1
|
Nasr A, Brooks MM, Barinas-Mitchell E, Orchard T, Billheimer J, Wang NC, McConnell D, Rader DJ, El Khoudary SR. High-density lipoprotein metrics during midlife and future subclinical atherosclerosis in women: the SWAN HDL study. Menopause 2024; 31:567-574. [PMID: 38743910 PMCID: PMC11213666 DOI: 10.1097/gme.0000000000002371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
OBJECTIVE The clinical utility of high-density lipoprotein cholesterol (HDL-C) in risk classification is limited, especially in midlife women. Novel metrics of HDL may better reflect this risk. We clustered a comprehensive profile of HDL metrics into favorable and unfavorable clusters and assessed how these two clusters are related to future subclinical atherosclerosis (carotid intima media thickness [cIMT], interadventitial diameter [IAD], and carotid plaque presence) in midlife women. METHODS Four hundred sixty-one women (baseline age: 50.4 [2.7] years; 272 White, 137 Black, 52 Chinese) from the Study of Women's Health Across the Nation HDL ancillary study who had baseline measures of HDL cholesterol efflux capacity (HDL-CEC), lipid contents (HDL-phospholipids [HDL-PL] and HDL triglycerides [HDL-Tg]), and HDL particle (HDL-P) distribution and size, followed by carotid ultrasound (average 12.9 [SD: 2.6] years later), were included. Using latent cluster analysis, women were clustered into a favorable (high HDL-CEC, HDL-PL, large and medium HDL-P, less HDL-Tg and small HDL-P, larger size) or an unfavorable HDL cluster (low HDL-CEC, HDL-PL, large and medium HDL-P, more HDL-Tg, and small HDL-P, smaller size) and then linked to future subclinical atherosclerosis using linear or logistic regression. RESULTS The favorable HDL cluster was associated with lower cIMT, IAD, and odds of carotid plaque presence. These associations were attenuated by body mass index, except in Chinese women where the association with cIMT persisted (0.72 [0.63, 0.83]). CONCLUSIONS The association between favorable HDL clusters and a better postmenopausal subclinical atherosclerosis profile is largely explained by body mass index; however, racial/ethnic differences may exist.
Collapse
Affiliation(s)
- Alexis Nasr
- University of Pittsburgh School of Public Health, Public Health Building, 130 De Soto St, Pittsburgh, PA 15261, USA
| | - Maria M. Brooks
- University of Pittsburgh School of Public Health, Public Health Building, 130 De Soto St, Pittsburgh, PA 15261, USA
| | - Emma Barinas-Mitchell
- Department of Epidemiology, University of Pittsburgh, 130 N. Bellefield Avenue, Suite 338, Pittsburgh PA 15213
| | - Trevor Orchard
- University of Pittsburgh School of Public Health, Public Health Building, 130 De Soto St, Pittsburgh, PA 15261, USA
| | - Jeffrey Billheimer
- University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Norman C. Wang
- Department of Medicine, University of Pittsburgh School of Medicine, UPMC Presbyterian, 200 Lothrop Street, South Tower, 3 Floor, Room 352.9, Pittsburgh PA, USA
| | - Daniel McConnell
- University of Michigan Department of Epidemiology, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Daniel J. Rader
- University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Samar R. El Khoudary
- University of Pittsburgh School of Public Health, Public Health Building, 130 De Soto St, Pittsburgh, PA 15261, USA
| |
Collapse
|
2
|
Seto Y, Nagao M, Iino T, Harada A, Murakami K, Miwa K, Shinohara M, Nishimori M, Yoshikawa S, Asakura J, Fujioka T, Ishida T, Hirata KI, Toh R. Impaired Cholesterol Uptake Capacity in Patients with Hypertriglyceridemia and Diabetes Mellitus. J Appl Lab Med 2024; 9:728-740. [PMID: 38574000 DOI: 10.1093/jalm/jfae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/06/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Although low high-density lipoprotein cholesterol (HDL-C) levels are a common metabolic abnormality associated with insulin resistance, their role in cardiovascular risk stratification remains controversial. Recently, we developed a simple, high-throughput, cell-free assay system to evaluate the "cholesterol uptake capacity (CUC)" as a novel concept for HDL functionality. In this study, we assessed the CUC in patients with hypertriglyceridemia and diabetes mellitus. METHODS The CUC was measured using cryopreserved serum samples from 285 patients who underwent coronary angiography or percutaneous coronary intervention between December 2014 and May 2019 at Kobe University Hospital. RESULTS The CUC was significantly lower in diabetic patients (n = 125) than in nondiabetic patients (93.0 vs 100.7 arbitrary units (A.U.), P = 0.002). Patients with serum triglyceride (TG) levels >150 mg/dL (n = 94) also had a significantly lower CUC (91.8 vs 100.0 A.U., P = 0.004). Furthermore, the CUC showed a significant inverse correlation with TG, hemoglobin A1c (Hb A1c), homeostasis model assessment of insulin resistance (HOMA-IR), and body mass index (BMI). Finally, the HDL-C/Apolipoprotein A1 (ApoA1) ratio, calculated as a surrogate index of HDL particle size, was significantly positively correlated with the CUC (r2 = 0.49, P < 0.001), but inversely correlated with TG levels (r2 = -0.30, P < 0.001). CONCLUSIONS The CUC decreased in patients with hypertriglyceridemia and diabetes mellitus, and HDL particle size was a factor defining the CUC and inversely correlated with TG levels, suggesting that impaired CUC in insulin-resistant states was partially due to the shift in HDL towards smaller particles. These findings provide a better understanding of the mechanisms underlying impaired HDL functionality.
Collapse
Affiliation(s)
- Yutaro Seto
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Manabu Nagao
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Takuya Iino
- Central Research Laboratories, Sysmex Corporation, Nishi-ku, Kobe, Japan
| | - Amane Harada
- Central Research Laboratories, Sysmex Corporation, Nishi-ku, Kobe, Japan
| | - Katsuhiro Murakami
- Central Research Laboratories, Sysmex Corporation, Nishi-ku, Kobe, Japan
| | - Keiko Miwa
- Central Research Laboratories, Sysmex Corporation, Nishi-ku, Kobe, Japan
| | - Masakazu Shinohara
- Division of Molecular Epidemiology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Makoto Nishimori
- Division of Molecular Epidemiology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Sachiko Yoshikawa
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Junko Asakura
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Tomoo Fujioka
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
- Division of Nursing Practice, Kobe University Graduate School of Health Sciences, Suma-ku, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Ryuji Toh
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| |
Collapse
|
3
|
Jiang Y, Pang S, Liu X, Wang L, Liu Y. The Gut Microbiome Affects Atherosclerosis by Regulating Reverse Cholesterol Transport. J Cardiovasc Transl Res 2024; 17:624-637. [PMID: 38231373 DOI: 10.1007/s12265-024-10480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/07/2024] [Indexed: 01/18/2024]
Abstract
The human system's secret organ, the gut microbiome, has received considerable attention. Emerging research has yielded substantial scientific evidence indicating that changes in gut microbial composition and microbial metabolites may contribute to the development of atherosclerotic cardiovascular disease. The burden of cardiovascular disease on healthcare systems is exacerbated by atherosclerotic cardiovascular disease, which continues to be the leading cause of mortality globally. Reverse cholesterol transport is a powerful protective mechanism that effectively prevents excessive accumulation of cholesterol for atherosclerotic cardiovascular disease. It has been revealed how the gut microbiota modulates reverse cholesterol transport in patients with atherosclerotic risk. In this review, we highlight the complex interactions between microbes, their metabolites, and their potential impacts in reverse cholesterol transport. We also explore the feasibility of modulating gut microbes and metabolites to facilitate reverse cholesterol transport as a novel therapy for atherosclerosis.
Collapse
Affiliation(s)
- Yangyang Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuchao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Xiaoyu Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lixin Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
4
|
Chen JX, Li Y, Zhang YB, Wang Y, Zhou YF, Geng T, Liu G, Pan A, Liao YF. Nonlinear relationship between high-density lipoprotein cholesterol and cardiovascular disease: an observational and Mendelian randomization analysis. Metabolism 2024; 154:155817. [PMID: 38364900 DOI: 10.1016/j.metabol.2024.155817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Clinical trials and Mendelian randomization (MR) studies reported null effects of high-density lipoprotein cholesterol (HDL-C) on risk of cardiovascular disease (CVD), which might have overlooked a nonlinear causal association. We aimed to investigate the dose-response relationship between circulating HDL-C concentrations and CVD in observational and MR frameworks. METHODS We included 348,636 participants (52,919 CVD cases and 295,717 non-cases) of European ancestry with genetic data from the UK Biobank (UKB) and acquired genome-wide association summary data for HDL-C of Europeans from the Global Lipids Genetics Consortium (GLGC). Observational analyses were conducted in the UKB. Stratified MR analyses were conducted combing genetic data for CVD from UKB and lipids from GLGC. RESULTS Observational analyses showed L-shaped associations of HDL-C with CVD, with no further risk reduction when HDL-C levels exceeded 70 mg/dL. Multivariable MR analyses across entire distribution of HDL-C found no association of HDL-C with CVD, after control of the pleiotropic effect on other lipids and unmeasured pleiotropism. However, in stratified MR analyses, significant inverse associations of HDL-C with CVD were observed in the stratum of participants with HDL-C ≤ 50 mg/dL (odds ratio per unit increase, 0.86; 95 % confidence interval, 0.79-0.94), while null associations were observed in any stratum above 50 mg/dL. CONCLUSIONS Our data suggest a potentially causal inverse association of HDL-C at low levels with CVD risks. These findings advance our knowledge about the role of HDL as a potential target in CVD prevention and therapy.
Collapse
Affiliation(s)
- Jun-Xiang Chen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Li
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Bo Zhang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yi Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yan-Feng Zhou
- Department of Social Medicine and Health Management, School of Public Health, Guangxi Medical University, Nanning, China; Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Tingting Geng
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yun-Fei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Jonker J, Doorenbos CSE, Kremer D, Gore EJ, Niesters HGM, van Leer-Buter C, Bourgeois P, Connelly MA, Dullaart RPF, Berger SP, Sanders JSF, Bakker SJL. High-Density Lipoprotein Particles and Torque Teno Virus in Stable Outpatient Kidney Transplant Recipients. Viruses 2024; 16:143. [PMID: 38257843 PMCID: PMC10818741 DOI: 10.3390/v16010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Torque teno virus (TTV) is emerging as a potential marker for monitoring immune status. In transplant recipients who are immunosuppressed, higher TTV DNA loads are observed than in healthy individuals. TTV load measurement may aid in optimizing immunosuppressive medication dosing in solid organ transplant recipients. Additionally, there is a growing interest in the role of HDL particles in immune function; therefore, assessment of both HDL concentrations and TTV load may be of interest in transplant recipients. The objective of this study was to analyze TTV loads and HDL parameters in serum samples collected at least one year post-transplantation from 656 stable outpatient kidney transplant recipients (KTRs), enrolled in the TransplantLines Food and Nutrition Cohort (Groningen, the Netherlands). Plasma HDL particles and subfractions were measured using nuclear magnetic resonance spectroscopy. Serum TTV load was measured using a quantitative real-time polymerase chain reaction. Associations between HDL parameters and TTV load were examined using univariable and multivariable linear regression. The median age was 54.6 [IQR: 44.6 to 63.1] years, 43.3% were female, the mean eGFR was 52.5 (±20.6) mL/min/1.73 m2 and the median allograft vintage was 5.4 [IQR: 2.0 to 12.0] years. A total of 539 participants (82.2%) had a detectable TTV load with a mean TTV load of 3.04 (±1.53) log10 copies/mL, the mean total HDL particle concentration was 19.7 (±3.4) μmol/L, and the mean HDL size was 9.1 (±0.5) nm. The univariable linear regression revealed a negative association between total HDL particle concentration and TTV load (st.β = -0.17, 95% CI st.β: -0.26 to -0.09, p < 0.001). An effect modification of smoking behavior influencing the association between HDL particle concentration and TTV load was observed (Pinteraction = 0.024). After adjustment for age, sex, alcohol intake, hemoglobin, eGFR, donor age, allograft vintage and the use of calcineurin inhibitors, the negative association between HDL particle concentration and TTV load remained statistically significant in the non-smoking population (st.β = -0.14, 95% CI st.β: -0.23 to -0.04, p = 0.006). Furthermore, an association between small HDL particle concentration and TTV load was found (st.β = -0.12, 95% CI st.β: -0.22 to -0.02, p = 0.017). Higher HDL particle concentrations were associated with a lower TTV load in kidney transplant recipients, potentially indicative of a higher immune function. Interventional studies are needed to provide causal evidence on the effects of HDL on the immune system.
Collapse
Affiliation(s)
- Jip Jonker
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Caecilia S. E. Doorenbos
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Daan Kremer
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Edmund J. Gore
- Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Hubert G. M. Niesters
- Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Coretta van Leer-Buter
- Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | | - Robin P. F. Dullaart
- Department of Internal Medicine, Division of Endocrinology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Stefan P. Berger
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jan-Stephan F. Sanders
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Stephan J. L. Bakker
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
6
|
Razavi AC, Mehta A, Jain V, Patel P, Liu C, Patel N, Eisenberg S, Vaccarino V, Isiadinso I, Sperling LS, Quyyumi AA. High-Density Lipoprotein Cholesterol in Atherosclerotic Cardiovascular Disease Risk Assessment: Exploring and Explaining the "U"-Shaped Curve. Curr Cardiol Rep 2023; 25:1725-1733. [PMID: 37971636 PMCID: PMC10898346 DOI: 10.1007/s11886-023-01987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW Review updates for the association of HDL-cholesterol with atherosclerotic cardiovascular disease (ASCVD) and discuss the approach to incorporating HDL-cholesterol within risk assessment. RECENT FINDINGS There is a U-shaped relationship between HDL-cholesterol and ASCVD. Both low HDL-cholesterol (< 40 mg/dL in men, < 50 mg/dL in women) and very-high HDL-cholesterol (≥ 80 mg/dL in men) are associated with a higher risk of all-cause and ASCVD mortality, independent from traditional risk factors. There has been inconsistency for the association between very-high HDL-cholesterol and mortality outcomes in women. It is uncertain whether HDL-cholesterol is a causal ASCVD risk factor, especially due to mixed results from Mendelian randomization studies and the collinearity of HDL-cholesterol with established risk factors, lifestyle behaviors, and socioeconomic status. HDL-cholesterol is a risk factor or risk enhancer in primary prevention and high-risk condition in secondary prevention when either low (men and women) or very-high (men). The contribution of HDL-cholesterol to ASCVD risk calculators should reflect its observed U-shaped association with all-cause and ASCVD mortality.
