1
|
Priya PS, Murugan R, Srileka R, Ramya Ranjan Nayak SP, Thirumal M, Rajagopal R, Pasupuleti M, Kumarodoss KM, Arockiaraj J. Synergistic defense: Quercetin and chondroitin sulfate combat bacterial trigger of rheumatoid arthritis, Proteus mirabilis through in-vitro and in-vivo mechanisms. Microb Pathog 2024; 197:107086. [PMID: 39490596 DOI: 10.1016/j.micpath.2024.107086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Rheumatoid arthritis, a chronic autoimmune disorder characterized by joint inflammation, is thought to be exacerbated by bacterial infections, notably Proteus mirabilis. This study explores the combined effects of quercetin, a potent antioxidant and anti-inflammatory flavonoid, and chondroitin sulfate, known for its cartilage-protective properties, as a potential therapeutic approach. Molecular docking analyses revealed favourable interactions between these compounds and key pro-inflammatory cytokines IL-6 and TNF-α, suggesting their potential to disrupt inflammation-related signaling pathways. In vitro assays demonstrated that the quercetin- chondroitin sulfate combination (1:1 ratio) significantly inhibited oxidative stress and hemolysis, highlighting its enhanced anti-inflammatory and membrane-protective effects. The free radical scavenging assays further confirmed the antioxidant potential of this combination, which demonstrated strong radical scavenging activity. Antimicrobial assays showed notable antibacterial effects, with an increased inhibition zone against P. mirabilis when quercetin and chondroitin sulfate were combined, suggesting a synergistic antimicrobial action. In vivo, zebrafish subjected to bacterial stress showed improved survival rates with the quercetin and chondroitin sulfate combination treatment, along with enhanced mineralization and significant modulation of alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) activities, indicating its protective role in maintaining joint health. Furthermore, gene expression analysis revealed a substantial reduction in pro-inflammatory markers, including TNF-α and IL-6, demonstrating the quercetin and chondroitin sulfate combination's ability to mitigate inflammation. Together, these findings suggest that the quercetin and chondroitin sulfate combination hold significant therapeutic potential in reducing oxidative stress, inflammation, and microbial-induced RA exacerbations.
Collapse
Affiliation(s)
- P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Raghul Murugan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, Tamil Nadu, India
| | - R Srileka
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - M Thirumal
- Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mukesh Pasupuleti
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kathiravan Muthu Kumarodoss
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
2
|
Peña-Corona SI, Vargas-Estrada D, Chávez-Corona JI, Mendoza-Rodríguez CA, Caballero-Chacón S, Pedraza-Chaverri J, Gracia-Mora MI, Galván-Vela DP, García-Rodríguez H, Sánchez-Bartez F, Vergara-Onofre M, Leyva-Gómez G. Vitamin E (α-Tocopherol) Does Not Ameliorate the Toxic Effect of Bisphenol S on the Metabolic Analytes and Pancreas Histoarchitecture of Diabetic Rats. TOXICS 2023; 11:626. [PMID: 37505591 PMCID: PMC10383361 DOI: 10.3390/toxics11070626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
This study investigated whether the coadministration of vitamin E (VitE) diminishes the harmful effects provoked by plasticizer bisphenol S (BPS) in the serum metabolites related to hepatic and renal metabolism, as well as the endocrine pancreatic function in diabetic male Wistar rats. Rats were divided into five groups (n = 5-6); the first group was healthy rats (Ctrl group). The other four groups were diabetic rats induced with 45 mg/kg bw of streptozotocin: Ctrl-D (diabetic control); VitE-D (100 mg/kg bw/d of VitE); BPS-D (100 mg/kg bw/d of BPS); The animals from the VitE + BPS-D group were administered 100 mg/kg bw/d of VitE + 100 mg/kg bw/d of BPS. All compounds were administered orally for 30 days. Body weight, biochemical assays, urinalysis, glucose tolerance test, pancreas histopathology, proximate chemical analysis in feces, and the activity of antioxidants in rat serum were assessed. The coadministration of VitE + BPS produced weight losses, increases in 14 serum analytes, and degeneration in the pancreas. Therefore, the VitE + BPS coadministration did not have a protective effect versus the harmful impact of BPS or the diabetic metabolic state; on the contrary, it partially aggravated the damage produced by the BPS. VitE is likely to have an additive effect on the toxicity of BPS.
Collapse
Affiliation(s)
- Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Dinorah Vargas-Estrada
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan I Chávez-Corona
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - C Adriana Mendoza-Rodríguez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Sara Caballero-Chacón
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - María Isabel Gracia-Mora
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Diana Patricia Galván-Vela
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Helena García-Rodríguez
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Francisco Sánchez-Bartez
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Marcela Vergara-Onofre
- Departamento de Producción Agricola y Animal, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 04960, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
3
|
Wang Z, Feng C, Liu H, Meng T, Huang WQ, Song KX, Wang YB. Exosomes from circ-Astn1-modified adipose-derived mesenchymal stem cells enhance wound healing through miR-138-5p/SIRT1/FOXO1 axis regulation. World J Stem Cells 2023; 15:476-489. [PMID: 37342222 PMCID: PMC10277972 DOI: 10.4252/wjsc.v15.i5.476] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/05/2022] [Accepted: 09/10/2022] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Wound healing impairment is a dysfunction induced by hyperglycemia and its effect on endothelial precursor cells (EPCs) in type 2 diabetes mellitus. There is increasing evidence showing that exosomes (Exos) derived from adipose-derived mesenchymal stem cells (ADSCs) exhibit the potential to improve endothelial cell function along with wound healing. However, the potential therapeutic mechanism by which ADSC Exos contribute to wound healing in diabetic mice remains unclear.
AIM To reveal the potential therapeutic mechanism of ADSC Exos in wound healing in diabetic mice.
METHODS Exos from ADSCs and fibroblasts were used for high-throughput RNA sequencing (RNA-Seq). ADSC-Exo-mediated healing of full-thickness skin wounds in a diabetic mouse model was investigated. We employed EPCs to investigate the therapeutic function of Exos in cell damage and dysfunction caused by high glucose (HG). We utilized a luciferase reporter (LR) assay to analyze interactions among circular RNA astrotactin 1 (circ-Astn1), sirtuin (SIRT) and miR-138-5p. A diabetic mouse model was used to verify the therapeutic effect of circ-Astn1 on Exo-mediated wound healing.
RESULTS High-throughput RNA-Seq analysis showed that circ-Astn1 expression was increased in ADSC Exos compared with Exos from fibroblasts. Exos containing high concentrations of circ-Astn1 had enhanced therapeutic effects in restoring EPC function under HG conditions by promoting SIRT1 expression. Circ-Astn1 expression enhanced SIRT1 expression through miR-138-5p adsorption, which was validated by the LR assay along with bioinformatics analyses. Exos containing high concentrations of circ-Astn1 had better therapeutic effects on wound healing in vivo compared to wild-type ADSC Exos. Immunofluorescence and immunohistochemical investigations suggested that circ-Astn1 enhanced angiopoiesis through Exo treatment of wounded skin as well as by suppressing apoptosis through promotion of SIRT1 and decreased forkhead box O1 expression.
CONCLUSION Circ-Astn1 promotes the therapeutic effect of ADSC-Exos and thus improves wound healing in diabetes via miR-138-5p absorption and SIRT1 upregulation. Based on our data, we advocate targeting the circ-Astn1/miR-138-5p/SIRT1 axis as a potential therapeutic option for the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Cheng Feng
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Hao Liu
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Tian Meng
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Wei-Qing Huang
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Ke-Xin Song
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - You-Bin Wang
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| |
Collapse
|
4
|
Guo M, Zhou B. Clinical efficacy of ulinastatin in the treatment of unliquefied pyogenic liver abscess complicated by septic shock: A randomized controlled trial. Immun Inflamm Dis 2023; 11:e822. [PMID: 37102655 PMCID: PMC10108682 DOI: 10.1002/iid3.822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 04/28/2023] Open
Abstract
INTRODUCTION This study determined the therapeutic effect of ulinastatin (UTI) on unliquefied pyogenic liver abscesses complicated by septic shock (UPLA-SS). METHODS This was a randomized controlled trial involving patients with UPLA-SS who underwent treatment at our hospital between March 2018 and March 2022. The patients were randomly divided into control (n = 51) and study groups (n = 48). Both groups received routine treatment, but the study group received UTI (200,000 units q8h for >3 days). Differences in liver function, inflammatory indices, and effectiveness between the two groups were recorded. RESULTS Following treatment, the white blood cell count, and lactate, C-reactive protein, procalcitonin, tumor necrosis factor-α, and interleukin-6 levels were significantly decreased in all patients compared to the admission values (p < .05). The study group had a faster decline with respect to the above indices compared to the control group (p < .05). The study group length of intensive care unit stay, fever duration, and vasoactive drug maintenance time were all significantly shorter than the control group (p < .05). The total bilirubin, alanine aminotransferase, and aspartate aminotransferase levels were significantly lower in the study and control groups after treatment compared to before treatment (p < .05); however, the study group had a faster recovery of liver function than the control group (p < .05). The overall mortality rate was 14.14% (14/99); 10.41% of the study group patients died and 17.65% of the control group patients died, but there was no statistically significant difference between the two groups (p > .05). CONCLUSION UTI combined with conventional treatment significantly controlled the infection symptoms, improved organ function, and shortened the treatment time in patients with UPLA-SS.
