1
|
Liu M, Chen L, Gu S, Zhang A, Tong M, Wang S, Wang J, Zhu Y, Zhang J, Sun Y, Guo Y, Li R. Arabidopsis TIC236 contributes to proplastid development and chloroplast biogenesis during embryogenesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1424994. [PMID: 39246812 PMCID: PMC11377289 DOI: 10.3389/fpls.2024.1424994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024]
Abstract
Plastids are essential, semi-autonomous organelles in plants that carry out a multitude of functions during development. Plastids existing in different subtypes are derived from proplastids progenitors and interconvert in response to environmental and growth cues. Most efforts focus on the differentiation from proplastid to other forms. However, the studies of proplastid development are insufficient and whether proplastid biogenesis affects plant growth is yet to be determined. Arabidopsis TIC236, a translocon component at the inner membrane of the chloroplast envelope, is critical for importing chloroplast-targeted preproteins and chloroplast division. In this study, we uncovered the fundamental influence of proplastid biogenesis on embryo development by exploring the function of TIC236 during embryogenesis. Widespread and strong expression of TIC236 was observed in leaves and embryos. The null mutant tic236 had an embryo-lethal phenotype, with cell division in the mutant embryos delayed starting at the octant stage and arrested at the globular stage. Transmission electron microscopy revealed enlarged proplastids with an aberrant inner structure at the dermatogen and globular stages that ultimately did not differentiate into chloroplasts. Additionally, the fluorescence signal distribution patterns of tic236 embryos carrying the pDR5rev::3xVENUS-N7, pPIN1::PIN1-GFP, pWOX5::GFP, and pSCR::H2B-YFP reporter systems were altered. Together, we provide genetic evidence supporting proplastid biogenesis plays a vital role in embryo development and TIC236 is identified as an indispensable player, ensuring normal proplastid development.
Collapse
Affiliation(s)
- Mei Liu
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Lifen Chen
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shijie Gu
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Aiwei Zhang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Mengjuan Tong
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shuailei Wang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Juntao Wang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yirui Zhu
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingsheng Zhang
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yu Sun
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yi Guo
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Rui Li
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, China
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
2
|
Peng Y, Liang Z, Cai M, Wang J, Li D, Chen Q, Du X, Gu R, Wang G, Schnable PS, Wang J, Li L. ZmPTOX1, a plastid terminal oxidase, contributes to redox homeostasis during seed development and germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:460-477. [PMID: 38678554 DOI: 10.1111/tpj.16776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 05/01/2024]
Abstract
Maize plastid terminal oxidase1 (ZmPTOX1) plays a pivotal role in seed development by upholding redox balance within seed plastids. This study focuses on characterizing the white kernel mutant 3735 (wk3735) mutant, which yields pale-yellow seeds characterized by heightened protein but reduced carotenoid levels, along with delayed germination compared to wild-type (WT) seeds. We successfully cloned and identified the target gene ZmPTOX1, responsible for encoding maize PTOX-a versatile plastoquinol oxidase and redox sensor located in plastid membranes. While PTOX's established role involves regulating redox states and participating in carotenoid metabolism in Arabidopsis leaves and tomato fruits, our investigation marks the first exploration of its function in storage organs lacking a photosynthetic system. Through our research, we validated the existence of plastid-localized ZmPTOX1, existing as a homomultimer, and established its interaction with ferredoxin-NADP+ oxidoreductase 1 (ZmFNR1), a crucial component of the electron transport chain (ETC). This interaction contributes to the maintenance of redox equilibrium within plastids. Our findings indicate a propensity for excessive accumulation of reactive oxygen species (ROS) in wk3735 seeds. Beyond its known role in carotenoids' antioxidant properties, ZmPTOX1 also impacts ROS homeostasis owing to its oxidizing function. Altogether, our results underscore the critical involvement of ZmPTOX1 in governing seed development and germination by preserving redox balance within the seed plastids.
Collapse
Affiliation(s)
- Yixuan Peng
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Zhi Liang
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Minghao Cai
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Jie Wang
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Delin Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Quanquan Chen
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Xuemei Du
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Riliang Gu
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Patrick S Schnable
- Department of Agronomy, Iowa State University, 2035 Roy J. Carver Co-Lab, Ames, 50011-3650, Iowa, USA
| | - Jianhua Wang
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Li Li
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| |
Collapse
|
3
|
Sakamoto W, Takami T. Plastid Inheritance Revisited: Emerging Role of Organelle DNA Degradation in Angiosperms. PLANT & CELL PHYSIOLOGY 2024; 65:484-492. [PMID: 37702423 DOI: 10.1093/pcp/pcad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Plastids are essential organelles in angiosperms and show non-Mendelian inheritance due to their evolution as endosymbionts. In approximately 80% of angiosperms, plastids are thought to be inherited from the maternal parent, whereas other species transmit plastids biparentally. Maternal inheritance can be generally explained by the stochastic segregation of maternal plastids after fertilization because the zygote is overwhelmed by the maternal cytoplasm. In contrast, biparental inheritance shows the transmission of organelles from both parents. In some species, maternal inheritance is not absolute and paternal leakage occurs at a very low frequency (∼10-5). A key process controlling the inheritance mode lies in the behavior of plastids during male gametophyte (pollen) development, with accumulating evidence indicating that the plastids themselves or their DNAs are eliminated during pollen maturation or at fertilization. Cytological observations in numerous angiosperm species have revealed several critical steps that mutually influence the degree of plastid transmission quantitatively among different species. This review revisits plastid inheritance from a mechanistic viewpoint. Particularly, we focus on a recent finding demonstrating that both low temperature and plastid DNA degradation mediated by the organelle exonuclease DEFECTIVE IN POLLEN ORGANELLE DNA DEGRADATION1 (DPD1) influence the degree of paternal leakage significantly in tobacco. Given these findings, we also highlight the emerging role of DPD1 in organelle DNA degradation.
Collapse
Affiliation(s)
- Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-2 Chuo, Kurashiki, Okayama, 710-0046 Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, 2-20-2 Chuo, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
4
|
Dechkrong P, Srima S, Sukkhaeng S, Utkhao W, Thanomchat P, de Jong H, Tongyoo P. Mutation mapping of a variegated EMS tomato reveals an FtsH-like protein precursor potentially causing patches of four phenotype classes in the leaves with distinctive internal morphology. BMC PLANT BIOLOGY 2024; 24:265. [PMID: 38600480 PMCID: PMC11005157 DOI: 10.1186/s12870-024-04973-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Leaf variegation is an intriguing phenomenon observed in many plant species. However, questions remain on its mechanisms causing patterns of different colours. In this study, we describe a tomato plant detected in an M2 population of EMS mutagenised seeds, showing variegated leaves with sectors of dark green (DG), medium green (MG), light green (LG) hues, and white (WH). Cells and tissues of these classes, along with wild-type tomato plants, were studied by light, fluorescence, and transmission electron microscopy. We also measured chlorophyll a/b and carotene and quantified the variegation patterns with a machine-learning image analysis tool. We compared the genomes of pooled plants with wild-type-like and mutant phenotypes in a segregating F2 population to reveal candidate genes responsible for the variegation. RESULTS A genetic test demonstrated a recessive nuclear mutation caused the variegated phenotype. Cross-sections displayed distinct anatomy of four-leaf phenotypes, suggesting a stepwise mesophyll degradation. DG sectors showed large spongy layers, MG presented intercellular spaces in palisade layers, and LG displayed deformed palisade cells. Electron photomicrographs of those mesophyll cells demonstrated a gradual breakdown of the chloroplasts. Chlorophyll a/b and carotene were proportionally reduced in the sectors with reduced green pigments, whereas white sectors have hardly any of these pigments. The colour segmentation system based on machine-learning image analysis was able to convert leaf variegation patterns into binary images for quantitative measurements. The bulk segregant analysis of pooled wild-type-like and variegated progeny enabled the identification of SNP and InDels via bioinformatic analysis. The mutation mapping bioinformatic pipeline revealed a region with three candidate genes in chromosome 4, of which the FtsH-like protein precursor (LOC100037730) carries an SNP that we consider the causal variegated phenotype mutation. Phylogenetic analysis shows the candidate is evolutionary closest to the Arabidopsis VAR1. The synonymous mutation created by the SNP generated a miRNA binding site, potentially disrupting the photoprotection mechanism and thylakoid development, resulting in leaf variegation. CONCLUSION We described the histology, anatomy, physiology, and image analysis of four classes of cell layers and chloroplast degradation in a tomato plant with a variegated phenotype. The genomics and bioinformatics pipeline revealed a VAR1-related FtsH mutant, the first of its kind in tomato variegation phenotypes. The miRNA binding site of the mutated SNP opens the way to future studies on its epigenetic mechanism underlying the variegation.
Collapse
Affiliation(s)
- Punyavee Dechkrong
- Central Laboratory and Greenhouse Complex, Research and Academic Service Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Sornsawan Srima
- Central Laboratory and Greenhouse Complex, Research and Academic Service Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Siriphan Sukkhaeng
- Central Laboratory and Greenhouse Complex, Research and Academic Service Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Winai Utkhao
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESRI), Bangkok, 10900, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Piyanan Thanomchat
- Scientific Equipment and Research Division, Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Bangkok, 10900, Thailand
| | - Hans de Jong
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESRI), Bangkok, 10900, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
- Wageningen University, Plant Sciences Group, Laboratory of Genetics, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Pumipat Tongyoo
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESRI), Bangkok, 10900, Thailand.
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
| |
Collapse
|
5
|
Yang R, Sun Y, Zhu X, Jiao B, Sun S, Chen Y, Li L, Wang X, Zeng Q, Liang Q, Huang B. The tuber-specific StbHLH93 gene regulates proplastid-to-amyloplast development during stolon swelling in potato. THE NEW PHYTOLOGIST 2024; 241:1676-1689. [PMID: 38044709 DOI: 10.1111/nph.19426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023]
Abstract
In potato, stolon swelling is a complex and highly regulated process, and much more work is needed to fully understand the underlying mechanisms. We identified a novel tuber-specific basic helix-loop-helix (bHLH) transcription factor, StbHLH93, based on the high-resolution transcriptome of potato tuber development. StbHLH93 is predominantly expressed in the subapical and perimedullary region of the stolon and developing tubers. Knockdown of StbHLH93 significantly decreased tuber number and size, resulting from suppression of stolon swelling. Furthermore, we found that StbHLH93 directly binds to the plastid protein import system gene TIC56 promoter, activates its expression, and is involved in proplastid-to-amyloplast development during the stolon-to-tuber transition. Knockdown of the target TIC56 gene resulted in similarly problematic amyloplast biogenesis and tuberization. Taken together, StbHLH93 functions in the differentiation of proplastids to regulate stolon swelling. This study highlights the critical role of proplastid-to-amyloplast interconversion during potato tuberization.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Yuan Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Xiaoling Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Baozhen Jiao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Sifan Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Yun Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Lizhu Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Xue Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Qian Zeng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Qiqi Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
| | - Binquan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| |
Collapse
|
6
|
Esch L, Ngai QY, Barclay JE, McNelly R, Hayta S, Smedley MA, Smith AM, Seung D. Increasing amyloplast size in wheat endosperm through mutation of PARC6 affects starch granule morphology. THE NEW PHYTOLOGIST 2023; 240:224-241. [PMID: 37424336 PMCID: PMC10952435 DOI: 10.1111/nph.19118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
The determination of starch granule morphology in plants is poorly understood. The amyloplasts of wheat endosperm contain large discoid A-type granules and small spherical B-type granules. To study the influence of amyloplast structure on these distinct morphological types, we isolated a mutant in durum wheat (Triticum turgidum) defective in the plastid division protein PARC6, which had giant plastids in both leaves and endosperm. Endosperm amyloplasts of the mutant contained more A- and B-type granules than those of the wild-type. The mutant had increased A- and B-type granule size in mature grains, and its A-type granules had a highly aberrant, lobed surface. This morphological defect was already evident at early stages of grain development and occurred without alterations in polymer structure and composition. Plant growth and grain size, number and starch content were not affected in the mutants despite the large plastid size. Interestingly, mutation of the PARC6 paralog, ARC6, did not increase plastid or starch granule size. We suggest TtPARC6 can complement disrupted TtARC6 function by interacting with PDV2, the outer plastid envelope protein that typically interacts with ARC6 to promote plastid division. We therefore reveal an important role of amyloplast structure in starch granule morphogenesis in wheat.
