostrup, Denmark
| | - Robert M Carney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Ann Skulas-Ray
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | | | - Antonella Dewell
- Stanford Prevention Research Center, Stanford University, Stanford, CA, USA
| | | | - S Marlene Grenon
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Barbara Sarter
- Department of Naturopathic Medicine, Bastyr University, San Diego, CA, USA
| | - John W Newman
- Obesity and Metabolism Research Unit, Western Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA, USA
| | - Theresa L Pedersen
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Mark K Larson
- Department of Biology, Augustana University, Sioux Falls, SD, USA
| | - William S Harris
- OmegaQuant Analytics, LLC, Sioux Falls, SD, USA
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
33
|
Kytikova O, Novgorodtseva T, Denisenko Y, Antonyuk M, Gvozdenko T. Pro-Resolving Lipid Mediators in the Pathophysiology of Asthma. ACTA ACUST UNITED AC 2019; 55:medicina55060284. [PMID: 31216723 PMCID: PMC6631965 DOI: 10.3390/medicina55060284] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022]
Abstract
Asthma is one of the most important medical and social problems of our time due to the prevalence and the complexity of its treatment. Chronic inflammation that is characteristic of asthma is accompanied by bronchial obstruction, which involves various lipid mediators produced from n-6 and n-3 polyunsaturated fatty acids (PUFAs). The review is devoted to modern ideas about the PUFA metabolites—eicosanoids (leukotrienes, prostaglandins, thromboxanes) and specialized pro-resolving lipid mediators (SPMs) maresins, lipoxins, resolvins, protectins. The latest advances in clinical lipidomics for identifying and disclosing the mechanism of synthesis and the biological action of SPMs have been given. The current views on the peculiarities of the inflammatory reaction in asthma and the role of highly specialized metabolites of arachidonic, eicosapentaenoic and docosahexaenoic acids in this process have been described. The possibility of using SPMs as therapeutic agents aimed at controlling the resolution of inflammation in asthma is discussed.
Collapse
Affiliation(s)
- Oxana Kytikova
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| | - Tatyana Novgorodtseva
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| | - Yulia Denisenko
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| | - Marina Antonyuk
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| | - Tatyana Gvozdenko
- Vladivostok Branch of Federal State Budgetary Science Institution "Far Eastern Scientific Center of Physiology and Pathology of Respiration"-Institute of Medical Climatology and Rehabilitative Treatment, Russian Street 73-g, Vladivostok 690105, Russia.
| |
Collapse
|
34
|
Zhuang P, Lu Y, Shou Q, Mao L, He L, Wang J, Chen J, Zhang Y, Jiao J. Differential Anti-Adipogenic Effects of Eicosapentaenoic and Docosahexaenoic Acids in Obesity. Mol Nutr Food Res 2019; 63:e1801135. [PMID: 31140724 DOI: 10.1002/mnfr.201801135] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/25/2019] [Indexed: 12/19/2022]
Abstract
SCOPE To assess the associations of plasma eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) with body fat in a population-based sample and explore the mechanism of action based on browning of white adipose tissue (WAT) in high-fat-diet-induced obese (DIO) mice and 3T3-L1 adipocytes. METHODS AND RESULTS Plasma EPA and DHA of 1719 adults in the National Health and Nutrition Examination Survey (2003-2004) are determined by gas chromatography mass spectrometry, while total body fat is measured by dual-energy X-ray absorptiometry. DIO mice are fed a high-fat diet supplemented with EPA or DHA (1% wt/wt) for 15 weeks and 3T3-L1 preadipocytes are treated with EPA or DHA during differentiation. Plasma DHA but not EPA is associated with lower body fat mass (ptrend < 0.0001), which persists in overweight/obese subjects (ptrend = 0.02). DHA supplementation reduces inguinal WAT and exhibits a more pronounced thermogenic effect than EPA in DIO mice. In vitro, the browning process is induced after 2-day and 6-day treatment with DHA and EPA, respectively. CONCLUSION Plasma DHA but not EPA is inversely associated with body fat mass. The more potent anti-adipogenic effect of DHA than EPA may involve a better capability of inducing browning of WAT for DHA.
