1
|
Joly A, Thoumas JL, Lambert A, Caillon E, Leulier F, De Vadder F. Protein restriction associated with high fat induces metabolic dysregulation without obesity in juvenile mice. Nutr Metab (Lond) 2024; 21:100. [PMID: 39623461 PMCID: PMC11613590 DOI: 10.1186/s12986-024-00879-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
Dysregulation of energy metabolism, including hyperglycemia, insulin resistance and fatty liver have been reported in a substantial proportion of lean children. However, non-obese murine models recapitulating these features are lacking to study the mechanisms underlying the development of metabolic dysregulations in lean children. Here, we develop a model of diet-induced metabolic dysfunction without obesity in juvenile mice by feeding male and female mice a diet reflecting Western nutritional intake combined with protein restriction (mWD) during 5 weeks after weaning. mWD-fed mice (35% fat, 8% protein) do not exhibit significant weight gain and have moderate increase in adiposity compared to control mice (16% fat, 20% protein). After 3 weeks of mWD, juvenile mice have impaired glucose metabolism including hyperglycemia, insulin resistance and glucose intolerance. mWD also triggers hepatic metabolism alterations, as shown by the development of simple liver steatosis. Both male and female mice fed with mWD displayed metabolic dysregulation, which a probiotic treatment with Lactiplantibacillus plantarum WJL failed to improve. Overall, mWD-fed mice appear to be a good preclinical model to study the development of diet-induced metabolic dysfunction without obesity in juveniles.
Collapse
Affiliation(s)
- Amélie Joly
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242, UCBL Lyon-1, 69007, Lyon, France
| | - Jean-Louis Thoumas
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242, UCBL Lyon-1, 69007, Lyon, France
| | - Anne Lambert
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242, UCBL Lyon-1, 69007, Lyon, France
| | - Estelle Caillon
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242, UCBL Lyon-1, 69007, Lyon, France
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242, UCBL Lyon-1, 69007, Lyon, France
| | - Filipe De Vadder
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5242, UCBL Lyon-1, 69007, Lyon, France.
| |
Collapse
|
2
|
Dos Reis Araujo T, Alves BL, Dos Santos LMB, Gonçalves LM, Carneiro EM. Association between protein undernutrition and diabetes: Molecular implications in the reduction of insulin secretion. Rev Endocr Metab Disord 2024; 25:259-278. [PMID: 38048021 DOI: 10.1007/s11154-023-09856-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Undernutrition is still a recurring nutritional problem in low and middle-income countries. It is directly associated with the social and economic sphere, but it can also negatively impact the health of the population. In this sense, it is believed that undernourished individuals may be more susceptible to the development of non-communicable diseases, such as diabetes mellitus, throughout life. This hypothesis was postulated and confirmed until today by several studies that demonstrate that experimental models submitted to protein undernutrition present alterations in glycemic homeostasis linked, in part, to the reduction of insulin secretion. Therefore, understanding the changes that lead to a reduction in the secretion of this hormone is essential to prevent the development of diabetes in undernourished individuals. This narrative review aims to describe the main molecular changes already characterized in pancreatic β cells that will contribute to the reduction of insulin secretion in protein undernutrition. So, it will provide new perspectives and targets for postulation and action of therapeutic strategies to improve glycemic homeostasis during this nutritional deficiency.
Collapse
Affiliation(s)
- Thiago Dos Reis Araujo
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Carl Von Linnaeus Bloco Z, Campinas, SP, Cep: 13083-864, Brazil
| | - Bruna Lourençoni Alves
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Carl Von Linnaeus Bloco Z, Campinas, SP, Cep: 13083-864, Brazil
| | - Lohanna Monali Barreto Dos Santos
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Carl Von Linnaeus Bloco Z, Campinas, SP, Cep: 13083-864, Brazil
| | - Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Everardo Magalhães Carneiro
- Obesity and Comorbidities Research Center (OCRC), Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Carl Von Linnaeus Bloco Z, Campinas, SP, Cep: 13083-864, Brazil.
| |
Collapse
|
3
|
Geng N, Gao Y, Ji Y, Niu Y, Qi C, Zhen Y, Chen J, Ren L. Geriatric nutritional risk index is correlated with islet function but not insulin resistance in elderly patients with type 2 diabetes: A retrospective study. Medicine (Baltimore) 2024; 103:e37438. [PMID: 38489692 PMCID: PMC10939577 DOI: 10.1097/md.0000000000037438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
The geriatric nutritional risk index (GNRI) is a simple nutritional assessment tool that can predict poor prognosis in elderly subjects. The aim of this study was to evaluate the association between GNRI and both islet function and insulin sensitivity in patients with type 2 diabetes mellitus. This research carries significant implications for the integrated treatment and nutritional management of this patient population. A total of 173 patients with type 2 diabetes mellitus, aged 60 years or older, who were hospitalized in the Endocrinology Department at Hebei General Hospital from February 2018 to June 2021, were selected as the research subjects. These subjects were divided into 4 groups according to the quartile of their GNRI values: T1 (GNRI < 99.4, n = 43), T2 (99.4 ≤ GNRI < 103, n = 43), T3 (103 ≤ GNRI < 106.3, n = 43), and T4 (GNRI ≥ 106.3, n = 44). Glucose, insulin, and C-peptide concentrations were tested at 0, 30, 60, 120, and 180 minutes during a 75 g oral glucose tolerance test. The homeostasis model assessment for insulin resistance and the homeostasis model assessment for β cell function index were calculated. As the GNRI value increased, the levels of total protein, albumin, hemoglobin, alanine transaminase, aspartate aminotransferase, and 25-hydroxyvitamin D increased significantly. The area under the curve for blood glucose decreased significantly across the 4 groups, while the AUCs for insulin and C-peptide showed an overall increasing trend. β Cell function index increased significantly with the increase of GNRI; meanwhile, both the early-phase insulin secretion index and the late-phase insulin secretion index increased significantly. Although there was an increasing trend, homeostasis model assessment for insulin resistance did not change significantly among the 4 groups. This study indicates that elderly type 2 diabetes patients with higher nutritional risk have worse islet function, while insulin sensitivity is not associated with nutritional risk.