Collapse
Affiliation(s)
- Lara Esch
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Qi Yang Ngai
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | | | - Rose McNelly
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Sadiye Hayta
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | | | | | - David Seung
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
7
|
Midorikawa K, Numata K, Kodama Y. Peroxisomes undergo morphological changes in a light-dependent manner with proximity to the nucleus. FEBS Lett 2023; 597:2178-2184. [PMID: 37428521 DOI: 10.1002/1873-3468.14697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023]
Abstract
The size and shape of organelles can influence the rate of biochemical reactions in cells. Previous studies have suggested that organelle morphology changes due to intra- and extracellular environmental responses, affecting the metabolic efficiency of and signal transduction emanating from neighboring organelles. In this study, we tested the possibility that intracellularly distributed organelles exhibit a heterogeneous response to intra- and extracellular environments. We detected a high correlation between peroxisome morphology and distance to the nucleus in light-exposed cells. Moreover, the proximity area between chloroplasts and peroxisomes varied with distance to the nucleus. These results indicate that peroxisome morphology varies with proximity to the nucleus, suggesting the presence of a nucleus-peroxisome signal transduction cascade mediated by chloroplasts.
Collapse
Affiliation(s)
- Keiko Midorikawa
- Center for Bioscience Research and Education, Utsunomiya University, Japan
| | - Keiji Numata
- Department of Material Chemistry, Kyoto University, Japan
- Biomacromoleules Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Japan
- Biomacromoleules Research Team, RIKEN Center for Sustainable Resource Science, Wako-shi, Japan
| |
Collapse
|
8
|
Agrawal V, Singh V, Tripathi BN. Components and processes involved in retrograde signaling from chloroplast to nucleus. PHYSIOLOGIA PLANTARUM 2023; 175:e13987. [PMID: 37616006 DOI: 10.1111/ppl.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/01/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023]
Abstract
Retrograde signaling conceptually means the transfer of signals from semi-autonomous cell organelles to the nucleus to modulate nuclear gene expression. A generalized explanation is that chloroplasts are highly sensitive to environmental stimuli and quickly generate signaling molecules (retrograde signals) and transport them to the nucleus through the cytosol to reprogram nuclear gene expression for cellular/metabolic adjustments to cope with environmental fluctuations. During the past decade, substantial advancements have been made in the area of retrograde signaling, including information on putative retrograde signals. Researchers have also proposed possible mechanisms for generating retrograde signals and their transmission. However, the exact mechanisms and processes responsible for transmitting retrograde signaling from the chloroplast to the nucleus remain elusive, demanding substantial attention. This review highlights strategies employed to detect retrograde signals, their possible modes of signaling to the nucleus, and their implications for cellular processes during stress conditions. The present review also summarizes the role of ROS-mediated retrograde signaling in plastid-nucleus communication and its functional significance in co-coordinating the physiological profile of plant cells.
Collapse
Affiliation(s)
- Variyata Agrawal
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, India
| | - Vijetna Singh
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, India
| | - Bhumi Nath Tripathi
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
9
|
Sakamoto W, Takami T. Maternal plastid inheritance: two abating factors identified. Trends Genet 2023; 39:342-343. [PMID: 36935219 DOI: 10.1016/j.tig.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023]
Abstract
Organelle DNAs (orgDNAs) in mitochondria and plastids are generally inherited from the maternal parent; however, it is unclear how their inheritance mode is controlled, particularly in the plastids of seed plants. Chung et al. identify two factors that affect maternal inheritance in tobacco plastids: cold temperature and DNA amount in pollen.
Collapse
Affiliation(s)
- Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan.
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
10
|
Li N, Wong WS, Feng L, Wang C, Wong KS, Zhang N, Yang W, Jiang Y, Jiang L, He JX. The thylakoid membrane protein NTA1 is an assembly factor of the cytochrome b 6f complex essential for chloroplast development in Arabidopsis. PLANT COMMUNICATIONS 2023; 4:100509. [PMID: 36560880 PMCID: PMC9860185 DOI: 10.1016/j.xplc.2022.100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The cytochrome b6f (Cyt b6f) complex is a multisubunit protein complex in chloroplast thylakoid membranes required for photosynthetic electron transport. Here we report the isolation and characterization of the new tiny albino 1 (nta1) mutant in Arabidopsis, which has severe defects in Cyt b6f accumulation and chloroplast development. Gene cloning revealed that the nta1 phenotype was caused by disruption of a single nuclear gene, NTA1, which encodes an integral thylakoid membrane protein conserved across green algae and plants. Overexpression of NTA1 completely rescued the nta1 phenotype, and knockout of NTA1 in wild-type plants recapitulated the mutant phenotype. Loss of NTA1 function severely impaired the accumulation of multiprotein complexes related to photosynthesis in thylakoid membranes, particularly the components of Cyt b6f. NTA1 was shown to directly interact with four subunits (Cyt b6/PetB, PetD, PetG, and PetN) of Cyt b6f through the DUF1279 domain and C-terminal sequence to mediate their assembly. Taken together, our results identify NTA1 as a new and key regulator of chloroplast development that plays essential roles in assembly of the Cyt b6f complex by interacting with multiple Cyt b6f subunits.
Collapse
Affiliation(s)
- Na Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wing Shing Wong
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Lei Feng
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chunming Wang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - King Shing Wong
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Nianhui Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Wei Yang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Liwen Jiang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jun-Xian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
11
|
Hao S, Hu W, Ye C, Shen Y, Li QQ. Plastid development of albino viviparous propagules in the woody mangrove species of Kandelia obovata. TREE PHYSIOLOGY 2022; 42:2353-2368. [PMID: 35708522 DOI: 10.1093/treephys/tpac063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
The process of plastids developing into chloroplasts is critical for plants to survive. However, this process in woody plants is less understood. Kandelia obovata Sheue, Liu & Yong is a viviparous mangrove species; the seeds germinate on the maternal tree, and the hypocotyls continue to develop into mature propagules. We identified rare albino propagules through field observation among normal green and brown ones. Toward unveiling the propagule plastid development mechanism, albino propagule leaves only have etioplasts, low photosynthesis rates, and drastically reduced chlorophyll a/b and carotenoid contents, but with increased superoxide dismutase activities. To identify candidate genes controlling propagule plastid development, a genome-wide association study (GWAS) was performed between the albino and green propagules. Twenty-five significant single nucleotide polymorphisms (SNPs) were associated with albino propagule plastid development, the most significant SNPs being located on chromosomes 1 and 5. Significant differentially expressed genes were identified in porphyrin and chlorophyll metabolisms, carotenoid and flavonoid biosynthesis by combining transcriptome and GWAS data. In particular, KoDELLAs, encoding a transcription factor and KoCHS, encoding chalcone synthase, may be essential to regulate the albino propagules plastid development through weakened chlorophyll and flavonoid biosynthesis pathways while promoting chlorophyll degradation. Our results provide insights into genetic mechanisms regulating propagule plastid development in woody plants.
Collapse
Affiliation(s)
- Saiqi Hao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Wei Hu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
- Biomedical Science Group, College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
12
|
Rozentsvet O, Shuyskaya E, Bogdanova E, Nesterov V, Ivanova L. Effect of Salinity on Leaf Functional Traits and Chloroplast Lipids Composition in Two C 3 and C 4 Chenopodiaceae Halophytes. PLANTS (BASEL, SWITZERLAND) 2022; 11:2461. [PMID: 36235330 PMCID: PMC9572261 DOI: 10.3390/plants11192461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Salt stress is one of the most common abiotic kinds of stress. Understanding the key mechanisms of salt tolerance in plants involves the study of halophytes. The effect of salinity was studied in two halophytic annuals of Chenopodiaceae Salicornia perennans Willd. and Climacoptera crassa (Bied.) Botsch. These species are plants with C3 and C4-metabolism, respectively. We performed a comprehensive analysis of the photosynthetic apparatus of these halophyte species at different levels of integration. The C3 species S. perennans showed larger variation in leaf functional traits-both at the level of cell morphology and membrane system (chloroplast envelope and thylakoid). S. perennans also had larger photosynthetic cells, by 10-15 times, and more effective mechanisms of osmoregulation and protecting cells against the toxic effect of Na+. Salinity caused changes in photosynthetic tissues of C. crassa such as an increase of the mesophyll cell surface, the expansion of the interface area between mesophyll and bundle sheath cells, and an increase of the volume of the latter. These functional changes compensated for scarce CO2 supply when salinity increased. Overall, we concluded that these C3 and C4 Chenopodiaceae species demonstrated different responses to salinity, both at the cellular and subcellular levels.
Collapse
Affiliation(s)
- Olga Rozentsvet
- Samara Federal Research Scientific Center Russian Academy of Sciences, Institute of Ecology of Volga River Basin, Russian Academy of Sciences, 445003 Togliatti, Russia
| | - Elena Shuyskaya
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Elena Bogdanova
- Samara Federal Research Scientific Center Russian Academy of Sciences, Institute of Ecology of Volga River Basin, Russian Academy of Sciences, 445003 Togliatti, Russia
| | - Viktor Nesterov
- Samara Federal Research Scientific Center Russian Academy of Sciences, Institute of Ecology of Volga River Basin, Russian Academy of Sciences, 445003 Togliatti, Russia
| | - Larisa Ivanova
- The Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| |
Collapse
|
13
|
Jan M, Liu Z, Rochaix JD, Sun X. Retrograde and anterograde signaling in the crosstalk between chloroplast and nucleus. FRONTIERS IN PLANT SCIENCE 2022; 13:980237. [PMID: 36119624 PMCID: PMC9478734 DOI: 10.3389/fpls.2022.980237] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/18/2022] [Indexed: 06/02/2023]
Abstract
The chloroplast is a complex cellular organelle that not only performs photosynthesis but also synthesizes amino acids, lipids, and phytohormones. Nuclear and chloroplast genetic activity are closely coordinated through signaling chains from the nucleus to chloroplast, referred to as anterograde signaling, and from chloroplast to the nucleus, named retrograde signaling. The chloroplast can act as an environmental sensor and communicates with other cell compartments during its biogenesis and in response to stress, notably with the nucleus through retrograde signaling to regulate nuclear gene expression in response to developmental cues and stresses that affect photosynthesis and growth. Although several components involved in the generation and transmission of plastid-derived retrograde signals and in the regulation of the responsive nuclear genes have been identified, the plastid retrograde signaling network is still poorly understood. Here, we review the current knowledge on multiple plastid retrograde signaling pathways, and on potential plastid signaling molecules. We also discuss the retrograde signaling-dependent regulation of nuclear gene expression within the frame of a multilayered network of transcription factors.
Collapse
Affiliation(s)
- Masood Jan
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jean-David Rochaix
- Department of Molecular Biology and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
14
|
S-Adenosyl-L-Methionine and Cu(II) Impact Green Plant Regeneration Efficiency. Cells 2022; 11:cells11172700. [PMID: 36078107 PMCID: PMC9454820 DOI: 10.3390/cells11172700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
The biological improvement of triticale, a cereal of increasing importance in agriculture, may be accelerated via the production of doubled haploid lines using in vitro culture. Among the relevant factors affecting the culture efficiency are Cu(II) or Ag(I) acting, e.g., as cofactors of enzymes. The copper ions are known to positively affect green plant regeneration efficiency. However, the biochemical basis, mainly its role in the generation of in vitro-induced genetic and epigenetic variation and green plant regeneration efficiency, is not well understood. Here, we employed structural equation modeling to evaluate the relationship between de novo DNA methylation affecting the asymmetric context of CHH sequences, the methylation-sensitive Amplified Fragment Length Polymorphism related sequence variation, and the concentration of Cu(II) and Ag(I) ions in induction media, as well as their effect on S-adenosyl-L-methionine perturbations, observed using FTIR spectroscopy, and the green plant regeneration efficiency. Our results allowed the construction of a theory-based model reflecting the biological phenomena associated with green plant regeneration efficiency. Furthermore, it is shown that Cu(II) ions in induction media affect plant regeneration, and by manipulating their concentration, the regeneration efficiency can be altered. Additionally, S-adenosyl-L-methionine is involved in the efficiency of green plant regeneration through methylation of the asymmetric CHH sequence related to de novo methylation. This shows that the Yang cycle may impact the production of green regenerants.
