1
|
Kebbe M, Shankar K, Redman LM, Andres A. Human Milk Components and the Infant Gut Microbiome at 6 Months: Understanding the Interconnected Relationship. J Nutr 2024; 154:1200-1208. [PMID: 38442855 DOI: 10.1016/j.tjnut.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Human milk oligosaccharides have been shown to relate to the infant gut microbiome. However, the impact of other human milk components on infant gut bacterial colonization remains unexplored. OBJECTIVES Our cross-sectional analysis aimed to investigate associations between human milk components (energy, macronutrients, free amino acids, inflammatory markers, and hormones) and infant gut microbiome diversity and composition (phylum, family, and genus) at 6 mo of age. METHODS Human milk and infant stool samples were collected at 6 mo postpartum. The infant gut microbiome was profiled using 16S rRNA sequencing. Linear regression models were performed to examine associations, adjusting for pregravid BMI (kg/m2), delivery mode, duration of human milk feeding, and infant sex, with q < 0.2 considered significant. RESULTS This analysis included a total of 54 mothers (100% exclusively feeding human milk) and infants (n = 28 male; 51.9%). Total energy in human milk showed a negative association with α-diversity measures (Chao1 and Shannon). Interleukin (IL)-8 in human milk was positively associated with Chao1 and observed operational taxonomic units. At the family level, human milk glutamine and serine levels showed a negative association with the abundance of Veillonellaceae, whereas isoleucine showed a positive association with Bacteroidaceae. Human milk IL-8 and IL-6 concentrations were positively associated with Bacteroidaceae abundance. IL-8 also had a positive relationship with Bifidobacteriaceae, whereas it had a negative relationship with Streptococcacea and Clostridiaceae. Human milk IL-8 was positively associated with the phylum Bacteroidetes, and negatively associated with Proteobacteria. At the genus level, human milk IL-8 exhibited a positive relationship with Bacteroides, whereas human milk isoleucine had a negative relationship with Bacteroides and Ruminococcus. Pregravid BMI and sex effects were observed. CONCLUSIONS IL-8 in human milk could potentially prepare the infant's immune system to respond effectively to various microorganisms, potentially promoting the growth of beneficial gut bacteria and protecting against pathogens.
Collapse
Affiliation(s)
- Maryam Kebbe
- Faculty of Kinesiology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Kartik Shankar
- Department of Pediatrics, University of Colorado, Denver, CO, United States
| | - Leanne M Redman
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Aline Andres
- Arkansas Children's Nutrition Center, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
2
|
Hanna N, De Mejia CM, Heffes-Doon A, Lin X, Botros B, Gurzenda E, Clauss-Pascarelli C, Nayak A. Biodistribution of mRNA COVID-19 vaccines in human breast milk. EBioMedicine 2023; 96:104800. [PMID: 37734205 PMCID: PMC10514401 DOI: 10.1016/j.ebiom.2023.104800] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND COVID-19 mRNA vaccines play a vital role in the fight against SARS-CoV-2 infection. However, lactating women have been largely excluded from most vaccine clinical trials. As a result, limited research has been conducted on the systemic distribution of vaccine mRNA during lactation and whether it is excreted in human breast milk (BM). Here, we evaluated if COVID-19 vaccine mRNA is detectable in BM after maternal vaccination and determined its potential translational activity. METHODS We collected BM samples from 13 lactating, healthy, post-partum women before and after COVID-19 mRNA vaccination. Vaccine mRNA in whole BM and BM extracellular vesicles (EVs) was assayed using quantitative Droplet Digital PCR, and its integrity and translational activity were evaluated. FINDINGS Of 13 lactating women receiving the vaccine (20 exposures), trace mRNA amounts were detected in 10 exposures up to 45 h post-vaccination. The mRNA was concentrated in the BM EVs; however, these EVs neither expressed SARS-COV-2 spike protein nor induced its expression in the HT-29 cell line. Linkage analysis suggests vaccine mRNA integrity was reduced to 12-25% in BM. INTERPRETATION Our findings demonstrate that the COVID-19 vaccine mRNA is not confined to the injection site but spreads systemically and is packaged into BM EVs. However, as only trace quantities are present and a clear translational activity is absent, we believe breastfeeding post-vaccination is safe, especially 48 h after vaccination. Nevertheless, since the minimum mRNA vaccine dose to elicit an immune reaction in infants <6 months is unknown, a dialogue between a breastfeeding mother and her healthcare provider should address the benefit/risk considerations of breastfeeding in the first two days after maternal vaccination. FUNDING This study was supported by the Department of Pediatrics, NYU-Grossman Long Island School of Medicine.
Collapse
Affiliation(s)
- Nazeeh Hanna
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA; Women and Children's Research Laboratory, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA.
| | - Claudia Manzano De Mejia
- Women and Children's Research Laboratory, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Ari Heffes-Doon
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Xinhua Lin
- Women and Children's Research Laboratory, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Bishoy Botros
- Women and Children's Research Laboratory, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Ellen Gurzenda
- Women and Children's Research Laboratory, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Christie Clauss-Pascarelli
- Department of Pharmacy, NYU Langone Hospital-Long Island, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Amrita Nayak
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| |
Collapse
|
3
|
Xia J, Claud EC. Gut Microbiome-Brain Axis as an Explanation for the Risk of Poor Neurodevelopment Outcome in Preterm Infants with Necrotizing Enterocolitis. Microorganisms 2023; 11:1035. [PMID: 37110458 PMCID: PMC10142133 DOI: 10.3390/microorganisms11041035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Necrotizing Enterocolitis (NEC) is characterized by an inflammation of intestinal tissue that primarily affects premature infants. It is the most common and devastating gastrointestinal morbidity of prematurity, but beyond intestinal morbidity, this condition has also been associated with an increased risk of neurodevelopmental delays that persist beyond infancy. Prematurity, enteral feeding, bacterial colonization, and prolonged exposure to antibiotics are all risk factors that predispose preterm infants to NEC. Interestingly, these factors are all also associated with the gut microbiome. However, whether or not there is a connection between the microbiome and the risk of neurodevelopmental delays in infants after NEC is still an emerging area of research. Furthermore, how microbes in the gut could impact a distant organ such as the brain is also poorly understood. In this review, we discuss the current understanding of NEC and the role of the gut microbiome-brain axis in neurodevelopmental outcomes after NEC. Understanding the potential role of the microbiome in neurodevelopmental outcomes is important as the microbiome is modifiable and thus offers the hope of improved therapeutic options. We highlight the progress and limitations in this field. Insights into the gut microbiome-brain axis may offer potential therapeutic approaches to improve the long-term outcomes of premature infants.
Collapse
Affiliation(s)
- Jason Xia
- College of Liberal Arts and Sciences, University of Illinois Urbana-Champion, Champaign, IL 61801, USA
| | - Erika C. Claud
- Department of Pediatrics and Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Complexification of In Vitro Models of Intestinal Barriers, A True Challenge for a More Accurate Alternative Approach. Int J Mol Sci 2023; 24:ijms24043595. [PMID: 36835003 PMCID: PMC9958734 DOI: 10.3390/ijms24043595] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
The use of cell models is common to mimic cellular and molecular events in interaction with their environment. In the case of the gut, the existing models are of particular interest to evaluate food, toxicants, or drug effects on the mucosa. To have the most accurate model, cell diversity and the complexity of the interactions must be considered. Existing models range from single-cell cultures of absorptive cells to more complex combinations of two or more cell types. This work describes the existing solutions and the challenges that remain to be solved.
Collapse
|
5
|
Lu J, Martin CR, Claud EC. Neurodevelopmental outcome of infants who develop necrotizing enterocolitis: The gut-brain axis. Semin Perinatol 2023; 47:151694. [PMID: 36572620 PMCID: PMC9974904 DOI: 10.1016/j.semperi.2022.151694] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Necrotizing enterocolitis (NEC) poses a significant risk for neurodevelopmental impairment in extremely preterm infants. The gut microbiota shapes the development of the gut, immune system, and the brain; and dysbiosis drive neonatal morbidities including NEC. In this chapter, we delineate a gut-brain axis linking gut microbiota to the adverse neurological outcomes in NEC patients. We propose that in NEC, immaturity of the microbiome along with aberrant gut microbiota-driven immaturity of the gut barrier and immune system can lead to effects including systemic inflammation and circulating microbial mediators. This nexus of gut microbiota-driven systemic effects further interacts with a likewise underdeveloped blood-brain barrier to regulate neuroinflammation and neurodevelopment. Targeting deviant gut-brain axis signaling presents an opportunity to improve the neurodevelopmental outcomes of NEC patients.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pediatrics, Division of Biological Sciences, University of Chicago, Pritzker School of Medicine, Chicago, Illinois 60637, United States
| | - Camilia R Martin
- Department of Pediatrics, Division of Newborn Medicine, Weill Cornell Medicine, New York, New York 10021, United States
| | - Erika C Claud
- Department of Pediatrics, Division of Biological Sciences, University of Chicago, Pritzker School of Medicine, Chicago, Illinois 60637, United States.
| |
Collapse
|
6
|
Wang D, Jin H, Sheng J, Cheng L, Lin Q, Lazerev M, Jin P, Li X. A high salt diet protects interleukin 10-deficient mice against chronic colitis by improving the mucosal barrier function. Mol Immunol 2022; 150:39-46. [PMID: 35944464 DOI: 10.1016/j.molimm.2022.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 07/04/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022]
Abstract
A high salt diet (HSD) is often associated with a high risk for a variety of diseases, such as obesity and cardiovascular disease. Previous studies have demonstrated that an HSD enhances Th17 responses and increases the severity of autoimmune diseases. In this study, we investigated the effects of HSD (4% NaCl w/w) on colitis in IL-10-/- mice by comparing it with IL-10-/- mice on a normal salt diet (NSD, 1% NaCl w/w). The colonic epithelial barrier integrity in IL-10-/- mice, as well as differentiated Caco-2 cells exposed to high NaCl and proinflammatory cytokines, was also evaluated. Surprisingly, an HSD significantly ameliorated macroscopic colitis, improved the intestinal permeability of FITC-dextran, and decreased multiple proinflammatory cytokines in the colonic mucosa of IL-10-/- mice. While occludin and claudin-1, two major tight-junction proteins, were markedly down-regulated in IL-10-/- mice, HSD effectively restored their expressions. In Caco-2 cells, proinflammatory cytokines (TNF-α and IL-1β) potently decreased the expression of occludin and claudin-1 regardless of salt conditions [0.9% (standard), 1.2%, or 1.5% NaCl]. Under high salt conditions (1.5% NaCl), transepithelial electrical resistance (TEER) was elevated, while the addition of IL-10 further downregulated occludin and claudin-1 expressions by ~50% and lowered TEER. These findings suggest that, in the absence of IL-10, HSD promotes intestinal epithelial integrity and exerts an anti-inflammatory role as demonstrated by alleviated colitis in IL-10-/- mice. Moreover, Caco-2 data indicate that, in an inflammatory environment and under high NaCl conditions, IL-10 may play a proinflammatory role by disrupting colonic epithelial integrity and thus further promoting inflammation.