Collapse
Affiliation(s)
- Nan Geng
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yaxue Gao
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yuanyuan Ji
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yingchun Niu
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Cuijuan Qi
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yunfeng Zhen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Jinhu Chen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Prates KV, Pavanello A, Gongora AB, Moreira VM, de Moraes AMP, Rigo KP, Vieira E, Mathias PCDF. Time-restricted feeding during embryonic development leads to metabolic dysfunction in adult rat offspring. Nutrition 2022; 103-104:111776. [DOI: 10.1016/j.nut.2022.111776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022]
|
5
|
Dietary Protein Modulates the Efficacy of Taurine Supplementation on Adaptive Islet Function and Morphology in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:267-278. [DOI: 10.1007/978-3-030-93337-1_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Amino acid restriction alters survival mechanisms in pancreatic beta cells: possible role of the PI3K/Akt pathway. Eur J Nutr 2021; 60:3947-3957. [PMID: 33913012 PMCID: PMC8081284 DOI: 10.1007/s00394-021-02568-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/16/2021] [Indexed: 11/25/2022]
Abstract
Background and aims Malnutrition in the early stages of life may lead to changes in the glycemic metabolism during adulthood, such as pancreatic beta cells dysfunction and failure. Therefore, this study aimed to evaluate the effects of an in vitro amino acid restriction model on the function and viability of pancreatic beta cells. Methods Insulin-producing cells (INS-1E) were maintained in control or amino acid restricted culture medium containing 1 × or 0.25 × of amino acids, respectively, for 48 h. Results Amino acid restricted group showed lower insulin secretion and insulin gene expression, reduced mitochondrial oxygen consumption rate and reactive oxygen species production. Besides, amino acid restricted group also showed higher levels of endoplasmic reticulum stress and apoptosis markers and enhanced Akt phosphorylation. However, even with higher levels of apoptosis markers, amino acid restricted group did not show higher levels of cell death unless the PI3K/Akt pathway was inhibited. Conclusion Amino acid restricted beta cell viability seems to be dependent on the PI3K/Akt pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02568-2.
Collapse
|
7
|
Mateus Gonçalves L, Vettorazzi JF, Vanzela EC, Figueiredo MS, Batista TM, Zoppi CC, Boschero AC, Carneiro EM. Amino acid restriction increases β-cell death under challenging conditions. J Cell Physiol 2019; 234:16679-16684. [PMID: 30815898 DOI: 10.1002/jcp.28389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 11/08/2022]
Abstract
Malnutrition programs metabolism, favor dysfunction of β cells. We aimed to establish an in vitro protocol of malnutrition, assessing the effect of amino acid restriction upon the β cells. Insulin-producing cells INS-1E and pancreatic islets were maintained in RPMI 1640 medium containing 1× (Ctl) or 0.25× (AaR) of amino acids. We evaluated several markers of β-cell function and viability. AaR Insulin secretion was reduced, whereas cell viability was unaltered. Calcium oscillations in response to glucose increased in AaR. AaR showed lower Ins1 RNAm, snap 25, and PKC (protein kinase C) protein content, whereas phospho-eIF2α was increased. AaR cells exposed to nutrient or chemical challenges displayed higher apoptosis rates. We showed that amino acid restriction programmed β cell and induced functional changes. This model might be useful for the study of molecular mechanisms involved with β-cell programming helping to establish novel therapeutic targets to prevent harmful outcomes of malnutrition.
Collapse
Affiliation(s)
- Luciana Mateus Gonçalves
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Jean Franciesco Vettorazzi
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Emerielle Cristine Vanzela
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Mariana Sarto Figueiredo
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Thiago Martins Batista
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Claudio Cesar Zoppi
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Antonio Carlos Boschero
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
8
|
Abstract
The main forms of childhood malnutrition occur predominantly in children <5 years of age living in low-income and middle-income countries and include stunting, wasting and kwashiorkor, of which severe wasting and kwashiorkor are commonly referred to as severe acute malnutrition. Here, we use the term 'severe malnutrition' to describe these conditions to better reflect the contributions of chronic poverty, poor living conditions with pervasive deficits in sanitation and hygiene, a high prevalence of infectious diseases and environmental insults, food insecurity, poor maternal and fetal nutritional status and suboptimal nutritional intake in infancy and early childhood. Children with severe malnutrition have an increased risk of serious illness and death, primarily from acute infectious diseases. International growth standards are used for the diagnosis of severe malnutrition and provide therapeutic end points. The early detection of severe wasting and kwashiorkor and outpatient therapy for these conditions using ready-to-use therapeutic foods form the cornerstone of modern therapy, and only a small percentage of children require inpatient care. However, the normalization of physiological and metabolic functions in children with malnutrition is challenging, and children remain at high risk of relapse and death. Further research is urgently needed to improve our understanding of the pathophysiology of severe malnutrition, especially the mechanisms causing kwashiorkor, and to develop new interventions for prevention and treatment.
Collapse
Affiliation(s)
- Zulfiqar A Bhutta
- Centre for Global Child Health, Hospital for Sick Children, Peter Gilgan Centre for Research &Learning, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
- Center of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan
| | - James A Berkley
- Clinical Research Department, KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
- The Childhood Acute Illness &Nutrition (CHAIN) Network, Nairobi, Kenya
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Robert H J Bandsma
- Centre for Global Child Health, Hospital for Sick Children, Peter Gilgan Centre for Research &Learning, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
- The Childhood Acute Illness &Nutrition (CHAIN) Network, Nairobi, Kenya
- Department of Biomedical Sciences, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Marko Kerac
- Department of Population Health, London School of Hygiene &Tropical Medicine, London, UK
| | - Indi Trehan
- Lao Friends Hospital for Children, Luang Prabang, Laos
- Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Paediatrics and Child Health, University of Malawi, Blantyre, Malawi
| | - André Briend
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Borck PC, Batista TM, Vettorazzi JF, Camargo RL, Boschero AC, Vieira E, Carneiro EM. Protein malnutrition after weaning disrupts peripheral clock and daily insulin secretion in mice. J Nutr Biochem 2017; 50:54-65. [PMID: 29032081 DOI: 10.1016/j.jnutbio.2017.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 07/13/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022]
Abstract
Changes in nutritional state may alter circadian rhythms through alterations in expression of clock genes. Protein deficiency has a profound effect on body metabolism, but the effect of this nutrient restriction after weaning on biological clock has not been explored. Thus, this study aims to investigate whether the protein restriction affects the daily oscillation in the behavior and metabolic rhythms, as well as expression of clock genes in peripheral tissues. Male C57BL/6 J mice, after weaning, were fed a normal-protein (NP) diet or a low-protein (LP) diet for 8 weeks. Mice fed an LP diet did not show difference in locomotor activity and energy expenditure, but the food intake was increased, with parallel increased expression of the orexigenic neuropeptide Npy and disruption of the anorexigenic Pomc oscillatory pattern in the hypothalamus. LP mice showed disruption in the daily rhythmic patterns of plasma glucose, triglycerides and insulin. Also, the rhythmic expression of clock genes in peripheral tissues and pancreatic islets was altered in LP mice. In pancreatic islets, the disruption of clock genes was followed by impairment of daily glucose-stimulated insulin secretion and the expression of genes involved in exocytosis. Pharmacological activation of REV-ERBα could not restore the insulin secretion in LP mice. The present study demonstrates that protein restriction, leading to development of malnutrition, alters the peripheral clock and metabolic outputs, suggesting that this nutrient provides important entraining cues to regulate the daily fluctuation of biological clock.