Collapse
|
15
|
Zhang L, Li N, Zhang J, Zhao L, Qiu J, Wei C. The CBM48 domain-containing protein FLO6 regulates starch synthesis by interacting with SSIVb and GBSS in rice. PLANT MOLECULAR BIOLOGY 2022; 108:343-361. [PMID: 34387795 DOI: 10.1007/s11103-021-01178-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/30/2021] [Indexed: 05/27/2023]
Abstract
FLO6 is involved in starch synthesis by interacting with SSIVb and GBSS in rice. Starch synthesized and stored in plastids including chloroplasts and amyloplasts plays a vital role in plant growth and provides the major energy for human diet. However, the molecular mechanisms by which regulate starch synthesis remain largely unknown. In this study, we identified and characterized a rice floury endosperm mutant M39, which exhibited defective starch granule formation in pericarp and endosperm, accompanied by the decreased starch content and amylose content. The abnormal starch accumulation in M39 pollen grains caused a significant decrease in plant fertility. Chloroplasts in M39 leaves contained no or only one large starch granule. Positional cloning combined with complementary experiment demonstrated that the mutant phenotypes were restored by the FLOURY ENDOSPERM6 (FLO6). FLO6 was generally expressed in various tissues, including leaf, anther and developing endosperm. FLO6 is a chloroplast and amyloplast-localized protein that is able to bind to starch by its carbohydrate-binding module 48 (CBM48) domain. Interestingly, we found that FLO6 interacted with starch synthase IVb (SSIVb) and granule-bound starch synthase (GBSSI and GBSSII). Together, our results suggested that FLO6 plays a critical role in starch synthesis through cooperating with several starch synthesis enzymes throughout plant growth and development.
Collapse
Affiliation(s)
- Long Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Ning Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jing Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Linglong Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jiajing Qiu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
16
|
Lei J, Teng X, Wang Y, Jiang X, Zhao H, Zheng X, Ren Y, Dong H, Wang Y, Duan E, Zhang Y, Zhang W, Yang H, Chen X, Chen R, Zhang Y, Yu M, Xu S, Bao X, Zhang P, Liu S, Liu X, Tian Y, Jiang L, Wang Y, Wan J. Plastidic pyruvate dehydrogenase complex E1 component subunit Alpha1 is involved in galactolipid biosynthesis required for amyloplast development in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:437-453. [PMID: 34655511 PMCID: PMC8882802 DOI: 10.1111/pbi.13727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/02/2021] [Indexed: 05/13/2023]
Abstract
Starch accounts for over 80% of the total dry weight in cereal endosperm and determines the kernel texture and nutritional quality. Amyloplasts, terminally differentiated plastids, are responsible for starch biosynthesis and storage. We screened a series of rice mutants with floury endosperm to clarify the mechanism underlying amyloplast development and starch synthesis. We identified the floury endosperm19 (flo19) mutant which shows opaque of the interior endosperm. Abnormal compound starch grains (SGs) were present in the endosperm cells of the mutant. Molecular cloning revealed that the FLO19 allele encodes a plastid-localized pyruvate dehydrogenase complex E1 component subunit α1 (ptPDC-E1-α1) that is expressed in all rice tissues. In vivo enzyme assays demonstrated that the flo19 mutant showed decreased activity of the plastidic pyruvate dehydrogenase complex. In addition, the amounts of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) were much lower in the developing flo19 mutant endosperm, suggesting that FLO19 participates in fatty acid supply for galactolipid biosynthesis in amyloplasts. FLO19 overexpression significantly increased seed size and weight, but did not affect other important agronomic traits, such as panicle length, tiller number and seed setting rate. An analysis of single nucleotide polymorphism data from a panel of rice accessions identified that the pFLO19L haplotype was positively associated with grain length, implying a potential application in rice breeding. In summary, our study demonstrates that FLO19 is involved in galactolipid biosynthesis which is essential for amyloplast development and starch biosynthesis in rice.
Collapse
Affiliation(s)
- Jie Lei
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Xuan Teng
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yongfei Wang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Xiaokang Jiang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Huanhuan Zhao
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Hui Dong
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Erchao Duan
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yuanyan Zhang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Wenwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Hang Yang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Xiaoli Chen
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Rongbo Chen
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yu Zhang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Mingzhou Yu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Shanbin Xu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Xiuhao Bao
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Pengcheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Shijia Liu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Xi Liu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Ling Jiang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Yihua Wang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjingChina
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
17
|
Chen W, Huang J, Chen S, Zhang L, Rochaix JD, Peng L, Xin Q. Stromal Protein Chloroplast Development and Biogenesis1 Is Essential for Chloroplast Development and Biogenesis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:815859. [PMID: 35222475 PMCID: PMC8866770 DOI: 10.3389/fpls.2022.815859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Although numerous studies have been carried out on chloroplast development and biogenesis, the underlying regulatory mechanisms are still largely elusive. Here, we characterized a chloroplast stromal protein Chloroplast Development and Biogenesis1 (CDB1). The knockout cdb1 mutant exhibits a seedling-lethal and ivory leaf phenotype. Immunoblot and RNA blot analyses show that accumulation of chloroplast ribosomes is compromised in cdb1, resulting in an almost complete loss of plastid-encoded proteins including the core subunits of the plastid-encoded RNA polymerase (PEP) RpoB and RpoC2, and therefore in impaired PEP activity. Orthologs of CDB1 are found in green algae and land plants. Moreover, a protein shows high similarity with CDB1, designated as CDB1-Like (CDB1L), is present in angiosperms. Absence of CDB1L results in impaired embryo development. While CDB1 is specifically located in the chloroplast stroma, CDB1L is localized in both chloroplasts and mitochondria in Arabidopsis. Thus, our results demonstrate that CDB1 is indispensable for chloroplast development and biogenesis through its involvement in chloroplast ribosome assembly whereas CDB1L may fulfill a similar function in both mitochondria and chloroplasts.
Collapse
Affiliation(s)
- Weijie Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jingang Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shiwei Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Lin Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Lianwei Peng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qiang Xin
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
18
|
Ivanov AG, Krol M, Savitch LV, Szyszka-Mroz B, Roche J, Sprott DP, Selstam E, Wilson KW, Gardiner R, Öquist G, Hurry VM, Hüner NPA. The decreased PG content of pgp1 inhibits PSI photochemistry and limits reaction center and light-harvesting polypeptide accumulation in response to cold acclimation. PLANTA 2022; 255:36. [PMID: 35015152 DOI: 10.1007/s00425-022-03819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Decreased PG constrains PSI activity due to inhibition of transcript and polypeptide abundance of light-harvesting and reaction center polypeptides generating a reversible, yellow phenotype during cold acclimation of pgp1. Cold acclimation of the Arabidopsis pgp1 mutant at 5 °C resulted in a pale-yellow phenotype with abnormal chloroplast ultrastructure compared to its green phenotype upon growth at 20 °C despite a normal cold-acclimation response at the transcript level. In contrast, wild type maintained its normal green phenotype and chloroplast ultrastructure irrespective of growth temperature. In contrast to cold acclimation of WT, growth of pgp1 at 5 °C limited the accumulation of Lhcbs and Lhcas assessed by immunoblotting. However, a novel 43 kD polypeptide of Lhcb1 as well as a 29 kD polypeptide of Lhcb3 accumulated in the soluble fraction which was absent in the thylakoid membrane fraction of cold-acclimated pgp1 which was not observed in WT. Cold acclimation of pgp1 destabilized the Chl-protein complexes associated with PSI and predisposed energy distribution in favor of PSII rather than PSI compared to the WT. Functionally, in vivo PSI versus PSII photochemistry was inhibited in cold-acclimated pgp1 to a greater extent than in WT relative to controls. Greening of the pale-yellow pgp1 was induced when cold-acclimated pgp1 was shifted from 5 to 20 °C which resulted in a marked decrease in excitation pressure to a level comparable to WT. Concomitantly, Lhcbs and Lhcas accumulated with a simultaneous decrease in the novel 43 and 29kD polypeptides. We conclude that the reduced levels of phosphatidyldiacylglycerol in the pgp1 limit the capacity of the mutant to maintain the structure and function of its photosynthetic apparatus during cold acclimation. Thus, maintenance of normal thylakoid phosphatidyldiacylglycerol levels is essential to stabilize the photosynthetic apparatus during cold acclimation.
Collapse
Affiliation(s)
- Alexander G Ivanov
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria
| | - Marianna Krol
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Leonid V Savitch
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, K1A OC6, Canada
| | - Beth Szyszka-Mroz
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Jessica Roche
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada
- , 6/136 Austin St, Mt. Victoria, Wellington, 6011, New Zealand
| | - D P Sprott
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, K1A OC6, Canada
| | - Eva Selstam
- Department of Plant Physiology, Umeå Plant Science Centre, University of Umeå, 90187, Umeå, Sweden
| | - Kenneth W Wilson
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Richard Gardiner
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gunnar Öquist
- Department of Plant Physiology, Umeå Plant Science Centre, University of Umeå, 90187, Umeå, Sweden
| | - Vaughan M Hurry
- Department of Plant Physiology, Umeå Plant Science Centre, University of Umeå, 90187, Umeå, Sweden
| | - Norman P A Hüner
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
19
|
Shimada T, Endo T, Fujii H, Rodríguez A, Yoshioka T, Peña L, Omura M. Biological and molecular characterization of linalool-mediated field resistance against Xanthomonas citri subsp. citri in citrus trees. TREE PHYSIOLOGY 2021; 41:2171-2188. [PMID: 33960371 DOI: 10.1093/treephys/tpab063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The biological and molecular traits of the Ponkan mandarin (Citrus reticulata Blanco) were characterized in an investigation of the mechanisms of field resistance against citrus canker disease caused by the bacterial pathogen, Xanthomonas citri subsp. citri (Xcc). Various conventional citrus varieties that show diverse responses to Xcc were investigated, and the temporal changes in Xcc titer in response to linalool concentrations among the varieties revealed differences in Xcc proliferation trends in the inoculated leaves of the immune, field-resistant and susceptible varieties. In addition, increased linalool accumulation was inversely related to Xcc titers in the field-resistant varieties, which is likely caused by host--pathogen interactions. Quantitative trait locus (QTL) analysis using the F1 population of the resistant Ponkan mandarin and susceptible 'Harehime' ('E-647' × 'Miyagawa-wase') cultivar revealed that linalool accumulation and Xcc susceptibility QTLs overlapped. These results provide novel insights into the molecular mechanisms of linalool-mediated field resistance to Xcc, and suggest that high linalool concentrations in leaves has an antibacterial effect and becomes a candidate-biomarker target for citrus breeding to produce seedlings with linalool-mediated field resistance against Xcc.