Collapse
Affiliation(s)
- Dezhi Wang
- Department of Gastroenterology, the Seventh Medical Center of PLA General Hospital, Beijing 100700, China; Department of Medicine/GI Division, School of Medicine, Johns Hopkins University, Baltimore 21205, United States
| | - Hua Jin
- Department of Pathology, the Seventh Medical Center of PLA General Hospital, Beijing 100700, China
| | - Jianqiu Sheng
- Department of Gastroenterology, the Seventh Medical Center of PLA General Hospital, Beijing 100700, China
| | - Leon Cheng
- Division of Pediatric Allergy and Immunology, Johns Hopkins University, Baltimore 21205, United States
| | - Qing Lin
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore 21205, United States
| | - Mark Lazerev
- Department of Medicine/GI Division, School of Medicine, Johns Hopkins University, Baltimore 21205, United States
| | - Peng Jin
- Department of Gastroenterology, the Seventh Medical Center of PLA General Hospital, Beijing 100700, China; Senior Department of Gastroenterology, the First Medical Center of PLA General Hospital, Beijing 100853, China.
| | - Xuhang Li
- Department of Medicine/GI Division, School of Medicine, Johns Hopkins University, Baltimore 21205, United States.
| |
Collapse
|
7
|
Lyu Y, Chen Y. Digested Human Colostrum Reduces Interleukin-8 Production in Induced Human Intestinal Epithelial Cells. Nutrients 2022; 14:nu14142787. [PMID: 35889744 PMCID: PMC9324903 DOI: 10.3390/nu14142787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Little is known about the impact of human colostrum on infant intestinal health following digestion. The aim of this study was to compare the effect of digested versus undigested human colostrum on inflammation and cytotoxicity in human intestinal epithelial cells (Caco2BBe) stimulated with lipopolysaccharides (LPS) or tumor necrosis factor (TNF). Colostrum samples (days 2–8 postpartum) from ten mothers of preterm infant were applied. Caco2BBe cells were pretreated by digested or undigested colostrum before stimulation with LPS or TNF. The inflammatory response was determined by measuring the production of interleukin-8 (IL-8) from cells using enzyme linked immunosorbent assay (ELISA). Cytotoxicity was examined by measuring the release of lactate dehydrogenase (LDH) from the cells. Digested colostrum significantly reduced IL-8 production under LPS and TNF stimulation compared with undigested colostrum. Individual colostrum samples exhibited wide variance in the ability to suppress IL-8 production and cytotoxicity in Caco2BBe cells. In vitro-digested human colostrum suppressed an inflammatory response more than undigested human colostrum in an induced intestinal cell culture model.
Collapse
|
8
|
Karpov NS, Erokhov PA, Sharova NP, Astakhova TM. How Is the Development of the Rat’s Small Intestine Related to Changes in the Proteasome Pool? Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Notararigo S, Varela E, Otal A, Antolín M, Guarner F, López P. Anti-Inflammatory Effect of an O-2-Substituted (1-3)-β-D-Glucan Produced by Pediococcus parvulus 2.6 in a Caco-2 PMA-THP-1 Co-Culture Model. Int J Mol Sci 2022; 23:ijms23031527. [PMID: 35163449 PMCID: PMC8835822 DOI: 10.3390/ijms23031527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 01/01/2023] Open
Abstract
Bacterial β-glucans are exopolysaccharides (EPSs), which can protect bacteria or cooperate in biofilm formation or in bacterial cell adhesion. Pediococcus parvulus 2.6 is a lactic acid bacterium that produces an O-2-substituted (1-3)-β-D-glucan. The structural similarity of this EPS to active compounds such as laminarin, together with its ability to modulate the immune system and to adhere in vitro to human enterocytes, led us to investigate, in comparison with laminarin, its potential as an immunomodulator of in vitro co-cultured Caco-2 and PMA-THP-1 cells. O-2-substituted (1-3)-β-D-glucan synthesized by the GTF glycosyl transferase of Pediococcus parvulus 2.6 or that by Lactococcus lactis NZ9000[pGTF] were purified and used in this study. The XTT tests revealed that all β-glucans were non-toxic for both cell lines and activated PMA-THP-1 cells’ metabolisms. The O-2-substituted (1-3)-β-D-glucan modulated production and expression of IL-8 and the IL-10 in Caco-2 and PMA-THP-1 cells. Laminarin also modulated cytokine production by diminishing TNF-α in Caco-2 cells and IL-8 in PMA-THP-1. All these features could be considered with the aim to produce function foods, supplemented with laminarin or with another novel β-glucan-producing strain, in order to ameliorate an individual’s immune system response toward pathogens or to control mild side effects in remission patients affected by inflammatory bowel diseases.
Collapse
Affiliation(s)
- Sara Notararigo
- Molecular Biology of Gram-Positive Bacteria, Margarita Salas Center for Biological Research (CIB-Margarita Salas-CSIC), Department of Microbial and Plant Biotechnology, Ramiro de Maeztu 9, 28040 Madrid, Spain;
- Digestive System Research Unit, Institut de RecercaValld’Hebron (VHIR), University Hospital Valld’Hebron, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.V.); (A.O.); (M.A.); (F.G.)
- Foundation Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain
| | - Encarnación Varela
- Digestive System Research Unit, Institut de RecercaValld’Hebron (VHIR), University Hospital Valld’Hebron, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.V.); (A.O.); (M.A.); (F.G.)
- CIBERehd, Instituto Carlos III, 28029 Madrid, Spain
| | - Anna Otal
- Digestive System Research Unit, Institut de RecercaValld’Hebron (VHIR), University Hospital Valld’Hebron, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.V.); (A.O.); (M.A.); (F.G.)
| | - María Antolín
- Digestive System Research Unit, Institut de RecercaValld’Hebron (VHIR), University Hospital Valld’Hebron, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.V.); (A.O.); (M.A.); (F.G.)
- CIBERehd, Instituto Carlos III, 28029 Madrid, Spain
| | - Francisco Guarner
- Digestive System Research Unit, Institut de RecercaValld’Hebron (VHIR), University Hospital Valld’Hebron, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (E.V.); (A.O.); (M.A.); (F.G.)
- CIBERehd, Instituto Carlos III, 28029 Madrid, Spain
| | - Paloma López
- Molecular Biology of Gram-Positive Bacteria, Margarita Salas Center for Biological Research (CIB-Margarita Salas-CSIC), Department of Microbial and Plant Biotechnology, Ramiro de Maeztu 9, 28040 Madrid, Spain;
- Correspondence: ; Tel.: +34-91-837-31-12; Fax: +34-91-538-04-32
| |
Collapse
|
10
|
Cortez RV, Fernandes A, Sparvoli LG, Padilha M, Feferbaum R, Neto CM, Taddei CR. Impact of Oropharyngeal Administration of Colostrum in Preterm Newborns' Oral Microbiome. Nutrients 2021; 13:nu13124224. [PMID: 34959775 PMCID: PMC8703686 DOI: 10.3390/nu13124224] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023] Open
Abstract
The initial colonization of the human microbiota is of paramount importance. In this context, the oropharyngeal administration of colostrum is a safe, viable, and well-tolerated practice even by the smallest preterm infants. Therefore, this study evaluated the effects of oropharyngeal administration of colostrum on the establishment of preterm infants' oral microbiota. A longitudinal observational study was carried out with 20 premature neonates, divided into two groups: one receiving the protocol (Oropharyngeal Administration of Colostrum; OAC) and the other one receiving Standard Caare (SC). Saliva samples were collected from the newborns weekly during the study period (from the day of birth until the 21st day of life) for analysis of oral microbiota through 16S rRNA gene sequencing. We observed that the colonization of the oral microbiota of preterm newborns preseanted a higher relative abundance of Staphylococcus on the 7th day of life, mainly in the OAC group. Additionally, an increased abundance of Bifidobacterium and Bacteroides was observed in the OAC group at the first week of life. Regarding alpha and beta diversity, time was a key factor in the oral modulation of both groups, showing how dynamic this environment is in early life.
Collapse
Affiliation(s)
- Ramon V. Cortez
- Department of Clinical Analysis and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (R.V.C.); (L.G.S.)
| | - Andrea Fernandes
- Human Milk Bank, Hospital Maternidade Leonor Mendes de Barros, São Paulo 03015-000, Brazil; (A.F.); (C.M.N.)
| | - Luiz Gustavo Sparvoli
- Department of Clinical Analysis and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (R.V.C.); (L.G.S.)
| | - Marina Padilha
- Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, Brazil;
| | - Rubens Feferbaum
- Children’s Institute, University of São Paulo, Rua Tremembé, São Paulo 01256-010, Brazil;
| | - Corintio Mariani Neto
- Human Milk Bank, Hospital Maternidade Leonor Mendes de Barros, São Paulo 03015-000, Brazil; (A.F.); (C.M.N.)
| | - Carla R. Taddei
- Department of Clinical Analysis and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (R.V.C.); (L.G.S.)
- School of Arts, Sciences and Humanity, University of São Paulo, São Paulo 03828-000, Brazil
- Correspondence:
| |
Collapse
|
11
|
Human Milk Growth Factors and Their Role in NEC Prevention: A Narrative Review. Nutrients 2021; 13:nu13113751. [PMID: 34836007 PMCID: PMC8620589 DOI: 10.3390/nu13113751] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/25/2022] Open
Abstract
Growing evidence demonstrates human milk's protective effect against necrotizing enterocolitis (NEC). Human milk derives these properties from biologically active compounds that influence intestinal growth, barrier function, microvascular development, and immunological maturation. Among these protective compounds are growth factors that are secreted into milk with relatively high concentrations during the early postnatal period, when newborns are most susceptible to NEC. This paper reviews the current knowledge on human milk growth factors and their mechanisms of action relevant to NEC prevention. It will also discuss the stability of these growth factors with human milk pasteurization and their potential for use as supplements to infant formulas with the goal of preventing NEC.
Collapse
|
12
|
De Fazio L, Beghetti I, Bertuccio SN, Marsico C, Martini S, Masetti R, Pession A, Corvaglia L, Aceti A. Necrotizing Enterocolitis: Overview on In Vitro Models. Int J Mol Sci 2021; 22:6761. [PMID: 34201786 PMCID: PMC8268427 DOI: 10.3390/ijms22136761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a gut inflammatory disorder which constitutes one of the leading causes of morbidity and mortality for preterm infants. The pathophysiology of NEC is yet to be fully understood; several observational studies have led to the identification of multiple factors involved in the pathophysiology of the disease, including gut immaturity and dysbiosis of the intestinal microbiome. Given the complex interactions between microbiota, enterocytes, and immune cells, and the limited access to fetal human tissues for experimental studies, animal models have long been essential to describe NEC mechanisms. However, at present there is no animal model perfectly mimicking human NEC; furthermore, the disease mechanisms appear too complex to be studied in single-cell cultures. Thus, researchers have developed new approaches in which intestinal epithelial cells are exposed to a combination of environmental and microbial factors which can potentially trigger NEC. In addition, organoids have gained increasing attention as promising models for studying NEC development. Currently, several in vitro models have been proposed and have contributed to describe the disease in deeper detail. In this paper, we will provide an updated review of available in vitro models of NEC and an overview of current knowledge regarding its molecular underpinnings.
Collapse
Affiliation(s)
- Luigia De Fazio
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (L.D.F.); (S.N.B.); (C.M.); (S.M.); (R.M.); (A.P.); (L.C.); (A.A.)
- Pediatric Oncology and Hematology “Lalla Seragnoli”, Pediatric Unit-IRCCS Azienda Ospedaliero-Universitaria, 40138 Bologna, Italy
| | - Isadora Beghetti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (L.D.F.); (S.N.B.); (C.M.); (S.M.); (R.M.); (A.P.); (L.C.); (A.A.)
- Neonatal Intensive Care Unit-IRCCS Azienda Ospedaliero-Universitaria, 40138 Bologna, Italy
| | - Salvatore Nicola Bertuccio
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (L.D.F.); (S.N.B.); (C.M.); (S.M.); (R.M.); (A.P.); (L.C.); (A.A.)
- Pediatric Oncology and Hematology “Lalla Seragnoli”, Pediatric Unit-IRCCS Azienda Ospedaliero-Universitaria, 40138 Bologna, Italy
| | - Concetta Marsico
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (L.D.F.); (S.N.B.); (C.M.); (S.M.); (R.M.); (A.P.); (L.C.); (A.A.)
- Neonatal Intensive Care Unit-IRCCS Azienda Ospedaliero-Universitaria, 40138 Bologna, Italy
| | - Silvia Martini
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (L.D.F.); (S.N.B.); (C.M.); (S.M.); (R.M.); (A.P.); (L.C.); (A.A.)
