1
|
Pei X, Lv M, Mo X, Sun Y, Chen Y, Yan C, Zhang Y, Xu L, Wang Y, Zhang X, Huang X, Zhao X. Long-term efficacy of CMV/EBV bivirus-specific T cells for viral co-reactivation after stem cell transplantation. Chin Med J (Engl) 2025:00029330-990000000-01401. [PMID: 39820071 DOI: 10.1097/cm9.0000000000003443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Indexed: 01/19/2025] Open
Affiliation(s)
- Xuying Pei
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Xiaodong Mo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Yuqian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Yuhong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Chenhua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Yuanyuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Lanping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100091, China
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100083, China
| | - Xiangyu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
2
|
Neller MA, Ambalathingal GR, Hamad N, Sasadeusz J, Pearson R, Holmes-Liew CL, Singhal D, Tunbridge M, Ng WY, Sharplin K, Moore A, Deambrosis D, Soosay-Raj T, McNaughton P, Whyte M, Fraser C, Grigg A, Kliman D, Bajel A, Cummins K, Dowling M, Yeoh ZH, Harrison SJ, Khot A, Tan S, Roos I, Koo RM, Dohrmann S, Ritchie D, Wainstein B, McCleary K, Nelson A, Gardiner B, Inam S, Badoux X, Ma K, Toro C, Hanna D, Hughes D, Conyers R, Cole T, Wang SS, Chee L, Fleming J, Irish A, Purtill D, Cooney J, Shaw P, Tey SK, Hunt S, Subramonia Pillai E, John G, Ng M, Ramachandran S, Hopkins P, Chambers D, Campbell S, Francis R, Isbel N, Marlton P, Reddiex H, Matthews KK, Voogt M, Panikkar A, Beagley L, Rehan S, Best S, Raju J, Le Texier L, Crooks P, Solomon M, Lekieffre L, Srihari S, Smith C, Khanna R. Compassionate access to virus-specific T cells for adoptive immunotherapy over 15 years. Nat Commun 2024; 15:10339. [PMID: 39627190 PMCID: PMC11615211 DOI: 10.1038/s41467-024-54595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024] Open
Abstract
Adoptive T-cell immunotherapy holds great promise for the treatment of viral complications in immunocompromised patients resistant to standard anti-viral strategies. We present a retrospective analysis of 78 patients from 19 hospitals across Australia and New Zealand, treated over the last 15 years with "off-the-shelf" allogeneic T cells directed to a combination of Epstein-Barr virus (EBV), cytomegalovirus (CMV), BK polyomavirus (BKV), John Cunningham virus (JCV) and/or adenovirus (AdV) under the Australian Therapeutic Goods Administration's Special Access Scheme. Most patients had severe post-transplant viral complications, including drug-resistant end-organ CMV disease, BKV-associated haemorrhagic cystitis and EBV-driven post-transplant lymphoproliferative disorder. Adoptive immunotherapy is well tolerated with few adverse effects. Importantly, 46/71 (65%) patients show definitive clinical improvement including reduction in viral load, clinical symptoms and complete resolution of end-organ disease. In addition, seven high-risk patients remain disease free. Based on this long-term encouraging clinical experience, we propose that a dedicated nationally funded centre for anti-viral cellular therapies should be considered to provide T cell therapies for critically ill patients for compassionate use.
Collapse
Affiliation(s)
- Michelle A Neller
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - George R Ambalathingal
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Nada Hamad
- Department of Haematology, St Vincent's Hospital, School of Clinical Medicine, University of New South Wales and School of Medicine, University of Notre Dame, Sydney, New South Wales, Australia
| | - Joe Sasadeusz
- Department of Haematology, St Vincent's Hospital, School of Clinical Medicine, University of New South Wales and School of Medicine, University of Notre Dame, Sydney, New South Wales, Australia
| | - Rebecca Pearson
- Department of Haematology, St Vincent's Hospital, School of Clinical Medicine, University of New South Wales and School of Medicine, University of Notre Dame, Sydney, New South Wales, Australia
| | | | - Deepak Singhal
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | | - Wei Yang Ng
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Kirsty Sharplin
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Andrew Moore
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - David Deambrosis
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Trisha Soosay-Raj
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Peter McNaughton
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Morag Whyte
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Chris Fraser
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Andrew Grigg
- Austin Hospital, Heidelberg, Victoria, Australia
| | - David Kliman
- Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Ashish Bajel
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Katherine Cummins
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Mark Dowling
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Zhi Han Yeoh
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Simon J Harrison
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Amit Khot
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Sarah Tan
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Izanne Roos
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Ray Mun Koo
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Sara Dohrmann
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - David Ritchie
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Brynn Wainstein
- Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Karen McCleary
- Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Adam Nelson
- Sydney Children's Hospital, Randwick, New South Wales, Australia
| | | | - Shafqat Inam
- The Alfred Hospital, Melbourne, Victoria, Australia
| | - Xavier Badoux
- St George Public Hospital, Kogarah, New South Wales, Australia
| | - Kris Ma
- Westmead Hospital, Westmead, New South Wales, Australia
| | - Claudia Toro
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Diane Hanna
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - David Hughes
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Rachel Conyers
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Theresa Cole
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | | | - Lynette Chee
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | | | - Ashley Irish
- Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Duncan Purtill
- Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Julian Cooney
- Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Peter Shaw
- The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Siok-Keen Tey
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Stewart Hunt
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | | | - George John
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Michelle Ng
- Perth Children's Hospital, Nedlands, Western Australia, Australia
| | | | - Peter Hopkins
- The Prince Charles Hospital, Chermside, Queensland, Australia
- The University of Queensland Medical School, Herston, Queensland, Australia
| | - Daniel Chambers
- The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Scott Campbell
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Ross Francis
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Nicole Isbel
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Paula Marlton
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Hilary Reddiex
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Katherine K Matthews
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Meggie Voogt
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Archana Panikkar
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Leone Beagley
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Sweera Rehan
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Shannon Best
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jyothy Raju
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Laetitia Le Texier
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Pauline Crooks
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Matthew Solomon
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Lea Lekieffre
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Sriganesh Srihari
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Corey Smith
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Rajiv Khanna
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| |
Collapse
|
3
|
Ruiz-Arabi E, Torre-Cisneros J, Aguilera V, Alonso R, Berenguer M, Bestard O, Bodro M, Cantisán S, Carratalà J, Castón JJ, Cordero E, Facundo C, Fariñas MC, Fernández-Alonso M, Fernández-Ruiz M, Fortún J, García-Cosío MD, Herrera S, Iturbe-Fernández D, Len O, López-Medrano F, López-Oliva MO, Los-Arcos I, Marcos MÁ, Martín-Dávila P, Monforte V, Muñoz P, Navarro D, Páez-Vega A, Pérez AB, Redondo N, Álvarez R R, Rodríguez-Benot A, Rodríguez-Goncer I, San-Juan R, Sánchez-Céspedes J, Valerio M, Vaquero JM, Viasus D, Vidal E, Aguado JM. Management of cytomegalovirus in adult solid organ transplant patients: GESITRA-IC-SEIMC, CIBERINFEC, and SET recommendations update. Transplant Rev (Orlando) 2024; 38:100875. [PMID: 39168020 DOI: 10.1016/j.trre.2024.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/23/2024]
Abstract
Cytomegalovirus (CMV) infection remains a significant challenge in solid organ transplantation (SOT). The last international consensus guidelines on the management of CMV in SOT were published in 2018, highlighting the need for revision to incorporate recent advances, notably in cell-mediated immunity monitoring, which could alter the current standard of care. A working group including members from the Group for the Study of Infection in Transplantation and the Immunocompromised Host (GESITRA-IC) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) and the Spanish Society of Transplantation (SET), developed consensus-based recommendations for managing CMV infection in SOT recipients. Recommendations were classified based on evidence strength and quality using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. The final recommendations were endorsed through a consensus meeting and approved by the expert panel.
Collapse
Affiliation(s)
- Elisa Ruiz-Arabi
- Service of Infectious Diseases, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research (IMIBIC), Cordoba, Spain
| | - Julian Torre-Cisneros
- Service of Infectious Diseases, Reina Sofia University Hospital. Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Córdoba, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Victoria Aguilera
- Hepatology and Liver Transplantation Unit, Hospital Universitario La Fe-IIS La Fe Valencia, CiberEHD and University of Valencia, Spain
| | - Rodrigo Alonso
- Lung Transplant Unit, Pneumology Service, Instituto de Investigación Hospital 12 de Octubre (imas12), University Hospital 12 de Octubre, Madrid, Spain
| | - Marina Berenguer
- Hepatology and Liver Transplantation Unit, Hospital Universitario La Fe-IIS La Fe Valencia, CiberEHD and University of Valencia, Spain
| | - Oriol Bestard
- Department of Nephrology and Kidney Transplantation, Vall d'Hebron University Hospital-VHIR, Barcelona, Spain
| | - Marta Bodro
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Infectious Diseases, Hospital Clinic-IDIBAPS, University of Barcelona, Spain
| | - Sara Cantisán
- Service of Infectious Diseases, Reina Sofia University Hospital. Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Córdoba, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Carratalà
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Infectious Diseases, Bellvitge University Hospital-IDIBELL, University of Barcelona, Spain
| | - Juan José Castón
- Service of Infectious Diseases, Reina Sofia University Hospital. Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Córdoba, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Elisa Cordero
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, Microbiology and Parasitology, Instituto de Biomedicina de Sevilla (IBiS), Virgen del Rocío University Hospital, Junta de Andalucía, CSIC, Universidad de Sevilla, Sevilla, Spain; Departament of Medicine, Faculty of Medicine, Universidad de Sevilla, Spain
| | - Carme Facundo
- Department of Nephrology, Fundacio Puigvert, Institut de Recerca Sant Pau (IR Sant Pau), RICORS 2024 (Kidney Disease), Barcelona, Spain
| | - María Carmen Fariñas
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Infectious Diseases, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Mirian Fernández-Alonso
- Microbiology Service, Clínica Universidad de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Mario Fernández-Ruiz
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, University Hospital "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Jesús Fortún
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Service of Infectious Diseases, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
| | - Maria Dolores García-Cosío
- Department of Cardiology, University Hospital "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), CIBERCV, Madrid, Spain
| | - Sabina Herrera
- Department of Infectious Diseases, Hospital Clinic-IDIBAPS, University of Barcelona, Spain
| | - David Iturbe-Fernández
- Department of Pneumology, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Oscar Len
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Infectious Diseases, Vall d'Hebron for Solid Organ Transplantation Research Group, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Francisco López-Medrano
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, University Hospital "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | | | - Ibai Los-Arcos
- Department of Infectious Diseases, Vall d'Hebron for Solid Organ Transplantation Research Group, Vall d'Hebron University Hospital, Barcelona, Spain
| | - María Ángeles Marcos
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Microbiology, Hospital Clinic, University of Barcelona, ISGlobal Barcelona Institute for Global Health, Barcelona, Spain
| | - Pilar Martín-Dávila
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Service of Infectious Diseases, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
| | - Víctor Monforte
- Lung Transplant Program, Department of Pulmonology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Muñoz
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitario Gregorio Marañon, Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - David Navarro
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain. Department of Microbiology School of Medicine, University of Valencia, Spain
| | - Aurora Páez-Vega
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain
| | - Ana Belén Pérez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Microbiology Unit, Hospital Universitario Reina Sofía-Maimonides Institute for Biomedical Research (IMIBIC), Cordoba, Spain
| | - Natalia Redondo
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, University Hospital "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | | | | | - Isabel Rodríguez-Goncer
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, University Hospital "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Rafael San-Juan
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, University Hospital "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Javier Sánchez-Céspedes
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, Microbiology and Parasitology, Instituto de Biomedicina de Sevilla (IBiS), Virgen del Rocío University Hospital, Junta de Andalucía, CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Maricela Valerio
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitario Gregorio Marañon, Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - José Manuel Vaquero
- Unit of Pneumology, Thoracic Surgery, and Lung Transplant, Reina Sofía University Hospital, Cordoba, Spain
| | - Diego Viasus
- Division of Health Sciences, Faculty of Medicine, Universidad del Norte, Hospital Universidad del Norte, Barranquilla, Colombia
| | - Elisa Vidal
- Service of Infectious Diseases, Reina Sofia University Hospital. Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Córdoba, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José María Aguado
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, University Hospital "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
4
|
Alkan B, Tuncer MA, İnkaya AÇ. Advances in virus-specific T-cell therapy for polyomavirus infections: A comprehensive review. Int J Antimicrob Agents 2024; 64:107333. [PMID: 39245328 DOI: 10.1016/j.ijantimicag.2024.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Polyomaviruses are a group of small, non-enveloped, double-stranded DNA viruses that can infect various hosts, including humans. BKPyV causes conditions such as human polyomavirus-associated nephropathy (HPyVAN), human polyomavirus-associated haemorrhagic cystitis (HPyVHC), and human polyomavirus-associated urothelial cancer (HPyVUC). JC polyomavirus (JCPyV), on the other hand, is the causative agent of progressive multifocal leukoencephalopathy (PML), a severe demyelinating disease of the central nervous system. PML primarily affects immunocompromised individuals, including those with HIV, recipients of certain immunosuppressive therapies, and transplant patients. The treatment options for HPyV infections have been limited, but recent developments in virus-specific T cell (VST) therapy have shown promise. Although VST therapy has shown potential in treating both BKPyV and JCPyV infections, several challenges remain. These include the time-consuming and costly preparation of VSTs, the need for sophisticated production facilities, and uncertainties regarding the optimal cell type and infusion frequency. To the best of our knowledge, 85 patients with haemorrhagic cystitis, 27 patients with BKPyV viremia, 2 patients with BKPyV nephritis, 14 patients with haemorrhagic cystitis and BKPyV viremia, and 32 patients with PML have been treated with VST in the literature. The overall response results were 82 complete response, 33 partial response, 35 no response, and 10 no-outcome-reported. This review underscores the importance of VST therapy as a promising treatment approach for polyomavirus infections, emphasising the need for continued research and clinical trials to refine and expand this innovative immunotherapeutic strategy.