Collapse
MESH Headings
- Adipose Tissue, White/metabolism
- Animals
- Biological Clocks
- CLOCK Proteins/genetics
- CLOCK Proteins/metabolism
- Diet, Protein-Restricted/adverse effects
- Gene Expression Regulation, Developmental/drug effects
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Hypothalamus/metabolism
- Insulin/genetics
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Isoquinolines/pharmacology
- Liver/metabolism
- Male
- Mice, Inbred C57BL
- Muscle, Skeletal/metabolism
- Neurons/metabolism
- Neuropeptide Y/genetics
- Neuropeptide Y/metabolism
- Nuclear Receptor Subfamily 1, Group D, Member 1/agonists
- Nuclear Receptor Subfamily 1, Group D, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Organ Specificity
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- Protein Deficiency/etiology
- Protein Deficiency/physiopathology
- Random Allocation
- Thiophenes/pharmacology
- Weaning
Collapse
Affiliation(s)
- Patricia Cristine Borck
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Thiago Martins Batista
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Jean Franciesco Vettorazzi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Rafael Ludemann Camargo
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Antonio Carlos Boschero
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Elaine Vieira
- Postgraduate Program on Physical Education, Universidade Católica de Brasília-UCB, Brasília, DF, Brazil.
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
10
|
Branco RCS, Camargo RL, Batista TM, Vettorazzi JF, Borck PC, Dos Santos-Silva JCR, Boschero AC, Zoppi CC, Carneiro EM. Protein malnutrition blunts the increment of taurine transporter expression by a high-fat diet and impairs taurine reestablishment of insulin secretion. FASEB J 2017; 31:4078-4087. [PMID: 28572444 DOI: 10.1096/fj.201600326rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/15/2017] [Indexed: 12/23/2022]
Abstract
Taurine (Tau) restores β-cell function in obesity; however, its action is lost in malnourished obese rodents. Here, we investigated the mechanisms involved in the lack of effects of Tau in this model. C57BL/6 mice were fed a control diet (CD) (14% protein) or a protein-restricted diet (RD) (6% protein) for 6 wk. Afterward, mice received a high-fat diet (HFD) for 8 wk [CD + HFD (CH) and RD + HFD (RH)] with or without 5% Tau supplementation after weaning on their drinking water [CH + Tau (CHT) and RH + Tau (RHT)]. The HFD increased insulin secretion through mitochondrial metabolism in CH and RH. Tau prevented all those alterations in CHT only. The expression of the taurine transporter (Tau-T), as well as Tau content in pancreatic islets, was increased in CH but had no effect on RH. Protein malnutrition programs β cells and impairs Tau-induced restoration of mitochondrial metabolism and biogenesis. This may be associated with modulation of the expression of Tau-T in pancreatic islets, which may be responsible for the absence of effect of Tau in protein-malnourished obese mice.-Branco, R. C. S., Camargo, R. L., Batista, T. M., Vettorazzi, J. F., Borck, P. C., dos Santos-Silva, J. C. R., Boschero, A. C., Zoppi, C. C., Carneiro, E. M. Protein malnutrition blunts the increment of taurine transporter expression by a high-fat diet and impairs taurine reestablishment of insulin secretion.
Collapse
Affiliation(s)
- Renato Chaves Souto Branco
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rafael Ludemann Camargo
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Thiago Martins Batista
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Jean Franciesco Vettorazzi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Patrícia Cristine Borck
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Antonio Carlos Boschero
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Cláudio Cesar Zoppi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
11
|
Cappelli APG, Zoppi CC, Silveira LR, Batista TM, Paula FM, da Silva PMR, Rafacho A, Barbosa-Sampaio HC, Boschero AC, Carneiro EM. Reduced glucose-induced insulin secretion in low-protein-fed rats is associated with altered pancreatic islets redox status. J Cell Physiol 2017; 233:486-496. [PMID: 28370189 DOI: 10.1002/jcp.25908] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/13/2017] [Indexed: 01/01/2023]
Abstract
In the present study, we investigated the relationship between early life protein malnutrition-induced redox imbalance, and reduced glucose-stimulated insulin secretion. After weaning, male Wistar rats were submitted to a normal-protein-diet (17%-protein, NP) or to a low-protein-diet (6%-protein, LP) for 60 days. Pancreatic islets were isolated and hydrogen peroxide (H2 O2 ), oxidized (GSSG) and reduced (GSH) glutathione content, CuZn-superoxide dismutase (SOD1), glutathione peroxidase (GPx1) and catalase (CAT) gene expression, as well as enzymatic antioxidant activities were quantified. Islets that were pre-incubated with H2 O2 and/or N-acetylcysteine, were subsequently incubated with glucose for insulin secretion measurement. Protein malnutrition increased CAT mRNA content by 100%. LP group SOD1 and CAT activities were 50% increased and reduced, respectively. H2 O2 production was more than 50% increased whereas GSH/GSSG ratio was near 60% lower in LP group. Insulin secretion was, in most conditions, approximately 50% lower in LP rat islets. When islets were pre-incubated with H2 O2 (100 μM), and incubated with glucose (33 mM), LP rats showed significant decrease of insulin secretion. This effect was attenuated when LP islets were exposed to N-acetylcysteine.