Collapse
Affiliation(s)
- Pan Zhuang
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yanhua Lu
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, 311121, Zhejiang, China
| | - Qiyang Shou
- Experimental Animal Research Center & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Lei Mao
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Lilin He
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jun Wang
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingnan Chen
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yu Zhang
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| |
Collapse
|
35
|
Ostermann AI, West AL, Schoenfeld K, Browning LM, Walker CG, Jebb SA, Calder PC, Schebb NH. Plasma oxylipins respond in a linear dose-response manner with increased intake of EPA and DHA: results from a randomized controlled trial in healthy humans. Am J Clin Nutr 2019; 109:1251-1263. [PMID: 31006007 DOI: 10.1093/ajcn/nqz016] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/23/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The health effects of long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) are partly mediated by their oxidized metabolites, i.e., eicosanoids and other oxylipins. Some intervention studies have demonstrated that eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increase systemic concentrations of n-3 PUFA-derived oxylipins and moderately decrease arachidonic acid-derived oxylipins. There is no information on the dose-response of oxylipin concentrations after n-3 PUFA intake. OBJECTIVE The aim of this study was to quantify oxylipins in human plasma samples from an intervention study in which participants were randomly assigned to different daily intakes of EPA and DHA for 12 mo. METHODS Healthy adult men and women with low habitual fish consumption (n = 121) were randomly assigned to receive capsules providing doses of n-3 PUFAs reflecting 3 patterns of consumption of oily fish [1, 2, or 4 portions/wk with 3.27 g EPA + DHA (1:1.2, wt:wt) per portion] or placebo. Oxylipins were quantified in plasma after 3 and 12 mo. Relative and absolute changes of individual oxylipins were calculated and concentrations were correlated with the dose and the content of EPA and DHA in blood lipid pools. RESULTS Seventy-three oxylipins, mostly hydroxy-, dihydroxy-, and epoxy-PUFAs, were quantified in the plasma samples. After 3 and 12 mo a linear increase with dose was observed for all EPA- and DHA-derived oxylipins. Cytochrome-P450-derived anti-inflammatory and cardioprotective epoxy-PUFAs increased linearly with n-3 PUFA dose and showed low interindividual variance (r2 > 0.95). Similarly, 5, 12-, and 15-lipoxygenase-derived hydroxy-PUFAs as well as those formed autoxidatively increased linearly. These include the precursors of so-called specialized pro-resolving lipid mediators (SPMs), e.g., 17-hydroxy-DHA and 18-hydroxy-EPA. CONCLUSIONS Plasma concentrations of biologically active oxylipins derived from n-3 PUFAs, including epoxy-PUFAs and SPM-precursors, increase linearly with elevated intake of EPA and DHA. Interindividual differences in resulting plasma concentrations are low. This trial was registered at controlled-trials.com as ISRCTN48398526.
Collapse
Affiliation(s)
- Annika I Ostermann
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Annette L West
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Kirsten Schoenfeld
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Lucy M Browning
- Medical Research Council, Elsie Widdowson Laboratory, Cambridge, United Kingdom
| | - Celia G Walker
- Medical Research Council, Elsie Widdowson Laboratory, Cambridge, United Kingdom
| | - Susan A Jebb
- Medical Research Council, Elsie Widdowson Laboratory, Cambridge, United Kingdom.,Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Philip C Calder
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
36
|
Sausville LN, Williams SM, Pozzi A. Cytochrome P450 epoxygenases and cancer: A genetic and a molecular perspective. Pharmacol Ther 2019; 196:183-194. [DOI: 10.1016/j.pharmthera.2018.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Borkowski K, Yim SJ, Holt RR, Hackman RM, Keen CL, Newman JW, Shearer GC. Walnuts change lipoprotein composition suppressing TNFα-stimulated cytokine production by diabetic adipocyte. J Nutr Biochem 2019; 68:51-58. [PMID: 31030167 DOI: 10.1016/j.jnutbio.2019.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/31/2019] [Accepted: 03/12/2019] [Indexed: 12/15/2022]
Abstract
Walnut consumption can provide both vascular and metabolic health benefits, and walnut-induced changes in lipoprotein particle chemical payloads may be responsible for these health benefits. To explore this possibility with a focus on metabolic health, this study investigated the impact of walnut consumption on lipoprotein lipid composition and changes in LDL anti-inflammatory properties, as reported by inflamed adipocyte. Hypercholesterolemic, postmenopausal females were treated with 40 g/day (i.e., 1.6 servings/day; n=15) of walnuts for 4 weeks. Fatty acids and their oxygenated metabolites, i.e., oxylipins, were quantified in isolated lipoproteins. Human primary adipocytes were exposed to LDL and TNFα-stimulated adipokine production was measured. Walnut treatment elevated α-linolenic acid and its epoxides in all lipoproteins and depleted mid-chain alcohols in VLDL and LDL, but not HDL. Walnuts also reduced TNFα-induced diabetic adipocyte production of IL-6 (-48%, P=.0006) and IL-8 (-30%, P=.01), changes inversely correlated with levels of α-linolenic acid-derived epoxides but not α-linolenic acid itself. In conclusion, modest walnut consumption can alter lipoprotein lipid profiles and enhance their ability to inhibit TNFα-dependent pro-inflammatory responses in human diabetic primary adipocytes. Moreover, this study suggests the oxylipins, rather than the parent fatty acids, mediate LDL action of adipocytes.