Collapse
Affiliation(s)
- Baran Alkan
- Hacettepe University, Faculty of Medicine, Ankara
| | - M Asli Tuncer
- Hacettepe University, Faculty of Medicine, Department of Neurology, Ankara
| | - A Çağkan İnkaya
- Hacettepe University, Faculty of Medicine, Department of Infectious Diseases, Ankara.
| |
Collapse
|
5
|
Norollahi SE, Yousefi B, Nejatifar F, Yousefzadeh-Chabok S, Rashidy-Pour A, Samadani AA. Practical immunomodulatory landscape of glioblastoma multiforme (GBM) therapy. J Egypt Natl Canc Inst 2024; 36:33. [PMID: 39465481 DOI: 10.1186/s43046-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/21/2024] [Indexed: 10/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common harmful high-grade brain tumor with high mortality and low survival rate. Importantly, besides routine diagnostic and therapeutic methods, modern and useful practical techniques are urgently needed for this serious malignancy. Correspondingly, the translational medicine focusing on genetic and epigenetic profiles of glioblastoma, as well as the immune framework and brain microenvironment, based on these challenging findings, indicates that key clinical interventions include immunotherapy, such as immunoassay, oncolytic viral therapy, and chimeric antigen receptor T (CAR T) cell therapy, which are of great importance in both diagnosis and therapy. Relatively, vaccine therapy reflects the untapped confidence to enhance GBM outcomes. Ongoing advances in immunotherapy, which utilizes different methods to regenerate or modify the resistant body for cancer therapy, have revealed serious results with many different problems and difficulties for patients. Safe checkpoint inhibitors, adoptive cellular treatment, cellular and peptide antibodies, and other innovations give researchers an endless cluster of instruments to plan profoundly in personalized medicine and the potential for combination techniques. In this way, antibodies that block immune checkpoints, particularly those that target the program death 1 (PD-1)/PD-1 (PD-L1) ligand pathway, have improved prognosis in a wide range of diseases. However, its use in combination with chemotherapy, radiation therapy, or monotherapy is ineffective in treating GBM. The purpose of this review is to provide an up-to-date overview of the translational elements concentrating on the immunotherapeutic field of GBM alongside describing the molecular mechanism involved in GBM and related signaling pathways, presenting both historical perspectives and future directions underlying basic and clinical practice.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nejatifar
- Department of Hematology and Oncology, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shahrokh Yousefzadeh-Chabok
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- , Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
6
|
Gomes Torres ACMB, Mathias C, Baal SCS, Kohler AF, Cunha ML, Blanes L. Advancements in LAMP-Based Diagnostics: Emerging Techniques and Applications in Viral Detection with a Focus on Herpesviruses in Transplant Patient Management. Int J Mol Sci 2024; 25:11506. [PMID: 39519059 PMCID: PMC11546353 DOI: 10.3390/ijms252111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Loop-mediated isothermal amplification (LAMP) is a highly effective molecular diagnostic technique, particularly advantageous for point-of-care (POC) settings. In recent years, LAMP has expanded to include various adaptations such as DARQ-LAMP, QUASR, FLOS-LAMP, displacement probes and molecular beacons. These methods enable multiplex detection of multiple targets in a single reaction, enhancing cost-effectiveness and diagnostic efficiency. Consequently, LAMP has gained significant traction in diagnosing diverse viruses, notably during the COVID-19 pandemic. However, its application for detecting Herpesviridae remains relatively unexplored. This group of viruses is of particular interest due to their latency and potential reactivation, crucial for immunocompromised patients, including organ and hematopoietic stem cell transplant recipients. This review highlights recent advancements in LAMP for virus diagnosis and explores current research trends and future prospects, emphasizing the detection challenges posed by Herpesviridae.
Collapse
Affiliation(s)
| | - Carolina Mathias
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.); (S.C.S.B.); (A.F.K.); (M.L.C.)
| | - Suelen Cristina Soares Baal
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.); (S.C.S.B.); (A.F.K.); (M.L.C.)
| | - Ana Flávia Kohler
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.); (S.C.S.B.); (A.F.K.); (M.L.C.)
| | - Mylena Lemes Cunha
- Post-Graduation Program in Genetics, Department of Genetics, Federal University of Parana, Curitiba 81530-980, Brazil; (C.M.); (S.C.S.B.); (A.F.K.); (M.L.C.)
| | - Lucas Blanes
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil;
| |
Collapse
|
7
|
Bandeira TFGS, Marti LC, Rother ET, Correia LR, Machado CM. Use of Specific T Lymphocytes in Treating Cytomegalovirus Infection in Hematopoietic Cell Transplant Recipients: A Systematic Review. Pharmaceutics 2024; 16:1321. [PMID: 39458650 PMCID: PMC11510890 DOI: 10.3390/pharmaceutics16101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 10/28/2024] Open
Abstract
Cytomegalovirus (CMV) poses a significant threat to post-hematopoietic cell transplantation (HCT). Control strategies include letermovir prophylaxis or ganciclovir pre-emptive therapy (PET). Without prophylaxis, 65-90% of seropositive recipients develop a clinically significant CMV infection. Due to PET drawbacks, letermovir prophylaxis is preferable, as it reduces CMV-related events and improves overall survival. However, refractory or resistant CMV-CS remains a challenge, with maribavir showing limited efficacy. This systematic review followed the Cochrane Manual and PRISMA guidelines and was registered in PROSPERO. Searches were conducted in PubMed, Scopus, Embase, and Web of Science. Out of 1895 identified records, 614 duplicates were removed, and subsequent screening excluded 1153 studies. Eleven included studies (2012-2024) involved 255 HCT recipients receiving adoptive immunotherapy (AI), primarily CMV-specific T-cell therapy. GvHD occurred in 1.82% of cases. Adverse events occurred in 4.4% of cases, while mild CRS was observed in 1.3% of patients. Efficacy, evaluated in 299 patients across eleven studies, showed an average response rate of 78.2%. CMV-CS recurrence was observed in 24.4% of 213 patients, and death due to CMV was reported in 9.7% of 307 patients across nine studies. Adoptive hCMV-specific T-cell immunotherapy appears to be a safe, effective alternative for refractory CMV-CS in HCT.
Collapse
Affiliation(s)
| | - Luciana C. Marti
- Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, SP, Brazil; (L.C.M.); (E.T.R.)
| | - Edna T. Rother
- Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, SP, Brazil; (L.C.M.); (E.T.R.)
| | - Lucas Reis Correia
- PROADI-SUS, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, SP, Brazil;
| | - Clarisse M. Machado
- Laboratório de Virologia, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo 05403-000, SP, Brazil;
| |
Collapse
|
8
|
Toner K, McCann CD, Bollard CM. Applications of cell therapy in the treatment of virus-associated cancers. Nat Rev Clin Oncol 2024; 21:709-724. [PMID: 39160243 DOI: 10.1038/s41571-024-00930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/21/2024]
Abstract
A diverse range of viruses have well-established roles as the primary driver of oncogenesis in various haematological malignancies and solid tumours. Indeed, estimates suggest that approximately 1.5 million patients annually are diagnosed with virus-related cancers. The predominant human oncoviruses include Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis B and C viruses (HBV and HCV), human papillomavirus (HPV), human T-lymphotropic virus type 1 (HTLV1), and Merkel cell polyomavirus (MCPyV). In addition, although not inherently oncogenic, human immunodeficiency virus (HIV) is associated with immunosuppression that contributes to the development of AIDS-defining cancers (specifically, Kaposi sarcoma, aggressive B cell non-Hodgkin lymphoma and cervical cancer). Given that an adaptive T cell-mediated immune response is crucial for the control of viral infections, increasing research is being focused on evaluating virus-specific T cell therapies for the treatment of virus-associated cancers. In this Review, we briefly outline the roles of viruses in the pathogenesis of these malignancies before describing progress to date in the field of virus-specific T cell therapy and evaluating the potential utility of these therapies to treat or possibly even prevent virus-related malignancies.
Collapse
Affiliation(s)
- Keri Toner
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Chase D McCann
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
9
|
Singh K, Rocco JM, Nussenblatt V. The winding road: Infectious disease considerations for CAR-T and other novel adoptive cellular therapies in the era of COVID-19. Semin Hematol 2024; 61:321-332. [PMID: 39379249 PMCID: PMC11626729 DOI: 10.1053/j.seminhematol.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 10/10/2024]
Abstract
Adoptive cellular therapies (ACT) are novel, promising treatments for life-threatening malignancies. In addition to the better known chimeric antigen receptor (CAR) T cells, ACTs include tumor infiltrating lymphocytes (TIL), cancer antigen-specific T cell receptors (TCRs), and CAR-NK (natural killer) cells. In key historic milestones, several adoptive therapies recently received FDA approvals, including 6 CAR-T products for the treatment of hematologic malignancies and the first TIL therapy for the treatment for metastatic melanoma. The rapid pace of clinical trials in the field and the discoveries they provide are ushering in a new era of cancer immunotherapy. However, the potential complications of these therapies are still not fully understood. In particular, patients receiving ACT may be at increased risk for severe infections due to immunocompromise resulting from their underlying malignancies, which are further compounded by the immune derangements that develop in the setting of cellular immunotherapy and/or the preconditioning treatment needed to enhance ACT efficacy. Moreover, these treatments are being readily implemented at a time following the height of the COVID-19 pandemic, and it remains unclear what additional risks these patients may face from SARS-CoV-2 and similar infections. Here, we examine the evidence for infectious complications with emerging adoptive therapies, and provide a focused review of the epidemiology, complications, and clinical management for COVID-19 in CAR-T recipients to understand the risk this disease may pose to recipients of other forms of ACT.
Collapse
Affiliation(s)
- Kanal Singh
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.
| | - Joseph M Rocco
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Veronique Nussenblatt
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
10
|
Lara-de-León AG, Mora-Buch R, Cantó E, Peña-Gómez C, Rudilla F. Identification of Candidate Immunodominant Epitopes and Their HLA-Binding Prediction on BK Polyomavirus Proteins in Healthy Donors. HLA 2024; 104:e15722. [PMID: 39435889 DOI: 10.1111/tan.15722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024]
Abstract
BK polyomavirus infection is an important cause of graft loss in transplant patients, however, currently available therapies lack effectiveness against this pathogen. Identification of immunological targets for potential treatments is therefore necessary. The aim of this study was to predict candidates of immunodominant epitopes within four BK virus proteins (VP1, VP2, VP3 and LTA) using PBMCs from 44 healthy donors. We used the ELISpot epitope mapping method to evaluate the T-cell response, and HLA-peptide binding was predicted using the NetMHCpan algorithm. A total of 11 potential peptides were selected for VP1, 3 for VP2/VP3 and 13 for LTA. Greater reactivity was observed for VP1 and LTA proteins compared with VP2/VP3. Most of the peptides selected as potential immunodominant candidates were restricted towards several HLA class I and II alleles, with predominant HLA class I binding by computational predictions. Based on these findings, the sequences of the selected immunodominant epitopes candidates and their corresponding HLA restrictions could contribute to the optimisation of functional assays and aid in the design and improvement of immunotherapy strategies against BK virus infections.
Collapse
Affiliation(s)
- Ana Gabriela Lara-de-León
- Advanced & Cell Therapy Services, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
| | - Rut Mora-Buch
- Advanced & Cell Therapy Services, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Ester Cantó
- Advanced & Cell Therapy Services, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Cleofé Peña-Gómez
- Mental Health and Neurosciences, Mixt Unit, Parc Taulí Research and Innovation Institute (I3PT), Barcelona, Spain
| | - Francesc Rudilla
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
- Immunogenetics and Histocompatibility Laboratory, Banc de Sang i Teixits (Blood and Tissue Bank, BST), Barcelona, Spain
| |
Collapse
|
11
|
Tomoda T, Nishimura A, Kamiya T, Inoue K, Katano H, Iida S, Hoshino A, Isoda T, Imai K, Kajiwara M, Takagi M, Kanegane H, Hanaoka N, Morio T. Immune reconstitution and cidofovir administration rescue human adenovirus hepatitis after allogeneic hematopoietic cell transplantation. Transpl Immunol 2024; 86:102093. [PMID: 39032616 DOI: 10.1016/j.trim.2024.102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Human adenovirus infection (HAdV) may be fatal in patients undergoing allogeneic hematopoietic cell transplantation (HCT). Cidofovir is effective in only a part of the post-HCT HAdV infection. Therefore, posttransplant immune reconstitution is important for HAdV clearance. We describe the detailed immune reconstitution and response of adenovirus-specific T cells in a patient with inborn errors of immunity who had disseminated HAdV infection with hepatitis post-HCT and was treated with cidofovir. Though the patient received cidofovir for only 19 days starting from Day 72 after HCT because of renal dysfunction, we observed T-cell reconstitution, a decrease in HAdV copy number, and amelioration of the symptoms of HAdV infection after Day 90. We initially observed expanded NK and CD8+CD45RO+ memory subsets and later gradual increase of naïve T cells eveloped after cessation of cidofovir treatment. An increase in adenovirus-specific IFN-γ secretion from 2 to 4 months after HCT was confirmed by ELISpot assay. The progression of immune reconstitution and cidofovir treatment are considered to have contributed to survival in this patient. Optimization of transplantation methods, prompt appropriate antiviral medication, and virus-specific T-cell therapy would be necessary as the better strategy for systemic HAdV infection.
Collapse
Affiliation(s)
- Takahiro Tomoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Center for Transfusion Medicine and Cell Therapy, Tokyo Medical and Dental University (TMDU) Hospital, Tokyo, Japan
| | - Akira Nishimura
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takahiro Kamiya
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Clinical Research Center, Tokyo Medical and Dental University (TMDU) Hospital, Tokyo, Japan.
| | - Kumi Inoue
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Shun Iida
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Akihiro Hoshino
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | - Michiko Kajiwara
- Center for Transfusion Medicine and Cell Therapy, Tokyo Medical and Dental University (TMDU) Hospital, Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nozomu Hanaoka
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
12
|
Dadwal SS, Bansal R, Schuster MW, Yared JA, Myers GD, Matzko M, Adnan S, McNeel D, Ma J, Gilmore SA, Vasileiou S, Leen AM, Hill JA, Young JAH. Final outcomes from a phase 2 trial of posoleucel in allogeneic hematopoietic cell transplant recipients. Blood Adv 2024; 8:4740-4750. [PMID: 38593233 PMCID: PMC11413696 DOI: 10.1182/bloodadvances.2023011562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 04/11/2024] Open
Abstract
ABSTRACT Allogeneic hematopoietic cell transplantation (allo-HCT) recipients are susceptible to viral infections. We conducted a phase 2 trial evaluating the safety and rate of clinically significant infections (CSIs; viremia requiring treatment or end-organ disease) after infusion of posoleucel, a partially HLA-matched, allogeneic, off-the-shelf, multivirus-specific T-cell investigational product for preventing CSIs with adenovirus, BK virus, cytomegalovirus, Epstein-Barr virus, human herpesvirus-6, or JC virus. This open-label trial enrolled allo-HCT recipients at high risk based on receiving grafts from umbilical cord blood, haploidentical, mismatched, or matched unrelated donors; post-HCT lymphocytes of <180/mm3; or use of T-cell depletion. Posoleucel dosing was initiated within 15 to 49 days of allo-HCT and subsequently every 14 days for up to 7 doses. The primary end point was the number of CSIs due to the 6 target viruses by week 14. Of the 26 patients enrolled, only 3 (12%) had a CSI by week 14, each with a single target virus. In vivo expansion of functional virus-specific T cells detected via interferon-γ enzyme-linked immunosorbent spot assay was associated with viral control. Persistence of posoleucel-derived T-cell clones for up to 14 weeks after the last infusion was confirmed by T-cell-receptor deep sequencing. Five patients (19%) had acute graft-versus-host disease grade 2 to 4. No patient experienced cytokine release syndrome. All 6 deaths were due to relapse or disease progression. allo-HCT recipients at high risk who received posoleucel had low rates of CSIs from 6 targeted viruses. Repeat posoleucel dosing was generally safe and well tolerated and associated with functional immune reconstitution. This trial was registered at www.ClinicalTrials.gov as #NCT04693637.