Collapse
Affiliation(s)
- Alexander C Razavi
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Anurag Mehta
- Virginia Commonwealth University Health Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Vardhmaan Jain
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Parth Patel
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Chang Liu
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Nidhi Patel
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Scott Eisenberg
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Viola Vaccarino
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Ijeoma Isiadinso
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Laurence S Sperling
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Arshed A Quyyumi
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
7
|
Andersen CJ, Huang L, Zhai F, Esposito CP, Greco JM, Zhang R, Woodruff R, Sloan A, Van Dyke AR. Consumption of Different Egg-Based Diets Alters Clinical Metabolic and Hematological Parameters in Young, Healthy Men and Women. Nutrients 2023; 15:3747. [PMID: 37686779 PMCID: PMC10490185 DOI: 10.3390/nu15173747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Eggs-particularly egg yolks-are a rich source of bioactive nutrients and dietary compounds that influence metabolic health, lipid metabolism, immune function, and hematopoiesis. We investigated the effects of consuming an egg-free diet, three egg whites per day, and three whole eggs per day for 4 weeks on comprehensive clinical metabolic, immune, and hematologic profiles in young, healthy adults (18-35 y, BMI < 30 kg/m2 or <30% body fat for men and <40% body fat for women, n = 26) in a 16-week randomized, crossover intervention trial. We observed that average daily macro- and micronutrient intake significantly differed across egg diet periods, including greater intake of choline during the whole egg diet period, which corresponded to increased serum choline and betaine without altering trimethylamine N-oxide. Egg white and whole egg intake increased serum isoleucine while whole egg intake reduced serum glycine-markers of increased and decreased risk of insulin resistance, respectively-without altering other markers of glucose sensitivity or inflammation. Whole egg intake increased a subset of large HDL particles (H6P, 10.8 nm) and decreased the total cholesterol:HDL-cholesterol ratio and % monocytes in female participants using combined oral contraceptive (COC) medication (n = 11) as compared to female non-users (n = 10). Whole egg intake further increased blood hematocrit whereas egg white and whole egg intake reduced blood platelet counts. Changes in clinical immune cell counts between egg white and whole egg diet periods were negatively correlated with several HDL parameters yet positively correlated with measures of triglyceride-rich lipoproteins and insulin sensitivity. Overall, the intake of whole eggs led to greater overall improvements in micronutrient diet quality, choline status, and HDL and hematologic profiles while minimally-yet potentially less adversely-affecting markers of insulin resistance as compared to egg whites.
Collapse
Affiliation(s)
- Catherine J. Andersen
- Department of Biology, Fairfield University, Fairfield, CT 06824, USA; (J.M.G.); (A.S.)
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.H.); (F.Z.); (R.Z.); (R.W.)
| | - Lindsey Huang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.H.); (F.Z.); (R.Z.); (R.W.)
| | - Fangyi Zhai
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.H.); (F.Z.); (R.Z.); (R.W.)
| | - Christa Palancia Esposito
- Marion Peckham Egan School of Nursing and Health Studies, Fairfield University, Fairfield, CT 06824, USA;
| | - Julia M. Greco
- Department of Biology, Fairfield University, Fairfield, CT 06824, USA; (J.M.G.); (A.S.)
| | - Ruijie Zhang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.H.); (F.Z.); (R.Z.); (R.W.)
| | - Rachael Woodruff
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.H.); (F.Z.); (R.Z.); (R.W.)
| | - Allison Sloan
- Department of Biology, Fairfield University, Fairfield, CT 06824, USA; (J.M.G.); (A.S.)
| | - Aaron R. Van Dyke
- Department of Chemistry and Biochemistry, Fairfield University, Fairfield, CT 06824, USA;
| |
Collapse
|
8
|
Lou C, Meng Z, Shi YY, Zheng R, Qian SZ, Pan J. Genetic association of lipids and lipid-lowering drugs with sepsis: a Mendelian randomization and mediation analysis. Front Cardiovasc Med 2023; 10:1217922. [PMID: 37621565 PMCID: PMC10446761 DOI: 10.3389/fcvm.2023.1217922] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Background The impact of lipid-lowering medications on sepsis is still not well defined. A Mendelian randomization (MR) study was carried out to probe the causal connections between genetically determined lipids, lipid-reducing drugs, and the risk of sepsis. Materials and methods Data on total serum cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein A-I (ApoA-I), apolipoprotein B (ApoB), and triglycerides (TG) were retrieved from the MR-Base platform and the Global Lipids Genetics Consortium in 2021 (GLGC2021). Our study categorized sepsis into two groups: total sepsis and 28-day mortality of sepsis patients (sepsis28). The inverse-variance weighted (IVW) method was the primary method used in MR analysis. Cochran's Q test and the MR-Egger intercept method were used to assess the heterogeneity and pleiotropy. Results In the MR analysis, we found that ApoA-I played a suggestively positive role in protecting against both total sepsis (OR, 0.863 per SD increase in ApoA-I; 95% CI, 0.780-0.955; P = 0.004) and sepsis28 (OR, 0.759; 95% CI, 0.598-0.963; P = 0.023). HDL-C levels were also found to suggestively reduce the incidence of total sepsis (OR, 0.891 per SD increase in HDL-C; 95% CI, 0.802-0.990; P = 0.031). Reverse-MR showed that sepsis28 led to a decrease in HDL-C level and an increase in TG level. In drug-target MR, we found that HMGCR inhibitors positively protected against total sepsis (1 OR , 0.719 per SD reduction in LDL-C; 95% CI, 0.540-0.958; P = 0.024). LDL-C and HDL-C proxied CETP inhibitors were found to have a protective effect on total sepsis, with only LDL-C proxied CETP inhibitors showing a suggestively protective effect on sepsis28. In Mediated-MR, BMI exhibited a negative indirect effect in HMGCR inhibitors curing sepsis. The indirect impact of ApoA-I explained over 50% of the curative effects of CETP inhibitors in sepsis. Conclusions Our MR study suggested that ApoA-I and HDL-C protected against sepsis, while HMGCR and CETP inhibitors showed therapeutic potential beyond lipid-lowering effects. ApoA-I explained the effects of CETP inhibitors. Our study illuminates how lipids affect sepsis patients and the effectiveness of new drugs, opening new avenues for sepsis treatment.
Collapse
Affiliation(s)
- Chen Lou
- School of The First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhizhen Meng
- Department of Emergency, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yi-Yi Shi
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rui Zheng
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Song-Zan Qian
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingye Pan
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Song R, Hu M, Qin X, Qiu L, Wang P, Zhang X, Liu R, Wang X. The Roles of Lipid Metabolism in the Pathogenesis of Chronic Diseases in the Elderly. Nutrients 2023; 15:3433. [PMID: 37571370 PMCID: PMC10420821 DOI: 10.3390/nu15153433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Lipid metabolism plays crucial roles in cellular processes such as hormone synthesis, energy production, and fat storage. Older adults are at risk of the dysregulation of lipid metabolism, which is associated with progressive declines in the physiological function of various organs. With advancing age, digestion and absorption commonly change, thereby resulting in decreased nutrient uptake. However, in the elderly population, the accumulation of excess fat becomes more pronounced due to a decline in the body's capacity to utilize lipids effectively. This is characterized by enhanced adipocyte synthesis and reduced breakdown, along with diminished peripheral tissue utilization capacity. Excessive lipid accumulation in the body, which manifests as hyperlipidemia and accumulated visceral fat, is linked to several chronic lipid-related diseases, including cardiovascular disease, type 2 diabetes, obesity, and nonalcoholic fatty liver disease. This review provides a summary of the altered lipid metabolism during aging, including lipid digestion, absorption, anabolism, and catabolism, as well as their associations with age-related chronic diseases, which aids in developing nutritional interventions for older adults to prevent or alleviate age-related chronic diseases.
Collapse
Affiliation(s)
- Rui Song
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.S.); (M.H.); (X.Q.); (L.Q.)
| | - Mengxiao Hu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.S.); (M.H.); (X.Q.); (L.Q.)
| | - Xiyu Qin
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.S.); (M.H.); (X.Q.); (L.Q.)
| | - Lili Qiu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.S.); (M.H.); (X.Q.); (L.Q.)
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (X.Z.); (R.L.)
| | - Xiaoxu Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (X.Z.); (R.L.)
| | - Rong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (X.Z.); (R.L.)
| | - Xiaoyu Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (R.S.); (M.H.); (X.Q.); (L.Q.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (X.Z.); (R.L.)
| |
Collapse
|
10
|
Toh R. Fish-Derived Omega-3 Fatty Acids: Guardians of High-Density Lipoprotein? J Atheroscler Thromb 2023; 30:855-858. [PMID: 37032090 PMCID: PMC10406655 DOI: 10.5551/jat.ed231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Ryuji Toh
- Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
11
|
Lloyd-Jones C, Dos Santos Seckler H, DiStefano N, Sniderman A, Compton PD, Kelleher NL, Wilkins JT. Preparative Electrophoresis for HDL Particle Size Separation and Intact-Mass Apolipoprotein Proteoform Analysis. J Proteome Res 2023; 22:1455-1465. [PMID: 37053489 PMCID: PMC10436667 DOI: 10.1021/acs.jproteome.2c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The most abundant proteins on high-density lipoproteins (HDLs), apolipoproteins A-I (APOA1) and A-II (APOA2), are determinants of HDL function with 15 and 9 proteoforms (chemical-structure variants), respectively. The relative abundance of these proteoforms in human serum is associated with HDL cholesterol efflux capacity, and cholesterol content. However, the association between proteoform concentrations and HDL size is unknown. We employed a novel native-gel electrophoresis technique, clear native gel-eluted liquid fraction entrapment electrophoresis (CN-GELFrEE) paired with mass spectrometry of intact proteins to investigate this association. Pooled serum was fractionated using acrylamide gels of lengths 8 and 25 cm. Western blotting determined molecular diameter and intact-mass spectrometry determined proteoform profiles of each fraction. The 8- and 25 cm experiments generated 19 and 36 differently sized HDL fractions, respectively. The proteoform distribution varied across size. Fatty-acylated APOA1 proteoforms were associated with larger HDL sizes (Pearson's R = 0.94, p = 4 × 10-7) and were approximately four times more abundant in particles larger than 9.6 nm than in total serum; HDL-unbound APOA1 was acylation-free and contained the pro-peptide proAPOA1. APOA2 proteoform abundance was similar across HDL sizes. Our results establish CN-GELFrEE as an effective lipid-particle separation technique and suggest that acylated proteoforms of APOA1 are associated with larger HDL particles.
Collapse
Affiliation(s)
- Cameron Lloyd-Jones
- Department of Chemistry, Department of Molecular Biosciences, Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Henrique Dos Santos Seckler
- Department of Chemistry, Department of Molecular Biosciences, Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Nicholas DiStefano
- Department of Chemistry, Department of Molecular Biosciences, Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Allan Sniderman
- Royal Victoria Hospital-McGill University Health Centre, Montreal, Quebec H3A 1W9, Canada
| | - Phillip D Compton
- Department of Chemistry, Department of Molecular Biosciences, Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Department of Chemistry, Department of Molecular Biosciences, Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - John T Wilkins
- Departments of Medicine (Cardiology) and Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
12
|
Denimal D, Monier S, Bouillet B, Vergès B, Duvillard L. High-Density Lipoprotein Alterations in Type 2 Diabetes and Obesity. Metabolites 2023; 13:metabo13020253. [PMID: 36837872 PMCID: PMC9967905 DOI: 10.3390/metabo13020253] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Alterations affecting high-density lipoproteins (HDLs) are one of the various abnormalities observed in dyslipidemia in type 2 diabetes mellitus (T2DM) and obesity. Kinetic studies have demonstrated that the catabolism of HDL particles is accelerated. Both the size and the lipidome and proteome of HDL particles are significantly modified, which likely contributes to some of the functional defects of HDLs. Studies on cholesterol efflux capacity have yielded heterogeneous results, ranging from a defect to an improvement. Several studies indicate that HDLs are less able to inhibit the nuclear factor kappa-B (NF-κB) proinflammatory pathway, and subsequently, the adhesion of monocytes on endothelium and their recruitment into the subendothelial space. In addition, the antioxidative function of HDL particles is diminished, thus facilitating the deleterious effects of oxidized low-density lipoproteins on vasculature. Lastly, the HDL-induced activation of endothelial nitric oxide synthase is less effective in T2DM and metabolic syndrome, contributing to several HDL functional defects, such as an impaired capacity to promote vasodilatation and endothelium repair, and difficulty counteracting the production of reactive oxygen species and inflammation.
Collapse
Affiliation(s)
- Damien Denimal
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Biochemistry, CHU Dijon Bourgogne, 21000 Dijon, France
- Correspondence:
| | - Serge Monier
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
| | - Benjamin Bouillet
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Bruno Vergès
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Endocrinology and Diabetology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Laurence Duvillard
- INSERM, UMR1231, University of Burgundy, 21000 Dijon, France
- Department of Biochemistry, CHU Dijon Bourgogne, 21000 Dijon, France
| |
Collapse
|
13
|
McGarrah RW, Ferencik M, Giamberardino SN, Hoffmann U, Foldyna B, Karady J, Ginsburg GS, Kraus WE, Douglas PS, Shah SH. Lipoprotein Subclasses Associated With High-Risk Coronary Atherosclerotic Plaque: Insights From the PROMISE Clinical Trial. J Am Heart Assoc 2022; 12:e026662. [PMID: 36565187 PMCID: PMC9973611 DOI: 10.1161/jaha.122.026662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND More than half of major adverse cardiovascular events (MACE) occur in the absence of obstructive coronary artery disease and are often attributed to the rupture of high-risk coronary atherosclerotic plaque (HRP). Blood-based biomarkers that associate with imaging-defined HRP and predict MACE are lacking. METHODS AND RESULTS Nuclear magnetic resonance-based lipoprotein particle profiling was performed in the biomarker substudy of the PROMISE (Prospective Multicenter Imaging Study for Evaluation of Chest Pain) trial (N=4019) in participants who had stable symptoms suspicious for coronary artery disease. Principal components analysis was used to reduce the number of correlated lipoproteins into uncorrelated lipoprotein factors. The association of lipoprotein factors and individual lipoproteins of significantly associated factors with core laboratory determined coronary computed tomographic angiography features of HRP was determined using logistic regression models. The association of HRP-associated lipoproteins with MACE was assessed in the PROMISE trial and validated in an independent coronary angiography biorepository (CATHGEN [Catheterization Genetics]) using Cox proportional hazards models. Lipoprotein factors composed of high-density lipoprotein (HDL) subclasses were associated with HRP. In these factors, large HDL (odds ratio [OR], 0.70 [95% CI, 0.56-0.85]; P<0.001) and medium HDL (OR, 0.84 [95% CI, 0.72-0.98]; P=0.028) and HDL size (OR, 0.82 [95% CI, 0.69-0.96]; P=0.018) were associated with HRP in multivariable models. Medium HDL was associated with MACE in PROMISE (hazard ratio [HR], 0.76 [95% CI, 0.63-0.92]; P=0.004), which was validated in the CATHGEN biorepository (HR, 0.91 [95% CI, 0.88-0.94]; P<0.001). CONCLUSIONS Large and medium HDL subclasses and HDL size inversely associate with HRP features, and medium HDL subclasses inversely associate with MACE in PROMISE trial participants. These findings may aid in the risk stratification of individuals with chest pain and provide insight into the pathobiology of HRP. REGISTRATION URL: https://clinicaltrials.gov; Unique identifier: NCT01174550.
