1
|
Iijima H, Imai-Okazaki A, Kishita Y, Sugiura A, Shimura M, Murayama K, Okazaki Y, Ohtake A. Role of BOLA3 in the mitochondrial Fe-S cluster clarified by metabolomic analysis. Mol Genet Metab 2025; 145:109113. [PMID: 40273865 DOI: 10.1016/j.ymgme.2025.109113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025]
Abstract
BOLA3 is one of the proteins involved in the assembly and transport of [4Fe-4S] clusters, which are incorporated into mitochondrial respiratory chain complexes I and II, aconitase, and lipoic acid synthetase. Pathogenic variants in the BOLA3 gene cause a rare condition known as multiple mitochondrial dysfunctions syndrome 2 with hyperglycinemia, characterized by life-threatening lactic acidosis, nonketotic hyperglycinemia, and hypertrophic cardiomyopathy. The aim of this study was to elucidate the biochemical characteristics of patients with BOLA3 variants and to clarify the role of BOLA3 protein in humans. The characteristics, clinical course, and biochemical data of eight Japanese patients with BOLA3 pathogenic variants were collected. In addition, metabolomic analyses were performed using capillary electrophoresis time-of-flight mass spectrometry, blue native polyacrylamide gel electrophoresis (BN-PAGE)/Western blot analysis of mitochondrial respiratory chain complexes, and in-gel enzyme staining of mitochondrial respiratory chain complexes of fibroblasts from all eight patients. Metabolomic data were compared between the eight patients with BOLA3 variants and three control samples using Welch's t-test. In the metabolomic analysis, levels of lactic acid, pyruvic acid, alanine, tricarboxylic acid (TCA) cycle intermediates (such as α-ketoglutaric acid and succinic acid), branched-chain amino acids, and metabolites of lysine and tryptophan were significantly elevated in the BOLA3 group. Data collected during the patients' lives showed increased lactic acid and glycine levels. In BN-PAGE/Western blot analysis and in-gel enzyme staining, bands for complexes I and II were barely detectable in all eight cases. These results indicate that BOLA3 variants decrease the activity of lipoic acid-dependent proteins (pyruvate dehydrogenase complex, α-ketoglutarate dehydrogenase, 2-oxoadipate dehydrogenase, branched-chain ketoacid dehydrogenase, and the glycine cleavage system), as well as mitochondrial respiratory chain complexes I and II, but do not affect aconitase. Thus, it is believed that BOLA3 is involved in transporting [4Fe-4S] clusters to respiratory chain complexes I and II and lipoic acid synthetase, but does not interfere with aconitase. These findings suggest that while lipoic acid supplementation or vitamin cocktails may provide benefits, the impaired [4Fe-4S] cluster pathway itself should be targeted for treatment to improve the extensive metabolic abnormalities caused by BOLA3 deficiency.
Collapse
Affiliation(s)
- Hiroyuki Iijima
- Department of Clinical Genomics, Saitama Medical University, Saitama, Japan; Department of General Pediatrics and Interdisciplinary Medicine, National Center for Child Health and Development, Tokyo, Japan.
| | - Atsuko Imai-Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yoshihito Kishita
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan; Department of Life Science, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Ayumu Sugiura
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Masaru Shimura
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Kei Murayama
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Akira Ohtake
- Department of Clinical Genomics, Saitama Medical University, Saitama, Japan
| |
Collapse
|
2
|
Van Hove JLK, Friederich MW, Hock DH, Stroud DA, Caruana NJ, Christians U, Schniedewind B, Michel CR, Reisdorph R, Lopez Gonzalez EDJ, Brenner C, Donovan TE, Lee JC, Chatfield KC, Larson AA, Baker PR, McCandless SE, Moore Burk MF. ACAD9 treatment with bezafibrate and nicotinamide riboside temporarily stabilizes cardiomyopathy and lactic acidosis. Mitochondrion 2024; 78:101905. [PMID: 38797357 PMCID: PMC11390326 DOI: 10.1016/j.mito.2024.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Pathogenic ACAD9 variants cause complex I deficiency. Patients presenting in infancy unresponsive to riboflavin have high mortality. A six-month-old infant presented with riboflavin unresponsive lactic acidosis and life-threatening cardiomyopathy. Treatment with high dose bezafibrate and nicotinamide riboside resulted in marked clinical improvement including reduced lactate and NT-pro-brain type natriuretic peptide levels, with stabilized echocardiographic measures. After a long stable period, the child succumbed from cardiac failure with infection at 10.5 months. Therapy was well tolerated. Peak bezafibrate levels exceeded its EC50. The clinical improvement with this treatment illustrates its potential, but weak PPAR agonist activity of bezafibrate limited its efficacy.
Collapse
Affiliation(s)
- Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA.
| | - Marisa W Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia; Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia; Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Nikeisha J Caruana
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Uwe Christians
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Björn Schniedewind
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cole R Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edwin D J Lopez Gonzalez
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Charles Brenner
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Tonia E Donovan
- Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Jessica C Lee
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA
| | - Kathryn C Chatfield
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA; Department of Pediatrics, Section of Cardiology, University of Colorado, Aurora, CO, USA
| | - Austin A Larson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA
| | - Peter R Baker
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA
| | - Shawn E McCandless
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80045, USA
| | - Meghan F Moore Burk
- Department of Physical Medicine and Rehabilitation, Children's Hospital Colorado, 13121 East 16(th) Avenue, Aurora, CO, USA
| |
Collapse
|
3
|
Blue EE, Huang SJ, Khan A, Golden-Grant K, Boyd B, Rosenthal EA, Gillentine MA, Fleming LR, Adams DR, Wolfe L, Allworth A, Bamshad MJ, Caruana NJ, Chanprasert S, Chen J, Dargie N, Doherty D, Friederich MW, Hisama FM, Horike-Pyne M, Lee JC, Donovan TE, Hock DH, Leppig KA, Miller DE, Mirzaa G, Ranchalis J, Raskind WH, Michel CR, Reisdorph R, Schwarze U, Sheppeard S, Strohbehn S, Stroud DA, Sybert VP, Wener MH, Stergachis AB, Lam CT, Jarvik GP, Dipple KM, Van Hove JL, Glass IA. Dual diagnosis of UQCRFS1-related mitochondrial complex III deficiency and recessive GJA8-related cataracts. RARE (AMSTERDAM, NETHERLANDS) 2024; 2:100040. [PMID: 39421685 PMCID: PMC11484756 DOI: 10.1016/j.rare.2024.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Biallelic pathogenic variants in UQCRFS1 underlie a rare form of isolated mitochondrial complex III deficiency associated with lactic acidosis and a distinctive scalp alopecia previously described in two unrelated probands. Here, we describe a participant in the Undiagnosed Diseases Network (UDN) with a dual diagnosis of two autosomal recessive disorders revealed by genome sequencing: UQCRFS1-related mitochondrial complex III deficiency and GJA8-related cataracts. Both pathogenic variants have been reported before: UQCRFS1 (NM_006003.3:c.215-1 G>C, p.Val72_Thr81del10) in a case with mitochondrial complex III deficiency and GJA8 (NM 005267.5:c.736 G>T, p.Glu246*) as a somatic change in aged cornea leading to decreased junctional coupling. A multi-modal approach combining enzyme assays and cellular proteomics analysis provided clear evidence of complex III respiratory chain dysfunction and low abundance of the Rieske iron-sulfur protein, validating the pathogenic effect of the UQCRFS1 variant. This report extends the genotypic and phenotypic spectrum for these two rare disorders and highlights the utility of deep phenotyping and genomics data to achieve diagnosis and insights into rare disease.
Collapse
Affiliation(s)
- Elizabeth E. Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute, Seattle, WA 98195, USA
| | - Samuel J. Huang
- Department of Medical Genetics, Marshfield Clinic, Marshfield, WI 54449, USA
| | - Alyna Khan
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
| | - Katie Golden-Grant
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Brenna Boyd
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Elisabeth A. Rosenthal
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | - Leah R. Fleming
- Department of Genetics, Saint Luke’s Genetics and Metabolic Clinic, Boise, ID 83712, USA
| | - David R. Adams
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lynne Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aimee Allworth
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Michael J. Bamshad
- Brotman Baty Institute, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Nikeisha J. Caruana
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Sirisak Chanprasert
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jingheng Chen
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
| | - Nitsuh Dargie
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Daniel Doherty
- Brotman Baty Institute, Seattle, WA 98195, USA
- Division of Developmental Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Marisa W. Friederich
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Fuki M. Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Martha Horike-Pyne
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jessica C. Lee
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Tonia E. Donovan
- Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Daniella H. Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC, Australia
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Kathleen A. Leppig
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Danny E. Miller
- Brotman Baty Institute, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ghayda Mirzaa
- Brotman Baty Institute, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jane Ranchalis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Wendy H. Raskind
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Cole R. Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ulrike Schwarze
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sam Sheppeard
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Samuel Strohbehn
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - David A. Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC, Australia
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Virginia P. Sybert
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mark H. Wener
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Rheumatology, University of Washington, Seattle, WA 98195, USA
| | | | - Andrew B. Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christina T. Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98105, USA
| | - Gail P. Jarvik
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Katrina M. Dipple
- Brotman Baty Institute, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Clinical and Translational Research, Seattle Children’s Research Institute, Seattle, WA 98105, USA
| | - Johan L.K. Van Hove
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Ian A. Glass
- Brotman Baty Institute, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Heidler J, Cabrera-Orefice A, Wittig I, Heyne E, Tomczak JN, Petersen B, Henze D, Pohjoismäki JLO, Szibor M. Hyperbaric oxygen treatment reveals spatiotemporal OXPHOS plasticity in the porcine heart. PNAS NEXUS 2024; 3:pgae210. [PMID: 38881840 PMCID: PMC11179111 DOI: 10.1093/pnasnexus/pgae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Cardiomyocytes meet their high ATP demand almost exclusively by oxidative phosphorylation (OXPHOS). Adequate oxygen supply is an essential prerequisite to keep OXPHOS operational. At least two spatially distinct mitochondrial subpopulations facilitate OXPHOS in cardiomyocytes, i.e. subsarcolemmal (SSM) and interfibrillar mitochondria (IFM). Their intracellular localization below the sarcolemma or buried deep between the sarcomeres suggests different oxygen availability. Here, we studied SSM and IFM isolated from piglet hearts and found significantly lower activities of electron transport chain enzymes and F1FO-ATP synthase in IFM, indicative for compromised energy metabolism. To test the contribution of oxygen availability to this outcome, we ventilated piglets under hyperbaric hyperoxic (HBO) conditions for 240 min. HBO treatment raised OXPHOS enzyme activities in IFM to the level of SSM. Complexome profiling analysis revealed that a high proportion of the F1FO-ATP synthase in the IFM was in a disassembled state prior to the HBO treatment. Upon increased oxygen availability, the enzyme was found to be largely assembled, which may account for the observed increase in OXPHOS complex activities. Although HBO also induced transcription of genes involved in mitochondrial biogenesis, a full proteome analysis revealed only minimal alterations, meaning that HBO-mediated tissue remodeling is an unlikely cause for the observed differences in OXPHOS. We conclude that a previously unrecognized oxygen-regulated mechanism endows cardiac OXPHOS with spatiotemporal plasticity that may underlie the enormous metabolic and contractile adaptability of the heart.
Collapse
Affiliation(s)
- Juliana Heidler
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Experimental Vascular Surgery, University Clinic of Vascular Surgery, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Alfredo Cabrera-Orefice
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Estelle Heyne
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich Schiller University of Jena, 07747 Jena, Germany
| | - Jan-Niklas Tomczak
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute (FLI), 31535 Mariensee, Germany
| | - Dirk Henze
- Praxis für Anästhesiologie, Dr. Henze & Partner GbR, 06116 Halle (Saale), Germany
| | - Jaakko L O Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | - Marten Szibor
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich Schiller University of Jena, 07747 Jena, Germany
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| |
Collapse
|
5
|
Poquérusse J, Nolan M, Thorburn DR, Van Hove JLK, Friederich MW, Love DR, Taylor J, Powell CA, Minczuk M, Snell RG, Lehnert K, Glamuzina E, Jacobsen JC. Severe neonatal onset neuroregression with paroxysmal dystonia and apnoea: Expanding the phenotypic and genotypic spectrum of CARS2-related mitochondrial disease. JIMD Rep 2023; 64:223-232. [PMID: 37151360 PMCID: PMC10159863 DOI: 10.1002/jmd2.12360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Disorders of mitochondrial function are a collectively common group of genetic diseases in which deficits in core mitochondrial translation machinery, including aminoacyl tRNA synthetases, are key players. Biallelic variants in the CARS2 gene (NM_024537.4), which encodes the mitochondrial aminoacyl-tRNA synthetase for cysteine (CARS2, mt-aaRScys; MIM*612800), result in childhood onset epileptic encephalopathy and complex movement disorder with combined oxidative phosphorylation deficiency (MIM#616672). Prior to this report, eight unique pathogenic variants in the CARS2 gene had been reported in seven individuals. Here, we describe a male who presented in the third week of life with apnoea. He rapidly deteriorated with paroxysmal dystonic crises and apnoea resulting in death at 16 weeks. He had no evidence of seizure activity or multisystem disease and had normal brain imaging. Skeletal muscle biopsy revealed a combined disorder of oxidative phosphorylation. Whole-exome sequencing identified biallelic variants in the CARS2 gene: one novel (c.1478T>C, p.Phe493Ser), and one previously reported (c.655G>A, p.Ala219Thr; rs727505361). Northern blot analysis of RNA isolated from the patient's fibroblasts confirmed a clear defect in aminoacylation of the mitochondrial tRNA for cysteine (mt-tRNACys). To our knowledge, this is the earliest reported case of CARS2 deficiency with severe, early onset dystonia and apnoea, without epilepsy.