Collapse
Affiliation(s)
- Takehiko Shimada
- Department of Citriculture, Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Bio-oriented Research Organization (NARO), Okitsu nakachou 485-6, Shimizu-ku, Shizuoka 424-0292, Japan
| | - Tomoko Endo
- Department of Citriculture, Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Bio-oriented Research Organization (NARO), Okitsu nakachou 485-6, Shimizu-ku, Shizuoka 424-0292, Japan
| | - Hiroshi Fujii
- Department of Citriculture, Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Bio-oriented Research Organization (NARO), Okitsu nakachou 485-6, Shimizu-ku, Shizuoka 424-0292, Japan
| | - Ana Rodríguez
- Fundecitrus, Av. Dr. Adhemar de Barros Pereira, 201.14807-040 Vila Melhado, Araraquara, Sao Paulo, Brazil
- Department of Biotechnology and Plant Improvement of Cultivated Species, Instituto de Biologia Molecular y Celular de Plantas (IBMCP/CSIC-UPV), Ingeniero Fausto Elio, Valencia 46022, Spain
| | - Terutaka Yoshioka
- Department of Citriculture, Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Bio-oriented Research Organization (NARO), Okitsu nakachou 485-6, Shimizu-ku, Shizuoka 424-0292, Japan
| | - Leandro Peña
- Fundecitrus, Av. Dr. Adhemar de Barros Pereira, 201.14807-040 Vila Melhado, Araraquara, Sao Paulo, Brazil
- Department of Biotechnology and Plant Improvement of Cultivated Species, Instituto de Biologia Molecular y Celular de Plantas (IBMCP/CSIC-UPV), Ingeniero Fausto Elio, Valencia 46022, Spain
| | - Mitsuo Omura
- Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
20
|
Wang X, An Y, Qi Z, Xiao J. PPR protein Early Chloroplast Development 2 is essential for chloroplast development at the early stage of Arabidopsis development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110908. [PMID: 34034865 DOI: 10.1016/j.plantsci.2021.110908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Chloroplast biogenesis and development regulation have long been a focus of research; however, the underlying mechanisms of these processes have not yet been fully elucidated. Pentatricopeptide repeat (PPR) proteins have been shown to play key roles in chloroplast development. Here, we identified a novel P-type PPR protein, Early Chloroplast Development 2 (ECD2), and the ecd2 mutant resulted in embryo lethality. The RNAi lines of ECD2 showed varying degrees of albino cotyledons and abnormal chloroplast development, but true leaves were similar to the wild-type. Further analysis revealed that ECD2 was responsible for chloroplast gene expression and group II intron splicing of several genes. Transcriptome analysis combined with quantitative real-time PCR showed that ECD2 was associated with the expression of ribosomal genes and accumulation of chloroplast ribosomes. Overall, our results indicate that ECD2 is critically important for early chloroplast development in cotyledon.
Collapse
Affiliation(s)
- Xinwei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yaqi An
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Zhi Qi
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010010, China
| | - Jianwei Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
21
|
Mishra LS, Mishra S, Caddell DF, Coleman-Derr D, Funk C. The Plastid-Localized AtFtsHi3 Pseudo-Protease of Arabidopsis thaliana Has an Impact on Plant Growth and Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2021; 12:694727. [PMID: 34249066 PMCID: PMC8261292 DOI: 10.3389/fpls.2021.694727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/28/2021] [Indexed: 05/22/2023]
Abstract
While drought severely affects plant growth and crop production, the molecular mechanisms of the drought response of plants remain unclear. In this study, we demonstrated for the first time the effect of the pseudo-protease AtFtsHi3 of Arabidopsis thaliana on overall plant growth and in drought tolerance. An AtFTSHi3 knock-down mutant [ftshi3-1(kd)] displayed a pale-green phenotype with lower photosynthetic efficiency and Darwinian fitness compared to wild type (Wt). An observed delay in seed germination of ftshi3-1(kd) was attributed to overaccumulation of abscisic acid (ABA); ftshi3-1(kd) seedlings showed partial sensitivity to exogenous ABA. Being exposed to similar severity of soil drying, ftshi3-1(kd) was drought-tolerant up to 20 days after the last irrigation, while wild type plants wilted after 12 days. Leaves of ftshi3-1(kd) contained reduced stomata size, density, and a smaller stomatic aperture. During drought stress, ftshi3-1(kd) showed lowered stomatal conductance, increased intrinsic water-use efficiency (WUEi), and slower stress acclimation. Expression levels of ABA-responsive genes were higher in leaves of ftshi3-1(kd) than Wt; DREB1A, but not DREB2A, was significantly upregulated during drought. However, although ftshi3-1(kd) displayed a drought-tolerant phenotype in aboveground tissue, the root-associated bacterial community responded to drought.
Collapse
Affiliation(s)
| | - Sanatkumar Mishra
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Daniel F. Caddell
- Plant Gene Expression Center, US Department of Agriculture-Agricultural Research Service, Albany, CA, United States
| | - Devin Coleman-Derr
- Plant Gene Expression Center, US Department of Agriculture-Agricultural Research Service, Albany, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | | |
Collapse
|
22
|
Choi H, Yi T, Ha SH. Diversity of Plastid Types and Their Interconversions. FRONTIERS IN PLANT SCIENCE 2021; 12:692024. [PMID: 34220916 PMCID: PMC8248682 DOI: 10.3389/fpls.2021.692024] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/24/2021] [Indexed: 05/03/2023]
Abstract
Plastids are pivotal subcellular organelles that have evolved to perform specialized functions in plant cells, including photosynthesis and the production and storage of metabolites. They come in a variety of forms with different characteristics, enabling them to function in a diverse array of organ/tissue/cell-specific developmental processes and with a variety of environmental signals. Here, we have comprehensively reviewed the distinctive roles of plastids and their transition statuses, according to their features. Furthermore, the most recent understanding of their regulatory mechanisms is highlighted at both transcriptional and post-translational levels, with a focus on the greening and non-greening phenotypes.
Collapse
Affiliation(s)
| | | | - Sun-Hwa Ha
- Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
23
|
Liu X, Xu Z, Yang Y, Cao P, Cheng H, Zhou H. Plastid caseinolytic protease OsClpR1 regulates chloroplast development and chloroplast RNA editing in rice. RICE (NEW YORK, N.Y.) 2021; 14:45. [PMID: 34018050 PMCID: PMC8137786 DOI: 10.1186/s12284-021-00489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plant plastidic caseinolytic protease (Clp) is a central part of the plastid protease network and consists of multiple subunits. The molecular functions of many Clps in plants, especially in crops, are not well known. RESULTS In this study, we identified an albino lethal mutant al3 in rice, which produces albino leaves and dies at the seedling stage. Molecular cloning revealed that AL3 encodes a plastid caseinolytic protease, OsClpR1, homologous to Arabidopsis ClpR1 and is targeted to the chloroplast. Compared with the wild type, chloroplast structure in the al3 mutant was poorly developed. OsClpR1 was constitutively expressed in all rice tissues, especially in young leaves. The OsClpR1 mutation affected the transcript levels of chlorophyll biosynthesis and chloroplast development-related genes. The RNA editing efficiency of three chloroplast genes (rpl2, ndhB, ndhA) was remarkably reduced in al3. Using a yeast two-hybrid screen, we found that OsClpR1 interacted with OsClpP4, OsClpP5, OsClpP2, and OsClpS1. CONCLUSIONS Collectively, our results provide novel insights into the function of Clps in rice.
Collapse
Affiliation(s)
- Xi Liu
- Key Laboratory of Eco-Agricultural Biotechnology around Hongze Lake, Regional Cooperative Innovation Center for Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China.
| | - Ziyi Xu
- Key Laboratory of Eco-Agricultural Biotechnology around Hongze Lake, Regional Cooperative Innovation Center for Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Yanrong Yang
- Key Laboratory of Eco-Agricultural Biotechnology around Hongze Lake, Regional Cooperative Innovation Center for Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Penghui Cao
- Suzhou Academy of Agricultural Sciences, Suzhou, 215155, China
| | - Hang Cheng
- Key Laboratory of Eco-Agricultural Biotechnology around Hongze Lake, Regional Cooperative Innovation Center for Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| | - Haiying Zhou
- Key Laboratory of Eco-Agricultural Biotechnology around Hongze Lake, Regional Cooperative Innovation Center for Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai'an, 223300, China
| |
Collapse
|
24
|
Genome-wide identification and expression pattern analysis of lipoxygenase gene family in banana. Sci Rep 2021; 11:9948. [PMID: 33976263 PMCID: PMC8113564 DOI: 10.1038/s41598-021-89211-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/19/2021] [Indexed: 01/19/2023] Open
Abstract
The LOX genes have been identified and characterized in many plant species, but studies on the banana LOX genes are very limited. In this study, we respectively identified 18 MaLOX, 11 MbLOX, and 12 MiLOX genes from the Musa acuminata, M. balbisiana and M. itinerans genome data, investigated their gene structures and characterized the physicochemical properties of their encoded proteins. Banana LOXs showed a preference for using and ending with G/C and their encoded proteins can be classified into 9-LOX, Type I 13-LOX and Type II 13-LOX subfamilies. The expansion of the MaLOXs might result from the combined actions of genome-wide, tandem, and segmental duplications. However, tandem and segmental duplications contribute to the expansion of MbLOXs. Transcriptome data based gene expression analysis showed that MaLOX1, 4, and 7 were highly expressed in fruit and their expression levels were significantly regulated by ethylene. And 11, 12 and 7 MaLOXs were found to be low temperature-, high temperature-, and Fusarium oxysporum f. sp. Cubense tropical race 4 (FocTR4)-responsive, respectively. MaLOX8, 9 and 13 are responsive to all the three stresses, MaLOX4 and MaLOX12 are high temperature- and FocTR4-responsive; MaLOX6 and MaLOX17 are significantly induced by low temperature and FocTR4; and the expression of MaLOX7 and MaLOX16 are only affected by high temperature. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression levels of several MaLOXs are regulated by MeJA and FocTR4, indicating that they can increase the resistance of banana by regulating the JA pathway. Additionally, the weighted gene co-expression network analysis (WGCNA) of MaLOXs revealed 3 models respectively for 5 (MaLOX7-11), 3 (MaLOX6, 13, and 17), and 1 (MaLOX12) MaLOX genes. Our findings can provide valuable information for the characterization, evolution, diversity and functionality of MaLOX, MbLOX and MiLOX genes and are helpful for understanding the roles of LOXs in banana growth and development and adaptations to different stresses.
Collapse
|
25
|
Wang R, Ren Y, Yan H, Teng X, Zhu X, Wang Y, Zhang X, Guo X, Lin Q, Cheng Z, Lei C, Wang J, Jiang L, Wang Y, Wan J. ENLARGED STARCH GRAIN1 affects amyloplast development and starch biosynthesis in rice endosperm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110831. [PMID: 33691965 DOI: 10.1016/j.plantsci.2021.110831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Cereal crops accumulate large amounts of starch which is synthesized and stored in amyloplasts in the form of starch grains (SGs). Despite significant progress in deciphering starch biosynthesis, our understanding of amyloplast development in rice (Oryza sativa) endosperm remains largely unknown. Here, we report a novel rice floury mutant named enlarged starch grain1 (esg1). The mutant has decreased starch content, altered starch physicochemical properties, slower grain-filling rate and reduced 1000-grain weight. A distinctive feature in esg1 endosperm is that SGs are much larger, mainly due to an increased number of starch granules per SG. Spherical and loosely assembled granules, together with those weakly stained SGs may account for decreased starch content in esg1. Map-based cloning revealed that ESG1 encodes a putative permease subunit of a bacterial-type ABC (ATP-binding cassette) lipid transporter. ESG1 is constitutively expressed in various tissues. It encodes a protein localized to the chloroplast and amyloplast membranes. Mutation of ESG1 causes defective galactolipid synthesis. The overall study indicates that ESG1 is a newly identified protein affecting SG development and subsequent starch biosynthesis, which provides novel insights into amyloplast development in rice.