- Neonatal Intensive Care Unit-IRCCS Azienda Ospedaliero-Universitaria, 40138 Bologna, Italy
| | - Riccardo Masetti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (L.D.F.); (S.N.B.); (C.M.); (S.M.); (R.M.); (A.P.); (L.C.); (A.A.)
- Pediatric Oncology and Hematology “Lalla Seragnoli”, Pediatric Unit-IRCCS Azienda Ospedaliero-Universitaria, 40138 Bologna, Italy
| | - Andrea Pession
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (L.D.F.); (S.N.B.); (C.M.); (S.M.); (R.M.); (A.P.); (L.C.); (A.A.)
- Pediatric Oncology and Hematology “Lalla Seragnoli”, Pediatric Unit-IRCCS Azienda Ospedaliero-Universitaria, 40138 Bologna, Italy
| | - Luigi Corvaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (L.D.F.); (S.N.B.); (C.M.); (S.M.); (R.M.); (A.P.); (L.C.); (A.A.)
- Neonatal Intensive Care Unit-IRCCS Azienda Ospedaliero-Universitaria, 40138 Bologna, Italy
| | - Arianna Aceti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (L.D.F.); (S.N.B.); (C.M.); (S.M.); (R.M.); (A.P.); (L.C.); (A.A.)
- Neonatal Intensive Care Unit-IRCCS Azienda Ospedaliero-Universitaria, 40138 Bologna, Italy
| |
Collapse
|
13
|
Wu YZ, Chan KYY, Leung KT, Lam HS, Tam YH, Lee KH, Li K, Ng PC. The miR-223/nuclear factor I-A axis regulates inflammation and cellular functions in intestinal tissues with necrotizing enterocolitis. FEBS Open Bio 2021; 11:1907-1920. [PMID: 33932136 PMCID: PMC8255851 DOI: 10.1002/2211-5463.13164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/05/2021] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
We previously demonstrated that microRNA(miR)‐223 is overexpressed in intestinal tissue of infants with necrotizing enterocolitis (NEC). The objective of the current study was to identify the target gene of miR‐223 and to investigate the role of the miR‐223/nuclear factor I‐A (NFIA) axis in cellular functions that underpin the pathophysiology of NEC. The target gene of miR‐223 was identified by in silico target prediction bioinformatics, luciferase assay, and western blotting. We investigated downstream signals of miR‐223 and cellular functions by overexpressing the miRNA in Caco‐2 and FHs74 cells stimulated with lipopolysaccharide or lipoteichoic acid (LTA). NFIA was identified as a target gene of miR‐223. Overexpression of miR‐223 significantly induced MYOM1 and inhibited NFIA and RGN in Caco‐2 cells, while costimulation with LTA decreased expression of GNA11, MYLK, and PRKCZ. Expression levels of GNA11, MYLK, IL‐6, and IL‐8 were increased, and levels of NFIA and RGN were decreased in FHs74 cells. These potential downstream genes were significantly correlated with levels of miR‐223 or NFIA in primary NEC tissues. Overexpression of miR‐223 significantly increased apoptosis of Caco‐2 and FHs74 cells, while proliferation of FHs74 was inhibited. These results suggest that upon binding with NFIA, miR‐223 regulates functional effectors in pathways of apoptosis, cell proliferation, G protein signaling, inflammation, and smooth muscle contraction. The miR‐223/NFIA axis may play an important role in the pathophysiology of NEC by enhancing inflammation and tissue damage.
Collapse
Affiliation(s)
- Yu Zheng Wu
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Kathy Yuen Yee Chan
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Kam Tong Leung
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Hugh Simon Lam
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Yuk Him Tam
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kim Hung Lee
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Karen Li
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Pak Cheung Ng
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
14
|
Abstract
Necrotizing enterocolitis (NEC) is an inflammatory disease affecting premature infants. Intestinal microbial composition may play a key role in determining which infants are predisposed to NEC and when infants are at highest risk of developing NEC. It is unclear how to optimize antibiotic therapy in preterm infants to prevent NEC and how to optimize antibiotic regimens to treat neonates with NEC. This article discusses risk factors for NEC, how dysbiosis in preterm infants plays a role in the pathogenesis of NEC, and how probiotic and antibiotic therapy may be used to prevent and/or treat NEC and its sequelae.
Collapse
Affiliation(s)
- Jennifer Duchon
- Division of Newborn Medicine, Jack and Lucy Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1000 10th Avenue, New York, NY 10019, USA
| | - Maria E Barbian
- Division of Neonatal-Perinatal Medicine, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate Drive Northeast, 3rd Floor, Atlanta, GA 30322, USA
| | - Patricia W Denning
- Division of Neonatal-Perinatal Medicine, Emory University School of Medicine, Children's Healthcare of Atlanta, Emory University Hospital Midtown, 550 Peachtree Street, 3rd Floor MOT, Atlanta, GA 30308, USA.
| |
Collapse
|
15
|
Nguyen M, Holdbrooks H, Mishra P, Abrantes MA, Eskew S, Garma M, Oca CG, McGuckin C, Hein CB, Mitchell RD, Kazi S, Chew S, Casaburi G, Brown HK, Frese SA, Henrick BM. Impact of Probiotic B. infantis EVC001 Feeding in Premature Infants on the Gut Microbiome, Nosocomially Acquired Antibiotic Resistance, and Enteric Inflammation. Front Pediatr 2021; 9:618009. [PMID: 33665175 PMCID: PMC7921802 DOI: 10.3389/fped.2021.618009] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/08/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Preterm birth is a major determinant of neonatal survival and morbidity, but the gut microbiome and associated enteric inflammation are also key factors in neonatal development and the risk of associated morbidities. We prospectively and longitudinally followed two cohorts of preterm infants, one of which was fed activated Bifidobacterium longum subsp. infantis (B. infantis) EVC001 8 × 109 CFU daily, and the other was not fed a probiotic. Hospital feeding protocol assigned all infants born at <1500 g and/or < 32 weeks corrected gestational age to the probiotic feeding protocol, whereas infants born at >1500 g and/or >32 weeks corrected gestational age were not fed a probiotic. Fecal samples were opportunistically collected from 77 infants throughout the hospital stay, and subjected to shotgun metagenomic sequencing and quantification of enteric inflammation. De-identified metadata was collected from patient medical records. Results: The gut microbiome of preterm infants was typified by a high abundance of Enterobacteriaceae and/or Staphylococcaceae, and multivariate modeling identified the probiotic intervention, rather than degree of prematurity, day of life, or other clinical interventions, as the primary source of change in the gut microbiome. Among infants fed B. infantis EVC001, a high abundance of total Bifidobacteriaceae developed rapidly, the majority of which was B. infantis confirmed via subspecies-specific qPCR. Associated with this higher abundance of Bifidobacteriaceae, we found increased functional capacity for utilization of human milk oligosaccharides (HMOs), as well as reduced abundance of antibiotic resistance genes (ARGs) and the taxa that harbored them. Importantly, we found that infants fed B. infantis EVC001 exhibited diminished enteric inflammation, even when other clinical variables were accounted for using multivariate modeling. Conclusion: These results provide an important observational background for probiotic use in a NICU setting, and describe the clinical, physiological, and microbiome-associated improvements in preterm infants associated with B. infantis EVC001 feeding.
Collapse
Affiliation(s)
- Marielle Nguyen
- Neonatology, Kaiser Permanente Orange County, Anaheim, CA, United States
| | - Heaven Holdbrooks
- Neonatology, Kaiser Permanente Orange County, Anaheim, CA, United States
| | - Prasanthi Mishra
- Neonatology, Kaiser Permanente Orange County, Anaheim, CA, United States
| | - Maria A. Abrantes
- Neonatology, Kaiser Permanente Orange County, Anaheim, CA, United States
| | - Sherri Eskew
- Neonatology, Kaiser Permanente Orange County, Anaheim, CA, United States
| | - Mariajamiela Garma
- Neonatology, Kaiser Permanente Orange County, Anaheim, CA, United States
| | - Cyr-Geraurd Oca
- Neonatology, Kaiser Permanente Orange County, Anaheim, CA, United States
| | | | | | | | - Sufyan Kazi
- Evolve Biosystems Inc., Davis, CA, United States
| | | | | | | | - Steven A. Frese
- Evolve Biosystems Inc., Davis, CA, United States
- Department of Food Science and Technology, University of Nebraska Lincoln, Lincoln, NE, United States
- Department of Nutrition, University of Nevada, Reno, NV, United States
| | - Bethany M. Henrick
- Evolve Biosystems Inc., Davis, CA, United States
- Department of Food Science and Technology, University of Nebraska Lincoln, Lincoln, NE, United States
| |
Collapse
|
16
|
Gliadin Sequestration as a Novel Therapy for Celiac Disease: A Prospective Application for Polyphenols. Int J Mol Sci 2021; 22:ijms22020595. [PMID: 33435615 PMCID: PMC7826989 DOI: 10.3390/ijms22020595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Celiac disease is an autoimmune disorder characterized by a heightened immune response to gluten proteins in the diet, leading to gastrointestinal symptoms and mucosal damage localized to the small intestine. Despite its prevalence, the only treatment currently available for celiac disease is complete avoidance of gluten proteins in the diet. Ongoing clinical trials have focused on targeting the immune response or gluten proteins through methods such as immunosuppression, enhanced protein degradation and protein sequestration. Recent studies suggest that polyphenols may elicit protective effects within the celiac disease milieu by disrupting the enzymatic hydrolysis of gluten proteins, sequestering gluten proteins from recognition by critical receptors in pathogenesis and exerting anti-inflammatory effects on the system as a whole. This review highlights mechanisms by which polyphenols can protect against celiac disease, takes a critical look at recent works and outlines future applications for this potential treatment method.
Collapse
|
17
|
Jang KB, Purvis JM, Kim SW. Dose-response and functional role of whey permeate as a source of lactose and milk oligosaccharides on intestinal health and growth of nursery pigs. J Anim Sci 2021; 99:skab008. [PMID: 33521816 PMCID: PMC7849970 DOI: 10.1093/jas/skab008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022] Open
Abstract
Two experiments were conducted to evaluate dose-response and supplemental effects of whey permeate on growth performance and intestinal health of nursery pigs. In experiment (exp.) 1, 1,080 pigs weaned at 6.24 kg body weight (BW) were allotted to five treatments (eight pens/treatment) with increasing levels of whey permeate in three phases (from 10% to 30%, 3% to 23%, and 0% to 9% for phase 1, 2, and 3, respectively) fed until 11 kg BW and then fed a common phase 4 diet (0% whey permeate) until 25 kg BW in a 48-d feeding trial. Feed intake and BW were measured at the end of each phase. In exp. 2, 1,200 nursery pigs at 7.50 kg BW were allotted to six treatments (10 pens/treatment) with increasing levels of whey permeate from 0% to 18.75% fed until 11 kg BW. Feed intake and BW were measured during 11 d. Six pigs per treatment (1 per pens) were euthanized to collect the jejunum to evaluate tumor necrosis factor-alpha, interleukin-8 (IL-8), transforming growth factor-beta 1, mucin 2, histomorphology, digestive enzyme activity, crypt cell proliferation rate, and jejunal mucosa-associated microbiota. Data were analyzed using contrasts in the MIXED procedure and a broken-line analysis using the NLIN procedure of SAS. In exp. 1, increasing whey permeate had a quadratic effect (P < 0.05) on feed efficiency (G:F; maximum: 1.35 at 18.3%) in phase 1. Increasing whey permeate linearly increased (P < 0.05) average daily gain (ADG; 292 to 327 g/d) and G:F (0.96 to 1.04) of pigs in phase 2. In exp. 2, increasing whey permeate linearly increased (P < 0.05) ADG (349 to 414 g/d) and G:F (0.78 to 0.85) and linearly increased (P < 0.05) crypt cell proliferation rate (27.8% to 37.0%). The breakpoint from a broken-line analysis was obtained at 13.6% whey permeate for maximal G:F. Increasing whey permeate tended to change IL-8 (quadratic, P = 0.052; maximum: 223 pg/mg at 10.9%), to decrease Firmicutes:Bacteroidetes (P = 0.073, 1.59 to 1.13), to increase (P = 0.089) Bifidobacteriaceae (0.73% to 1.11%), and to decrease Enterobacteriaceae (P = 0.091, 1.04% to 0.52%) and Streptococcaceae (P = 0.094, 1.50% to 0.71%) in the jejunal mucosa. In conclusion, dietary inclusion of whey permeate increased the growth of nursery pigs from 7 to 11 kg BW. Pigs grew most efficiently with 13.6% whey permeate. Improvement in growth performance is partly attributed to stimulating intestinal immune response and enterocyte proliferation with positive changes in jejunal mucosa-associated microbiota in nursery pigs.