Collapse
Affiliation(s)
- Jessie Poquérusse
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- Centre for Brain ResearchThe University of AucklandAucklandNew Zealand
| | - Melinda Nolan
- Department of NeurologyStarship Children's HealthAucklandNew Zealand
| | - David R. Thorburn
- Murdoch Children's Research InstituteMelbourneVictoriaAustralia
- Department of PaediatricsThe University of MelbourneMelbourneVictoriaAustralia
| | - Johan L. K. Van Hove
- Department of Pediatrics, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Department of Pathology and Laboratory MedicineChildren's Hospital ColoradoAuroraColoradoUSA
| | - Marisa W. Friederich
- Department of Pediatrics, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Department of Pathology and Laboratory MedicineChildren's Hospital ColoradoAuroraColoradoUSA
| | - Donald R. Love
- Diagnostic GeneticsLabPLUS, Auckland City HospitalAucklandNew Zealand
- Present address:
Division Chief, Pathology GeneticsSidra MedicineDohaQatar
| | - Juliet Taylor
- Genetic Health Service New ZealandAuckland City HospitalAucklandNew Zealand
| | | | - Michal Minczuk
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Russell G. Snell
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- Centre for Brain ResearchThe University of AucklandAucklandNew Zealand
| | - Klaus Lehnert
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- Centre for Brain ResearchThe University of AucklandAucklandNew Zealand
| | - Emma Glamuzina
- Adult and Paediatric National Metabolic ServiceAuckland City HospitalAucklandNew Zealand
| | - Jessie C. Jacobsen
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- Centre for Brain ResearchThe University of AucklandAucklandNew Zealand
| |
Collapse
|
6
|
Gill EL, Wang J, Viaene AN, Master SR, Ganetzky RD. Methodologies in Mitochondrial Testing: Diagnosing a Primary Mitochondrial Respiratory Chain Disorder. Clin Chem 2023:7143230. [PMID: 37099687 DOI: 10.1093/clinchem/hvad037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/03/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Mitochondria are cytosolic organelles within most eukaryotic cells. Mitochondria generate the majority of cellular energy in the form of adenosine triphosphate (ATP) through oxidative phosphorylation (OxPhos). Pathogenic variants in mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) lead to defects in OxPhos and physiological malfunctions (Nat Rev Dis Primer 2016;2:16080.). Patients with primary mitochondrial disorders (PMD) experience heterogeneous symptoms, typically in multiple organ systems, depending on the tissues affected by mitochondrial dysfunction. Because of this heterogeneity, clinical diagnosis is challenging (Annu Rev Genomics Hum Genet 2017;18:257-75.). Laboratory diagnosis of mitochondrial disease depends on a multipronged analysis that can include biochemical, histopathologic, and genetic testing. Each of these modalities has complementary strengths and limitations in diagnostic utility. CONTENT The primary focus of this review is on diagnosis and testing strategies for primary mitochondrial diseases. We review tissue samples utilized for testing, metabolic signatures, histologic findings, and molecular testing approaches. We conclude with future perspectives on mitochondrial testing. SUMMARY This review offers an overview of the current biochemical, histologic, and genetic approaches available for mitochondrial testing. For each we review their diagnostic utility including complementary strengths and weaknesses. We identify gaps in current testing and possible future avenues for test development.
Collapse
Affiliation(s)
- Emily L Gill
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jing Wang
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen R Master
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Rebecca D Ganetzky
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Human Genetics, Children's Hospital of Philadelphia, Mitochondrial Medicine Frontier Program, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
A Mutation in Mouse MT-ATP6 Gene Induces Respiration Defects and Opposed Effects on the Cell Tumorigenic Phenotype. Int J Mol Sci 2023; 24:ijms24021300. [PMID: 36674816 PMCID: PMC9865613 DOI: 10.3390/ijms24021300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
As the last step of the OXPHOS system, mitochondrial ATP synthase (or complex V) is responsible for ATP production by using the generated proton gradient, but also has an impact on other important functions linked to this system. Mutations either in complex V structural subunits, especially in mtDNA-encoded ATP6 gene, or in its assembly factors, are the molecular cause of a wide variety of human diseases, most of them classified as neurodegenerative disorders. The role of ATP synthase alterations in cancer development or metastasis has also been postulated. In this work, we reported the generation and characterization of the first mt-Atp6 pathological mutation in mouse cells, an m.8414A>G transition that promotes an amino acid change from Asn to Ser at a highly conserved residue of the protein (p.N163S), located near the path followed by protons from the intermembrane space to the mitochondrial matrix. The phenotypic consequences of the p.N163S change reproduce the effects of MT-ATP6 mutations in human diseases, such as dependence on glycolysis, defective OXPHOS activity, ATP synthesis impairment, increased ROS generation or mitochondrial membrane potential alteration. These observations demonstrate that this mutant cell line could be of great interest for the generation of mouse models with the aim of studying human diseases caused by alterations in ATP synthase. On the other hand, mutant cells showed lower migration capacity, higher expression of MHC-I and slightly lower levels of HIF-1α, indicating a possible reduction of their tumorigenic potential. These results could suggest a protective role of ATP synthase inhibition against tumor transformation that could open the door to new therapeutic strategies in those cancer types relying on OXPHOS metabolism.
Collapse
|
8
|
Jiang B, Zhang J, Zhao G, Liu M, Hu J, Lin F, Wang J, Zhao W, Ma H, Zhang C, Wu C, Yao L, Liu Q, Chen X, Cao Y, Zheng Y, Zhang C, Han A, Lin D, Li Q. Filamentous GLS1 promotes ROS-induced apoptosis upon glutamine deprivation via insufficient asparagine synthesis. Mol Cell 2022; 82:1821-1835.e6. [PMID: 35381197 DOI: 10.1016/j.molcel.2022.03.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/30/2022] [Accepted: 03/09/2022] [Indexed: 12/29/2022]
Abstract
GLS1 orchestrates glutaminolysis and promotes cell proliferation when glutamine is abundant by regenerating TCA cycle intermediates and supporting redox homeostasis. CB-839, an inhibitor of GLS1, is currently under clinical investigation for a variety of cancer types. Here, we show that GLS1 facilitates apoptosis when glutamine is deprived. Mechanistically, the absence of exogenous glutamine sufficiently reduces glutamate levels to convert dimeric GLS1 to a self-assembled, extremely low-Km filamentous polymer. GLS1 filaments possess an enhanced catalytic activity, which further depletes intracellular glutamine. Functionally, filamentous GLS1-dependent glutamine scarcity leads to inadequate synthesis of asparagine and mitogenome-encoded proteins, resulting in ROS-induced apoptosis that can be rescued by asparagine supplementation. Physiologically, we observed GLS1 filaments in solid tumors and validated the tumor-suppressive role of constitutively active, filamentous GLS1 mutants K320A and S482C in xenograft models. Our results change our understanding of GLS1 in cancer metabolism and suggest the therapeutic potential of promoting GLS1 filament formation.
Collapse
Affiliation(s)
- Bin Jiang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jia Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Guohui Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengjue Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jielu Hu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Furong Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jinyang Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wentao Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huanhuan Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Caiming Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Luming Yao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingfeng Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xin Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yating Cao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yi Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chensong Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Aidong Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
9
|
Clinical Heterogeneity in MT-ATP6 Pathogenic Variants: Same Genotype-Different Onset. Cells 2022; 11:cells11030489. [PMID: 35159298 PMCID: PMC8834419 DOI: 10.3390/cells11030489] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Human mitochondrial disease exhibits large variation of clinical phenotypes, even in patients with the same causative gene defect. We illustrate this heterogeneity by confronting clinical and biochemical data of two patients with the uncommon pathogenic homoplasmic NC_012920.1(MT-ATP6):m.9035T>C variant in MT-ATP6. Patient 1 presented as a toddler with severe motor and speech delay and spastic ataxia without extra-neurologic involvement. Patient 2 presented in adolescence with ataxia and ophthalmoplegia without cognitive or motor impairment. Respiratory chain complex activities were normal in cultured skin fibroblasts from both patients when calculated as ratios over citrate synthase activity. Native gels found presence of subcomplexes of complex V in fibroblast and/or skeletal muscle. Bioenergetic measurements in fibroblasts from both patients detected reduced spare respiratory capacities and altered extracellular acidification rates, revealing a switch from mitochondrial respiration to glycolysis to uphold ATP production. Thus, in contrast to the differing disease presentation, biochemical evidence of mitochondrial deficiency turned out quite similar. We conclude that biochemical analysis remains a valuable tool to confirm the genetic diagnosis of mitochondrial disease, especially in patients with new gene variants or atypical clinical presentation.
Collapse
|
10
|
Singh K, Duchen MR. Analysis of Organization and Activity of Mitochondrial Respiratory Chain Complexes in Primary Fibroblasts Using Blue Native PAGE. Methods Mol Biol 2022; 2497:339-348. [PMID: 35771456 DOI: 10.1007/978-1-0716-2309-1_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Blue Native polyacrylamide gel electrophoresis (BN-PAGE) is a well-established technique for the isolation and separation of mitochondrial membrane protein complexes in a native conformation with high resolution. In combination with histochemical staining methods, BN-PAGE has been successfully used as clinical diagnostic tool for the detection of oxidative phosphorylation (OXPHOS) defects from small tissue biopsies from patients with primary mitochondrial disease. However, its application to patient-derived primary fibroblasts is difficult due to limited proliferation and high background staining. Here, we describe a rapid and convenient method to analyze the organization and activity of OXPHOS complexes from cultured skin fibroblasts.
Collapse
Affiliation(s)
- Kritarth Singh
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL, London, UK
| | - Michael R Duchen
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL, London, UK.
| |
Collapse
|
11
|
Rosier K, McDevitt MT, Smet J, Floyd BJ, Verschoore M, Marcaida MJ, Bingman CA, Lemmens I, Dal Peraro M, Tavernier J, Cravatt BF, Gounko NV, Vints K, Monnens Y, Bhalla K, Aerts L, Rashan EH, Vanlander AV, Van Coster R, Régal L, Pagliarini DJ, Creemers JW. Prolyl endopeptidase-like is a (thio)esterase involved in mitochondrial respiratory chain function. iScience 2021; 24:103460. [PMID: 34888501 PMCID: PMC8634043 DOI: 10.1016/j.isci.2021.103460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022] Open
Abstract
Deficiency of the serine hydrolase prolyl endopeptidase-like (PREPL) causes a recessive metabolic disorder characterized by neonatal hypotonia, feeding difficulties, and growth hormone deficiency. The pathophysiology of PREPL deficiency and the physiological substrates of PREPL remain largely unknown. In this study, we connect PREPL with mitochondrial gene expression and oxidative phosphorylation by analyzing its protein interactors. We demonstrate that the long PREPLL isoform localizes to mitochondria, whereas PREPLS remains cytosolic. Prepl KO mice showed reduced mitochondrial complex activities and disrupted mitochondrial gene expression. Furthermore, mitochondrial ultrastructure was abnormal in a PREPL-deficient patient and Prepl KO mice. In addition, we reveal that PREPL has (thio)esterase activity and inhibition of PREPL by Palmostatin M suggests a depalmitoylating function. We subsequently determined the crystal structure of PREPL, thereby providing insight into the mechanism of action. Taken together, PREPL is a (thio)esterase rather than a peptidase and PREPLL is involved in mitochondrial homeostasis.