Collapse
Affiliation(s)
- Sanjeet S. Dadwal
- Division of Infectious Disease, City of Hope National Medical Center, Duarte, CA
| | - Rajat Bansal
- Department of Hematology, University of Kansas Medical Center, Kansas City, KS
| | - Michael W. Schuster
- Bone Marrow and Stem Cell Transplantation, Stony Brook University Hospital Cancer Center, Stony Brook, NY
| | - Jean A. Yared
- Department of Medicine, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Gary Douglas Myers
- Department of Pediatrics, Children's Mercy of Kansas City, Kansas City, MO
| | | | | | | | | | | | - Spyridoula Vasileiou
- AlloVir, Waltham, MA
- Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX
| | - Ann M. Leen
- AlloVir, Waltham, MA
- Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX
| | - Joshua A. Hill
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- University of Washington School of Medicine, Seattle, WA
| | - Jo-Anne H. Young
- Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, MN
| |
Collapse
|
13
|
Chen S, van den Brink MRM. Allogeneic "Off-the-Shelf" CAR T cells: Challenges and advances. Best Pract Res Clin Haematol 2024; 37:101566. [PMID: 39396256 DOI: 10.1016/j.beha.2024.101566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has shown impressive clinical efficacy in B cell malignancies and multiple myeloma, leading to the approval of six CAR T cell products by the U.S. Food and Drug Administration (FDA) to date. However, broad application of these autologous (patient-derived) CAR T cells is limited by several factors, including high production costs, inconsistent product quality, contamination of the cell product with malignant cells, manufacturing failure especially in heavily pre-treated patients, and lengthy manufacturing times resulting in subsequent treatment delay. A potential solution to these barriers lies in the use of allogeneic "off-the-shelf" CAR T cells produced from healthy donors. Many efforts are underway to make allogeneic CAR T cells a safe and efficacious therapeutic option. In this review, we will discuss the major challenges that have to be addressed to successfully develop allogeneic CAR T cell therapies, specifically graft-versus-host disease (GVHD) and host-mediated immune rejection of the donor cells. Furthermore, we will summarize approaches that have been utilized to overcome these limitations, focusing on the use of gene editing technologies and strategies employing alternative cell populations as the source for allogeneic CAR T cell production.
Collapse
Affiliation(s)
- Sophia Chen
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 417 E 68th St, New York, NY, 10065, USA; City of Hope National Medical Center, 1500 E Duarte Rd, Duarte, CA, 91010, USA.
| | | |
Collapse
|
14
|
Khoury R, Grimley MS, Nelson AS, Leemhuis T, Cancelas JA, Cook E, Wang Y, Heyenbruch D, Bollard CM, Keller MD, Hanley PJ, Lutzko C, Pham G, Davies SM, Rubinstein JD. Third-party virus-specific T cells for the treatment of double-stranded DNA viral reactivation and posttransplant lymphoproliferative disease after solid organ transplant. Am J Transplant 2024; 24:1634-1643. [PMID: 38643944 DOI: 10.1016/j.ajt.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Reactivation or primary infection with double-stranded DNA viruses is common in recipients of solid organ transplants (SOTs) and is associated with significant morbidity and mortality. Treatment with conventional antiviral medications is limited by toxicities, resistance, and a lack of effective options for adenovirus (ADV) and BK polyomavirus (BKPyV). Virus-specific T cells (VSTs) have been shown to be an effective treatment for infections with ADV, BKPyV, cytomegalovirus (CMV), and Epstein-Barr virus (EBV). Most of these studies have been conducted in stem cell recipients, and no large studies have been published in the SOT population to date. In this study, we report on the outcome of quadrivalent third-party VST infusions in 98 recipients of SOTs in the context of an open-label phase 2 trial. The 98 patients received a total of 181 infusions, with a median of 2 infusions per patient. The overall response rate was 45% for BKPyV, 65% for cytomegalovirus, 68% for ADV, and 61% for Epstein-Barr virus. Twenty percent of patients with posttransplant lymphoproliferative disorder had a complete response and 40% of patients had a partial response. All the VST infusions were well tolerated. We conclude that VSTs are safe and effective in the treatment of viral infections in SOT recipients.
Collapse
Affiliation(s)
- Ruby Khoury
- Division of Bone Marrow Transplant and Immune Deficiencies, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA.
| | - Michael S Grimley
- Division of Bone Marrow Transplant and Immune Deficiencies, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Adam S Nelson
- Division of Bone Marrow Transplant and Immune Deficiencies, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Tom Leemhuis
- Hoxworth Blood Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jose A Cancelas
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA; Hoxworth Blood Center, University of Cincinnati, Cincinnati, Ohio, USA; Division of Experimental Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Eleanor Cook
- Division of Bone Marrow Transplant and Immune Deficiencies, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - YunZu Wang
- Division of Bone Marrow Transplant and Immune Deficiencies, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Daria Heyenbruch
- Hoxworth Blood Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Catherine M Bollard
- Department of Pediatrics, Center for Cancer and Immunology Research, Children's National Hospital, the George Washington University, Washington, District of Columbia, USA
| | - Michael D Keller
- Department of Pediatrics, Center for Cancer and Immunology Research, Children's National Hospital, the George Washington University, Washington, District of Columbia, USA
| | - Patrick J Hanley
- Department of Pediatrics, Center for Cancer and Immunology Research, Children's National Hospital, the George Washington University, Washington, District of Columbia, USA
| | - Carolyn Lutzko
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA; Division of Experimental Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Giang Pham
- Division of Experimental Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Stella M Davies
- Division of Bone Marrow Transplant and Immune Deficiencies, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jeremy D Rubinstein
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA; Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
15
|
Braidotti S, Granzotto M, Curci D, Faganel Kotnik B, Maximova N. Advancing Allogeneic Hematopoietic Stem Cell Transplantation Outcomes through Immunotherapy: A Comprehensive Review of Optimizing Non-CAR Donor T-Lymphocyte Infusion Strategies. Biomedicines 2024; 12:1853. [PMID: 39200317 PMCID: PMC11351482 DOI: 10.3390/biomedicines12081853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Optimized use of prophylactic or therapeutic donor lymphocyte infusions (DLI) is aimed at improving clinical outcomes in patients with malignant and non-malignant hematological diseases who have undergone allogeneic hematopoietic stem cell transplantation (allo-HSCT). Memory T-lymphocytes (CD45RA-/CD45RO+) play a crucial role in immune reconstitution post-HSCT. The infusion of memory T cells is proven to be safe and effective in improving outcomes due to the enhanced reconstitution of immunity and increased protection against viremia, without exacerbating graft-versus-host disease (GVHD) risks. Studies indicate their persistence and efficacy in combating viral pathogens, suggesting a viable therapeutic avenue for patients. Conversely, using virus-specific T cells for viremia control presents challenges, such as regulatory hurdles, cost, and production time compared to CD45RA-memory T lymphocytes. Additionally, the modulation of regulatory T cells (Tregs) for therapeutic use has become an important area of investigation in GVHD, playing a pivotal role in immune tolerance modulation, potentially mitigating GVHD and reducing pharmacological immunosuppression requirements. Finally, donor T cell-mediated graft-versus-leukemia immune responses hold promise in curbing relapse rates post-HSCT, providing a multifaceted approach to therapeutic intervention in high-risk disease scenarios. This comprehensive review underscores the multifaceted roles of T lymphocytes in HSCT outcomes and identifies avenues for further research and clinical application.
Collapse
Affiliation(s)
- Stefania Braidotti
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Marilena Granzotto
- Azienda Sanitaria Universitaria Giuliano Isontina (ASU GI), 34125 Trieste, Italy;
| | - Debora Curci
- Advanced Translational Diagnostic Laboratory, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Barbara Faganel Kotnik
- Department of Hematology and Oncology, University Children’s Hospital, 1000 Ljubljana, Slovenia;
| | - Natalia Maximova
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| |
Collapse
|
16
|
Grosso D, Wagner JL, O’Connor A, Keck K, Huang Y, Wang ZX, Mehler H, Leiby B, Flomenberg P, Gergis U, Nikbakht N, Morris M, Karp J, Peedin A, Flomenberg N. Safety and feasibility of third-party cytotoxic T lymphocytes for high-risk patients with COVID-19. Blood Adv 2024; 8:4113-4124. [PMID: 38885482 PMCID: PMC11345373 DOI: 10.1182/bloodadvances.2024013344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
ABSTRACT Cytotoxic T lymphocytes (CTLs) destroy virally infected cells and are critical for the elimination of viral infections such as those caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Delayed and dysfunctional adaptive immune responses to SARS-CoV-2 are associated with poor outcomes. Treatment with allogeneic SARS-CoV-2-specific CTLs may enhance cellular immunity in high-risk patients providing a safe, direct mechanism of treatment. Thirty high-risk ambulatory patients with COVID-19 were enrolled in a phase 1 trial assessing the safety of third party, SARS-CoV-2-specific CTLs. Twelve interventional patients, 6 of whom were immunocompromised, matched the HLA-A∗02:01 restriction of the CTLs and received a single infusion of 1 of 4 escalating doses of a product containing 68.5% SARS-CoV-2-specific CD8+ CTLs/total cells. Symptom improvement and resolution in these patients was compared with an observational group of 18 patients lacking HLA-A∗02:01 who could receive standard of care. No dose-limiting toxicities were observed at any dosing level. Nasal swab polymerase chain reaction testing showed ≥88% and >99% viral elimination from baseline in all patients at 4 and 14 days after infusion, respectively. The CTLs did not interfere with the development of endogenous anti-SARS-CoV-2 humoral or cellular responses. T-cell receptor β analysis showed persistence of donor-derived SARS-CoV-2-specific CTLs through the end of the 6-month follow-up period. Interventional patients consistently reported symptomatic improvement 2 to 3 days after infusion, whereas improvement was more variable in observational patients. SARS-CoV-2-specific CTLs are a potentially feasible cellular therapy for COVID-19 illness. This trial was registered at www.clinicaltrials.gov as #NCT04765449.
Collapse
Affiliation(s)
- Dolores Grosso
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - John L. Wagner
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Allyson O’Connor
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Kaitlyn Keck
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Yanping Huang
- Department of Pathology and Genomic Medicine, Histocompatibility and Immunogenetics Laboratory, Thomas Jefferson University, Philadelphia, PA
| | - Zi-Xuan Wang
- Departments of Surgery and Pathology, Molecular and Genomic Pathology Laboratory, Thomas Jefferson University, Philadelphia, PA
| | - Hilary Mehler
- Department of Pathology and Genomic Medicine, Histocompatibility and Immunogenetics Laboratory, Thomas Jefferson University, Philadelphia, PA
| | - Benjamin Leiby
- Division of Biostatistics, Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Phyllis Flomenberg
- Division of Infectious Diseases, Department of Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Usama Gergis
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Neda Nikbakht
- Department of Dermatology and Cutaneous Biology, Cutaneous Lymphoma Clinic, Thomas Jefferson University, Philadelphia, PA
| | - Michael Morris
- Department of Emergency Medicine, Thomas Jefferson University Washington Township Hospital, Sewell, NJ
| | - Julie Karp
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Alexis Peedin
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Neal Flomenberg
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
17
|
Jaing TH, Wang YL, Chiu CC. Antiviral Agents for Preventing Cytomegalovirus Disease in Recipients of Hematopoietic Cell Transplantation. Viruses 2024; 16:1268. [PMID: 39205242 PMCID: PMC11359103 DOI: 10.3390/v16081268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
This systematic review discusses the use of prophylaxis to prevent cytomegalovirus (CMV) infection in recipients who have undergone hematopoietic cell transplantation. It highlights the need for new approaches to control and prevent CMV infection. The approval of the anti-CMV drug letermovir has made antiviral prophylaxis more popular. CMV-specific T cell-mediated immunity tests are effective in identifying patients who have undergone immune reconstitution and predicting disease progression. Maribavir (MBV) has been approved for the treatment of post-transplant CMV infection/disease in adolescents. Adoptive T-cell therapy and the PepVax CMV vaccine show promise in tackling refractory and resistant CMV. However, the effectiveness of PepVax in reducing CMV viremia/disease was not demonstrated in a phase II trial. Cell-mediated immunity assays are valuable for personalized management plans, but more interventional studies are needed. MBV and adoptive T-cell therapy are promising treatments, and trials for CMV vaccines are ongoing.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan;
| | - Yi-Lun Wang
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan;
| | - Chia-Chi Chiu
- Division of Nursing, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan;
| |
Collapse
|
18
|
Kampouri E, Little JS, Crocchiolo R, Hill JA. Human herpesvirus-6, HHV-8 and parvovirus B19 after allogeneic hematopoietic cell transplant: the lesser-known viral complications. Curr Opin Infect Dis 2024; 37:245-253. [PMID: 38726832 DOI: 10.1097/qco.0000000000001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW Viral infections continue to burden allogeneic hematopoietic cell transplant (HCT) recipients. We review the epidemiology, diagnosis, and management of human herpesvirus (HHV)-6, HHV-8 and parvovirus B19 following HCT. RECENT FINDINGS Advances in HCT practices significantly improved outcomes but impact viral epidemiology: post-transplant cyclophosphamide for graft-versus-host disease prevention increases HHV-6 reactivation risk while the impact of letermovir for CMV prophylaxis - and resulting decrease in broad-spectrum antivirals - is more complex. Beyond the well established HHV-6 encephalitis, recent evidence implicates HHV-6 in pneumonitis. Novel less toxic therapeutic approaches (brincidofovir, virus-specific T-cells) may enable preventive strategies in the future. HHV-8 is the causal agent of Kaposi's sarcoma, which is only sporadically reported after HCT, but other manifestations are possible and not well elucidated. Parvovirus B19 can cause severe disease post-HCT, frequently manifesting with anemia, but can also be easily overlooked due to lack of routine screening and ambiguity of manifestations. SUMMARY Studies should establish the contemporary epidemiology of HHV-6, and other more insidious viruses, such as HHV-8 and parvovirus B19 following HCT and should encompass novel cellular therapies. Standardized and readily available diagnostic methods are key to elucidate epidemiology and optimize preventive and therapeutic strategies to mitigate the burden of infection.
Collapse
Affiliation(s)
- Eleftheria Kampouri
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jessica S Little
- Dana-Farber Cancer Institute
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Roberto Crocchiolo
- Servizio di Immunoematologia e Medicina Trasfusionale, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Joshua A Hill
- Vaccine and Infectious Disease Division
- Clinical Research Division, Fred Hutchinson Cancer Center
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
19
|
Vasileiou S, Kuvalekar M, Velazquez Y, Watanabe A, Leen AM, Gilmore SA. Phenotypic and functional characterization of posoleucel, a multivirus-specific T cell therapy for the treatment and prevention of viral infections in immunocompromised patients. Cytotherapy 2024; 26:869-877. [PMID: 38597860 DOI: 10.1016/j.jcyt.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/09/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Deficits in T cell immunity translate into increased risk of severe viral infection in recipients of solid organ and hematopoietic cell transplants. Thus, therapeutic strategies that employ the adoptive transfer of virus-specific T cells are being clinically investigated to treat and prevent viral diseases in these highly immunocompromised patients. Posoleucel is an off-the-shelf multivirus-specific T cell investigational product for the treatment and prevention of infections due to adenovirus, BK virus, cytomegalovirus, Epstein-Barr virus, human herpesvirus 6 or JC virus. METHODS Herein we perform extensive characterization of the phenotype and functional profile of posoleucel to illustrate the cellular properties that may contribute to its in vivo activity. RESULTS AND CONCLUSIONS Our results demonstrate that posoleucel is enriched for central and effector memory CD4+ and CD8+ T cells with specificity for posoleucel target viruses and expressing a broad repertoire of T cell receptors. Antigen-driven upregulation of cell-surface molecules and production of cytokine and effector molecules indicative of proliferation, co-stimulation, and cytolytic potential demonstrate the specificity of posoleucel and its potential to mount a broad, polyfunctional, and effective Th1-polarized antiviral response upon viral exposure. We also show the low risk for off-target and nonspecific effects as evidenced by the enrichment of posoleucel in memory T cells, low frequency of naive T cells, and lack of demonstrated alloreactivity in vitro. The efficacy of posoleucel is being explored in four placebo-controlled clinical trials in transplant recipients to treat and prevent viral infections (NCT05179057, NCT05305040, NCT04390113, NCT04605484).