Collapse
Affiliation(s)
- Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | | | - Sung W Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC
| |
Collapse
|
18
|
Kim SY, Yi DY. Components of human breast milk: from macronutrient to microbiome and microRNA. Clin Exp Pediatr 2020; 63:301-309. [PMID: 32252145 PMCID: PMC7402982 DOI: 10.3345/cep.2020.00059] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022] Open
Abstract
Human breast milk (HBM) is essential for the infant's growth and development right after birth and is an irreplaceable source of nutrition for early human survival. Various infant formulas have many similarities to HBM in many components, but there is no perfect substitute for HBM. Recently, various breast milk components and their roles have been studied according to the development of various analysis techniques. As is already well known, HBM contains about 87%-88% water, and 124- g/L solid components as macronutrients, including about 7% (60-70 g/L) carbohydrates, 1% (8-10 g/L) protein, and 3.8% (35-40 g/L) fat. The composition may vary depending on the environmental factors, including maternal diet. Colostrum is low in fat but high in protein and relatively rich in immuneprotective components. Although HBM contains enough vitamins to ensure normal growth of the infant, vitamins D and K may be insufficient, and the infant may require their supplementation. Growth factors in HBM also serve as various bioactive proteins and peptides on the intestinal tract, vasculature, nervous system, and endocrine system. In the past, HBM of a healthy mother was thought to be sterile. However, several subsequent studies have confirmed the presence of rich and diverse microbial communities in HBM. Some studies suggested that the genera Staphylococcus and Streptococcus may be universally predominant in HBM, but the origin of microbiota still remains controversial. Lastly, milk is the one of most abundant body fluid of microRNAs, which are known to play a role in various functions, such as immunoprotection and developmental programming, through delivering from HBM and absorption by intestinal epithelial cells. In conclusion, HBM is the most important source of nutrition for infants and includes microbiomes and miRNAs for growth, development, and immunity.
Collapse
Affiliation(s)
- Su Yeong Kim
- Department of Pediatrics, Chung-Ang University Hospital, Seoul, Korea
| | - Dae Yong Yi
- Department of Pediatrics, Chung-Ang University Hospital, Seoul, Korea.,College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
19
|
Abstract
OBJECTIVE To determine the effects of bovine lactoferrin (bLF) on cell viability, proliferation, and the protective roles in intestinal epithelial cells-6 (IEC-6) treated by lipopolysaccharide (LPS). METHODS Cell viability and proliferation of IEC-6 were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Brdu assay separately. Cell cycle distribution was analyzed by flow cytometry. Inflammatory cytokines were analysed by real-time PCR and ELISA. Western blot was utilized to measure the level of MAPK and NF-κβ nuclear translocation. RESULTS Dose-dependent effects of bLF on cell viability and proliferation were observed in IEC-6 cells (both P < 0.05), especially at a dose of 100 μg/ml. The percentage of cells in the G2 and S phase was significantly higher than those of the control group (8.17 ± 0.49% vs 4.72 ± 0.55%, P < 0.01 and 12.75 ± 0.33% vs 9.48 ± 0.33%, P < 0.01, respectively). The mRNA level of IL-1β, IL-6 and TNF-α was decreased by co-stimulation of bLF and LPS compared with the LPS treatments alone in IEC-6 cells (all P < 0.001). The secretion of IL-6 and TNF-α were also decreased by co-stimulation of bLF and LPS (both P < 0.01). Bovine lactoferrin treatment at dose of 100 μg/ml could inhibit the activation of MAPK/NF-κβ signal pathway induced by LPS (both P < 0.001). CONCLUSIONS Bovine lactoferrin could promote the cell viability and proliferation, and have anti-inflammatory effects via inhibition of the activation of MAPK and NF-κβ nuclear translocation. Supplementation of formula with bLF may be beneficial in preventing NEC in preterm infants.
Collapse
|
20
|
Kuziez D, Harkey J, Burack S, Borja J, Quinn EA. Maternal birth weight is associated with milk epidermal growth factor in Filipino women. Am J Hum Biol 2020; 32:e23403. [DOI: 10.1002/ajhb.23403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Duaa Kuziez
- Saint Louis University School of Medicine, Saint Louis University Saint Louis Missouri
| | - Jamie Harkey
- Department of Anthropology Washington University in St. Louis Saint Louis Missouri
| | - Sarah Burack
- Department of Anthropology Washington University in St. Louis Saint Louis Missouri
| | - Judith Borja
- Office of Population Studies University of San Carlos Cebu Philippines
| | - Elizabeth A. Quinn
- Department of Anthropology Washington University in St. Louis Saint Louis Missouri
| |
Collapse
|
21
|
Gut bacteria characteristic of the infant microbiota down-regulate inflammatory transcriptional responses in HT-29 cells. Anaerobe 2020; 61:102112. [DOI: 10.1016/j.anaerobe.2019.102112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022]
|
22
|
Rodríguez-Camejo C, Puyol A, Fazio L, Villamil E, Arbildi P, Sóñora C, Castro M, Carroscia L, Hernández A. Impact of Holder pasteurization on immunological properties of human breast milk over the first year of lactation. Pediatr Res 2020; 87:32-41. [PMID: 31288249 DOI: 10.1038/s41390-019-0500-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND The timing of milk donations to human milk banks ranges from a few days to more than 1 year after delivery, and the Holder method is used for pasteurization. We evaluated the effect of temporal variation and thermal treatment on the immunological properties of milk. METHODS We analyzed 73 milk samples, raw and after pasteurization, donated at different lactation stages. We studied antibodies, lysozyme, cytokines, soluble receptors, and factors with impact on barrier function. We also evaluated in vitro the capacity of milk to modulate nuclear factor-κB (NF-κB) signaling in an HT-29 epithelial cell line stimulated with tumor necrosis factor-α (TNF-α). RESULTS With few exceptions, immune components exhibited their highest levels in colostrum, and were stable in the various stages of mature milk. Pasteurization altered the immunological composition of milk, and very drastically for some components. Raw milk of the first year reduced NF-κB activation in HT-29 cells treated with TNF-α to approximately the same extent, and Holder pasteurization significantly affected this capacity. CONCLUSIONS Overall, the present work reports that mature donated milk is equally valuable over the first year of lactation, but warns about drastic losses of anti-inflammatory properties during Holder pasteurization that could be critical for the health of preterm infants.
Collapse
Affiliation(s)
- Claudio Rodríguez-Camejo
- Cátedra de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Arturo Puyol
- Banco de Leche "Ruben Panizza", Centro Hospitalario Pereira Rossell, Administración de los Servicios de Salud del Estado, Montevideo, Uruguay
| | - Laura Fazio
- Banco de Leche "Ruben Panizza", Centro Hospitalario Pereira Rossell, Administración de los Servicios de Salud del Estado, Montevideo, Uruguay
| | - Emilia Villamil
- Cátedra de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Paula Arbildi
- Cátedra de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Sóñora
- Cátedra de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay.,Escuela Universitaria de Tecnología Médica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mara Castro
- Hospital de la Mujer, Centro Hospitalario Pereira Rossell, Administración de los Servicios de Salud del Estado, Montevideo, Uruguay
| | - Lilian Carroscia
- Banco de Leche "Ruben Panizza", Centro Hospitalario Pereira Rossell, Administración de los Servicios de Salud del Estado, Montevideo, Uruguay
| | - Ana Hernández
- Cátedra de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Área Inmunología, Departamento de Biociencias, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
23
|
Gimeno-Alcañiz JV, Collado MC. Impact of human milk on the transcriptomic response of fetal intestinal epithelial cells reveals expression changes of immune-related genes. Food Funct 2019; 10:140-150. [PMID: 30499575 PMCID: PMC6350622 DOI: 10.1039/c8fo01107a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human milk, the best food for infants, is a dynamic and complex fluid that directly influences the immune system and microbiota establishment.
Human milk, the best food for infants, is a dynamic and complex fluid that directly influences the immune system and microbiota establishment. The protective role of human milk is well known although the mechanisms behind it still need to be uncovered. This study aimed to characterize the impact of human milk in the immature intestine of newborns by analyzing the global transcriptomic response of the FHs 74 int cell line (ATCC CCL-241). The expression of intestinal keratins and other genes with a well-annotated intestinal or epithelial function validated FHs 74 int derived from the fetal small intestine as a model of the intestinal epithelium of newborns. Cells exposed to skimmed human milk showed seventeen differentially expressed genes, most of them up-regulated, including four chemokine genes (CXCL1, CXCL2, CXCL3 and CXCL10) and other immune-related genes. qRT-PCR and ELISA analysis confirmed the microarray data and indicated a different pattern of expression upon milk exposure in FHs 74 int as compared to the adult tumorigenic Caco-2 cell line. The evaluation of the functional significance of these transcriptomic changes reveals that human milk exposure may contribute to the regulation of the inflammatory response in the intestine during the perinatal period, which is characterized by the immaturity of the immune system and a pro-inflammatory phenotype.
Collapse
Affiliation(s)
- José V Gimeno-Alcañiz
- Instituto de agroquímica y tecnología de alimentos (IATA-CSIC), Department of Biotechnology, Avenida Agustín Escardino 7, 46980 Paterna, Spain.
| | | |
Collapse
|
24
|
Khandelwal P, Andersen H, Romick-Rosendale L, Taggart CB, Watanabe M, Lane A, Dandoy CE, Lake KE, Litts BA, Morrow AL, Lee ML, Haslam DB, Davies SM. A Pilot Study of Human Milk to Reduce Intestinal Inflammation After Bone Marrow Transplant. Breastfeed Med 2019; 14:193-202. [PMID: 30916575 DOI: 10.1089/bfm.2018.0199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Human milk administration in the early peritransplant period would lower intestinal inflammation after bone marrow transplant (BMT). MATERIALS AND METHODS Children 0-5 years undergoing BMT received either a ready-to-feed human milk preparation designed for these children (Prolacta Bioscience, Duarte, CA) or standard formula. Babies breastfeeding at the time of BMT were also enrolled on the human milk arm. Human milk was administered from day -3 until day +14 after BMT. Metagenomic shotgun sequencing and metabolomics of stool, plasma cytokines, and regenerating islet-derived 3α (REG3α) levels were measured at enrollment and day +14. Human leukocyte antigen-DR isotype (HLA-DR), CD38, and CD69 expression on T cells were evaluated at day +21. RESULTS Forty-six children were enrolled, 32 received human milk (donor milk n = 23, breastfeeding babies n = 9), and 14 were controls who received standard feeds supervised by a BMT dietician. Twenty-four patients received at least 60% of goal human milk and were evaluable. Plasma interleukin (IL)-8 (p = 0.04), IL-10 (p = 0.02), and REG3α (p = 0.03) were decreased in the human milk cohort. Peripheral blood CD69+ CD8+ T cells were higher in controls (p = 0.01). Species abundance of Adenovirus (p = 0.00034), Escherichia coli (p = 0.0017), Cryptosporidium parvum (p = 0.0006), Dialister invisus (p = 0.01), and Pseudomonas aeruginosa (p = 0.05) from stool was higher in controls. Stool alanine, tyrosine, methionine, and the ratio of fecal alanine to choline and phosphocholine were higher in controls (p < 0.05). No difference was observed in stool propionate and butyrate levels as measures of short-chain fatty acids between the two cohorts. CONCLUSIONS Administration of human milk resulted in decreased markers of intestinal inflammation and could be a valuable adjunct for patients after BMT.