Collapse
Affiliation(s)
- Ana Paula G Cappelli
- Department of Structural and Functional Biology, Cellular Biology and Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão (UFMA), São Luís, Maranhão, Brazil.,Department of Physiology and Biophysiology, Institute of Biomedical Sciences, University of Sao Paulo (USP), São Paulo, Brazil
| | - Claudio C Zoppi
- Department of Structural and Functional Biology, Cellular Biology and Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Leonardo R Silveira
- Department of Structural and Functional Biology, Cellular Biology and Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Thiago M Batista
- Department of Structural and Functional Biology, Cellular Biology and Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Flávia M Paula
- Department of Structural and Functional Biology, Cellular Biology and Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Alex Rafacho
- Department of Structural and Functional Biology, Cellular Biology and Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.,Department of Physiologic Sciences, Center of Biologic Sciences, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil
| | - Helena C Barbosa-Sampaio
- Department of Structural and Functional Biology, Cellular Biology and Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Antonio C Boschero
- Department of Structural and Functional Biology, Cellular Biology and Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Everardo M Carneiro
- Department of Structural and Functional Biology, Cellular Biology and Physiology and Biophysics, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
12
|
miR-124a expression contributes to the monophasic pattern of insulin secretion in islets from pregnant rats submitted to a low-protein diet. Eur J Nutr 2017; 57:1471-1483. [PMID: 28314963 DOI: 10.1007/s00394-017-1425-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/01/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE To evaluate the role of miR-124a in the regulation of genes involved in insulin exocytosis and its effects on the kinetics of insulin secretion in pancreatic islets from pregnant rats submitted to a low-protein diet. METHODS Adult control non-pregnant (CNP) and control pregnant (CP) rats were fed a normal protein diet (17%), whereas low-protein non-pregnant (LPNP) and low-protein pregnant (LPP) rats were fed a low-protein diet (6%) from days 1 to 15 of pregnancy. Kinetics of the glucose-induced insulin release and measurement of [Ca2+]i in pancreatic islets were assessed by standard protocols. The miR-124a expression and gene transcriptions from pancreatic islets were determined by real-time polymerase chain reaction. RESULTS In islets from LPP rats, the first phase of insulin release was abrogated. The AUC [Ca2+]i from the LPP group was lower compared with the other groups. miR-124a expression was reduced by a low-protein diet. SNAP-25 mRNA, protein expression, and Rab3A protein content were lower in the LPP rats than in CP rats. Syntaxin 1A and Kir6.2 mRNA levels were decreased in islets from low-protein rats compared with control rats, whereas their protein content was reduced in islets from pregnant rats. CONCLUSIONS Loss of biphasic insulin secretion in islets from LPP rats appears to have resulted from reduced [Ca2+]i due, at least in part, to Kir6.2 underexpression and from the changes in exocytotic elements that are influenced either directly or indirectly by miR-124a.
Collapse
|
13
|
Vettorazzi JF, Ribeiro RA, Borck PC, Branco RCS, Soriano S, Merino B, Boschero AC, Nadal A, Quesada I, Carneiro EM. The bile acid TUDCA increases glucose-induced insulin secretion via the cAMP/PKA pathway in pancreatic beta cells. Metabolism 2016; 65:54-63. [PMID: 26892516 DOI: 10.1016/j.metabol.2015.10.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/20/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE While bile acids are important for the digestion process, they also act as signaling molecules in many tissues, including the endocrine pancreas, which expresses specific bile acid receptors that regulate several cell functions. In this study, we investigated the effects of the conjugated bile acid TUDCA on glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. METHODS Pancreatic islets were isolated from 90-day-old male mice. Insulin secretion was measured by radioimmunoassay, protein phosphorylation by western blot, Ca(2+) signals by fluorescence microscopy and ATP-dependent K(+) (KATP) channels by electrophysiology. RESULTS TUDCA dose-dependently increased GSIS in fresh islets at stimulatory glucose concentrations but remained without effect at low glucose levels. This effect was not associated with changes in glucose metabolism, Ca(2+) signals or KATP channel activity; however, it was lost in the presence of a cAMP competitor or a PKA inhibitor. Additionally, PKA and CREB phosphorylation were observed after 1-hour incubation with TUDCA. The potentiation of GSIS was blunted by the Gα stimulatory, G protein subunit-specific inhibitor NF449 and mimicked by the specific TGR5 agonist INT-777, pointing to the involvement of the bile acid G protein-coupled receptor TGR5. CONCLUSION Our data indicate that TUDCA potentiates GSIS through the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Jean Franciesco Vettorazzi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil; Institute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Miguel Hernández University, 03202, Elche, Spain
| | - Rosane Aparecida Ribeiro
- Integrated Laboratory of Morphology, Centre for Ecology and Socio-Environmental - NUPEM, Federal University of Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, Brazil
| | - Patricia Cristine Borck
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Renato Chaves Souto Branco
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Sergi Soriano
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03080 Alicante, Spain
| | - Beatriz Merino
- Institute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Miguel Hernández University, 03202, Elche, Spain
| | - Antônio Carlos Boschero
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Angel Nadal
- Institute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Miguel Hernández University, 03202, Elche, Spain
| | - Ivan Quesada
- Institute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Miguel Hernández University, 03202, Elche, Spain
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
14
|
Bandsma RHJ, Ackerley C, Koulajian K, Zhang L, van Zutphen T, van Dijk TH, Xiao C, Giacca A, Lewis GF. A low-protein diet combined with low-dose endotoxin leads to changes in glucose homeostasis in weanling rats. Am J Physiol Endocrinol Metab 2015; 309:E466-73. [PMID: 26152763 DOI: 10.1152/ajpendo.00090.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/01/2015] [Indexed: 12/23/2022]
Abstract
Severe malnutrition is a leading cause of global childhood mortality, and infection and hypoglycemia or hyperglycemia are commonly present. The etiology behind the changes in glucose homeostasis is poorly understood. Here, we generated an animal model of severe malnutrition with and without low-grade inflammation to investigate the effects on glucose homeostasis. Immediately after weaning, rats were fed diets containing 5 [low-protein diet (LP)] or 20% protein [control diet (CTRL)], with or without repeated low-dose intraperitoneal lipopolysaccharide (LPS; 2 mg/kg), to mimic inflammation resulting from infections. After 4 wk on the diets, hyperglycemic clamps or euglycemic hyperinsulinemic clamps were performed with infusion of [U-(13)C6]glucose and [2-(13)C]glycerol to assess insulin secretion, action, and hepatic glucose metabolism. In separate studies, pancreatic islets were isolated for further analyses of insulin secretion and islet morphometry. Glucose clearance was reduced significantly by LP feeding alone (16%) and by LP feeding with LPS administration (43.8%) compared with control during the hyperglycemic clamps. This was associated with a strongly reduced insulin secretion in LP-fed rats in vivo as well as ex vivo in islets but signficantly enhanced whole body insulin sensitivity. Gluconeogenesis rates were unaffected by LP feeding, but glycogenolysis was higher after LP feeding. A protein-deficient diet in young rats leads to a susceptibility to low-dose endotoxin-induced impairment in glucose clearance with a decrease in the islet insulin secretory pathway. A protein-deficient diet is associated with enhanced peripheral insulin sensitivity but impaired insulin-mediated suppression of hepatic glycogenolysis.