Collapse
Affiliation(s)
- Spyridoula Vasileiou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX; AlloVir, Inc., Waltham, MA
| | - Manik Kuvalekar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX; AlloVir, Inc., Waltham, MA
| | - Yovana Velazquez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX; AlloVir, Inc., Waltham, MA
| | - Ayumi Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX; AlloVir, Inc., Waltham, MA
| | | |
Collapse
|
20
|
Obermaier B, Braun C, Hensen L, Ahmad O, Faul C, Lang P, Bethge W, Lengerke C, Vogel W. Adenovirus- and cytomegalovirus-specific adoptive T-cell therapy in the context of hematologic cell transplant or HIV infection - A single-center experience. Transpl Infect Dis 2024; 26:e14296. [PMID: 38830809 DOI: 10.1111/tid.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Reactivation of viral infections, in particular cytomegalovirus (CMV) and adenovirus (ADV), cause morbidity and non-relapse-mortality in states of immune deficiency, especially after allogeneic hematopoietic cell transplantation (allo-HCT). Against the background of few available pharmacologic antiviral agents, limited by toxicities and resistance, adoptive transfer of virus-specific T-cells (VST) is a promising therapeutic approach. METHODS We conducted a single-center retrospective analysis of adult patients treated with ADV- or CMV-specific T-cells in 2012-2022. Information was retrieved by review of electronic health records. Primary outcome was a response to VST by decreasing viral load or clinical improvement. Secondary outcomes included overall survival and safety of VST infusion, in particular association with graft-versus-host disease (GVHD). RESULTS Ten patients were included, of whom four were treated for ADV, five for CMV, and one for ADV-CMV-coinfection. Cells were derived from stem cell donors (6/10) or third-party donors (4/10). Response criteria were met by six of 10 patients (4/4 ADV, 2/5 CMV, and 0/1 ADV-CMV). Overall survival was 40%. No infusion related adverse events were documented. Aggravation of GVHD after adoptive immunotherapy was observed in two cases, however in temporal association with a conventional donor lymphocyte infusion and a stem cell boost, respectively. CONCLUSION In this cohort, CMV- and ADV-specific T-cell therapy appear to be safe and effective. We describe the first reported case of virus-specific T-cell therapy for CMV reactivation not associated with transplantation but with advanced HIV infection. This encourages further evaluation of adoptive immunotherapy beyond the context of allo-HCT.
Collapse
Affiliation(s)
- Benedikt Obermaier
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, Center for Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Christiane Braun
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Luca Hensen
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, Center for Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Osama Ahmad
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, Center for Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Christoph Faul
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, Center for Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Peter Lang
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Wolfgang Bethge
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, Center for Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Claudia Lengerke
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, Center for Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Wichard Vogel
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, Center for Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
21
|
Taherian MR, Azarbar P, Barkhordar M, Toufani S, Aliabadi LS, Bahri T, Ahmadvand M, Yaghmaie M, Daneshvar A, Vaezi M. Efficacy and safety of adoptive T-cell therapy in treating cytomegalovirus infections post-haematopoietic stem cell transplantation: A systematic review and meta-analysis. Rev Med Virol 2024; 34:e2558. [PMID: 38878003 DOI: 10.1002/rmv.2558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/05/2024] [Accepted: 06/03/2024] [Indexed: 11/07/2024]
Abstract
Cytomegalovirus (CMV) infection poses significant risks in allogeneic haematopoietic stem cell transplant (allo-HSCT) recipients. Despite advances in antiviral therapies, issues such as drug resistance, side effects, and inadequate immune reconstitution remain. This systematic review and meta-analysis aim to evaluate the efficacy and safety of adoptive cell therapy (ATC) in managing CMV infections in allo-HSCT recipients. Adhering to preferred reporting items for systematic reviews and meta-analyses guidelines, we conducted a comprehensive database search through July 2023. A systematic review and meta-analysis were conducted on studies involving HSCT patients with CMV infections treated with ATC. The primary outcome was the response rate to ATC, and secondary outcomes included adverse events associated with ATC. The Freeman-Tukey transformation was applied for analysis. In the meta-analysis of 40 studies involving 953 participants, ATC achieved an overall integrated response rate of 90.16%, with a complete response of 82.59% and a partial response of 22.95%. ATC source, HLA matching, steroid intake, and age group markedly influenced response rates. Donor-derived T-cell treatments exhibited a higher response rate (93.66%) compared to third-party sources (88.94%). HLA-matched patients demonstrated a response rate of 92.90%, while mismatched patients had a lower rate. Children showed a response rate of 83.40%, while adults had a notably higher rate of 98.46%. Adverse events were minimal, with graft-versus-host disease occurring in 24.32% of patients. ATC shows promising response rates in treating CMV infections post-HSCT, with an acceptable safety profile. However, to establish its efficacy conclusively and compare it with other antiviral treatments, randomised controlled trials are essential. Further research should prioritise such trials over observational and one-arm studies to provide robust evidence for clinical decision-making.
Collapse
Affiliation(s)
- Mohammad Reza Taherian
- Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pouya Azarbar
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Maryam Barkhordar
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Toufani
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leyla Sharifi Aliabadi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tanaz Bahri
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadvand
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Marjan Yaghmaie
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Daneshvar
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Quach DH, Ganesh HR, Briones YD, Nouraee N, Ma A, Hadidi YF, Sharma S, Rooney CM. Rejection resistant CD30.CAR-modified Epstein-Barr virus-specific T cells as an off-the-shelf platform for CD30 + lymphoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200814. [PMID: 38966037 PMCID: PMC11223124 DOI: 10.1016/j.omton.2024.200814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/14/2024] [Accepted: 05/10/2024] [Indexed: 07/06/2024]
Abstract
Off-the-shelf (OTS) adoptive T cell therapies have many benefits such as immediate availability, improved access and reduced cost, but face the major challenges of graft-vs-host disease (GVHD) and graft rejection, mediated by alloreactive T cells present in the graft and host, respectively. We have developed a platform for OTS T cell therapies by using Epstein-Bar virus (EBV)-specific T cells (EBVSTs) expressing a chimeric antigen receptor (CAR) targeting CD30. Allogeneic EBVSTs have not caused GVHD in several clinical trials, while the CD30.CAR, that is effective for the treatment of lymphoma, can also target alloreactive T cells that upregulate CD30 on activation. Although EBVSTs express high levels of CD30, they were protected from fratricide in cis, by the CD30.CAR. Hence, they could proliferate extensively and maintained function both through their native EBV-specific T cell receptor and the CD30.CAR. The CD30.CAR enabled EBVSTs to persist in co-cultures with naive and primed alloreactive T cells and eliminate activated natural killer cells that can also be alloreactive. In conclusion, we show that CD30.CAR EBVSTs have the potential to be an effective OTS therapy against CD30+ tumors and, if successful, could then be used as a platform to target other tumor antigens.
Collapse
Affiliation(s)
- David H. Quach
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haran R. Ganesh
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Yolanda D. Briones
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Nazila Nouraee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Audrey Ma
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Yezan F. Hadidi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Sandhya Sharma
- Graduate program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cliona M. Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital, and Houston Methodist Hospital, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston TX 77030, USA
- Department of Molecular Virology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
23
|
Rischall A, Olson A. SOHO State of the Art Updates and Next Questions | CTLs for Infections Following Stem Cell Transplantation. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:340-347. [PMID: 38267354 DOI: 10.1016/j.clml.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
Allogeneic hematopoietic stem cell transplantation (AHSCT) is an important modality in the treatment of acute leukemia and other hematologic disorders. The post-transplant period is associated with prolonged periods of impaired immune function. Delayed T-cell immune reconstitution is correlated with increased risk of viral, bacterial, and fungal infections. This risk increases with high intensity inductions regimens often required for alternative donor sources. Current therapies for prophylaxis and treatment of these infections are limited by poor efficacy and significant toxicity. Adoptive cell therapy with cytotoxic T lymphocytes (CTL) has proven to be both efficacious and safe in the management of post-transplant viral infections. Recent advances have led to faster production of CTLs and broadened applications for their use. In particular, the generation of third party CTLs has helped ameliorate the problems related to donor availability and product generation time. In this review we aim to describe both the history of CTL use and current advances in the field.
Collapse
Affiliation(s)
- Ariel Rischall
- Department of Medical Oncology, The University of Texas Medical Branch, Galveston, TX
| | - Amanda Olson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
24
|
Zhang S, Liu M, Wang Q, Wang S, Liu X, Li B, Li J, Fan J, Hu S. Risk factors for hemorrhagic cystitis in children undergoing hematopoietic stem cell transplantation: a systematic review and meta-analysis. BMC Pediatr 2024; 24:333. [PMID: 38745164 PMCID: PMC11092211 DOI: 10.1186/s12887-024-04815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The risk factors for hemorrhagic cystitis (HC) in children undergoing hematopoietic stem cell transplantation (HSCT) are unclear. Therefore, we conducted this systematic review and meta-analysis to investigate the risk factors for HC in children undergoing HSCT. METHODS We performed this meta-analysis by retrieving studies from PubMed, EMBASE, and the Cochrane Library up to October 10, 2023, and analyzing those that met the inclusion criteria. I2 statistics were used to evaluate heterogeneity. RESULTS Twelve studies, including 2,764 patients, were analyzed. Male sex (odds ratio [OR] = 1.52; 95% confidence interval [CI], 1.16-2.00; p = 0.003, I2 = 0%), allogeneic donor (OR = 5.28; 95% CI, 2.60-10.74; p < 0.00001, I2 = 0%), human leukocyte antigen (HLA) mismatched donor (OR = 1.86; 95% CI, 1.00-3.44; p = 0.05, I2 = 31%), unrelated donor (OR = 1.58; 95% CI, 1.10-2.28; p = 0.01, I2 = 1%), myeloablative conditioning (MAC) (OR = 3.17; 95% CI, 1.26-7.97; p = 0.01, I2 = 0%), busulfan (OR = 2.18; 95% CI, 1.33-3.58; p = 0.002, I2 = 0%) or anti-thymoglobulin (OR = 1.65; 95% CI, 1.07-2.54; p = 0.02, I2 = 16%) use, and cytomegalovirus (CMV) reactivation (OR = 2.64; 95% CI, 1.44-4.82; p = 0.002, I2 = 0%) were risk factors for HC in children undergoing HSCT. CONCLUSIONS Male sex, allogeneic donor, HLA-mismatched, unrelated donor, MAC, use of busulfan or anti-thymoglobulin, and CMV reactivation are risk factors for HC in children undergoing HSCT.
Collapse
Affiliation(s)
- Senlin Zhang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215000, China
| | - Minyuan Liu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215000, China
| | - Qingwei Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215000, China
| | - Shuran Wang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215000, China
| | - Xin Liu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215000, China
| | - Bohan Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215000, China
| | - Jie Li
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215000, China
| | - Junjie Fan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215000, China.
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou, 215000, China.
- Jiangsu Pediatric Hematology &Oncology, Suzhou, 215000, China.
| |
Collapse
|
25
|
Keller MD, Hanley PJ, Chi YY, Aguayo-Hiraldo P, Dvorak CC, Verneris MR, Kohn DB, Pai SY, Dávila Saldaña BJ, Hanisch B, Quigg TC, Adams RH, Dahlberg A, Chandrakasan S, Hasan H, Malvar J, Jensen-Wachspress MA, Lazarski CA, Sani G, Idso JM, Lang H, Chansky P, McCann CD, Tanna J, Abraham AA, Webb JL, Shibli A, Keating AK, Satwani P, Muranski P, Hall E, Eckrich MJ, Shereck E, Miller H, Mamcarz E, Agarwal R, De Oliveira SN, Vander Lugt MT, Ebens CL, Aquino VM, Bednarski JJ, Chu J, Parikh S, Whangbo J, Lionakis M, Zambidis ET, Gourdine E, Bollard CM, Pulsipher MA. Antiviral cellular therapy for enhancing T-cell reconstitution before or after hematopoietic stem cell transplantation (ACES): a two-arm, open label phase II interventional trial of pediatric patients with risk factor assessment. Nat Commun 2024; 15:3258. [PMID: 38637498 PMCID: PMC11026387 DOI: 10.1038/s41467-024-47057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Viral infections remain a major risk in immunocompromised pediatric patients, and virus-specific T cell (VST) therapy has been successful for treatment of refractory viral infections in prior studies. We performed a phase II multicenter study (NCT03475212) for the treatment of pediatric patients with inborn errors of immunity and/or post allogeneic hematopoietic stem cell transplant with refractory viral infections using partially-HLA matched VSTs targeting cytomegalovirus, Epstein-Barr virus, or adenovirus. Primary endpoints were feasibility, safety, and clinical responses (>1 log reduction in viremia at 28 days). Secondary endpoints were reconstitution of antiviral immunity and persistence of the infused VSTs. Suitable VST products were identified for 75 of 77 clinical queries. Clinical responses were achieved in 29 of 47 (62%) of patients post-HSCT including 73% of patients evaluable at 1-month post-infusion, meeting the primary efficacy endpoint (>52%). Secondary graft rejection occurred in one child following VST infusion as described in a companion article. Corticosteroids, graft-versus-host disease, transplant-associated thrombotic microangiopathy, and eculizumab treatment correlated with poor response, while uptrending absolute lymphocyte and CD8 T cell counts correlated with good response. This study highlights key clinical factors that impact response to VSTs and demonstrates the feasibility and efficacy of this therapy in pediatric HSCT.