Collapse
Affiliation(s)
- Karen Rosier
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Molly T. McDevitt
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joél Smet
- Department of Internal Medicine and Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Brendan J. Floyd
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Maxime Verschoore
- Department of Internal Medicine and Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Maria J. Marcaida
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Craig A. Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Irma Lemmens
- Center for Medical Biotechnology, VIB, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jan Tavernier
- Center for Medical Biotechnology, VIB, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Benjamin F. Cravatt
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Natalia V. Gounko
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Katlijn Vints
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Yenthe Monnens
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Kritika Bhalla
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Laetitia Aerts
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Edrees H. Rashan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Arnaud V. Vanlander
- Department of Internal Medicine and Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Rudy Van Coster
- Department of Internal Medicine and Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Luc Régal
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
- Department of Pediatrics, Pediatric Neurology and Metabolism, UZ Brussel, Brussels, Belgium
| | - David J. Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Departments of Cell Biology and Physiology, Biochemistry and Molecular Biophysics, and Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - John W.M. Creemers
- Laboratory for Biochemical Neuroendocrinology, Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Effects of high-intensity interval training on mitochondrial supercomplex assembly and biogenesis, mitophagy, and the AMP-activated protein kinase pathway in the soleus muscle of aged female rats. Exp Gerontol 2021; 158:111648. [PMID: 34861356 DOI: 10.1016/j.exger.2021.111648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/11/2021] [Accepted: 11/28/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Exercise helps improve mitochondrial function to combat sarcopenia. Certain parts of the mitochondrial respiratory chain complex can form a higher-order structure called "supercomplex" to reduce the production of reactive oxygen species and improve muscle mass. The effect of exercise on the assembly of the mitochondrial supercomplex is still unclear. The aim of this study was to investigate the effects of long-term high-intensity interval training (HIIT) on mitochondrial biogenesis, mitophagy, and mitochondrial supercomplexes (mitoSCs) assembly in aging soleus muscle. METHODS Female Sprague-Dawley rats (n = 36) were randomly divided into four groups: young sedentary (Y-SED, 8 months old, n = 12), old sedentary (O-SED, 26 months old, n = 12), moderate-intensity continuous training (MICT, from 18 to 26 months old, n = 12), and HIIT (from 18 to 26 months old, n = 12). Rats in the MICT and HIIT groups were subjected to an 8-month training program. Real-time fluorescent quantitative polymerase chain reaction was used to measure the expression of the antioxidative factors, inflammatory factors, and mitochondrial fusion- and division-related genes. Western blotting was used to detect the expression of mitochondrial biogenesis and mitophagy markers and AMP-activated protein kinase (AMPK) pathway proteins. Enzyme-linked immunosorbent assays were used to determine serum irisin contents. Blue native polyacrylamide gel electrophoresis was used to assess the formation of mitochondrial supercomplexes. RESULTS Compared with the Y-SED group, the soleus muscle and mitochondria in the O-SED group showed reduced expression of mitophagy- and mitochondrial biogenesis-related proteins. In the HIIT group, the expression of autophagy-related proteins in the soleus muscle and mitochondria was significantly increased compared with that in the MICT group. Serum irisin and mitochondrial fusion protein levels significantly decreased with age. Superoxide dismutase 2 protein levels and AMPK pathway protein expression were significantly increased in the HIIT group compared with those in the other groups. Additionally, the expression levels of mitoSCs and the mRNA levels of interleukin-15 and optical atrophy 1 increased in the HIIT group compared with that in the MICT group. CONCLUSION Compared with MICT, HIIT activated the AMPK pathway to upregulate mitochondrial biogenesis- and mitophagy-related proteins, and promote the assembly and formation of mitoSCs to improve the mitochondrial function of aging soleus muscles.
Collapse
|
13
|
Kanako KI, Sakakibara N, Murayama K, Nagatani K, Murata S, Otake A, Koga Y, Suzuki H, Uehara T, Kosaki K, Yoshiura KI, Mishima H, Ichimiya Y, Mushimoto Y, Horinouchi T, Nagano C, Yamamura T, Iijima K, Nozu K. BCS1L mutations produce Fanconi syndrome with developmental disability. J Hum Genet 2021; 67:143-148. [PMID: 34650211 DOI: 10.1038/s10038-021-00984-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 11/09/2022]
Abstract
Fanconi syndrome is a functional disorder of the proximal tubule, characterized by pan-aminoaciduria, glucosuria, hypophosphatemia, and metabolic acidosis. With the advancements in gene analysis technologies, several causative genes are identified for Fanconi syndrome. Several mitochondrial diseases cause Fanconi syndrome and various systemic symptoms; however, it is rare that the main clinical symptoms in such disorders are Fanconi syndrome without systematic active diseases like encephalomyopathy or cardiomyopathy. In this study, we analyzed two families exhibiting Fanconi syndrome, developmental disability and mildly elevated liver enzyme levels. Whole-exome sequencing (WES) detected compound heterozygous known and novel BCS1L mutations, which affect the assembly of mitochondrial respiratory chain complex III, in both cases. The pathogenicity of these mutations has been established in several mitochondria-related functional analyses in this study. Mitochondrial diseases with isolated renal symptoms are uncommon; however, this study indicates that mitochondrial respiratory chain complex III deficiency due to BCS1L mutations cause Fanconi syndrome with developmental disability as the primary indications.
Collapse
Affiliation(s)
- Kojima-Ishii Kanako
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Kei Murayama
- Center for Medical Genetics and Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Koji Nagatani
- Department of Pediatrics, Uwajima City Hospital, Uwajima, Japan
| | - Satoshi Murata
- Department of Pediatrics, Uwajima City Hospital, Uwajima, Japan
| | - Akira Otake
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan.,Department of Pediatrics & Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Yasutoshi Koga
- Department of Pediatrics and Child Health, Kurume University Graduate School of Medicine, Kurume, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Atomic Bomb Disease Institute, Nagasaki, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Atomic Bomb Disease Institute, Nagasaki, Japan
| | - Yuko Ichimiya
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Mushimoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
14
|
Friederich MW, Geddes GC, Wortmann SB, Punnoose A, Wartchow E, Knight KM, Prokisch H, Creadon-Swindell G, Mayr JA, Van Hove JLK. Pathogenic variants in MRPL44 cause infantile cardiomyopathy due to a mitochondrial translation defect. Mol Genet Metab 2021; 133:362-371. [PMID: 34140213 PMCID: PMC8289749 DOI: 10.1016/j.ymgme.2021.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022]
Abstract
Cardiac dysfunction is a common phenotypic manifestation of primary mitochondrial disease with multiple nuclear and mitochondrial DNA pathogenic variants as a cause, including disorders of mitochondrial translation. To date, five patients have been described with pathogenic variants in MRPL44, encoding the ml44 protein which is part of the large subunit of the mitochondrial ribosome (mitoribosome). Three presented as infants with hypertrophic cardiomyopathy, mild lactic acidosis, and easy fatigue and muscle weakness, whereas two presented in adolescence with myopathy and neurological symptoms. We describe two infants who presented with cardiomyopathy from the neonatal period, failure to thrive, hypoglycemia and in one infant lactic acidosis. A decompensation of the cardiac function in the first year resulted in demise. Exome sequencing identified compound heterozygous variants in the MRPL44 gene including the known pathogenic variant c.467 T > G and two novel pathogenic variants. We document a combined respiratory chain enzyme deficiency with emphasis on complex I and IV, affecting heart muscle tissue more than skeletal muscle or fibroblasts. We show this to be caused by reduced mitochondrial DNA encoded protein synthesis affecting all subunits, and resulting in dysfunction of complex I and IV assembly. The degree of oxidative phosphorylation dysfunction correlated with the impairment of mitochondrial protein synthesis due to different pathogenic variants. These functional studies allow for improved understanding of the pathogenesis of MRPL44-associated mitochondrial disorder.
Collapse
Affiliation(s)
- Marisa W Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Services, Children's Hospital Colorado, Aurora, CO, USA
| | - Gabrielle C Geddes
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Molecular and Medical Genetics, Indiana University, Indianapolis, IN, USA
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria; Amalia Children's Hospital, RadboudUMC, Nijmegen, the Netherlands
| | - Ann Punnoose
- Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, WI, USA
| | - Eric Wartchow
- Department of Pathology and Laboratory Services, Children's Hospital Colorado, Aurora, CO, USA
| | - Kaz M Knight
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | | | - Johannes A Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Services, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
15
|
A case of ATR-X syndrome with mitochondrial respiratory chain dysfunction. Eur J Med Genet 2021; 64:104251. [PMID: 34051360 DOI: 10.1016/j.ejmg.2021.104251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/04/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022]
Abstract
Alpha-thalassemia X-linked intellectual disability (ATR-X) syndrome is caused by a mutation in ATRX, which is essential for proper chromatin remodeling. ATRX dysfunction leads to dysregulation of many genes due to abnormal chromatin remodeling, and causes a multisystem disorder in patients with ATR-X. Because mitochondrial disorders also show multisystem involvement, whether mitochondrial function is affected in patients with ATR-X is of interest. Here, we report a case of a 4-year-old male with a mutation (NM_000489.4: c.736C > T p.Arg246Cys) in ATRX, who showed mitochondrial dysfunction with complex I deficiency. The results from our study suggest that target genes of the ATRX protein may include those responsible for mitochondrial function, and mitochondrial dysfunction may contribute to some ATR-X phenotypes.
Collapse
|
16
|
Targeting Mitochondrial Metabolism in Clear Cell Carcinoma of the Ovaries. Int J Mol Sci 2021; 22:ijms22094750. [PMID: 33947138 PMCID: PMC8124918 DOI: 10.3390/ijms22094750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is a rare but chemorefractory tumor. About 50% of all OCCC patients have inactivating mutations of ARID1A, a member of the SWI/SNF chromatin-remodeling complex. Members of the SWI/SNF remodeling have emerged as regulators of the energetic metabolism of mammalian cells; however, the role of ARID1A as a modulator of the mitochondrial metabolism in OCCCs is yet to be defined. Here, we show that ARID1A loss results in increased mitochondrial metabolism and renders ARID1A-mutated cells increasingly and selectively dependent on it. The increase in mitochondrial activity following ARID1A loss is associated with increase in c-Myc expression and increased mitochondrial number and reduction of their size consistent with a higher mitochondrial cristae/outer membrane ratio. Significantly, preclinical testing of the complex I mitochondrial inhibitor IACS-010759 showed it extends overall survival in a preclinical model of ARID1A-mutated OCCC. These findings provide for the targeting mitochondrial activity in ARID1A-mutated OCCCs.
Collapse
|
17
|
Ugarteburu O, Teresa Garcia-Silva M, Aldamiz-Echevarria L, Gort L, Garcia-Villoria J, Tort F, Ribes A. Complex I deficiency, due to NDUFAF4 mutations, causes severe mitochondrial dysfunction and is associated to early death and dysmorphia. Mitochondrion 2020; 55:78-84. [DOI: 10.1016/j.mito.2020.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/28/2022]
|
18
|
Tort F, Barredo E, Parthasarathy R, Ugarteburu O, Ferrer-Cortès X, García-Villoria J, Gort L, González-Quintana A, Martín MA, Fernández-Vizarra E, Zeviani M, Ribes A. Biallelic mutations in NDUFA8 cause complex I deficiency in two siblings with favorable clinical evolution. Mol Genet Metab 2020; 131:349-357. [PMID: 33153867 DOI: 10.1016/j.ymgme.2020.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023]
Abstract
Isolated complex I (CI) deficiency is the most common cause of oxidative phosphorylation (OXPHOS) dysfunction. Whole-exome sequencing identified biallelic mutations in NDUFA8 (c.[293G > T]; [293G > T], encoding for an accessory subunit of CI, in two siblings with a favorable clinical evolution. The individuals reported here are practically asymptomatic, with the exception of slight failure to thrive and some language difficulties at the age of 6 and 9 years, respectively. These observations are remarkable since the vast majority of patients with CI deficiency, including the only NDUFA8 patient reported so far, showed an extremely poor clinical outcome. Western blot studies demonstrated that NDUFA8 protein was strongly reduced in the patients' fibroblasts and muscle extracts. In addition, there was a marked and specific decrease in the steady-state levels of CI subunits. BN-PAGE demonstrated an isolated defect in the assembly and the activity of CI with impaired supercomplexes formation and abnormal accumulation of CI subassemblies. Confocal microscopy analysis in fibroblasts showed rounder mitochondria and diminished branching degree of the mitochondrial network. Functional complementation studies demonstrated disease-causality for the identified mutation as lentiviral transduction with wild-type NDUFA8 cDNA restored the steady-state levels of CI subunits and completely recovered the deficient enzymatic activity in immortalized mutant fibroblasts. In summary, we provide additional evidence of the involvement of NDUFA8 as a mitochondrial disease-causing gene associated with altered mitochondrial morphology, CI deficiency, impaired supercomplexes formation, and very mild progression of the disease.
Collapse
Affiliation(s)
- Frederic Tort
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | | | | | - Olatz Ugarteburu
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Xenia Ferrer-Cortès
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Judit García-Villoria
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Laura Gort
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Adrián González-Quintana
- Laboratorio de Enfermedades Mitocondriales, Servicio de Bioquímica, Instituto de Investigación Hospital, 12 de Octubre (imas12), CIBERER, Madrid, Spain
| | - Miguel A Martín
- Laboratorio de Enfermedades Mitocondriales, Servicio de Bioquímica, Instituto de Investigación Hospital, 12 de Octubre (imas12), CIBERER, Madrid, Spain
| | | | - Massimo Zeviani
- MRC-Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Antonia Ribes
- Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica i Genètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain.
| |
Collapse
|
19
|
Knight KM, Shelkowitz E, Larson AA, Mirsky DM, Wang Y, Chen T, Wong LJ, Friederich MW, Van Hove JLK. The mitochondrial DNA variant m.9032T > C in MT-ATP6 encoding p.(Leu169Pro) causes a complex mitochondrial neurological syndrome. Mitochondrion 2020; 55:8-13. [PMID: 32931937 DOI: 10.1016/j.mito.2020.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/09/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
Diagnosing complex V deficiencies caused by new variants in mitochondrial DNA is challenging due to the rarity, phenotypic diversity, and limited functional assessments. We describe a child with the m.9032T > C variant in MT-ATP6 encoding p.(Leu169Pro), with primary presentation of microcephaly, ataxia, hearing loss, and lactic acidosis. Functional studies reveal abnormal fragment F1 of complex V on blue native gel electrophoresis. Respirometry showed excessively tight coupling through complex V depressing oxygen consumption upon ADP stimulation and an excessive increase following uncoupling, in the presence of upregulation of mitochondrial biogenesis. These data add evidence about pathogenicity and functional impact of this variant.