Collapse
Affiliation(s)
- Mingfeng Guo
- Department of ICUThe Affiliated Huaian No. 1 People's Hospital of Nanjing Medical UniversityHuai'anJiangsuP. R. China
| | - Bing Zhou
- Department of Hepatobiliary SurgeryThe Affiliated Huaian No. 1 People's Hospital of Nanjing Medical UniversityHuai'anJiangsuP. R. China
| |
Collapse
|
5
|
Yang D, Tan YM, Zhang Y, Song JK, Luo Y, Luo Y, Fei XY, Ru Y, Li B, Jiang JS, Kuai L. Sheng-ji Hua-yu ointment ameliorates cutaneous wound healing in diabetes via up-regulating CCN1. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115954. [PMID: 36435409 DOI: 10.1016/j.jep.2022.115954] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic ulcers (DUs) are one of the most severe complications of diabetes, and efficacious therapeutic means are currently lacking. Sheng-ji Hua-yu (SJHY) ointment is a classical Chinese traditional prescription that can significantly attenuate DU defects, but the specific mechanism remains to be fully elucidated. AIM OF THE STUDY In order to verify the underlying mechanism of SJHY ointment in accelerating the closure of DUs. MATERIALS AND METHODS Modular pharmacology and molecular docking were utilized to predict the therapeutic targets of SJHY ointment against DUs. Male db/db diabetic mice and HaCaT cell models induced by methylglyoxal were used to validate the findings. RESULTS CCN1 was proven to be the core target of SJHY ointment involved in DUs treatment. CCN1 up-regulated by SJHY treatment (0.5 g/cm2/day) at the mRNA and protein levels was detected on Day9 after wounding. With CCN1 knockdown, accelerated cell proliferation, migration, and anti-inflammatory effect of SJHY treatment (10 mg/L) were reversed. CONCLUSIONS SJHY ointment ameliorates cutaneous wound healing by up-regulating CCN1.
Collapse
Affiliation(s)
- Dan Yang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Yi-Mei Tan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Professional Technical Service Platform for Clinical Evaluation of Skin Health Related Products, Shanghai Science and Technology Commission, Shanghai, 200443, China; NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai, 200443, China; Human Phenome Institute, Fudan University, Shanghai, 200433, China.
| | - Ying Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiao-Ya Fei
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jing-Si Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
6
|
Essam RM, Kandil EA. p-CREB and p-DARPP-32 orchestrating the modulatory role of cAMP/PKA signaling pathway enhanced by Roflumilast in rotenone-induced Parkinson's disease in rats. Chem Biol Interact 2023; 372:110366. [PMID: 36706892 DOI: 10.1016/j.cbi.2023.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Recently, phosphodiesterases (PDEs) have gained great attention due to their implication in Parkinson's disease (PD) pathogenesis. Noteworthy, the PDE4 enzyme is highly expressed in the striatum and selectively degrades cyclic adenosine monophosphate (cAMP). The cAMP was shown to play a vital role in dopamine (DA) signaling besides maintaining the plasticity of dopaminergic neurons as well as protecting them from inflammation and oxidative stress-mediated death. Thus, PDE4 inhibition could be a promising strategy for treating PD. Accordingly, the present study investigated the neuroprotective efficacy of roflumilast, a PDE4 inhibitor, in abolishing neurodegeneration in the rotenone-induced PD model. Rotenone (1.5 mg/kg, s.c) was delivered via 11 injections on matching days. Roflumilast treatment (0.5 mg/kg, p.o) was given daily after the fifth rotenone injection. Roflumilast significantly reversed rotenone's adverse effects, as it enhanced trophic factors expression and abrogated inflammation as well as oxidative stress. Thus, promoting dopaminergic neuronal plasticity and survival, as well as restoring striatal DA level and function, which resulted in enhanced motor performance. The beneficial effect of roflumilast was mediated through inhibition of striatal PDE4 with consequent activation of cAMP-dependent protein kinase A (PKA) signaling pathways, including the cAMP response element-binding protein (CREB) pathway and dopamine and cAMP-regulated phosphoprotein 32,000 (DARPP-32) pathway that is essential for maintaining dopaminergic function. Therefore, the present work sheds light on the substantial neuroprotective potential of roflumilast in treating PD through the activation of the cAMP/PKA cascade.
Collapse
Affiliation(s)
- Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Biology, School of Pharmacy, Newgiza University, First 6th of October, Giza, 3296121, Egypt.
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
7
|
Wang X, Zhang Y, Zhou X, Xia X, Teng W, Sheng L, Ding J. Soy isoflavone reduces LPS-induced acute lung injury via increasing aquaporin 1 and aquaporin 5 in rats. Open Life Sci 2023; 18:20220560. [PMID: 36820212 PMCID: PMC9938540 DOI: 10.1515/biol-2022-0560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 02/12/2023] Open
Abstract
Acute lung injury (ALI) followed with severe inflammation and oxidative stress. Anti-inflammatory and antioxidant are the properties of aquaporin 1 (AQP1) and aquaporin 5 (AQP5). The goal of this study was to see if soy isoflavone can diminish lipopolysaccharide (LPS)-induced ALI and the underling mechanism. LPS-induced ALI was given to Sprague-Dawley rats 14 days following oophorectomy. One hour before the LPS challenge, estradiol (1 mg/kg) was administered subcutaneously as positive control and soy isoflavone was intragastric administration for 14 days prior to LPS challenge with different doses. Six hours after LPS challenge, the pulmonary edema, pathophysiology, inflammation, and the oxidative stress in lung tissues of rats were discovered. We found that soy isoflavone can reduce pulmonary edema and the lung pathology in a dose-dependent manner. Furthermore, tumor necrosis factor-alpha, interleukin-1β, and interleukin-6 were decreased in rats treated with soy isoflavone. Meanwhile, soy isoflavone reduced pulmonary oxidative stress by decreasing malondialdehyde levels, while increasing superoxide dismutase levels in lung tissues in a dose-dependent manner. Mechanically, we found that the mRNA and protein level of AQP1 and AOP5 were increased in lung tissues of rats treated with soy isoflavone compared the LPS-treated rats. Thus, soy isoflavone alleviates LPS-induced ALI through inducing AQP1 and AQP5.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Yili Zhang
- Department of Health Management Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Xiuyun Zhou
- Department of Blood Purification Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Xiumei Xia
- Department of Imaging Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Weijun Teng
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Lin Sheng
- Department of Respiratory Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Jing Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| |
Collapse
|
8
|
Long Y, Hu Z, Yang D, Wang F, Zhao C, Zhang Y, Zhang Y, Ma H, Lv H. Pharmacological inhibition of the ubiquitin-specific protease 8 effectively suppresses glioblastoma cell growth. Open Life Sci 2023; 18:20220562. [PMID: 36816802 PMCID: PMC9922063 DOI: 10.1515/biol-2022-0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/08/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumor. The purpose of this study is to estimate the potential effects and underlying mechanisms of a ubiquitin-specific protease 8 (USP8) small-molecule inhibitor on the phenotypic characteristics of GBM cells. The growth, migration, invasion, and stemness of GBM LN229 and T98G cells were evaluated by conducting cell proliferation, colony formation, wound healing, transwell, Ki-67 staining, spheroid formation, and ionizing radiation assays, and the results collectively showed the suppressive effects of USP8 inhibition on GBM cells. Furthermore, transcriptomic profiling of GBM cells treated with the USP8 inhibitor deubiquitinase (DUB)-IN-1 revealed significantly altered mRNA expression induced by pharmacological USP8 inhibition, from which we confirmed downregulated Aurora kinase A (AURKA) protein levels using immunoblotting assays. Our findings indicated that the proliferation, invasion, and stemness of LN229 and T98G cells were markedly suppressed by USP8 inhibition. Pharmacological USP8 suppression elicits multiple tumor-inhibitory effects, likely through dysregulating various mRNA expression events, including that of the key cell cycle regulator and oncogenic protein AURKA. Therefore, our observations corroborate the GBM-supportive roles of USP8 and suggest pharmacological USP8 inhibition is a viable therapeutic approach to target GBM. The purpose of this study was to investigate the effect and mechanism of action of the USP8 inhibitor DUB-IN-1 on GBM.
Collapse
Affiliation(s)
- Yu Long
- Department of Pharmacy, The Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian 116000, China
| | - Zengchun Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Dalian Medical University, Dalian 116000, China
| | - Dian Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Fuqiang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Chen’ge Zhao
- Department of Pharmacy, The Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian 116000, China
| | - Yang Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian 116000, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116000, China
| | - Hui Ma
- Department of Pharmacy, The Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian 116000, China
| | - Huiyi Lv
- Department of Pharmacy, The Second Affiliated Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian 116000, China,Dalian Kexiang Technology Development Co., LTD, No. 467 Zhongshan Road, Dalian 116000, China
| |
Collapse
|
9
|
Manna K, Khan ZS, Saha M, Mishra S, Gaikwad N, Bhakta JN, Banerjee K, Das Saha K. Manjari Medika Grape Seed Extract Protects Methotrexate-Induced Hepatic Inflammation: Involvement of NF-κB/NLRP3 and Nrf2/HO-1 Signaling System. J Inflamm Res 2023; 16:467-492. [PMID: 36785716 PMCID: PMC9922067 DOI: 10.2147/jir.s338888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/20/2022] [Indexed: 02/09/2023] Open
Abstract
Objective Grape Seed Extract is a natural source of various polyphenols, which have been shown to possess potent antioxidant and free radical-scavenging activities. The earlier studies have reported that grape seed extract exhibits broad-spectrum pharmacological activities. Therefore, studying the hepatoprotective effects and elucidation of mechanisms of action of the Indian Variety, Manjari Medika grape seed extract (GSE), may give an insight into therapeutic benefits. Methotrexate (MTX) is the first-line pharmacological therapy for different rheumatic diseases. The major adverse events such as hepatotoxicity are evident even in the low doses used for the treatment. The present study investigated the role of MTX on hepatic damage in murine liver and the plausible protective effects of the Indian grape variety, Manjari Medika grape seed extract, in ameliorating it. Methods and Results To assess the hepatological modulation, mice were divided into eight groups to investigate the ameliorative potential of this GSE (75 and 125 mg/kg) and correlate the experimental findings. The active components of the extract were assessed through UPLC-(ESI)-QToF-MS analysis. On the other hand, various biochemical and immunological indices were carried out to correlate the experimental data. The result demonstrated that the prophylactic administration of GSE reduced MTX-induced hepatic toxicity indices, which subsequently restored the hepatic morphological architecture. Moreover, the application of GSE in a dual dosage (75 and 125 mg/kg) suppressed MTX-induced reactive oxygen species generation, followed by lipid peroxidation and cellular nitrite formation. MTX-induced inflammasome activation through the redox-assisted cascade of TLR4/NF-κB signaling was further reduced by applying the GSE. The results showed that the activation of cytoprotective transcription factor Nrf2 enhanced the level of endogenous antioxidants. Furthermore, through the regulation of TLR4/NF-κB and Nrf2/HO-1 axis, this extract could reduce the MTX-mediated hepatic damage. Conclusion Our findings suggest that Manjari Medika seed extract could be used as a therapeutic agent to relieve the side effects of MTX and other hepatic disorders.