Collapse
Affiliation(s)
- Kamil Borkowski
- Dept. of Nutritional Sciences, The Pennsylvania State University, University Park, PA; West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA; Western Human Nutrition Research Center, Agricultural Research Service, USDA, Davis, CA.
| | - Sun J Yim
- Department of Nutrition, University of California Davis, Davis, CA
| | - Roberta R Holt
- Department of Nutrition, University of California Davis, Davis, CA
| | - Robert M Hackman
- Department of Nutrition, University of California Davis, Davis, CA
| | - Carl L Keen
- Department of Nutrition, University of California Davis, Davis, CA
| | - John W Newman
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA; Department of Nutrition, University of California Davis, Davis, CA; Western Human Nutrition Research Center, Agricultural Research Service, USDA, Davis, CA
| | - Gregory C Shearer
- Dept. of Nutritional Sciences, The Pennsylvania State University, University Park, PA
| |
Collapse
|
38
|
Quehenberger O, Dahlberg-Wright S, Jiang J, Armando AM, Dennis EA. Quantitative determination of esterified eicosanoids and related oxygenated metabolites after base hydrolysis. J Lipid Res 2018; 59:2436-2445. [PMID: 30323111 DOI: 10.1194/jlr.d089516] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/04/2018] [Indexed: 12/13/2022] Open
Abstract
Eicosanoids and related metabolites (oxylipins) possess potent signaling properties, elicit numerous important physiologic responses, and serve as biomarkers of disease. In addition to their presence in free form, a considerable portion of these bioactive lipids is esterified to complex lipids in cell membranes and plasma lipoproteins. We developed a rapid and sensitive method for the analysis of esterified oxylipins using alkaline hydrolysis to release them followed by ultra-performance LC coupled with mass spectrometric analysis. Detailed evaluation of the data revealed that several oxylipins are susceptible to alkaline-induced degradation. Nevertheless, of the 136 metabolites we examined, 56 were reproducibly recovered after alkaline hydrolysis. We classified those metabolites that were resistant to alkaline-induced degradation and applied this methodology to quantify metabolite levels in a macrophage cell model and in plasma of healthy subjects. After alkaline hydrolysis of lipids, 34 metabolites could be detected and quantified in resting and activated macrophages, and 38 metabolites were recovered from human plasma at levels that were substantially greater than in free form. By carefully selecting internal standards and taking the observed experimental limitations into account, we established a robust method that can be reliably employed for the measurement of esterified oxylipins in biological samples.
Collapse
Affiliation(s)
- Oswald Quehenberger
- Departments of Medicine,University of California at San Diego, La Jolla, CA 92093-0601 .,Departments of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0601
| | - Signe Dahlberg-Wright
- Departments of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0601
| | - Jiang Jiang
- Departments of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0601
| | - Aaron M Armando
- Departments of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0601
| | - Edward A Dennis
- Departments of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0601 .,Departments of Chemistry and Biochemistry, School of Medicine, University of California at San Diego, La Jolla, CA 92093-0601
| |
Collapse
|
39
|
Shearer GC, Walker RE. An overview of the biologic effects of omega-6 oxylipins in humans. Prostaglandins Leukot Essent Fatty Acids 2018; 137:26-38. [PMID: 30293594 DOI: 10.1016/j.plefa.2018.06.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023]
Abstract
Oxylipins are lipid mediators produced from polyunsaturated fatty acid (PUFA) metabolism, and are thought to be a molecular explanation for the diverse biological effects of PUFAs. Like PUFAs, oxylipins are distinguished by their omega-6 (n6) or omega-3 (n3) chemistry. We review the use of n6 oxylipins as biomarkers of disease and their use in diagnosis and risk assessment. We show cases where oxylipins derived from linoleate (LA) or arachidonate (AA) produced by the activities of lipoxygenase, cyclooxygenase, epoxygenase, ω/ω-1 hydroxylase, and autooxidation are useful as biomarkers or risk markers. HODEs, KODEs, EpOMEs, DiHOMEs, and other metabolites of LA as well as prostanoids, HETEs, KETEs, EpETrEs, and DiHETrEs, and other metabolites of AA were useful for understanding the different signaling environments in conditions from traumatic brain injury, to major coronary events, dyslipidemia, sepsis, and more. We next evaluate interventions that alter the concentrations of n6 oxylipins in plasma. We note the utility and response of each plasma fraction, and the generally increasing utility from the non-esterified, to the esterified, to the lipoprotein fractions. Finally, we review the effects which are specifically related to n6 oxylipins and most likely to be beneficial. Both n6 and n3 oxylipins work together in an exceedingly complex matrix to produce physiological effects. This overview should provide future investigators with important perspectives for the emerging utility of n6 oxylipins as products of n6 PUFAs in human health.