Collapse
Affiliation(s)
- Kaz M Knight
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Emily Shelkowitz
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Austin A Larson
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - David M Mirsky
- Department of Radiology, University of Colorado, and Children's Hospital Colorado, Aurora, CO, USA
| | - Yue Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ting Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Endocrinology, Genetics and Metabolism, Children's Hospital of Soochow University, Suzhou, China
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Marisa W Friederich
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, 13121 East 16th Avenue, Aurora, CO, USA
| | - Johan L K Van Hove
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA; Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, 13121 East 16th Avenue, Aurora, CO, USA.
| |
Collapse
|
20
|
Kadam A, Jubin T, Roychowdhury R, Garg A, Parmar N, Palit SP, Begum R. Insights into the functional aspects of poly(ADP-ribose) polymerase-1 (PARP-1) in mitochondrial homeostasis in Dictyostelium discoideum. Biol Cell 2020; 112:222-237. [PMID: 32324907 DOI: 10.1111/boc.201900104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/15/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND INFORMATION Poly(ADP-ribose) Polymerase-1 (PARP-1) is predominantly a nuclear protein and involved in various cellular processes like DNA repair, cell death, development, chromatin modulation etc. PARP-1 utilizes NAD+ and adds negatively charged PAR moieties on the target proteins. Over-activation of PARP-1 has been shown to cause energy crisis mediated cell death in which mitochondrial homeostasis is also affected. Moreover, the presence of mitochondrial NAD+ pools highlights the role of PARP-1 in mitochondria. The aim of present study is to understand the physiological role of PARP-1 in regulating mitochondrial functioning by varying the levels of PARP-1 in Dictyostelium discoideum. Intra-mitochondrial PARylation was analyzed by indirect immunofluorescence. Further, the effect of altered levels of PARP-1 i.e. overexpression, downregulation, knockout and its chemical inhibition was studied on mitochondrial respiration, reactive oxygen species (ROS) levels, ATP production, mitochondrial fission-fusion, mitochondrial morphology and mitochondrial DNA (mtDNA) content of D. discoideum. RESULTS Our results show intra-mitochondrial PARylation under oxidative stress. Altered levels of PARP-1 caused impairment in the mitochondrial respiratory capacity, leading to elevated ROS levels and reduced ATP production. Moreover, PARP-1 affects the mitochondrial morphology and mtDNA content, alters the mitochondrial fission-fusion processes in lieu of preventing cell death under physiological conditions. CONCLUSION The current study highlights the physiological role of PARP-1 in mitochondrial respiration, its morphology, fission-fusion processes and mtDNA maintenance in D. discoideum. SIGNIFICANCE This study would provide new clues on the PARP-1's crucial role in mitochondrial homeostasis, exploring the therapeutic potential of PARP-1 in various mitochondrial diseases.
Collapse
Affiliation(s)
- Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Rittwika Roychowdhury
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Abhishek Garg
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Nishant Parmar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Sayantani Pramanik Palit
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| |
Collapse
|
21
|
Hara T, Shibata Y, Amagai R, Okado-Matsumoto A. Use of in-gel peroxidase assay for cytochrome c to visualize mitochondrial complexes III and IV. Biol Open 2020; 9:bio.047936. [PMID: 31852667 PMCID: PMC6955206 DOI: 10.1242/bio.047936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in-gel activity assay (IGA) is a powerful technique that uses enzymatic activity and compares intensities of detected bands in mitochondrial respiratory chain supercomplexes, and it is applicable to eukaryotic organisms. However, no IGA has been established for complex III because of the difficulty of access by ubiquinol, a substrate for complex III. Herein, we demonstrate that cytochrome c (Cyt c) showed peroxidase activity on IGA as a component of complexes III and IV. We used pre-incubation with sodium dodecyl sulfate (SDS) before IGA to loosen complexes in the gel after high-resolution clear native polyacrylamide gel electrophoresis (hrCN-PAGE), a refinement of blue native PAGE. The signals of IGA based on peroxidase activity were obtained using enhanced chemiluminescence solution. Then, the gel was directly used in western blotting or hrCN/SDS two-dimensional PAGE. Our findings indicate that IGA for Cyt c reflected the indirect activity of complexes III and IV. Summary: An improved in-gel activity assay visualized respiratory chain complexes III, IV and supercomplexes through cytochrome c. Pre-incubation of detergents enhanced the in-gel activity assay.
Collapse
Affiliation(s)
- Tsukasa Hara
- Department of Biology, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Yuma Shibata
- Department of Biology, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Ryosuke Amagai
- Department of Biology, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Ayako Okado-Matsumoto
- Department of Biology, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
22
|
Valerius O, Asif AR, Beißbarth T, Bohrer R, Dihazi H, Feussner K, Jahn O, Majcherczyk A, Schmidt B, Schmitt K, Urlaub H, Lenz C. Mapping Cellular Microenvironments: Proximity Labeling and Complexome Profiling (Seventh Symposium of the Göttingen Proteomics Forum). Cells 2019; 8:cells8101192. [PMID: 31581721 PMCID: PMC6830108 DOI: 10.3390/cells8101192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022] Open
Abstract
Mass spectrometry-based proteomics methods are finding increasing use in structural biology research. Beyond simple interaction networks, information about stable protein-protein complexes or spatially proximal proteins helps to elucidate the biological functions of proteins in a wider cellular context. To shed light on new developments in this field, the Göttingen Proteomics Forum organized a one-day symposium focused on complexome profiling and proximity labeling, two emerging technologies that are gaining significant attention in biomolecular research. The symposium was held in Göttingen, Germany on 23 May, 2019, as part of a series of regular symposia organized by the Göttingen Proteomics Forum.
Collapse
Affiliation(s)
- Oliver Valerius
- Institute for Microbiology and Genetics, Georg August University, 37077 Göttingen, Germany.
| | - Abdul R Asif
- Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany.
| | - Tim Beißbarth
- Department of Medical Statistics, University Medical Center Göttingen, 37075 Göttingen, Germany.
| | - Rainer Bohrer
- Gesellschaft für Wissenschaftliche Datenverarbeitung mbH Göttingen, 37077 Göttingen, Germany.
| | - Hassan Dihazi
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075 Göttingen, Germany.
| | - Kirstin Feussner
- Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Georg August University, 37073 Göttingen, Germany.
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| | - Andrzej Majcherczyk
- Büsgen Institute, Section Molecular Wood Biotechnology and Technical Mycology, Georg August University, 37077 Göttingen, Germany.
| | - Bernhard Schmidt
- Institute for Biochemistry, University Medical Center Göttingen, 37075 Göttingen, Germany.
| | - Kerstin Schmitt
- Institute for Microbiology and Genetics, Georg August University, 37077 Göttingen, Germany.
| | - Henning Urlaub
- Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
- DFG Collaborative Research Centre SFB1190 "Compartmental Gates and Contact Sites in Cells", 37075 Göttingen, Germany.
| | - Christof Lenz
- Institute of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
- DFG Collaborative Research Centre SFB1190 "Compartmental Gates and Contact Sites in Cells", 37075 Göttingen, Germany.
| |
Collapse
|
23
|
Bundgaard A, Qvortrup K, Rasmussen LJ, Fago A. Turtles maintain mitochondrial integrity but reduce mitochondrial respiratory capacity in the heart after cold acclimation and anoxia. ACTA ACUST UNITED AC 2019; 222:jeb.200410. [PMID: 31097599 DOI: 10.1242/jeb.200410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/11/2019] [Indexed: 12/21/2022]
Abstract
Mitochondria are important to cellular homeostasis, but can become a dangerous liability when cells recover from hypoxia. Anoxia-tolerant freshwater turtles show reduced mitochondrial respiratory capacity and production of reactive oxygen species (ROS) after prolonged anoxia, but the mechanisms are unclear. Here, we investigated whether this mitochondrial suppression originates from downregulation of mitochondrial content or intrinsic activity by comparing heart mitochondria from (1) warm (25°C) normoxic, (2) cold-acclimated (4°C) normoxic and (3) cold-acclimated anoxic turtles. Transmission electron microscopy of heart ventricle revealed that these treatments did not affect mitochondrial volume density and morphology. Furthermore, neither enzyme activity, protein content nor supercomplex distribution of electron transport chain (ETC) enzymes changed significantly. Instead, our data imply that turtles inhibit mitochondrial respiration rate and ROS production by a cumulative effect of slight inhibition of ETC complexes. Together, these results show that maintaining mitochondrial integrity while inhibiting overall enzyme activities are important aspects of anoxia tolerance.
Collapse
Affiliation(s)
- Amanda Bundgaard
- Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | - Klaus Qvortrup
- Department of Biomedical Sciences/CFIM, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Angela Fago
- Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
24
|
Electrochemical studies of human nAChR a7 subunit phosphorylation by kinases PKA, PKC and Src. Anal Biochem 2019; 574:46-56. [DOI: 10.1016/j.ab.2019.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
|
25
|
Newell C, Khan A, Sinasac D, Shoffner J, Friederich MW, Van Hove JLK, Hume S, Shearer J, Sosova I. Hybrid gel electrophoresis using skin fibroblasts to aid in diagnosing mitochondrial disease. NEUROLOGY-GENETICS 2019; 5:e336. [PMID: 31192304 PMCID: PMC6515941 DOI: 10.1212/nxg.0000000000000336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/08/2019] [Accepted: 03/01/2019] [Indexed: 12/26/2022]
Abstract
Objective We developed a novel, hybrid method combining both blue-native (BN-PAGE) and clear-native (CN-PAGE) polyacrylamide gel electrophoresis, termed BCN-PAGE, to perform in-gel activity stains on the mitochondrial electron transport chain (ETC) complexes in skin fibroblasts. Methods Four patients aged 46–65 years were seen in the Metabolic Clinic at Alberta Children's Hospital and investigated for mitochondrial disease and had BN-PAGE or CN-PAGE on skeletal muscle that showed incomplete assembly of complex V (CV) in each patient. Long-range PCR performed on muscle-extracted DNA identified 4 unique mitochondrial DNA (mtDNA) deletions spanning the ATP6 gene of CV. We developed a BCN-PAGE method in skin fibroblasts taken from the patients at the same time and compared the findings with those in skeletal muscle. Results In all 4 cases, BCN-PAGE in skin fibroblasts confirmed the abnormal CV activity found from muscle biopsy, suggesting that the mtDNA deletions involving ATP6 were most likely germline mutations that are associated with a clinical phenotype of mitochondrial disease. Conclusions The BCN-PAGE method in skin fibroblasts has a potential to be a less-invasive tool compared with muscle biopsy to screen patients for abnormalities in CV and other mitochondrial ETC complexes.
Collapse
Affiliation(s)
- Christopher Newell
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - Aneal Khan
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - David Sinasac
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - John Shoffner
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - Marisa W Friederich
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - Johan L K Van Hove
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - Stacey Hume
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - Jane Shearer
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| | - Iveta Sosova
- Department of Medical Genetics (C.N., A.K., D.S.) and Department of Pediatrics (A.K.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Atlanta (J. Shoffner), GA; Departments of Pediatrics (M.W.F., J.L.K.V.H.), Section of Clinical Genetics and Metabolism, University of Colorado; Department of Medical Genetics (S.H.), University of Alberta, Canada; Faculty of Kinesiology (J. Shearer), University of Calgary, Alberta, Canada; and Departments of Laboratory Medicine and Pathology (I.S.), University of Alberta, Edmonton, Canada
| |
Collapse
|
26
|
Chatfield KC, Sparagna GC, Chau S, Phillips EK, Ambardekar AV, Aftab M, Mitchell MB, Sucharov CC, Miyamoto SD, Stauffer BL. Elamipretide Improves Mitochondrial Function in the Failing Human Heart. JACC Basic Transl Sci 2019; 4:147-157. [PMID: 31061916 PMCID: PMC6488757 DOI: 10.1016/j.jacbts.2018.12.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 01/28/2023]
Abstract
Mitochondrial function is impaired in explanted failing pediatric and adult human hearts. Elamipretide is a novel mitochondria-targeted drug that is targeted to cardiolipin on the inner mitochondrial membrane and improves coupling of the electron transport chain. Treatment of explanted human hearts with elamipretide improves human cardiac mitochondrial function. The study provides novel methods to evaluate the influence of compounds on mitochondria in the human heart and provides proof of principle for the use of elamipretide to improve mitochondrial energetics in failing myocardium due to multiple etiologies and irrespective of age.
Negative alterations of mitochondria are known to occur in heart failure (HF). This study investigated the novel mitochondrial-targeted therapeutic agent elamipretide on mitochondrial and supercomplex function in failing human hearts ex vivo. Freshly explanted failing and nonfailing ventricular tissue from children and adults was treated with elamipretide. Mitochondrial oxygen flux, complex (C) I and CIV activities, and in-gel activity of supercomplex assembly were measured. Mitochondrial function was impaired in the failing human heart, and mitochondrial oxygen flux, CI and CIV activities, and supercomplex-associated CIV activity significantly improved in response to elamipretide treatment. Elamipretide significantly improved failing human mitochondrial function.