Collapse
Affiliation(s)
- Krishnendu Manna
- Department of Food & Nutrition, University of Kalyani, Nadia, West Bengal, India
| | - Zareen S Khan
- National Referral Laboratory, ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India
| | - Moumita Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, 700032, India
| | - Snehasis Mishra
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, 700032, India
| | - Nilesh Gaikwad
- ICAR-National Research Centre on Pomegranate, Solapur, Maharashtra, 413255, India
| | - Jatindra Nath Bhakta
- Department of Food & Nutrition, University of Kalyani, Nadia, West Bengal, India
| | - Kaushik Banerjee
- National Referral Laboratory, ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India,Kaushik Banerjee, National Referral Laboratory, ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India, Email
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, 700032, India,Correspondence: Krishna Das Saha, Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, West Bengal, 700032, India, Tel +91 33 2499 5810, Fax +91 33 2473 5197, Email
| |
Collapse
|
10
|
Ahmed SA, Sarma P, Barge SR, Swargiary D, Devi GS, Borah JC. Xanthosine, a purine glycoside mediates hepatic glucose homeostasis through inhibition of gluconeogenesis and activation of glycogenesis via regulating the AMPK/ FoxO1/AKT/GSK3β signaling cascade. Chem Biol Interact 2023; 371:110347. [PMID: 36627075 DOI: 10.1016/j.cbi.2023.110347] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Type 2 Diabetes Mellitus (T2DM) is characterized by hepatic insulin resistance, which results in increased glucose production and reduced glycogen storage in the liver. There is no previous study in the literature that has explored the role of Xanthosine in hepatic insulin resistance. Moreover, mechanistic explanation for the beneficial effects of Xanthosine in lowering glucose production in diabetes is yet to be determined. This study for the first time investigated the beneficial effects of Tribulus terrestris (TT) and its active constituent, Xanthosine on gluconeogenesis and glycogenesis in Free Fatty Acid (FFA)-induced CC1 hepatocytes and streptozotocin (STZ)-induced Wistar rats. Xanthosine enhanced glucose uptake and decreased glucose production through phosphorylation of AMP-activated protein kinase (AMPK) and forkhead box transcription factor O1 (FoxO1), and downregulation of two rate limiting enzymes of gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) expression in FFA-induced CC1 cells. Xanthosine also prevented FFA-induced decreases in the phosphorylation of AKT/Protein kinase B, glycogen synthase kinase-3β (GSK3β), and increased glycogen synthase (GS) phosphorylation to increase the glycogen content in the hepatocytes. Moreover, in STZ-induced diabetic rats, oral administration of TT n-butanol fraction (TTBF) enriched with compound Xanthosine (10, 50 & 100 mg/kg body weight) improved insulin sensitivity, reduced fasting blood glucose levels, improved glucose homeostasis by reducing gluconeogenesis via AMPK/FoxO1-mediated PEPCK and G6Pase down-regulation and increasing glycogenesis via AKT/GSK3β-mediated GS activation. Overall, Xanthosine may be developed further for treating insulin resistance and hyperglycemia in T2DM.
Collapse
Affiliation(s)
- Semim Akhtar Ahmed
- Chemical Biology Laboratory 1, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pranamika Sarma
- Chemical Biology Laboratory 1, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Sagar Ramrao Barge
- Chemical Biology Laboratory 1, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Deepsikha Swargiary
- Chemical Biology Laboratory 1, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gurumayum Shalini Devi
- Chemical Biology Laboratory 1, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Jagat C Borah
- Chemical Biology Laboratory 1, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
11
|
Qi RB, Wu ZH. Association between COVID-19 and chronic liver disease: Mechanism, diagnosis, damage, and treatment. World J Virol 2023; 12:22-29. [PMID: 36743657 PMCID: PMC9896589 DOI: 10.5501/wjv.v12.i1.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 11/21/2022] [Indexed: 01/18/2023] Open
Abstract
As the outbreak evolves, our understanding of the consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (COVID-19) on the liver has grown. In this review, we discussed the hepatotropic nature of SARS-CoV-2 and described the distribution of receptors for SARS-CoV-2 (e.g., angiotensin-converting enzyme 2) in the vascular endothelium and cholangiocytes of the liver. Also, we proposed mechanisms for possible viral entry that mediate liver injury, such as liver fibrosis. Due to SARS-CoV-2-induced liver damage, many COVID-19 patients develop liver dysfunction, mainly characterized by moderately elevated serum aminotransferase levels. Patients with chronic liver disease (CLD), such as cirrhosis, hepatocellular carcinoma, nonalcoholic fatty liver disease, and viral hepatitis, are also sensitive to SARS-CoV-2 infection. We discussed the longer disease duration and higher mortality following SARS-CoV-2 infection in CLD patients. Correspondingly, relevant risk factors and possible mechanisms were proposed, including cirrhosis-related immune dysfunction and liver deco-mpensation. Finally, we discussed the potential hepatotoxicity of COVID-19-related vaccines and drugs, which influence the treatment of CLD patients with SARS-CoV-2 infection. In addition, we suggested that COVID-19 vaccines in terms of immunogenicity, duration of protection, and long-term safety for CLD patients need to be further researched. The diagnosis and treatment for liver injury caused by COVID-19 were also analyzed in this review.
Collapse
Affiliation(s)
- Ruo-Bing Qi
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Zheng-Hao Wu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| |
Collapse
|
12
|
Fan L, Li Z, Gao L, Zhang N, Chang W. Isoimperatorin alleviates lipopolysaccharide-induced periodontitis by downregulating ERK1/2 and NF-κB pathways. Open Life Sci 2023; 18:20220541. [PMID: 36742455 PMCID: PMC9883692 DOI: 10.1515/biol-2022-0541] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/31/2022] [Accepted: 11/23/2022] [Indexed: 01/26/2023] Open
Abstract
Chronic periodontitis is an inflammatory disease characterized by inflammation of the soft tissues of the gums. To combat this disease, more effective drugs are still needed to identify and develop. Isoimperatorin is a kind of a natural compound, which has anti-inflammatory, analgesic, antitumor, antivirus, and other pharmacological effects. However, its possible effects on the progression of chronic periodontitis are still unclear. In this study, we used human periodontal membrane fibroblasts (hPDLCs), human bone marrow-derived macrophages, and found that isoimperatorin reduced hPDLCs viability. In addition, isoimperatorin alleviated the oxidative stress of periodontal membrane cells. Isoimperatorin reduced proinflammatory factor secretion and receptor activator for nuclear factor-κB ligand-induced osteoclast differentiation in periodontal membrane cells. Further, isoimperatorin inhibited the activation of ERK1/2 and nuclear factor-κB pathways. We, therefore, thought isoimperatorin could serve as a promising drug for the treatment of this disease.
Collapse
Affiliation(s)
- Lili Fan
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, No. 99, Longcheng Street, Taiyuan, Shanxi Province, 030032, China
| | - Zhenqiang Li
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, No. 99, Longcheng Street, Taiyuan, Shanxi Province, 030032, China
| | - Linlin Gao
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, No. 99, Longcheng Street, Taiyuan, Shanxi Province, 030032, China
| | - Nan Zhang
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, No. 99, Longcheng Street, Taiyuan, Shanxi Province, 030032, China
| | - Wenxiao Chang
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, No. 99, Longcheng Street, Taiyuan, Shanxi Province, 030032, China
| |
Collapse
|
13
|
Li Y, Qin Y, Chen N, Ge L, Wang Q, Aboudou T, Han J, Hou L, Cao L, Li R, Li M, Mi N, Xie P, Wu S, Hu L, Li X, Song Z, Ji J, Zhang Z, Yang K. Use of traditional Chinese medicine for the treatment and prevention of COVID-19 and rehabilitation of COVID-19 patients: An evidence mapping study. Front Pharmacol 2023; 14:1069879. [PMID: 36744266 PMCID: PMC9892723 DOI: 10.3389/fphar.2023.1069879] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Background: The potential effectiveness of traditional Chinese medicine (TCM) against "epidemic diseases" has highlighted the knowledge gaps associated with TCM in COVID-19 management. This study aimed to map the matrix for rigorously assessing, organizing, and presenting evidence relevant to TCM in COVID-19 management. Methods: In this study, we used the methodology of evidence mapping (EM). Nine electronic databases, the WHO International Clinical Trials Registry Platform (ICTRP) Search Portal, ClinicalTrials.gov, gray literature, reference lists of articles, and relevant Chinese conference proceedings, were searched for articles published until 23 March 2022. The EndNote X9, Rayyan, EPPI, and R software were used for data entry and management. Results: In all, 126 studies, including 76 randomized controlled trials (RCTs) and 50 systematic reviews (SRs), met our inclusion criteria. Of these, only nine studies (7.14%) were designated as high quality: four RCTs were assessed as "low risk of bias" and five SRs as "high quality." Based on the research objectives of these studies, the included studies were classified into treatment (53 RCTs and 50 SRs, 81.75%), rehabilitation (20 RCTs, 15.87%), and prevention (3 RCTs, 2.38%) groups. A total of 76 RCTs included 59 intervention categories and 57 efficacy outcomes. All relevant trials consistently demonstrated that TCM significantly improved 22 outcomes (i.e., consistent positive outcomes) without significantly affecting four (i.e., consistent negative outcomes). Further, 50 SRs included nine intervention categories and 27 efficacy outcomes, two of which reported consistent positive outcomes and two reported consistent negative outcomes. Moreover, 45 RCTs and 38 SRs investigated adverse events; 39 RCTs and 30 SRs showed no serious adverse events or significant differences between groups. Conclusion: This study provides evidence matrix mapping of TCM against COVID-19, demonstrating the potential efficacy and safety of TCM in the treatment and prevention of COVID-19 and rehabilitation of COVID-19 patients, and also addresses evidence gaps. Given the limited number and poor quality of available studies and potential concerns regarding the applicability of the current clinical evaluation standards to TCM, the effect of specific interventions on individual outcomes needs further evaluation.