Collapse
Affiliation(s)
- Gregory C Shearer
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16801, USA.
| | - Rachel E Walker
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16801, USA
| |
Collapse
|
40
|
Yuzyuk T, Lozier B, Schwarz EL, Viau K, Kish-Trier E, De Biase I. Intra-individual variability of long-chain fatty acids (C12-C24) in plasma and red blood cells. Prostaglandins Leukot Essent Fatty Acids 2018; 135:30-38. [PMID: 30103929 DOI: 10.1016/j.plefa.2018.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022]
Abstract
Long-chain fatty acids (LCFA) play key roles in mammalian cells as sources of energy, structural components and signaling molecules. Given their importance in numerous physiological processes, the roles of LCFAs in health and disease have been extensively investigated. In the majority of studies, correlations are established using a single measurement in plasma or red blood cells (RBCs). Although a few studies have reported on reproducibility of individual fatty acid measurements, the comprehensive analysis of intra-individual LCFA variability has not been performed. Therefore, our goal was to determine intra-individual variability for the 22 most abundant LCFAs in both plasma and RBC samples collected from healthy individuals on a regular diet after overnight fasting. The measurements of LCFAs in RBCs were consistent throughout the course of study reflecting long-term nutritional status. In contrast, the results in plasma showed considerable LCFA intra-individual variability, even between fatty acids of the same type. Plasma intra-individual variability for omega-3 alpha-linolenic and eicosapentaenoic acids in some participants were >40% whereas the variability of docosahexaenoic acid was consistently <12.8%. Omega-6 linoleic and arachidonic acids also showed low variability in plasma. The results suggest that some LCFAs have less variability and would be more reliable as biomarkers. Reliability of biomarkers can have a profound impact on the research outcomes. Intra-individual variability of LCFAs should be taken into consideration in designing, conducting and interpreting results of clinical studies.
Collapse
Affiliation(s)
- T Yuzyuk
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA; ARUP Institute of Clinical & Experimental Pathology, Salt Lake City, UT, USA.
| | - B Lozier
- ARUP Institute of Clinical & Experimental Pathology, Salt Lake City, UT, USA
| | - E L Schwarz
- ARUP Institute of Clinical & Experimental Pathology, Salt Lake City, UT, USA
| | - K Viau
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - E Kish-Trier
- ARUP Institute of Clinical & Experimental Pathology, Salt Lake City, UT, USA; Navigen, Salt Lake City, UT, USA (present affiliation)
| | - I De Biase
- Department of Pathology, University of Utah, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA; ARUP Institute of Clinical & Experimental Pathology, Salt Lake City, UT, USA
| |
Collapse
|
41
|
Pickens CA, Albuquerque Pereira MDF, Fenton JI. Long-chain ω-6 plasma phospholipid polyunsaturated fatty acids and association with colon adenomas in adult men: a cross-sectional study. Eur J Cancer Prev 2018; 26:497-505. [PMID: 27768609 DOI: 10.1097/cej.0000000000000312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dietary lipid intake can be associated with an increased risk for colorectal cancer depending on its composition. Carcinogenesis alters lipid metabolism to facilitate cell growth and survival. For instance, metabolites of polyunsaturated fatty acids (PUFAs) are associated with increasing colon cell proliferation. Moreover, precancerous colon lesions (i.e. adenomas) increase the risk for colorectal cancer. In this study, we investigated associations between plasma PUFAs and the number of colon polyps and polyp type (i.e. hyperplastic and adenoma). Healthy male participants (n=126) of 48-65 years of age were recruited before a routine colonoscopy screening. Plasma phospholipid (PPL) PUFAs were isolated by means of solid phase extraction and methylated. Fatty acid methyl esters were analyzed using gas chromatography. Factor analysis was used to cluster PUFAs into groups, and then generated factors and individual PUFAs were analyzed using polytomous logistic regression. In our age-adjusted and smoking-adjusted polytomous logistic regression, for each unit increase in PPL docosatetraenoic acid (DTA), individuals were 1.43 (1.00-2.06) and 1.33 (0.99-1.80) times more likely to have hyperplastic polyps and adenomas rather than no polyps, respectively. In our factor analysis, high PPL ω-6 PUFA and trans-fatty acid loading scores were associated with increased odds of adenoma presence rather than no polyps. Increases in long-chain PPL ω-6 PUFAs are associated with an increased risk for adenomas. As relative levels of DTA increase in PPLs, individuals had increased odds of having hyperplastic polyps and adenomas. Elevated conversion of ω-6 PUFAs to longer-chain ω-6s such as DTA may indicate altered PUFA metabolism at the tissue level.