Collapse
Affiliation(s)
- Kathryn C Chatfield
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital of Colorado, Aurora, Colorado
| | - Genevieve C Sparagna
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Sarah Chau
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Elisabeth K Phillips
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Amrut V Ambardekar
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Muhammad Aftab
- Department of Surgery/Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado.,Department of Surgery, Veterans Administration Hospital, Denver, Colorado
| | - Max B Mitchell
- Department of Surgery/Division of Cardiothoracic Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Carmen C Sucharov
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Shelley D Miyamoto
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital of Colorado, Aurora, Colorado
| | - Brian L Stauffer
- Department of Medicine/Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine/Division of Cardiology, Denver Health Medical Center, Denver, Colorado
| |
Collapse
|
27
|
Poole OV, Everett CM, Gandhi S, Marino S, Bugiardini E, Woodward C, Lam A, Quinlivan R, Hanna MG, Pitceathly RDS. Adult-onset Leigh syndrome linked to the novel stop codon mutation m.6579G>A in MT-CO1. Mitochondrion 2019; 47:294-297. [PMID: 30743023 DOI: 10.1016/j.mito.2019.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/02/2018] [Accepted: 02/07/2019] [Indexed: 11/17/2022]
Abstract
Adult-onset Leigh syndrome is a rare but important manifestation of mitochondrial disease. We report a 17 year old female who presented with subacute encephalopathy, brainstem and extrapyramidal signs, raised CSF lactate, and symmetrical hyperintensities in the basal ganglia on T2-weighted cerebral MRI. The presence of cytochrome c oxidase deficient fibres in muscle tissue prompted sequencing of the entire mitochondrial genome which revealed the novel stop codon mutation m.6579G>A; p.Gly226X in MT-CO1. Here we present the case and review the clinicopathological and molecular spectrum of previously reported MT-CO1 truncating mutations.
Collapse
Affiliation(s)
- Olivia V Poole
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Chris M Everett
- Department of Neurology, Southend University Hospital NHS Foundation Trust, Essex, UK; Department of Neurology, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Sonia Gandhi
- Department of Neurology, Southend University Hospital NHS Foundation Trust, Essex, UK; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Silvia Marino
- Cellular Pathology, The Royal London Hospital, Barts Health NHS Trust, London, UK; Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Enrico Bugiardini
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Cathy Woodward
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Amanda Lam
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK; Department of Chemical Pathology, Great Ormond Street Hospital, London, UK
| | - Ros Quinlivan
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK; Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, London, UK
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Robert D S Pitceathly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
28
|
Higuchi Y, Okunushi R, Hara T, Hashiguchi A, Yuan J, Yoshimura A, Murayama K, Ohtake A, Ando M, Hiramatsu Y, Ishihara S, Tanabe H, Okamoto Y, Matsuura E, Ueda T, Toda T, Yamashita S, Yamada K, Koide T, Yaguchi H, Mitsui J, Ishiura H, Yoshimura J, Doi K, Morishita S, Sato K, Nakagawa M, Yamaguchi M, Tsuji S, Takashima H. Mutations in COA7 cause spinocerebellar ataxia with axonal neuropathy. Brain 2018; 141:1622-1636. [PMID: 29718187 PMCID: PMC5972596 DOI: 10.1093/brain/awy104] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/29/2018] [Accepted: 02/20/2018] [Indexed: 11/13/2022] Open
Abstract
Several genes related to mitochondrial functions have been identified as causative genes of neuropathy or ataxia. Cytochrome c oxidase assembly factor 7 (COA7) may have a role in assembling mitochondrial respiratory chain complexes that function in oxidative phosphorylation. Here we identified four unrelated patients with recessive mutations in COA7 among a Japanese case series of 1396 patients with Charcot-Marie-Tooth disease (CMT) or other inherited peripheral neuropathies, including complex forms of CMT. We also found that all four patients had characteristic neurological features of peripheral neuropathy and ataxia with cerebellar atrophy, and some patients showed leukoencephalopathy or spinal cord atrophy on MRI scans. Validated mutations were located at highly conserved residues among different species and segregated with the disease in each family. Nerve conduction studies showed axonal sensorimotor neuropathy. Sural nerve biopsies showed chronic axonal degeneration with a marked loss of large and medium myelinated fibres. An immunohistochemical assay with an anti-COA7 antibody in the sural nerve from the control patient showed the positive expression of COA7 in the cytoplasm of Schwann cells. We also observed mildly elevated serum creatine kinase levels in all patients and the presence of a few ragged-red fibres and some cytochrome c oxidase-negative fibres in a muscle biopsy obtained from one patient, which was suggestive of subclinical mitochondrial myopathy. Mitochondrial respiratory chain enzyme assay in skin fibroblasts from the three patients showed a definitive decrease in complex I or complex IV. Immunocytochemical analysis of subcellular localization in HeLa cells indicated that mutant COA7 proteins as well as wild-type COA7 were localized in mitochondria, which suggests that mutant COA7 does not affect the mitochondrial recruitment and may affect the stability or localization of COA7 interaction partners in the mitochondria. In addition, Drosophila COA7 (dCOA7) knockdown models showed rough eye phenotype, reduced lifespan, impaired locomotive ability and shortened synaptic branches of motor neurons. Our results suggest that loss-of-function COA7 mutation is responsible for the phenotype of the presented patients, and this new entity of disease would be referred to as spinocerebellar ataxia with axonal neuropathy type 3.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ryuta Okunushi
- Department of Applied Biology and The Center for Advanced Insect Research, Kyoto Institute of Technology, Japan
| | - Taichi Hara
- Laboratory of Cellular Regulation, Faculty of Human Sciences, Waseda University, Mikajima, Tokorozawa, Saitama 359-1192, Japan
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Junhui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children’s Hospital, Chiba, Japan
| | - Akira Ohtake
- Department of Pediatrics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yu Hiramatsu
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Satoshi Ishihara
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Cardiovascular medicine, Nephrology and Neurology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hajime Tanabe
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takehiro Ueda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Kenichiro Yamada
- Department of Pediatrics, Hiratsuka City Hospital, Hiratsuka City, Kanagawa, Japan
| | - Takashi Koide
- Department of Neurology, Hiratsuka City Hospital, Hiratsuka City, Kanagawa, Japan
| | - Hiroaki Yaguchi
- Department of Neurology, Brain Center, Sapporo City General Hospital, Sapporo, Hokkaido, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Koichiro Doi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Masanori Nakagawa
- Director of North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology and The Center for Advanced Insect Research, Kyoto Institute of Technology, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
29
|
Vantroys E, Smet J, Vanlander AV, Vergult S, De Bruyne R, Roels F, Stepman H, Roeyers H, Menten B, Van Coster R. Severe hepatopathy and neurological deterioration after start of valproate treatment in a 6-year-old child with mitochondrial tryptophanyl-tRNA synthetase deficiency. Orphanet J Rare Dis 2018; 13:80. [PMID: 29783990 PMCID: PMC5963168 DOI: 10.1186/s13023-018-0822-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/08/2018] [Indexed: 01/08/2023] Open
Abstract
Background The first subjects with deficiency of mitochondrial tryptophanyl-tRNA synthetase (WARS2) were reported in 2017. Their clinical characteristics can be subdivided into three phenotypes (neonatal phenotype, severe infantile onset phenotype, Parkinson-like phenotype). Results Here, we report on a subject who presented with early developmental delay, motor weakness and intellectual disability and who was considered during several years as having a non-progressive encephalopathy. At the age of six years, she had an epileptic seizure which was treated with sodium valproate. In the months after treatment was started, she developed acute liver failure and severe progressive encephalopathy. Although valproate was discontinued, she died six months later. Spectrophotometric analysis of the oxidative phosphorylation complexes in liver revealed a deficient activity of complex III and low normal activities of the complexes I and IV. Activity staining in the BN-PAGE gel confirmed the low activities of complex I, III and IV and, in addition, showed the presence of a subcomplex of complex V. Histochemically, a mosaic pattern was seen in hepatocytes after cytochrome c oxidase staining. Using Whole Exome Sequencing two known pathogenic variants were detected in WARS2 (c.797delC, p.Pro266ArgfsTer10/ c.938 A > T, p.Lys313Met). Conclusion This is the first report of severe hepatopathy in a subject with WARS2 deficiency. The hepatopathy occurred soon after start of sodium valproate treatment. In the literature, valproate-induced hepatotoxicity was reported in the subjects with pathogenic mutations in POLG and TWNK. This case report illustrates that the course of the disease in the subjects with a mitochondrial defect can be non-progressive during several years. The subject reported here was first diagnosed as having cerebral palsy. Only after a mitochondriotoxic medication was started, the disease became progressive, and the diagnosis of a mitochondrial defect was made.
Collapse
Affiliation(s)
- Elise Vantroys
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Joél Smet
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Arnaud V Vanlander
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Sarah Vergult
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Ruth De Bruyne
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Ghent University Hospital, Ghent, Belgium
| | - Frank Roels
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Hedwig Stepman
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Herbert Roeyers
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Rudy Van Coster
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
30
|
Bundgaard A, James AM, Joyce W, Murphy MP, Fago A. Suppression of reactive oxygen species generation in heart mitochondria from anoxic turtles: the role of complex I S-nitrosation. J Exp Biol 2018; 221:jeb174391. [PMID: 29496783 PMCID: PMC5963835 DOI: 10.1242/jeb.174391] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
Abstract
Freshwater turtles (Trachemys scripta) are among the very few vertebrates capable of tolerating severe hypoxia and re-oxygenation without suffering from damage to the heart. As myocardial ischemia and reperfusion causes a burst of mitochondrial reactive oxygen species (ROS) in mammals, the question arises as to whether, and if so how, this ROS burst is prevented in the turtle heart. We find that heart mitochondria isolated from turtles acclimated to anoxia produce less ROS than mitochondria from normoxic turtles when consuming succinate. As succinate accumulates in the hypoxic heart and is oxidized when oxygen returns, this suggests an adaptation to lessen ROS production. Specific S-nitrosation of complex I can lower ROS in mammals and here we show that turtle complex I activity and ROS production can also be strongly depressed in vitro by S-nitrosation. We detect in vivo endogenous S-nitrosated complex I in turtle heart mitochondria, but these levels are unaffected upon anoxia acclimation. Thus, while heart mitochondria from anoxia-acclimated turtles generate less ROS and have a lower aerobic capacity than those from normoxic turtles, this is not due to decreases in complex I activity or expression levels. Interestingly, in-gel activity staining reveals that most complex I of heart mitochondria from normoxic and anoxic turtles forms stable super-complexes with other respiratory enzymes and, in contrast to mammals, these are not disrupted by dodecyl maltoside. Taken together, these results show that although S-nitrosation of complex I is a potent mechanism to prevent ROS formation upon re-oxygenation after anoxia in vitro, this is not a major cause of the suppression of ROS production by anoxic turtle heart mitochondria.
Collapse
Affiliation(s)
- Amanda Bundgaard
- Department of Biosciences, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Andrew M James
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - William Joyce
- Department of Biosciences, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Angela Fago
- Department of Biosciences, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
31
|
Bloom K, Mohsen AW, Karunanidhi A, El Demellawy D, Reyes-Múgica M, Wang Y, Ghaloul-Gonzalez L, Otsubo C, Tobita K, Muzumdar R, Gong Z, Tas E, Basu S, Chen J, Bennett M, Hoppel C, Vockley J. Investigating the link of ACAD10 deficiency to type 2 diabetes mellitus. J Inherit Metab Dis 2018; 41:49-57. [PMID: 28120165 PMCID: PMC5524623 DOI: 10.1007/s10545-017-0013-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/27/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022]
Abstract
The Native American Pima population has the highest incidence of insulin resistance (IR) and type 2 diabetes mellitus (T2DM) of any reported population, but the pathophysiologic mechanism is unknown. Genetic studies in Pima Indians have linked acyl-CoA dehydrogenase 10 (ACAD10) gene polymorphisms, among others, to this predisposition. The gene codes for a protein with a C-terminus region that is structurally similar to members of a family of flavoenzymes-the acyl-CoA dehydrogenases (ACADs)-that catalyze α,β-dehydrogenation reactions, including the first step in mitochondrial FAO (FAO), and intermediary reactions in amino acids catabolism. Dysregulation of FAO and an increase in plasma acylcarnitines are recognized as important in the pathophysiology of IR and T2DM. To investigate the deficiency of ACAD10 as a monogenic risk factor for T2DM in human, an Acad-deficient mouse was generated and characterized. The deficient mice exhibit an abnormal glucose tolerance test and elevated insulin levels. Blood acylcarnitine analysis shows an increase in long-chain species in the older mice. Nonspecific variable pattern of elevated short-terminal branch-chain acylcarnitines in a variety of tissues was also observed. Acad10 mice accumulate excess abdominal adipose tissue, develop an early inflammatory liver process, exhibit fasting rhabdomyolysis, and have abnormal skeletal muscle mitochondria. Our results identify Acad10 as a genetic determinant of T2DM in mice and provide a model to further investigate genetic determinants for insulin resistance in humans.