Collapse
Affiliation(s)
- Yanfei Li
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou University, Lanzhou, China
- Chinese GRADE Centre, Lanzhou University, Lanzhou, China
| | - Yu Qin
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou University, Lanzhou, China
- Chinese GRADE Centre, Lanzhou University, Lanzhou, China
| | - Nan Chen
- Research and education department, Shaanxi Provincial Rehabilitation Hospital, Xi’an, China
| | - Long Ge
- Department of Social Medicine and Health Management, School of Public Health, Lanzhou University, Lanzhou, China
- Evidence-Based Social Science Research Centre, School of Public Health, Lanzhou University, Lanzhou, China
| | - Qi Wang
- Department of Health Research Methods, Evidence and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Taslim Aboudou
- The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Jiani Han
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou University, Lanzhou, China
- Chinese GRADE Centre, Lanzhou University, Lanzhou, China
| | - Liangying Hou
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou University, Lanzhou, China
- Chinese GRADE Centre, Lanzhou University, Lanzhou, China
| | - Liujiao Cao
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Rui Li
- National Health Commission of the People’s Republic of China, Beijing, China
| | - Meixuan Li
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Department of Health Research Methods, Evidence and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Ningning Mi
- The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Peng Xie
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Siqing Wu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Linmin Hu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiuxia Li
- Evidence-Based Social Science Research Centre, School of Public Health, Lanzhou University, Lanzhou, China
| | - Zhongyang Song
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jing Ji
- Department of Rehabilitation, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Zhiming Zhang
- Department of Rehabilitation, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Kehu Yang
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou University, Lanzhou, China
- Chinese GRADE Centre, Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Sahoo A, Mandal AK, Kumar M, Dwivedi K, Singh D. Prospective Challenges for Patenting and Clinical Trials of Anticancer Compounds from Natural Products: Coherent Review. Recent Pat Anticancer Drug Discov 2023; 18:470-494. [PMID: 36336805 DOI: 10.2174/1574892818666221104113703] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/24/2022] [Accepted: 09/14/2022] [Indexed: 11/09/2022]
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. Each year, millions of people worldwide are diagnosed with cancer, and more than half of them die. Various conventional therapies for cancer, including chemotherapy and radiotherapy, have extreme side effects. Therefore, to minimize the global burden of lethal diseases like cancer, an effective and novel drug must be discovered. Its patent should be acquired to secure the novel medicament. The pharmacological potential of different natural products has made them popular in the healthcare and pharmaceutical industries. Various anticancer compounds are obtained from natural sources such as plants, microbes, and marine and terrestrial animals, including alkaloids, terpenoids, biophenols, enzymes, glycosides, etc. The term "natural products" is defined as the product of secondary or non-essential metabolic processes produced by living organisms (such as plants, invertebrates, and microorganisms). Although more precise definitions of NPs exist, they do not always meet consensus. Others define NPs as small molecules (excluding biomolecules) that emerge from the metabolic reaction. A handful of effective compounds are used currently from natural or analog moieties, and many more are in clinical studies. There is an excellent need for patenting molecules from natural products as the hit lead molecules are derived, isolated, and synthesized from natural products. However, these naturally occurring products may not be patentable under the law because they come from nature. This review highlights why natural products and compounds are hard to patent, under what patent law criteria we can patent these natural products and compounds, patent procedural guideline sources and why researchers prefer publication rather than a patent. Here, various patent scenarios of natural products and compounds for cancer have been given.
Collapse
Affiliation(s)
- Ankit Sahoo
- Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture Technology & Sciences, Prayagraj, Uttar Pradesh 211007, India
| | - Ashok Kumar Mandal
- Natural Product Research Laboratory, Thapathali, Kathmandu, Nepal, 44600
| | - Mayank Kumar
- Department of Pharmaceutical Chemistry, Aryakul College of Pharmacy and Research, Natkur, Lucknow, Uttar Pradesh-226002, India
| | - Khusbu Dwivedi
- Department of Pharmaceutics, Shambhunath Institute of Pharmacy Jhalwa, Prayagraj, Uttar Pradesh 211015, India
| | - Deepika Singh
- Department of Pharmaceutical Science, Shalom Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture Technology & Sciences, Prayagraj, Uttar Pradesh 211007, India
| |
Collapse
|
15
|
Proton pump inhibitor-induced risk of chronic kidney disease is associated with increase of indoxyl sulfate synthesis via inhibition of CYP2E1 protein degradation. Chem Biol Interact 2022; 368:110219. [DOI: 10.1016/j.cbi.2022.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 11/03/2022]
|
16
|
Cai Y, Zang GY, Huang Y, Sun Z, Zhang LL, Qian YJ, Yuan W, Wang ZQ. Advances in neovascularization after diabetic ischemia. World J Diabetes 2022; 13:926-939. [PMID: 36437864 PMCID: PMC9693741 DOI: 10.4239/wjd.v13.i11.926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
With the high incidence of diabetes around the world, ischemic complications cause a serious influence on people's production and living. Neovascularization plays a significant role in its development. Therefore, neovascularization after diabetic ischemia has aroused attention and has become a hot spot in recent years. Neovascularization is divided into angiogenesis represented by atherosclerosis and arteriogenesis characterized by coronary collateral circulation. When mononuclear macrophages successively migrate to the ischemia anoxic zone after ischemia or hypoxia, they induce the secretion of cytokines, such as vascular endothelial growth factor and hypoxia-inducible factor, activate signaling pathways such as classic Wnt and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathways, trigger oxidative stress response, activate endothelial progenitor cells or enter the glycolysis or lactic acid process and promote the formation of new blood vessels, remodeling them into mature blood vessels and restoring blood supply. However, the hypoglycemic condition has different impacts on neovascularization. Consequently, this review aimed to introduce the mechanisms of neovascularization after diabetic ischemia, increase our un-derstanding of diabetic ischemic complications and their therapies and provide more treatment options for clinical practice and effectively relieve patients' pain. It is believed that in the near future, neovascularization will bring more benefits and hope to patients with diabetes.
Collapse
Affiliation(s)
- Yue Cai
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Guang-Yao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Yan Huang
- Department of Ophthalmology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Li-Li Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Yong-Jiang Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| | - Zhong-Qun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu Province, China
| |
Collapse
|
17
|
Wang Z, Feng C, Liu H, Meng T, Huang WQ, Song KX, Wang YB. Exosomes from circ-Astn1-modified adipose-derived mesenchymal stem cells enhance wound healing through miR-138-5p/SIRT1/FOXO1 axis regulation. World J Stem Cells 2022; 14:777-790. [DOI: 10.4252/wjsc.v14.i10.777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Wound healing impairment is a dysfunction induced by hyperglycemia and its effect on endothelial precursor cells (EPCs) in type 2 diabetes mellitus. There is increasing evidence showing that exosomes (Exos) derived from adipose-derived mesenchymal stem cells (ADSCs) exhibit the potential to improve endothelial cell function along with wound healing. However, the potential therapeutic mechanism by which ADSC Exos contribute to wound healing in diabetic mice remains unclear.
AIM To reveal the potential therapeutic mechanism of ADSC Exos in wound healing in diabetic mice.
METHODS Exos from ADSCs and fibroblasts were used for high-throughput RNA sequencing (RNA-Seq). ADSC-Exo-mediated healing of full-thickness skin wounds in a diabetic mouse model was investigated. We employed EPCs to investigate the therapeutic function of Exos in cell damage and dysfunction caused by high glucose (HG). We utilized a luciferase reporter (LR) assay to analyze interactions among circular RNA astrotactin 1 (circ-Astn1), SIRT1 and miR-138-5p. A diabetic mouse model was used to verify the therapeutic effect of circ-Astn1 on Exo-mediated wound healing.
RESULTS High-throughput RNA-Seq analysis showed that circ-Astn1 expression was increased in ADSC Exos compared with Exos from fibroblasts. Exos containing high concentrations of circ-Astn1 had enhanced therapeutic effects in restoring EPC function under HG conditions by promoting SIRT1 expression. Circ-Astn1 expression enhanced SIRT1 expression through miR-138-5p adsorption, which was validated by the LR assay along with bioinformatics analyses. Exos containing high concentrations of circ-Astn1 had better therapeutic effects on wound healing in vivo compared to wild-type ADSC Exos. Immunofluorescence and immunohistochemical investigations suggested that circ-Astn1 enhanced angiopoiesis through Exo treatment of wounded skin as well as by suppressing apoptosis through promotion of SIRT1 and decreased forkhead box O1 expression.
CONCLUSION Circ-Astn1 promotes the therapeutic effect of ADSC-Exos and thus improves wound healing in diabetes via miR-138-5p absorption and SIRT1 upregulation. Based on our data, we advocate targeting the circ-Astn1/miR-138-5p/SIRT1 axis as a potential therapeutic option for the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Cheng Feng
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Hao Liu
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Tian Meng
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Wei-Qing Huang
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Ke-Xin Song
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - You-Bin Wang
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| |
Collapse
|
18
|
Tao ZS, Li TL, Wei S. Silymarin prevents iron overload induced bone loss by inhibiting oxidative stress in an ovariectomized animal model. Chem Biol Interact 2022; 366:110168. [PMID: 36087815 DOI: 10.1016/j.cbi.2022.110168] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022]
Abstract
Silibinin (SIL) has been used extensively for its hepatoprotective properties and antioxidant properties, including bone health. Iron overload can inhibit osteogenic proliferation and differentiation and promote bone loss. However, whether SIL can reverse the harmful effects of iron overload inovariectomized (OVX) rats and the mechanism is not clear. Therefore, this study intends to investigate the effect of SIL on bone mass and bone metabolism in iron overload rats and also explore the role of SIL on osteogenic differentiation of MC3T3-E1.RT-qPCR was used to measure the transcribe of target genes. Furthermore, alizarin red staining, alkaline phosphatase staining, immunofluorescence and CCK-8 assay were conducted to detect cell viability and target protein expression, osteogenic function. The OVX rat model with iron overload was set up to investigate bone reconstruction.Our results demonstrated that SIL promotes the proliferation and differentiation of osteoblasts, increases the ALP secretion and mineralization ability of osteoblasts, and enhances the transcribe and expression of target genes including OC, Runx-2, SOD2 and SIRT1 in an iron overload environment. In addition, it was confirmed that systemic SIL administration inhibits bone loss in OVX rats with iron overload and changes bone metabolism and oxidative stress status. Further study has shown that iron overload exerts its harmful function by accelerating bone turnover-mediated changes in higher bone metabolism to worsen osteoporosis. SIL can inhibit the unfriendly effects of iron overload, and by modifying bone metabolism and oxidative stress levels, the results contribute to clinical prevention and treatment of the progression of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China.