Collapse
Affiliation(s)
- Michael D Keller
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
- Division of Allergy and Immunology, Children's National Hospital, Washington, DC, USA
- GW Cancer Center, George Washington University School of Medicine, Washington, DC, USA
| | - Patrick J Hanley
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
- GW Cancer Center, George Washington University School of Medicine, Washington, DC, USA
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Yueh-Yun Chi
- Department of Pediatrics and Preventative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paibel Aguayo-Hiraldo
- Cancer and blood disease institute, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, and BMT, University of California San Francisco, San Francisco, CA, USA
| | - Michael R Verneris
- Department of Pediatrics and Division of Child's Cancer and Blood Disorders, Children's Hospital Colorado and University of Colorado, Denver, CO, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology & Molecular Genetics and Department of Pediatrics David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Division of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Blachy J Dávila Saldaña
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Benjamin Hanisch
- Division of Pediatric Infectious Diseases, Children's National Hospital, Washington, DC, USA
| | - Troy C Quigg
- Pediatric Blood & Bone Marrow Transplant and Cellular Therapy, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Roberta H Adams
- Center for Cancer and Blood Disorders, Phoenix Children's/Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Ann Dahlberg
- Clinical Research Division, Fred Hutch Cancer Center/Seattle Children's Hospital/University of Washington, Seattle, WA, USA
| | | | - Hasibul Hasan
- Cancer and blood disease institute, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Jemily Malvar
- Cancer and blood disease institute, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | | | - Christopher A Lazarski
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Gelina Sani
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
| | - John M Idso
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Haili Lang
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Pamela Chansky
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Chase D McCann
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Jay Tanna
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Allistair A Abraham
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
- GW Cancer Center, George Washington University School of Medicine, Washington, DC, USA
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Jennifer L Webb
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
- Division of Hematology, Children's National Hospital, Washington, DC, USA
| | - Abeer Shibli
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Amy K Keating
- Pediatric Stem Cell Transplant, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
| | - Prakash Satwani
- Division of Pediatric Hematology/Oncology and Stem Cell Transplantation, Columbia University Medical Center, New York, NY, USA
| | - Pawel Muranski
- Division of Pediatric Hematology/Oncology and Stem Cell Transplantation, Columbia University Medical Center, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Erin Hall
- Division of Pediatric Hematology/Oncology/Bone Marrow Transplant, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Michael J Eckrich
- Pediatric Transplant and Cellular Therapy, Levine Children's Hospital, Wake Forest School of Medicine, Charlotte, NC, USA
| | - Evan Shereck
- Division of Hematology and Oncology, Oregon Health & Science Univ, Portland, OR, USA
| | - Holly Miller
- Center for Cancer and Blood Disorders, Phoenix Children's/Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Ewelina Mamcarz
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rajni Agarwal
- Division of Pediatric Hematology/Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University, Palo Alto, CA, USA
| | - Satiro N De Oliveira
- Division of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mark T Vander Lugt
- Division of Pediatric Hematology/Oncology/BMT, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI, USA
| | - Christen L Ebens
- Division of Pediatric Blood and Marrow Transplant & Cellular Therapy, University of Minnesota MHealth Fairview Masonic Children's Hospital, Minneapolis, MI, USA
| | - Victor M Aquino
- Division of Pediatric Hematology/Oncology, University of Texas, Southwestern Medical Center Dallas, Dallas, TX, USA
| | - Jeffrey J Bednarski
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Julia Chu
- Division of Pediatric Allergy, Immunology, and BMT, University of California San Francisco, San Francisco, CA, USA
| | - Suhag Parikh
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jennifer Whangbo
- Cancer and Blood Disorders Center, Dana Farber Institute and Boston Children's Hospital, Boston, MA, USA
| | - Michail Lionakis
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Elias T Zambidis
- Pediatric Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Gourdine
- Cancer and blood disease institute, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Catherine M Bollard
- Center for Cancer & Immunology Research, Children's National Hospital, Washington, DC, USA
- GW Cancer Center, George Washington University School of Medicine, Washington, DC, USA
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Michael A Pulsipher
- Division of Pediatric Hematology/Oncology, Intermountain Primary Children's Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
26
|
Krueger MB, Bonifacius A, Dragon AC, Santamorena MM, Nashan B, Taubert R, Kalinke U, Maecker-Kolhoff B, Blasczyk R, Eiz-Vesper B. In Vitro Profiling of Commonly Used Post-transplant Immunosuppressants Reveals Distinct Impact on Antiviral T-cell Immunity Towards CMV. Transpl Int 2024; 37:12720. [PMID: 38655204 PMCID: PMC11035762 DOI: 10.3389/ti.2024.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
Infectious complications, including widespread human cytomegalovirus (CMV) disease, frequently occur after hematopoietic stem cell and solid organ transplantation due to immunosuppressive treatment causing impairment of T-cell immunity. Therefore, in-depth analysis of the impact of immunosuppressants on antiviral T cells is needed. We analyzed the impact of mTOR inhibitors sirolimus (SIR/S) and everolimus (EVR/E), calcineurin inhibitor tacrolimus (TAC/T), purine synthesis inhibitor mycophenolic acid (MPA/M), glucocorticoid prednisolone (PRE/P) and common double (T+S/E/M/P) and triple (T+S/E/M+P) combinations on antiviral T-cell functionality. T-cell activation and effector molecule production upon antigenic stimulation was impaired in presence of T+P and triple combinations. SIR, EVR and MPA exclusively inhibited T-cell proliferation, TAC inhibited activation and cytokine production and PRE inhibited various aspects of T-cell functionality including cytotoxicity. This was reflected in an in vitro infection model, where elimination of CMV-infected human fibroblasts by CMV-specific T cells was reduced in presence of PRE and all triple combinations. CMV-specific memory T cells were inhibited by TAC and PRE, which was also reflected with double (T+P) and triple combinations. EBV- and SARS-CoV-2-specific T cells were similarly affected. These results highlight the need to optimize immune monitoring to identify patients who may benefit from individually tailored immunosuppression.
Collapse
Affiliation(s)
- Markus Benedikt Krueger
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Anna Christina Dragon
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Maria Michela Santamorena
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Björn Nashan
- Clinic for Hepatopancreaticobiliary Surgery and Transplantation, First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Richard Taubert
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Britta Maecker-Kolhoff
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| |
Collapse
|
27
|
Aubry A, Demey B, Castelain S, Helle F, Brochot E. The value and complexity of studying cellular immunity against BK Polyomavirus in kidney transplant recipients. J Clin Virol 2024; 171:105656. [PMID: 38412681 DOI: 10.1016/j.jcv.2024.105656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
BK Polyomavirus is of particular concern for kidney transplant recipients, due to their immunosuppression. This problem is exacerbated by the high effectiveness of antirejection therapies, which also compromise the organism's ability to fight viral infections. The long-term risk is loss of graft function through BKPyV-associated nephropathy (BKPyVAN). The assessment of host immunity and its link to the control of viral infections is a major challenge. In terms of humoral immunity, researchers have highlighted the prognostic value of the pre-transplantation anti-BKPyV immunoglobulin G titer. However, humoral immunity alone does not guarantee viral clearance, and the correlation between the humoral response and the time course of the infection remains weak. In contrast, cellular immunity variables appear to be more closely associated with viral clearance, given that the cellular immune response to the kidney transplant is the main target of immunosuppressive treatments in recipients. However, the assessment of the cellular immune response to BK Polyomavirus is complex, and many details still need to be characterized. Here, we review the current state of knowledge about BKPyV cellular immunity, as well as the difficulties that may be encountered in studying it in kidney transplant recipient. This is an essential area of research for optimizing the management of transplant recipients and minimizing the risks associated with insidious BKPyV disease.
Collapse
Affiliation(s)
- Aurélien Aubry
- Department of Virology, Amiens University Medical Center, Amiens, France; Agents infectieux résistance et chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| | - Baptiste Demey
- Department of Virology, Amiens University Medical Center, Amiens, France; Agents infectieux résistance et chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| | - Sandrine Castelain
- Department of Virology, Amiens University Medical Center, Amiens, France; Agents infectieux résistance et chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| | - François Helle
- Agents infectieux résistance et chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France
| | - Etienne Brochot
- Department of Virology, Amiens University Medical Center, Amiens, France; Agents infectieux résistance et chimiothérapie Research Unit, UR4294, Jules Verne University of Picardie, Amiens, France.
| |
Collapse
|
28
|
Keller MD, Schattgen SA, Chandrakasan S, Allen EK, Jensen-Wachspress MA, Lazarski CA, Qayed M, Lang H, Hanley PJ, Tanna J, Pai SY, Parikh S, Berger SI, Gottschalk S, Pulsipher MA, Thomas PG, Bollard CM. Secondary bone marrow graft loss after third-party virus-specific T cell infusion: Case report of a rare complication. Nat Commun 2024; 15:2749. [PMID: 38553461 PMCID: PMC10980733 DOI: 10.1038/s41467-024-47056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/20/2023] [Indexed: 04/02/2024] Open
Abstract
Virus-specific T cells (VST) from partially-HLA matched donors have been effective for treatment of refractory viral infections in immunocompromised patients in prior studies with a good safety profile, but rare adverse events have been described. Here we describe a unique and severe adverse event of VST therapy in an infant with severe combined immunodeficiency, who receives, as part of a clinical trial (NCT03475212), third party VSTs for treating cytomegalovirus viremia following bone marrow transplantation. At one-month post-VST infusion, rejection of graft and reversal of chimerism is observed, as is an expansion of T cells exclusively from the VST donor. Single-cell gene expression and T cell receptor profiling demonstrate a narrow repertoire of predominantly activated CD4+ T cells in the recipient at the time of rejection, with the repertoire overlapping more with that of peripheral blood from VST donor than the infused VST product. This case thus demonstrates a rare but serious side effect of VST therapy.
Collapse
Affiliation(s)
- Michael D Keller
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Division of Allergy and Immunology, Children's National Hospital, Washington, DC, USA
- GW Cancer Center, George Washington University, Washington, DC, USA
| | - Stefan A Schattgen
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - E Kaitlynn Allen
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Christopher A Lazarski
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Muna Qayed
- Aflac Cancer and Blood Disorders Center, Children's Hospital of Atlanta, Atlanta, GA, USA
| | - Haili Lang
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- GW Cancer Center, George Washington University, Washington, DC, USA
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Jay Tanna
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Sung-Yun Pai
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Suhag Parikh
- Aflac Cancer and Blood Disorders Center, Children's Hospital of Atlanta, Atlanta, GA, USA
| | - Seth I Berger
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Stephen Gottschalk
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael A Pulsipher
- Division of Pediatric Hematology/Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.
- GW Cancer Center, George Washington University, Washington, DC, USA.
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA.
| |
Collapse
|
29
|
Kampouri E, Handley G, Hill JA. Human Herpes Virus-6 (HHV-6) Reactivation after Hematopoietic Cell Transplant and Chimeric Antigen Receptor (CAR)- T Cell Therapy: A Shifting Landscape. Viruses 2024; 16:498. [PMID: 38675841 PMCID: PMC11054085 DOI: 10.3390/v16040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/04/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
HHV-6B reactivation affects approximately half of all allogeneic hematopoietic cell transplant (HCT) recipients. HHV-6B is the most frequent infectious cause of encephalitis following HCT and is associated with pleiotropic manifestations in this setting, including graft-versus-host disease, myelosuppression, pneumonitis, and CMV reactivation, although the causal link is not always clear. When the virus inserts its genome in chromosomes of germ cells, the chromosomally integrated form (ciHHV6) is inherited by offspring. The condition of ciHHV6 is characterized by the persistent detection of HHV-6 DNA, often confounding diagnosis of reactivation and disease-this has also been associated with adverse outcomes. Recent changes in clinical practice in the field of cellular therapies, including a wider use of post-HCT cyclophosphamide, the advent of letermovir for CMV prophylaxis, and the rapid expansion of novel cellular therapies require contemporary epidemiological studies to determine the pathogenic role and spectrum of disease of HHV-6B in the current era. Research into the epidemiology and clinical significance of HHV-6B in chimeric antigen receptor T cell (CAR-T cell) therapy recipients is in its infancy. No controlled trials have determined the optimal treatment for HHV-6B. Treatment is reserved for end-organ disease, and the choice of antiviral agent is influenced by expected toxicities. Virus-specific T cells may provide a novel, less toxic therapeutic modality but is more logistically challenging. Preventive strategies are hindered by the high toxicity of current antivirals. Ongoing study is needed to keep up with the evolving epidemiology and impact of HHV-6 in diverse and expanding immunocompromised patient populations.
Collapse
Affiliation(s)
- Eleftheria Kampouri
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Guy Handley
- Department of Medicine, Division of Infectious Disease and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Joshua A. Hill
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA;
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
30
|
Arevalo-Romero JA, Chingaté-López SM, Camacho BA, Alméciga-Díaz CJ, Ramirez-Segura CA. Next-generation treatments: Immunotherapy and advanced therapies for COVID-19. Heliyon 2024; 10:e26423. [PMID: 38434363 PMCID: PMC10907543 DOI: 10.1016/j.heliyon.2024.e26423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in 2019 following prior outbreaks of coronaviruses like SARS and MERS in recent decades, underscoring their high potential of infectivity in humans. Insights from previous outbreaks of SARS and MERS have played a significant role in developing effective strategies to mitigate the global impact of SARS-CoV-2. As of January 7, 2024, there have been 774,075,242 confirmed cases of COVID-19 worldwide. To date, 13.59 billion vaccine doses have been administered, and there have been 7,012,986 documented fatalities (https://www.who.int/) Despite significant progress in addressing the COVID-19 pandemic, the rapid evolution of SARS-CoV-2 challenges human defenses, presenting ongoing global challenges. The emergence of new SARS-CoV-2 lineages, shaped by mutation and recombination processes, has led to successive waves of infections. This scenario reveals the need for next-generation vaccines as a crucial requirement for ensuring ongoing protection against SARS-CoV-2. This demand calls for formulations that trigger a robust adaptive immune response without leading the acute inflammation linked with the infection. Key mutations detected in the Spike protein, a critical target for neutralizing antibodies and vaccine design -specifically within the Receptor Binding Domain region of Omicron variant lineages (B.1.1.529), currently dominant worldwide, have intensified concerns due to their association with immunity evasion from prior vaccinations and infections. As the world deals with this evolving threat, the narrative extends to the realm of emerging variants, each displaying new mutations with implications that remain largely misunderstood. Notably, the JN.1 Omicron lineage is gaining global prevalence, and early findings suggest it stands among the immune-evading variants, a characteristic attributed to its mutation L455S. Moreover, the detrimental consequences of the novel emergence of SARS-CoV-2 lineages bear a particularly critical impact on immunocompromised individuals and older adults. Immunocompromised individuals face challenges such as suboptimal responses to COVID-19 vaccines, rendering them more susceptible to severe disease. Similarly, older adults have an increased risk of severe disease and the presence of comorbid conditions, find themselves at a heightened vulnerability to develop COVID-19 disease. Thus, recognizing these intricate factors is crucial for effectively tailoring public health strategies to protect these vulnerable populations. In this context, this review aims to describe, analyze, and discuss the current progress of the next-generation treatments encompassing immunotherapeutic approaches and advanced therapies emerging as complements that will offer solutions to counter the disadvantages of the existing options. Preliminary outcomes show that these strategies target the virus and address the immunomodulatory responses associated with COVID-19. Furthermore, the capacity to promote tissue repair has been demonstrated, which can be particularly noteworthy for immunocompromised individuals who stand as vulnerable actors in the global landscape of coronavirus infections. The emerging next-generation treatments possess broader potential, offering protection against a wide range of variants and enhancing the ability to counter the impact of the constant evolution of the virus. Furthermore, advanced therapies are projected as potential treatment alternatives for managing Chronic Post-COVID-19 syndromeand addressing its associated long-term complications.