Collapse
MESH Headings
- Abdominal Fat/enzymology
- Abdominal Fat/physiopathology
- Acyl-CoA Dehydrogenase/genetics
- Adiposity
- Animals
- Blood Glucose/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/physiopathology
- Disease Models, Animal
- Genetic Predisposition to Disease
- Insulin/blood
- Insulin Resistance/genetics
- Lipid Metabolism, Inborn Errors/enzymology
- Lipid Metabolism, Inborn Errors/genetics
- Lipid Metabolism, Inborn Errors/pathology
- Lipid Metabolism, Inborn Errors/physiopathology
- Liver/enzymology
- Liver/pathology
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/pathology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Non-alcoholic Fatty Liver Disease/enzymology
- Non-alcoholic Fatty Liver Disease/genetics
- Non-alcoholic Fatty Liver Disease/pathology
- Obesity, Abdominal/enzymology
- Obesity, Abdominal/genetics
- Obesity, Abdominal/physiopathology
- Phenotype
- Rhabdomyolysis/enzymology
- Rhabdomyolysis/genetics
- Rhabdomyolysis/pathology
Collapse
Affiliation(s)
- Kaitlyn Bloom
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Al-Walid Mohsen
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Anuradha Karunanidhi
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Dina El Demellawy
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Miguel Reyes-Múgica
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yudong Wang
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Lina Ghaloul-Gonzalez
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Chikara Otsubo
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Kimi Tobita
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Radhika Muzumdar
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Zhenwei Gong
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Emir Tas
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Shrabani Basu
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Jie Chen
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Michael Bennett
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Charles Hoppel
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jerry Vockley
- Department of Pediatrics, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
Vantroys E, Larson A, Friederich M, Knight K, Swanson MA, Powell CA, Smet J, Vergult S, De Paepe B, Seneca S, Roeyers H, Menten B, Minczuk M, Vanlander A, Van Hove J, Van Coster R. New insights into the phenotype of FARS2 deficiency. Mol Genet Metab 2017; 122:172-181. [PMID: 29126765 PMCID: PMC5734183 DOI: 10.1016/j.ymgme.2017.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/12/2022]
Abstract
Mutations in FARS2 are known to cause dysfunction of mitochondrial translation due to deficient aminoacylation of the mitochondrial phenylalanine tRNA. Here, we report three novel mutations in FARS2 found in two patients in a compound heterozygous state. The missense mutation c.1082C>T (p.Pro361Leu) was detected in both patients. The mutations c.461C>T (p.Ala154Val) and c.521_523delTGG (p.Val174del) were each detected in one patient. We report abnormal in vitro aminoacylation assays as a functional validation of the molecular genetic findings. Based on the phenotypic data of previously reported subjects and the two subjects reported here, we conclude that FARS2 deficiency can be associated with two phenotypes: (i) an epileptic phenotype, and (ii) a spastic paraplegia phenotype.
Collapse
Affiliation(s)
- Elise Vantroys
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Austin Larson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marisa Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kaz Knight
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael A Swanson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO, USA
| | - Christopher A Powell
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Joél Smet
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Sarah Vergult
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Boel De Paepe
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Sara Seneca
- Center for Medical Genetics, UZ Brussel and Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium
| | - Herbert Roeyers
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Arnaud Vanlander
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Johan Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rudy Van Coster
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
33
|
Krizova J, Stufkova H, Rodinova M, Macakova M, Bohuslavova B, Vidinska D, Klima J, Ellederova Z, Pavlok A, Howland DS, Zeman J, Motlik J, Hansikova H. Mitochondrial Metabolism in a Large-Animal Model of Huntington Disease: The Hunt for Biomarkers in the Spermatozoa of Presymptomatic Minipigs. NEURODEGENER DIS 2017. [PMID: 28633139 DOI: 10.1159/000475467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Huntington disease (HD) is a fatal neurodegenerative disorder involving reduced muscle coordination, mental and behavioral changes, and testicular degeneration. In order to further clarify the decreased fertility and penetration ability of the spermatozoa of transgenic HD minipig boars (TgHD), we applied a set of mitochondrial metabolism (MM) parameter measurements to this promising biological material, which can be collected noninvasively in longitudinal studies. OBJECTIVE We aimed to optimize methods for MM measurements in spermatozoa and to establish possible biomarkers of HD in TgHD spermatozoa expressing the N-terminal part of mutated human huntingtin. METHODS Semen samples from 12 TgHD and wild-type animals, aged 12-65 months, were obtained repeatedly during the study. Respiration was measured by polarography, MM was assessed by the detection of oxidation of radiolabeled substrates (mitochondrial energy-generating system; MEGS), and the content of the oxidative phosphorylation system subunits was detected by Western blot. Three possibly interfering factors were statistically analyzed: the effect of HD, generation and aging. RESULTS We found 5 MM parameters which were significantly diminished in TgHD spermatozoa and propose 3 specific MEGS incubations and complex I-dependent respiration as potential biomarkers of HD in TgHD spermatozoa. CONCLUSIONS Our results suggest a link between the gain of toxic function of mutated huntingtin in TgHD spermatozoa and the observed MM and/or glycolytic impairment. We determined 4 biomarkers useful for HD phenotyping and experimental therapy monitoring studies in TgHD minipigs.
Collapse
Affiliation(s)
- Jana Krizova
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Adolescent Medicine, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Simon MT, Ng BG, Friederich MW, Wang RY, Boyer M, Kircher M, Collard R, Buckingham KJ, Chang R, Shendure J, Nickerson DA, Bamshad MJ, Van Hove JLK, Freeze HH, Abdenur JE. Activation of a cryptic splice site in the mitochondrial elongation factor GFM1 causes combined OXPHOS deficiency. Mitochondrion 2017; 34:84-90. [PMID: 28216230 DOI: 10.1016/j.mito.2017.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/11/2017] [Accepted: 02/10/2017] [Indexed: 11/17/2022]
Abstract
We report the clinical, biochemical, and molecular findings in two brothers with encephalopathy and multi-systemic disease. Abnormal transferrin glycoforms were suggestive of a type I congenital disorder of glycosylation (CDG). While exome sequencing was negative for CDG related candidate genes, the testing revealed compound heterozygous mutations in the mitochondrial elongation factor G gene (GFM1). One of the mutations had been reported previously while the second, novel variant was found deep in intron 6, activating a cryptic splice site. Functional studies demonstrated decreased GFM1 protein levels, suggested disrupted assembly of mitochondrial complexes III and V and decreased activities of mitochondrial complexes I and IV, all indicating combined OXPHOS deficiency.
Collapse
Affiliation(s)
- Mariella T Simon
- Division of Metabolic Disorders, CHOC Children's, Orange, CA, USA; Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Bobby G Ng
- Human Genetics Program, Sanford Children's Health Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Marisa W Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Raymond Y Wang
- Division of Metabolic Disorders, CHOC Children's, Orange, CA, USA; Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Monica Boyer
- Division of Metabolic Disorders, CHOC Children's, Orange, CA, USA
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Renata Collard
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Kati J Buckingham
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Richard Chang
- Division of Metabolic Disorders, CHOC Children's, Orange, CA, USA; Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | | | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Hudson H Freeze
- Human Genetics Program, Sanford Children's Health Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jose E Abdenur
- Division of Metabolic Disorders, CHOC Children's, Orange, CA, USA; Department of Pediatrics, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
35
|
Luo X, Wu J, Jin Z, Yan LJ. Non-Gradient Blue Native Polyacrylamide Gel Electrophoresis. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2017; 87:19.29.1-19.29.12. [PMID: 28150881 DOI: 10.1002/cpps.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gradient blue native polyacrylamide gel electrophoresis (BN-PAGE) is a well established and widely used technique for activity analysis of high-molecular-weight proteins, protein complexes, and protein-protein interactions. Since its inception in the early 1990s, a variety of minor modifications have been made to this gradient gel analytical method. Here we provide a major modification of the method, which we call non-gradient BN-PAGE. The procedure, similar to that of non-gradient SDS-PAGE, is simple because there is no expensive gradient maker involved. The non-gradient BN-PAGE protocols presented herein provide guidelines on the analysis of mitochondrial protein complexes, in particular, dihydrolipoamide dehydrogenase (DLDH) and those in the electron transport chain. Protocols for the analysis of blood esterases or mitochondrial esterases are also presented. The non-gradient BN-PAGE method may be tailored for analysis of specific proteins according to their molecular weight regardless of whether the target proteins are hydrophobic or hydrophilic. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Xiaoting Luo
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas
- Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Jinzi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Zhen Jin
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas
- Corresponding author
| |
Collapse
|
36
|
Mitochondrial complex I-linked disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:938-45. [DOI: 10.1016/j.bbabio.2016.02.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 11/22/2022]
|
37
|
Vanlander AV, Muiño Mosquera L, Panzer J, Deconinck T, Smet J, Seneca S, Van Dorpe J, Ferdinande L, Ceuterick-de Groote C, De Jonghe P, Van Coster R, Baets J. Megaconial muscular dystrophy caused by mitochondrial membrane homeostasis defect, new insights from skeletal and heart muscle analyses. Mitochondrion 2016; 27:32-8. [DOI: 10.1016/j.mito.2016.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/30/2016] [Accepted: 02/04/2016] [Indexed: 12/24/2022]
|
38
|
Bennett B, Helbling D, Meng H, Jarzembowski J, Geurts AM, Friederich MW, Van Hove JLK, Lawlor MW, Dimmock DP. Potentially diagnostic electron paramagnetic resonance spectra elucidate the underlying mechanism of mitochondrial dysfunction in the deoxyguanosine kinase deficient rat model of a genetic mitochondrial DNA depletion syndrome. Free Radic Biol Med 2016; 92:141-151. [PMID: 26773591 PMCID: PMC5047058 DOI: 10.1016/j.freeradbiomed.2016.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 01/19/2023]
Abstract
A novel rat model for a well-characterized human mitochondrial disease, mitochondrial DNA depletion syndrome with associated deoxyguanosine kinase (DGUOK) deficiency, is described. The rat model recapitulates the pathologic and biochemical signatures of the human disease. The application of electron paramagnetic (spin) resonance (EPR) spectroscopy to the identification and characterization of respiratory chain abnormalities in the mitochondria from freshly frozen tissue of the mitochondrial disease model rat is introduced. EPR is shown to be a sensitive technique for detecting mitochondrial functional abnormalities in situ and, here, is particularly useful in characterizing the redox state changes and oxidative stress that can result from depressed expression and/or diminished specific activity of the distinct respiratory chain complexes. As EPR requires no sample preparation or non-physiological reagents, it provides information on the status of the mitochondrion as it was in the functioning state. On its own, this information is of use in identifying respiratory chain dysfunction; in conjunction with other techniques, the information from EPR shows how the respiratory chain is affected at the molecular level by the dysfunction. It is proposed that EPR has a role in mechanistic pathophysiological studies of mitochondrial disease and could be used to study the impact of new treatment modalities or as an additional diagnostic tool.
Collapse
Affiliation(s)
- Brian Bennett
- National Biomedical EPR Center, Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Daniel Helbling
- Human Molecular Genetics Center and Division of Genetics, Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Jason Jarzembowski
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Marisa W Friederich
- Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Mailstop 8400, 13121 East 17th Avenue, Aurora, CO 80045, USA.
| | - Johan L K Van Hove
- Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Mailstop 8400, 13121 East 17th Avenue, Aurora, CO 80045, USA.
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - David P Dimmock
- Human Molecular Genetics Center and Division of Genetics, Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
39
|
Debray FG, Stümpfig C, Vanlander AV, Dideberg V, Josse C, Caberg JH, Boemer F, Bours V, Stevens R, Seneca S, Smet J, Lill R, van Coster R. Mutation of the iron-sulfur cluster assembly gene IBA57 causes fatal infantile leukodystrophy. J Inherit Metab Dis 2015; 38:1147-53. [PMID: 25971455 DOI: 10.1007/s10545-015-9857-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 11/29/2022]
Abstract
Leukodystrophies are a heterogeneous group of severe genetic neurodegenerative disorders. A multiple mitochondrial dysfunctions syndrome was found in an infant presenting with a progressive leukoencephalopathy. Homozygosity mapping, whole exome sequencing, and functional studies were used to define the underlying molecular defect. Respiratory chain studies in skeletal muscle isolated from the proband revealed a combined deficiency of complexes I and II. In addition, western blotting indicated lack of protein lipoylation. The combination of these findings was suggestive for a defect in the iron-sulfur (Fe/S) protein assembly pathway. SNP array identified loss of heterozygosity in large chromosomal regions, covering the NFU1 and BOLA3, and the IBA57 and ABCB10 candidate genes, in 2p15-p11.2 and 1q31.1-q42.13, respectively. A homozygous c.436C > T (p.Arg146Trp) variant was detected in IBA57 using whole exome sequencing. Complementation studies in a HeLa cell line depleted for IBA57 showed that the mutant protein with the semi-conservative amino acid exchange was unable to restore the biochemical phenotype indicating a loss-of-function mutation of IBA57. In conclusion, defects in the Fe/S protein assembly gene IBA57 can cause autosomal recessive neurodegeneration associated with progressive leukodystrophy and fatal outcome at young age. In the affected patient, the biochemical phenotype was characterized by a defect in the respiratory chain complexes I and II and a decrease in mitochondrial protein lipoylation, both resulting from impaired assembly of Fe/S clusters.