Collapse
Affiliation(s)
- Rongqi Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haigang Yan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Teng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaopin Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yupeng Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
26
|
Ikeda Y, Zalabák D, Kubalová I, Králová M, Brenner WG, Aida M. Interpreting Cytokinin Action as Anterograde Signaling and Beyond. FRONTIERS IN PLANT SCIENCE 2021; 12:641257. [PMID: 33854521 PMCID: PMC8039514 DOI: 10.3389/fpls.2021.641257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/08/2021] [Indexed: 05/22/2023]
Abstract
Among the major phytohormones, the cytokinin exhibits unique features for its ability to positively affect the developmental status of plastids. Even early on in its research, cytokinins were known to promote plastid differentiation and to reduce the loss of chlorophyll in detached leaves. Since the discovery of the components of cytokinin perception and primary signaling, the genes involved in photosynthesis and plastid differentiation have been identified as those directly targeted by type-B response regulators. Furthermore, cytokinins are known to modulate versatile cellular processes such as promoting the division and differentiation of cells and, in concert with auxin, initiating the de novo formation of shoot apical meristem (SAM) in tissue cultures. Yet how cytokinins precisely participate in such diverse cellular phenomena, and how the associated cellular processes are coordinated as a whole, remains unclear. A plausible presumption that would account for the coordinated gene expression is the tight and reciprocal communication between the nucleus and plastid. The fact that cytokinins affect plastid developmental status via gene expression in both the nucleus and plastid is interpreted here to suggest that cytokinin functions as an initiator of anterograde (nucleus-to-plastid) signaling. Based on this viewpoint, we first summarize the physiological relevance of cytokinins to the coordination of plastid differentiation with de novo shoot organogenesis in tissue culture systems. Next, the role of endogenous cytokinins in influencing plastid differentiation within the SAM of intact plants is discussed. Finally, a presumed plastid-derived signal in response to cytokinins for coupled nuclear gene expression is proposed.
Collapse
Affiliation(s)
- Yoshihisa Ikeda
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
| | - David Zalabák
- Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany AS CR, Olomouc, Czechia
| | - Ivona Kubalová
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Michaela Králová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
| | - Wolfram G. Brenner
- General and Applied Botany, Institute of Biology, Universität Leipzig, Leipzig, Germany
| | - Mitsuhiro Aida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
27
|
Wang X, An Y, Li Y, Xiao J. A PPR Protein ACM1 Is Involved in Chloroplast Gene Expression and Early Plastid Development in Arabidopsis. Int J Mol Sci 2021; 22:ijms22052512. [PMID: 33802303 PMCID: PMC7959153 DOI: 10.3390/ijms22052512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/24/2022] Open
Abstract
Chloroplasts cannot develop normally without the coordinated action of various proteins and signaling connections between the nucleus and the chloroplast genome. Many questions regarding these processes remain unanswered. Here, we report a novel P-type pentatricopeptide repeat (PPR) factor, named Albino Cotyledon Mutant1 (ACM1), which is encoded by a nuclear gene and involved in chloroplast development. Knock-down of ACM1 transgenic plants displayed albino cotyledons but normal true leaves, while knock-out of the ACM1 gene in seedlings was lethal. Fluorescent protein analysis showed that ACM1 was specifically localized within chloroplasts. PEP-dependent plastid transcript levels and splicing efficiency of several group II introns were seriously affected in cotyledons in the RNAi line. Furthermore, denaturing gel electrophoresis and Western blot experiments showed that the accumulation of chloroplast ribosomes was probably damaged. Collectively, our results indicate ACM1 is indispensable in early chloroplast development in Arabidopsis cotyledons.
Collapse
Affiliation(s)
- Xinwei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (X.W.); (Y.L.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China;
| | - Yaqi An
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China;
| | - Ye Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (X.W.); (Y.L.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China;
| | - Jianwei Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (X.W.); (Y.L.)
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China;
- Correspondence: ; Tel.: +86-15010693470
| |
Collapse
|
28
|
He H, Xie W, Liang Z, Wu H, Bai M. The expansion of mesophyll cells is coordinated with the division of chloroplasts in diploid and tetraploid Arabidopsis thaliana. PLANTA 2021; 253:64. [PMID: 33560485 DOI: 10.1007/s00425-021-03578-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Cell expression is coordinated with chloroplast division in diploid and tetraploid Arabidopsis thaliana, polyploidy promoted the expansion of mesophyll cells and chloroplast division in A. thaliana. Cell development and differentiation are always accompanied by cell expansion and chloroplast division in plants, but the relationship between them is still relatively unknown. To confirm the relationship between cell expansion and chloroplast division during the leaf development process of diploid and tetraploid Arabidopsis thaliana, we systematically analyzed the expansion of mesophyll cells and the division of chloroplasts through cytological observation and gene-expression characteristics. As a result, in diploid and tetraploid A. thaliana, there were two peaks in both mesophyll cell expansion and chloroplast division during the leaf development process. Tetraploid A. thaliana mesophyll cells were larger and contained more chloroplasts than diploid A. thaliana mesophyll cells, which indicated that cell division and cell expansion were coordinated with chloroplast division in A. thaliana and that polyploidy further promoted mesophyll cell expansion and chloroplast division.
Collapse
Affiliation(s)
- Hanjun He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhixin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry, South China Agricultural University, Guangzhou, 510642, China.
| | - Mei Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
29
|
Gajecka M, Marzec M, Chmielewska B, Jelonek J, Zbieszczyk J, Szarejko I. Changes in plastid biogenesis leading to the formation of albino regenerants in barley microspore culture. BMC PLANT BIOLOGY 2021; 21:22. [PMID: 33413097 PMCID: PMC7792217 DOI: 10.1186/s12870-020-02755-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/24/2020] [Indexed: 06/06/2023]
Abstract
BACKGROUND Microspore embryogenesis is potentially the most effective method of obtaining doubled haploids (DH) which are utilized in breeding programs to accelerate production of new cultivars. However, the regeneration of albino plants significantly limits the exploitation of androgenesis for DH production in cereals. Despite many efforts, the precise mechanisms leading to development of albino regenerants have not yet been elucidated. The objective of this study was to reveal the genotype-dependent molecular differences in chloroplast differentiation that lead to the formation of green and albino regenerants in microspore culture of barley. RESULTS We performed a detailed analysis of plastid differentiation at successive stages of androgenesis in two barley cultivars, 'Jersey' and 'Mercada' that differed in their ability to produce green regenerants. We demonstrated the lack of transition from the NEP-dependent to PEP-dependent transcription in plastids of cv. 'Mercada' that produced mostly albino regenerants in microspore culture. The failed NEP-to-PEP transition was associated with the lack of activity of Sig2 gene encoding a sigma factor necessary for transcription of plastid rRNA genes. A very low level of 16S and 23S rRNA transcripts and impaired plastid translation machinery resulted in the inhibition of photomorphogenesis in regenerating embryos and albino regenerants. Furthermore, the plastids present in differentiating 'Mercada' embryos contained a low number of plastome copies whose replication was not always completed. Contrary to 'Mercada', cv. 'Jersey' that produced 90% green regenerants, showed the high activity of PEP polymerase, the highly increased expression of Sig2, plastid rRNAs and tRNAGlu, which indicated the NEP inhibition. The increased expression of GLKs genes encoding transcription factors required for induction of photomorphogenesis was also observed in 'Jersey' regenerants. CONCLUSIONS Proplastids present in microspore-derived embryos of albino-producing genotypes did not pass the early checkpoints of their development that are required for induction of further light-dependent differentiation of chloroplasts. The failed activation of plastid-encoded RNA polymerase during differentiation of embryos was associated with the genotype-dependent inability to regenerate green plants in barley microspore culture. The better understanding of molecular mechanisms underlying formation of albino regenerants may be helpful in overcoming the problem of albinism in cereal androgenesis.
Collapse
Affiliation(s)
- Monika Gajecka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Marek Marzec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Beata Chmielewska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Janusz Jelonek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Justyna Zbieszczyk
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Iwona Szarejko
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland.
| |
Collapse
|
30
|
Barthel D, Schuler H, Galli J, Borruso L, Geier J, Heer K, Burckhardt D, Janik K. Identification of Plant DNA in Adults of the Phytoplasma Vector Cacopsylla picta Helps Understanding Its Feeding Behavior. INSECTS 2020; 11:insects11120835. [PMID: 33255992 PMCID: PMC7761314 DOI: 10.3390/insects11120835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 01/04/2023]
Abstract
Simple Summary Cacopsylla picta is an insect vector of apple proliferation phytoplasma, the causative bacterial agent of apple proliferation disease. In this study, we provide an answer to the open question of whether adult Cacopsylla picta feed from other plants than their known host, the apple plant. We collected Cacopsylla picta specimens from apple trees and analyzed the composition of plant DNA ingested by these insects. By applying a state-of-the art sequencing approach, we show, for the first time, that Cacopsylla picta feeds from a wide range of woody and herbaceous plant species. Our results are important for a better understanding of the biology and feeding behavior of Cacopsylla picta. Since this insect is an efficient vector of apple proliferation phytoplasma, our results are also important to define potential reservoir plants that might be involved in the transmissive cycle of this pathogen. This study thus provides important data of practical relevance. Abstract Apple proliferation is an economically important disease and a threat for commercial apple cultivation. The causative pathogen, the bacterium ‘Candidatus Phytoplasma mali’, is mainly transmitted by Cacopsylla picta, a phloem-feeding insect that develops on the apple tree (Malus spp.). To investigate the feeding behavior of adults of the phytoplasma vector Cacopsylla picta in more detail, we used deep sequencing technology to identify plant-specific DNA ingested by the insect. Adult psyllids were collected in different apple orchards in the Trentino-South Tyrol region of northern Italy. DNA from the whole body of the insect was extracted and analyzed for the presence of plant DNA by performing PCR with two plant-specific primers that target the chloroplast regions trnH-psbA and rbcLa. DNA from 23 plant genera (trnH) and four plant families (rbcLa) of woody and herbaceous plant taxa was detected. Up to six and three plant genera and families, respectively, could be determined in single specimens. The results of this study contribute to a better understanding of the feeding behavior of adult Cacopsylla picta.
Collapse
Affiliation(s)
- Dana Barthel
- Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), IT-39040 Auer (Ora), Italy
- Correspondence: (D.B.); (K.J.)
| | - Hannes Schuler
- Faculty of Science and Technology, Free University of Bozen-Bolzano, IT-39100 Bozen (Bolzano), Italy; (H.S.); (L.B.)
- Competence Centre Plant Health, Free University of Bozen-Bolzano, IT-39100 Bozen (Bolzano), Italy
| | - Jonas Galli
- Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences Vienna, A-1190 Vienna, Austria;
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen-Bolzano, IT-39100 Bozen (Bolzano), Italy; (H.S.); (L.B.)
| | - Jacob Geier
- Department of Botany, Leopold-Franzens-Universität Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria;
| | - Katrin Heer
- Faculty of Biology—Conservation Biology, Philipps Universität Marburg, Karl-von-Frisch-Straße 8, D-35043 Marburg, Germany;
| | - Daniel Burckhardt
- Naturhistorisches Museum, Augustinergasse 2, CH-4001 Basel, Switzerland;
| | - Katrin Janik
- Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), IT-39040 Auer (Ora), Italy
- Correspondence: (D.B.); (K.J.)
| |
Collapse
|
31
|
Bhattacharya O, Ortiz I, Walling LL. Methodology: an optimized, high-yield tomato leaf chloroplast isolation and stroma extraction protocol for proteomics analyses and identification of chloroplast co-localizing proteins. PLANT METHODS 2020; 16:131. [PMID: 32983250 PMCID: PMC7513546 DOI: 10.1186/s13007-020-00667-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/04/2020] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chloroplasts are critical organelles that perceive and convey metabolic and stress signals to different cellular components, while remaining the seat of photosynthesis and a metabolic factory. The proteomes of intact leaves, chloroplasts, and suborganellar fractions of plastids have been evaluated in the model plant Arabidopsis, however fewer studies have characterized the proteomes of plastids in crops. Tomato (Solanum lycopersicum) is an important world-wide crop and a model system for the study of wounding, herbivory and fruit ripening. While significant advances have been made in understanding proteome and metabolome changes in fruit ripening, far less is known about the tomato chloroplast proteome or its subcompartments. RESULTS With the long-term goal of understanding chloroplast proteome dynamics in response to stress, we describe a high-yielding method to isolate intact tomato chloroplasts and stromal proteins for proteomic studies. The parameters that limit tomato chloroplast yields were identified and revised to increase yields. Compared to published data, our optimized method increased chloroplast yields by 6.7- and 4.3-fold relative to published spinach and Arabidopsis leaf protocols, respectively; furthermore, tomato stromal protein yields were up to 79-fold higher than Arabidopsis stromal proteins yields. We provide immunoblot evidence for the purity of the stromal proteome isolated using our enhanced methods. In addition, we leverage our nanoliquid chromatography tandem mass spectrometry (nanoLC-MS/MS) data to assess the quality of our stromal proteome. Using strict criteria, proteins detected by 1 peptide spectral match, by one peptide, or were sporadically detected were designated as low-level contaminating proteins. A set of 254 proteins that reproducibly co-isolated with the tomato chloroplast stroma were identified. The subcellular localization, frequency of detection, normalized spectral abundance, and functions of the co-isolating proteins are discussed. CONCLUSIONS Our optimized method for chloroplast isolation increased the yields of tomato chloroplasts eightfold enabling the proteomics analysis of the chloroplast stromal proteome. The set of 254 proteins that co-isolate with the chloroplast stroma provides opportunities for developing a better understanding of the extensive and dynamic interactions of chloroplasts with other organelles. These co-isolating proteins also have the potential for expanding our knowledge of proteins that are co-localized in multiple subcellular organelles.