| | - Tian-Lin Li
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
| | - Shan Wei
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China; Additive Manufacturing Institute of Anhui Polytechnic University, Anhui Polytechnic University, Wuhu, 241000, PR China
| |
Collapse
|
19
|
Helmy H, Hamid Sadik NA, Badawy L, Sayed NH. Mechanistic insights into the protective role of eugenol against stress-induced reproductive dysfunction in female rat model. Chem Biol Interact 2022; 367:110181. [PMID: 36108715 DOI: 10.1016/j.cbi.2022.110181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
The challenging and highly demanding life rhythm nowadays subjects people to unavoidable chronic stress. Chronic stress is associated with a wide array of serious health complications including neuroendocrine dysregulations. Women are more prone to chronic stress-related hormonal disturbances and their physical and psychological consequences, especially reproductive impairment. Eugenol is a natural phenolic anti-oxidant that has several beneficial biological activities. The current study intended to scrutinize the potential protective effect of eugenol in female Wistar rats exposed to chronic unpredictable mild stress (CUMS). Rats were randomly allocated into 4 groups; group 1 received olive oil, group 2 received eugenol in olive oil, groups 3 and 4 were subjected to CUMS protocol for 8 weeks, with pre- and concomitant treatment with eugenol (50 mg/kg/day; p.o.) in group 4. The results showed that CUMS exposure led to weight loss and depressive-like behaviours. CUMS induced hypothalamic-pituitary-adrenal axis activation with subsequent elevation of serum corticosterone level which, in turn, caused decline in ovarian release of estradiol and antimullerian hormones together with an increased production of follicle-stimulating and luteinizing hormones by the anterior pituitary, leading to reproductive disturbances. In ovaries, CUMS imposed oxidative stress, insulin resistance and molecular damage. Intriguingly, all these adverse effects were significantly mitigated by the administration of eugenol that improved animals' behaviours, corrected corticosterone upsurge, tempered hormonal disturbances, and amended ovarian damage. All biochemical results were further confirmed by hippocampal and ovarian histopathological examinations. In conclusion, the current study highlights the prophylactic role of eugenol against reproductive disturbances induced by chronic stress in female rats.
Collapse
Affiliation(s)
- Hebatullah Helmy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | | | | | - Noha H Sayed
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
20
|
Zhang X, You LY, Zhang ZY, Jiang DX, Qiu Y, Ruan YP, Mao ZJ. Integrating pharmacological evaluation and computational identification for deciphering the action mechanism of Yunpi-Huoxue-Sanjie formula alleviates diabetic cardiomyopathy. Front Pharmacol 2022; 13:957829. [PMID: 36147338 PMCID: PMC9487204 DOI: 10.3389/fphar.2022.957829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Yunpi-Huoxue-Sanjie (YP-SJ) formula is a Chinese herbal formula with unique advantages for the treatment of diabetic cardiovascular complications, such as Diabetic cardiomyopathy (DCM). However, potential targets and molecular mechanisms remain unclear. Therefore, our research was designed to evaluate rat myocardial morphology, fat metabolism and oxidative stress to verify myocardial protective effect of YP-SJ formula in vivo. And then to explore and validate its probable mechanism through network pharmacology and experiments in vitro and in vivo. Methods: In this study, DCM rats were randomly divided into five groups: control group, model group, and three YP-SJ formula groups (low-dose, middle-dose, and high-dose groups). Experimental rats were treated with 6 g/kg/d, 12 g/kg/d and 24 g/kg/d YP-SJ formula by gavage for 10 weeks, respectively. Cardiac function of rats was measured by high-resolution small-animal imaging system. The cells were divided into control group, high glucose group, high glucose + control serum group, high glucose + dosed serum group, high glucose + NC-siRNA group, high glucose + siRNA-FoxO1 group. The extent of autophagy was measured by flow cytometry, immunofluorescence, and western blotting. Results: It was found that YP-SJ formula could effectively improve cardiac systolic function in DCM rats. We identified 46 major candidate YP-SJ formula targets that are closely related to the progression of DCM. Enrichment analysis revealed key targets of YP-SJ formula related to environmental information processing, organic systems, and the metabolic occurrence of reactive oxygen species. Meanwhile, we verified that YP-SJ formula can increase the expression of forkhead box protein O1 (FoxO1), autophagy-related protein 7 (Atg7), Beclin 1, and light chain 3 (LC3), and decrease the expression of phosphorylated FoxO1 in vitro and in vivo. The results showed that YP-SJ formula could activate the FoxO1 signaling pathway associated with DCM rats. Further experiments showed that YP-SJ formula could improve cardiac function by regulating autophagy. Conclusion: YP-SJ formula treats DCM by modulating targets that play a key role in autophagy, improving myocardial function through a multi-component, multi-level, multi-target, multi-pathway, and multi-mechanism approach.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, Zhejiang, China
| | - Li-Yan You
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, Zhejiang, China
| | - Ze-Yu Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dong-Xiao Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, Zhejiang, China
| | - Yu Qiu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ye-Ping Ruan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, Zhejiang, China
- *Correspondence: Zhu-Jun Mao, ; Ye-Ping Ruan,
| | - Zhu-Jun Mao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Chinese Medicine Plant Essential Oil Zhejiang Engineering Research Center, Zhejiang, China
- *Correspondence: Zhu-Jun Mao, ; Ye-Ping Ruan,
| |
Collapse
|
21
|
Plant-Derived Bioactive Compounds in Colorectal Cancer: Insights from Combined Regimens with Conventional Chemotherapy to Overcome Drug-Resistance. Biomedicines 2022; 10:biomedicines10081948. [PMID: 36009495 PMCID: PMC9406120 DOI: 10.3390/biomedicines10081948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Acquired drug resistance represents a major clinical problem and one of the biggest limitations of chemotherapeutic regimens in colorectal cancer. Combination regimens using standard chemotherapeutic agents, together with bioactive natural compounds derived from diet or plants, may be one of the most valuable strategies to overcome drug resistance and re-sensitize chemoresistant cells. In this review, we highlight the effect of combined regimens based on conventional chemotherapeutics in conjunction with well-tolerated plant-derived bioactive compounds, mainly curcumin, resveratrol, and EGCG, with emphasis on the molecular mechanisms associated with the acquired drug resistance.
Collapse
|
22
|
Wang F, Chen H, Hu Y, Chen L, Liu Y. Integrated comparative metabolomics and network pharmacology approach to uncover the key active ingredients of Polygonati rhizoma and their therapeutic potential for the treatment of Alzheimer’s disease. Front Pharmacol 2022; 13:934947. [PMID: 35991900 PMCID: PMC9385993 DOI: 10.3389/fphar.2022.934947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/29/2022] [Indexed: 01/12/2023] Open
Abstract
Alzheimer’s disease (AD) has become a worldwide disease affecting human health and resulting in a heavy economic burden on the healthcare system. Polygonati rhizoma (PR), a kind of traditional Chinese medicine (TCM), is known to improve learning and memory abilities. However, its AD-treating material basis and therapeutic potential for the treatment of AD have remained unclear. Therefore, the present study aimed to uncover the key active ingredients of PR and its therapeutic potential for the treatment of AD. First, we used comparative metabolomics to identify the potential key active ingredients in the edible and medicinal PR. Second, network pharmacology was used to decipher the effects and potential targets of key active ingredients in the PR for the treatment of AD, and molecular docking was further used to identify the binding ability of those active ingredients with AD-related target of AChE. The rate of acetylcholinesterase (AChE) inhibition, oxidative stress, neuroprotective effects, and anti-inflammatory activity were assessed in vitro to screen the potential active ingredients in the PR with therapeutic potential against AD. Finally, APPswe/PS1dE9 AD mice were used to screen the therapeutic components in the PR. Seven overlapping upregulated differential metabolites were identified as the key active ingredients, among which cafestol, isorhamnetin, and rutin have AChE inhibitory activity, anti-inflammatory activity, and neuroprotective effects in vitro validation assays. Furthermore, in vivo results showed that cafestol, isorhamnetin, and rutin displayed several beneficial effects in AD transgenic mice by reducing the number of Aβ-positive spots and the levels of inflammatory cytokines, inhibiting the AChE activity, and increasing the antioxidant levels. Each compound is involved in a different function in the early stages of AD. In conclusion, our results corroborate the current understanding of the therapeutic effects of PR on AD. In addition, our work demonstrated that the proposed network pharmacology-integrated comparative metabolomics strategy is a powerful way of identifying key active ingredients and mechanisms contributing to the pharmacological effects of TCM.
Collapse
Affiliation(s)
| | | | | | - Lin Chen
- *Correspondence: Lin Chen, ; Youping Liu,
| | | |
Collapse
|
23
|
Al-Kuraishy HM, Al-Hussaniy HA, Al-Gareeb AI, Negm WA, El-Kadem AH, Batiha GES, N. Welson N, Mostafa-Hedeab G, Qasem AH, Conte-Junior CA. Combination of Panax ginseng C. A. Mey and Febuxostat Boasted Cardioprotective Effects Against Doxorubicin-Induced Acute Cardiotoxicity in Rats. Front Pharmacol 2022; 13:905828. [PMID: 35814241 PMCID: PMC9257079 DOI: 10.3389/fphar.2022.905828] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is an anticancer agent for treating solid and soft tissue malignancies. However, the clinical use of DOX is restricted by cumulative, dose-dependent cardiotoxicity. Therefore, the present study aimed to assess the cardioprotective effects of P. ginseng C. A. Mey, febuxostat, and their combination against DOX-induced cardiotoxicity. Thirty-five Sprague Dawley male rats were used in this study. The animals were randomly divided into five groups, with seven rats per group. The control group received normal saline, the induced group received DOX only, and the treated group received P. ginseng, febuxostat, and their combination before DOX treatment. Biomarkers of acute cardiac toxicity were assessed in each group. Results showed that treatment with the combination of febuxostat and P. ginseng before DOX led to a significant improvement in the biomarkers of acute DOX-induced cardiotoxicity. In conclusion, the combination of P. ginseng and febuxostat produced more significant cardioprotective effects against DOX-induced cardiotoxicity when compared to either P. ginseng or febuxostat when used alone. The potential mechanism of this combination was mainly mediated by the anti-inflammatory and antioxidant effects of P. ginseng and febuxostat.