Collapse
Affiliation(s)
- Robert H J Bandsma
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada; Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands;
| | - Cameron Ackerley
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Khajag Koulajian
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Ling Zhang
- Physiology and Experimental Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tim van Zutphen
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Theo H van Dijk
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Changting Xiao
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; and Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Adria Giacca
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; and Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gary F Lewis
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; and Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
da Silva Lippo BR, Batista TM, de Rezende LF, Cappelli AP, Camargo RL, Branco RCS, Barbosa Sampaio HC, Protzek AOP, Wanderley MI, Arantes VC, Corat MAF, Carneiro EM, Udrisar DP, Wanderley AG, Ferreira F. Low-protein diet disrupts the crosstalk between the PKA and PKC signaling pathways in isolated pancreatic islets. J Nutr Biochem 2015; 26:556-62. [DOI: 10.1016/j.jnutbio.2014.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/26/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
|
16
|
Fournier C, Rizzoli R, Ammann P. Low calcium-phosphate intakes modulate the low-protein diet-related effect on peak bone mass acquisition: a hormonal and bone strength determinants study in female growing rats. Endocrinology 2014; 155:4305-15. [PMID: 25147979 DOI: 10.1210/en.2014-1308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peak bone mass acquisition is influenced by environmental factors including dietary intake. A low-protein diet delays body and skeletal growth in association with a reduction in serum IGF-1 whereas serum FGF21 is increased by selective amino acid deprivation. Calcium (Ca) and phosphorous (P) are also key nutrients for skeletal health, and inadequate intakes reduce bone mass accrual in association with calciotropic hormone modulation. Besides, the effect of calcium supplementation on bone mass in prepubertal children appears to be influenced by protein intake. To further explore the interaction of dietary protein and Ca-P intake on bone growth, 1-month-old female rats were fed with an isocaloric 10%, 7.5%, or 5% casein diet containing normal or low Ca-P for an 8-week period (6 groups). Changes in tibia geometry, mineral content, microarchitecture, strength, and intrinsic bone quality were analyzed. At the hormonal level, serum IGF-1, fibroblast growth factor 21 (FGF21), PTH, 1,25-dihydroxyvitamin D3 (calcitriol), and FGF23 were investigated as well as the Ghr hepatic gene expression. In normal dietary Ca-P conditions, bone mineral content, trabecular and cortical bone volume, and bone strength were lower in the 5% casein group in association with a decrease in serum IGF-1 and an increase in FGF21 levels. Unexpectedly, the low-Ca-P diet attenuated the 5% casein diet-related reduction of serum IGF-1 and Ghr hepatic gene expression, as well as the low-protein diet-induced decrease in bone mass and strength. However, this was associated with lower cortical bone material level properties. The low-Ca-P diet increased serum calcitriol but decreased FGF23 levels. Calcitriol levels positively correlated with Ghr hepatic mRNA levels. These results suggest that hormonal modulation in response to a low-Ca-P diet may modify the low-protein diet-induced effect on Ghr hepatic mRNA levels and consequently the impact of low protein intakes on IGF-1 circulating levels and skeletal growth.
Collapse
Affiliation(s)
- C Fournier
- Bone Diseases Service, Department of Internal Medicine Specialties, Geneva University Hospitals and Faculty of Medicine, CH1211 Geneva, Switzerland
| | | | | |
Collapse
|
17
|
Vettorazzi JF, Ribeiro RA, Santos-Silva JC, Borck PC, Batista TM, Nardelli TR, Boschero AC, Carneiro EM. Taurine supplementation increases K(ATP) channel protein content, improving Ca2+ handling and insulin secretion in islets from malnourished mice fed on a high-fat diet. Amino Acids 2014; 46:2123-36. [PMID: 24866813 DOI: 10.1007/s00726-014-1763-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/08/2014] [Indexed: 12/21/2022]
Abstract
Pancreatic β-cells are highly sensitive to suboptimal or excess nutrients, as occurs in protein-malnutrition and obesity. Taurine (Tau) improves insulin secretion in response to nutrients and depolarizing agents. Here, we assessed the expression and function of Cav and KATP channels in islets from malnourished mice fed on a high-fat diet (HFD) and supplemented with Tau. Weaned mice received a normal (C) or a low-protein diet (R) for 6 weeks. Half of each group were fed a HFD for 8 weeks without (CH, RH) or with 5% Tau since weaning (CHT, RHT). Isolated islets from R mice showed lower insulin release with glucose and depolarizing stimuli. In CH islets, insulin secretion was increased and this was associated with enhanced KATP inhibition and Cav activity. RH islets secreted less insulin at high K(+) concentration and showed enhanced KATP activity. Tau supplementation normalized K(+)-induced secretion and enhanced glucose-induced Ca(2+) influx in RHT islets. R islets presented lower Ca(2+) influx in response to tolbutamide, and higher protein content and activity of the Kir6.2 subunit of the KATP. Tau increased the protein content of the α1.2 subunit of the Cav channels and the SNARE proteins SNAP-25 and Synt-1 in CHT islets, whereas in RHT, Kir6.2 and Synt-1 proteins were increased. In conclusion, impaired islet function in R islets is related to higher content and activity of the KATP channels. Tau treatment enhanced RHT islet secretory capacity by improving the protein expression and inhibition of the KATP channels and enhancing Synt-1 islet content.
Collapse
Affiliation(s)
- Jean F Vettorazzi
- Laboratório de Pâncreas Endócrino e Metabolismo, Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Rafacho A, Gonçalves-Neto LM, Santos-Silva JC, Alonso-Magdalena P, Merino B, Taboga SR, Carneiro EM, Boschero AC, Nadal A, Quesada I. Pancreatic alpha-cell dysfunction contributes to the disruption of glucose homeostasis and compensatory insulin hypersecretion in glucocorticoid-treated rats. PLoS One 2014; 9:e93531. [PMID: 24705399 PMCID: PMC3976288 DOI: 10.1371/journal.pone.0093531] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/04/2014] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoid (GC)-based therapies can cause insulin resistance (IR), glucose intolerance, hyperglycemia and, occasionally, overt diabetes. Understanding the mechanisms behind these metabolic disorders could improve the management of glucose homeostasis in patients undergoing GC treatment. For this purpose, adult rats were treated with a daily injection of dexamethasone (1 mg/kg b.w., i.p.) (DEX) or saline as a control for 5 consecutive days. The DEX rats developed IR, augmented glycemia, hyperinsulinemia and hyperglucagonemia. Treatment of the DEX rats with a glucagon receptor antagonist normalized their blood glucose level. The characteristic inhibitory effect of glucose on glucagon secretion was impaired in the islets of the DEX rats, while no direct effects were found on α-cells in islets that were incubated with DEX in vitro. A higher proportion of docked secretory granules was found in the DEX α-cells as well as a trend towards increased α-cell mass. Additionally, insulin secretion in the presence of glucagon was augmented in the islets of the DEX rats, which was most likely due to their higher glucagon receptor content. We also found that the enzyme 11βHSD-1, which participates in GC metabolism, contributed to the insulin hypersecretion in the DEX rats under basal glucose conditions. Altogether, we showed that GC treatment induces hyperglucagonemia, which contributes to an imbalance in glucose homeostasis and compensatory β-cell hypersecretion. This hyperglucagonemia may result from altered α-cell function and, likely, α-cell mass. Additionally, blockage of the glucagon receptor seems to be effective in preventing the elevation in blood glucose levels induced by GC administration.