Collapse
Affiliation(s)
- Pooja Khandelwal
- 1 Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Heidi Andersen
- 2 Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Cynthia B Taggart
- 4 Department of Nutrition Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Miki Watanabe
- 3 Divison of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Adam Lane
- 1 Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Christopher E Dandoy
- 1 Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kelly E Lake
- 1 Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Bridget A Litts
- 1 Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ardythe L Morrow
- 5 Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - David B Haslam
- 2 Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stella M Davies
- 1 Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
25
|
Abstract
Cytokines are required for normal growth and development of the mammary gland and TGF-β prominently represents an established effector of apoptosis, e.g., during involution of the mammary gland. By the control of intracellular signaling pathways, including JAK/STAT, MAPK, PI-3K, and NF-κB, cytokines efficiently regulate cell proliferation and inflammation in the breast. Therefore, cytokines are discussed also in a context of malignant mammary growth. As a group of tissue hormones produced by somatic cells or by cells from the immune system, cytokines are defined by their immunomodulatory potential. Over the past 40 years, multiple cytokines were identified in colostrum and milk. Importantly, cytokines derived from mammary secretions after birth are required for maturation of the immune system in the developing gastrointestinal tract from the suckling. Moreover, recent studies have further assessed the particular interactions between probiotic bacterial strains and cytokines. In light of the increasing prevalence of inflammatory diseases of the gastrointestinal system, the effects of probiotic microorganisms during milk fermentation may have immunotherapeutic potential in the future.
Collapse
Affiliation(s)
- Julia Brenmoehl
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Daniela Ohde
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Elisa Wirthgen
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Andreas Hoeflich
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
| |
Collapse
|
26
|
Dasgupta S, Jain SK. Protective effects of amniotic fluid in the setting of necrotizing enterocolitis. Pediatr Res 2017; 82:584-595. [PMID: 28609432 DOI: 10.1038/pr.2017.144] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/03/2017] [Indexed: 12/16/2022]
Abstract
Necrotizing enterocolitis (NEC) is the most common life threatening condition affecting preterm infants. NEC occurs in 1-5% of all neonatal intensive care admissions and 5-10% of very low birth weight infants. The protective role of human breast milk (BM) has been well established. It has also been shown that amniotic fluid (AF) and BM have many similarities in terms of presence of growth and other immune-modulatory factors. This finding led to the initial hypothesis that AF may exert similar protective effects against the development of NEC, as does BM. Multiple studies have elucidated the presence of growth factors in AF and the protective effect of AF against NEC. Studies have also described possible mechanisms how AF protects against NEC. At present, research in this particular area is extremely active and robust. This review summarizes the various studies looking at the protective effects of AF against the development of NEC. It also provides an insight into future directions, the vast potential of AF as a readily available biologic medium, and the ethical barriers that must be overcome before using AF.
Collapse
Affiliation(s)
- Soham Dasgupta
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Sunil Kumar Jain
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
27
|
Abstract
Necrotizing enterocolitis (NEC) is a devastating disease in premature infants with high case fatality and significant morbidity among survivors. Immaturity of intestinal host defenses predisposes the premature infant gut to injury. An abnormal bacterial colonization pattern with a deficiency of commensal bacteria may lead to a further breakdown of these host defense mechanisms, predisposing the infant to NEC. Here, we review the role of the innate and adaptive immune system in the pathophysiology of NEC.
Collapse
MESH Headings
- Adaptive Immunity
- Enterocolitis, Necrotizing/immunology
- Enterocolitis, Necrotizing/microbiology
- Enterocolitis, Necrotizing/physiopathology
- Evidence-Based Medicine
- Humans
- Immunity, Innate
- Infant, Premature
- Infant, Premature, Diseases/immunology
- Infant, Premature, Diseases/microbiology
- Infant, Premature, Diseases/physiopathology
- Intestinal Mucosa/immunology
- Intestinal Mucosa/microbiology
- Intestinal Mucosa/physiopathology
- Intestines/blood supply
- Intestines/immunology
- Intestines/physiopathology
- Milk, Human/immunology
Collapse
Affiliation(s)
- Timothy L Denning
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA
| | - Amina M Bhatia
- Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | - Andrea F Kane
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Ravi M Patel
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Patricia W Denning
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA.
| |
Collapse
|
28
|
Liu L, Wang Z, Park HG, Xu C, Lawrence P, Su X, Wijendran V, Walker WA, Kothapalli KSD, Brenna JT. Human fetal intestinal epithelial cells metabolize and incorporate branched chain fatty acids in a structure specific manner. Prostaglandins Leukot Essent Fatty Acids 2017; 116:32-39. [PMID: 28088292 PMCID: PMC5260611 DOI: 10.1016/j.plefa.2016.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Branched chain fatty acids (BCFA) are constituents of gastrointestinal (GI) tract in healthy newborn human infants, reduce the incidence of necrotizing enterocolitis (NEC) in a neonatal rat model, and are incorporated into small intestine cellular lipids in vivo. We hypothesize that BCFA are taken up, metabolized and incorporated into human fetal cells in vitro. METHODS Human H4 cells, a fetal non-transformed primary small intestine cell line, were incubated with albumin-bound non-esterified anteiso-17:0, iso-16:0, iso-18:0 and/or iso-20:0, and FA profiles in lipid fractions were analyzed. RESULTS All BCFA were readily incorporated as major constituents of cellular lipids. Anteiso-17:0 was preferentially taken up, and was most effective among BCFA tested in displacing normal (n-) FA. The iso BCFA were preferred in reverse order of chain length, with iso-20:0 appearing at lowest level. BCFA incorporation in phospholipids (PL) followed the same order of preference, accumulating 42% of FA as BCFA with no overt morphological signs of cell death. Though cholesterol esters (CE) are at low cellular concentration among lipid classes examined, CE had the greatest affinity for BCFA, accumulating 65% of FA as BCFA. BCFA most effectively displaced lower saturated FA. Iso-16:0, iso-18:0 and anteiso-17:0 were both elongated and chain shortened by ±C2. Iso-20:0 was chain shortened to iso-18:0 and iso-16:0 but not elongated. CONCLUSIONS Nontransformed human fetal intestinal epithelial cells incorporate high levels of BCFA when they are available and metabolize them in a structure specific manner. These findings imply that specific pathways for handling BCFA are present in the lumen-facing cells of the human fetal GI tract that is exposed to vernix-derived BCFA in late gestation.
Collapse
Affiliation(s)
- Lei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Zhen Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Hui Gyu Park
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Chuang Xu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Peter Lawrence
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Xueli Su
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; Jingchu University of Technology, Jingmen, Hubei 448000, China
| | - Vasuki Wijendran
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestow, MA, USA
| | - W Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestow, MA, USA
| | | | - J Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
29
|
Rasmussen SO, Martin L, Østergaard MV, Rudloff S, Li Y, Roggenbuck M, Bering SB, Sangild PT. Bovine colostrum improves neonatal growth, digestive function, and gut immunity relative to donor human milk and infant formula in preterm pigs. Am J Physiol Gastrointest Liver Physiol 2016; 311:G480-91. [PMID: 27445345 DOI: 10.1152/ajpgi.00139.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/08/2016] [Indexed: 02/06/2023]
Abstract
Mother's own milk is the optimal first diet for preterm infants, but donor human milk (DM) or infant formula (IF) is used when supply is limited. We hypothesized that a gradual introduction of bovine colostrum (BC) or DM improves gut maturation, relative to IF during the first 11 days after preterm birth. Preterm pigs were fed gradually advancing doses of BC, DM, or IF (3-15 ml·kg(-1)·3 h(-1), n = 14-18) before measurements of gut structure, function, microbiology, and immunology. The BC pigs showed higher body growth, intestinal hexose uptake, and transit time and reduced diarrhea and gut permeability, relative to DM and IF pigs (P < 0.05). Relative to IF pigs, BC pigs also had lower density of mucosa-associated bacteria and of some putative pathogens in colon, together with higher intestinal villi, mucosal mass, brush-border enzyme activities, colonic short chain fatty acid levels, and bacterial diversity and an altered expression of immune-related genes (higher TNFα, IL17; lower IL8, TLR2, TFF, MUC1, MUC2) (all P < 0.05). Values in DM pigs were intermediate. Severe necrotizing enterocolitis (NEC) was observed in >50% of IF pigs, while only subclinical intestinal lesions were evident from DM and BC pigs. BC, and to some degree DM, are superior to preterm IF in stimulating gut maturation and body growth, using a gradual advancement of enteral feeding volume over the first 11 days after preterm birth in piglets. Whether the same is true in preterm infants remains to be tested.
Collapse
Affiliation(s)
- Stine O Rasmussen
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark; Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lena Martin
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark; Institute of Animal Nutrition, Department of Veterinary Medicine, Free University Berlin, Berlin, Germany
| | - Mette V Østergaard
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Silvia Rudloff
- Institute of Nutritional Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - Yanqi Li
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Michael Roggenbuck
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and
| | - Stine B Bering
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Per T Sangild
- Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark; Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
30
|
Holm M, Skranes J, Dammann O, Fichorova RN, Allred EN, Leviton A. Systemic endogenous erythropoietin and associated disorders in extremely preterm newborns. Arch Dis Child Fetal Neonatal Ed 2016; 101:F458-63. [PMID: 27173415 DOI: 10.1136/archdischild-2015-309127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/10/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To explore the association between concentrations of endogenous erythropoietin (EPO) in blood the first 2 weeks of life and neonatal disorders in extremely low gestational age newborns (ELGANs). DESIGN Prospective cohort study. SETTING Neonatal care units at 14 participating hospitals in the USA. PATIENTS 867 children born before the 28th week of gestation from the ELGAN study cohort. MAIN OUTCOME MEASURES EPO blood concentrations were measured on postnatal days 1, 7 and 14. The following neonatal characteristics and disorders were registered: blood gases, early and late respiratory dysfunction, pulmonary deterioration, retinopathy of prematurity (ROP), necrotising enterocolitis (NEC) and bronchopulmonary dysplasia (BPD). We calculated the gestational age-adjusted ORs for having each disorder associated with an EPO blood concentration in the highest or lowest quartile, compared with infants whose EPO concentration was in the middle two quartiles on the corresponding day. RESULTS Newborns whose day-1 EPO was in the highest quartile were at increased risk for early and persistent respiratory dysfunction during the first 2 weeks of life, and NEC requiring surgery. The lowest EPO quartile on day 1 was associated with a decreased risk of moderate BPD. The association between low EPO and decreased risk of respiratory complications persisted on day 7. On day 14, being in the highest EPO quartile was associated with increased risk of ROP, and BPD not requiring ventilation assistance. CONCLUSIONS EPO blood concentrations in extremely preterm newborns during the first 2 weeks of life convey information about increased risks of bowel, lung and retinal diseases.