Collapse
Affiliation(s)
- Oindrila Bhattacharya
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521 USA
| | - Irma Ortiz
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521 USA
| | - Linda L. Walling
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521 USA
| |
Collapse
|
32
|
Zhu X, Mou C, Zhang F, Huang Y, Yang C, Ji J, Liu X, Cao P, Nguyen T, Lan J, Zhou C, Liu S, Jiang L, Wan J. WSL9 Encodes an HNH Endonuclease Domain-Containing Protein that Is Essential for Early Chloroplast Development in Rice. RICE (NEW YORK, N.Y.) 2020; 13:45. [PMID: 32654074 PMCID: PMC7354284 DOI: 10.1186/s12284-020-00407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 07/06/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND The plant chloroplast is essential for photosynthesis and other cellular processes, but an understanding of the biological mechanisms of plant chloroplast development are incomplete. RESULTS A new temperature-sensitive white stripe leaf 9(wsl9) rice mutant is described. The mutant develops white stripes during early leaf development, but becomes green after the three-leaf stage under field conditions. The wsl9 mutant was albinic when grown at low temperature. Gene mapping of the WSL9 locus, together with complementation tests indicated that WSL9 encodes a novel protein with an HNH domain. WSL9 was expressed in various tissues. Under low temperature, the wsl9 mutation caused defects in splicing of rpl2, but increased the editing efficiency of rpoB. Expression levels of plastid genome-encoded genes, which are transcribed by plastid-coded RNA polymerase (PEP), chloroplast development genes and photosynthesis-related genes were altered in the wsl9 mutant. CONCLUSION WSL9 encodes an HNH endonuclease domain-containing protein that is essential for early chloroplast development. Our study provides opportunities for further research on regulatory mechanisms of chloroplast development in rice.
Collapse
Affiliation(s)
- Xingjie Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changling Mou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fulin Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunshuai Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunyan Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingli Ji
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Penghui Cao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Thanhliem Nguyen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Biology and Agricultural Engineering, Quynhon University, Quynhon, Binhdinh, 590000, Vietnam
| | - Jie Lan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunlei Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Biology and Agricultural Engineering, Quynhon University, Quynhon, Binhdinh, 590000, Vietnam
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
33
|
Ohashi Y, Mori T, Igawa T. Behavior of filamentous temperature-sensitive Z2 (FtsZ2) in the male gametophyte during sexual reproduction processes of flowering plants. PROTOPLASMA 2020; 257:1201-1210. [PMID: 32300955 DOI: 10.1007/s00709-020-01503-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Filamentous temperature-sensitive Z (FtsZ) is a critical division protein in bacteria that functions in forming a Z-ring structure to constrict the cell. Since the establishment of the plastid by endosymbiosis of a cyanobacterium into a eukaryotic cell, division via Z-ring formation has been conserved in the plastids of flowering plants. The FtsZ gene was transferred from the cyanobacterial ancestor of plastids to the eukaryotic nuclear genome during evolution, and flowering plants evolved two FtsZ homologs, FtsZ1 and FtsZ2, which are involved in chloroplast division through distinct molecular functions. Regarding the behaviors of FtsZ in nonphotosynthetic cells, the plastid localization of FtsZ1 proteins in the cytoplasm of microspores and pollen vegetative cells but not in generative cells or sperm cells has been reported. On the other hand, the significant accumulation of FtsZ2 transcripts in generative cells has been reported. However, the synthesis of FtsZ2 in the male gamete has not been investigated. Additionally, FtsZ2 behavior has not been analyzed in pollen, a nonphotosynthetic male tissue. Here, we report FtsZ2 protein behaviors in the male gamete by analyzing the localization patterns of GFP-fused protein at various pollen developmental stages and in gametes during the fertilization process. Our results showed that FtsZ2 localization coincided with that of plastids. FtsZ2 protein in male gametes was almost absent, despite the presence of the transcripts. Moreover, transmission of paternal FtsZ2 transcripts to the zygote and endosperm was not observed.
Collapse
Affiliation(s)
- Yukino Ohashi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-shi, Chiba, 271-8510, Japan
| | - Toshiyuki Mori
- Department of Tropical Medicine and Parasitology, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tomoko Igawa
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-shi, Chiba, 271-8510, Japan.
- Plant Molecular Science Center, Chiba University, 648 Matsudo, Matsudo-shi, Chiba, 271-8510, Japan.
| |
Collapse
|
34
|
Chu CC, Swamy K, Li HM. Tissue-Specific Regulation of Plastid Protein Import via Transit-Peptide Motifs. THE PLANT CELL 2020; 32:1204-1217. [PMID: 32075863 PMCID: PMC7145487 DOI: 10.1105/tpc.19.00702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/09/2020] [Accepted: 02/17/2020] [Indexed: 05/28/2023]
Abstract
Plastids differentiate into various functional types (chloroplasts, leucoplasts, chromoplasts, etc.) that have distinct proteomes depending on the specific tissue. Most plastid proteins are encoded by the nuclear genome, synthesized as higher molecular mass preproteins with an N-terminal transit peptide, and then posttranslationally imported from the cytosol. Evidence for tissue-specific regulation of import into plastids, and subsequent modulation of plastid proteomes, has been lacking. We quantified protein import into isolated pea (Pisum sativum) leaf chloroplasts and root leucoplasts and identified two transit-peptide motifs that specifically enhance preprotein import into root leucoplasts. Using a plastid preprotein expressed in both leaves and roots of stable transgenic plants, we showed that losing one of the leucoplast motifs interfered with its function in root leucoplasts but had no effect on its function in leaf chloroplasts. We assembled a list of all Arabidopsis (Arabid opsis thaliana) plastid preproteins encoded by recently duplicated genes and show that, within a duplicated preprotein pair, the isoform bearing the leucoplast motif usually has greater root protein abundance. Our findings represent a clear demonstration of tissue-specific regulation of organelle protein import and suggest that it operates by selective evolutionary retention of transit-peptide motifs, which enhances import into specific plastid types.
Collapse
Affiliation(s)
- Chiung-Chih Chu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Krishna Swamy
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Hsou-Min Li
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
35
|
Nagashima Y, Ohshiro K, Iwase A, Nakata MT, Maekawa S, Horiguchi G. The bRPS6-Family Protein RFC3 Prevents Interference by the Splicing Factor CFM3b during Plastid rRNA Biogenesis in Arabidopsis thaliana. PLANTS 2020; 9:plants9030328. [PMID: 32143506 PMCID: PMC7154815 DOI: 10.3390/plants9030328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 01/03/2023]
Abstract
Plastid ribosome biogenesis is important for plant growth and development. REGULATOR OF FATTY ACID COMPOSITION3 (RFC3) is a member of the bacterial ribosomal protein S6 family and is important for lateral root development. rfc3-2 dramatically reduces the plastid rRNA level and produces lateral roots that lack stem cells. In this study, we isolated a suppressor of rfc three2 (sprt2) mutant that enabled recovery of most rfc3 mutant phenotypes, including abnormal primary and lateral root development and reduced plastid rRNA level. Northern blotting showed that immature and mature plastid rRNA levels were reduced, with the exception of an early 23S rRNA intermediate, in rfc3-2 mutants. These changes were recovered in rfc3-2 sprt2-1 mutants, but a second defect in the processing of 16S rRNA appeared in this line. The results suggest that rfc3 mutants may be defective in at least two steps of plastid rRNA processing, one of which is specifically affected by the sprt2-1 mutation. sprt2-1 mutants had a mutation in CRM FAMILY MEMBER 3b (CFM3b), which encodes a plastid-localized splicing factor. A bimolecular fluorescence complementation (BiFC) assay suggested that RFC3 and SPRT2/CFM3b interact with each other in plastids. These results suggest that RFC3 suppresses the nonspecific action of SPRT2/CFM3b and improves the accuracy of plastid rRNA processing.
Collapse
Affiliation(s)
- Yumi Nagashima
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Katsutomo Ohshiro
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Akiyasu Iwase
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Miyuki T Nakata
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Current address: Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Shugo Maekawa
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| |
Collapse
|
36
|
Kumari K, Rai MP, Bansal N, Prashat GR, Kumari S, Srivathsa R, Dahuja A, Sachdev A, Praveen S, Vinutha T. Study of subcellular localization of Glycine max γ-tocopherol methyl transferase isoforms in N. benthamiana. 3 Biotech 2020; 10:110. [PMID: 32099748 DOI: 10.1007/s13205-020-2086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/21/2020] [Indexed: 10/25/2022] Open
Abstract
Gamma-tocopherol methyltransferase (γ-TMT) converts γ-toc to α-toc-the rate limiting step in toc biosynthesis. Sequencing results revealed that the coding regions of γ-TMT1 and γ-TMT3 were strongly similar to each other (93% at amino acid level). Based on the differences in the N-terminal amino acids, Glycine max-γ-TMT proteins are categorized into three isoforms: γ-TMT1, 2 and 3. In silico structural analysis revealed the presence of chloroplast transit peptide (cTP) in γ-TMT1 and γ-TMT3 protein. However, other properties of transit peptide like presence of hydrophobic amino acids at the first three positions of N-terminal end and lower level of acidic amino acids were revealed only in γ-TMT3 protein. Subcellular localization of GFP fused γ-TMT1 and γ-TMT3 under 35S promoter was studied in Nicotiana benthamiana using confocal microscopy. Results showed that γ-TMT1 was found in the cytosol and γ-TMT3 was found to be localized both in cytosol and chloroplast. Further the presence γ-TMT3 in chloroplast was validated by quantifying α-tocopherol through UPLC. Thus the present study of cytosolic localization of the both γ-TMT1 and γ-TMT3 proteins and chloroplastic localization of γ-TMT3 will help to reveal the importance of γ-TMT encoded α-toc in protecting both chloroplastic and cell membrane from plant oxidative stress.
Collapse
|
37
|
Tadini L, Peracchio C, Trotta A, Colombo M, Mancini I, Jeran N, Costa A, Faoro F, Marsoni M, Vannini C, Aro EM, Pesaresi P. GUN1 influences the accumulation of NEP-dependent transcripts and chloroplast protein import in Arabidopsis cotyledons upon perturbation of chloroplast protein homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1198-1220. [PMID: 31648387 DOI: 10.1111/tpj.14585] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 10/09/2019] [Accepted: 10/21/2019] [Indexed: 05/21/2023]
Abstract
Correct chloroplast development and function require co-ordinated expression of chloroplast and nuclear genes. This is achieved through chloroplast signals that modulate nuclear gene expression in accordance with the chloroplast's needs. Genetic evidence indicates that GUN1, a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal Small MutS-Related (SMR) domain, is involved in integrating multiple developmental and stress-related signals in both young seedlings and adult leaves. Recently, GUN1 was found to interact physically with factors involved in chloroplast protein homeostasis, and with enzymes of tetrapyrrole biosynthesis in adult leaves that function in various retrograde signalling pathways. Here we show that following perturbation of chloroplast protein homeostasis: (i) by growth in lincomycin-containing medium; or (ii) in mutants defective in either the FtsH protease complex (ftsh), plastid ribosome activity (prps21-1 and prpl11-1) or plastid protein import and folding (cphsc70-1), GUN1 influences NEP-dependent transcript accumulation during cotyledon greening and also intervenes in chloroplast protein import.