Collapse
Affiliation(s)
- Charles A Pickens
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | | | | |
Collapse
|
42
|
Leng S, Winter T, Aukema HM. Dietary ALA, EPA and DHA have distinct effects on oxylipin profiles in female and male rat kidney, liver and serum. J Nutr Biochem 2018; 57:228-237. [PMID: 29778015 DOI: 10.1016/j.jnutbio.2018.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/20/2018] [Accepted: 04/13/2018] [Indexed: 01/25/2023]
Abstract
There is much data on the effects of dietary n-3 fatty acids on tissue fatty acid compositions, but comparable comprehensive data on their oxygenated metabolites (oxylipins) is limited. The effects of providing female and male rats with diets high in α-linolenic acid (ALA), EPA or DHA for 6 weeks on oxylipins and fatty acids in kidney, liver and serum were therefore examined. The oxylipin profile generally reflected fatty acids, but it also revealed unique effects of individual n-3 fatty acids that were not apparent from fatty acid data alone. Dietary ALA increased renal and serum DHA oxylipins even though DHA itself did not increase, while dietary EPA did not increase DHA oxylipins in kidney or liver, suggesting that high EPA may inhibit this conversion. Oxylipin data generally corroborated fatty acid data that indicated that DHA can be retroconverted to EPA and that further retroconversion to ALA is limited. Dietary n-3 fatty acids decreased n-6 fatty acids and their oxylipins (except linoleic acid and its oxylipins), in order of effectiveness of DHA > EPA > ALA, with some exceptions: several arachidonic acid oxylipins modified at carbon 15 were not lower in all three sites, and EPA had a greater effect on 12-hydroxy-eicosatetraenoic acid and its metabolites in the liver. Oxylipins were predominantly higher in males, which was not reflective of fatty acids. Tissue-specific oxylipin profiles, therefore, provide further information on individual dietary n-3 fatty acid and sex effects that may help explain their unique physiological effects and have implications for dietary recommendations.
Collapse
Affiliation(s)
- Shan Leng
- Department of Human Nutritional Sciences, University of Manitoba, Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada R3T 2N2
| | - Tanja Winter
- Department of Human Nutritional Sciences, University of Manitoba, Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada R3T 2N2
| | - Harold M Aukema
- Department of Human Nutritional Sciences, University of Manitoba, Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, Canada R3T 2N2.
| |
Collapse
|
43
|
Siena L, Cipollina C, Di Vincenzo S, Ferraro M, Bruno A, Gjomarkaj M, Pace E. Electrophilic derivatives of omega-3 fatty acids counteract lung cancer cell growth. Cancer Chemother Pharmacol 2018; 81:705-716. [PMID: 29435611 DOI: 10.1007/s00280-018-3538-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/03/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE 17-oxo-DHA is an electrophilic keto-derivative of the omega-3 fatty acid docosahexaenoic acid (DHA) endogenously generated by cyclooxygenase-2 and a cellular dehydrogenase. 17-oxo-DHA displays anti-inflammatory and cytoprotective actions. DHA, alone or in combination with standard chemotherapy, displays antitumor activity. However, the effects of electrophilic keto-derivatives of DHA on cancer growth have never been evaluated. We investigated whether 17-oxo-DHA, alone or in combination with gemcitabine, displayed antitumor effects. Furthermore, we evaluated whether the enzyme 15-prostaglandin dehydrogenase (15-PGDH) was required for transducing the antitumor effects of DHA. METHODS A panel of five histologically different human non-small cell lung cancer (NSCLC) cell lines was used. Cells were treated with 17-oxo-DHA and gemcitabine, alone or in combination, and apoptosis, proliferation, Fas and FasL expression (mRNA and protein) and active caspase-3/7 and -8 were assessed. Furthermore, an inhibitor of 15-PGDH was used to test the involvement of this enzyme in mediating the antitumor effects of DHA. RESULTS 17-oxo-DHA (50 µM, 72 h) significantly reduced proliferation, increased cell apoptosis, Fas and FasL expression as well as active caspase-8 and -3/7. When 17-oxo-DHA was given in combination with gemcitabine, stronger effects were observed compared to gemcitabine alone. The enzyme 15-PGDH was required for DHA to promote its full anti-apoptotic effect suggesting that enzymatically generated keto-derivatives of DHA mediate its antitumor actions. CONCLUSIONS Data herein provided, demonstrate that 17-oxo-DHA displays antitumor effects in NSCLC cell lines. Of note, the combination of 17-oxo-DHA plus gemcitabine, resulted in stronger anticancer effects compared to gemcitabine alone.
Collapse
Affiliation(s)
- Liboria Siena
- Istituto di Biomedicina e Immunologia Molecolare-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy
| | - Chiara Cipollina
- Istituto di Biomedicina e Immunologia Molecolare-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy.,Fondazione Ri.MED, Palermo, Italy
| | - Serena Di Vincenzo
- Istituto di Biomedicina e Immunologia Molecolare-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy
| | - Maria Ferraro
- Istituto di Biomedicina e Immunologia Molecolare-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy
| | - Andreina Bruno
- Istituto di Biomedicina e Immunologia Molecolare-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy
| | - Mark Gjomarkaj
- Istituto di Biomedicina e Immunologia Molecolare-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy
| | - Elisabetta Pace
- Istituto di Biomedicina e Immunologia Molecolare-Consiglio Nazionale delle Ricerche, Via Ugo La Malfa, 153, 90146, Palermo, Italy.