Collapse
Affiliation(s)
- Mari Holm
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Jon Skranes
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Olaf Dammann
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA Perinatal Neuroepidemiology Unit, Hannover School of Medicine, Hannover, Germany
| | - Raina N Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | | | - Alan Leviton
- Neuroepidemiology Unit, Department of Neurology, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Rautava S, Walker WA, Lu L. Hydrocortisone-induced anti-inflammatory effects in immature human enterocytes depend on the timing of exposure. Am J Physiol Gastrointest Liver Physiol 2016; 310:G920-9. [PMID: 27056727 PMCID: PMC4935478 DOI: 10.1152/ajpgi.00457.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/28/2016] [Indexed: 01/31/2023]
Abstract
The immature human gut has a propensity to exaggerated inflammatory responses that are thought to play a role in the pathogenesis of necrotizing enterocolitis (NEC). Prenatal exposure to corticosteroids has been reported to reduce the risk of NEC, while postnatal dexamethasone treatment is associated with adverse neurodevelopmental outcomes in preterm infants. The aim of this study was to investigate the direct role of hydrocortisone in gene expression patterns and inflammatory responses in immature human enterocytes. Time-dependent hydrocortisone effects in nontransformed primary human fetal intestinal epithelial cell line H4 were investigated by cDNA microarray. Fetal intestinal organ culture and cell culture experiments were conducted. Inflammatory responses were induced by stimulation with IL-1β and TNF-α with and without hydrocortisone. IL-8 and IL-6 expression and secretion were measured as functional readout. Here we report time-dependent hydrocortisone-induced changes in gene expression patterns detected by cDNA microarray. Hydrocortisone significantly attenuated IL-1β-induced inflammatory responses in the immature human gut when administered at the time of the proinflammatory insult: IL-1β-induced IL-8 and IL-6 secretion in the fetal ileum as well as H4 cells were significantly reduced. Hydrocortisone also inhibited IL-8 secretion in response to TNF-α. In contrast, TNF-α-induced IL-8 secretion was not reduced in cells treated with hydrocortisone for 48 h before stimulation. Our observations provide a physiological basis for understanding the differential clinical effects of corticosteroids in the immature human gut depending on the timing of treatment.
Collapse
Affiliation(s)
- Samuli Rautava
- 1Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland; ,2Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts; and
| | - W. Allan Walker
- 2Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts; and
| | - Lei Lu
- 2Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts; and ,3Section of Neonatology, Department of Pediatrics, University of Chicago, Chicago, Illinois
| |
Collapse
|
32
|
Dasgupta S, Arya S, Choudhary S, Jain SK. Amniotic fluid: Source of trophic factors for the developing intestine. World J Gastrointest Pathophysiol 2016; 7:38-47. [PMID: 26909227 PMCID: PMC4753188 DOI: 10.4291/wjgp.v7.i1.38] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract (GIT) is a complex system, which changes in response to requirements of the body. GIT represents a barrier to the external environment. To achieve this, epithelial cells must renew rapidly. This renewal of epithelial cells starts in the fetal life under the influence of many GIT peptides by swallowing amniotic fluid (AF). Development and maturation of GIT is a very complex cascade that begins long before birth and continues during infancy and childhood by breast-feeding. Many factors like genetic preprogramming, local and systemic endocrine secretions and many trophic factors (TF) from swallowed AF contribute and modulate the development and growth of the GIT. GIT morphogenesis, differentiation and functional development depend on the activity of various TF in the AF. This manuscript will review the role of AF borne TF in the development of GIT.
Collapse
|
33
|
Wijendran V, Brenna JT, Wang DH, Zhu W, Meng D, Ganguli K, Kothapalli KSD, Requena P, Innis S, Walker WA. Long-chain polyunsaturated fatty acids attenuate the IL-1β-induced proinflammatory response in human fetal intestinal epithelial cells. Pediatr Res 2015; 78:626-33. [PMID: 26270575 PMCID: PMC5046822 DOI: 10.1038/pr.2015.154] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/13/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND Evidence suggests that excessive inflammation of the immature intestine may predispose premature infants to necrotizing enterocolitis (NEC). We investigated the anti-inflammatory effects of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (ARA) in human fetal and adult intestinal epithelial cells (IEC) in primary culture. METHODS Human fetal IEC in culture were derived from a healthy fetal small intestine (H4) or resected small intestine of a neonate with NEC (NEC-IEC). Intestinal cell lines Caco2 and NCM460 in culture were used as models for mature IEC. IEC in culture were pretreated with 100 µmol/l palmitic acid (PAL), DHA, EPA, ARA, or ARA+DHA for 48 h and then stimulated with proinflammatory IL-1β. RESULTS DHA significantly attenuated IL-1β induced proinflammatory IL-8 and IL-6 protein and mRNA in fetal H4, NEC-IEC, and mature Caco2, NCM460 IEC, compared to control and PAL treatment. DHA downregulated IL-1R1 (IL-1β receptor) and NFk β1 mRNA expression in fetal and adult IEC. ARA had potent anti-inflammatory effects with lower IL-8 and IL-6 (protein and mRNA) in fetal H4 but not in NEC-IEC or adult IEC. CONCLUSION The present study provides evidence that DHA and ARA may have important anti-inflammatory functions for prevention of NEC in premature infants.
Collapse
Affiliation(s)
- Vasuki Wijendran
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, USA
| | - JT Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Dong Hao Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Weishu Zhu
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Di Meng
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Kriston Ganguli
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, USA
| | | | - Pilar Requena
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sheila Innis
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - WA Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, USA
| |
Collapse
|
34
|
Preterm Birth Reduces Nutrient Absorption With Limited Effect on Immune Gene Expression and Gut Colonization in Pigs. J Pediatr Gastroenterol Nutr 2015; 61:481-90. [PMID: 25883061 DOI: 10.1097/mpg.0000000000000827] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The primary risk factors for necrotizing enterocolitis (NEC) are preterm birth, enteral feeding, and gut colonization. It is unclear whether feeding and colonization induce excessive expression of immune genes that lead to NEC. Using a pig model, we hypothesized that reduced gestational age would upregulate immune-related genes and cause bacterial imbalance after birth. METHODS Preterm (85%-92% gestation, n = 53) and near-term (95%-99% gestation, n = 69) pigs were delivered by cesarean section and euthanized at birth or after 2 days of infant formula or bovine colostrum feeding. RESULTS At birth, preterm delivery reduced 5 of 30 intestinal genes related to nutrient absorption and innate immunity, relative to near-term pigs, whereas 2 genes were upregulated. Preterm birth also reduced ex vivo intestinal glucose and leucine uptake (40%-50%), but failed to increase cytokine secretions from intestinal explants relative to near-term birth. After 2 days of formula feeding, NEC incidence was increased in preterm versus near-term pigs (47% vs 0%-13%). A total of 6 of the 30 genes related to immunity (TLR2, IL1B, and IL8), permeability (CLDN3, and OCLN), and absorption (SGLT) decreased in preterm pigs without affecting Gram-negative bacteria-related responses (TLR4, IKBA, NFkB1, TNFAIP3, and PAFA). Bacterial abundance tended to be higher in preterm versus near-term pigs (P = 0.09), whereas the composition was unaffected. CONCLUSIONS Preterm birth predisposes to NEC and reduces nutrient absorption but does not induce upregulation of immune-related genes or cause bacterial dyscolonization in the neonatal period. Excessive inflammation and bacterial overgrowth may occur relatively late in NEC progression in preterm neonates.
Collapse
|
35
|
Dixon DL. The Role of Human Milk Immunomodulators in Protecting Against Viral Bronchiolitis and Development of Chronic Wheezing Illness. CHILDREN (BASEL, SWITZERLAND) 2015; 2:289-304. [PMID: 27417364 PMCID: PMC4928768 DOI: 10.3390/children2030289] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/21/2015] [Accepted: 06/29/2015] [Indexed: 12/26/2022]
Abstract
Infants who are breastfed are at an immunological advantage when compared with formula fed infants, evidenced by decreased incidence of infections and diminished propensity for long term conditions, including chronic wheeze and/or asthma. Exclusive breastfeeding reduces the duration of hospital admission, risk of respiratory failure and requirement for supplemental oxygen in infants hospitalised with bronchiolitis suggesting a potentially protective mechanism. This review examines the evidence and potential pathways for protection by immunomodulatory factors in human milk against the most common viral cause of bronchiolitis, respiratory syncytial virus (RSV), and subsequent recurrent wheeze in infants. Further investigations into the interplay between respiratory virus infections such as RSV and how they affect, and are affected by, human milk immunomodulators is necessary if we are to gain a true understanding of how breastfeeding protects many infants but not all against infections, and how this relates to long-term protection against conditions such as chronic wheezing illness or asthma.
Collapse
Affiliation(s)
- Dani-Louise Dixon
- Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide 5042, Australia.
- Department of Critical Care Medicine, Flinders University, Adelaide 5001, Australia .
| |
Collapse
|
36
|
Zawahir S, Li G, Banerjee A, Shiu J, Blanchard TG, Okogbule-Wonodi AC. Inflammatory and Immune Activation in Intestinal Myofibroblasts Is Developmentally Regulated. J Interferon Cytokine Res 2015; 35:634-40. [PMID: 26101946 DOI: 10.1089/jir.2014.0071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We previously demonstrated that intestinal myofibroblasts from immature tissue produce excessive IL-8 in response to Escherichia coli lipopolysaccharide (LPS) compared to cells from mature tissue. However, it is unknown whether other cytokines and TLR agonists contribute to this developmentally regulated response. The aim of this study was to further characterize differences in inflammatory signaling in human primary intestinal fibroblasts from fetal (FIF) and infant (IIF) tissue and examine their potential to activate the adaptive immune response in vitro. Cytokine profiles of LPS-stimulated FIF and IIF were assessed by cytokine profile array. IL-8, IL-6, and IL-10 production in response to TLR2, TLR2/6, TLR4, and TLR5 agonists was determined by quantitative ELISA. The potential of activated myofibroblasts to activate adaptive immunity was determined by measuring surface class II MHC expression using flow cytometry. LPS-stimulated FIF produced a distinct proinflammatory cytokine profile consisting of MCP-1, GRO-alpha, IL-6, and IL-8 expression. FIF produced significant IL-8 and IL-6 in response to TLR4 agonist. IIF produced significant levels of IL-8 and IL-6 in the presence of TLR5 and TLR2 agonists. IFN-γ-treated FIF expressed greater HLA-DR levels compared to unstimulated controls and IFN-γ- and LPS-treated IIF. Activated FIF produce a more diverse inflammatory cytokine profile and greater levels of IL-8 and IL-6 in response to TLR4 stimulation compared to IIF. FIF express class II MHC proteins associated with activation of the adaptive immune response. These data suggest that FIF may contribute to bacterial-associated gut inflammation in the immature intestine.
Collapse
Affiliation(s)
- Sharmila Zawahir
- 1 Department of Pediatrics, University of Maryland School of Medicine , Baltimore, Maryland
| | - Guanghui Li
- 2 Department of Anesthesiology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Aditi Banerjee
- 1 Department of Pediatrics, University of Maryland School of Medicine , Baltimore, Maryland
| | - Jessica Shiu
- 1 Department of Pediatrics, University of Maryland School of Medicine , Baltimore, Maryland
| | - Thomas G Blanchard
- 1 Department of Pediatrics, University of Maryland School of Medicine , Baltimore, Maryland
| | | |
Collapse
|
37
|
Lactobacillus rhamnosus GG and its SpaC pilus adhesin modulate inflammatory responsiveness and TLR-related gene expression in the fetal human gut. Pediatr Res 2015; 77:528-35. [PMID: 25580735 PMCID: PMC4465787 DOI: 10.1038/pr.2015.5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 10/03/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Bacterial contact in utero modulates fetal and neonatal immune responses. Maternal probiotic supplementation reduces the risk of immune-mediated disease in the infant. We investigated the immunomodulatory properties of live Lactobacillus rhamnosus GG and its SpaC pilus adhesin in human fetal intestinal models. METHODS Tumor necrosis factor (TNF)-α mRNA expression was measured by qPCR in a human fetal intestinal organ culture model exposed to live L. rhamnosus GG and proinflammatory stimuli. Binding of recombinant SpaC pilus protein to intestinal epithelial cells (IECs) was assessed in human fetal intestinal organ culture and the human fetal intestinal epithelial cell line H4 by immunohistochemistry and immunofluorescence, respectively. TLR-related gene expression in fetal ileal organ culture after exposure to recombinant SpaC was assessed by qPCR. RESULTS Live L. rhamnosus GG significantly attenuates pathogen-induced TNF-α mRNA expression in the human fetal gut. Recombinant SpaC protein was found to adhere to the fetal gut and to modulate varying levels of TLR-related gene expression. CONCLUSION The human fetal gut is responsive to luminal microbes. L. rhamnosus GG significantly attenuates fetal intestinal inflammatory responses to pathogenic bacteria. The L. rhamnosus GG pilus adhesin SpaC binds to immature human IECs and directly modulates IEC innate immune gene expression.