Collapse
Affiliation(s)
- Robert W. McGarrah
- Division of Cardiology, Department of MedicineDuke University School of MedicineDurhamNC,Duke Molecular Physiology InstituteDuke University School of MedicineDurhamNC
| | - Maros Ferencik
- Knight Cardiovascular InstituteOregon Health and Science UniversityPortlandOR
| | | | - Udo Hoffmann
- Cardiovascular Imaging Research CenterHarvard Medical School–Massachusetts General HospitalBostonMA
| | - Borek Foldyna
- Cardiovascular Imaging Research CenterHarvard Medical School–Massachusetts General HospitalBostonMA
| | - Julia Karady
- Cardiovascular Imaging Research CenterHarvard Medical School–Massachusetts General HospitalBostonMA,MTA‐SE Cardiovascular Imaging Research Group, Heart and Vascular CenterSemmelweis UniversityBudapestHungary
| | - Geoffrey S. Ginsburg
- Duke Center for Applied Genomics & Precision MedicineDuke University School of MedicineDurhamNC
| | - William E. Kraus
- Division of Cardiology, Department of MedicineDuke University School of MedicineDurhamNC,Duke Molecular Physiology InstituteDuke University School of MedicineDurhamNC
| | - Pamela S. Douglas
- Division of Cardiology, Department of MedicineDuke University School of MedicineDurhamNC,Duke Clinical Research InstituteDuke University School of MedicineDurhamNC
| | - Svati H. Shah
- Division of Cardiology, Department of MedicineDuke University School of MedicineDurhamNC,Duke Molecular Physiology InstituteDuke University School of MedicineDurhamNC,Duke Clinical Research InstituteDuke University School of MedicineDurhamNC
| |
Collapse
|
14
|
Kraus VB, Ma S, Tourani R, Fillenbaum GG, Burchett BM, Parker DC, Kraus WE, Connelly MA, Otvos JD, Cohen HJ, Orenduff MC, Pieper CF, Zhang X, Aliferis CF. Causal analysis identifies small HDL particles and physical activity as key determinants of longevity of older adults. EBioMedicine 2022; 85:104292. [PMID: 36182774 PMCID: PMC9526168 DOI: 10.1016/j.ebiom.2022.104292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The hard endpoint of death is one of the most significant outcomes in both clinical practice and research settings. Our goal was to discover direct causes of longevity from medically accessible data. METHODS Using a framework that combines local causal discovery algorithms with discovery of maximally predictive and compact feature sets (the "Markov boundaries" of the response) and equivalence classes, we examined 186 variables and their relationships with survival over 27 years in 1507 participants, aged ≥71 years, of the longitudinal, community-based D-EPESE study. FINDINGS As few as 8-15 variables predicted longevity at 2-, 5- and 10-years with predictive performance (area under receiver operator characteristic curve) of 0·76 (95% CIs 0·69, 0·83), 0·76 (0·72, 0·81) and 0·66 (0·61, 0·71), respectively. Numbers of small high-density lipoprotein particles, younger age, and fewer pack years of cigarette smoking were the strongest determinants of longevity at 2-, 5- and 10-years, respectively. Physical function was a prominent predictor of longevity at all time horizons. Age and cognitive function contributed to predictions at 5 and 10 years. Age was not among the local 2-year prediction variables (although significant in univariable analysis), thus establishing that age is not a direct cause of 2-year longevity in the context of measured factors in our data that determine longevity. INTERPRETATION The discoveries in this study proceed from causal data science analyses of deep clinical and molecular phenotyping data in a community-based cohort of older adults with known lifespan. FUNDING NIH/NIA R01AG054840, R01AG12765, and P30-AG028716, NIH/NIA Contract N01-AG-12102 and NCRR 1UL1TR002494-01.
Collapse
Affiliation(s)
- Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University, Durham, NC, United States.
| | - Sisi Ma
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States; University of Minnesota Department of Medicine, Minneapolis, MN, United States
| | - Roshan Tourani
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States
| | - Gerda G Fillenbaum
- Psychiatry and Behavioral Sciences and Center for the Study of Aging and Human Development, Duke University, Durham, NC, United States
| | - Bruce M Burchett
- Center for the Study of Aging and Human Development, Duke University, Durham, NC, United States
| | - Daniel C Parker
- Division of Geriatrics, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University, Durham, NC, United States
| | - Margery A Connelly
- Laboratory Corporation of America® Holdings (Labcorp), Morrisville, NC, United States
| | - James D Otvos
- Laboratory Corporation of America® Holdings (Labcorp), Morrisville, NC, United States
| | - Harvey Jay Cohen
- Center for the Study of Aging and Human Development, Duke University, Durham, NC, United States
| | - Melissa C Orenduff
- Duke Molecular Physiology Institute, Duke University, Durham, NC, United States
| | - Carl F Pieper
- Center for the Study of Aging and Human Development, Duke University, Durham, NC, United States; Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Xin Zhang
- Duke Molecular Physiology Institute, Duke University, Durham, NC, United States
| | - Constantin F Aliferis
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States; University of Minnesota Consortium on Aging, Minneapolis, MN, United States; University of Minnesota Clinical and Translational Science Institute, Minneapolis, MN, United States; University of Minnesota Department of Medicine, Minneapolis, MN, United States
| |
Collapse
|
15
|
Bouzoni E, Perakakis N, Connelly MA, Angelidi AM, Pilitsi E, Farr O, Stefanakis K, Mantzoros CS. PCSK9 and ANGPTL3 levels correlate with hyperlipidemia in HIV-lipoatrophy, are regulated by fasting and are not affected by leptin administered in physiologic or pharmacologic doses. Metabolism 2022; 134:155265. [PMID: 35820631 DOI: 10.1016/j.metabol.2022.155265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Medications leveraging the leptin, PCSK9, ANGPTL3 and FABP4 pathways are being developed for the treatment of insulin resistance and/or lipid disorders. To evaluate whether these pathways are independent from each other, we assessed the levels of PCSK9, ANGPTL3 and FABP4, in normal subjects and subjects exhibiting HIV and highly active antiretroviral therapy (HAART) induced metabolic syndrome with lipoatrophy and hypoleptinemia. Studies were performed at baseline and during food deprivation for three days with either a placebo or leptin administration at physiological replacement doses to correct fasting induced acute hypoleptinemia and in pharmacological doses. METHODS PCSK9, ANGPTL3, FABP4 levels and their correlations to lipoproteins-metabolites were assessed in randomized placebo controlled cross-over studies: a) in 15 normal-weight individuals undergoing three-day admissions in the fed state, in complete fasting with placebo and in complete fasting with leptin treatment in physiologic replacement doses (study 1), b) in 15 individuals day baseline in a fed and three fasting admissions for three days with leptin administered in physiologic, supraphysiologic and pharmacologic doses (study 2), c) in 7 hypoleptinemic men with HIV and HAART-induced lipoatrophy treated with leptin or placebo for two months in the context of a cross over randomized trial (study 3). RESULTS Circulating ANGPTL3, PCSK9 and FABP4 were markedly elevated in HIV-lipoatrophy and not affected by leptin treatment. PCSK9 levels correlated with lipids and markers of lipid utilization and lipolysis. ANGPTL3 levels correlated with HDL particles and their lipid composition. FABP4 levels were negatively associated with HDL diameter (HDL-D) and composition. PCSK9 and ANGPTL3 levels decreased during food deprivation by ~65 % and 30 % respectively. Leptin administration at physiologic, supraphysiologic and pharmacologic doses did not affect PCSK9, ANGPTL3 and FABP4 levels. CONCLUSIONS PCSK9, ANGPTL3 and FABP4 levels are associated with markers of lipid metabolism and are higher in HIV-lipoatrophy. PCSK9 and ANGPTL3 but not FABP4 decrease in response to food deprivation. PCSK9 and ANGPTL3 regulation is leptin-independent, suggesting independent pathways for lipid regulation. Thus, combining treatments of leptin with PCSK9 and/or ANGPTL3 inhibitors for metabolic diseases should have additive effects and merit further investigation. CLINICAL TRIAL INFORMATION ClinicalTrials.gov no. NCT00140231, NCT00140205, NCT00140244.
Collapse
Affiliation(s)
- Eirini Bouzoni
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, United States.
| | - Nikolaos Perakakis
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, United States
| | - Margery A Connelly
- Laboratory Corporation of America® Holdings (Labcorp), Morrisville, NC 27560, United States
| | - Angeliki M Angelidi
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, United States
| | - Eleni Pilitsi
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, United States
| | - Olivia Farr
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, United States
| | - Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, United States
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215, United States; Section of Endocrinology, VA Boston Healthcare System, Jamaica Plain, MA 02130, United States
| |
Collapse
|
16
|
Krzesińska A, Kłosowska A, Sałaga-Zaleska K, Ćwiklińska A, Mickiewicz A, Chyła G, Wierzba J, Jankowski M, Kuchta A. Lipid Profile, Lp(a) Levels, and HDL Quality in Adolescents with Down Syndrome. J Clin Med 2022; 11:jcm11154356. [PMID: 35955978 PMCID: PMC9368930 DOI: 10.3390/jcm11154356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
The improvement in the lifespan of individuals with Down syndrome (DS) has created interest in the context of the development of age-related diseases. Among them is atherosclerosis-based cardiovascular disease (CVD), which seems to be an especially urgent and important issue. The aim of the present study was to evaluate the lipid markers that may clarify cardiovascular risk profiles in individuals with DS. To this end, we analyzed lipid profile parameters, including lipoprotein(a) (Lp(a)) levels, protein composition, and the antioxidative properties of high-density lipoprotein (HDL), in 47 adolescents with DS and 47 individuals without DS. Compared with the control group (C), subjects with DS had significantly increased concentrations of low-density lipoprotein cholesterol (105 ± 31 vs. 90 ± 24 mg/dL, p = 0.014), non-high-density lipoprotein cholesterol (120 ± 32 vs. 103 ± 26 mg/dL, p = 0.006), and triglycerides (72 [55−97] vs. 60 [50−77] mg/dL, p = 0.048). We found that patients with DS were characterized by significantly higher Lp(a) levels (31.9 [21.5−54.3] vs. 5.2 (2.4−16.1) mg/dL, p < 0.001). In fact, 57% of individuals with DS had Lp(a) levels above 30 mg/dL, which was approximately four times higher than those in the control group (DS 57% vs. C 15%). Apart from decreased high-density lipoprotein cholesterol levels in the subjects with DS (53 ± 11 vs. 63 ± 12 mg/dL, p < 0.001), differences in parameters showing the quality of HDL particles were observed. The concentrations of the main proteins characterizing the HDL fraction, apolipoprotein A-I and apolipoprotein A-II, were significantly lower in the DS group (144 ± 21 vs. 181 ± 33 mg/dL, p < 0.001; 33 ± 6 vs. 39 ± 6 mg/dL, p < 0.001, respectively). No significant differences between the groups were observed for the concentration of paraoxonase-1 (DS 779 ± 171 vs. C 657 ± 340 ng/mL, p = 0.063), enzyme activities toward paraoxon (DS 219 [129−286] vs. C 168 [114−272] IU/L, p = 0.949), or phenyl acetate (DS 101 ± 20 vs. C 93 ± 21 kIU/L, p = 0.068). There were no differences in myeloperoxidase activity between the study groups (DS 327 [300−534] vs. C 426 [358−533] ng/mL, p = 0.272). Our results are the first to demonstrate an unfavorable lipid profile combined with higher Lp(a) levels and quality changes in HDL particles in individuals with DS. This sheds new light on cardiovascular risk and traditional healthcare planning for adolescents with DS.
Collapse
Affiliation(s)
- Aleksandra Krzesińska
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.K.); (K.S.-Z.); (A.Ć.); (G.C.); (M.J.)
| | - Anna Kłosowska
- Department of Paediatrics, Haemathology and Oncology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Kornelia Sałaga-Zaleska
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.K.); (K.S.-Z.); (A.Ć.); (G.C.); (M.J.)
| | - Agnieszka Ćwiklińska
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.K.); (K.S.-Z.); (A.Ć.); (G.C.); (M.J.)
| | - Agnieszka Mickiewicz
- 1st Department of Cardiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Gabriela Chyła
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.K.); (K.S.-Z.); (A.Ć.); (G.C.); (M.J.)
| | - Jolanta Wierzba
- Department of Internal and Pediatric Nursing, Institute of Nursing and Midwifery, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.K.); (K.S.-Z.); (A.Ć.); (G.C.); (M.J.)
| | - Agnieszka Kuchta
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.K.); (K.S.-Z.); (A.Ć.); (G.C.); (M.J.)
- Correspondence:
| |
Collapse
|
17
|
Coenzyme Q10 supplementation improves cholesterol efflux capacity and anti-inflammatory properties of HDL in Chinese adults with dyslipidemia. Nutrition 2022; 101:111703. [DOI: 10.1016/j.nut.2022.111703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022]
|
18
|
Grao-Cruces E, Lopez-Enriquez S, Martin ME, Montserrat-de la Paz S. High-density lipoproteins and immune response: A review. Int J Biol Macromol 2022; 195:117-123. [PMID: 34896462 DOI: 10.1016/j.ijbiomac.2021.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/04/2023]
Abstract
High-density lipoproteins (HDLs) are heterogeneous lipoproteins that modify their composition and functionality depending on physiological or pathological conditions. The main roles of HDL are cholesterol efflux, and anti-inflammatory and antioxidant functions. These functions can be compromised under pathological conditions. HDLs play a role in the immune system as anti-inflammatory molecules but when inflammation occurs, HDLs change their composition and carry pro-inflammatory cargo. Hence, many molecular intermediates that influence inflammatory microenvironments and cell signaling pathways can modulate HDLs structural modification and function. This review provides a comprehensive assessment of the importance of HDL composition and anti-inflammatory function in the onset and progression of atherosclerotic cardiovascular diseases. On the other hand, immune cell activation during progression of atheroma plaque formation can be influenced by HDLs through HDL-derived cholesterol depletion from lipid rafts and through HDL interaction with HDL receptors expressed on T and B lymphocytes. Cholesterol efflux is mediated by HDL receptors located in lipid rafts in peripheral cells, which undergo membrane structural modifications, and interferes with subsequent molecules interactions or intracellular signaling cascades. Regarding antigen-presentation cells such as macrophages or dendritic cells, HDL function may then modulate lymphocytes activation in immune response. Our review also contributes to the understanding of the effects exerted by HDLs in signal transduction associated to our immune cell population during chronic diseases progression.