Collapse
Affiliation(s)
- Luca Tadini
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Carlotta Peracchio
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Andrea Trotta
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Monica Colombo
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, 38010, San Michele all'Adige, Italy
| | - Ilaria Mancini
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Nicolaj Jeran
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Alex Costa
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Franco Faoro
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università degli Studi di Milano, 20133, Milano, Italy
| | - Milena Marsoni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Candida Vannini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| |
Collapse
|
38
|
Huang R, Zhang Y, Zhang Q, Huang J, Hänninen H, Huang Y, Hu Y. Photosynthetic Mechanisms of Metaxenia Responsible for Enlargement of Carya cathayensis Fruits at Late Growth Stages. FRONTIERS IN PLANT SCIENCE 2020; 11:84. [PMID: 32180777 PMCID: PMC7058182 DOI: 10.3389/fpls.2020.00084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Fruits of hickory (Carya cathayensis) are larger and their peel is greener after interspecific pollination by pecan (Carya illinoinensis; later pp fruits) than after intraspecific pollination by hickory (later ph fruits). Previous studies have found little genetic differences between offspring and their maternal parent, indicating that the observed trait differences between pp and ph fruits are due to metaxenia. Fruit development depends on the amount of photosynthetic assimilate available. Since there is no difference in photosynthesis of the associated leaves between pp and ph fruits, the larger size of the pp fruits might be attributed to changes in fruit photosynthesis caused by the different pollen sources. To elucidate to the photosynthetic mechanisms behind the metaxenia effect on fruit development in hickory, the effects of intraspecific and interspecific pollination regimes were examined in the present study. We observed the photosynthetic capacity in the peel of fruits and the related ecophysiological and morphological traits of both ph and pp fruits over a period of 120 days after pollination. Significant differences in the appearance and dry weight between ph and pp fruits were observed at 50 days after pollination (DAP). More than 70% of dry matter accumulation of the fruits was completed during 60-120 DAP, while the true photosynthetic rate of the associated leaves significantly decreased by about 50% during the same period. In several cell layers of the peel, the number of chloroplasts per cell was significantly higher in pp than in ph fruits. Similarly, the ribulose 1, 5-bisphosphate carboxylase (Rubisco) activity, the total chlorophyll content, and the nitrogen content were all significantly higher in pp than in ph fruits during all growth stages; and all of these physiological quantities were positively correlated with the gross photosynthetic rate of the fruits. We conclude that the enhanced photosynthetic capacity of pp fruits contributes to their fast dry matter accumulation and oil formation. This result will provide a theoretical basis for improving hickory fruit yields in practical cultivation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
39
|
Zhu X, Ze M, Yin J, Chern M, Wang M, Zhang X, Deng R, Li Y, Liao H, Wang L, Tu B, Song L, He M, Li S, Wang WM, Chen X, Wang J, Li W. A phosphofructokinase B-type carbohydrate kinase family protein, PFKB1, is essential for chloroplast development at early seedling stage in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110295. [PMID: 31779907 DOI: 10.1016/j.plantsci.2019.110295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/03/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Among the phosphofructokinase B-type carbohydrate kinase (PCK) family proteins, only few proteins, like the FRUCTOKINASE-LIKE 1 and 2, have been functionally characterized in regulation of chloroplast development. Here, we report the involvement of a PCK protein PFKB1 in chloroplast development by identification of a new rice mutant, revertible early yellowing Kitaake 2 [rey(k2)]. The mutant rey(k2) shows yellow leaf phenotype, reduced photosynthetic pigments, and retarded chloroplast development during early stages of seedlings, but gradually recovered at later stages. The phenotype of rey(k2) is resulted from the disruption of the PFKB1 protein. The Pfkb1 gene is ubiquitously expressed, and its protein is mainly targeted to the chloroplast and, in some cells, to the nucleus. In addition, the PFKB1 protein possesses phosphofructokinase activity in vitro. The rey(k2) mutant affects RNA levels of chloroplast-associated genes. In particular, the nuclear-encoded RNA polymerase (NEP)-dependent genes are expressed at a sustained high level in rey(k2) even after turning green, indicating that PFKB1 is essential for suppressing the expression of NEP-dependent genes. Taken together, our study suggests that PFKB1 functions as a novel regulator indispensable for early chloroplast development, at least partly by regulating chloroplast-associated genes.
Collapse
Affiliation(s)
- Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Mu Ze
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Mawsheng Chern
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Mingrui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Xiang Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Rui Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Yongzhen Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Haicheng Liao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Long Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Bin Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China.
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China.
| |
Collapse
|
40
|
Thagun C, Chuah J, Numata K. Targeted Gene Delivery into Various Plastids Mediated by Clustered Cell-Penetrating and Chloroplast-Targeting Peptides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1902064. [PMID: 31832328 PMCID: PMC6891901 DOI: 10.1002/advs.201902064] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/18/2019] [Indexed: 05/05/2023]
Abstract
The plastid is an organelle that functions as a cell factory to supply food and oxygen to the plant cell and is therefore a potential target for genetic engineering to acquire plants with novel photosynthetic traits or the ability to produce valuable biomolecules. Conventional plastid genome engineering technologies are laborious for the preparation of plant material, require expensive experimental instruments, and are time consuming for obtaining a transplastomic plant line that produces significant levels of the biomolecule of interest. Herein, a transient plastid transformation technique is presented using a peptide-based gene carrier. By formulating peptide/plasmid DNA complexes that combine the functions of both a cell-penetrating peptide and a chloroplast-targeting peptide, DNA molecules are translocated across the plant cell membrane and delivered to the plastid efficiently via vesicle formation and intracellular vesicle trafficking. A simple infiltration method enables the introduction of a complex solution into intact plants, and plastid-localized transgene expression is expeditiously observed in various types of plastids in differentiated cell types of several plants. The gene delivery technology thus provides a useful tool to rapidly engineer plastids in crop species.
Collapse
Affiliation(s)
- Chonprakun Thagun
- Biomacromolecules Research TeamRIKEN Center for Sustainable Resource Science2‐1 Hirosawa, Wako‐shiSaitama351‐0198Japan
| | - Jo‐Ann Chuah
- Biomacromolecules Research TeamRIKEN Center for Sustainable Resource Science2‐1 Hirosawa, Wako‐shiSaitama351‐0198Japan
| | - Keiji Numata
- Biomacromolecules Research TeamRIKEN Center for Sustainable Resource Science2‐1 Hirosawa, Wako‐shiSaitama351‐0198Japan
| |
Collapse
|
41
|
Kowalewska Ł, Bykowski M, Mostowska A. Spatial organization of thylakoid network in higher plants. BOTANY LETTERS 2019. [PMID: 0 DOI: 10.1080/23818107.2019.1619195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Michał Bykowski
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Mostowska
- Department of Plant Anatomy and Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
42
|
Cha JY, Lee DY, Ali I, Jeong SY, Shin B, Ji H, Kim JS, Kim MG, Kim WY. Arabidopsis GIGANTEA negatively regulates chloroplast biogenesis and resistance to herbicide butafenacil. PLANT CELL REPORTS 2019; 38:793-801. [PMID: 30968200 DOI: 10.1007/s00299-019-02409-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Arabidopsis GI negatively regulates chloroplast biogenesis and resistance to the herbicide butafenacil by enhanced activity and transcriptional levels of antioxidant enzymes Chloroplast biogenesis is blocked by retrograde signaling triggered by diverse internal and external cues, including sugar, reactive oxygen species (ROS), phytohormones, and abiotic stress. Efficient chloroplast biogenesis is essential for crop productivity due to its effect on photosynthetic efficiency, and is associated with agronomic traits such as insect/disease resistance, herbicide resistance, and abiotic stress tolerance. Here, we show that the circadian clock-controlled gene GIGANTEA (GI) regulates chloroplast biogenesis in Arabidopsis thaliana. The gi-2 mutant showed reduced sensitivity to the chloroplast biogenesis inhibitor lincomycin, maintaining high levels of photosynthetic proteins. By contrast, wild-type and GI-overexpressing plants were sensitive to lincomycin, with variegated leaves and reduced photosynthetic protein levels. GI is degraded by lincomycin, suggesting that GI is genetically linked to chloroplast biogenesis. The GI mutant alleles gi-1 and gi-2 were resistant to the herbicide butafenacil, which inhibits protoporphyrinogen IX oxidase activity and triggers ROS-mediated cell death via the accumulation of chlorophyll precursors. Butafenacil-mediated accumulation of superoxide anions and H2O2 was not detected in gi-1 or gi-2, as revealed by histochemical staining. The activities of the antioxidant enzymes superoxide dismutase, peroxidase, and catalase were 1.2-1.4-fold higher in both gi mutants compared to the wild type. Finally, the expression levels of antioxidant enzyme genes were 1.5-2-fold higher in the mutants than in the wild type. These results suggest that GI negatively regulates chloroplast biogenesis and resistance to the herbicide butafenacil, providing evidence for a genetic link between GI and chloroplast biogenesis, which could facilitate the development of herbicide-resistant crops.
Collapse
Affiliation(s)
- Joon-Yung Cha
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Institute of Agricultural and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Da-Yeon Lee
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Institute of Agricultural and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Imdad Ali
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Institute of Agricultural and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Song Yi Jeong
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Institute of Agricultural and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Bobae Shin
- Department of Agricultural Chemistry and Food Science and Technology, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyunjung Ji
- Department of Agricultural Chemistry and Food Science and Technology, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jung Sun Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Min-Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Institute of Agricultural and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Department of Agricultural Chemistry and Food Science and Technology, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
43
|
Bouchnak I, Brugière S, Moyet L, Le Gall S, Salvi D, Kuntz M, Tardif M, Rolland N. Unraveling Hidden Components of the Chloroplast Envelope Proteome: Opportunities and Limits of Better MS Sensitivity. Mol Cell Proteomics 2019; 18:1285-1306. [PMID: 30962257 PMCID: PMC6601204 DOI: 10.1074/mcp.ra118.000988] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/03/2019] [Indexed: 12/31/2022] Open
Abstract
The chloroplast is a major plant cell organelle that fulfills essential metabolic and biosynthetic functions. Located at the interface between the chloroplast and other cell compartments, the chloroplast envelope system is a strategic barrier controlling the exchange of ions, metabolites and proteins, thus regulating essential metabolic functions (synthesis of hormones precursors, amino acids, pigments, sugars, vitamins, lipids, nucleotides etc.) of the plant cell. However, unraveling the contents of the chloroplast envelope proteome remains a difficult challenge; many proteins constituting this functional double membrane system remain to be identified. Indeed, the envelope contains only 1% of the chloroplast proteins (i.e. 0.4% of the whole cell proteome). In other words, most envelope proteins are so rare at the cell, chloroplast, or even envelope level, that they remained undetectable using targeted MS studies. Cross-contamination of chloroplast subcompartments by each other and by other cell compartments during cell fractionation, impedes accurate localization of many envelope proteins. The aim of the present study was to take advantage of technologically improved MS sensitivity to better define the proteome of the chloroplast envelope (differentiate genuine envelope proteins from contaminants). This MS-based analysis relied on an enrichment factor that was calculated for each protein identified in purified envelope fractions as compared with the value obtained for the same protein in crude cell extracts. Using this approach, a total of 1269 proteins were detected in purified envelope fractions, of which, 462 could be assigned an envelope localization by combining MS-based spectral count analyses with manual annotation using data from the literature and prediction tools. Many of such proteins being previously unknown envelope components, these data constitute a new resource of significant value to the broader plant science community aiming to define principles and molecular mechanisms controlling fundamental aspects of plastid biogenesis and functions.