Collapse
|
38
|
Lee J, Kim HS, Jung YH, Choi KY, Shin SH, Kim EK, Choi JH. Oropharyngeal colostrum administration in extremely premature infants: an RCT. Pediatrics 2015; 135:e357-66. [PMID: 25624376 DOI: 10.1542/peds.2014-2004] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To determine the immunologic effects of oropharyngeal colostrum administration in extremely premature infants. METHODS We conducted a double-blind, randomized, placebo-controlled trial involving 48 preterm infants born before 28 weeks' gestation. Subjects received 0.2 mL of their mother's colostrum or sterile water via oropharyngeal route every 3 hours for 3 days beginning at 48 to 96 hours of life. To measure concentrations of secretory immunoglobulin A, lactoferrin, and several immune substances, urine and saliva were obtained during the first 24 hours of life and at 8 and 15 days. Clinical data during hospitalization were collected. RESULTS Urinary levels of secretory immunoglobulin A at 1 week (71.4 vs 26.5 ng/g creatinine, P = .04) and 2 weeks (233.8 vs 48.3 ng/g creatinine, P = .006), and lactoferrin at 1 week (3.5 vs 0.9 μg/g creatinine, P = .01) were significantly higher in colostrum group. Urine interleukin-1β level was significantly lower in colostrum group at 2 weeks (55.3 vs 91.8 μg/g creatinine, P = .01). Salivary transforming growth factor-β1 (39.2 vs 69.7 μg/mL, P = .03) and interleukin-8 (1.2 vs 4.9 ng/mL, P = .04) were significantly lower at 2 weeks in colostrum group. A significant reduction in the incidence of clinical sepsis was noted in colostrum group (50% vs 92%, P = .003). CONCLUSIONS This study suggests that oropharyngeal administration of colostrum may decrease clinical sepsis, inhibit secretion of pro-inflammatory cytokines, and increase levels of circulating immune-protective factors in extremely premature infants. Larger studies to confirm these findings are warranted.
Collapse
Affiliation(s)
- Juyoung Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea; and
| | - Han-Suk Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea; and
| | - Young Hwa Jung
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea; and
| | - Ka Young Choi
- Department of Pediatrics, Dongtan Sacred Heart Hospital, Hallym University Medical Center, Hwaseong, Korea
| | - Seung Han Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea; and
| | - Ee-Kyung Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea; and
| | - Jung-Hwan Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea; and
| |
Collapse
|
39
|
|
40
|
Claud EC, McDonald JAK, He SM, Yu Y, Duong L, Sun J, Petrof EO. Differential expression of 26S proteasome subunits and functional activity during neonatal development. Biomolecules 2014; 4:812-26. [PMID: 25177858 PMCID: PMC4192673 DOI: 10.3390/biom4030812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/02/2014] [Accepted: 08/19/2014] [Indexed: 01/21/2023] Open
Abstract
Proteasomes regulate many essential cellular processes by degrading intracellular proteins. While aging is known to be associated with dysfunction of the proteasome, there are few reports detailing activity and function of proteasomes in the early stages of life. To elucidate the function and development of mammalian proteasomes, 26S proteasomes were affinity-purified from rat intestine, spleen and liver. The developmental expression of core, regulatory and immunoproteasome subunits was analyzed by immunoblotting and reverse-transcriptase PCR of mRNA subunits, and proteasome catalytic function was determined by fluorogenic enzymatic assays. The expression of core (β2, β5, α7 and β1) and regulatory (Rpt5) subunits was found to be present at low levels at birth and increased over time particularly at weaning. In contrast, while gradual developmental progression of proteasome structure was also seen with the immunoproteasome subunits (β1i, β5i, and β2i), these were not present at birth. Our studies demonstrate a developmental pattern to 26S proteasome activity and subunit expression, with low levels of core proteasome components and absence of immunoproteasomes at birth followed by increases at later developmental stages. This correlates with findings from other studies of a developmental hyporesponsiveness of the adaptive immune system to allow establishment of microbial colonization immediately after birth.
Collapse
Affiliation(s)
- Erika C Claud
- Departments of Pediatrics and Medicine, University of Chicago, Chicago, IL 60611, USA.
| | - Julie A K McDonald
- Gastrointestinal Diseases Research Unit, Department of Medicine, Queen's University, Kingston, ON K7L 2V7, Canada.
| | - Shu-Mei He
- Gastrointestinal Diseases Research Unit, Department of Medicine, Queen's University, Kingston, ON K7L 2V7, Canada.
| | - Yueyue Yu
- Departments of Pediatrics and Medicine, University of Chicago, Chicago, IL 60611, USA.
| | - Lily Duong
- Gastrointestinal Diseases Research Unit, Department of Medicine, Queen's University, Kingston, ON K7L 2V7, Canada.
| | - Jun Sun
- Department of Biochemistry, Rush University, Chicago, IL 60612, USA.
| | - Elaine O Petrof
- Gastrointestinal Diseases Research Unit, Department of Medicine, Queen's University, Kingston, ON K7L 2V7, Canada.
| |
Collapse
|
41
|
Abstract
The gastrointestinal (GI) tract is a large potential portal for multiple infectious agents to enter the human body. The GI system performs multiple functions as part of the neonate's innate immune system, providing critical defense during a vulnerable period. Multiple mechanisms and actions are enhanced by the presence of human breast milk. Bioactive factors found in human milk work together to create and maintain an optimal and healthy environment, allowing the intestines to deliver ideal nutrition to the host and afford protection by a variety of mechanisms.
Collapse
Affiliation(s)
- Brett M Jakaitis
- Division of Neonatology, Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Drive, 3rd Floor, Atlanta, GA 30322, USA
| | - Patricia W Denning
- Division of Neonatology, Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Drive, 3rd Floor, Atlanta, GA 30322, USA.
| |
Collapse
|
42
|
Mangé A, Tuaillon E, Viljoen J, Nagot N, Bendriss S, Bland RM, Newell ML, Van de Perre P, Solassol J. Elevated concentrations of milk β2-microglobulin are associated with increased risk of breastfeeding transmission of HIV-1 (Vertical Transmission Study). J Proteome Res 2013; 12:5616-25. [PMID: 24144106 DOI: 10.1021/pr400578h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is increasing evidence to support a relationship between human immunodeficiency virus (HIV-1) transmission through breastfeeding and milk host factors. We analyzed skim milk proteome to further determine the contribution of host factors to the risk of mother-to-child transmission of HIV-1. Quantitative mass spectrometry analysis was performed on nine case-control pairs of HIV+ transmitter/nontransmitter mothers, and specific biochemical assays on two selected proteins were assessed in an independent validation set of 127 samples. 33 identified proteins were differentially expressed between HIV+ transmitter and nontransmitter mothers. Among them, β2-microglobulin was significantly higher in the maternal transmitter than in the nontransmitter groups (p value = 0.0007), and S100A9 was significantly higher in the early maternal transmitter cases (before 4 months of age) compared with the nontransmitters (p value = 0.004). β2-Microglobulin correlated with milk and plasma HIV viral load and CD4+ cell count, whereas S100A9 correlated with the estimated timing of infection of the infant through breastfeeding. Finally, β2-microglobulin concentration in milk could accurately predict the risk of HIV-1 postnatal transmission by breastfeeding (p value < 0.0001, log-rank test). In conclusion, milk β2-microglobulin and S100A9 are host factors that are found to be associated with mother-to-child transmission of HIV-1.
Collapse
Affiliation(s)
- Alain Mangé
- University of Montpellier 1 , EA 2415, 641 av. du Doyen Gaston Giraud, 34093 Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Elisia I, Kitts DD. Different tocopherol isoforms vary in capacity to scavenge free radicals, prevent inflammatory response, and induce apoptosis in both adult- and fetal-derived intestinal epithelial cells. Biofactors 2013; 39:663-71. [PMID: 23983193 DOI: 10.1002/biof.1132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/04/2013] [Accepted: 07/12/2013] [Indexed: 01/11/2023]
Abstract
Gamma-tocopherol (γ-Toc) and δ-Toc are two vitamin E isoforms for which biological activities are not well established, yet these isoforms are present in many different sources of vegetable oils and, therefore, contribute significantly to the total dietary intake of vitamin E. Infant formula also contains relatively high amounts of γ-Toc and δ-Toc, compared with that found in human milk. The efficacy of γ-Toc and δ-Toc to modulate cellular events that include oxidative stress, inflammatory response, and apoptosis-mediated cytotoxicity, relative to α-Toc, was determined using differentiated Caco-2 and primary FHs 74 Int cells intestinal epithelial cell lines. Antioxidant capacity of Toc-isoforms followed the order of δ-Toc > γ-Toc > α-Toc against peroxyl radical-induced membrane oxidation in both Caco-2 and FHs 74 Int cells, respectively. The different Toc-isoforms suppressed inflammatory response in interferon (IFN) γ/phorbol myristate acetate (PMA)-induced Caco-2 adult-derived intestinal epithelial cells, but exacerbated both IL8 and PGE2 secretion in fetal-derived FHs 74 Int intestinal epithelial cells. Lastly, Toc exhibited an isoform-dependent apoptosis-mediated cytotoxicity, whereby δ-Toc elicited the greatest apoptosis followed by γ-Toc, whereas α-Toc was not cytotoxic. Cellular uptake of non-α-Toc isoforms were greater (P < 0.05) than that observed for α-Toc in both intestinal epithelial cell lines which in part explains the superior bioactive function observed for both γ-Toc and δ-Toc, compared with α-Toc. We conclude that the non-α-Toc isoforms of vitamin E have distinct roles that influence oxidative stress and inflammatory responses in both adult and fetal-derived intestinal epithelial cell lines.
Collapse
Affiliation(s)
- Ingrid Elisia
- Food Nutrition and Health Program, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
44
|
Shiou SR, Yu Y, Guo Y, Westerhoff M, Lu L, Petrof EO, Sun J, Claud EC. Oral administration of transforming growth factor-β1 (TGF-β1) protects the immature gut from injury via Smad protein-dependent suppression of epithelial nuclear factor κB (NF-κB) signaling and proinflammatory cytokine production. J Biol Chem 2013; 288:34757-66. [PMID: 24129565 DOI: 10.1074/jbc.m113.503946] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inflammatory immune responses play an important role in mucosal homeostasis and gut diseases. Nuclear factor κB (NF-κB), central to the proinflammatory cascade, is activated in necrotizing enterocolitis (NEC), a devastating condition of intestinal injury with extensive inflammation in premature infants. TGF-β is a strong immune suppressor and a factor in breast milk, which has been shown to be protective against NEC. In an NEC animal model, oral administration of the isoform TGF-β1 activated the downstream effector Smad2 in intestine and significantly reduced NEC incidence. In addition, TGF-β1 suppressed NF-κB activation, maintained levels of the NF-κB inhibitor IκBα in the intestinal epithelium, and systemically decreased serum levels of IL-6 and IFN-γ. The immature human fetal intestinal epithelial cell line H4 was used as a reductionistic model of the immature enterocyte to investigate mechanism. TGF-β1 pretreatment inhibited the TNF-α-induced IκBα phosphorylation that targets the IκBα protein for degradation and inhibited NF-κB activation. Chromatin immunoprecipitation (ChIP) assays demonstrated decreased NF-κB binding to the promoters of IL-6, IL-8, and IκBα in response to TNF-α with TGF-β1 pretreatment. These TGF-β1 effects appear to be mediated through the canonical Smad pathway as silencing of the TGF-β central mediator Smad4 resulted in loss of the TGF-β1 effects. Thus, TGF-β1 is capable of eliciting anti-inflammatory effects by inhibiting NF-κB specifically in the intestinal epithelium as well as by decreasing systemic IL-6 and IFN-γ levels. Oral administration of TGF-β1 therefore can potentially be used to protect against gastrointestinal diseases.