Collapse
Affiliation(s)
- Hayder M. Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | | | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Therapeutic, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Walaa A. Negm
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Aya H. El-Kadem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Nermeen N. Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Research Unit, Medical College, Jouf University, Sakakah, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed H Qasem
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Curcumin Inhibits Papillary Thyroid Cancer Cell Proliferation by Regulating lncRNA LINC00691. Anal Cell Pathol 2022; 2022:5946670. [PMID: 35256924 PMCID: PMC8898135 DOI: 10.1155/2022/5946670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 12/19/2022] Open
Abstract
Papillary thyroid cancer (PTC) is a type of epithelial-derived differentiated TC that reportedly accounts for a majority of TCs. Curcumin, a polyphenolic compound and a member of the Zingiberaceae (ginger) family derived from turmeric plants, can exhibit anticancer effects. Herein, we aimed to investigate the effect of curcumin on PTC and elucidate underlying mechanisms. Accordingly, PTC B-CPAP cells were treated with curcumin, in combination with/without long noncoding RNA LINC00691 inhibition, to determine the effect of curcumin and its relationship with LINC00691 in PTC cells. We observed that curcumin treatment decreased B-CPAP cell proliferation and promoted apoptosis. Curcumin inhibited LINC00691 expression in B-CPAP cells. Curcumin administration or si-LINC00691 transfection alone promoted ATP levels, inhibited glucose uptake and lactic acid levels, and inhibited lactate dehydrogenase A and hexokinase 2 protein expression in B-CPAP cells, which were further enhanced by combination treatment. Moreover, curcumin administration or si-LINC00691 transfection alone inhibited p-Akt activity, further suppressed by combination treatment. Akt inhibition promoted apoptosis and suppressed the Warburg effect in B-CPAP cells. In conclusion, our findings indicate that curcumin promotes apoptosis and suppresses proliferation and the Warburg effect by inhibiting LINC00691 in B-CPAP cells. The precise molecular mechanism might be mediated through the Akt signaling pathway, providing a theoretical basis for the treatment of PTC with curcumin.
Collapse
|
25
|
Mansourzadeh S, Esmaeili F, Shabani L, Gharibi S. Trans-differentiation of mouse mesenchymal stem cells into pancreatic β-like cells by a traditional anti-diabetic medicinal herb Medicago sativa L. J Tradit Complement Med 2022; 12:466-476. [PMID: 36081823 PMCID: PMC9446024 DOI: 10.1016/j.jtcme.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/26/2022] Open
Abstract
Background and aim Medicago sativa L. is a medicinal herb first cultivated in ancient Iran. Traditionally, it has been utilized for the treatment of several disorders. The plant has been in the human diet for at least 1500 years. Although the hypoglycaemic and anti-diabetic effects of the plant have been approved in traditional medicine, further investigations are needed to support the rational use of M. sativa by humans. This project aimed to evaluate the trans-differentiation potential of bone marrow mesenchymal stem cells (MSCs) to pancreatic β-like cells (insulin-producing cells; IPCs) under the influence of M. sativa extract. Experimental procedure Bone marrow MSCs isolated, characterized, and then treated by flower or leaf extract of M. sativa. Beta-cell characteristics of the differentiated cells were evaluated by several techniques, including specific staining, QPCR, immunofluorescence, and ELISA. Results The results showed that the differentiated cells were able to express some specific pancreatic genes (PDX-1, insulin1, and insulin2) and proteins (insulin receptor beta, insulin, proinsulin, and C peptide). Furthermore, ELISA analysis indicated the ability of these cells in the production and secretion of insulin, after exposure to glucose. Conclusion Overall, both the flower and leaf extract of M. sativa had the potential of differentiation induction of MSCs into IPCs with the characteristics of pancreatic β–like cells. Therefore, M. sativa, as an herbal drug, may be beneficial for the treatment of diseases including diabetes.
Collapse
|
26
|
Weng L, Chen TH, Zheng Q, Weng WH, Huang L, Lai D, Fu YS, Weng CF. Syringaldehyde promoting intestinal motility with suppressing α-amylase hinders starch digestion in diabetic mice. Biomed Pharmacother 2021; 141:111865. [PMID: 34246193 DOI: 10.1016/j.biopha.2021.111865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
The antihyperglycemic potential of syringaldehyde has been previously investigated; however, the underlying mechanism remains unclear. In this study, we performed a postprandial glucose test (in vivo) including oral glucose tolerance test (OGTT) and oral starch tolerance test (OSTT) in fructose-induced diabetic mice on a high-fat diet for mimicking type 2 diabetes to explore the hypoglycemic efficacy of syringaldehyde and the underlined molecular involvement of syringaldehyde in a glucose-lowering effect. The results revealed that syringaldehyde dose-dependently suppressed blood glucose in both the OSTT and OGTT when referenced to acarbose and metformin, respectively. Surprisingly, syringaldehyde triggered jejunum motility (ex vivo) via activation of the muscarinic-type acetylcholine receptor. By performing virtual screening with molecular docking, the data showed that syringaldehyde nicely interacted with glucagon-like peptide 1 receptor (GLP-1R), peroxisome proliferator-activated receptor (PPAR), dipeptidyl peptidase-IV (DPP-4), acetylcholine M2 receptor, and acetylcholinesterase. These results showed that syringaldehyde can potentiate intestinal contractility to abolish the α-amylase reaction when concurrently reducing retention time and glucose absorption to achieve a glucose-lowering effect in diabetic mice, suggesting its potential therapeutic benefits with improvement for use as a prophylactic and treatment.
Collapse
Affiliation(s)
- Lebin Weng
- Department of Physiology, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Ting-Hsu Chen
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Qingyan Zheng
- Department of Physiology, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Wei-Hao Weng
- Department of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| | - Liyue Huang
- Department of Physiology, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Dong Lai
- Medical Research Center, the Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, Fujian, China.
| | - Yaw-Syan Fu
- Medical Research Center, the Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, Fujian, China; Department of Anatomy, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Ching-Feng Weng
- Department of Physiology, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China; Medical Research Center, the Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, Fujian, China.
| |
Collapse
|
27
|
Nociceptin Increases Antioxidant Expression in the Kidney, Liver and Brain of Diabetic Rats. BIOLOGY 2021; 10:biology10070621. [PMID: 34356475 PMCID: PMC8301093 DOI: 10.3390/biology10070621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/30/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary Nociceptin (NC) is a small peptide implicated in the physiology of pain, learning and memory. Here we investigated the role of NC in the induction of antioxidants in the kidney, liver, and the brain of diabetic rats using morphological and biochemical methods. Normal and diabetic animals were treated with NC for 5 days. Catalase (CAT) was expressed in the kidney, liver, and the neurons of the brain. Although CAT was markedly (p < 0.05) lower in the tubules of the kidney of normal and diabetic animals after NC treatment, NC significantly (p < 0.001) increased the presence of CAT in the liver and brain of diabetic rats. Superoxide dismutase (SOD) was observed in kidney tubules, hepatocytes, and neurons of the brain. Treatment with NC markedly (p < 0.001) increased the level of SOD in hepatocytes and neurons of the brain. Glutathione reductase (GRED) was seen in the convoluted tubules of the kidney, hepatocytes and neurons of the brain. Treatment with NC markedly increased (p < 0.001) the expression of GRED in kidney tubules, hepatocytes and neurons of the brain. In conclusion, NC can help diabetic patients mitigate the effects of oxidative stress by its ability to induce endogenous antioxidants. Abstract Nociceptin (NC) consists of 17 amino acids (aa) and takes part in the processing of learning and memory. The role of NC in the induction of endogenous antioxidants in still unclear. We examined the effect of NC on the expression of endogenous antioxidants in kidney, liver, cerebral cortex (CC), and hippocampus after the onset of diabetes mellitus, using enzyme-linked immunosorbent assay and immunohistochemistry. Exogenous NC (aa chain 1–17; 10 µg/kg body weight) was given intraperitoneally to normal and diabetic rats for 5 days. Our results showed that catalase (CAT) is present in the proximal (PCT) and distal (DCT) convoluted tubules of kidney, hepatocytes, and neurons of CC and hippocampus. The expression of CAT was significantly (p < 0.05) reduced in the kidney of normal and diabetic rats after treatment with NC. However, NC markedly (p < 0.001) increased the expression CAT in the liver and neurons of CC of diabetic rats. Superoxide dismutase (SOD) is widely distributed in the PCT and DCT of kidney, hepatocytes, and neurons of CC and hippocampus. NC significantly (p < 0.001) increased the expression of SOD in hepatocytes and neurons of CC and the hippocampus but not in the kidney. Glutathione reductase (GRED) was observed in kidney tubules, hepatocytes and neurons of the brain. NC markedly increased (p < 0.001) the expression of GRED in PCT and DCT cells of the kidney and hepatocytes of liver and neurons of CC. In conclusion, NC is a strong inducer of CAT, SOD, and GRED expression in the kidney, liver and brain of diabetic rats.