| |
Collapse
|
44
|
Shearer GC, Borkowski K, Puumala SL, Harris WS, Pedersen TL, Newman JW. Abnormal lipoprotein oxylipins in metabolic syndrome and partial correction by omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 2018; 128:1-10. [PMID: 29413356 DOI: 10.1016/j.plefa.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/10/2017] [Accepted: 10/19/2017] [Indexed: 12/31/2022]
Abstract
Metabolic syndrome (MetSyn) is characterized by chronic inflammation which mediates the associated high risk for cardiovascular and other diseases. Oxylipins are a superclass of lipid mediators with potent bioactivities in inflammation, vascular biology, and more. While their role as locally produced agents is appreciated, most oxylipins in plasma are found in lipoproteins suggesting defective regulation of inflammation could be mediated by the elevated VLDL and low HDL levels characteristic of MetSyn. Our objective was to compare the oxylipin composition of VLDL, LDL, and HDL in 14 optimally healthy individuals and 31 MetSyn patients, and then to determine the effects of treating MetSyn subjects with 4g/day of prescription omega-3 fatty acids (P-OM3) on lipoprotein oxylipin profiles. We compared oxylipin compositions of healthy (14) and MetSyn (31) subjects followed by randomization and assignment to 4g/d P-OM3 for 16 weeks using LC/MS/MS. Compared to healthy subjects, MetSyn is characterized by abnormalities of (1) pro-inflammatory, arachidonate-derived oxylipins from the lipoxygenase pathway in HDL; and (2) oxylipins mostly not derived from arachidonate in VLDL. P-OM3 treatment corrected many components of these abnormalities, reducing the burden of inflammatory mediators within peripherally circulating lipoproteins that could interfere with, or enhance, local effectors of inflammatory stress. We conclude that MetSyn is associated with a disruption of lipoprotein oxylipin patterns consistent with greater inflammatory stress, and the partial correction of these dysoxylipinemias by treatment with omega-3 fatty acids could explain some of their beneficial effects.
Collapse
Affiliation(s)
- Gregory C Shearer
- Sanford Research, Sioux Falls, SD, USA; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA; The Pennsylvania State University, Department of Nutritional Sciences, University Park, PA, USA.
| | - Kamil Borkowski
- The Pennsylvania State University, Department of Nutritional Sciences, University Park, PA, USA; West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, CA, USA
| | | | - William S Harris
- Sanford Research, Sioux Falls, SD, USA; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Theresa L Pedersen
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, CA, USA
| | - John W Newman
- Obesity and Metabolism Research Unit, USDA, ARS, Western Human Nutrition Research Center, Davis, CA, USA; Department of Nutrition, University of California, Davis, CA, USA
| |
Collapse
|
45
|
Layé S, Nadjar A, Joffre C, Bazinet RP. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology. Pharmacol Rev 2017; 70:12-38. [PMID: 29217656 DOI: 10.1124/pr.117.014092] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain.
Collapse
Affiliation(s)
- Sophie Layé
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Agnès Nadjar
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Corinne Joffre
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Richard P Bazinet
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| |
Collapse
|
46
|
Syren ML, Turolo S, Marangoni F, Milani GP, Edefonti A, Montini G, Agostoni C. The polyunsaturated fatty acid balance in kidney health and disease: A review. Clin Nutr 2017; 37:1829-1839. [PMID: 29254659 DOI: 10.1016/j.clnu.2017.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 01/25/2023]
Abstract
Epidemiological studies show that circulating polyunsaturated fatty acids contribute to preserve renal function. In renal disease states there is generally a lack of omega-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) as measured in biological samples, but despite intense research for more than 30 years, it is still unclear how and to what extent their supplementation would benefit kidney disorders. Studies evaluating the n-6 series and the kidney are less frequent. The last compilation of clinical trials with n-3 LCPUFA supplements focusing on renal function and damage dates back to 2012. We here discuss n-3 and n-6 fatty acids in relation to the kidney summarizing single- and double blind randomized controlled trials performed between 2012 and 2016. Nine were sub-studies/post-hoc analyses of previous parent trials. Twelve out of the twenty trials reported on fatty acid profile or fatty acid species. Factors that may explain inconsistent results obtained after supplementation with the n-3 LCPUFA EPA and DHA in kidney disease are discussed such as baseline levels determining response, drug interaction. The need of evaluating fatty acid status before and after intervention is emphasized, to match changes in outcome measure with changes of any fatty acid potentially involved.