Collapse
Affiliation(s)
| | - Claudia Stümpfig
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Arnaud V Vanlander
- Division of Pediatric Neurology and Metabolism, Department of Pediatrics, Gent University Hospital, Gent, Belgium
| | - Vinciane Dideberg
- Metabolic Unit, Department of Medical Genetics, Sart-Tilman University Hospital, Liège, Belgium
| | - Claire Josse
- GIGA Research, Human Genetics Unit, University of Liège, Liège, Belgium
| | - Jean-Hubert Caberg
- Metabolic Unit, Department of Medical Genetics, Sart-Tilman University Hospital, Liège, Belgium
| | - François Boemer
- Metabolic Unit, Department of Medical Genetics, Sart-Tilman University Hospital, Liège, Belgium
| | - Vincent Bours
- Metabolic Unit, Department of Medical Genetics, Sart-Tilman University Hospital, Liège, Belgium
| | - René Stevens
- Department of Pediatrics, Clinique de l'Espérance, Liège, Belgium
| | - Sara Seneca
- Center of Medical Genetics, UZ Brussel and Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joél Smet
- Division of Pediatric Neurology and Metabolism, Department of Pediatrics, Gent University Hospital, Gent, Belgium
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Marburg, Germany.
- LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität, Marburg, Germany.
| | - Rudy van Coster
- Division of Pediatric Neurology and Metabolism, Department of Pediatrics, Gent University Hospital, Gent, Belgium.
| |
Collapse
|
40
|
Vanlander AV, Menten B, Smet J, De Meirleir L, Sante T, De Paepe B, Seneca S, Pearce SF, Powell CA, Vergult S, Michotte A, De Latter E, Vantomme L, Minczuk M, Van Coster R. Two siblings with homozygous pathogenic splice-site variant in mitochondrial asparaginyl-tRNA synthetase (NARS2). Hum Mutat 2015; 36:222-31. [PMID: 25385316 DOI: 10.1002/humu.22728] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/28/2014] [Indexed: 12/13/2022]
Abstract
A homozygous missense mutation (c.822G>C) was found in the gene encoding the mitochondrial asparaginyl-tRNA synthetase (NARS2) in two siblings born to consanguineous parents. These siblings presented with different phenotypes: one had mild intellectual disability and epilepsy in childhood, whereas the other had severe myopathy. Biochemical analysis of the oxidative phosphorylation (OXPHOS) complexes in both siblings revealed a combined complex I and IV deficiency in skeletal muscle. In-gel activity staining after blue native-polyacrylamide gel electrophoresis confirmed the decreased activity of complex I and IV, and, in addition, showed the presence of complex V subcomplexes. Considering the consanguineous descent, homozygosity mapping and whole-exome sequencing were combined revealing the presence of one single missense mutation in the shared homozygous region. The c.822G>C variant affects the 3' splice site of exon 7, leading to skipping of the whole exon 7 and a part of exon 8 in the NARS2 mRNA. In EBV-transformed lymphoblasts, a specific decrease in the amount of charged mt-tRNA(Asn) was demonstrated as compared with controls. This confirmed the pathogenic nature of the variant. To conclude, the reported variant in NARS2 results in a combined OXPHOS complex deficiency involving complex I and IV, making NARS2 a new member of disease-associated aaRS2.
Collapse
Affiliation(s)
- Arnaud V Vanlander
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vascular Endothelial Growth Factor in Tear Samples of Patients with Systemic Sclerosis. Mediators Inflamm 2015; 2015:573681. [PMID: 26339137 PMCID: PMC4539102 DOI: 10.1155/2015/573681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/27/2015] [Accepted: 03/09/2015] [Indexed: 01/09/2023] Open
Abstract
Background. Systemic sclerosis is an autoimmune disease, characterized by widespread small vessel vasculopathy, immune dysregulation with production of autoantibodies, and progressive fibrosis. Changes in levels of proangiogenic cytokines had already been determined largely in serum. Our aim was to assess the levels of VEGF in human tears of patients with SSC. Patients and methods. Forty-three patients (40 female and 3 men, mean (SD) age 61 (48–74) years) with SSc and 27 healthy controls were enrolled in this study. Basal tear sample collection and tear velocity investigations were carried out followed by an ophthalmological examination. Total protein concentrations and VEGF levels were determined in tear samples. Results. The average collected tear fluid volume developed 10.4 μL (1.6–31.2) in patients and 15.63 μL (3.68–34.5) in control subjects. The average total protein level was 6.9 μg/μL (1.8–12.3) in tears of patients and control tears contained an average of 4.132 μg/μL (0.1–14.1) protein. In patients with SSc the average concentration of VEGF was 4.9 pg/μL (3.5–8.1) and 6.15 pg/μL (3.84–12.3) in healthy samples. Conclusions. Total protein production was increased because of the smaller tear volume. Decreased VEGF in tear of SSc patients can be explained also by the decreased tear secretion of patients.
Collapse
|
42
|
Edmunds LR, Sharma L, Wang H, Kang A, d’Souza S, Lu J, McLaughlin M, Dolezal JM, Gao X, Weintraub ST, Ding Y, Zeng X, Yates N, Prochownik EV. c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function. PLoS One 2015; 10:e0134049. [PMID: 26230505 PMCID: PMC4521957 DOI: 10.1371/journal.pone.0134049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/04/2015] [Indexed: 12/25/2022] Open
Abstract
The c-Myc (Myc) oncoprotein and AMP-activated protein kinase (AMPK) regulate glycolysis and oxidative phosphorylation (Oxphos) although often for different purposes. Because Myc over-expression depletes ATP with the resultant activation of AMPK, we explored the potential co-dependency of and cross-talk between these proteins by comparing the consequences of acute Myc induction in ampk+/+ (WT) and ampk-/- (KO) murine embryo fibroblasts (MEFs). KO MEFs showed a higher basal rate of glycolysis than WT MEFs and an appropriate increase in response to activation of a Myc-estrogen receptor (MycER) fusion protein. However, KO MEFs had a diminished ability to increase Oxphos, mitochondrial mass and reactive oxygen species in response to MycER activation. Other differences between WT and KO MEFs, either in the basal state or following MycER induction, included abnormalities in electron transport chain function, levels of TCA cycle-related oxidoreductases and cytoplasmic and mitochondrial redox states. Transcriptional profiling of pathways pertinent to glycolysis, Oxphos and mitochondrial structure and function also uncovered significant differences between WT and KO MEFs and their response to MycER activation. Finally, an unbiased mass-spectrometry (MS)-based survey capable of quantifying ~40% of all mitochondrial proteins, showed about 15% of them to be AMPK- and/or Myc-dependent in their steady state. Significant differences in the activities of the rate-limiting enzymes pyruvate kinase and pyruvate dehydrogenase, which dictate pyruvate and acetyl coenzyme A abundance, were also differentially responsive to Myc and AMPK and could account for some of the differences in basal metabolite levels that were also detected by MS. Thus, Myc and AMPK are highly co-dependent and appear to engage in significant cross-talk across numerous pathways which support metabolic and ATP-generating functions.
Collapse
Affiliation(s)
- Lia R. Edmunds
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Lokendra Sharma
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
| | - Huabo Wang
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
| | - Audry Kang
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Sonia d’Souza
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
| | - Jie Lu
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
| | - Michael McLaughlin
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - James M. Dolezal
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Xiaoli Gao
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio TX, United States of America
| | - Susan T. Weintraub
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio TX, United States of America
| | - Ying Ding
- Department of Biostatistics, The University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Xuemei Zeng
- Department of Cell Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Nathan Yates
- Department of Cell Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Edward V. Prochownik
- Section of Hematology/Oncology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States of America
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- The Hillman Cancer Center, The University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
43
|
Ahting U, Mayr JA, Vanlander AV, Hardy SA, Santra S, Makowski C, Alston CL, Zimmermann FA, Abela L, Plecko B, Rohrbach M, Spranger S, Seneca S, Rolinski B, Hagendorff A, Hempel M, Sperl W, Meitinger T, Smet J, Taylor RW, Van Coster R, Freisinger P, Prokisch H, Haack TB. Clinical, biochemical, and genetic spectrum of seven patients with NFU1 deficiency. Front Genet 2015; 6:123. [PMID: 25918518 PMCID: PMC4394698 DOI: 10.3389/fgene.2015.00123] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/16/2015] [Indexed: 11/20/2022] Open
Abstract
Disorders of the mitochondrial energy metabolism are clinically and genetically heterogeneous. An increasingly recognized subgroup is caused by defective mitochondrial iron–sulfur (Fe–S) cluster biosynthesis, with defects in 13 genes being linked to human disease to date. Mutations in three of them, NFU1, BOLA3, and IBA57, affect the assembly of mitochondrial [4Fe–4S] proteins leading to an impairment of diverse mitochondrial metabolic pathways and ATP production. Patients with defects in these three genes present with lactic acidosis, hyperglycinemia, and reduced activities of respiratory chain complexes I and II, the four lipoic acid-dependent 2-oxoacid dehydrogenases and the glycine cleavage system (GCS). To date, five different NFU1 pathogenic variants have been reported in 15 patients from 12 families. We report on seven new patients from five families carrying compound heterozygous or homozygous pathogenic NFU1 mutations identified by candidate gene screening and exome sequencing. Six out of eight different disease alleles were novel and functional studies were performed to support the pathogenicity of five of them. Characteristic clinical features included fatal infantile encephalopathy and pulmonary hypertension leading to death within the first 6 months of life in six out of seven patients. Laboratory investigations revealed combined defects of pyruvate dehydrogenase complex (five out of five) and respiratory chain complexes I and II+III (four out of five) in skeletal muscle and/or cultured skin fibroblasts as well as increased lactate (five out of six) and glycine concentration (seven out of seven). Our study contributes to a better definition of the phenotypic spectrum associated with NFU1 mutations and to the diagnostic workup of future patients.
Collapse
Affiliation(s)
- Uwe Ahting
- Institute of Human Genetics, Technische Universität München Munich, Germany
| | - Johannes A Mayr
- Department of Pediatrics, Paracelsus Medical University of Salzburg Salzburg, Austria
| | - Arnaud V Vanlander
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital Ghent, Belgium
| | - Steven A Hardy
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University Medical School Newcastle upon Tyne, UK
| | - Saikat Santra
- Department of Clinical Inherited Metabolic Disorders, Birmingham Children's Hospital Birmingham, UK
| | - Christine Makowski
- Department of Pediatrics, Technische Universität München Munich, Germany
| | - Charlotte L Alston
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University Medical School Newcastle upon Tyne, UK
| | - Franz A Zimmermann
- Department of Pediatrics, Paracelsus Medical University of Salzburg Salzburg, Austria
| | - Lucia Abela
- Division of Child Neurology, Children's Research Center, Kinderspital Zürich Zürich, Switzerland
| | - Barbara Plecko
- Division of Child Neurology, Children's Research Center, Kinderspital Zürich Zürich, Switzerland
| | - Marianne Rohrbach
- Division of Metabolism, Children's Research Center, Kinderspital Zürich Zürich, Switzerland
| | | | - Sara Seneca
- Research Group Reproduction and Genetics, Center for Medical Genetics, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel Brussels, Belgium
| | - Boris Rolinski
- Elblab Zentrum für LaborMedizin, Elblandkliniken Riesa, Germany
| | | | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Wolfgang Sperl
- Department of Pediatrics, Paracelsus Medical University of Salzburg Salzburg, Austria
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München Munich, Germany ; Institute of Human Genetics, Helmholtz Zentrum München Neuherberg, Germany
| | - Joél Smet
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital Ghent, Belgium
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University Medical School Newcastle upon Tyne, UK
| | - Rudy Van Coster
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital Ghent, Belgium
| | - Peter Freisinger
- Department of Pediatrics, Klinikum Reutlingen Reutlingen, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München Munich, Germany ; Institute of Human Genetics, Helmholtz Zentrum München Neuherberg, Germany
| | - Tobias B Haack
- Institute of Human Genetics, Technische Universität München Munich, Germany ; Institute of Human Genetics, Helmholtz Zentrum München Neuherberg, Germany
| |
Collapse
|
44
|
Vanlander AV, Okun JG, de Jaeger A, Smet J, De Latter E, De Paepe B, Dacremont G, Wuyts B, Vanheel B, De Paepe P, Jorens PG, Van Regenmortel N, Van Coster R. Possible pathogenic mechanism of propofol infusion syndrome involves coenzyme q. Anesthesiology 2015; 122:343-52. [PMID: 25296107 DOI: 10.1097/aln.0000000000000484] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Propofol is a short-acting intravenous anesthetic agent. In rare conditions, a life-threatening complication known as propofol infusion syndrome can occur. The pathophysiologic mechanism is still unknown. Some studies suggested that propofol acts as uncoupling agent, others suggested that it inhibits complex I or complex IV, or causes increased oxidation of cytochrome c and cytochrome aa3, or inhibits mitochondrial fatty acid metabolism. Although the exact site of interaction is not known, most hypotheses point to the direction of the mitochondria. METHODS Eight rats were ventilated and sedated with propofol up to 20 h. Sequential biopsy specimens were taken from liver and skeletal muscle and used for determination of respiratory chain activities and propofol concentration. Activities were also measured in skeletal muscle from a patient who died of propofol infusion syndrome. RESULTS In rats, authors detected a decrease in complex II+III activity starting at low tissue concentration of propofol (20 to 25 µM), further declining at higher concentrations. Before starting anesthesia, the complex II+III/citrate synthase activity ratio in liver was 0.46 (0.25) and in skeletal muscle 0.23 (0.05) (mean [SD]). After 20 h of anesthesia, the ratios declined to 0.17 (0.03) and 0.12 (0.02), respectively. When measured individually, the activities of complexes II and III remained normal. Skeletal muscle from one patient taken in the acute phase of propofol infusion syndrome also shows a selective decrease in complex II+III activity (z-score: -2.96). CONCLUSION Propofol impedes the electron flow through the respiratory chain and coenzyme Q is the main site of interaction with propofol.