Collapse
Affiliation(s)
- Alex Rafacho
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
- * E-mail: (AR); (IQ)
| | - Luiz M. Gonçalves-Neto
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Junia C. Santos-Silva
- Department of Structural and Functional Biology, Institute of Biology, and Obesity and Comorbidities Research Center (OCRC), State University of Campinas (UNICAMP), Campinas, Brazil
| | - Paloma Alonso-Magdalena
- Institute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Miguel Hernández University, Elche, Spain
| | - Beatriz Merino
- Institute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Miguel Hernández University, Elche, Spain
| | - Sebastião R. Taboga
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, Brazil
| | - Everardo M. Carneiro
- Department of Structural and Functional Biology, Institute of Biology, and Obesity and Comorbidities Research Center (OCRC), State University of Campinas (UNICAMP), Campinas, Brazil
| | - Antonio C. Boschero
- Department of Structural and Functional Biology, Institute of Biology, and Obesity and Comorbidities Research Center (OCRC), State University of Campinas (UNICAMP), Campinas, Brazil
| | - Angel Nadal
- Institute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Miguel Hernández University, Elche, Spain
| | - Ivan Quesada
- Institute of Bioengineering and the Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Miguel Hernández University, Elche, Spain
- * E-mail: (AR); (IQ)
| |
Collapse
|
19
|
Abstract
Human noroviruses are the primary cause of severe childhood diarrhea in the United States, and they are of particular clinical importance in pediatric populations in the developing world. A major contributing factor to the general increased severity of infectious diseases in these regions is malnutrition-nutritional status shapes host immune responses and the composition of the host intestinal microbiota, both of which can influence the outcome of pathogenic infections. In terms of enteric norovirus infections, mucosal immunity and intestinal microbes are likely to contribute to the infection outcome in substantial ways. We probed these interactions using a murine model of malnutrition and murine norovirus infection. Our results reveal that malnutrition is associated with more severe norovirus infections as defined by weight loss, impaired control of norovirus infections, reduced antiviral antibody responses, loss of protective immunity, and enhanced viral evolution. Moreover, the microbiota is dramatically altered by malnutrition. Interestingly, murine norovirus infection also causes changes in the host microbial composition within the intestine but only in healthy mice. In fact, the infection-associated microbiota resembles the malnutrition-associated microbiota. Collectively, these findings represent an extensive characterization of a new malnutrition model of norovirus infection that will ultimately facilitate elucidation of the nutritionally regulated host parameters that predispose to more severe infections and impaired memory immune responses. In a broad sense, this model may provide insight into the reduced efficacy of oral vaccines in malnourished hosts and the potential for malnourished individuals to act as reservoirs of emergent virus strains. IMPORTANCE Malnourished children in developing countries are susceptible to more severe infections than their healthy counterparts, in particular enteric infections that cause diarrhea. In order to probe the effects of malnutrition on an enteric infection in a well-controlled system devoid of other environmental and genetic variability, we studied norovirus infection in a mouse model. We have revealed that malnourished mice develop more severe norovirus infections and they fail to mount effective memory immunity to a secondary challenge. This is of particular importance because malnourished children generally mount less effective immune responses to oral vaccines, and we can now use our new model system to probe the immunological basis of this impairment. We have also determined that noroviruses evolve more readily in the face of malnutrition. Finally, both norovirus infection and malnutrition independently alter the composition of the intestinal microbiota in substantial and overlapping ways.
Collapse
|
20
|
Gonzalez A, Merino B, Marroquí L, Ñeco P, Alonso-Magdalena P, Caballero-Garrido E, Vieira E, Soriano S, Gomis R, Nadal A, Quesada I. Insulin hypersecretion in islets from diet-induced hyperinsulinemic obese female mice is associated with several functional adaptations in individual β-cells. Endocrinology 2013; 154:3515-24. [PMID: 23867214 DOI: 10.1210/en.2013-1424] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Insulin resistance and hyperinsulinemia are generally associated with obesity. Obese nondiabetic individuals develop a compensatory β-cell response to adjust insulin levels to the increased demand, maintaining euglycemia. Although several studies indicate that this compensation relies on structural changes, the existence of β-cell functional adaptations is incompletely understood. Here, we fed female mice with a high-fat diet (HFD) for 12 weeks. These animals became obese, hyperinsulinemic, insulin-resistant, and mildly glucose-intolerant while fed, and fasting glycemia was comparable in HFD and control mice. Islets from HFD animals exhibited increased β-cell mass and hypertrophy. Additionally, they had enhanced insulin gene expression and content and augmented glucose-induced insulin secretion. Electrophysiological examination of β-cells from both groups showed no differences in KATP channel open probability and conductance. However, action potentials elicited by glucose had larger amplitude in obese mice. Glucose-induced Ca²⁺ signals in intact islets, in isolated β-cells, and individual β-cells within islets were also increased in HFD mice. Additionally, a higher proportion of glucose-responsive cells was present in obese mice. In contrast, whole-cell Ca²⁺ current densities were similar in both groups. Capacitance measurements showed that depolarization-evoked exocytosis was enhanced in HFD β-cells compared with controls. Although this augment was not significant when capacitance increases of the whole β-cell population were normalized to cell size, the exocytotic output varied significantly when β-cells were distributed by size ranges. All these findings indicate that β-cell functional adaptations are present in the islet compensatory response to obesity.