Collapse
Affiliation(s)
- Marie-Louise Syren
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Pediatric Mid-Intensive Care Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy.
| | - Stefano Turolo
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy.
| | | | - Gregorio P Milani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Pediatric Mid-Intensive Care Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy.
| | - Alberto Edefonti
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy.
| | - Giovanni Montini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy.
| | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; Pediatric Mid-Intensive Care Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
47
|
Therapeutic potential of omega-3 fatty acid-derived epoxyeicosanoids in cardiovascular and inflammatory diseases. Pharmacol Ther 2017; 183:177-204. [PMID: 29080699 DOI: 10.1016/j.pharmthera.2017.10.016] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Numerous benefits have been attributed to dietary long-chain omega-3 polyunsaturated fatty acids (n-3 LC-PUFAs), including protection against cardiac arrhythmia, triglyceride-lowering, amelioration of inflammatory, and neurodegenerative disorders. This review covers recent findings indicating that a variety of these beneficial effects are mediated by "omega-3 epoxyeicosanoids", a class of novel n-3 LC-PUFA-derived lipid mediators, which are generated via the cytochrome P450 (CYP) epoxygenase pathway. CYP enzymes, previously identified as arachidonic acid (20:4n-6; AA) epoxygenases, accept eicosapentaenoic acid (20:5n-3; EPA) and docosahexaenoic acid (22:6n-3; DHA), the major fish oil n-3 LC-PUFAs, as efficient alternative substrates. In humans and rodents, dietary EPA/DHA supplementation causes a profound shift of the endogenous CYP-eicosanoid profile from AA- to EPA- and DHA-derived metabolites, increasing, in particular, the plasma and tissue levels of 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP). Based on preclinical studies, these omega-3 epoxyeicosanoids display cardioprotective, vasodilatory, anti-inflammatory, and anti-allergic properties that contribute to the beneficial effects of n-3 LC-PUFAs in diverse disease conditions ranging from cardiac disease, bronchial disorders, and intraocular neovascularization, to allergic intestinal inflammation and inflammatory pain. Increasing evidence also suggests that background nutrition as well as genetic and disease state-related factors could limit the response to EPA/DHA-supplementation by reducing the formation and/or enhancing the degradation of omega-3 epoxyeicosanoids. Recently, metabolically robust synthetic analogs mimicking the biological activities of 17,18-EEQ have been developed. These drug candidates may overcome limitations of dietary EPA/DHA supplementation and provide novel options for the treatment of cardiovascular and inflammatory diseases.
Collapse
|
48
|
Ostermann AI, Waindok P, Schmidt MJ, Chiu CY, Smyl C, Rohwer N, Weylandt KH, Schebb NH. Modulation of the endogenous omega-3 fatty acid and oxylipin profile in vivo-A comparison of the fat-1 transgenic mouse with C57BL/6 wildtype mice on an omega-3 fatty acid enriched diet. PLoS One 2017; 12:e0184470. [PMID: 28886129 PMCID: PMC5590967 DOI: 10.1371/journal.pone.0184470] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Abstract
Dietary intervention and genetic fat-1 mice are two models for the investigation of effects associated with omega-3 polyunsaturated fatty acids (n3-PUFA). In order to assess their power to modulate the fatty acid and oxylipin pattern, we thoroughly compared fat-1 and wild-type C57BL/6 mice on a sunflower oil diet with wild-type mice on the same diet enriched with 1% EPA and 1% DHA for 0, 7, 14, 30 and 45 days. Feeding led after 14–30 days to a high steady state of n3-PUFA in all tissues at the expense of n6-PUFAs. Levels of n3-PUFA achieved by feeding were higher compared to fat-1 mice, particularly for EPA (max. 1.7% in whole blood of fat-1 vs. 7.8% following feeding). Changes in PUFAs were reflected in most oxylipins in plasma, brain and colon: Compared to wild-type mice on a standard diet, arachidonic acid metabolites were overall decreased while EPA and DHA oxylipins increased with feeding more than in fat-1 mice. In plasma of n3-PUFA fed animals, EPA and DHA metabolites from the lipoxygenase and cytochrome P450 pathways dominated over ARA derived counterparts.Fat-1 mice show n3-PUFA level which can be reached by dietary interventions, supporting the applicability of this model in n3-PUFA research. However, for specific questions, e.g. the role of EPA derived mediators or concentration dependent effects of (individual) PUFA, feeding studies are necessary.