Collapse
Affiliation(s)
- Elena Grao-Cruces
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Soledad Lopez-Enriquez
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Maria E Martin
- Department of Cell Biology, Faculty of Biology, University of Seville, Av. Reina Mercedes s/n, 41012 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain.
| |
Collapse
|
19
|
Pechlaner R, Friedrich N, Staudt A, Gande N, Bernar B, Stock K, Kiechl SJ, Hochmayr C, Griesmacher A, Petersmann A, Budde K, Stuppner H, Sturm S, Dörr M, Schminke U, Cannet C, Fang F, Schäfer H, Spraul M, Geiger R, Mayr M, Nauck M, Kiechl S, Kiechl-Kohlendorfer U, Knoflach M. Association of adolescent lipoprotein subclass profile with carotid intima-media thickness and comparison to adults: Prospective population-based cohort studies. Atherosclerosis 2021; 341:34-42. [PMID: 34995985 DOI: 10.1016/j.atherosclerosis.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND AIMS Assessment of comprehensive lipoprotein subclass profiles in adolescents and their relation to vascular disease may enhance our understanding of the development of dyslipidemia in early life and inform early vascular prevention. METHODS Nuclear magnetic resonance was used to measure lipoprotein profiles, including lipids (cholesterol, free cholesterol, triglycerides, phospholipids) and apolipoproteins (apoB-100, apoA1, apoA2) of 17 lipoprotein subclasses (from least dense to densest: VLDL-1 to -6, IDL, LDL-1 to -6, HDL-1 to -4) in n = 1776 14- to 19-year olds (56.6% female) and n = 3027 25- to 85-year olds (51.5% female), all community-dwelling. Lipoprotein profiles were related to carotid intima-media thickness (cIMT) as ascertained by sonography. RESULTS Adolescents compared to adults had lower triglycerides, total, LDL, and non-HDL cholesterol, and apoB, and higher HDL cholesterol. They showed 26.6-59.8% lower triglyceride content of all lipoprotein subclasses and 21.9-51.4% lower VLDL lipid content. Concentrations of dense LDL-4 to LDL-6 were 36.7-40.2% lower, with also markedly lower levels of LDL-1 to LDL-3, but 24.2% higher HDL-1 ApoA1. In adolescents, only LDL-3 to LDL-5 subclasses were associated with cIMT (range of differences in cIMT for a 1-SD higher concentration, 4.8-5.9 μm). The same associations emerged in adults, with on average 97 ± 42% (mean ± SD) larger effect sizes, in addition to LDL-1 and LDL-6 (range, 6.9-11.3 μm) and HDL-2 to HDL-4, ApoA1, and ApoA2 (range, -7.0 to -17.7 μm). CONCLUSIONS Adolescents showed a markedly different and more favorable lipoprotein profile compared to adults. Dense LDL subclasses were the only subclasses associated with cIMT in adolescents, implicating them as the potential preferred therapeutic target for primary prevention of cardiovascular disease at this age. In adults, associations with cIMT were approximately twice as large as in adolescents, and HDL-related measures were additionally associated with cIMT.
Collapse
Affiliation(s)
- Raimund Pechlaner
- Department of Neurology, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52 A, 6020 Innsbruck, Austria
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany; German Centre for Cardiovascular Research, Partner Site Greifswald, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Anna Staudt
- Department of Pediatrics II, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52 A, 6020 Innsbruck, Austria
| | - Nina Gande
- Department of Pediatrics II, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52 A, 6020 Innsbruck, Austria
| | - Benoît Bernar
- Department of Pediatrics II, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52 A, 6020 Innsbruck, Austria; Department of Pediatrics I, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52 A, 6020 Innsbruck, Austria
| | - Katharina Stock
- Department of Pediatrics II, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52 A, 6020 Innsbruck, Austria; Department of Pediatrics III, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52 A, 6020 Innsbruck, Austria
| | - Sophia J Kiechl
- Department of Neurology, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52 A, 6020 Innsbruck, Austria; VASCage, Research Centre for Promoting Vascular Health in the Ageing Community, Innrain 66a, 6020 Innsbruck, Austria
| | - Christoph Hochmayr
- Department of Pediatrics II, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52 A, 6020 Innsbruck, Austria
| | - Andrea Griesmacher
- Central Institute of Medical and Chemical Laboratory Diagnostics, University Hospital of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Astrid Petersmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Oldenburg, Rahel-Strauss-Straße 10, 26133 Oldenburg, Germany
| | - Kathrin Budde
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
| | - Sonja Sturm
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
| | - Marcus Dörr
- German Centre for Cardiovascular Research, Partner Site Greifswald, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany; Department of Internal Medicine B, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Ulf Schminke
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Claire Cannet
- Bruker BioSpin, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Fang Fang
- Bruker BioSpin, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Hartmut Schäfer
- Bruker BioSpin, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Manfred Spraul
- Bruker BioSpin, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Ralf Geiger
- Department of Pediatrics III, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52 A, 6020 Innsbruck, Austria
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Ln, SE5 9NU London, United Kingdom
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany; German Centre for Cardiovascular Research, Partner Site Greifswald, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52 A, 6020 Innsbruck, Austria; VASCage, Research Centre for Promoting Vascular Health in the Ageing Community, Innrain 66a, 6020 Innsbruck, Austria.
| | - Ursula Kiechl-Kohlendorfer
- Department of Pediatrics II, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52 A, 6020 Innsbruck, Austria
| | - Michael Knoflach
- Department of Neurology, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52 A, 6020 Innsbruck, Austria
| | | |
Collapse
|
20
|
Toh DWK, Low JHM, Kim JE. Cardiovascular disease risk reduction with wolfberry consumption: a systematic review and meta-analysis of randomized controlled trials. Eur J Nutr 2021; 61:1177-1186. [PMID: 34839399 DOI: 10.1007/s00394-021-02750-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Wolfberry is rich in bioactive compounds which may lower cardiovascular disease risk. This meta-analysis aimed to systematically evaluate the effects of wolfberry-based randomized controlled trials (RCTs) on overall cardiovascular health. METHODS Four online databases (PubMed, CINAHL Plus, Medline and Cochrane Library) were searched to shortlist relevant RCTs. Outcomes of interests included blood lipids and lipoproteins, blood pressure, biomarkers of oxidative stress, inflammation and other cardiovascular health-related indicators. Random-effects models were used to provide a weighted mean difference (WMD) and/or Hedges' g for quantitative synthesis. This was coupled with subcategory analyses which stratified RCTs according to the form in which wolfberry was administered (whole wolfberry versus wolfberry extract). RESULTS From the 785 articles identified, 10 were selected for meta-analysis. Compared to the control, groups which consumed wolfberry showed a reduction in blood triglycerides [WMDpooled (95% confidence interval): - 0.14 (- 0.19, - 0.09) mmol/L] and increased blood high-density lipoprotein cholesterol [WMDpooled: 0.06 (0.02, 0.09) mmol/L]. Notably, effects for both triglycerides [WMDwhole: - 0.14 (- 0.19, - 0.09) mmol/L; WMDextract: - 0.07 (- 0.30, 0.16) mmol/L] and high-density lipoprotein cholesterol [WMDwhole: 0.06 (0.02, 0.09) mmol/L; WMDextract: 0.05 (- 0.02, 0.13) mmol/L] were more prominent after whole wolfberry interventions. Additionally, blood malondialdehyde equivalents were also significantly decreased in wolfberry consuming groups [Hedges' gpooled: - 1.45 (- 2.75, - 0.16)]. No changes were observed for the other lipids and lipoproteins as well as blood pressure. CONCLUSIONS Wolfberry consumption is effective in improving blood lipids and lipoproteins profile and lowering oxidative stress. This supports the incorporation of wolfberry, particularly as whole fruits, into dietary patterns targeted at improving cardiovascular health.
Collapse
Affiliation(s)
- Darel Wee Kiat Toh
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jasmine Hui Min Low
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jung Eun Kim
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
21
|
Stadler JT, Marsche G. Dietary Strategies to Improve Cardiovascular Health: Focus on Increasing High-Density Lipoprotein Functionality. Front Nutr 2021; 8:761170. [PMID: 34881279 PMCID: PMC8646038 DOI: 10.3389/fnut.2021.761170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of morbidity and mortality worldwide, with increasing incidence. A cornerstone of cardiovascular disease prevention is lifestyle modification through dietary changes to influence various risk factors such as obesity, hypertension and diabetes. The effects of diet on cardiovascular health are complex. Some dietary components and metabolites directly affect the composition and structure of high-density lipoproteins (HDL) and increase anti-inflammatory and vasoprotective properties. HDLs are composed of distinct subpopulations of particles of varying size and composition that have several dynamic and context-dependent functions. The identification of potential dietary components that improve HDL functionality is currently an important research goal. One of the best-studied diets for cardiovascular health is the Mediterranean diet, consisting of fish, olive oil, fruits, vegetables, whole grains, legumes/nuts, and moderate consumption of alcohol, most commonly red wine. The Mediterranean diet, especially when supplemented with extra virgin olive oil rich in phenolic compounds, has been shown to markedly improve metrics of HDL functionality and reduce the burden, or even prevent the development of cardiovascular disease. Particularly, the phenolic compounds of extra virgin olive oil seem to exert the significant positive effects on HDL function. Moreover, supplementation of anthocyanins as well as antioxidants such as lycopene or the omega-3 fatty acid eicosapentaenoic acid improve parameters of HDL function. In this review, we aim to highlight recent discoveries on beneficial dietary patterns as well as nutritional components and their effects on cardiovascular health, focusing on HDL function.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
22
|
Hancock-Cerutti W, Millar JS, Valentini S, Liu J, Billheimer JT, Rader DJ, Cuchel M. Assessing HDL Metabolism in Subjects with Elevated Levels of HDL Cholesterol and Coronary Artery Disease. Molecules 2021; 26:6862. [PMID: 34833954 PMCID: PMC8623898 DOI: 10.3390/molecules26226862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/27/2021] [Accepted: 11/06/2021] [Indexed: 12/26/2022] Open
Abstract
High-density lipoprotein cholesterol (HDL-C) is thought to be atheroprotective yet some patients with elevated HDL-C levels develop cardiovascular disease, possibly due to the presence of dysfunctional HDL. We aimed to assess the metabolic fate of circulating HDL particles in patients with high HDL-C with and without coronary artery disease (CAD) using in vivo dual labeling of its cholesterol and protein moieties. We measured HDL apolipoprotein (apo) A-I, apoA-II, free cholesterol (FC), and cholesteryl ester (CE) kinetics using stable isotope-labeled tracers (D3-leucine and 13C2-acetate) as well as ex vivo cholesterol efflux to HDL in subjects with (n = 6) and without (n = 6) CAD that had HDL-C levels >90th percentile. Healthy controls with HDL-C within the normal range (n = 6) who underwent the same procedures were used as the reference. Subjects with high HDL-C with and without CAD had similar plasma lipid levels and similar apoA-I, apoA-II, HDL FC, and CE pool sizes with no significant differences in fractional clearance rates (FCRs) or production rates (PRs) of these components between groups. Subjects with high HDL-C with and without CAD also had similar basal and cAMP-stimulated ex vivo cholesterol efflux to HDL. When all subjects were considered (n = 18), unstimulated non-ABCA1-mediated efflux (but not ABCA1-specific efflux) was correlated positively with apoA-I production (r = 0.552, p = 0.017) and HDL FC and CE pool sizes, and negatively with the fractional clearance rate of FC (r = -0.759, p = 4.1 × 10-4) and CE (r = -0.652, p = 4.57 × 10-3). Our data are consistent with the concept that ex vivo non-ABCA1 efflux capacity may correlate with slower in vivo turnover of HDL cholesterol moieties. The use of a dual labeling protocol provided for the first time the opportunity to assess the association of ex vivo cholesterol efflux capacity with in vivo HDL cholesterol metabolic parameters.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, USA; (W.H.-C.); (J.S.M.); (S.V.); (J.L.); (J.T.B.); (D.J.R.)
| |
Collapse
|
23
|
Abstract
Plasma HDL-cholesterol concentrations correlate negatively with the risk of atherosclerotic cardiovascular disease (ASCVD). According to a widely cited model, HDL elicits its atheroprotective effect through its role in reverse cholesterol transport, which comprises the efflux of cholesterol from macrophages to early forms of HDL, followed by the conversion of free cholesterol (FCh) contained in HDL into cholesteryl esters, which are hepatically extracted from the plasma by HDL receptors and transferred to the bile for intestinal excretion. Given that increasing plasma HDL-cholesterol levels by genetic approaches does not reduce the risk of ASCVD, the focus of research has shifted to HDL function, especially in the context of macrophage cholesterol efflux. In support of the reverse cholesterol transport model, several large studies have revealed an inverse correlation between macrophage cholesterol efflux to plasma HDL and ASCVD. However, other studies have cast doubt on the underlying reverse cholesterol transport mechanism: in mice and humans, the FCh contained in HDL is rapidly cleared from the plasma (within minutes), independently of esterification and HDL holoparticle uptake by the liver. Moreover, the reversibility of FCh transfer between macrophages and HDL has implicated the reverse process - that is, the transfer of FCh from HDL to macrophages - in the aetiology of increased ASCVD under conditions of very high plasma HDL-FCh concentrations.