Collapse
Affiliation(s)
- Jenny Andrea Arevalo-Romero
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Sandra M. Chingaté-López
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Bernardo Armando Camacho
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Carlos Javier Alméciga-Díaz
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Cesar A. Ramirez-Segura
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| |
Collapse
|
31
|
Wistinghausen B, Toner K, Barkauskas DA, Jerkins LP, Kinoshita H, Chansky P, Pezzella G, Saguilig L, Hayashi RJ, Abhyankar H, Scull B, Karri V, Tanna J, Hanley P, Hermiston ML, Allen CE, Bollard CM. Durable immunity to EBV after rituximab and third-party LMP-specific T cells: a Children's Oncology Group study. Blood Adv 2024; 8:1116-1127. [PMID: 38163318 PMCID: PMC10909726 DOI: 10.1182/bloodadvances.2023010832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 01/03/2024] Open
Abstract
ABSTRACT Posttransplant lymphoproliferative disease (PTLD) in pediatric solid organ transplant (SOT) recipients is characterized by uncontrolled proliferation of Epstein-Barr virus-infected (EBV+) B cells due to decreased immune function. This study evaluated the feasibility, safety, clinical and immunobiological outcomes in pediatric SOT recipients with PTLD treated with rituximab and third-party latent membrane protein-specific T cells (LMP-TCs). Newly diagnosed (ND) patients without complete response to rituximab and all patients with relapsed/refractory (R/R) disease received LMP-TCs. Suitable LMP-TC products were available for all eligible subjects. Thirteen of 15 patients who received LMP-TCs were treated within the prescribed 14-day time frame. LMP-TC therapy was generally well tolerated. Notable adverse events included 3 episodes of rejection in cardiac transplant recipients during LMP-TC therapy attributed to subtherapeutic immunosuppression and 1 episode of grade 3 cytokine release syndrome. Clinical outcomes were associated with disease severity. Overall response rate (ORR) after LMP-TC cycle 1 was 70% (7/10) for the ND cohort and 20% (1/5) for the R/R cohort. For all cohorts combined, the best ORR for LMP-TC cycles 1 and 2 was 53% and the 2-year overall survival was 70.7%. vβT-cell receptor sequencing showed persistence of adoptively transferred third-party LMP-TCs for up to 8 months in the ND cohort. This study establishes the feasibility of administering novel T-cell therapies in a cooperative group clinical trial and demonstrates the potential for positive outcomes without chemotherapy for ND patients with PTLD. This trial was registered at www.clinicaltrials.gov as #NCT02900976 and at the Children's Oncology Group as ANHL1522.
Collapse
Affiliation(s)
- Birte Wistinghausen
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Keri Toner
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Donald A. Barkauskas
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA
- Children’s Oncology Group Statistics and Data Center, Monrovia, CA
| | - Lauren P Jerkins
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Hannah Kinoshita
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
- The George Washington University School of Medicine and Health Sciences, Washington, DC
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Pamela Chansky
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Gloria Pezzella
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
| | - Lauren Saguilig
- Children’s Oncology Group Statistics and Data Center, Monrovia, CA
| | - Robert J. Hayashi
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO
| | - Harshal Abhyankar
- Baylor College of Medicine, Texas Children’s Hospital Cancer Center, Houston, TX
| | - Brooks Scull
- Baylor College of Medicine, Texas Children’s Hospital Cancer Center, Houston, TX
| | | | - Jay Tanna
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
| | - Patrick Hanley
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Michelle L. Hermiston
- Department of Pediatrics, Benioff Children’s Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - Carl E. Allen
- Baylor College of Medicine, Texas Children’s Hospital Cancer Center, Houston, TX
| | - Catherine M. Bollard
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
32
|
Rudilla F, Carrasco-Benso MP, Pasamar H, López-Montañés M, Andrés-Rozas M, Tomás-Marín M, Company D, Moya C, Larrea L, Guerreiro M, Barba P, Arbona C, Querol S. Development and characterization of a cell donor registry for virus-specific T cell manufacture in a blood bank. HLA 2024; 103:e15419. [PMID: 38450972 DOI: 10.1111/tan.15419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/19/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024]
Abstract
Adoptive cell therapy using virus-specific T cells (VST) is a strategy for treating common opportunistic viral infections after transplantation, particularly when these infections do not resolve through antiviral drug therapy. The availability of third-party healthy donors allows for the immediate use of cells for allogeneic therapy in cases where patients lack an appropriate donor. Here, we present the creation of a cell donor registry of human leukocyte antigen (HLA)-typed blood donors, REDOCEL, a strategic initiative to ensure the availability of compatible cells for donation when needed. Currently, the registry consists of 597 healthy donors with a median age of 29 years, 54% of whom are women. The most represented blood groups were A positive and O positive, with 36.52% and 34.51%, respectively. Also, donors were screened for cytomegalovirus (CMV) and Epstein-Barr virus (EBV). Almost 65% of donors were CMV-seropositive, while less than 5% were EBV-seronegative. Of the CMV-seropositive donors, 98% were also EBV-seropositive. High-resolution HLA-A, -B, -C, -DRB1 and -DQB1 allele and haplotype frequencies were determined in the registry. Prevalent HLA alleles and haplotypes were well represented to ensure donor-recipient HLA-matching, including alleles reported to present viral immunodominant epitopes. Since the functional establishment of REDOCEL, in May 2019, 87 effective donations have been collected, and the effective availability of donors with the first call has been greater than 75%. Thus, almost 89% of patients receiving an effective donation had available at least 5/10 HLA-matched cell donors (HLA-A, -B, -C, -DRB1, and -DQB1). To summarize, based on our experience, a cell donor registry from previously HLA-typed blood donors is a useful tool for facilitating access to VST therapy.
Collapse
Affiliation(s)
- Francesc Rudilla
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma of Barcelona (VHIR-UAB), Barcelona, Spain
- Immunogenetics and Histocompatibility Laboratory, Blood and Tissue Bank, Barcelona, Spain
| | - María Paz Carrasco-Benso
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (Fisabio), Valencia, Spain
| | - Helena Pasamar
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma of Barcelona (VHIR-UAB), Barcelona, Spain
- Advanced & Cell Therapy Services, Blood and Tissue Bank, Barcelona, Spain
| | - María López-Montañés
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma of Barcelona (VHIR-UAB), Barcelona, Spain
- Advanced & Cell Therapy Services, Blood and Tissue Bank, Barcelona, Spain
| | - María Andrés-Rozas
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma of Barcelona (VHIR-UAB), Barcelona, Spain
- Advanced & Cell Therapy Services, Blood and Tissue Bank, Barcelona, Spain
| | - Maria Tomás-Marín
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma of Barcelona (VHIR-UAB), Barcelona, Spain
- Advanced & Cell Therapy Services, Blood and Tissue Bank, Barcelona, Spain
| | - Desirée Company
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (Fisabio), Valencia, Spain
| | - Cristina Moya
- Blood Donors Management Department, Blood and Tissue Bank, Barcelona, Spain
| | - Luis Larrea
- Centro de Transfusión de la Comunitat Valenciana, Valencia, Spain
| | - Manuel Guerreiro
- Department of Hematology, La Fe Polytechnic and University Hospital, Valencia, Spain
| | - Pere Barba
- Hospital Vall d'Hebron, Barcelona, Spain
| | - Cristina Arbona
- Centro de Transfusión de la Comunitat Valenciana, Valencia, Spain
| | - Sergio Querol
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Universitat Autònoma of Barcelona (VHIR-UAB), Barcelona, Spain
- Advanced & Cell Therapy Services, Blood and Tissue Bank, Barcelona, Spain
| |
Collapse
|
33
|
Green A, Rubinstein JD, Grimley M, Pfeiffer T. Virus-Specific T Cells for the Treatment of Systemic Infections Following Allogeneic Hematopoietic Cell and Solid Organ Transplantation. J Pediatric Infect Dis Soc 2024; 13:S49-S57. [PMID: 38417086 DOI: 10.1093/jpids/piad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 03/01/2024]
Abstract
Viral infections are a major source of morbidity and mortality in the context of immune deficiency and immunosuppression following allogeneic hematopoietic cell (allo-HCT) and solid organ transplantation (SOT). The pharmacological treatment of viral infections is challenging and often complicated by limited efficacy, the development of resistance, and intolerable side effects. A promising strategy to rapidly restore antiviral immunity is the adoptive transfer of virus-specific T cells (VST). This therapy involves the isolation and ex vivo expansion or direct selection of antigen-specific T cells from healthy seropositive donors, followed by infusion into the patient. This article provides a practical guide to VST therapy by reviewing manufacturing techniques, donor selection, and treatment indications. The safety and efficacy data of VSTs gathered in clinical trials over nearly 30 years is summarized. Current challenges and limitations are discussed, as well as opportunities for further research and development.
Collapse
Affiliation(s)
- Abby Green
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeremy D Rubinstein
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Michael Grimley
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Thomas Pfeiffer
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
34
|
Zhang X, Huang RH. [Exploration and practice of novel models of cellular therapy and hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:105-108. [PMID: 38604784 PMCID: PMC11078672 DOI: 10.3760/cma.j.cn121090-20230928-00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Indexed: 04/13/2024]
Abstract
Hematopoietic stem cell transplantation provides an effective cure for various hematological diseases, especially malignant hematological diseases, its treatment system has been continuously optimized, the source of donors has been expanding, the indications have been expanding, and the therapeutic effect has also made breakthroughs to a certain extent. At present, the status of hematopoietic stem cell transplantation technology in most hematological diseases is still unshakable, but the recurrence of the primary disease and complications related to hematopoietic stem cell transplantation are still two major clinical challenges that affect the long-term survival and quality of life of patients. Cell therapy represented by chimeric antigen receptor T (CAR-T) has made breakthrough progress in the treatment of refractory/recurrent B-cell malignancies. Compared with traditional drugs, cell therapy has unique in vivo metabolic characteristics, relying on immune specific recognition and the repair ability of stem cells. It is currently emerging in the treatment of blood tumors and the management of transplant complications. Multiple clinical studies have preliminarily demonstrated a new diagnostic and therapeutic model combining cell therapy with hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- X Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037, China Jinfeng Laboratory, Chongqing 400037, China
| | - R H Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing 400037, China
| |
Collapse
|
35
|
Thomas SJ, Ouellette CP. Viral meningoencephalitis in pediatric solid organ or hematopoietic cell transplant recipients: a diagnostic and therapeutic approach. Front Pediatr 2024; 12:1259088. [PMID: 38410764 PMCID: PMC10895047 DOI: 10.3389/fped.2024.1259088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
Neurologic complications, both infectious and non-infectious, are frequent among hematopoietic cell transplant (HCT) and solid organ transplant (SOT) recipients. Up to 46% of HCT and 50% of SOT recipients experience a neurological complication, including cerebrovascular accidents, drug toxicities, as well as infections. Defects in innate, adaptive, and humoral immune function among transplant recipients predispose to opportunistic infections, including central nervous system (CNS) disease. CNS infections remain uncommon overall amongst HCT and SOT recipients, compromising approximately 1% of total cases among adult patients. Given the relatively lower number of pediatric transplant recipients, the incidence of CNS disease amongst in this population remains unknown. Although infections comprise a small percentage of the neurological complications that occur post-transplant, the associated morbidity and mortality in an immunosuppressed state makes it imperative to promptly evaluate and aggressively treat a pediatric transplant patient with suspicion for viral meningoencephalitis. This manuscript guides the reader through a broad infectious and non-infectious diagnostic differential in a transplant recipient presenting with altered mentation and fever and thereafter, elaborates on diagnostics and management of viral meningoencephalitis. Hypothetical SOT and HCT patient cases have also been constructed to illustrate the diagnostic and management process in select viral etiologies. Given the unique risk for various opportunistic viral infections resulting in CNS disease among transplant recipients, the manuscript will provide a contemporary review of the epidemiology, risk factors, diagnosis, and management of viral meningoencephalitis in these patients.
Collapse
Affiliation(s)
- Sanya J. Thomas
- Host Defense Program, Section of Infectious Diseases, Nationwide Children’s Hospital, Columbus, OH, United States
- Division of Infectious Diseases, Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, United States
| | - Christopher P. Ouellette
- Host Defense Program, Section of Infectious Diseases, Nationwide Children’s Hospital, Columbus, OH, United States
- Division of Infectious Diseases, Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
36
|
Gopcsa L, Réti M, Andrikovics H, Bobek I, Bekő G, Bogyó J, Ceglédi A, Dobos K, Giba-Kiss L, Jankovics I, Kis O, Lakatos B, Mathiász D, Meggyesi N, Miskolczi G, Németh N, Paksi M, Riczu A, Sinkó J, Szabó B, Szilvási A, Szlávik J, Tasnády S, Reményi P, Vályi-Nagy I. Effective virus-specific T-cell therapy for high-risk SARS-CoV-2 infections in hematopoietic stem cell transplant recipients: initial case studies and literature review. GeroScience 2024; 46:1083-1106. [PMID: 37414968 PMCID: PMC10828167 DOI: 10.1007/s11357-023-00858-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
The COVID-19 pandemic has exacerbated mortality rates among immunocompromised patients, accentuating the need for novel, targeted therapies. Transplant recipients, with their inherent immune vulnerabilities, represent a subgroup at significantly heightened risk. Current conventional therapies often demonstrate limited effectiveness in these patients, calling for innovative treatment approaches. In immunocompromised transplant recipients, several viral infections have been successfully treated by adoptive transfer of virus-specific T-cells (VST). This paper details the successful application of SARS-CoV-2-specific memory T-cell therapy, produced by an interferon-γ cytokine capture system (CliniMACS® Prodigy device), in three stem cell transplant recipients diagnosed with COVID-19 (case 1: alpha variant, cases 2 and 3: delta variants). These patients exhibited persistent SARS-CoV-2 PCR positivity accompanied by bilateral pulmonary infiltrates and demonstrated only partial response to standard treatments. Remarkably, all three patients recovered and achieved viral clearance within 3 to 9 weeks post-VST treatment. Laboratory follow-up investigations identified an increase in SARS-CoV-2-specific T-cells in two of the cases. A robust anti-SARS-CoV-2 S (S1/S2) IgG serological response was also recorded, albeit with varying titers. The induction of memory T-cells within the CD4 + compartment was confirmed, and previously elevated interleukin-6 (IL-6) and IL-8 levels normalized post-VST therapy. The treatment was well tolerated with no observed adverse effects. While the need for specialized equipment and costs associated with VST therapy present potential challenges, the limited treatment options currently available for COVID-19 within the allogeneic stem cell transplant population, combined with the risk posed by emerging SARS-CoV-2 mutations, underscore the potential of VST therapy in future clinical practice. This therapeutic approach may be particularly beneficial for elderly patients with multiple comorbidities and weakened immune systems.