Collapse
Affiliation(s)
- Imen Bouchnak
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Sabine Brugière
- §University Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France
| | - Lucas Moyet
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Sophie Le Gall
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Daniel Salvi
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Marcel Kuntz
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Marianne Tardif
- §University Grenoble Alpes, CEA, Inserm, IRIG-BGE, 38000 Grenoble, France
| | - Norbert Rolland
- From the ‡University Grenoble Alpes, INRA, CNRS, CEA, IRIG-LPCV, 38000 Grenoble, France;.
| |
Collapse
|
44
|
Rodriguez-Concepcion M, D'Andrea L, Pulido P. Control of plastidial metabolism by the Clp protease complex. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2049-2058. [PMID: 30576524 DOI: 10.1093/jxb/ery441] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/29/2018] [Indexed: 05/23/2023]
Abstract
Plant metabolism is strongly dependent on plastids. Besides hosting the photosynthetic machinery, these endosymbiotic organelles synthesize starch, fatty acids, amino acids, nucleotides, tetrapyrroles, and isoprenoids. Virtually all enzymes involved in plastid-localized metabolic pathways are encoded by the nuclear genome and imported into plastids. Once there, protein quality control systems ensure proper folding of the mature forms and remove irreversibly damaged proteins. The Clp protease is the main machinery for protein degradation in the plastid stroma. Recent work has unveiled an increasing number of client proteins of this proteolytic complex in plants. Notably, a substantial proportion of these substrates are required for normal chloroplast metabolism, including enzymes involved in the production of essential tetrapyrroles and isoprenoids such as chlorophylls and carotenoids. The Clp protease complex acts in coordination with nuclear-encoded plastidial chaperones for the control of both enzyme levels and proper folding (i.e. activity). This communication involves a retrograde signaling pathway, similarly to the unfolded protein response previously characterized in mitochondria and endoplasmic reticulum. Coordinated Clp protease and chaperone activities appear to further influence other plastid processes, such as the differentiation of chloroplasts into carotenoid-accumulating chromoplasts during fruit ripening.
Collapse
Affiliation(s)
| | - Lucio D'Andrea
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Pablo Pulido
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| |
Collapse
|
45
|
Takami T, Ohnishi N, Kurita Y, Iwamura S, Ohnishi M, Kusaba M, Mimura T, Sakamoto W. Organelle DNA degradation contributes to the efficient use of phosphate in seed plants. NATURE PLANTS 2018; 4:1044-1055. [PMID: 30420711 DOI: 10.1038/s41477-018-0291-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/27/2018] [Indexed: 06/09/2023]
Abstract
Mitochondria and chloroplasts (plastids) both harbour extranuclear DNA that originates from the ancestral endosymbiotic bacteria. These organelle DNAs (orgDNAs) encode limited genetic information but are highly abundant, with multiple copies in vegetative tissues, such as mature leaves. Abundant orgDNA constitutes a substantial pool of organic phosphate along with RNA in chloroplasts, which could potentially contribute to phosphate recycling when it is degraded and relocated. However, whether orgDNA is degraded nucleolytically in leaves remains unclear. In this study, we revealed the prevailing mechanism in which organelle exonuclease DPD1 degrades abundant orgDNA during leaf senescence. The DPD1 degradation system is conserved in seed plants and, more remarkably, we found that it was correlated with the efficient use of phosphate when plants were exposed to nutrient-deficient conditions. The loss of DPD1 compromised both the relocation of phosphorus to upper tissues and the response to phosphate starvation, resulting in reduced plant fitness. Our findings highlighted that DNA is also an internal phosphate-rich reservoir retained in organelles since their endosymbiotic origin.
Collapse
Affiliation(s)
- Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Norikazu Ohnishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Yuko Kurita
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Shoko Iwamura
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Miwa Ohnishi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Makoto Kusaba
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan.
| |
Collapse
|
46
|
Ma D, Huang X, Hou J, Ma Y, Han Q, Hou G, Wang C, Guo T. Quantitative analysis of the grain amyloplast proteome reveals differences in metabolism between two wheat cultivars at two stages of grain development. BMC Genomics 2018; 19:768. [PMID: 30355308 PMCID: PMC6201562 DOI: 10.1186/s12864-018-5174-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/16/2018] [Indexed: 01/15/2023] Open
Abstract
Background Wheat (Triticum aestivum L.) is one of the world’s most important grain crops. The amyloplast, a specialized organelle, is the major site for starch synthesis and storage in wheat grain. Understanding the metabolism in amyloplast during grain development in wheat cultivars with different quality traits will provide useful information for potential yield and quality improvement. Results Two wheat cultivars, ZM366 and YM49–198 that differ in kernel hardness and starch characteristics, were used to examine the metabolic changes in amyloplasts at 10 and 15 days after anthesis (DAA) using label-free-based proteome analysis. We identified 523 differentially expressed proteins (DEPs) between 10 DAA and 15 DAA, and 229 DEPs between ZM366 and YM49–198. These DEPs mainly participate in eight biochemical processes: carbohydrate metabolism, nitrogen metabolism, stress/defense, transport, energetics-related, signal transduction, protein synthesis/assembly/degradation, and nucleic acid-related processes. Among these proteins, the DEPs showing higher expression levels at 10 DAA are mainly involved in carbohydrate metabolism, stress/defense, and nucleic acid related processes, whereas DEPs with higher expression levels at 15 DAA are mainly carbohydrate metabolism, energetics-related, and transport-related proteins. Among the DEPs between the two cultivars, ZM366 had more up-regulated proteins than YM49–198, and these are mainly involved in carbohydrate metabolism, nucleic acid-related processes, and transport. Conclusions The results of our study indicate that wheat grain amyloplast has the broad metabolic capability. The DEPs involved in carbohydrate metabolism, nucleic acids, stress/defense, and transport processes, with grain development and cultivar differences, are possibly responsible for different grain characteristics, especially with respect to yield and quality-related traits. Electronic supplementary material The online version of this article (10.1186/s12864-018-5174-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dongyun Ma
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China. .,The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xin Huang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Junfeng Hou
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ying Ma
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qiaoxia Han
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Gege Hou
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chenyang Wang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China.,The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tiancai Guo
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
47
|
Bell KL, Burgess KS, Botsch JC, Dobbs EK, Read TD, Brosi BJ. Quantitative and qualitative assessment of pollen
DNA
metabarcoding using constructed species mixtures. Mol Ecol 2018; 28:431-455. [DOI: 10.1111/mec.14840] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/20/2018] [Accepted: 07/28/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Karen L. Bell
- Department of Environmental Sciences Emory University Atlanta Georgia
| | - Kevin S. Burgess
- Columbus State University Department of Biology Columbus Georgia
| | | | - Emily K. Dobbs
- Department of Environmental Sciences Emory University Atlanta Georgia
| | - Timothy D. Read
- Division of Infectious Diseases Department of Human Genetics School of Medicine Emory University Atlanta Georgia
| | - Berry J. Brosi
- Department of Environmental Sciences Emory University Atlanta Georgia
| |
Collapse
|
48
|
Zubo YO, Blakley IC, Franco-Zorrilla JM, Yamburenko MV, Solano R, Kieber JJ, Loraine AE, Schaller GE. Coordination of Chloroplast Development through the Action of the GNC and GLK Transcription Factor Families. PLANT PHYSIOLOGY 2018; 178:130-147. [PMID: 30002259 PMCID: PMC6130010 DOI: 10.1104/pp.18.00414] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/26/2018] [Indexed: 05/03/2023]
Abstract
Fundamental questions regarding how chloroplasts develop from proplastids remain poorly understood despite their central importance to plant life. Two families of nuclear transcription factors, the GATA NITRATE-INDUCIBLE CARBON-METABOLISM-INVOLVED (GNC) and GOLDEN TWO-LIKE (GLK) families, have been implicated in directly and positively regulating chloroplast development. Here, we determined the degree of functional overlap between the two transcription factor families in Arabidopsis (Arabidopsis thaliana), characterizing their ability to regulate chloroplast biogenesis both alone and in concert. We determined the DNA-binding motifs for GNC and GLK2 using protein-binding microarrays; the enrichment of these motifs in transcriptome datasets indicates that GNC and GLK2 are repressors and activators of gene expression, respectively. ChIP-seq analysis of GNC identified PHYTOCHROME INTERACTING FACTOR and brassinosteroid activity genes as targets whose repression by GNC facilitates chloroplast biogenesis. In addition, GNC targets and represses genes involved in ERECTA signaling and thereby facilitates stomatal development. Our results define key regulatory features of the GNC and GLK transcription factor families that contribute to the control of chloroplast biogenesis and photosynthetic activity, including areas of independence and cross talk.
Collapse
Affiliation(s)
- Yan O Zubo
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Ivory Clabaugh Blakley
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, North Carolina 28081
| | - José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Darwin 3, 28049 Madrid, Spain
| | - Maria V Yamburenko
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Darwin 3, 28049 Madrid, Spain
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, North Carolina 28081
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
49
|
Chen F, Dong G, Ma X, Wang F, Zhang Y, Xiong E, Wu J, Wang H, Qian Q, Wu L, Yu Y. UMP kinase activity is involved in proper chloroplast development in rice. PHOTOSYNTHESIS RESEARCH 2018; 137:53-67. [PMID: 29392476 PMCID: PMC5999181 DOI: 10.1007/s11120-017-0477-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/27/2017] [Indexed: 05/23/2023]
Abstract
Isolation of leaf-color mutants is important in understanding the mechanisms of chloroplast biogenesis and development. In this study, we identified and characterized a rice (Oryza sativa) mutant, yellow leaf 2 (yl2), exhibiting pale yellow leaves with a few longitudinal white stripes at the early seedling stage then gradually turning yellow. Genetic analyses revealed that YL2 encodes a thylakoid membrane-localized protein with significant sequence similarity to UMP kinase proteins in prokaryotes and eukaryotes. Prokaryotic UMP kinase activity was subsequently confirmed, with YL2 deficiency causing a significant reduction in chlorophyll accumulation and photochemical efficiency. Moreover, YL2 is also light dependent and preferentially expressed in green tissues. Chloroplast development was abnormal in the yl2 mutant, possibly due to reduced accumulation of thylakoid membranes and a lack of normal stroma lamellae. 2D Blue-Native SDS-PAGE and immunoblot analyses revealed a reduction in several subunits of photosynthetic complexes, in particular, the AtpB subunit of ATP synthase, while mRNA levels of corresponding genes were unchanged or increased compared with the wild type. In addition, we observed a significant decrease (ca. 36.3%) in cpATPase activity in the yl2 mutant compared with the wild type. Taken together, our results suggest that UMP kinase activity plays an essential role in chloroplast development and regulating cpATPase biogenesis in rice.
Collapse
Affiliation(s)
- Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Zhejiang, China
| | - Xiaohui Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China
| | - Fang Wang
- Institute of Insect Sciences, Zhejiang University, Zhejiang, China
| | - Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China
| | - Erhui Xiong
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China
| | - Jiahuan Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Zhejiang, China
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China.
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, China.
| |
Collapse
|
50
|
Sakamoto W, Takami T. Chloroplast DNA Dynamics: Copy Number, Quality Control and Degradation. PLANT & CELL PHYSIOLOGY 2018; 59:1120-1127. [PMID: 29860378 DOI: 10.1093/pcp/pcy084] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/01/2018] [Indexed: 05/16/2023]
Abstract
Endosymbiotically originated chloroplast DNA (cpDNA) encodes part of the genetic information needed to fulfill chloroplast function, including fundamental processes such as photosynthesis. In the last two decades, advances in genome analysis led to the identification of a considerable number of cpDNA sequences from various species. While these data provided the consensus features of cpDNA organization and chloroplast evolution in plants, how cpDNA is maintained through development and is inherited remains to be fully understood. In particular, the fact that cpDNA exists as multiple copies despite its limited genetic capacity raises the important question of how copy number is maintained or whether cpDNA is subjected to quantitative fluctuation or even developmental degradation. For example, cpDNA is abundant in leaves, where it forms punctate structures called nucleoids, which seemingly alter their morphologies and numbers depending on the developmental status of the chloroplast. In this review, we summarize our current understanding of 'cpDNA dynamics', focusing on the changes in DNA abundance. A special focus is given to the cpDNA degradation mechanism, which appears to be mediated by Defective in Pollen organelle DNA degradation 1 (DPD1), a recently discovered organelle exonuclease. The physiological significance of cpDNA degradation in flowering plants is also discussed.
Collapse
Affiliation(s)
- Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|