Collapse
|
24
|
Liu J, Gillard BK, Yelamanchili D, Gotto AM, Rosales C, Pownall HJ. High Free Cholesterol Bioavailability Drives the Tissue Pathologies in Scarb1 -/- Mice. Arterioscler Thromb Vasc Biol 2021; 41:e453-e467. [PMID: 34380332 PMCID: PMC8458258 DOI: 10.1161/atvbaha.121.316535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: Overall and atherosclerosis-associated mortality is elevated in humans with very high HDL (high-density lipoprotein) cholesterol concentrations. Mice with a deficiency of the HDL receptor, Scarb1 (scavenger receptor class B type 1), are a robust model of this phenotype and exhibit several additional pathologies. We hypothesized that the previously reported high plasma concentration of free cholesterol (FC)-rich HDL in Scarb1-/- mice produces a state of high HDL-FC bioavailability that increases whole-body FC and dysfunction in multiple tissue sites. Approach and Results: The higher mol% FC in Scarb1-/- versus WT (wild type) HDL (41.1 versus 16.0 mol%) affords greater FC bioavailability for transfer to multiple sites. Plasma clearance of autologous HDL-FC mass was faster in WT versus Scarb1-/- mice. FC influx from Scarb1-/- HDL to LDL (low-density lipoprotein) and J774 macrophages was greater ([almost equal to]4x) than that from WT HDL, whereas FC efflux capacity was similar. The higher mol% FC of ovaries, erythrocytes, heart, and macrophages of Scarb1-/- versus WT mice is associated with previously reported female infertility, impaired cell maturation, cardiac dysfunction, and atherosclerosis. The FC contents of other tissues were similar in the two genotypes, and these tissues were not associated with any overt pathology. In addition to the differences between WT versus Scarb1-/- mice, there were many sex-dependent differences in tissue-lipid composition and plasma FC clearance rates. Conclusions: Higher HDL-FC bioavailability among Scarb1-/- versus WT mice drives increased FC content of multiple cell sites and is a potential biomarker that is mechanistically linked to multiple pathologies.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston TX 77030, USA
| | - Baiba K. Gillard
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston TX 77030, USA
- Department of Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Dedipya Yelamanchili
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston TX 77030, USA
| | - Antonio M. Gotto
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston TX 77030, USA
- Department of Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Corina Rosales
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston TX 77030, USA
- Department of Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Henry J. Pownall
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston TX 77030, USA
- Department of Medicine, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| |
Collapse
|
25
|
Ma S, Xia M, Gao X. Biomarker Discovery in Atherosclerotic Diseases Using Quantitative Nuclear Magnetic Resonance Metabolomics. Front Cardiovasc Med 2021; 8:681444. [PMID: 34395555 PMCID: PMC8356911 DOI: 10.3389/fcvm.2021.681444] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/02/2021] [Indexed: 12/23/2022] Open
Abstract
Despite great progress in the management of atherosclerosis (AS), its subsequent cardiovascular disease (CVD) remains the leading cause of morbidity and mortality. This is probably due to insufficient risk detection using routine lipid testing; thus, there is a need for more effective approaches relying on new biomarkers. Quantitative nuclear magnetic resonance (qNMR) metabolomics is able to phenotype holistic metabolic changes, with a unique advantage in regard to quantifying lipid-protein complexes. The rapidly increasing literature has indicated that qNMR-based lipoprotein particle number, particle size, lipid components, and some molecular metabolites can provide deeper insight into atherogenic diseases and could serve as novel promising determinants. Therefore, this article aims to offer an updated review of the qNMR biomarkers of AS and CVD found in epidemiological studies, with a special emphasis on lipoprotein-related parameters. As more researches are performed, we can envision more qNMR metabolite biomarkers being successfully translated into daily clinical practice to enhance the prevention, detection and intervention of atherosclerotic diseases.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
| |
Collapse
|
26
|
Koenig SN, Sucharski HC, Jose EM, Dudley EK, Madiai F, Cavus O, Argall AD, Williams JL, Murphy NP, Keith CBR, Refaey ME, Gumina RJ, Boudoulas KD, Milks MW, Sofowora G, Smith SA, Hund TJ, Wright NT, Bradley EA, Zareba KM, Wold LE, Mazzaferri EL, Mohler PJ. Inherited Variants in SCARB1 Cause Severe Early-Onset Coronary Artery Disease. Circ Res 2021; 129:296-307. [PMID: 33975440 PMCID: PMC8273129 DOI: 10.1161/circresaha.120.318793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sara N. Koenig
- Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University, Columbus, OH 43210
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
| | - Holly C. Sucharski
- Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University, Columbus, OH 43210
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
| | - Elizabeth M. Jose
- Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University, Columbus, OH 43210
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
| | - Emma K. Dudley
- Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University, Columbus, OH 43210
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
| | - Francesca Madiai
- Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University, Columbus, OH 43210
- Ross Heart Hospital, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| | - Omer Cavus
- Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University, Columbus, OH 43210
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
| | - Aaron D. Argall
- Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University, Columbus, OH 43210
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
| | - Jordan L. Williams
- Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University, Columbus, OH 43210
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
| | - Nathaniel P. Murphy
- Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University, Columbus, OH 43210
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
| | - Caullin B. R. Keith
- Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University, Columbus, OH 43210
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
| | - Mona El Refaey
- Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University, Columbus, OH 43210
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
| | - Richard J. Gumina
- Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University, Columbus, OH 43210
- Ross Heart Hospital, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| | - Konstantinos D. Boudoulas
- Ross Heart Hospital, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| | - M. Wesley Milks
- Ross Heart Hospital, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| | - Gbemiga Sofowora
- Ross Heart Hospital, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| | - Sakima A. Smith
- Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University, Columbus, OH 43210
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
- Ross Heart Hospital, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| | - Thomas J. Hund
- Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University, Columbus, OH 43210
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
| | - Nathan T. Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807
| | - Elisa A. Bradley
- Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University, Columbus, OH 43210
- Ross Heart Hospital, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| | - Karolina M. Zareba
- Ross Heart Hospital, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| | - Loren E. Wold
- Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University, Columbus, OH 43210
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
- College of Nursing, The Ohio State University, Columbus, OH 43210
| | - Ernest L. Mazzaferri
- Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University, Columbus, OH 43210
- Ross Heart Hospital, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| | - Peter J. Mohler
- Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University, Columbus, OH 43210
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
- Ross Heart Hospital, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| |
Collapse
|
27
|
Toh DWK, Xia X, Sutanto CN, Low JHM, Poh KK, Wang JW, Foo RSY, Kim JE. Enhancing the cardiovascular protective effects of a healthy dietary pattern with wolfberry (Lycium barbarum): A randomized controlled trial. Am J Clin Nutr 2021; 114:80-89. [PMID: 33964853 DOI: 10.1093/ajcn/nqab062] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The consumption of wolfberry (Lycium barbarum), a rich source of carotenoids and bioactive polysaccharides, may serve as a potential dietary strategy for cardiovascular disease (CVD) risk management although limited studies examined its effects as whole fruits. OBJECTIVES To investigate the impact of wolfberry consumption as part of a healthy dietary pattern on vascular health-related outcomes and classical CVD risk factors in middle-aged and older adults in Singapore. METHODS This is a 16-week, parallel design, randomized controlled trial. All participants (n = 40) received dietary counselling to follow healthy dietary pattern recommendations with the wolfberry group given additional instructions to cook and consume 15 g/d whole, dried wolfberry with their main meals. Biomarkers of vascular function (flow-mediated dilation, plasma total nitrate/nitrite, endothelin-1, and intercellular adhesion molecule-1), vascular structure (carotid intima-media thickness) and vascular regeneration (endothelial progenitor cell count, plasma angiopoietin 1 and angiopoietin 2), were assessed at baseline and postintervention. Serum lipid-lipoproteins and blood pressure were evaluated every 4 weeks. RESULTS All participants showed an improved compliance toward the healthy dietary pattern. This was coupled with marked rises in total nitrate/nitrite concentrations (mean change wolfberry: 3.92 ± 1.73 nmol/mL; control: 5.01 ± 2.55 nmol/L) and reductions in endothelin-1 concentrations (wolfberry: -0.19 ± 0.06 pg/mL; control: -0.15 ± 0.08 pg/mL). Compared with the control which depicted no changes from baseline, the wolfberry group had a significantly higher HDL cholesterol (0.08 ± 0.04 mmol/L), as well as lower Framingham predicted long-term CVD risk (-0.8 ± 0.5%) and vascular age (-1.9 ± 1.0 y) postintervention. No differences were observed in the other vascular health-related outcomes. CONCLUSIONS In middle-aged and older adults, adherence to a healthy dietary pattern improves vascular tone. Incorporating wolfberry to the diet further improves blood lipid-lipoprotein profile and may lower long-term CVD risk. This study was registered at clinicatrials.gov as NCT03535844.
Collapse
Affiliation(s)
- Darel Wee Kiat Toh
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Xuejuan Xia
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Clarinda Nataria Sutanto
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jasmine Hui Min Low
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Kian Keong Poh
- Department of Cardiology, National University Heart Centre, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jiong-Wei Wang
- Cardiovascular Research Institute, National University Health Systems, Centre for Translational Medicine, Singapore, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Roger Sik-Yin Foo
- Cardiovascular Research Institute, National University Health Systems, Centre for Translational Medicine, Singapore, Singapore.,Genome Institute of Singapore, Singapore, Singapore
| | - Jung Eun Kim
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
28
|
Otrante A, Trigui A, Walha R, Berrougui H, Fulop T, Khalil A. Extra Virgin Olive Oil Prevents the Age-Related Shifts of the Distribution of HDL Subclasses and Improves Their Functionality. Nutrients 2021; 13:2235. [PMID: 34209930 PMCID: PMC8308442 DOI: 10.3390/nu13072235] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022] Open
Abstract
High-density lipoproteins (HDL) maintain cholesterol homeostasis through the role they play in regulating reverse cholesterol transport (RCT), a process by which excess cholesterol is transported back to the liver for elimination. However, RCT can be altered in the presence of cardiovascular risk factors, such as aging, which contributes to the increase in the incidence of cardiovascular diseases (CVD). The present study was aimed at investigating the effect of extra virgin olive oil (EVOO) intake on the cholesterol efflux capacity (CEC) of HDL, and to elucidate on the mechanisms by which EVOO intake improves the anti-atherogenic activity of HDL. A total of 84 healthy women and men were enrolled and were distributed, according to age, into two groups: 27 young (31.81 ± 6.79 years) and 57 elderly (70.72 ± 5.6 years) subjects. The subjects in both groups were given 25 mL/d of extra virgin olive oil (EVOO) for 12 weeks. CEC was measured using J774 macrophages radiolabeled with tritiated cholesterol ((3H) cholesterol). HDL subclass distributions were analyzed using the Quantimetrix Lipoprint® system. The HDL from the elderly subjects exhibited a lower level of CEC, at 11.12% (p < 0.0001), than the HDL from the young subjects. The CEC of the elderly subjects returned to normal levels following 12 weeks of EVOO intake. An analysis of the distribution of HDL subclasses showed that HDL from the elderly subjects were composed of lower levels of large HDL (L-HDL) (p < 0.03) and higher levels of small HDL (S-HDL) (p < 0.002) compared to HDL from the young subjects. A multiple linear regression analysis revealed a positive correlation between CEC and L-HDL levels (r = 0.35 and p < 0.001) as well as an inverse correlation between CEC and S-HDL levels (r = -0.27 and p < 0.01). This correlation remained significant even when several variables, including age, sex, and BMI as well as low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and glucose levels (β = 0.28, p < 0.002, and β = 0.24, p = 0.01) were accounted for. Consuming EVOO for 12 weeks modulated the age-related difference in the distribution of HDL subclasses by reducing the level of S-HDL and increasing the level of intermediate-HDL/large-HDL (I-HDL/L-HDL) in the elderly subjects. The age-related alteration of the CEC of HDL was due, in part, to an alteration in the distribution of HDL subclasses. A diet enriched in EVOO improved the functionality of HDL through an increase in I-HDL/L-HDL and a decrease in S-HDL.
Collapse
Affiliation(s)
- Alyann Otrante
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.O.); (A.T.); (R.W.); (H.B.); (T.F.)
| | - Amal Trigui
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.O.); (A.T.); (R.W.); (H.B.); (T.F.)
| | - Roua Walha
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.O.); (A.T.); (R.W.); (H.B.); (T.F.)
| | - Hicham Berrougui
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.O.); (A.T.); (R.W.); (H.B.); (T.F.)
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Tamas Fulop
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.O.); (A.T.); (R.W.); (H.B.); (T.F.)
| | - Abdelouahed Khalil
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.O.); (A.T.); (R.W.); (H.B.); (T.F.)
| |
Collapse
|
29
|
Rohatgi A, Westerterp M, von Eckardstein A, Remaley A, Rye KA. HDL in the 21st Century: A Multifunctional Roadmap for Future HDL Research. Circulation 2021; 143:2293-2309. [PMID: 34097448 PMCID: PMC8189312 DOI: 10.1161/circulationaha.120.044221] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Low high-density lipoprotein cholesterol (HDL-C) characterizes an atherogenic dyslipidemia that reflects adverse lifestyle choices, impaired metabolism, and increased cardiovascular risk. Low HDL-C is also associated with increased risk of inflammatory disorders, malignancy, diabetes, and other diseases. This epidemiologic evidence has not translated to raising HDL-C as a viable therapeutic target, partly because HDL-C does not reflect high-density lipoprotein (HDL) function. Mendelian randomization analyses that have found no evidence of a causal relationship between HDL-C levels and cardiovascular risk have decreased interest in increasing HDL-C levels as a therapeutic target. HDLs comprise distinct subpopulations of particles of varying size, charge, and composition that have several dynamic and context-dependent functions, especially with respect to acute and chronic inflammatory states. These functions include reverse cholesterol transport, inhibition of inflammation and oxidation, and antidiabetic properties. HDLs can be anti-inflammatory (which may protect against atherosclerosis and diabetes) and proinflammatory (which may help clear pathogens in sepsis). The molecular regulation of HDLs is complex, as evidenced by their association with multiple proteins, as well as bioactive lipids and noncoding RNAs. Clinical investigations of HDL biomarkers (HDL-C, HDL particle number, and apolipoprotein A through I) have revealed nonlinear relationships with cardiovascular outcomes, differential relationships by sex and ethnicity, and differential patterns with coronary versus noncoronary events. Novel HDL markers may also have relevance for heart failure, cancer, and diabetes. HDL function markers (namely, cholesterol efflux capacity) are associated with coronary disease, but they remain research tools. Therapeutics that manipulate aspects of HDL metabolism remain the holy grail. None has proven to be successful, but most have targeted HDL-C, not metrics of HDL function. Future therapeutic strategies should focus on optimizing HDL function in the right patients at the optimal time in their disease course. We provide a framework to help the research and clinical communities, as well as funding agencies and stakeholders, obtain insights into current thinking on these topics, and what we predict will be an exciting future for research and development on HDLs.
Collapse
Affiliation(s)
- Anand Rohatgi
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Marit Westerterp
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Alan Remaley
- Section Chief of Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch; National Heart, Lung and Blood Institute, National Institutes of Health; Bethesda, MD
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Australia, 2052
| |
Collapse
|
30
|
Sokooti S, Flores-Guerrero JL, Kieneker LM, Heerspink HJL, Connelly MA, Bakker SJL, Dullaart RPF. HDL Particle Subspecies and Their Association With Incident Type 2 Diabetes: The PREVEND Study. J Clin Endocrinol Metab 2021; 106:1761-1772. [PMID: 33567068 PMCID: PMC8118359 DOI: 10.1210/clinem/dgab075] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 12/29/2022]
Abstract
CONTEXT High-density lipoproteins (HDL) may be protective against type 2 diabetes (T2D) development, but HDL particles vary in size and function, which could lead to differential associations with incident T2D. A newly developed nuclear magnetic resonance (NMR)-derived algorithm provides concentrations for 7 HDL subspecies. OBJECTIVE We aimed to investigate the association of HDL particle subspecies with incident T2D in the general population. METHODS Among 4828 subjects of the Prevention of Renal and Vascular End-Stage Disease (PREVEND) study without T2D at baseline, HDL subspecies with increasing size from H1P to H7P were measured by NMR (LP4 algorithm of the Vantera NMR platform). RESULTS A total of 265 individuals developed T2D (median follow-up of 7.3 years). In Cox regression models, HDL size and H4P (hazard ratio [HR] per 1 SD increase 0.83 [95% CI, 0.69-0.99] and 0.85 [95% CI, 0.75-0.95], respectively) were inversely associated with incident T2D, after adjustment for relevant covariates. In contrast, levels of H2P were positively associated with incident T2D (HR 1.15 [95% CI, 1.01-1.32]). In secondary analyses, associations with large HDL particles and H6P were modified by body mass index (BMI) in such a way that they were particularly associated with a lower risk of incident T2D, in subjects with BMI < 30 kg/m2. CONCLUSION Greater HDL size and lower levels of H4P were associated with a lower risk, whereas higher levels of H2P were associated with a higher risk of developing T2D. In addition, large HDL particles and H6P were inversely associated with T2D in nonobese subjects.