Collapse
Affiliation(s)
- László Gopcsa
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, 1 Nagyvárad Square, P.B. 1097, Budapest, Hungary.
| | - Marienn Réti
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, 1 Nagyvárad Square, P.B. 1097, Budapest, Hungary
| | - Hajnalka Andrikovics
- Laboratory of Molecular Genetics, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Ilona Bobek
- Department of Intensive Care Unit, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gabriella Bekő
- Department of Central Laboratory, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Judit Bogyó
- Hungarian National Blood Transfusion Service, Karolina Út 19-21, 1113, Budapest, Hungary
| | - Andrea Ceglédi
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, 1 Nagyvárad Square, P.B. 1097, Budapest, Hungary
| | - Katalin Dobos
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, 1 Nagyvárad Square, P.B. 1097, Budapest, Hungary
| | - Laura Giba-Kiss
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, 1 Nagyvárad Square, P.B. 1097, Budapest, Hungary
| | - István Jankovics
- National Public Health and Medical Officer Service, Albert Florian Út 2-6, 1097, Budapest, Hungary
| | - Orsolya Kis
- Department of Intensive Care Unit, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Botond Lakatos
- Department of Infectious Diseases, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Dóra Mathiász
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, 1 Nagyvárad Square, P.B. 1097, Budapest, Hungary
| | - Nóra Meggyesi
- Laboratory of Molecular Genetics, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gottfried Miskolczi
- Department of Central Laboratory, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Noémi Németh
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, 1 Nagyvárad Square, P.B. 1097, Budapest, Hungary
| | - Melinda Paksi
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, 1 Nagyvárad Square, P.B. 1097, Budapest, Hungary
| | - Alexandra Riczu
- Department of Infectious Diseases, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - János Sinkó
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, 1 Nagyvárad Square, P.B. 1097, Budapest, Hungary
| | - Bálint Szabó
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, 1 Nagyvárad Square, P.B. 1097, Budapest, Hungary
| | - Anikó Szilvási
- Hungarian National Blood Transfusion Service, Karolina Út 19-21, 1113, Budapest, Hungary
| | - János Szlávik
- Department of Infectious Diseases, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Szabolcs Tasnády
- Department of Central Laboratory, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Péter Reményi
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, 1 Nagyvárad Square, P.B. 1097, Budapest, Hungary
| | - István Vályi-Nagy
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern-Pest, National Institute of Hematology and Infectious Diseases, 1 Nagyvárad Square, P.B. 1097, Budapest, Hungary
| |
Collapse
|
37
|
O’Reilly RJ, Prockop S, Oved JH. Virus-specific T-cells from third party or transplant donors for treatment of EBV lymphoproliferative diseases arising post hematopoietic cell or solid organ transplantation. Front Immunol 2024; 14:1290059. [PMID: 38274824 PMCID: PMC10808771 DOI: 10.3389/fimmu.2023.1290059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
EBV+ lymphomas constitute a significant cause of morbidity and mortality in recipients of allogeneic hematopoietic cell (HCT) and solid organ transplants (SOT). Phase I and II trials have shown that in HCT recipients, adoptive transfer of EBV-specific T-cells from the HCT donor can safely induce durable remissions of EBV+ lymphomas including 70->90% of patients who have failed to respond to treatment with Rituximab. More recently, EBV-specific T-cells generated from allogeneic 3rd party donors have also been shown to induce durable remission of EBV+ lymphomas in Rituximab refractory HCT and SOT recipients. In this review, we compare results of phase I and II trials of 3rd party and donor derived EBV-specific T-cells. We focus on the attributes and limitations of each product in terms of access, safety, responses achieved and durability. The limited data available regarding donor and host factors contributing to T cell persistence is also described. We examine factors contributing to treatment failures and approaches to prevent or salvage relapse. Lastly, we summarize strategies to further improve results for virus-specific immunotherapies for post-transplant EBV lymphomas.
Collapse
Affiliation(s)
- Richard J. O’Reilly
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Susan Prockop
- Pediatric Stem Cell Transplantation, Boston Children’s Hospital/Dana-Farber Cancer Institute, Boston, MA, United States
| | - Joseph H. Oved
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
38
|
Rocha FA, Silveira CRF, Dos Santos AF, Stefanini ACB, Hamerschlak N, Marti LC. Development of a highly cytotoxic, clinical-grade virus-specific T cell product for adoptive T cell therapy. Cell Immunol 2024; 395-396:104795. [PMID: 38101075 DOI: 10.1016/j.cellimm.2023.104795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
At present, recipients of allogeneic hematopoietic stem-cells are still suffering from recurrent infections after transplantation. Infusion of virus-specific T cells (VST) post-transplant reportedly fights several viruses without increasing the risk of de novo graft-versus-host disease. This study targeted cytomegalovirus (CMV) for the development of an innovative approach for generating a very specific VST product following Good Manufacturing Practices (GMP) guidelines. We used a sterile disposable compartment named the Leukoreduction System Chamber (LRS-chamber) from the apheresis platelet donation kit as the starting material, which has demonstrated high levels of T cells. Using a combination of IL-2 and IL-7 we could improve expansion of CMV-specific T cells. Moreover, by developing and establishing a new product protocol, we were able to stimulate VST proliferation and favors T cell effector memory profile. The expanded VST were enriched in a closed automated system, creating a highly pure anti-CMV product, which was pre-clinically tested for specificity in vitro and for persistence, biodistribution, and toxicity in vivo using NOD scid mice. Our results demonstrated very specific VST, able to secrete high amounts of interferon only in the presence of cells infected by the human CMV strain (AD169), and innocuous to cells partially HLA compatible without viral infection.
Collapse
Affiliation(s)
- Fernanda Agostini Rocha
- Hospital Israelita Albert Einstein, Department of Experimental Research, Rua Comendador Elias Jafet, 755 Zip code: 05653 000, São Paulo, SP, Brazil
| | - Caio Raony Farina Silveira
- Hospital Israelita Albert Einstein, Department of Experimental Research, Rua Comendador Elias Jafet, 755 Zip code: 05653 000, São Paulo, SP, Brazil
| | - Ancély Ferreira Dos Santos
- Hospital Israelita Albert Einstein, Department of Experimental Research, Rua Comendador Elias Jafet, 755 Zip code: 05653 000, São Paulo, SP, Brazil
| | - Ana Carolina Buzzo Stefanini
- Hospital Israelita Albert Einstein, Department of Experimental Research, Rua Comendador Elias Jafet, 755 Zip code: 05653 000, São Paulo, SP, Brazil
| | - Nelson Hamerschlak
- Hospital Israelita Albert Einstein, Department of Bone Marrow Transplant, Avenida Albert Einstein, 627 Zip code: 05652 000, São Paulo, SP, Brazil
| | - Luciana Cavalheiro Marti
- Hospital Israelita Albert Einstein, Department of Experimental Research, Rua Comendador Elias Jafet, 755 Zip code: 05653 000, São Paulo, SP, Brazil.
| |
Collapse
|
39
|
Klejmont LM, Mo X, Milner J, Harrison L, Morris E, van de Ven C, Cairo MS. Risk Factors Associated with Survival Following Ganciclovir Prophylaxis through Day +100 in Cytomegalovirus At-Risk Pediatric Allogeneic Stem Cell Transplantation Recipients: Development of Cytomegalovirus Viremia Associated with Significantly Decreased 1-Year Survival. Transplant Cell Ther 2024; 30:103.e1-103.e8. [PMID: 37806447 DOI: 10.1016/j.jtct.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Cytomegalovirus (CMV) reactivation is a major cause of morbidity and nonrelapse mortality (NRM) in pediatric allogeneic stem cell transplantation (alloSCT) recipients. Approximately 80% of CMV seropositive alloHCT recipients will experience CMV reactivation without prophylaxis. The impacts of ganciclovir prophylaxis and subsequent CMV viremia on 1-year survival and 1-year NRM are unknown. The primary objective of this study was to determine the effect of CMV viremia on the probability of 1-year survival and 1-year NRM in pediatric alloSCT recipients receiving 100 days of ganciclovir prophylaxis. The secondary objective was to determine the effect of other risk factors on 1-year survival and 1-year NRM. All patients age 0 to 26 years who underwent alloSCT between June 2011 and May 2020 and received ganciclovir prophylaxis for 100 days at Westchester Medical Center, an academic medical center, were analyzed. Ganciclovir was administered to at-risk alloSCT recipients (donor and or recipient CMV+ serostatus) as 5 mg/kg every 12 hours from the first day of conditioning through day -1 (recipient CMV+ only) followed by 6 mg/kg every 24 hours on Monday through Friday beginning on the day of an absolute neutrophil count >750/mm3 and continuing through day +100. National Cancer Institute Common Terminology Criteria for Adverse Events 5.0 criteria were used to grade toxicity. NRM was analyzed using competing survival analysis with relapse death as a competing event. The log-rank and Gray tests were performed to compare the 1-year survival probabilities and NRM cumulative incidence between patients who experienced CMV viremia post-alloSCT and those who did not. Univariate Cox regression analysis was performed for the following risk factors: CMV viremia, donor source, sex, malignant disease, disease risk index, conditioning intensity, receipt of rabbit antithymocyte globulin (rATG)/alemtuzumab, graft-versus-host disease (GVHD) prophylaxis, CMV donor/recipient serostatus, grade II-IV acute GVHD, and grade 3/4 neutropenia necessitating discontinuation of ganciclovir, treating the last 3 factors as time-dependent covariates. Those with P values < .2 were included in the multivariate Cox regression analysis. Eighty-four alloSCT recipients (41 males, 43 females; median age, 10.8 years [range, .4 to 24.4 years]) were analyzed. Multivariate analysis showed significantly lower 1-year survival and significantly higher 1-year NRM in patients who developed CMV viremia compared to those who did not (P = .0036). No other risk factors were significantly associated with 1-year survival or 1-year NRM. One-year survival was significantly decreased and 1-year NRM was significantly increased in pediatric alloSCT recipients who developed CMV viremia following ganciclovir prophylaxis. No other risk factors were found to be associated with 1-year survival or 1-year NRM. Alternative CMV prophylaxis regimens that reduce CMV viremia should be investigated in pediatric alloSCT recipients at risk for CMV infection.
Collapse
Affiliation(s)
- Liana M Klejmont
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jordan Milner
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Lauren Harrison
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Erin Morris
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | | | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York; Department of Medicine, New York Medical College, Valhalla, New York; Department of Pathology, New York Medical College, Valhalla, New York; Department of Microbiology & Immunology, New York Medical College, Valhalla, New York; Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York.
| |
Collapse
|
40
|
Leroyer EH, Petitpain N, Morisset S, Neven B, Castelle M, Winter S, Souchet L, Morel V, Le Cann M, Fahd M, Yacouben K, Mechinaud F, Ouachée-Chardin M, Renard C, Wallet HL, Angoso M, Jubert C, Chevallier P, Léger A, Rialland F, Dhedin N, Robin C, Maury S, Beckerich F, Beauvais D, Cluzeau T, Loschi M, Fernster A, Bittencourt MDC, Cravat M, Bilger K, Clément L, Decot V, Gauthier M, Legendre A, Larghero J, Ouedrani A, Martin-Blondel G, Pochon C, Reppel L, Rouard H, Nguyen-Quoc S, Dalle JH, D'Aveni M, Bensoussan D. On behalf of the SFGM-TC: Real-life use of third-party virus-specific T-cell transfer in immunocompromised transplanted patients. Hemasphere 2024; 8:e40. [PMID: 38434523 PMCID: PMC10878191 DOI: 10.1002/hem3.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/14/2023] [Indexed: 03/05/2024] Open
Affiliation(s)
| | - Nadine Petitpain
- Regional Centre of Pharmacovigilance Nancy University Hospital Vandoeuvre-les-Nancy France
| | | | - Bénédicte Neven
- Assistance Publique des Hôpitaux de Paris, Department of Pediatric Immuno-hematology Necker Children Hospital Paris France
| | - Martin Castelle
- Assistance Publique des Hôpitaux de Paris, Department of Pediatric Immuno-hematology Necker Children Hospital Paris France
| | - Sarah Winter
- Assistance Publique des Hôpitaux de Paris, Department of Pediatric Immuno-hematology Necker Children Hospital Paris France
| | - Laetitia Souchet
- Assistance Publique des Hôpitaux de Paris, Department of Hematology La Pitié-Salpêtrière Hospital Paris France
| | - Véronique Morel
- Assistance Publique des Hôpitaux de Paris, Department of Hematology La Pitié-Salpêtrière Hospital Paris France
| | - Marie Le Cann
- Assistance Publique des Hôpitaux de Paris, Department of Hematology La Pitié-Salpêtrière Hospital Paris France
| | - Mony Fahd
- Department of Pediatric Hematology and Immunology, Robert Debré Academic Hospital GHU APHP Nord Université Paris Cité Paris France
| | - Karima Yacouben
- Department of Pediatric Hematology and Immunology, Robert Debré Academic Hospital GHU APHP Nord Université Paris Cité Paris France
| | - Françoise Mechinaud
- Department of Pediatric Hematology and Immunology, Robert Debré Academic Hospital GHU APHP Nord Université Paris Cité Paris France
| | - Marie Ouachée-Chardin
- Institute of Pediatric Hematology and Oncology (IHOPe) Hospices Civils de Lyon and Claude Bernard University Lyon France
| | - Cécile Renard
- Institute of Pediatric Hematology and Oncology (IHOPe) Hospices Civils de Lyon and Claude Bernard University Lyon France
| | - Hélène Labussière Wallet
- Institute of Pediatric Hematology and Oncology (IHOPe) Hospices Civils de Lyon and Claude Bernard University Lyon France
| | - Marie Angoso
- Department of Pediatric Hematology Oncology University Hospital of Bordeaux Bordeaux France
| | - Charlotte Jubert
- Department of Pediatric Hematology Oncology University Hospital of Bordeaux Bordeaux France
| | | | - Alexandra Léger
- Department of Pediatric Hematology, Hôpital Mère-Enfant Nantes University Hospital Nantes France
| | - Fanny Rialland
- Department of Pediatric Hematology, Hôpital Mère-Enfant Nantes University Hospital Nantes France
| | - Nathalie Dhedin
- Assistance Publique des Hôpitaux de Paris, Department of Hematology Saint-Louis Hospital Paris France
| | - Christine Robin
- Assistance Publique des Hôpitaux de Paris, Department of Hematology Henri Mondor Hospital and Université Créteil France
| | - Sébastien Maury
- Assistance Publique des Hôpitaux de Paris, Department of Hematology Henri Mondor Hospital and Université Créteil France
| | - Florence Beckerich
- Assistance Publique des Hôpitaux de Paris, Department of Hematology Henri Mondor Hospital and Université Créteil France
| | - David Beauvais
- Department of Hematology, Allogeneic Stem Cell Transplantation Unit Lille University Hospital Lille France
| | - Thomas Cluzeau
- Department of Hematology, Université Cote d'Azur Nice University Hospital Nice France
| | - Michaël Loschi
- Department of Hematology, Université Cote d'Azur Nice University Hospital Nice France
| | - Alina Fernster
- Hôpital Universitaire des Enfants de la Reine Fabiola, Department of Pediatric Hematology Brussels University Hospital Brussels Belgium
| | | | - Maxime Cravat
- Cytometry Platform Nancy University Hospital Vandoeuvre-les-Nancy France
| | - Karin Bilger
- INCANS Department of Hematology Strasbourg France
| | - Laurence Clément
- Department of Hematology Bordeaux University Hospital Bordeaux France
| | - Véronique Decot
- Cell Therapy Unit Nancy University Hospital Vandoeuvre-les-Nancy France
| | - Mélanie Gauthier
- Cell Therapy Unit Nancy University Hospital Vandoeuvre-les-Nancy France
| | | | - Jérôme Larghero
- Assistance Publique des Hôpitaux de Paris, Cell Therapy Unit, INSERM CICBT 501 Saint-Louis Hospital Paris France
| | - Amani Ouedrani
- Assistance Publique des Hôpitaux de Paris, Department of Immunology and Histocompatibily Saint-Louis Hospital Paris France
| | - Guillaume Martin-Blondel
- Department of Infectious and Tropical Diseases, and Toulouse Institute for Infectious and Inflammatory Diseases, INSERM UMR1291-CNRS UMR5051-Université Toulouse III Toulouse University Hospital Toulouse France
| | - Cécile Pochon
- Department of Pediatric Hematology Nancy University Hospital Vandoeuvre-les-Nancy France
- CNRS Unit UMR 7365 IMoPA Lorraine University Vandoeuvre-les-Nancy France
| | - Loïc Reppel
- Cell Therapy Unit Nancy University Hospital Vandoeuvre-les-Nancy France
- CNRS Unit UMR 7365 IMoPA Lorraine University Vandoeuvre-les-Nancy France
| | | | - Stéphanie Nguyen-Quoc
- Assistance Publique des Hôpitaux de Paris, Department of Hematology La Pitié-Salpêtrière Hospital Paris France
| | - Jean-Hugues Dalle
- Department of Pediatric Hematology and Immunology, Robert Debré Academic Hospital GHU APHP Nord Université Paris Cité Paris France
| | - Maud D'Aveni
- Department of Hematology Nancy University Hospital Vandoeuvre-les-Nancy France
- CNRS Unit UMR 7365 IMoPA Lorraine University Vandoeuvre-les-Nancy France
| | - Danièle Bensoussan
- Cell Therapy Unit Nancy University Hospital Vandoeuvre-les-Nancy France
- CNRS Unit UMR 7365 IMoPA Lorraine University Vandoeuvre-les-Nancy France
| |
Collapse
|
41
|
Koukoulias K, Papayanni PG, Jones J, Kuvalekar M, Watanabe A, Velazquez Y, Gilmore S, Papadopoulou A, Leen AM, Vasileiou S. Assessment of the cytolytic potential of a multivirus-targeted T cell therapy using a vital dye-based, flow cytometric assay. Front Immunol 2023; 14:1299512. [PMID: 38187380 PMCID: PMC10766817 DOI: 10.3389/fimmu.2023.1299512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Reliable and sensitive characterization assays are important determinants of the successful clinical translation of immunotherapies. For the assessment of cytolytic potential, the chromium 51 (51Cr) release assay has long been considered the gold standard for testing effector cells. However, attaining the approvals to access and use radioactive isotopes is becoming increasingly complex, while technical aspects [i.e. sensitivity, short (4-6 hours) assay duration] may lead to suboptimal performance. This has been the case with our ex vivo expanded, polyclonal (CD4+ and CD8+) multivirus-specific T cell (multiVST) lines, which recognize 5 difficult-to-treat viruses [Adenovirus (AdV), BK virus (BKV), cytomegalovirus (CMV), Epstein Barr virus (EBV), and human herpes virus 6 (HHV6)] and when administered to allogeneic hematopoietic stem cell (HCT) or solid organ transplant (SOT) recipients have been associated with clinical benefit. However, despite mediating potent antiviral effects in vivo, capturing in vitro cytotoxic potential has proven difficult in a traditional 51Cr release assay. Now, in addition to cytotoxicity surrogates, including CD107a and Granzyme B, we report on an alternative, vital dye -based, flow cytometric platform in which superior sensitivity and prolonged effector:target co-culture duration enabled the reliable detection of both CD4- and CD8-mediated in vitro cytolytic activity against viral targets without non-specific effects.