Collapse
Affiliation(s)
- Annika I. Ostermann
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Patrick Waindok
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Moritz J. Schmidt
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Cheng-Ying Chiu
- Medical Department, Division of Hepatology and Gastroenterology (including Metabolic Diseases), Charité University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Christopher Smyl
- Medical Department, Division of Hepatology and Gastroenterology (including Metabolic Diseases), Charité University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Nadine Rohwer
- Medical Department, Division of Hepatology and Gastroenterology (including Metabolic Diseases), Charité University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Karsten-H. Weylandt
- Medical Department, Division of Hepatology and Gastroenterology (including Metabolic Diseases), Charité University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
- Experimental and Clinical Research Centre, Charité University Medicine, Campus Buch, Berlin, Germany
- Medical Department, Division of Gastroenterology, Oncology, Hematology, Rheumatology and Diabetes, Ruppiner Kliniken, Brandenburg Medical School, Neuruppin, Germany
| | - Nils Helge Schebb
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
- * E-mail:
| |
Collapse
|
49
|
Ostermann AI, Schebb NH. Effects of omega-3 fatty acid supplementation on the pattern of oxylipins: a short review about the modulation of hydroxy-, dihydroxy-, and epoxy-fatty acids. Food Funct 2017; 8:2355-2367. [PMID: 28682409 DOI: 10.1039/c7fo00403f] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A growing body of evidence suggests that the intake of the long chain omega-3 polyunsaturated fatty acids (n3-PUFA) eicosapentaenoic acid (C20:5 n3, EPA) and docosahexaenoic acid (C22:6 n3, DHA) is linked to beneficial health effects, particularly in the prevention of cardiovascular and inflammatory diseases. Although the molecular mode of action of n3-PUFA is still not fully understood, it is not controversial that a significant portion of the (patho)-physiological effects of PUFA are mediated by their oxidative metabolites, i.e. eicosanoids and other oxylipins. Quantitative targeted oxylipin methods allow the comprehensive monitoring of n3-PUFA supplementation induced changes in the pattern of oxylipins in order to understand their biology. In this short review, results from intervention studies are summarized analyzing >30 oxylipins from different PUFAs in response to n3-PUFA supplementation. The results are not only qualitatively compared with respect to the study design, n3-PUFA dose and trends in the lipid mediators, but also quantitatively based on the relative change in the oxylipin level induced by n3-PUFA. The evaluation of the data from the studies shows that the change in oxylipins generally corresponded to the observed changes in their precursor PUFA, i.e. the lower the individual n3-status at the baseline, the higher the increase in EPA and DHA derived oxylipins. The strongest relative increases were found for EPA derived oxylipins, while changes in arachidonic acid (C20:4 n6, ARA) derived eicosanoids were heterogeneous. After 3-12 weeks of supplementation, similar relative changes were observed in free and total (free + esterified) oxylipins in plasma and serum. Regarding EPA derived oxylipins, the results indicate a trend for a linear increase with dose. However, the interpretation of the quantitative oxylipin patterns between studies is hampered by strong inter-individual variances in oxylipin levels between and also within the studies. In the future, the reason for these varying oxylipin plasma concentrations needs to be clarified in order to understand oxylipin and n3-PUFA biology.
Collapse
Affiliation(s)
- Annika I Ostermann
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | | |
Collapse
|
50
|
Caligiuri SPB, Parikh M, Stamenkovic A, Pierce GN, Aukema HM. Dietary modulation of oxylipins in cardiovascular disease and aging. Am J Physiol Heart Circ Physiol 2017; 313:H903-H918. [PMID: 28801523 DOI: 10.1152/ajpheart.00201.2017] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/27/2017] [Accepted: 08/05/2017] [Indexed: 01/21/2023]
Abstract
Oxylipins are a group of fatty acid metabolites generated via oxygenation of polyunsaturated fatty acids and are involved in processes such as inflammation, immunity, pain, vascular tone, and coagulation. As a result, oxylipins have been implicated in many conditions characterized by these processes, including cardiovascular disease and aging. The best characterized oxylipins in relation to cardiovascular disease are derived from the ω-6 fatty acid arachidonic acid. These oxylipins generally increase inflammation, hypertension, and platelet aggregation, although not universally. Similarly, oxylipins derived from the ω-6 fatty acid linoleic acid generally have more adverse than beneficial cardiovascular effects. Alternatively, most oxylipins derived from 20- and 22-carbon ω-3 fatty acids have anti-inflammatory, antiaggregatory, and vasodilatory effects that help explain the cardioprotective effects of these fatty acids. Much less is known regarding the oxylipins derived from the 18-carbon ω-3 fatty acid α-linolenic acid, but clinical trials with flaxseed supplementation have indicated that these oxylipins can have positive effects on blood pressure. Normal aging also is associated with changes in oxylipin levels in the brain, vasculature, and other tissues, indicating that oxylipin changes with aging may be involved in age-related changes in these tissues. A small number of trials in humans and animals with interventions that contain either 18-carbon or 20- and 22-carbon ω-3 fatty acids have indicated that dietary-induced changes in oxylipins may be beneficial in slowing the changes associated with normal aging. In summary, oxylipins are an important group of molecules amenable to dietary manipulation to target cardiovascular disease and age-related degeneration.NEW & NOTEWORTHY Oxylipins are an important group of fatty acid metabolites amenable to dietary manipulation. Because of the role they play in cardiovascular disease and in age-related degeneration, oxylipins are gaining recognition as viable targets for specific dietary interventions focused on manipulating oxylipin composition to control these biological processes.
Collapse
Affiliation(s)
- Stephanie P B Caligiuri
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mihir Parikh
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aleksandra Stamenkovic
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Grant N Pierce
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Harold M Aukema
- Department of Human Nutritional Sciences, Faculty of Agriculture and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; and .,Canadian Centre for Agri-food Research in Health and Medicine, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, Manitoba, Canada
| |
Collapse
|