Collapse
Affiliation(s)
- Sara Sokooti
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
- Correspondence: Sara Sokooti Oskooei, MD, Department of Internal Medicine, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9713 GZ Groningen, Netherlands.
| | - Jose L Flores-Guerrero
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Lyanne M Kieneker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Margery A Connelly
- Laboratory Corporation of America® Holdings (LabCorp), Morrisville, NC, USA
| | - Stephan J L Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Robin P F Dullaart
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
31
|
Zhao Q, Wang J, Miao Z, Zhang NR, Hennessy S, Small DS, Rader DJ. A Mendelian randomization study of the role of lipoprotein subfractions in coronary artery disease. eLife 2021; 10:e58361. [PMID: 33899735 PMCID: PMC8163505 DOI: 10.7554/elife.58361] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 04/23/2021] [Indexed: 12/26/2022] Open
Abstract
Recent genetic data can offer important insights into the roles of lipoprotein subfractions and particle sizes in preventing coronary artery disease (CAD), as previous observational studies have often reported conflicting results. We used the LD score regression to estimate the genetic correlation of 77 subfraction traits with traditional lipid profile and identified 27 traits that may represent distinct genetic mechanisms. We then used Mendelian randomization (MR) to estimate the causal effect of these traits on the risk of CAD. In univariable MR, the concentration and content of medium high-density lipoprotein (HDL) particles showed a protective effect against CAD. The effect was not attenuated in multivariable analyses. Multivariable MR analyses also found that small HDL particles and smaller mean HDL particle diameter may have a protective effect. We identified four genetic markers for HDL particle size and CAD. Further investigations are needed to fully understand the role of HDL particle size.
Collapse
Affiliation(s)
- Qingyuan Zhao
- Statistical Laboratory, University of CambridgeCambridgeUnited Kingdom
| | - Jingshu Wang
- Department of Statistics, University of ChicagoChicagoUnited States
| | - Zhen Miao
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Nancy R Zhang
- Department of Statistics, University of PennsylvaniaPhiladelphiaUnited States
| | - Sean Hennessy
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Dylan S Small
- Department of Statistics, University of PennsylvaniaPhiladelphiaUnited States
| | - Daniel J Rader
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
32
|
Adorni MP, Ronda N, Bernini F, Zimetti F. High Density Lipoprotein Cholesterol Efflux Capacity and Atherosclerosis in Cardiovascular Disease: Pathophysiological Aspects and Pharmacological Perspectives. Cells 2021; 10:cells10030574. [PMID: 33807918 PMCID: PMC8002038 DOI: 10.3390/cells10030574] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Over the years, the relationship between high-density lipoprotein (HDL) and atherosclerosis, initially highlighted by the Framingham study, has been revealed to be extremely complex, due to the multiple HDL functions involved in atheroprotection. Among them, HDL cholesterol efflux capacity (CEC), the ability of HDL to promote cell cholesterol efflux from cells, has emerged as a better predictor of cardiovascular (CV) risk compared to merely plasma HDL-cholesterol (HDL-C) levels. HDL CEC is impaired in many genetic and pathological conditions associated to high CV risk such as dyslipidemia, chronic kidney disease, diabetes, inflammatory and autoimmune diseases, endocrine disorders, etc. The present review describes the current knowledge on HDL CEC modifications in these conditions, focusing on the most recent human studies and on genetic and pathophysiologic aspects. In addition, the most relevant strategies possibly modulating HDL CEC, including lifestyle modifications, as well as nutraceutical and pharmacological interventions, will be discussed. The objective of this review is to help understanding whether, from the current evidence, HDL CEC may be considered as a valid biomarker of CV risk and a potential pharmacological target for novel therapeutic approaches.
Collapse
Affiliation(s)
- Maria Pia Adorni
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy;
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.R.); (F.Z.)
| | - Franco Bernini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.R.); (F.Z.)
- Correspondence:
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.R.); (F.Z.)
| |
Collapse
|
33
|
Ahmed MO, Byrne RE, Pazderska A, Segurado R, Guo W, Gunness A, Frizelle I, Sherlock M, Ahmed KS, McGowan A, Moore K, Boran G, McGillicuddy FC, Gibney J. HDL particle size is increased and HDL-cholesterol efflux is enhanced in type 1 diabetes: a cross-sectional study. Diabetologia 2021; 64:656-667. [PMID: 33169205 DOI: 10.1007/s00125-020-05320-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/09/2020] [Indexed: 01/02/2023]
Abstract
AIMS/HYPOTHESIS The prevalence of atherosclerosis is increased in type 1 diabetes despite normal-to-high HDL-cholesterol levels. The cholesterol efflux capacity (CEC) of HDL is a better predictor of cardiovascular events than static HDL-cholesterol. This cross-sectional study addressed the hypothesis that impaired HDL function contributes to enhanced CVD risk within type 1 diabetes. METHODS We compared HDL particle size and concentration (by NMR), total CEC, ATP-binding cassette subfamily A, member 1 (ABCA1)-dependent CEC and ABCA1-independent CEC (by determining [3H]cholesterol efflux from J774-macrophages to ApoB-depleted serum), and carotid intima-media thickness (CIMT) in 100 individuals with type 1 diabetes (37.6 ± 1.2 years; BMI 26.9 ± 0.5 kg/m2) and 100 non-diabetic participants (37.7 ± 1.1 years; 27.1 ± 0.5 kg/m2). RESULTS Compared with non-diabetic participants, total HDL particle concentration was lower (mean ± SD 31.01 ± 8.66 vs 34.33 ± 8.04 μmol/l [mean difference (MD) -3.32 μmol/l]) in participants with type 1 diabetes. However, large HDL particle concentration was greater (9.36 ± 3.98 vs 6.99 ± 4.05 μmol/l [MD +2.37 μmol/l]), resulting in increased mean HDL particle size (9.82 ± 0.57 vs 9.44 ± 0.56 nm [MD +0.38 nm]) (p < 0.05 for all). Total CEC (14.57 ± 2.47%CEC/4 h vs 12.26 ± 3.81%CEC/4 h [MD +2.31%CEC/4 h]) was greater in participants with type 1 diabetes relative to non-diabetic participants. Increased HDL particle size was independently associated with increased total CEC; however, following adjustment for this in multivariable analysis, CEC remained greater in participants with type 1 diabetes. Both components of CEC, ABCA1-dependent (6.10 ± 2.41%CEC/4 h vs 5.22 ± 2.57%CEC/4 h [MD +0.88%CEC/4 h]) and ABCA1-independent (8.47 ± 1.79% CEC/4 h vs 7.05 ± 1.76% CEC/4 h [MD +1.42% CEC/4 h]) CEC, were greater in type 1 diabetes but the increase in ABCA1-dependent CEC was less marked and not statistically significant in multivariable analysis. CIMT was increased in participants with type 1 diabetes but in multivariable analysis it was only associated negatively with age and BMI. CONCLUSIONS/INTERPRETATION HDL particle size but not HDL-cholesterol level is independently associated with enhanced total CEC. HDL particle size is greater in individuals with type 1 diabetes but even after adjusting for this, total and ABCA1-independent CEC are enhanced in type 1 diabetes. Further studies are needed to understand the mechanisms underlying these effects, and whether they help attenuate progression of atherosclerosis in this high-risk group. Graphical abstract.
Collapse
Affiliation(s)
- Mohamad O Ahmed
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Rachel E Byrne
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Agnieszka Pazderska
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Ricardo Segurado
- School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Belfield, Dublin, Ireland
| | - Weili Guo
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Anjuli Gunness
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Isolda Frizelle
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Mark Sherlock
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Khalid S Ahmed
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Anne McGowan
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Kevin Moore
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Gerard Boran
- Department of Chemical Pathology, Tallaght University Hospital, Dublin, Ireland
| | - Fiona C McGillicuddy
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - James Gibney
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland.
| |
Collapse
|
34
|
Määttä AM, Salminen A, Pietiäinen M, Leskelä J, Palviainen T, Sattler W, Sinisalo J, Salomaa V, Kaprio J, Pussinen PJ. Endotoxemia is associated with an adverse metabolic profile. Innate Immun 2020; 27:3-14. [PMID: 33243051 PMCID: PMC7780360 DOI: 10.1177/1753425920971702] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Our aim was to analyze whether endotoxemia, i.e. translocation of LPS to circulation, is reflected in the serum metabolic profile in a general population and in participants with cardiometabolic disorders. We investigated three Finnish cohorts separately and in a meta-analysis (n = 7178), namely population-based FINRISK97, FinnTwin16 consisting of young adult twins, and Parogene, a random cohort of cardiac patients. Endotoxemia was determined as serum LPS activity and metabolome by an NMR platform. Potential effects of body mass index (BMI), smoking, metabolic syndrome (MetS), and coronary heart disease (CHD) status were considered. Endotoxemia was directly associated with concentrations of VLDL, IDL, LDL, and small HDL lipoproteins, VLDL particle diameter, total fatty acids (FA), glycoprotein acetyls (GlycA), aromatic and branched-chain amino acids, and Glc, and inversely associated with concentration of large HDL, diameters of LDL and HDL, as well as unsaturation degree of FAs. Some of these disadvantageous associations were significantly stronger in smokers and subjects with high BMI, but did not differ between participants with different CHD status. In participants with MetS, however, the associations of endotoxemia with FA parameters and GlycA were particularly strong. The metabolic profile in endotoxemia appears highly adverse, involving several inflammatory characters and risk factors for cardiometabolic disorders.
Collapse
Affiliation(s)
- Anne-Mari Määttä
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aino Salminen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Milla Pietiäinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaakko Leskelä
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Wolfgang Sattler
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Juha Sinisalo
- Department of Cardiology, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland
| | - Veikko Salomaa
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Pirkko J Pussinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
35
|
Luquain-Costaz C, Kockx M, Anastasius M, Chow V, Kontush A, Jessup W, Kritharides L. Increased ABCA1 (ATP-Binding Cassette Transporter A1)-Specific Cholesterol Efflux Capacity in Schizophrenia. Arterioscler Thromb Vasc Biol 2020; 40:2728-2737. [DOI: 10.1161/atvbaha.120.314847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective:
Patients with schizophrenia have increased long-term mortality attributable to cardiovascular disease and commonly demonstrate features of mixed dyslipidemia with low HDL-C (high-density lipoprotein cholesterol). The removal of cholesterol from cells by HDL via specific ATP-binding cholesterol transporters is a major functional property of HDL, and its measurement as cholesterol efflux capacity (CEC) can predict cardiovascular risk. Whether HDL function is impaired in patients with schizophrenia is unknown.
Approach and Results:
We measured basal and ABCA1 (ATP-binding cassette transporter A1)- and ABCG1 (ATP-binding cassette transporter G1)-dependent CEC, comparing patients with schizophrenia with age- and sex-matched healthy controls, and related our findings to nuclear magnetic resonance analysis of lipoprotein subclasses. Total plasma cholesterol and LDL-C (low-density lipoprotein cholesterol) were comparable between healthy controls (n=51) and patients (n=120), but patients with schizophrenia had increased total plasma triglyceride, low HDL-C and apo (apolipoprotein) A-I concentrations. Nuclear magnetic resonance analysis indicated a marked (15-fold) increase in large triglyceride-rich lipoprotein particle concentration, increased small dense LDL particles, and fewer large HDL particles. Despite lower HDL-C concentration, basal CEC was 13.7±1.6% higher, ABCA1-specific efflux was 35.9±1.6% higher, and ABCG1 efflux not different, in patients versus controls. In patients with schizophrenia, ABCA1-specific efflux correlated with the abundance of small 7.8 nm HDL particles but not with serum plasminogen or triglyceride levels.
Conclusions:
Patients with schizophrenia have increased concentrations of atherogenic apoB-containing lipoproteins, decreased concentrations of large HDL particles, but enhanced ABCA1-mediated CEC. In this population, preventative strategies should focus on reducing atherogenic lipoproteins rather than increasing CEC.
Collapse
Affiliation(s)
| | - Maaike Kockx
- ANZAC Research institute, Concord Repatriation General Hospital and University of Sydney, Australia (M.K., M.A., V.C., W.J., L.K.)
| | - Malcolm Anastasius
- ANZAC Research institute, Concord Repatriation General Hospital and University of Sydney, Australia (M.K., M.A., V.C., W.J., L.K.)
| | - Vincent Chow
- ANZAC Research institute, Concord Repatriation General Hospital and University of Sydney, Australia (M.K., M.A., V.C., W.J., L.K.)
- Department of Cardiology, Concord Repatriation General Hospital, Sydney, Australia (V.C., L.K.)
| | - Anatol Kontush
- INSERM Unit 1166, Faculty of Medicine Pitié-Salpétrière and Sorbonne University, Paris, France (A.K.)
| | - Wendy Jessup
- ANZAC Research institute, Concord Repatriation General Hospital and University of Sydney, Australia (M.K., M.A., V.C., W.J., L.K.)
| | - Leonard Kritharides
- ANZAC Research institute, Concord Repatriation General Hospital and University of Sydney, Australia (M.K., M.A., V.C., W.J., L.K.)
- Department of Cardiology, Concord Repatriation General Hospital, Sydney, Australia (V.C., L.K.)
| |
Collapse
|
36
|
Ramchoun M, Khouya T, Harnafi H, Alem C, Benlyas M, Simmet T, Ouguerram K, Amrani S. Effect of polyphenol, flavonoid, and saponin fractions from Thymus atlanticus on acute and chronic hyperlipidemia in mice. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00097-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Background
Thymus atlanticus is an endemic plant of the Mediterranean region, which has been used in the Moroccan mountain area to treat several diseases. This study aimed to investigate the effect of polyphenol, flavonoid, and saponin fractions derived from this plant on acute and chronic hyperlipidemia in male albino mice.
Results
The results indicated that the injection of Triton WR-1339 (20 mg/100 g body weight (B.wt.)) and 6-week administration of a high-fat diet (which is an 81.8% standard diet supplemented with 2% cholesterol, 16% lard, and 0.2% cholic acid) significantly increased plasma total cholesterol, triglycerides and low-density lipoprotein cholesterol (LDL-C), but did not affect high-density lipoprotein cholesterol (HDL-C) levels in mice. Administration of a single dose (2 mg/kg B.wt.) of polyphenol, flavonoid, or saponin fractions significantly suppressed the effect of Triton injection on plasma total cholesterol, triglycerides, and LDL-C. In addition, the supplementation of the high-fat diet with polyphenol fraction (2 mg/kg B.wt./day) prevented the increase of total cholesterol, triglycerides, and LDL-C, and effectively increased HDL-C level when compared to mice feeding only the high-fat diet.
Conclusion
In conclusion, phenolic compounds from Thymus atlanticus possess a significant hypocholesterolemic and hypotriglyceridemic effects and, therefore, could have an important role in the management of dyslipidemia.