Collapse
Affiliation(s)
- Arnaud Vincent Vanlander
- From the Department of Pediatrics, Division of Pediatric Neurology and Metabolism (A.V.V., J.S., E.D.L., B.D.P., R.V.C.), Department of Critical Care Medicine, Division of Pediatric Intensive Care Medicine (A.d.J.), Department of Clinical Chemistry (B.W.), Department of Emergency Medicine (P.D.P.), Ghent University Hospital, Ghent, Belgium; Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany (J.G.O.); Department of Pediatrics, University of Ghent, Ghent, Belgium (G.D.); Physiology Group, Department of Basic Medical Sciences, Ghent University, Ghent, Belgium (B.V.); Department of Critical Care Medicine, Antwerp University Hospital, Antwerp University, Edegem, Belgium (P.G.J., N.V.R.); and Department of Critical Care Medicine, ZNA Antwerp, Belgium (N.V.R.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Coughlin CR, Scharer GH, Friederich MW, Yu HC, Geiger EA, Creadon-Swindell G, Collins AE, Vanlander AV, Coster RV, Powell CA, Swanson MA, Minczuk M, Van Hove JLK, Shaikh TH. Mutations in the mitochondrial cysteinyl-tRNA synthase gene, CARS2, lead to a severe epileptic encephalopathy and complex movement disorder. J Med Genet 2015; 52:532-40. [PMID: 25787132 DOI: 10.1136/jmedgenet-2015-103049] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/26/2015] [Indexed: 11/03/2022]
Abstract
BACKGROUND Mitochondrial disease is often suspected in cases of severe epileptic encephalopathy especially when a complex movement disorder, liver involvement and progressive developmental regression are present. Although mutations in either mitochondrial DNA or POLG are often present, other nuclear defects in mitochondrial DNA replication and protein translation have been associated with a severe epileptic encephalopathy. METHODS AND RESULTS We identified a proband with an epileptic encephalopathy, complex movement disorder and a combined mitochondrial respiratory chain enzyme deficiency. The child presented with neurological regression, complex movement disorder and intractable seizures. A combined deficiency of mitochondrial complexes I, III and IV was noted in liver tissue, along with increased mitochondrial DNA content in skeletal muscle. Incomplete assembly of complex V, using blue native polyacrylamide gel electrophoretic analysis and complex I, using western blotting, suggested a disorder of mitochondrial transcription or translation. Exome sequencing identified compound heterozygous mutations in CARS2, a mitochondrial aminoacyl-tRNA synthetase. Both mutations affect highly conserved amino acids located within the functional ligase domain of the cysteinyl-tRNA synthase. A specific decrease in the amount of charged mt-tRNA(Cys) was detected in patient fibroblasts compared with controls. Retroviral transfection of the wild-type CARS2 into patient skin fibroblasts led to the correction of the incomplete assembly of complex V, providing functional evidence for the role of CARS2 mutations in disease aetiology. CONCLUSIONS Our findings indicate that mutations in CARS2 result in a mitochondrial translational defect as seen in individuals with mitochondrial epileptic encephalopathy.
Collapse
Affiliation(s)
- Curtis R Coughlin
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Gunter H Scharer
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA Intellectual and Developmental Disabilities Research Center, University of Colorado School of Medicine, Aurora, Colorado, USA Department of Pediatrics, Section of Clinical Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Marisa W Friederich
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Hung-Chun Yu
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Elizabeth A Geiger
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Geralyn Creadon-Swindell
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Abigail E Collins
- Department of Pediatrics, Section of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Arnaud V Vanlander
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Rudy Van Coster
- Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | | | - Michael A Swanson
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Johan L K Van Hove
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Tamim H Shaikh
- Department of Pediatrics, Section of Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA Intellectual and Developmental Disabilities Research Center, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
46
|
Celie BM, Boone J, Smet JE, Vanlander AV, De Bleecker JL, Van Coster RN, Bourgois JG. Forearm deoxyhemoglobin and deoxymyoglobin (deoxy[Hb + Mb]) measured by near-infrared spectroscopy (NIRS) using a handgrip test in mitochondrial myopathy. APPLIED SPECTROSCOPY 2015; 69:342-347. [PMID: 25665184 DOI: 10.1366/14-07604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The purpose of this paper is to test whether peripheral oxygenation responses measured with near-infrared spectroscopy (NIRS) would differ between patients suffering from mitochondrial myopathy (MM) and healthy controls during an incremental handgrip exercise test. Two groups of subjects were studied: 11 patients with MM and 11 age- and gender-matched untrained healthy controls. A handgrip exercise until exhaustion protocol was used consisting of 2 min periods of work (½ Hz) at different intensities, separated by a 60 s rest period. The changes in deoxyhemoglobin and deoxymyoglobin (deoxy[Hb + Mb]) during each work step were expressed in percent to the maximum deoxy[Hb + Mb]-value measured during arterial occlusion in forearm muscles. A repeated measures analysis of variance was used to compare the increase in deoxy[Hb + Mb] between MM patients and controls with increasing intensity. Statistical analysis revealed a significant difference between both populations (P < 0.001) indicating that the increase in deoxy[Hb + Mb] showed a significantly different pattern in the two populations. In the post hoc analysis significant lower deoxy[Hb + Mb] -values were found for MM patients at every intensity. The results of this paper show significantly different skeletal muscle oxygenation responses, measured with an optical method as NIRS, between MM patients and age- and gender-matched healthy subjects at submaximal and maximal level during an incremental handgrip exercise. This optical method is thus a valuable tool to assess differences in peripheral oxygenation. Moreover, this method could be used as an evaluation tool for follow up in interventional pharmacological studies and rehabilitation programs.
Collapse
Affiliation(s)
- Bert M Celie
- Department of Movement and Sports Sciences, Ghent University, Watersportlaan 2, 9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
47
|
Chatfield KC, Coughlin CR, Friederich MW, Gallagher RC, Hesselberth JR, Lovell MA, Ofman R, Swanson MA, Thomas JA, Wanders RJA, Wartchow EP, Van Hove JLK. Mitochondrial energy failure in HSD10 disease is due to defective mtDNA transcript processing. Mitochondrion 2015; 21:1-10. [PMID: 25575635 DOI: 10.1016/j.mito.2014.12.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 12/26/2014] [Accepted: 12/29/2014] [Indexed: 11/27/2022]
Abstract
Muscle, heart and liver were analyzed in a male subject who succumbed to HSD10 disease. Respiratory chain enzyme analysis and BN-PAGE showed reduced activities and assembly of complexes I, III, IV, and V. The mRNAs of all RNase P subunits were preserved in heart and overexpressed in muscle, but MRPP2 protein was severely decreased. RNase P upregulation correlated with increased expression of mitochondrial biogenesis factors and preserved mitochondrial enzymes in muscle, but not in heart where this compensatory mechanism was incomplete. We demonstrate elevated amounts of unprocessed pre-tRNAs and mRNA transcripts encoding mitochondrial subunits indicating deficient RNase P activity. This study provides evidence of abnormal mitochondrial RNA processing causing mitochondrial energy failure in HSD10 disease.
Collapse
Affiliation(s)
- Kathryn C Chatfield
- Pediatric Cardiology, Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Curtis R Coughlin
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Marisa W Friederich
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Renata C Gallagher
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mark A Lovell
- Department of Pathology, University of Colorado, Aurora, CO, USA; Department of Pathology, Children's Hospital Colorado, Aurora, CO, USA
| | - Rob Ofman
- Laboratory of Genetic Metabolic Diseases, Academic Medical Centre, Amsterdam, The Netherlands
| | - Michael A Swanson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Janet A Thomas
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA
| | - Ronald J A Wanders
- Laboratory of Genetic Metabolic Diseases, Academic Medical Centre, Amsterdam, The Netherlands
| | - Eric P Wartchow
- Department of Pathology, Children's Hospital Colorado, Aurora, CO, USA
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
48
|
A novel ATP-generating machinery to counter nitrosative stress is mediated by substrate-level phosphorylation. Biochim Biophys Acta Gen Subj 2014; 1850:43-50. [PMID: 25304769 DOI: 10.1016/j.bbagen.2014.09.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/19/2014] [Accepted: 09/30/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND It is well-known that elevated amounts of nitric oxide and other reactive nitrogen species (RNS) impact negatively on the tricarboxylic acid (TCA) cycle and oxidative phosphorylation. These perturbations severely compromise O2-dependent energy production. While bacteria are known to adapt to RNS, a key tool employed by macrophages to combat infections, the exact mechanisms are unknown. METHODS The bacterium was cultured in a defined mineral medium and cell-free extracts obtained at the same growth phase were utilized for various biochemical studies Blue native polyacrylamide gel electrophoresis followed by in-gel activity assays, high performance liquid chromatography and co-immunoprecipitaton are applied to investigate the effects of RNS on the model microbe Pseudomonas fluorescens. RESULTS Citrate is channeled away from the tricarboxylic acid cycle using a novel metabolon consisting of citrate lyase (CL), phosphoenolpyruvate carboxylase (PEPC) and pyruvate phosphate dikinase (PPDK). This metabolic engine comprising three disparate enzymes appears to transiently assemble as a supercomplex aimed at ATP synthesis. The up-regulation in the activities of adenylate kinase (AK) and nucleoside diphosphate kinase (NDPK) ensured the efficacy of this ATP-making machine. CONCLUSION Microbes may escape the effects of nitrosative stress by re-engineering metabolic networks in order to generate and store ATP anaerobically when the electron transport chain is defective. GENERAL SIGNIFICANCE The molecular configuration described herein provides further understanding of how metabolism plays a key role in the adaptation to nitrosative stress and reveals novel targets that will inform the development of antimicrobial agents to counter RNS-resistant pathogens.
Collapse
|
49
|
Kondo H, Tanda K, Tabata C, Hayashi K, Kihara M, Kizaki Z, Taniguchi-Ikeda M, Mori M, Murayama K, Ohtake A. Leigh syndrome with Fukuyama congenital muscular dystrophy: a case report. Brain Dev 2014; 36:730-3. [PMID: 24113355 DOI: 10.1016/j.braindev.2013.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 09/02/2013] [Accepted: 09/13/2013] [Indexed: 11/27/2022]
Abstract
We report the first case of Leigh syndrome (LS) with Fukuyama congenital muscular dystrophy (FCMD). A neonate suffered from lactic acidosis and subsequently presented with poor feeding, muscle weakness, hypotonia, cardiopulmonary dysfunction, and hydrocephalus. He died at 17 months. The findings of brain magnetic resonance imaging indicated some specific features of both LS and FCMD, and FCMD gene mutation was detected. Decreased mitochondrial respiratory complex I and II activity was noted. Mitochondrial DNA sequencing showed no pathogenic mutation. A case with complex I+II deficiency has rarely been reported, suggesting a nuclear gene mutation.
Collapse
Affiliation(s)
- Hidehito Kondo
- Department of Pediatrics and Neonatology, Japanese Red Cross Kyoto Daiichi Hospital, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Japan.
| | - Koichi Tanda
- Department of Pediatrics and Neonatology, Japanese Red Cross Kyoto Daiichi Hospital, Japan
| | - Chihiro Tabata
- Department of Pediatrics and Neonatology, Japanese Red Cross Kyoto Daiichi Hospital, Japan
| | - Kohei Hayashi
- Department of Pediatrics and Neonatology, Japanese Red Cross Kyoto Daiichi Hospital, Japan
| | - Minako Kihara
- Department of Pediatrics and Neonatology, Japanese Red Cross Kyoto Daiichi Hospital, Japan
| | - Zenro Kizaki
- Department of Pediatrics and Neonatology, Japanese Red Cross Kyoto Daiichi Hospital, Japan
| | | | - Masato Mori
- Department of Pediatrics, Jichi Medical University, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Japan
| | - Akira Ohtake
- Department of Pediatrics, Saitama Medical University Hospital, Japan
| |
Collapse
|
50
|
Mitochondrial encephalomyopathy with cytochrome c oxidase deficiency caused by a novel mutation in the MTCO1 gene. Mitochondrion 2014; 17:101-5. [DOI: 10.1016/j.mito.2014.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/25/2014] [Accepted: 06/13/2014] [Indexed: 12/30/2022]
|