Collapse
|
28
|
Konda PY, Chennupati V, Dasari S, Sharma N, Muthulingam M, Ramakrishnan R, Sade A, Jagadheeshkumar V, Natesan V, Jaiswal KK. Ethno-pharmacological insulin signaling induction of aqueous extract of Syzygium paniculatum fruits in a high-fat diet induced hepatic insulin resistance. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113576. [PMID: 33171270 DOI: 10.1016/j.jep.2020.113576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/05/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The ethnopharmacological significance of the fruits of Syzygium paniculatum Gaertn (Magenta Cherry) is widely recognized in the Indian traditional medicine system to treat various disorders, such as diabetes, hyperlipidaemia, hypertension, and cardiovascular problems. AIM OF THE STUDY This research work investigated the supplementation of the aqueous extract of S. paniculatum fruit (AESPF) on liver function; the molecular effects on the expression of the protein of insulin receptor (IR) and insulin receptor substrate 1 (IRS-1) in high-fat diet-induced hepatic insulin resistance in the rat model. MATERIALS AND METHODS High-fat diet was used to induce obesity in albino Wistar for 120 days. Biochemical, enzymatic, and histopathological analysis, as well as analysis of hepatic insulin resistance proteins and expression of IRS-1, were performed. RESULTS The supplementation of AESPF with a dose of 100 mg/kg bw significantly reduced bodyweight, blood sugar, insulin, lipid profiles, and liver enzymes. Hepatic insulin resistance was improved with a reduced level of IR and IRS-1 to protein levels. HFD alters the sensitivity of hepatocytes to insulin due to the down-regulation of insulin receptor proteins. CONCLUSIONS The fruits of S. paniculatum possess biological activities to alleviate all risky effects by regulating hepatic lipogenesis activity that can be used in the progress of medication for HFD-induced hepatic insulin resistance and metabolic disorders.
Collapse
Affiliation(s)
| | - Vidyasagar Chennupati
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517 502, India
| | - Sreenivasulu Dasari
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517 502, India
| | - Nishesh Sharma
- Department of Biotechnology, Uttaranchal University, Dehradun, Uttarakhand, 248 007, India
| | - Muthukumaran Muthulingam
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, 605 014, India
| | - Ranjani Ramakrishnan
- Department of Virology, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517 502, India
| | - Ankanna Sade
- Department of Botany, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517 502, India
| | | | - Vijayakumar Natesan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, 608 002, India.
| | - Krishna Kumar Jaiswal
- Department of Chemistry, Uttaranchal University, Dehradun, Uttarakhand, 248 007, India.
| |
Collapse
|
29
|
Srinuanchai W, Nooin R, Pitchakarn P, Karinchai J, Suttisansanee U, Chansriniyom C, Jarussophon S, Temviriyanukul P, Nuchuchua O. Inhibitory effects of Gymnema inodorum (Lour.) Decne leaf extracts and its triterpene saponin on carbohydrate digestion and intestinal glucose absorption. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113398. [PMID: 32971162 DOI: 10.1016/j.jep.2020.113398] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chiang-Da, Gymnema inodorum (Lour.) Decne. (GI), is an ethnomedicinal plant that has been used for diabetic treatment since ancient times. One of the anti-diabetic mechanisms is possibly related to the actions of triterpene glycoside, (3β, 16β)-16,28-dihydroxyolean-12-en-3-yl-O-β-D-glucopyranosyl-β-D-glucopyranosiduronic acid (GIA1) in decreasing carbohydrate digestive enzymes and intestinal glucose absorption in the gut system. AIMS OF THE STUDY To observe the amount of GIA1 in GI leaf extracts obtained from different ethanol concentrations and to investigate the anti-hyperglycemic mechanisms of the extracts and GIA1. MATERIALS AND METHODS The crude extracts were prepared using 50%v/v to 95%v/v ethanol solutions and used for GIA1 isolation. The anti-hyperglycemic models included in our study examined the inhibitory activities of α-amylase/α-glucosidase and intestinal glucose absorption related to sodium glucose cotransporter type 1 (SGLT1) using Caco-2 cells. RESULTS GIA1 was found about 8%w/w to 18%w/w in the GI extract depending on ethanol concentrations. The GI extracts and GIA1 showed less inhibitory activities on α-amylase. The extracts from 75%v/v and 95%v/v ethanol and GIA1 significantly delayed the glycemic absorption by lowering α-glucosidase activity and glucose transportation of SGLT1. However, the 50%v/v ethanolic extract markedly decreased the α-glucosidase activity than the SGLT1 function. CONCLUSION Differences in the GIA1 contents and anti-glycemic properties of the GI leaf extract was dependent on ethanol concentrations. Furthermore, the inhibitory effects of the 75%v/v and 95%v/v ethanolic extracts on α-glucosidase and SGLT1 were relevant to GIA1 content.
Collapse
Affiliation(s)
- Wanwisa Srinuanchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Rawiwan Nooin
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Chaisak Chansriniyom
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Natural Products and Nanoparticles Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Suwatchai Jarussophon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | | | - Onanong Nuchuchua
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand.
| |
Collapse
|
30
|
Lotfy M, Ksiksi TS, Palakkot AR, D’Souza CM, Mohsin S, Adeghate EA. Anti-diabetic Effect of Acridocarpus Orientalis. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2020. [DOI: 10.2174/1874104502014010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Acridocarpus orientalis (AO) is a medicinal herb indigenous to tropical and subtropical Africa, Arabian Peninsula, and New Caledonia with reported anti-inflammatory and antioxidant properties.
Objective:
To determine whether AO has any beneficial effects on diabetes-induced metabolic parameters in rats.
Materials and Methods:
Diabetes mellitus was induced in male Wistar rats by streptozotocin. Diabetic rats were treated with three doses of AO extract (50, 100, and 200 mg/kg BW) for 30 days. Kidney, liver, and pancreatic tissue samples were processed for histopathology to determine the effect of AO on the cells of these organs. The effect of AO on pancreatic islet cells and serum insulin levels was also examined using immunohistochemistry and enzyme-linked immunosorbent assay techniques, respectively.
Results:
AO (100 mg/kg BW) caused a marked reduction in blood glucose levels in diabetic rats compared to diabetic control on day 10 of the study. Moreover, AO (200 mg/kg BW) increased the number of insulin-positive cells with a concomitant reduction in the number of glucagon-immunoreactive cells in pancreatic islets. AO (100 mg/kg) also increased the serum level of superoxide dismutase significantly. Although the administration of AO was able to significantly decrease the diabetes-associated increases in serum creatinine and bilirubin levels, it had no effect on blood urea nitrogen, serum aspartate, or alanine aminotransferase levels. Histopathological examination showed that AO has no toxic effect on the structure of the pancreas, liver, and kidney.
Conclusion:
Our findings showed that AO could alleviate some complications of diabetes mellitus.
Collapse
|
31
|
Feidantsis K, Mellidis K, Galatou E, Sinakos Z, Lazou A. Treatment with crocin improves cardiac dysfunction by normalizing autophagy and inhibiting apoptosis in STZ-induced diabetic cardiomyopathy. Nutr Metab Cardiovasc Dis 2018; 28:952-961. [PMID: 30017436 DOI: 10.1016/j.numecd.2018.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND AIM The association of diabetes mellitus (DM) and poor metabolic control with high incidence of cardiovascular diseases is well established. The aim of this study was to investigate the potential cardioprotective effect of crocin (Crocus sativus L. extract) on diabetic heart dysfunction and to elucidate the mediating molecular mechanisms. METHODS AND RESULTS Streptozotocin (STZ)-induced diabetic rats were treated with two different concentrations of crocin (10 or 20 mg/kg), while isolated cardiac myocytes exposed to 25 mM glucose, were treated with 1 or 10 μM of crocin. Treatment of STZ-diabetic rats with crocin resulted in normalization of plasma glucose levels, inhibition of cardiac hypertrophy and fibrosis, and improvement of cardiac contractile function. Heat Shock Response was enhanced. Myocardial AMPK phosphorylation was increased after treatment with crocin, resulting in normalization of autophagy marker proteins (LC3BII/LC3BI ratio, SQSTM1/p62 and Beclin-1), while the diabetes-induced myocardial apoptosis was decreased. Similar results regarding the effect of crocin on autophagy and apoptosis pathways were obtained in isolated cardiac myocytes exposed to high concentration of glucose. CONCLUSION The results suggest that crocin improves the deteriorated cardiac function in diabetic animals by enhancing the heat shock response, inhibiting apoptosis and normalizing autophagy in cardiac myocytes. Thus, treatment with crocin may represent a novel approach for treating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- K Feidantsis
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - K Mellidis
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - E Galatou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Z Sinakos
- Emeritus Professor of Hematology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - A Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
| |
Collapse
|
32
|
Sundaram R, Naresh R, Shanthi P, Sachdanandam P. Ameliorative effect of 20-OH ecdysone on streptozotocin induced oxidative stress and β-cell damage in experimental hyperglycemic rats. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.07.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Ghaffari T, Nouri M, Irannejad E, Rashidi MR. Effect of vitamin e and selenium supplement on paraoxonase-1 activity, oxidized low density lipoprotein and antioxidant defense in diabetic rats. BIOIMPACTS : BI 2011; 1:121-8. [PMID: 23678416 DOI: 10.5681/bi.2011.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The aim of the present study was to assess the effects of vitamin E and selenium supplementation on serum paraoxonase (PON1) activity, lipid peroxidation and antioxidant defense in streptozotocin-induced diabetic rats. METHODS Thirty two female Sprague Dawley rats were divided into 3 groups: the control group (n=8) received a standard diet; streptozotocin (STZ)-induced diabetic rats (n=12), received corn oil and physiological solution; and vitamin E and selenium supplemented diabetic rats (n=12) were treated with oral administration of vitamin E (300 mg/kg) and sodium selenite (0.5 mg/kg) once a day for 4 weeks. RESULTS Significantly lower total antioxidant status (TAS), PON1and erythrocyte SOD activities and a higher fasting plasma glucose level were observed in the diabetic rats compared to the control. A significant increase in SOD and GPX activities in vitamin E and selenium supplemented diabetic group was observed after 5 weeks of the experiment. Compared to the normal rats, malondialdehyde (MDA) and oxidized LDL (Ox-LDL) levels were higher in the diabetic animals; however, these values reduced significantly following vitamin E and selenium supplementation. CONCLUSION Vitamin E and selenium supplementation in diabetic rats has hypolipidemic, hypoglycemic and antioxidative effects and may slow down the progression of diabetic complications through its protective effect on PON1 activity and lipoproteins oxidation.