Collapse
|
37
|
Hirata A, Kakino A, Okamura T, Usami Y, Fujita Y, Kadota A, Fujiyoshi A, Hisamatsu T, Kondo K, Segawa H, Sawamura T, Miura K, Ueshima H. The relationship between serum levels of LOX-1 ligand containing ApoAI as a novel marker of dysfunctional HDL and coronary artery calcification in middle-aged Japanese men. Atherosclerosis 2020; 313:20-25. [PMID: 33011550 DOI: 10.1016/j.atherosclerosis.2020.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 09/02/2020] [Accepted: 09/16/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Dysfunctional high-density lipoprotein (HDL) is a risk factor for cardiovascular disease (CVD) beyond HDL concentrations. Recently, a novel method has been introduced to measure LOX-1 ligand containing apolipoprotein AI (LAA), which is an indicator of various types of modified HDL with binding capacity to LOX-1 and related to impaired anti-atherogenic functions of HDL. This study aimed to examine the relationship between LAA as a novel marker of dysfunctional HDL and coronary artery calcification (CAC). METHODS We selected 910 community-dwelling Japanese men aged 40-79 years without a history of CVD. The odds ratios per 1SD of LAA for the presence of CAC (Agatston score >10) were estimated using logistic regression model adjusted for confounders, including HDL-C or HDL particle (HDL-P) concentration. In addition, we performed further analysis stratified by age (<65 and ≥ 65 years). RESULTS The mean age of the participants was 63.6 years, and the median LAA was 187.0 ng/mL. The prevalent CAC was 46.2%. The multivariable adjusted odds ratio (95% confidence interval) per 1SD of LAA for CAC was 1.14 (0.96-1.36) for all participants. After stratification by age, multivariable adjusted odds ratios per 1SD of LAA were 1.34 (1.02-1.76) and 0.97 (0.77-1.23) in men aged <65 and ≥ 65 years, respectively. CONCLUSIONS The present study showed that LAA was associated with CAC independent of HDL-C or HDL-P in middle-aged Japanese men. This finding suggests that LAA might be an early marker for CVD events. Future longitudinal studies are warranted.
Collapse
Affiliation(s)
- Aya Hirata
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan.
| | - Akemi Kakino
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University, Nagano, Japan; Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Tomonori Okamura
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan; Department of Public Health, Shiga University of Medical Science, Shiga, Japan
| | - Yoko Usami
- Department of Laboratory Medicine, Shinshu University Hospital, Nagano, Japan
| | - Yoshiko Fujita
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University, Nagano, Japan
| | - Aya Kadota
- Department of Public Health, Shiga University of Medical Science, Shiga, Japan
| | - Akira Fujiyoshi
- Department of Public Health, Shiga University of Medical Science, Shiga, Japan; Department of Hygiene, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takashi Hisamatsu
- Department of Public Health, Shiga University of Medical Science, Shiga, Japan; Department of Public Health, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, University Faculty of Medicine, Okayama, Japan
| | - Keiko Kondo
- Department of Public Health, Shiga University of Medical Science, Shiga, Japan
| | - Hiroyoshi Segawa
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Shiga, Japan
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University, Nagano, Japan; Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Katsuyuki Miura
- Department of Public Health, Shiga University of Medical Science, Shiga, Japan; Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Shiga, Japan
| | - Hirotsugu Ueshima
- Department of Public Health, Shiga University of Medical Science, Shiga, Japan; Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
38
|
Rosales C, Gillard BK, Gotto AM, Pownall HJ. The Alcohol-High-Density Lipoprotein Athero-Protective Axis. Biomolecules 2020; 10:E987. [PMID: 32630283 PMCID: PMC7408510 DOI: 10.3390/biom10070987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/22/2023] Open
Abstract
Ingestion of alcohol is associated with numerous changes in human energy metabolism, especially that of plasma lipids and lipoproteins. Regular moderate alcohol consumption is associated with reduced atherosclerotic cardiovascular disease (ASCVD), an effect that has been attributed to the concurrent elevations of plasma high-density lipoprotein-cholesterol (HDL-C) concentrations. More recent evidence has accrued against the hypothesis that raising plasma HDL concentrations prevents ASCVD so that other metabolic processes associated with alcohol consumption have been considered. This review explored the roles of other metabolites induced by alcohol consumption-triglyceride-rich lipoproteins, non-esterified free fatty acids, and acetate, the terminal alcohol metabolite in athero-protection: Current evidence suggests that acetate has a key role in athero-protection but additional studies are needed.
Collapse
Affiliation(s)
| | | | | | - Henry J. Pownall
- Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; (C.R.); (B.K.G.); (A.M.G.J.)
| |
Collapse
|
39
|
Dhindsa DS, Sandesara PB, Shapiro MD, Wong ND. The Evolving Understanding and Approach to Residual Cardiovascular Risk Management. Front Cardiovasc Med 2020; 7:88. [PMID: 32478100 PMCID: PMC7237700 DOI: 10.3389/fcvm.2020.00088] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
Despite unprecedented advances in treatment of atherosclerotic cardiovascular disease, it remains the leading cause of death and disability worldwide. Treatment of major traditional risk factors, including low-density lipoprotein-cholesterol, serves as the foundation of atherosclerotic risk reduction. However, there remains a significant residual risk of cardiovascular events despite optimal risk factor management. Beyond traditional risk factors, other drivers of residual risk have come to the forefront, including inflammatory, pro-thrombotic, and metabolic pathways that contribute to recurrent events and are often unrecognized and not addressed in clinical practice. This review will explore the evidence linking these pathways to atherosclerotic cardiovascular disease and potential future therapeutic options to attenuate residual cardiovascular risk conferred by these pathways.
Collapse
Affiliation(s)
- Devinder S. Dhindsa
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Atlanta, GA, United States
| | - Pratik B. Sandesara
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Atlanta, GA, United States
| | - Michael D. Shapiro
- Section on Cardiovascular Medicine, Center for the Prevention of Cardiovascular Disease, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Nathan D. Wong
- Heart Disease Prevention Program, Division of Cardiology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
40
|
Tanaka S, Couret D, Tran-Dinh A, Duranteau J, Montravers P, Schwendeman A, Meilhac O. High-density lipoproteins during sepsis: from bench to bedside. Crit Care 2020; 24:134. [PMID: 32264946 PMCID: PMC7140566 DOI: 10.1186/s13054-020-02860-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/30/2020] [Indexed: 02/10/2023] Open
Abstract
High-density lipoproteins (HDLs) represent a family of particle characterized by the presence of apolipoprotein A-I (apoA-I) and by their ability to transport cholesterol from peripheral tissues back to the liver conferring them a cardioprotective function. HDLs also display pleiotropic properties including antioxidant, anti-apoptotic, anti-thrombotic, anti-inflammatory, or anti-infectious functions. Clinical data demonstrate that HDL cholesterol levels decrease rapidly during sepsis and that these low levels are correlated with morbi-mortality. Experimental studies emphasized notable structural and functional modifications of HDL particles in inflammatory states, including sepsis. Finally, HDL infusion in animal models of sepsis improved survival and provided a global endothelial protective effect. These clinical and experimental studies reinforce the potential of HDL therapy in human sepsis. In this review, we will detail the different effects of HDLs that may be relevant under inflammatory conditions and the lipoprotein changes during sepsis and we will discuss the potentiality of HDL therapy in sepsis.
Collapse
Affiliation(s)
- Sébastien Tanaka
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- AP-HP, Service d'Anesthésie-Réanimation, CHU Bichat-Claude Bernard, Paris, France
| | - David Couret
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Pierre de la Réunion, France
| | - Alexy Tran-Dinh
- AP-HP, Service d'Anesthésie-Réanimation, CHU Bichat-Claude Bernard, Paris, France
- Inserm UMR1148, Laboratory for Vascular Translational Science Bichat Hospital, Paris, France
| | - Jacques Duranteau
- AP-HP, Service d'Anesthésie-Réanimation, Hôpitaux Universitaires Paris-Sud, Université Paris-Sud, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
- Laboratoire d'étude de la Microcirculation, "Bio-CANVAS: biomarkers in CardioNeuroVascular DISEASES" UMRS 942, Paris, France
| | - Philippe Montravers
- AP-HP, Service d'Anesthésie-Réanimation, CHU Bichat-Claude Bernard, Paris, France
- Inserm UMR1152. Physiopathologie et Epidémiologie des Maladies Respiratoires, Paris, France
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Saint-Denis de La Réunion, France.
- CHU de La Réunion, Saint-Pierre de la Réunion, France.
| |
Collapse
|
41
|
Effect of Aqueous Extract and Polyphenol Fraction Derived from Thymus atlanticus Leaves on Acute Hyperlipidemia in the Syrian Golden Hamsters. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3282596. [PMID: 32308705 PMCID: PMC7142347 DOI: 10.1155/2020/3282596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/01/2020] [Accepted: 03/03/2020] [Indexed: 01/10/2023]
Abstract
Thymus atlanticus, an endemic plant of Morocco, is traditionally used as a liniment or a drink to treat various diseases. However, there are few available scientific data regarding its biological effects. In this connection, the present study aimed to investigate the hypolipidemic and antioxidant effects of aqueous extract and polyphenol fraction of Thymus atlanticus in Syrian golden hamsters treated with Triton WR-1339 (triton, 20 mg/100 g body weight). The hamsters orally received the extracts (400 mg/kg), and blood samples were collected after 24 h of treatment to determine plasma lipid, insulin, and fasting blood glucose levels. Plasma malondialdehyde level and plasma total antioxidant (TAS) were also evaluated. The T. atlanticus extracts significantly decreased triglycerides, total cholesterol, VLDL-C, and LDL-C and increased HDL-C when compared with the hyperlipidemic group. Both extracts suppressed the effect of the triton injection on TAS and reduced the level of plasma malondialdehyde. The extracts produced no significant change in the blood glucose level but effectively prevented the mild hyperinsulinemia induced by triton. These findings suggest that T. atlanticus may be a useful alternative treatment for the control of hyperlipidemia and its related diseases.
Collapse
|
42
|
Sokooti S, Szili-Torok T, Flores-Guerrero JL, Osté MCJ, Gomes-Neto AW, Kootstra-Ros JE, Heerspink HJ, Connelly MA, Bakker SJL, Dullaart RPF. High-Density Lipoprotein Particles and Their Relationship to Posttransplantation Diabetes Mellitus in Renal Transplant Recipients. Biomolecules 2020; 10:E481. [PMID: 32245262 PMCID: PMC7175217 DOI: 10.3390/biom10030481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
High concentrations of high-density lipoprotein (HDL) cholesterol are likely associated with a lower risk of posttransplantation diabetes mellitus (PTDM). However, HDL particles vary in size and density with yet unestablished associations with PTDM risk. The aim of our study was to determine the association between different HDL particles and development of PTDM in renal transplant recipients (RTRs). We included 351 stable outpatient adult RTRs without diabetes at baseline evaluation. HDL particle characteristics and size were measured by nuclear magnetic resonance (NMR) spectroscopy. During 5.2 (IQR, 4.1‒5.8) years of follow-up, 39 (11%) RTRs developed PTDM. In multivariable Cox regression analysis, levels of HDL cholesterol (hazard ratio [HR] 0.61, 95% confidence interval [CI] 0.40-0.94 per 1SD increase; p = 0.024) and of large HDL particles (HR 0.68, 95% CI 0.50-0.93 per log 1SD increase; p = 0.017), as well as larger HDL size (HR 0.58, 95% CI 0.36-0.93 per 1SD increase; p = 0.025) were inversely associated with PTDM development, independently of relevant covariates including, age, sex, body mass index, medication use, transplantation-specific parameters, blood pressure, triglycerides, and glucose. In conclusion, higher concentrations of HDL cholesterol and of large HDL particles and greater HDL size were associated with a lower risk of PTDM development in RTRs, independently of established risk factors for PTDM development.
Collapse
Affiliation(s)
- Sara Sokooti
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (T.S.-T.); (J.L.F.-G.); (M.C.J.O.); (A.W.G.-N.); (S.J.L.B.); (R.P.F.D.)
| | - Tamas Szili-Torok
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (T.S.-T.); (J.L.F.-G.); (M.C.J.O.); (A.W.G.-N.); (S.J.L.B.); (R.P.F.D.)
| | - Jose L. Flores-Guerrero
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (T.S.-T.); (J.L.F.-G.); (M.C.J.O.); (A.W.G.-N.); (S.J.L.B.); (R.P.F.D.)
| | - Maryse C. J. Osté
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (T.S.-T.); (J.L.F.-G.); (M.C.J.O.); (A.W.G.-N.); (S.J.L.B.); (R.P.F.D.)
| | - António W. Gomes-Neto
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (T.S.-T.); (J.L.F.-G.); (M.C.J.O.); (A.W.G.-N.); (S.J.L.B.); (R.P.F.D.)
| | - Jenny E. Kootstra-Ros
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Hiddo J.L. Heerspink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Margery A. Connelly
- Laboratory Corporation of America® Holdings (LabCorp), Morrisville, NC 27560, USA;
| | - Stephan J. L. Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (T.S.-T.); (J.L.F.-G.); (M.C.J.O.); (A.W.G.-N.); (S.J.L.B.); (R.P.F.D.)
| | - Robin P. F. Dullaart
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (T.S.-T.); (J.L.F.-G.); (M.C.J.O.); (A.W.G.-N.); (S.J.L.B.); (R.P.F.D.)
| |
Collapse
|
43
|
Hafiane A, Favari E, Daskalopoulou SS, Vuilleumier N, Frias MA. High-density lipoprotein cholesterol efflux capacity and cardiovascular risk in autoimmune and non-autoimmune diseases. Metabolism 2020; 104:154141. [PMID: 31923386 DOI: 10.1016/j.metabol.2020.154141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 12/22/2022]
Abstract
Functional assessment of cholesterol efflux capacity (CEC) to high-density lipoprotein (HDL) is an emerging tool for evaluating morbidity and mortality associated with cardiovascular disease (CVD). By promoting macrophage reverse cholesterol transport (RCT), HDL-mediated CEC is believed to play an important role in atherosclerotic lesion progression in the vessel wall. Furthermore, recent evidence indicates that the typical inverse associations between various forms of CEC and CV events may be strongly modulated by environmental systemic factors and traditional CV risk factors, in addition to autoimmune diseases. These factors influence the complex and dynamic composition of HDL particles, which in turn positively or negatively affect HDL-CEC. Herein, we review recent findings connecting HDL-CEC to traditional CV risk factors and cardiometabolic conditions (non-autoimmune diseases) as well as autoimmune diseases, with a specific focus on how these factors may influence the associations between HDL-CEC and CVD risk.
Collapse
Affiliation(s)
- Anouar Hafiane
- Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, 1001 Decarie Blvd, Bloc E01. 3370H, Montréal, Qc H4A 3J1, Canada.
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy.
| | - Stella S Daskalopoulou
- Department of Medicine, Division of Internal Medicine, McGill University, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, EM1.2230, Montreal, Quebec H4A 3J1, Canada.