Collapse
Affiliation(s)
- Kiriakos Koukoulias
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| | - Penelope G. Papayanni
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| | - Julia Jones
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| | - Manik Kuvalekar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| | - Ayumi Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| | - Yovana Velazquez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| | | | - Anastasia Papadopoulou
- Hematology Department- Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, Thessaloniki, Greece
| | - Ann M. Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| | - Spyridoula Vasileiou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
42
|
Yang D, Yao Y, Sun Y, Jiang E. Refractory cytomegalovirus infections in Chinese patients receiving allogeneic hematopoietic cell transplantation: a review of the literature. Front Immunol 2023; 14:1287456. [PMID: 38187387 PMCID: PMC10770847 DOI: 10.3389/fimmu.2023.1287456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
In the absence of prophylactic therapy, cytomegalovirus (CMV) viremia is a common complication following allogeneic hematopoietic cell transplantation (allo-HCT) and represents a significant cause of morbidity and mortality. Approximately 25% of allo-HCT happen in China, where the development and refinement of the 'Beijing protocol' has enabled frequent and increasing use of haploidentical donors. However, refractory CMV infection (an increase by >1 log10 in blood or serum CMV DNA levels after at least 2 weeks of an appropriately dosed anti-CMV medication) is more common among patients with haploidentical donors than with other donor types and has no established standard of care. Here, we review the literature regarding refractory CMV infection following allo-HCT in China.
Collapse
Affiliation(s)
- Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | | | - Yi Sun
- MRL Global Medical Affairs, Shanghai, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
43
|
Song Y, Tian C, Lee Y, Yoon M, Yoon SE, Cho SY. Nanosensor Chemical Cytometry: Advances and Opportunities in Cellular Therapy and Precision Medicine. ACS MEASUREMENT SCIENCE AU 2023; 3:393-403. [PMID: 38145025 PMCID: PMC10740128 DOI: 10.1021/acsmeasuresciau.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 12/26/2023]
Abstract
With the definition of therapeutics now encompassing transplanted or engineered cells and their molecular products, there is a growing scientific necessity for analytics to understand this new category of drugs. This Perspective highlights the recent development of new measurement science on label-free single cell analysis, nanosensor chemical cytometry (NCC), and their potential for cellular therapeutics and precision medicine. NCC is based on microfluidics integrated with fluorescent nanosensor arrays utilizing the optical lensing effect of a single cell to real-time extract molecular properties and correlate them with physical attributes of single cells. This new class of cytometry can quantify the heterogeneity of the multivariate physicochemical attributes of the cell populations in a completely label-free and nondestructive way and, thus, suggest the vein-to-vein conditions for the safe therapeutic applications. After the introduction of the NCC technology, we suggest the technological development roadmap for the maturation of the new field: from the sensor/chip design perspective to the system/software development level based on hardware automation and deep learning data analytics. The advancement of this new single cell sensing technology is anticipated to aid rich and multivariate single cell data setting and support safe and reliable cellular therapeutics. This new measurement science can lead to data-driven personalized precision medicine.
Collapse
Affiliation(s)
- Youngho Song
- School
of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Changyu Tian
- School
of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yullim Lee
- School
of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minyeong Yoon
- School
of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Eun Yoon
- Division
of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Soo-Yeon Cho
- School
of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
44
|
Zhang Y, Fang H, Wang G, Yuan G, Dong R, Luo J, Lyu Y, Wang Y, Li P, Zhou C, Yin W, Xiao H, Sun J, Zeng X. Cyclosporine A-resistant CAR-T cells mediate antitumour immunity in the presence of allogeneic cells. Nat Commun 2023; 14:8491. [PMID: 38123592 PMCID: PMC10733396 DOI: 10.1038/s41467-023-44176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T therapy requires autologous T lymphocytes from cancer patients, a process that is both costly and complex. Universal CAR-T cell treatment from allogeneic sources can overcome this limitation but is impeded by graft-versus-host disease (GvHD) and host versus-graft rejection (HvGR). Here, we introduce a mutated calcineurin subunit A (CNA) and a CD19-specific CAR into the T cell receptor α constant (TRAC) locus to generate cells that are resistant to the widely used immunosuppressant, cyclosporine A (CsA). These immunosuppressant-resistant universal (IRU) CAR-T cells display improved effector function in vitro and anti-tumour efficacy in a leukemia xenograft mouse model in the presence of CsA, compared with CAR-T cells carrying wild-type CNA. Moreover, IRU CAR-T cells retain effector function in vitro and in vivo in the presence of both allogeneic T cells and CsA. Lastly, CsA withdrawal restores HvGR, acting as a safety switch that can eliminate IRU CAR-T cells. These findings demonstrate the efficacy of CsA-resistant CAR-T cells as a universal, 'off-the-shelf' treatment option.
Collapse
Affiliation(s)
- Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, 310003, China
| | - Hongyu Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, 310003, China
| | - Guocan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, 310003, China
| | - Guangxun Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, 310003, China
| | - Ruoyu Dong
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jijun Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, 310003, China
| | - Yu Lyu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Hangzhou, 310058, China
| | - Yajie Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Peng Li
- Puluoting Health Technology Co., Ltd, Hangzhou, 310003, China
| | - Chun Zhou
- School of Public Health & Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Weiwei Yin
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Jie Sun
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Research Units of Infectious disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, 310003, China.
| |
Collapse
|
45
|
Yang D, Duan Z, Yuan P, Ding C, Dai X, Chen G, Wu D. How does TCR-T cell therapy exhibit a superior anti-tumor efficacy. Biochem Biophys Res Commun 2023; 687:149209. [PMID: 37944471 DOI: 10.1016/j.bbrc.2023.149209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
TCR-engineered T cells have achieved great progress in solid tumor therapy, some of which have been applicated in clinical trials. Deep knowledge about the current progress of TCR-T in tumor therapy would be beneficial to understand the direction. Here, we classify tumor antigens into tumor-associated antigens, tumor-specific antigens, tumor antigens expressed by oncogenic viruses, and tumor antigens caused by abnormal protein modification; Then we detail the TCR-T cell therapy effects targeting those tumor antigens in clinical or preclinical trials, and propose that neoantigen specific TCR-T cell therapy is expected to be a promising approach for solid tumors; Furthermore, we summarize the optimization strategies, such as tumor microenvironment, TCR pairing and affinity, to improve the therapeutic effect of TCR-T. Overall, this review provides inspiration for the antigen selection and therapy strategies of TCR-T in the future.
Collapse
Affiliation(s)
- Dandan Yang
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhihui Duan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ping Yuan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Chengming Ding
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoming Dai
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guodong Chen
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
46
|
Gorriceta JH, Lopez Otbo A, Uehara G, Posadas Salas MA. BK viral infection: A review of management and treatment. World J Transplant 2023; 13:309-320. [PMID: 38174153 PMCID: PMC10758681 DOI: 10.5500/wjt.v13.i6.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/15/2023] Open
Abstract
BK viral infection remains to be a challenging post-transplant infection, which can result in kidney dysfunction. The mainstay approach to BK infection is reduction of immunosuppression. Alterations in immunosuppressive regimen with minimization of calcineurin inhibitors, use of mechanistic target of rapamycin inhibitors, and leflunomide have been attempted with variable outcomes. Over the past few years, investigators have explored potential therapeutic options for BK infection. Fluoroquinolone prophylaxis and treatment was found to have no benefit in kidney transplant recipients. The utility of cidofovir is limited by its nephrotoxicity. Intravenous immunoglobulin is becoming a popular option for treatment and prophylaxis for BK infection, as it increases the neutralizing antibody titers against the most common BK virus serotypes. Virus-specific T cell therapy is an emerging treatment option for BK viremia. In this review, we will explore management and therapeutic options for BK infection and recent evidence available in literature.
Collapse
Affiliation(s)
| | - Amy Lopez Otbo
- Department of Medicine, St. Luke’s Medical Center, Quezon 1112, Philippines
| | - Genta Uehara
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Maria Aurora Posadas Salas
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, United States
| |
Collapse
|
47
|
Anand M, Nysather J, McGraw G, Apewokin S, Khoury R, Grimley MS, Bumb S, Govil A. Viral specific T cell therapy in kidney transplant recipients - A single-center experience. Transpl Infect Dis 2023; 25:e14179. [PMID: 37910558 DOI: 10.1111/tid.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Viral infections such as adenovirus (ADV), BK virus (BKV), and cytomegalovirus (CMV) after kidney transplantation negatively impact outcomes in transplant recipients despite advancements in screening and antiviral therapy. We describe our experience of using the virus-specific T cell therapy (VSTs) in kidney transplant recipients (KTR) at our transplant center. METHODS This is a retrospective, single center review of KTR with ADV, BKV and CMV infections between June 2021 and December 2022. These patients received third party VSTs as part of the management of infections. The immunosuppression, details of infection and outcome data were obtained from electronic medical records. RESULTS Two cases of ADV infection resolved after one infusion of VSTs. The response rate of BKV and CMV infection was not as robust with close to 50% reduction in median viral load after VSTs. Out of 23 patients, two patients developed chronic allograft nephropathy from membranoproliferative glomerulonephritis and acute rejection. CONCLUSION Patients that are resistant to antivirals or who have worsening viremia despite conventional management may benefit from VSTs therapy to treat underlying viral infection. Additional studies are needed to ascertain efficacy and short- and long-term risks secondary to VSTs.
Collapse
Affiliation(s)
- Manish Anand
- Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Jake Nysather
- Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Gregory McGraw
- Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Senu Apewokin
- Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Ruby Khoury
- Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Michael S Grimley
- Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Shalini Bumb
- Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Amit Govil
- Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
48
|
Matsui T, Ogimi C. Risk factors for severity in seasonal respiratory viral infections and how they guide management in hematopoietic cell transplant recipients. Curr Opin Infect Dis 2023; 36:529-536. [PMID: 37729657 DOI: 10.1097/qco.0000000000000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
PURPOSE OF REVIEW Seasonal respiratory virus infections (RVIs) often progress to severe diseases in hematopoietic cell transplant (HCT) recipients. This review summarizes the current evidence on risk factors for the severity of RVIs in this high-risk population and provides clinical management. RECENT FINDINGS The likelihood of the respiratory viral disease progression depends on the immune status of the host and the type of virus. Conventional host factors, such as the immunodeficiency scoring index and the severe immunodeficiency criteria, have been utilized to estimate the risk of progression to severe disease, including mortality. Recent reports have suggested nonconventional risk factors, such as hyperglycemia, hypoalbuminemia, prior use of antibiotics with broad anaerobic activity, posttransplant cyclophosphamide, and pulmonary impairment after RVIs. Identifying novel and modifiable risk factors is important with the advances of novel therapeutic and preventive interventions for RVIs. SUMMARY Validation of recently identified risk factors for severe RVIs in HCT recipients is required. The development of innovative interventions along with appropriate risk stratification is critical to improve outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Toshihiro Matsui
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan
| | - Chikara Ogimi
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
49
|
Doss KM, Heldman MR, Limaye AP. Updates in Cytomegalovirus Prevention and Treatment in Solid Organ Transplantation. Infect Dis Clin North Am 2023:S0891-5520(23)00083-1. [PMID: 37989636 PMCID: PMC11102935 DOI: 10.1016/j.idc.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The authors summarize recent updates in the prevention and management of cytomegalovirus (CMV) in solid organ transplant (SOT) recipients with a focus on CMV seronegative recipients of organs from seropositive donors (CMV D+/R-) who are at highest risk of CMV infection and disease. They discuss advantages of preemptive therapy for CMV disease prevention in CMV D+/R- liver transplant recipients, letermovir for CMV prophylaxis, and updates in the development of monoclonal antibodies and vaccines as immune-based preventative strategies. They review the roles of maribavir and virus-specific T cells for management of resistant or refractory CMV infection in SOT recipients.
Collapse
Affiliation(s)
- Kathleen M Doss
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Madeleine R Heldman
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, USA
| | - Ajit P Limaye
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
50
|
Wang C, Wang J, Che S, Zhao H. CAR-T cell therapy for hematological malignancies: History, status and promise. Heliyon 2023; 9:e21776. [PMID: 38027932 PMCID: PMC10658259 DOI: 10.1016/j.heliyon.2023.e21776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
For many years, the methods of cancer treatment are usually surgery, chemotherapy and radiation therapy. Although these methods help to improve the condition, most tumors still have a poor prognosis. In recent years, immunotherapy has great potential in tumor treatment. Chimeric antigen receptor T-cell immunotherapy (CAR-T) uses the patient's own T cells to express chimeric antigen receptors. Chimeric antigen receptor (CAR) recognizes tumor-associated antigens and kills tumor cells. CAR-T has achieved good results in the treatment of hematological tumors. In 2017, the FDA approved the first CAR-T for the treatment of B-cell acute lymphoblastic leukemia (ALL). In October of the same year, the FDA approved CAR-T to treat B-cell lymphoma. In order to improve and enhance the therapeutic effect, CAR-T has become a research focus in recent years. The structure of CAR, the targets of CAR-T treatment, adverse reactions and improvement measures during the treatment process are summarized. This review is an attempt to highlight recent and possibly forgotten findings of advances in chimeric antigen receptor T cell for treatment of hematological tumors.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Jianpeng Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Shusheng Che
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| |
Collapse
|