Collapse
Affiliation(s)
- Sheng-Ru Shiou
- From the Department of Pediatrics, Section of Neonatology, and
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Barrera GJ, Sanchez G, Gonzalez JE. Trefoil factor 3 isolated from human breast milk downregulates cytokines (IL8 and IL6) and promotes human beta defensin (hBD2 and hBD4) expression in intestinal epithelial cells HT-29. Bosn J Basic Med Sci 2013. [PMID: 23198942 DOI: 10.17305/bjbms.2012.2448] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Trefoil factors (TFF) are secretory products of mucin producing cells. They play a key role in the maintenance of the surface integrity of oral mucosa and enhance healing of the gastrointestinal mucosa by a process called restitution. TFF comprises the gastric peptides (TFF1), spasmolytic peptide (TFF2), and the intestinal trefoil factor (TFF3). They have an important and necessary role in epithelial restitution within the gastrointestinal tract. Significant amounts of TFF are present in human milk. This study aimed to determine a possible correlation between TFF3 isolated from human breast milk and levels of cytokines (IL8 and IL6) and defensins (hBD2 and hBD4) in intestinal epithelial cells HT-29 treated with trefoil. Samples of human milk were collected within 2-4 weeks postpartum from healthy human mothers (18-30-years-old) by manual breast massage, and TFF3 was purified by ammonium sulfate precipitation, isoelectric precipitation, DEAE-chromatography, and gel filtration. In this work we measured the concentrations and mRNA levels of cytokines and defensins by immunoassay (ELISA) and semiquantitative RT-PCR technique, respectively. Also we measured the peroxidase activity. We present the first evidence of human milk TFF3 purification. Here we show that the presence of TFF3 isolated from milk strongly correlates with downregulation of IL8 and IL6 in human intestinal epithelial cells. On the other hand, TFF3 activated the epithelial cells in culture to produce beta defensins 2 (hBD2) and beta defensins 4 (hBD4). These findings suggest that TFF can activate intestinal epithelial cells and could actively participate in the immune system of breastfed babies by inducing the production of peptides related to innate defence, such as defensins.
Collapse
Affiliation(s)
- Girolamo Jose Barrera
- Laboratorio de Biotecnologia Aplicada L.B.A., Av. Don Julio Centeno, CC metro Plaza, M17-M18, San Diego, Edo. Carabobo, Venezuela., Postal Number 2001.
| | | | | |
Collapse
|
46
|
Abstract
Bioactive milk proteins may be important in protecting preterm infants from developing inflammation and necrotising enterocolitis (NEC). A preterm pig model was used to investigate the protective effects of enteral bovine lactoferrin (bLF) against NEC development and inflammation. Caesarean-delivered preterm pigs were fed parenteral and minimal enteral nutrition for the first 2 d followed by 2 d of total enteral nutrition before euthanasia. Pigs were stratified into two groups and fed with either a control formula (CON, n 15) or a 10 g/l of bLF-enriched formula (LF, n 13). NEC incidence, gut functions and inflammatory cytokines were analysed. NEC incidence and nutrient absorption were similar between the two groups. In pigs that developed NEC, disease outcome was more severe in the colon accompanied by increased intestinal permeability in LF pigs. In contrary, the LF pigs had a lowered IL-1β level in the proximal small intestine. Dose-dependent effects of bLF on cell proliferation, intracellular signalling and cytokine secretion were tested in porcine intestinal epithelial cells (PsIc1) in vitro. Low doses (0·1-1 g/l) increased cell proliferation via extracellular signal-regulated kinase (ERK), limited IL-8 secretion and prevented NF-κB and hypoxia-inducible factor-1α (HIF-1α) activation, suggesting anti-inflammatory effects. In contrast, at a higher dose (10 g/l), bLF exerted adverse effects by reducing cell proliferation, stimulating IL-8 release, inhibiting ERK activation and up-regulating NF-κB and HIF-1α activation. Overall, at a dose of 10 g/l, bLF exacerbated disease severity in pigs that developed NEC, while the in vitro studies indicated the positive effects of bLF at low doses (0·1-1 g/l). Supplementation of infant formulas with bLF should therefore be optimised carefully.
Collapse
|
47
|
Chatterton DE, Nguyen DN, Bering SB, Sangild PT. Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. Int J Biochem Cell Biol 2013; 45:1730-47. [DOI: 10.1016/j.biocel.2013.04.028] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/25/2013] [Accepted: 04/28/2013] [Indexed: 01/04/2023]
|
48
|
Erythropoietin protects epithelial cells from excessive autophagy and apoptosis in experimental neonatal necrotizing enterocolitis. PLoS One 2013; 8:e69620. [PMID: 23936061 PMCID: PMC3723879 DOI: 10.1371/journal.pone.0069620] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/12/2013] [Indexed: 12/17/2022] Open
Abstract
Neonatal necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease of preterm infants. Increased intestinal epithelium permeability is an early event in NEC pathogenesis. Autophagy and apoptosis are induced by multiple stress pathways which may impact the intestinal barrier, and they have been associated with pathogenesis of diverse gastrointestinal diseases including inflammatory bowel disease. Using both in vitro and in vivo models, this study investigates autophagy and apoptosis under experimental NEC stresses. Furthermore this study evaluates the effect of erythropoietin (Epo), a component of breast milk previously shown to decrease the incidence of NEC and to preserve intestinal barrier function, on intestinal autophagy and apoptosis. It was found that autophagy and apoptosis are both rapidly up regulated in NEC in vivo as indicated by increased expression of the autophagy markers Beclin 1 and LC3II, and by evidence of apoptosis by TUNEL and cleaved caspase-3 staining. In the rat NEC experimental model, autophagy preceded the onset of apoptosis in intestine. In vitro studies suggested that Epo supplementation significantly decreased both autophagy and apoptosis via the Akt/mTOR signaling pathway and the MAPK/ERK pathway respectively. These results suggest that Epo protects intestinal epithelium from excessive autophagy and apoptosis in experimental NEC.
Collapse
|
49
|
Namachivayam K, Blanco CL, Frost BL, Reeves AA, Jagadeeswaran R, MohanKumar K, Safarulla A, Mandal P, Garzon SA, Raj JU, Maheshwari A. Preterm human milk contains a large pool of latent TGF-β, which can be activated by exogenous neuraminidase. Am J Physiol Gastrointest Liver Physiol 2013; 304:G1055-65. [PMID: 23558011 PMCID: PMC3680715 DOI: 10.1152/ajpgi.00039.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human milk contains substantial amounts of transforming growth factor (TGF)-β, particularly the isoform TGF-β2. We previously showed in preclinical models that enterally administered TGF-β2 can protect against necrotizing enterocolitis (NEC), an inflammatory bowel necrosis of premature infants. In this study we hypothesized that premature infants remain at higher risk of NEC than full-term infants, even when they receive their own mother's milk, because preterm human milk contains less bioactive TGF-β than full-term milk. Our objective was to compare TGF-β bioactivity in preterm vs. full-term milk and identify factors that activate milk-borne TGF-β. Mothers who delivered between 23 0/7 and 31 6/7 wk or at ≥37 wk of gestation provided milk samples at serial time points. TGF-β bioactivity and NF-κB signaling were measured using specific reporter cells and in murine intestinal tissue explants. TGF-β1, TGF-β2, TGF-β3, and various TGF-β activators were measured by real-time PCR, enzyme immunoassays, or established enzymatic activity assays. Preterm human milk showed minimal TGF-β bioactivity in the native state but contained a large pool of latent TGF-β. TGF-β2 was the predominant isoform of TGF-β in preterm milk. Using a combination of several in vitro and ex vivo models, we show that neuraminidase is a key regulator of TGF-β bioactivity in human milk. Finally, we show that addition of bacterial neuraminidase to preterm human milk increased TGF-β bioactivity. Preterm milk contains large quantities of TGF-β, but most of it is in an inactive state. Addition of neuraminidase can increase TGF-β bioactivity in preterm milk and enhance its anti-inflammatory effects.
Collapse
Affiliation(s)
- Kopperuncholan Namachivayam
- 1Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois;
| | - Cynthia L. Blanco
- 3Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas;
| | - Brandy L. Frost
- 4Department of Pathology, University of Illinois at Chicago, Chicago, Illinois; ,5Department of Pediatrics, NorthShore University Health System, Evanston, Illinois;
| | - Aaron A. Reeves
- 3Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas;
| | - Ramasamy Jagadeeswaran
- 1Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois;
| | - Krishnan MohanKumar
- 1Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois;
| | - Azif Safarulla
- 1Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois;
| | - Partha Mandal
- 1Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois;
| | - Steven A. Garzon
- 2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,6University of Chicago Pritzker School of Medicine, Chicago, Illinois; and
| | - J. Usha Raj
- 1Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois;
| | - Akhil Maheshwari
- 1Division of Neonatology, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,2Center for Neonatal and Pediatric Gastrointestinal Disease, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; ,7Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
50
|
Transcriptional response of HT-29 intestinal epithelial cells to human and bovine milk oligosaccharides. Br J Nutr 2013; 110:2127-37. [DOI: 10.1017/s0007114513001591] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human milk oligosaccharides (HMO) have been shown to interact directly with immune cells. However, large quantities of HMO are required for intervention or clinical studies, but these are unavailable in most cases. In this respect, bovine milk is potentially an excellent source of commercially viable analogues of these unique molecules. In the present study, we compared the transcriptional response of colonic epithelial cells (HT-29) to the entire pool of HMO and bovine colostrum oligosaccharides (BCO) to determine whether the oligosaccharides from bovine milk had effects on gene expression that were similar to those of their human counterparts. Gene set enrichment analysis of the transcriptional data revealed that there were a number of similar biological processes that may be influenced by both treatments including a response to stimulus, signalling, locomotion, and multicellular, developmental and immune system processes. For a more detailed insight into the effects of milk oligosaccharides, the effect on the expression of immune system-associated glycogenes was chosen as a case study when performing validation studies. Glycogenes in the current context are genes that are directly or indirectly regulated in the presence of glycans and/or glycoconjugates. RT-PCR analysis revealed that HMO and BCO influenced the expression of cytokines (IL-1β, IL-8, colony-stimulating factor 2 (granulocyte–macrophage) (GM-CSF2), IL-17C and platelet factor 4 (PF4)), chemokines (chemokine (C–X–C motif) ligand 1 (CXCL1), chemokine (C–X–C motif) ligand 3 (CXCL3), chemokine (C–C motif) ligand 20 (CCL20), chemokine (C–X–C motif) ligand 2 (CXCL2), chemokine (C–X–C motif) ligand 6 (CXCL6), chemokine (C–C motif) ligand 5 (CCL5), chemokine (C–X3–C motif) ligand 1 (CX3CL1) and CXCL2) and cell surface receptors (interferon γ receptor 1 (IFNGR1), intercellular adhesion molecule-1 (ICAM-1), intercellular adhesion molecule-2 (ICAM-2) and IL-10 receptor α (IL10RA)). The present study suggests that milk oligosaccharides contribute to the development and maturation of the intestinal immune response and that bovine milk may be an attractive commercially viable source of oligosaccharides for such applications.
Collapse
|