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland; Division of Laboratory Medicine, Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland.
| | - Miguel A Frias
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland; Division of Laboratory Medicine, Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland.
| |
Collapse
|
44
|
Garg PK, Jorgensen NW, McClelland RL, Allison M, Stein JH, Yvan-Chavret L, Tall AR, Shea S. Cholesterol mass efflux capacity and risk of peripheral artery disease: The Multi-Ethnic Study of Atherosclerosis. Atherosclerosis 2020; 297:81-86. [PMID: 32097805 DOI: 10.1016/j.atherosclerosis.2020.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS We aimed to assess the relationship of HDL (high-density lipoprotein)-mediated cholesterol mass efflux capacity (CMEC) with risk of incident peripheral artery disease (PAD). METHODS CMEC was measured in 1458 Multi-Ethnic Study of Atherosclerosis participants between 2000 and 2002 as part of a case-control study matched for incident cardiovascular disease and progression of carotid plaque by ultrasound. Incident clinical PAD, adjudicated on the basis of a positive history for the presence of disease-related symptoms or treatment, was ascertained through 2015 in 1419 individuals without clinical PAD at baseline. Subclinical PAD, defined as an ankle-brachial index (ABI) ≤1.0, was assessed among 1255 individuals with a baseline ABI >1.0 and at least one follow-up ABI measurement 3-10 years later. Cox proportional hazards and relative risk regression modeling per SD increment of CMEC were used to determine the association of CMEC with clinical and subclinical PAD, respectively. RESULTS There were 38 clinical PAD and 213 subclinical PAD events that occurred over a mean follow-up of 6.0 and 6.5 years respectively. After adjustment for age, gender, and race, higher CMEC levels were not associated with clinical PAD (hazard ratio 1.25; 95% CI 0.89, 1.75) or subclinical PAD (risk ratio 1.02; 95% CI, 0.94, 1.11). CONCLUSIONS These findings suggest that HDL-mediated cholesterol efflux is not significantly associated with incident clinical and subclinical PAD.
Collapse
Affiliation(s)
- Parveen K Garg
- Division of Cardiology, University of Southern California, Los Angeles, CA, USA.
| | - Neal W Jorgensen
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | - Matthew Allison
- Division of Preventive Medicine, University of California, San Diego School of Medicine, San Diego, CA, USA
| | - James H Stein
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Laurent Yvan-Chavret
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; University of Nice, France
| | - Alan R Tall
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Steven Shea
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
45
|
Shea S, Stein JH, Jorgensen NW, McClelland RL, Tascau L, Shrager S, Heinecke JW, Yvan-Charvet L, Tall AR. Cholesterol Mass Efflux Capacity, Incident Cardiovascular Disease, and Progression of Carotid Plaque. Arterioscler Thromb Vasc Biol 2019; 39:89-96. [PMID: 30580560 PMCID: PMC6310062 DOI: 10.1161/atvbaha.118.311366] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objective- To assess the role of HDL (high-density lipoprotein)-mediated cholesterol mass efflux capacity (CMEC) in incident cardiovascular disease and carotid plaque progression. Approach and Results- We measured CMEC in 2 cohorts aged 45 to 84 years at baseline derived from the MESA (Multi-Ethnic Study of Atherosclerosis). Cohort 1 comprised 465 cases with incident cardiovascular disease events during 10 years of follow-up and 465 age- and sex-matched controls; cohort 2 comprised 407 cases with progression of carotid plaque measured by ultrasonography at 2 exams >10 years and 407 similarly matched controls. Covariates and outcome events were ascertained according to the MESA protocol. CMEC level was modestly correlated with HDL cholesterol ( R=0.13; P<0.001) but was not associated with age, sex, race/ethnicity, body mass index, diabetes mellitus, alcohol use, smoking status, or statin use. Higher CMEC level was significantly associated with lower odds of cardiovascular disease (odds ratio, 0.82 per SD of CMEC [95% CI, 0.69-0.98; P=0.031] in the fully adjusted model) in cohort 1 but higher odds of carotid plaque progression (odds ratio, 1.24 per SD of CMEC [95% CI, 1.04-1.48; P=0.018] in the fully adjusted model) in cohort 2 but without dose-response effect. In subgroup analysis within cohort 1, higher CMEC was associated with lower risk of incident coronary heart disease events (odds ratio, 0.72 per SD of CMEC (95% CI, 0.5-0.91; P=0.007) while no association was found with stroke events. Conclusions- These findings support a role for HDL-mediated cholesterol efflux in an atheroprotective mechanism for coronary heart disease but not stroke.
Collapse
Affiliation(s)
- Steven Shea
- From the Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York (S. Shea, L.T., L.Y.-C., A.R.T.).,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York (S. Shea)
| | - James H Stein
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison (J.H.S.)
| | - Neal W Jorgensen
- Department of Biostatistics, University of Washington, Seattle (N.W.J., R.L.M., S. Shrager)
| | - Robyn L McClelland
- Department of Biostatistics, University of Washington, Seattle (N.W.J., R.L.M., S. Shrager)
| | - Liana Tascau
- From the Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York (S. Shea, L.T., L.Y.-C., A.R.T.)
| | - Sandi Shrager
- Department of Biostatistics, University of Washington, Seattle (N.W.J., R.L.M., S. Shrager)
| | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle (J.W.H.)
| | - Laurent Yvan-Charvet
- From the Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York (S. Shea, L.T., L.Y.-C., A.R.T.).,Department of Medicine, University of Washington, Seattle (J.W.H.)
| | - Alan R Tall
- From the Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York (S. Shea, L.T., L.Y.-C., A.R.T.)
| |
Collapse
|
46
|
Affiliation(s)
- Anand Rohatgi
- From the Division of Cardiology, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
47
|
High-density lipoprotein cholesterol efflux capacity is not associated with atherosclerosis and prevalence of cardiovascular outcome: The CODAM study. J Clin Lipidol 2019; 14:122-132.e4. [PMID: 31791716 DOI: 10.1016/j.jacl.2019.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cholesterol Efflux Capacity (CEC) is considered to be a key atheroprotective property of high-density lipoproteins (HDL). However, the role of HDL-CEC in atherosclerosis and cardiovascular (CV) risk is still controversial, and data in individuals with diabetes are limited. OBJECTIVE In this study, we have investigated the relationship of CEC and other HDL characteristics with clinical and subclinical atherosclerosis in subjects with elevated cardiovascular diseases (CVD) risk and Type 2 Diabetes Mellitus (T2DM). METHODS Using multiple linear regression analyses, we determined the relationship of HDL-CEC with carotid intima-media thickness (cIMT, Z-Score), an endothelial dysfunction (EnD) Score (Z-Score), prevalent CVD (n = 150 cases) and history of CV events (CVE, n = 85 cases) in an observational cohort (CODAM, n = 574, 59.6 ± 0.3 yr, 61.3% men, 24.4% T2DM). Stratified analyses were performed to determine if the associations differed between individuals with normal glucose metabolism (NGM) and those with disturbed glucose metabolism. RESULTS HDL-CEC was not associated with either marker of atherosclerosis (cIMT, EnD Score) nor with CVD or CVE. In contrast, other HDL characteristics that is, HDL-Cholesterol (HDL-C, Z-Score), apolipoprotein A-I (apoA-I, Z-Score), HDL size (Z-Score) and HDL particle number (HDL-P, Z-Score) were inversely and significantly associated with the EnD Score (s -0.226 to -0.097, P < .05) and CVE (ORs 0.61 to 0.68, P < .05). In stratified analyses, HDL size and HDL-P were significantly associated with the EnD Score in individuals with NGM (Pinteraction .039 and .005, respectively), but not in those with (pre)diabetes. HDL-C and apoA-I were inversely associated with prevalent CVD in individuals with (pre)diabetes (Pinteraction = .074 and .034, respectively), but not in those with NGM. CONCLUSION HDL-CEC is not associated with clinical or subclinical atherosclerosis, neither in the whole population nor in individuals with (pre)diabetes, while other HDL characteristics show atheroprotective associations. The atheroprotective associations of HDL-size and HDL-P are lost in (pre)diabetes, while higher concentrations of HDL-C and apoA-I are associated with a lower prevalence of CVD in (pre)diabetes.
Collapse
|
48
|
Rodriguez A, Trigatti BL, Mineo C, Knaack D, Wilkins JT, Sahoo D, Asztalos BF, Mora S, Cuchel M, Pownall HJ, Rosales C, Bernatchez P, Ribeiro Martins da Silva A, Getz GS, Barber JL, Shearer GC, Zivkovic AM, Tietge UJF, Sacks FM, Connelly MA, Oda MN, Davidson WS, Sorci-Thomas MG, Vaisar T, Ruotolo G, Vickers KC, Martel C. Proceedings of the Ninth HDL (High-Density Lipoprotein) Workshop: Focus on Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:2457-2467. [PMID: 31597448 DOI: 10.1161/atvbaha.119.313340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The HDL (high-density lipoprotein) Workshop was established in 2009 as a forum for candid discussions among academic basic scientists, clinical investigators, and industry researchers about the role of HDL in cardiovascular disease. This ninth HDL Workshop was held on May 16 to 17, 2019 in Boston, MA, and included outstanding oral presentations from established and emerging investigators. The Workshop featured 5 sessions with topics that tackled the role of HDL in the vasculature, its structural complexity, its role in health and disease states, and its interaction with the intestinal microbiome. The highlight of the program was awarding the Jack Oram Award to the distinguished professor emeritus G.S. Getz from the University of Chicago. The tenth HDL Workshop will be held on May 2020 in Chicago and will continue the focus on intellectually stimulating presentations by established and emerging investigators on novel roles of HDL in cardiovascular and noncardiovascular health and disease states.
Collapse
Affiliation(s)
- Annabelle Rodriguez
- From the Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health, Farmington (A.R.)
| | - Bernardo L Trigatti
- Department of Biochemistry and Biomedical Sciences, McMaster University, and Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada (B.L.T.)
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics and Cell Biology, University of Texas Southwestern Medical Center, Dallas (C.M.)
| | - Darcy Knaack
- Department of Biochemistry (D.K., D.S.), Medical College of Wisconsin, Milwaukee
| | - John T Wilkins
- Division of Cardiology, Departments of Medicine and of Preventive Medicine, Northwestern University, Chicago, IL (J.T.W.)
| | - Daisy Sahoo
- Department of Biochemistry (D.K., D.S.), Medical College of Wisconsin, Milwaukee.,Division of Endocrinology (D.S., M.G.S.-T.), Medical College of Wisconsin, Milwaukee
| | - Bela F Asztalos
- Human Nutrition Research Center, Tufts University, Boston, MA (B.F.A.)
| | - Samia Mora
- Center for Lipid Metabolomics, Divisions of Preventive and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.M.)
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (M.C.)
| | - Henry J Pownall
- Institute for Academic Medicine, Houston Methodist, Weill Cornell Medical College, Houston, TX (H.J.P., C.R.)
| | - Corina Rosales
- Institute for Academic Medicine, Houston Methodist, Weill Cornell Medical College, Houston, TX (H.J.P., C.R.)
| | - Pascal Bernatchez
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Heart and Lung Innovation Centre, St Paul's Hospital, Vancouver, BC, Canada (P.B.)
| | | | - Godfrey S Getz
- Department of Pathology, University of Chicago, IL (G.S.G.)
| | - Jacob L Barber
- Department of Exercise Science, University of South Carolina, Columbia (J.L.B.)
| | - Gregory C Shearer
- Department Nutritional Sciences, The Pennsylvania State University, University Park (G.C.S.)
| | | | - Uwe J F Tietge
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden (U.J.F.T.).,Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden (U.J.F.T.)
| | - Frank M Sacks
- Harvard T.H. Chan School of Public Health, Boston, MA (F.M.S.)
| | - Margery A Connelly
- Laboratory Corporation of America Holdings (LabCorp), Morrisville, NC (M.A.C.)
| | | | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, OH (W.S.D.)
| | - Mary G Sorci-Thomas
- Division of Endocrinology (D.S., M.G.S.-T.), Medical College of Wisconsin, Milwaukee
| | - Tomas Vaisar
- UW Medicine Diabetes Institute, University of Washington, Seattle (T.V.)
| | | | - Kasey C Vickers
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (K.C.V.)
| | - Catherine Martel
- Montreal Heart Institute, Montreal and Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada (C.M.)
| |
Collapse
|
49
|
Vulnerable Plaque, Characteristics, Detection, and Potential Therapies. J Cardiovasc Dev Dis 2019; 6:jcdd6030026. [PMID: 31357630 PMCID: PMC6787609 DOI: 10.3390/jcdd6030026] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022] Open
Abstract
Plaque development and rupture are hallmarks of atherosclerotic vascular disease. Despite current therapeutic developments, there is an unmet necessity in the prevention of atherosclerotic vascular disease. It remains a challenge to determine at an early stage if atherosclerotic plaque will become unstable and vulnerable. The arrival of molecular imaging is receiving more attention, considering it allows for a better understanding of the biology of human plaque and vulnerabilities. Various plaque therapies with common goals have been tested in high-risk patients with cardiovascular disease. In this work, the process of plaque instability, along with current technologies for sensing and predicting high-risk plaques, is debated. Updates on potential novel therapeutic approaches are also summarized.
Collapse
|
50
|
Purmalek MM, Carlucci PM, Dey AK, Sampson M, Temesgen-Oyelakin Y, Sakhardande S, Lerman JB, Fike A, Davis M, Chung JH, Salahuddin T, Manna Z, Gupta S, Chen MY, Hasni S, Mehta NN, Remaley A, Kaplan MJ. Association of lipoprotein subfractions and glycoprotein acetylation with coronary plaque burden in SLE. Lupus Sci Med 2019; 6:e000332. [PMID: 31413851 PMCID: PMC6667837 DOI: 10.1136/lupus-2019-000332] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/09/2019] [Accepted: 06/18/2019] [Indexed: 11/05/2022]
Abstract
Objective Subjects with SLE display an enhanced risk of atherosclerotic cardiovascular disease (CVD) that is not explained by Framingham risk. This study sought to investigate the utility of nuclear MR (NMR) spectroscopy measurements of serum lipoprotein particle counts and size and glycoprotein acetylation (GlycA) burden to predict coronary atherosclerosis in SLE. Methods Coronary plaque burden was assessed in SLE subjects and healthy controls using coronary CT angiography. Lipoproteins and GlycA were quantified by NMR spectroscopy. Results SLE subjects displayed statistically significant decreases in high-density lipoprotein (HDL) particle counts and increased very low-density lipoprotein (VLDL) particle counts compared with controls. Non-calcified coronary plaque burden (NCB) negatively associated with HDL subsets whereas it positively associated with VLDL particle counts in multivariate adjusted models. GlycA was significantly increased in SLE sera compared with controls. In contrast to high-sensitivity C reactive protein, elevations in GlycA in SLE significantly associated with NCB and insulin resistance (IR), though the association with NCB was no longer significant after adjusting for prednisone use. Conclusions Patients with SLE display a proatherogenic lipoprotein profile that may significantly contribute to the development of premature CVD. The results demonstrate that NMR measures of GlycA and lipoprotein profiles, beyond what is captured in routine clinical labs, could be a useful tool in assessing CVD risk in patients with SLE.
Collapse
Affiliation(s)
- Monica M Purmalek
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Philip M Carlucci
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Amit K Dey
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, USA
| | - Maureen Sampson
- National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Yenealem Temesgen-Oyelakin
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Simantini Sakhardande
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Joseph B Lerman
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, USA
| | - Alice Fike
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael Davis
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jonathan H Chung
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, USA
| | - Taufiq Salahuddin
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, USA
| | - Zerai Manna
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sarthak Gupta
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Marcus Y Chen
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, USA
| | - Sarfaraz Hasni
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Nehal N Mehta
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, USA
| | - Alan Remaley
- National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Maryland, USA
| | - Mariana J Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|