Collapse
Affiliation(s)
- Alejandro Gonzalez
- Universidad Miguel Hernández, Avenida de la Universidad s/n, 03202 Elche, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gestational protein restriction induces alterations in placental morphology and mitochondrial function in rats during late pregnancy. J Mol Histol 2013; 44:629-37. [DOI: 10.1007/s10735-013-9522-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/26/2013] [Indexed: 01/07/2023]
|
22
|
Vieira E, Marroquí L, Figueroa ALC, Merino B, Fernandez-Ruiz R, Nadal A, Burris TP, Gomis R, Quesada I. Involvement of the clock gene Rev-erb alpha in the regulation of glucagon secretion in pancreatic alpha-cells. PLoS One 2013; 8:e69939. [PMID: 23936124 PMCID: PMC3723646 DOI: 10.1371/journal.pone.0069939] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/13/2013] [Indexed: 11/19/2022] Open
Abstract
Disruption of pancreatic clock genes impairs pancreatic beta-cell function, leading to the onset of diabetes. Despite the importance of pancreatic alpha-cells in the regulation of glucose homeostasis and in diabetes pathophysiology, nothing is known about the role of clock genes in these cells. Here, we identify the clock gene Rev-erb alpha as a new intracellular regulator of glucagon secretion. Rev-erb alpha down-regulation by siRNA (60–70% inhibition) in alphaTC1-9 cells inhibited low-glucose induced glucagon secretion (p<0.05) and led to a decrease in key genes of the exocytotic machinery. The Rev-erb alpha agonist GSK4112 increased glucagon secretion (1.6 fold) and intracellular calcium signals in alphaTC1-9 cells and mouse primary alpha-cells, whereas the Rev-erb alpha antagonist SR8278 produced the opposite effect. At 0.5 mM glucose, alphaTC1-9 cells exhibited intrinsic circadian Rev-erb alpha expression oscillations that were inhibited by 11 mM glucose. In mouse primary alpha-cells, glucose induced similar effects (p<0.001). High glucose inhibited key genes controlled by AMPK such as Nampt, Sirt1 and PGC-1 alpha in alphaTC1-9 cells (p<0.05). AMPK activation by metformin completely reversed the inhibitory effect of glucose on Nampt-Sirt1-PGC-1 alpha and Rev-erb alpha. Nampt inhibition decreased Sirt1, PGC-1 alpha and Rev-erb alpha mRNA expression (p<0.01) and glucagon release (p<0.05). These findings identify Rev-erb alpha as a new intracellular regulator of glucagon secretion via AMPK/Nampt/Sirt1 pathway.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/metabolism
- Animals
- Cell Line
- Circadian Rhythm/genetics
- Cytokines/genetics
- Cytokines/metabolism
- Gene Expression Regulation
- Glucagon/genetics
- Glucagon/metabolism
- Glucagon-Secreting Cells/cytology
- Glucagon-Secreting Cells/drug effects
- Glucagon-Secreting Cells/metabolism
- Glucose/metabolism
- Glucose/pharmacology
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Isoquinolines/pharmacology
- Metformin/pharmacology
- Mice
- Nicotinamide Phosphoribosyltransferase/genetics
- Nicotinamide Phosphoribosyltransferase/metabolism
- Nuclear Receptor Subfamily 1, Group D, Member 1/agonists
- Nuclear Receptor Subfamily 1, Group D, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Thiophenes/pharmacology
Collapse
Affiliation(s)
- Elaine Vieira
- Instituto de Bioingeniería, Universidad Miguel Hernandez de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- * E-mail: (EV); (IQ)
| | - Laura Marroquí
- Instituto de Bioingeniería, Universidad Miguel Hernandez de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Ana Lucia C. Figueroa
- Diabetes and Obesity Laboratory, Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Beatriz Merino
- Instituto de Bioingeniería, Universidad Miguel Hernandez de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Rebeca Fernandez-Ruiz
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- Diabetes and Obesity Laboratory, Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Angel Nadal
- Instituto de Bioingeniería, Universidad Miguel Hernandez de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Thomas P. Burris
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Ramon Gomis
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- Diabetes and Obesity Laboratory, Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Endocrinology and Diabetes Unit, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Ivan Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernandez de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
- * E-mail: (EV); (IQ)
| |
Collapse
|
23
|
Batista TM, Ribeiro RA, da Silva PMR, Camargo RL, Lollo PCB, Boschero AC, Carneiro EM. Taurine supplementation improves liver glucose control in normal protein and malnourished mice fed a high-fat diet. Mol Nutr Food Res 2012; 57:423-34. [DOI: 10.1002/mnfr.201200345] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 10/11/2012] [Accepted: 10/23/2012] [Indexed: 01/05/2023]
Affiliation(s)
- Thiago M. Batista
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia; Universidade Estadual de Campinas (UNICAMP); Campinas SP Brazil
| | - Rosane A. Ribeiro
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia; Universidade Estadual de Campinas (UNICAMP); Campinas SP Brazil
- Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM); Universidade Federal do Rio de Janeiro (UFRJ); Macaé RJ Brazil
| | - Priscilla M. R. da Silva
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia; Universidade Estadual de Campinas (UNICAMP); Campinas SP Brazil
| | - Rafael L. Camargo
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia; Universidade Estadual de Campinas (UNICAMP); Campinas SP Brazil
| | - Pablo C. B. Lollo
- Departamento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos; Universidade Estadual de Campinas (UNICAMP); Campinas SP Brazil
| | - Antonio C. Boschero
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia; Universidade Estadual de Campinas (UNICAMP); Campinas SP Brazil
| | - Everardo M. Carneiro
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia; Universidade Estadual de Campinas (UNICAMP); Campinas SP Brazil
| |
Collapse
|
24
|
Liu L, Yin X, Morrissey S. Global variability in diabetes mellitus and its association with body weight and primary healthcare support in 49 low- and middle-income developing countries. Diabet Med 2012; 29:995-1002. [PMID: 22150805 DOI: 10.1111/j.1464-5491.2011.03549.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS In the absence of any previous global comparison, we examined the variability in prevalence of diabetes mellitus across 49 developing countries, and the associations of diabetes with body weight and primary healthcare support using data from the World Health Survey. METHODS Diabetes mellitus was defined by individuals' self-report of a physician diagnosis of diabetes. BMI is the weight (kg)/the square of the height (m). Healthcare support was assessed using clinical treatment status and whether patients with diabetes followed prescribed behaviour changes to control diabetes. Associations of diabetes with BMI and diabetes treatment status were analysed cross-sectionally. RESULTS A total of 215898 participants were included in the analysis. Age-adjusted prevalence of diabetes ranged from 0.27% (Mali) to 15.54% (Mauritius). Participants who were underweight (BMI <18.5 kg/m(2) ), overweight (BMI 25-29.9 kg/m(2) ) and obese (BMI ≥ 30 kg/m(2) ) were significantly associated with odds of having diabetes as compared with those who were of normal weight (BMI 18.5-24.9 k/m(2) ), with corresponding values of multivariate adjusted odds ratios (95% CI) of 1.15 (1.07-1.24), 1.56 (1.44-1.68) and 2.35 (2.17-2.61), respectively. The overall untreated rate of those with diabetes mellitus was 9.6% in the total sample. Patients with underweight had the highest diabetes untreated rate, followed by those with normal weight, overweight and obesity. CONCLUSION There are significant variations in prevalence of diabetes and primary healthcare support for diabetes across low- and middle-income countries. Aggressively preventing abnormal body weight and improving healthcare support may play a pivotal role in ameliorating the unfavourable epidemic of diabetes in developing countries.