Collapse
Affiliation(s)
- Tayibeh Ghaffari
- Nutrition Research Center, Medical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | |
Collapse
|
34
|
Sankaranarayanan C, Pari L. Thymoquinone ameliorates chemical induced oxidative stress and β-cell damage in experimental hyperglycemic rats. Chem Biol Interact 2011; 190:148-54. [PMID: 21382363 DOI: 10.1016/j.cbi.2011.02.029] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 11/30/2022]
Abstract
The present study was aimed to investigate the effect of thymoquinone (TQ) on pancreatic insulin levels, tissue antioxidant and lipid peroxidation (LPO) status in streptozotocin (STZ) nicotinamide (NA) induced diabetic rats. Diabetes was induced in experimental rats by a single intraperitoneal (i.p) injection of STZ (45 mg/kg b.w) dissolved in 0.1 mol/L citrate buffer (pH 4.5), 15 min after the i.p administration of NA (110 mg/kg b.w). Diabetic rats exhibited increased blood glucose with significant decrease in plasma insulin levels. The activities of antioxidant enzymes catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and the levels of low-molecular weight antioxidants Vitamin C, Vitamin E and reduced glutathione (GSH) were decreased while increases in the levels of lipid peroxidation markers were observed in liver and kidney tissues of diabetic control rats as compared to control rats. In addition, diabetic rats showed an obvious decrease in pancreatic insulin levels. Administration of TQ (80 mg/kg b.w) to diabetic rats for 45 days significantly reversed the damage associated with diabetes. Biochemical findings were supported by histological studies. These results indicated that TQ exerts a protective action on pancreatic beta cell function and overcomes oxidative stress through its antioxidant properties.
Collapse
Affiliation(s)
- Chandrasekaran Sankaranarayanan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamilnadu, India
| | | |
Collapse
|
35
|
Süfke S, Djonlagić H, Kibbel T. [Impairment of cardiac autonomic nervous system and incidence of arrhythmias in severe hyperglycemia]. ACTA ACUST UNITED AC 2011; 105:858-70. [PMID: 21240584 DOI: 10.1007/s00063-010-1150-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 09/06/2010] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE Deterioration of cardiac autonomic nervous system in diabetics is associated with increased cardiac and arrhythmogenic mortality. Therefore, the present study engaged in the question how heart rate variability is acutely changed in diabetic ketoacidosis or hyperglycemic hyperosmolar syndrome. Moreover was evaluated how blood pressure, heart rate and incidence of arrhythmias can be explained by figures of heart rate variability. PATIENTS AND METHODS In a prospective observation of time course we investigated in 4 years consecutively 12 intensive care patients with DKA and 2 with HHS (10 male, 4 female, 19-62 years, initial plasma glucose 404-1192 mg/dl). All patients received a standardized treatment to international current guidelines. In addition to hemodynamic and clinical-chemical monitoring HRV analysis was performed continuously for at least 48 hours. Simultaneously, we determined supraventricular and ventricular arrhythmic episodes. RESULTS HRV was diminished over the whole spectrum in dependence on blood glucose concentration. Thus, sympathovagal balance (LF/HF ratio) was initially sympathetic predominated in blood glucose levels < 600 mg/dl (relatively prevailing LF power) and vagal predominated in blood glucose levels > 600 mg/dl (relatively prevailing HF power). In correlation analysis of HRV parameters with blood glucose rS-coefficients from -0.934 to -0.821 were achieved (p < 0.001). Further, the initial mean blood pressure correlated with the LF/HF ratio in HRV minimum (rS = 0.711, p = 0.004). The initial heart rate in relation to assumed intrinsic frequency correlated with minimal found Total Power (rS = -0.656, p = 0.011). In the period of whole 48 hours, more arrhythmic events occurred in consequence to initial glucose levels (rS = 0.693, p = 0.006). But the maximum of arrhythmic episodes was usually later ascertained than the minimum of HRV (p < 0.001). At the time of each arrhythmic maximum the sympathovagal balance (LF/HF) showed no uniform figures. Only similar in all cases was that the LF/HF ratio was found either > 4 or < 1. CONCLUSION Clinical complications in high glucose levels must be seen in the context of a nearly complete blockade of sympathetic and parasympathetic activity. Basically to extreme autonomic restriction, sympathetic and vagal predominance can change rapidly into each other. This retarded vulnerable predisposition may declare the arrhythmic potential. An important progress in the monitoring of patients could be achieved by implementation of a continuous HRV measurement because hereby the actual risk potential can be ascertained timely and reliably.
Collapse
Affiliation(s)
- Sven Süfke
- Medizinische Klinik I, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | | | | |
Collapse
|
36
|
Daneshgari F, Liu G, Birder L, Hanna-Mitchell AT, Chacko S. Diabetic bladder dysfunction: current translational knowledge. J Urol 2010; 182:S18-26. [PMID: 19846137 DOI: 10.1016/j.juro.2009.08.070] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Indexed: 02/06/2023]
Abstract
PURPOSE Diabetes mellitus, a metabolic disorder caused by an absolute or relative deficiency of insulin, is a debilitating and costly disease with multiple serious complications. Lower urinary tract complications are among the most common complications of diabetes mellitus. The most common, bothersome lower urinary tract complication of diabetes mellitus is diabetic cystopathy or diabetic bladder dysfunction. We reviewed the current translational knowledge of diabetic bladder dysfunction. MATERIALS AND METHODS We performed a search of the English literature through PubMed. The key words used were diabetes and bladder dysfunction or cystopathy. Our data and perspective are provided for consideration of the future direction of research. RESULTS Despite traditional recognition of diabetic bladder dysfunction as a voiding problem characterized by poor emptying and overflow incontinence, recent clinical and experimental evidence indicate storage problems such as urgency and urge incontinence in diabetes mellitus cases. Recent experimental evidence from studies of diabetic bladder dysfunction in small animal models of diabetes mellitus show a temporal effect on diabetic bladder dysfunction. Early phase diabetes mellitus causes compensated bladder function and the late phase causes decompensated bladder function. The temporal theory could plausibly provide the scientific road map to correlate clinical and experimental findings, and identify the role of mechanisms such as polyuria, hyperglycemia, oxidative stress, autonomic neuropathy and decompensation of the bladder contractile apparatus in the creation of clinical and experimental manifestations of diabetic bladder dysfunction. CONCLUSIONS Diabetic bladder dysfunction includes time dependent manifestations of storage and emptying problems. Identifying mechanistic pathways would lead to the identification of therapeutic intervention.
Collapse
Affiliation(s)
- Firouz Daneshgari
- Department of Urology, Case Western Reserve University, Cleveland, Ohio, USA.
| | | | | | | | | |
Collapse
|
37
|
Comin D, Gazarini L, Zanoni JN, Milani H, de Oliveira RMW. Vitamin E improves learning performance and changes the expression of nitric oxide-producing neurons in the brains of diabetic rats. Behav Brain Res 2010; 210:38-45. [PMID: 20138920 DOI: 10.1016/j.bbr.2010.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 12/22/2022]
Abstract
We investigated the effects of chronic administration of vitamin E on nitric oxide (NO)-producing neurons in the brains of streptozotocin (STZ)-induced diabetic rats using nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry. We further evaluated the effects of diabetes and vitamin E treatment on experimental anxiety and memory processes using the elevated plus maze (EPM) Trial 1/2 protocol. Wistar rats were divided into four groups: normoglycemics (N), normoglycemics treated with vitamin E (NVE), diabetics (D), and diabetics treated with vitamin E (DVE). Diabetes mellitus was induced by a single intraperitoneal injection of STZ (35mg/kg). Vitamin E (100mg/kg) or vehicle was administered orally by gavage (1ml/kg) once each day for 7 weeks. After behavioral testing, the dentate gyrus of the hippocampus (DG), striatum, paraventricular nucleus of the hypothalamus (PVN), supraoptic nucleus (SON), and dorsolateral periaqueductal grey (DLPAG) were analyzed for NADPH-d histochemistry. STZ-induced diabetic rats exhibited decreased locomotor activity and cognitive impairment compared with normoglycemic controls. The number of NADPH-d-positive neurons was increased in the DG, striatum, and DLPAG of diabetic rats. An increase in soma area was detected in all structures analyzed (DG, striatum, PVN, SON, and DLPAG) of STZ-induced diabetic animals. The present study showed that chronic administration of vitamin E ameliorates memory in STZ-induced diabetic rats and revealed that NOS-producing neurons have an increased soma area which can be restored, at least partially, by vitamin E treatment. These results suggest the potential use of vitamin E as an adjuvant therapy for the prevention and treatment of diabetic conditions.
Collapse
|
38
|
Rozenberg O, Shiner M, Aviram M, Hayek T. Paraoxonase 1 (PON1) attenuates diabetes development in mice through its antioxidative properties. Free Radic Biol Med 2008; 44:1951-9. [PMID: 18358245 DOI: 10.1016/j.freeradbiomed.2008.02.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 02/25/2008] [Indexed: 11/22/2022]
Abstract
Paraoxonase 1 (PON1) is a lipo-lactonase which is associated with HDL and possesses antioxidative properties. Diabetes is characterized by increased oxidative stress and by decreased PON1 activity. We aimed to analyze whether oxidative status and PON1 levels in mouse sera and macrophages could affect streptozotocin (STZ)-induced diabetes development. We have used two models of mice under low oxidative stress: STZ-injected apolipoprotein E-deficient mice supplemented with the antioxidant vitamin E, and P47(phox) knockout mice. In both mice models the decreased serum basal oxidative stress, was associated with a decreased rate of diabetes development, compared with control STZ-injected apolipoprotein E-deficient mice or with C57BL mice respectively. These data suggest that oxidative stress accelerates diabetes development. Next, we analyzed the effect of PON1 on macrophage oxidative stress and on diabetes development in STZ-injected C57BL mice, PON1 knockout mice, and PON1 transgenic mice. PON1 overexpression was associated with decreased diabetes-induced macrophage oxidative stress, decreased diabetes development, and decreased mortality, in comparison to C57BL mice, and even more so when compared to PON1KO mice. We thus concluded that on increasing PON1 expression in mice, diabetes development is attenuated, a phenomenon which could be attributed to the antioxidative properties of PON1, as decrement of oxidative stress significantly attenuated STZ-induced diabetes development.
Collapse
Affiliation(s)
- Orit Rozenberg
- The Lipid Research Laboratory, The Technion Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences and Rambam Medical Center, Haifa, Israel
| | | | | | | |
Collapse
|