Collapse
Affiliation(s)
- L Liu
- Department of Epidemiology and Biostatistics, Drexel University School of Public Health, Philadelphia, PA 19102, USA.
| | | | | |
Collapse
|
25
|
Developmental programming of aging of isolated pancreatic islet glucose-stimulated insulin secretion in female offspring of mothers fed low-protein diets in pregnancy and/or lactation. J Dev Orig Health Dis 2012; 3:483-8. [DOI: 10.1017/s2040174412000463] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Diabetes predisposition is determined by pancreatic islet insulin secretion and insulin resistance. We studied female rat offspring exposed to low-protein maternal diet (50% control protein diet) in pregnancy and/or lactation at postnatal days 36, 110 and 450. Rats were fed either control 20% casein diet (C) or restricted diet (R – 10% casein) during pregnancy. After delivery, mothers received either C or R diet until weaning to provide four offspring groups: CC, RR, CR and RC (first letter denoting maternal pregnancy diet and the second lactation diet). Serum glucose, insulin and homeostatic model assessment (HOMA) were measured. Pancreatic islets were isolated and in vitro insulin secretion quantified in low glucose (5 mM) and high glucose (11 mM). Serum glucose, insulin and HOMA were similar in all groups at 36 and 110 postnatal days. HOMA was only higher in RR at 450 postnatal days. Only CC demonstrated differences in glucose sensitivity of β-cells to high and low doses at the three ages studied. At 36 days, RR, CR and RC and at 450 days RR and RC groups did not show glucose-stimulated insulin secretion differences between low and high glucose. Aging-associated glucose-stimulated insulin secretion loss was affected by maternal dietary history, indicating that developmental programming must be considered a major factor in aging-related development of predisposition to later-life dysfunctional insulin metabolism. Female offspring islets’ insulin secretion was higher than previously reported in males.
Collapse
|
26
|
Marroquí L, Batista TM, Gonzalez A, Vieira E, Rafacho A, Colleta SJ, Taboga SR, Boschero AC, Nadal A, Carneiro EM, Quesada I. Functional and structural adaptations in the pancreatic α-cell and changes in glucagon signaling during protein malnutrition. Endocrinology 2012; 153:1663-72. [PMID: 22334714 DOI: 10.1210/en.2011-1623] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic malnutrition leads to multiple changes in β-cell function and peripheral insulin actions to adapt glucose homeostasis to these restricted conditions. However, despite glucose homeostasis also depends on glucagon effects, the role of α-cells in malnutrition is largely unknown. Here, we studied α-cell function and hepatic glucagon signaling in mice fed with low-protein (LP) or normal-protein diet for 8 wk after weaning. Using confocal microscopy, we found that inhibition of Ca²⁺ signaling by glucose was impaired in α-cells of LP mice. Consistent with these findings, the ability of glucose to inhibit glucagon release in isolated islets was also diminished in LP mice. This altered secretion was not related with changes in either glucagon gene expression or glucagon content. A morphometric analysis showed that α-cell mass was significantly increased in malnourished animals, aspect that was probably related with their enhanced plasma glucagon levels. When we analyzed the hepatic function, we observed that the phosphorylation of protein kinase A and cAMP response-binding element protein in response to fasting or exogenous glucagon was impaired in LP mice. Additionally, the up-regulated gene expression in response to fasting observed in the hepatic glucagon receptor as well as several key hepatic enzymes, such as peroxisome proliferator-activated receptor γ, glucose-6-phosphatase, and phosphoenolpyruvate carboxykinase, was altered in malnourished animals. Finally, liver glycogen mobilization in response to fasting and the ability of exogenous glucagon to raise plasma glucose levels were lower in LP mice. Therefore, chronic protein malnutrition leads to several alterations in both the α-cell function and hepatic glucagon signaling.
Collapse
Affiliation(s)
- Laura Marroquí
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Soty M, Visa M, Soriano S, Carmona MDC, Nadal Á, Novials A. Involvement of ATP-sensitive potassium (K(ATP)) channels in the loss of beta-cell function induced by human islet amyloid polypeptide. J Biol Chem 2011; 286:40857-66. [PMID: 21984830 DOI: 10.1074/jbc.m111.232801] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Islet amyloid polypeptide (IAPP) is a major component of amyloid deposition in pancreatic islets of patients with type 2 diabetes. It is known that IAPP can inhibit glucose-stimulated insulin secretion; however, the mechanisms of action have not yet been established. In the present work, using a rat pancreatic beta-cell line, INS1E, we have created an in vitro model that stably expressed human IAPP gene (hIAPP cells). These cells showed intracellular oligomers and a strong alteration of glucose-stimulated insulin and IAPP secretion. Taking advantage of this model, we investigated the mechanism by which IAPP altered beta-cell secretory response and contributed to the development of type 2 diabetes. We have measured the intracellular Ca(2+) mobilization in response to different secretagogues as well as mitochondrial metabolism. The study of calcium signals in hIAPP cells demonstrated an absence of response to glucose and also to tolbutamide, indicating a defect in ATP-sensitive potassium (K(ATP)) channels. Interestingly, hIAPP showed a greater maximal respiratory capacity than control cells. These data were confirmed by an increased mitochondrial membrane potential in hIAPP cells under glucose stimulation, leading to an elevated reactive oxygen species level as compared with control cells. We concluded that the hIAPP overexpression inhibits insulin and IAPP secretion in response to glucose affecting the activity of K(ATP) channels and that the increased mitochondrial metabolism is a compensatory response to counteract the secretory defect of beta-cells.
Collapse
Affiliation(s)
- Maud Soty
- Diabetes and Obesity Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clinic de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
28
|
de Oliveira CAM, Latorraca MQ, de Mello MAR, Carneiro EM. Mechanisms of insulin secretion in malnutrition: modulation by amino acids in rodent models. Amino Acids 2010; 40:1027-34. [DOI: 10.1007/s00726-010-0716-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 07/26/2010] [Indexed: 11/27/2022]
|